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ABSTRACT

In recent years, neural networks have received an increasing amount of attention
among macroeconomic forecasters because of their potential to detect and reproduce
linear and nonlinear relationships among a set of variables.  This paper provides a highly
accessible introduction to neural networks and establishes several parallels with standard
econometric techniques.  To facilitate the presentation, an empirical example is
developed to forecast Canada's real GDP growth.  For both the in-sample and out-of-
sample periods, the forecasting accuracy of the neural network is found to be superior to
a well-established linear regression model developed in the Department, with the error
reduction ranging from 13 to 40 per cent.  However, various tests indicate that there is
little evidence that the improvement in forecasting accuracy is statistically significant.

A thorough review of the literature suggests that neural networks are generally
more accurate than linear models for out-of-sample forecasting of economic output and
various financial variables such as stock prices.  However, the literature should still be
considered inconclusive due to the relatively small number of reliable studies on the
topic. Despite these encouraging results, neural networks should not be viewed as a
panacea, as this method also presents various weaknesses. Contrary to many researchers
in the field, who tend to adopt an all-or-nothing approach to this issue, we argue that
neural networks should be considered as a powerful complement to standard econometric
methods, rather than a substitute.  The full potential of neural networks can probably be
exploited by using them in conjunction with linear regression models.  Hence, neural
networks should be viewed as an additional tool to be included in the toolbox of
macroeconomic forecasters.



INTRODUCTION

The human brain constitutes the most complex computer known to mankind.  In
order to better understand the brain, many researchers have attempted to duplicate its
various abilities through the development of artificial intelligence.  Part of this research,
led by cognitive scientists over the last half-century, focused on artificial neural
networks.  Simply put, a neural network is a mathematical model that is structured like a
brain and that attempts to identify patterns among a group of variables. The scientists that
pioneered the research in this field were attempting to develop a system that could learn
through experience in order to further their understanding of the brain's learning abilities.
However, the surprising "learning" capacity displayed by neural networks subsequently
led to their application in a wide variety of tasks such as translating printed English text
into speech (Sejnowski and Rosenberg, 1986), playing backgammon (Tesauro, 1989),
recognizing hand-written characters (LeCun et al., 1990), playing music (Brecht and
Aiken, 1995) and diagnosing automobile engine misfires (Armstrong and Gross, 1998).

Recent research also suggests that neural networks may prove useful to forecast
volatile financial variables that are difficult to forecast with conventional statistical
methods, such as exchange rates (Verkooijen, 1996) and stock performance (Refenes,
Zapranis and Francis, 1994).  Neural networks have also been successfully applied to
macroeconomic variables such as economic growth (Tkacz, 1999), industrial production
(Moody, Levin and Rehfuss, 1993) and aggregate electricity consumption (McMenamin,
1997). Applications to macroeconomics are quite novel and are still considered to be at
the frontier of empirical economic methods.

As it will be shown, the simplest types of neural networks are closely linked to
standard econometric techniques. Throughout this paper, parallels will be established
between neural networks and econometric methods in order to facilitate the
comprehension of readers versed in econometrics.  A better understanding of neural
networks will help economists decide on the relevance of using these models for
macroeconomic and financial forecasting.

The paper also provides a thorough review of the empirical literature applying
neural networks to macroeconomic forecasting.  However, this literature should still be
viewed as inconclusive due to the relatively limited number of reliable studies available.
To enhance the discussion, this paper then examines the relative advantages and
disadvantages of these models from a more theoretical point of view, in order to help
identify the areas where their application may be potentially fruitful.  Several myths
about neural networks are also dispelled.

The paper is organized as follows.  Section 1 presents some basic characteristics
of the brain that inspired the design of the first neural networks.  Section 2 presents a very
accessible introduction to neural networks that establishes parallels with standard
econometric techniques. Section 3 explains how the network is estimated from the data.
Section 4 presents an empirical example of a neural network forecasting real GDP growth
and compares its forecasting accuracy to a linear regression model. Section 5 reviews the
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empirical literature comparing these models to econometric techniques.  Section 6
reviews the relative strengths and weaknesses of neural networks from a more theoretical
point of view and Section 7 concludes.

1.  BASIC CHARACTERISTICS OF THE BRAIN

As cognitive scientists studied the brain and its ability to learn, they identified
some key characteristics that seemed particularly important to the brain's success.  These
attributes were then used as a basis to construct neural networks.  To achieve a better
understanding of these networks, it is therefore useful to examine briefly these key
features of the brain.

The brain is composed of billions of simple units called neurons (Figure 1) that
are grouped into a vast network.  Biological research suggests that neurons perform the
relatively simple task of selectively transmitting electrical impulses among each other.
When a neuron receives impulses from neighbouring neurons, its reaction will vary
depending on the intensity of the impulses received and on its own particular "sensitivity"
towards the neurons that sent them.  Some neurons will not react at all to certain
impulses.  When a neuron does react (or is activated), it will send impulses to other
neurons.  The intensity of the impulses emitted will be proportional to the intensity of the
impulses received.  As impulses are transmitted among neurons, eventually a "cloud" of
neurons becomes simultaneously activated, thus giving rise to thoughts or emotions.

Figure 1
Basic illustration of a neuron

Source: Brown & Benchmark Introductory Psychology Electronic Image Bank, 1995.
             Times Mirror Higher Education Group, Inc.
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The power of the brain seems to stem from this complex network of connections
between neurons and the manner in which the activity of millions of neurons can be
synchronised and combined in a fraction of a second.  Keeping in mind these stylized
facts, let us now move on to a basic description of a neural network.

2.  THE SIMPLEST FORM OF NEURAL NETWORK
1

Like the brain, a neural network is essentially a collection of interconnected
neurons, grouped in layers, that send information to each other.  The simplest form of
network has only two layers: an input layer and an output layer.  The network operates
like an input-output system, using the values of the input neurons to compute a value for
the output neuron. Figure 2 illustrates the standard graphical representation of a neural
network. Each neuron is represented by a circle, while the connections between neurons
are depicted by arrows.  The output Y and the inputs X0,  X1 and X2 are n x 1 vectors,
where n is the number of observations.  In this example, information runs exclusively
from inputs to outputs, hence the term feedforward network.

Figure 2
A basic feedforward neural network
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Each connection between an input and the output is characterised by a weight ai
which expresses the relative importance of a particular input in the calculation of the
output.  To calculate the output value for observation t, the output neuron starts by
collecting the values of each input neuron for observation t and multiplies each of them
by the weight associated with the relevant connection.  These products are then summed,
yielding the following value:

a0X0t + a1X1t + a2X2t (1)

The output neuron then processes this value using an activation function, noted f(x).  In
the simplest form of feedforward neural network, the activation function is the identity,

                                                
1 This Section draws considerably on Kuan and White (1994).
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i.e. f(x) = x.  In this case, the value given in (1) would constitute the final output of the
network for observation t :

Yt = a0X0t + a1X1t + a2X2t (2)

Typically, one of the inputs, called the bias, is equal to 1 for all observations.  Assuming
that X0 is the bias, the output of the network is given by:

Yt = a0 + a1X1t + a2X2t (3)

In general, the researcher also provides the network with the target output value
(noted Yt) that the network should try to reproduce through its computations, given the
value of the inputs.  A forecasting error for each observation is then computed as the
difference between Yt and Yt. Using various iterative algorithms (the most common of
which is called the backpropagation algorithm), the weights of the network will be
modified until the forecasting errors across the entire sample are minimized, as measured
by the sum of squared errors or the mean absolute error. As the weights are changed with
each iteration, the network is said to be learning.

From the above discussion, it is obvious that a two-layer feedforward neural
network with an identity activation function is identical to a linear regression model.
The input neurons are equivalent to independent variables or regressors, while the output
neuron is the dependent variable.  The various weights of the network are equivalent to
the estimated coefficients of a regression model and the bias is simply the intercept term.
Note that in equations (2) and (3), the error term et is omitted as only the mathematical
expression of the computed output value, i.e. the "fit", is being provided.

Some models may have more than one output if a researcher is interested in more
than one dependent variable (Figure 3).

Figure 3
A simple feedforward neural network with two outputs
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In this figure, aij denotes the weight that links input i to output j.  Assuming again that X0

is a bias term, the network output is given by:

Y1 = a01 + a11X1 + a21X2 + a31X3

Y2 = a02 + a12X1 + a22X2 + a32X3 (4)

We obtain a system of linear equations very similar to a system of seemingly unrelated
regression equations  (à la Zellner).  In the presence of time-series data, we can construct
a neural network equivalent to a vector autoregressive model by simply adding lagged
values of the dependent and independent variables to the group of inputs.  By introducing
a link between Y1 and Y2, we would obtain a neural network equivalent to a system of
simultaneous equations .

2.1  Nonlinear activation functions

All of the above examples assumed an identity activation function in the output
neuron(s).  To truly exploit the potential of neural networks, a nonlinear activation
function must be used.  Virtually all neural networks use nonlinear activation functions at
some point within the network.  This permits the network to reproduce nonlinear patterns
in complex data sets.  Ideally, the activation function should be continuous, differentiable
and monotonic, as this will facilitate the optimization algorithm's task of finding the
appropriate weights.  The most frequently used activation function in the neural network
community is the logistic cumulative distribution function:
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The logistic function is bounded between 0 and 1, as illustrated in Figure 4.  By using a
bounded function, neural network researchers were attempting to reproduce the activation
state of a real neuron.  When the function is close to 1, this implies that the signals
received by the neuron have led to a high level of activation.  When the function is
near 0, the neuron is barely responding to the impulse received.

Figure 4
The logistic function
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If we are forecasting a variable that may take negative values, it is better to use
the hyperbolic tangent as an activation function:
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The hyperbolic tangent function has the same profile as the logistic function, but is
bounded between -1 and 1.

Returning to the simple feedforward network of Figure 2, a logistic activation
function in the output neuron would lead to the following output for observation t :

Yt = f(a0 + a1X1t + a2X2t) = )XaXaa( t22t110e1
1

++−+
(7)

The resulting network is the same as a binary logit probability model.  If the activation
function were a normal cumulative distribution function, we would obtain a binary
probit model.  The use of other bounded functions would yield many other networks
capable of dealing with nonlinear problems where the dependent variable is bounded.

When dealing with a dependent variable that is not bounded, we could choose an
unbounded nonlinear activation function such as f(x) = x3.  However, neural network
researchers have preferred to maintain bounded activation functions, and to allow for an
unbounded dependent variable by adding hidden layers to the structure of the network.

2.2  Neural networks with hidden layers

The networks described thus far had a very simple two-layer structure linking
inputs to outputs.  In real world applications, the network structure is generally more
complex.  Researchers almost always design a structure that includes one or more hidden
layers, as in Figure 5. In this figure, aij denotes the weight for the connection linking
input i to the hidden unit j.  We assume that X0 is a bias term (i.e. an intercept term) for
the hidden units while B is a bias term for the output unit.

Contrary to the input and output units, the hidden units do not represent any real
concept.  They have no interpretation or meaning.  They are merely an intermediate result
in the process of calculating the output value.  Hence, they have no parallel in
econometrics.  Hidden units behave like output units, i.e. they compute the weighted sum
of the input variables and then process the result using an activation function, almost
always a logistic function. In the network illustrated in Figure 5, the result produced by
the hidden units would be:

H1 = f(a01 + a11X1 + a21X2) = )XaXaa( 22111101e1
1

++−+
(8)

H2 = f(a02 + a12X1 + a22X2) = )XaXaa( 22211202e1
1

++−+
(9)
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Figure 5
A feedforward neural network with one hidden layer
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By placing the logistic activation function in the hidden units rather than in the
output unit, the network is no longer limited to producing estimates of bounded variables.
If the dependent variable is unbounded, the output unit will generally use an identity
activation function, i.e. the output will be equal to the weighted sum of the hidden unit
values, weighted by the bj coefficients.  This will yield a continuous, nonlinear,
unbounded output as expressed in equation (10):

Y =  b0  +  b1H1  +  b2H2

Y =  b0  +  )XaXaa(
1
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(10)

If the dependent variable is bounded, the output unit will generally use a logistic
activation function, thus generating a bounded output, as in equation (11):

Y =  f(b0  +  b1H1  +  b2H2)

Y =    
e1
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The network can therefore produce a bounded or unbounded output while maintaining its
nonlinear characteristics2.

The inclusion of hidden units in the network has another important virtue.  Many
authors have rigorously demonstrated that a three-layer neural network with a logistic
activation function in the hidden units, such as equation (10), is a universal
approximator3.   That means that if a sufficient number of hidden units are included, the
network can approximate almost any linear or nonlinear function to a desired level of
precision.  This suggests that neural networks could be used as a powerful tool to identify
and reproduce complex nonlinear data generating processes in time-series data.  Whether
studying growth of real GDP, inflation, employment growth or exchange rates, the neural
network should, in theory, be able to detect and duplicate any complex nonlinear pattern
in the data.  Furthermore, no a priori knowledge of the data generating process is
necessary, as would be the case with standard nonlinear regression.  It is sufficient to use
a general functional form, such as equation (10), but with a greater number of hidden
units4.

There is no theoretical basis to determine the appropriate number of hidden units
or layers in a network.  Based on the universal approximator property described above, it
seems logical to use a large number of hidden units.  However, if too many hidden units
are added, the network becomes prone to overfit the data.  This implies that the network
might achieve a superior forecasting accuracy over the estimation period, but will
generate poor out-of-sample forecasts. In addition, the number of weights in the network
increases rapidly as more hidden units are added, thus lengthening the time necessary to
estimate the model.

In practice, the design of the network architecture is a tedious process of trial and
error.  Researchers will generally estimate a large number of different networks and
select the one that leads to the smallest forecasting errors.  Section 3 provides more
details on this procedure and the error criteria used5.

                                                
2 Another method to deal with an unbounded dependant variable is to rescale it so that all values lie
between 0 and 1.  This method is frequently used in the neural network literature.
3 See, among others, Cybenko (1989), Funahashi (1989), Hornik, Stinchcombe and White (1989, 1990),
Stinchcombe and White (1989) and  White (1992).
4 Since a "generic" neural network is used to approximate an unknown functional form, we should
acknowledge that our model is misspecified (Kuan and White, 1994).  Hence, a researcher interested in
performing hypothesis tests on the estimated weights would need to apply the theory of least squares for
misspecified nonlinear regression models (White, 1981; 1992; Domowitz and White, 1982; Gallant and
White, 1988).
5 Some researchers, such as McMenamin (1997), have applied various information criteria to guide the
choice of the architecture.  However, results from Swanson and White (1995, 1997) and Sarle (1995)
indicate that the use of information criteria does not always lead to the best architecture.  In practice, trial
and error remains the most reliable approach.
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2.3 Augmented neural networks

Another model can be created if we add direct connections from the inputs to the
output (Figure 6).  In this structure, called an augmented neural network, the inputs are
directly connected to the output by the weights a1Y and a2Y.  It is not necessary that the
bias term X0 be connected to the output given that the output already has a bias term B.

Figure 6
An augmented feedforward neural network with one hidden layer
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Assuming an identity activation function for the output neuron, the augmented
neural network is very interesting because it encompasses the linear regression model.  It
is therefore the most frequently encountered architecture in the neural network literature
on macroeconomic forecasting.  Using equation (10), we can directly derive the output
for the augmented network:

Y  =  b0  +  a1YX1  +  a2YX2  +  )XaXaa(
1

22111101e1
b

++−+
  +  )XaXaa(

2
22211202e1

b
++−+

(12)

The augmented network can therefore be viewed as a standard linear regression model
augmented with nonlinear terms.  If the dependent variable under examination does not
exhibit any nonlinear traits, the coefficients b1 and b2 will be equal to zero, thus yielding
a standard linear model.

2.4  More complex networks

The feedforward networks discussed thus far are among the simplest that exist in
the neural network literature.  In more complex networks, neurons in the same layer may
be connected to each other and outputs may be connected to inputs or to hidden units,
yielding a wide range of models characterized by simultaneity.  Some advanced neural
network techniques are related to more complex statistical methods such as kernel
discriminant analysis, k-means cluster analysis or principal component analysis (Sarle,
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1998).  Some neural networks do not have any close parallel in statistics, such as
Kohonen's self-organizing maps and reinforcement learning.  These advanced methods
exceed the scope of this paper and will not be addressed here.  It is also uncertain whether
these techniques could be useful for the type of forecasting performed in economics.

3.  ESTIMATION OF NETWORK WEIGHTS

The network weights are estimated using a variety of iterative algorithms, the
most popular being the backpropagation algorithm.  Sarle (1994) argues that these
algorithms are generally inefficient because they are very slow.  Results can be obtained
much faster by using a standard numerical optimization algorithm such as those used in
nonlinear regression.  Sarle (1994) concludes by stating: "Hence, for most practical data
analysis applications, the usual neural network algorithms are not useful.  You do not
need to know anything about neural network training methods such as backpropagation to
use neural networks."  In accordance with this view, we will not expand further on neural
network training algorithms6.

Neural networkers usually divide their sample into two separate data sets.  The
training set is used by the algorithm to estimate the network weights, while the test set is
used to evaluate the forecasting accuracy of the network.  Since the test set is not used
during the estimation of the network weights, the forecasts made from the test set amount
to an ex post out-of-sample forecast.  The neural networker aims at minimizing the
forecasting error in the training set using a criterion such as the mean squared error
(MSE).

3.1  Early stopping

Experience has shown that neural networks are prone to overfit the data in the
training set, thus yielding poor out-of-sample forecasts.  To minimize this problem,
several procedures have been developed.  One of the most frequently used procedures is
called early stopping7, which involves the division of the data set into three parts:  a
training set, a test set and a validation set.  As discussed above, the training set is used by
the algorithm to estimate the network weights, while the test set is set aside for out-of-
sample forecasting.  The validation set is a portion of the data that is not used during the
training (i.e. the algorithm never "sees" the validation set), but which serves as an
indicator of the out-of-sample forecasting accuracy of the network.  After each iteration
in the estimation process, an out-of-sample forecast is generated using the observations in
the validation set and the MSE is calculated. Figure 7 shows the typical evolution of the
MSE in the training and validation sets throughout the estimation process.  As the number
of iterations increases, the MSE in both the training and validation sets will generally
decline. Experience suggests that after a certain number of iterations, the MSE in the

                                                
6 The interested reader is referred to Gibb (1996) for a discussion on training algorithms.
7 Sarle (1998) discusses other commonly used methods to minimize the overfitting problem, such as
"weight decay" and adding "noise" to the inputs.
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validation set will start increasing because the network is "specializing" in the
observations of the training set and is therefore losing its ability to generalize for other
data. The estimation procedure stops when the forecasting error is minimized in the
validation set rather than in the training set (after m iterations in Figure 7).  This method
ensures that the network is not specializing in the data of the training set, but that it is also
able to generalize for out-of-sample data. This is a novel approach because
econometricians do not use out-of-sample information to estimate the coefficients.  Out-
of-sample forecasts are typically dealt with in a separate stage, after the coefficients have
been estimated. By focusing on the forecasting errors in the validation set, neural
networkers are adopting a results-oriented approach to the estimation process, which is a
major reason for the forecasting success of these models.

Figure 7
Early stopping estimation
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Since the early stopping procedure leads the researcher to select the network with
the lowest MSE in the validation set, the forecasting errors from the validation set will be
optimistically biased, i.e. they cannot be considered as an unbiased estimate of the
forecasting accuracy of the model in the entire population. To obtain an unbiased
estimate of the generalization capacity of the network, out-of-sample forecasts must be
performed using the test set.  In particular, to compare the out-of-sample forecasting
accuracy of a neural network with that of a linear regression model, the sample used for
the comparison must not be part of the training or validation sets of the network.

Despite its appeal, the early stopping procedure is considered somewhat
inefficient by statisticians because it does not use all the information contained in the
sample to estimate the weights.  Only the data from the training set have a direct bearing
on the value of the weights.  Moreover, when dealing with small samples, the
decomposition of the sample into training, validation and test sets can leave too few
observations in each set to obtain reliable results.  Finally, the results of the estimation
could be sensitive to the arbitrary choice of observations that will compose each set.  In
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spite of these shortcomings, the early stopping procedure is frequently used in the
literature and has enabled researchers to develop accurate networks.

3.2  Designing the model

When an econometrician is building a linear regression model for forecasting
purposes, a significant part of the work consists in identifying the explanatory variables
and the number of lags that will allow the most accurate forecasts.  This will generally
require many hours of experimentation with alternative specifications. Fortunately, the
estimation of each alternative specification is instantaneous and the out-of-sample
forecasts can be rapidly generated and assessed.  Once the researcher has found the
specification that minimizes the forecasting errors, a substantial portion of the work is
completed and the researcher can then focus his/her efforts on diagnostic tests.

When constructing a neural network, the overall task is much longer.  The neural
networker must not only choose a set of inputs, but must also identify the network
architecture that leads to the best forecasts.  Changes to the architecture can
fundamentally alter the forecasts produced by the network, even when no changes are
made to the inputs, outputs or sample size.  To find the best architecture, the neural
networker must proceed by trial and error. This process is summarized in Figure 8.

As with any nonlinear estimation technique, one can never be sure that the global
minimum has been attained.  In practice, this implies that the results of the estimation
procedure are sensitive to the initial values of the weights.  Thus, for a given set of inputs
and a given network architecture, the early stopping procedure described above must be
repeated hundreds or thousands of times using different starting values for the weights.
The estimated weights that lead to the lowest MSE in the validation set will be considered
as the best possible outcome for that specific network architecture and for the specific set
of inputs that was used in the network.

To assess the performance of other architectures, the researcher must modify the
architecture of the network by changing the number of hidden units or by adding or
removing certain network connections. The whole early stopping procedure must again
be repeated hundreds of times in the new architecture, by varying the starting values, in
the hope of finding the global minimum.  The two architectures may then be evaluated by
comparing the minimum of the MSE attained in each architecture.



13

Figure 8
Designing a neural network

…

Set of explanatory variables

Select
architecture

One
hidden unit

Two
hidden units … N

hidden units

Estimate with
hundreds of

starting values

Identify best
network for this

architecture

…

Identify best
network of all
architectures

Add/remove
 variable?

Estimate with
hundreds of

starting values

Estimate with
hundreds of

starting values

Identify best
network for this

architecture

Identify best
network for this

architecture

After having evaluated many different architectures, the one that minimizes the
MSE will be retained8. This will yield the neural network with the lowest forecasting
errors for a given set of inputs.  Each time the researcher wishes to experiment with a
different set of inputs, by adding or removing a variable, the network must be re-
estimated under several different architectures, each one requiring several hundreds or
thousands of starting values.  Hence, the researcher must perform three levels of
minimization:

Ø For a given network architecture, find the starting values that minimize the MSE in
the validation set;

Ø Find the architecture with the lowest minimum MSE;

Ø Find the set of inputs that lead to the most accurate network.
                                                
8 Alternatively, the researcher could retain several networks and generate a forecast by averaging the
forecasts of the various models.
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When designing a linear regression model, only the last stage of minimization
needs to be done, i.e. the selection of the most relevant set of explanatory variables.
Thus, it is clear that the design of a neural network is much more time consuming than
the design of a linear model.  Fortunately, this process can be somewhat shortened with a
little programming.  As will be explained later, the use of a linear regression model to
assist in the selection of the inputs can also greatly reduce the length of this process.

4. AN APPLICATION TO REAL GDP FORECASTING

An empirical example is perhaps the best way to illustrate the differences between
a neural network and a linear regression model.  A neural network has therefore been
constructed to forecast quarterly growth of Canada's real GDP.  This model is compared
to a linear regression model developed in the Department of Finance by Lamy (1999). To
facilitate the comparison, the neural network uses exactly the same explanatory variables
and the same sample period as the linear regression model.  Any differences in the results
can therefore be attributed solely to the estimation procedure.

4.1  The linear regression model

Lamy (1999) has developed an accurate model for one-quarter ahead forecasts of
quarterly growth of Canada's real GDP. The model has performed very well, both in-
sample and out-of-sample.  Over the period from 1978Q1 to 1998Q2, his model explains
82 per cent of the variance of real GDP growth. The estimated coefficients are also very
stable when the model is estimated over different sample periods.  In addition, the model
is quite parsimonious, as it contains only the following six explanatory variables (with
their abbreviation in parenthesis):

Ø The quarterly growth rate of Finance Canada's index of leading indicators of
economic activity (one-quarter lag) (Lt-1)

Ø Employment growth (contemporaneous) (Et)
Ø Employment growth (one-quarter lag) (Et-1)
Ø The Conference Board's index of consumer confidence (contemporaneous) (Ct)
Ø The first difference of the real long term interest rate (nine-quarter lag) (Rt-9)
Ø The first difference of the federal government budgetary balance as a share of GDP

(three-quarter lag) (Ft-3)

Four dummy variables were added to control for four quarters considered as
outliers9.  For the purposes of the present illustration and in order to leave some data for
out-of-sample forecasts, the linear regression model was estimated using data from
1978Q1 to 1993Q2 (62 observations).  The estimation results are given in equation (13):

GDPt  =  -1.695  +  0.075·Lt-1  + 0.304·Et  +  0.251·Et-1  + 0.019·Ct  -  0.175·Rt-9

               -  0.320·Ft-3  -  1.155·D1  +  1.168·D2  -  0.906·D3  -  0.843·D4  +  et (13)
                                                
9 The four quarters in question are 1980Q3, 1981Q1, 1986Q4 and 1991Q3.
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where D1, D2, D3 and D4 are the dummy variables and et is the residual term.  All
coefficients are significantly different from zero at a confidence level of 95 per cent.

4.2  The neural network equivalent

Determining the number of inputs and outputs of the network is a straightforward
process.  The linear regression model above has six regressors and four dummy variables.
Our neural network will therefore contain ten inputs.  Since we have only one dependent
variable, the network will have a single output.  As explained in Section 2.2, the number
of hidden units to include in the network is largely the result of trial and error.  For the
present illustration, an architecture with only two hidden units was selected.  Although
this architecture is probably too simplistic to capture the complexity of the problem at
hand, its simplicity will facilitate the comprehension of the dynamics of the model. The
purpose of this section is thus to present a concrete example of a network, not to develop
a high-performance forecasting tool.  Hence, the network presented here should not be
considered as the best possible model that neural networks could offer.

Figure 9 illustrates the architecture of the network.  This is a fully connected
network, i.e. all inputs are connected to all hidden units.  Bias terms have been included
for both the hidden units (BiasH) and the output unit (BiasO).  In addition, direct
connections have been added between the inputs and outputs (dashed arrows), thus
yielding an augmented neural network (cf. Figure 6).  As explained above, the augmented
neural network nests the linear regression model.  The hidden units have a hyperbolic
tangent activation function while the output unit has an identity activation function.

The early stopping procedure was used to estimate the 35 weights of the
network10.  In order to implement this procedure, the sample was divided into three
separate parts: a training set (1978Q1 to 1993Q2), a validation set (1993Q3 to 1995Q4)
and a test set (1996Q1 to 1998Q2).  The training set, which correspond to the in-sample
period of the linear regression model in equation (13), is the only portion of the data that
the training algorithm used to estimate the network weights.

                                                
10 The neural network literature suggests that rescaling the data is often beneficial to improve forecasting
accuracy because the estimation algorithms tend to perform better when the input values are small and
centred around zero.  In the network presented here, only the Conference Board index of consumer
confidence was modified by dividing all values by 100.  Therefore, the base value of the index is 1 instead
of 100.
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Figure 9
An augmented neural network to forecast real GDP growth
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Figure 10 illustrates the evolution of the mean absolute error (MAE)11 in the
training and validation sets throughout the iteration process.  The MAE in the validation
set reaches a minimum after 819 iterations, while the MAE in the training set continues to
decline continuously.  To reduce the risk of overfitting the network, the procedure was
therefore stopped after 819 iterations, with a MAE of 0.118 in the validation set.

Figure 10
Results of the early stopping estimation procedure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 200 400 600 800 1000 1200 1400 1600

MAE

Iterations

Validation set

Training set

Minimum

                                                
11 The software used to estimate the network weights (MATLAB with the Netlab toolbox) was programmed
to provide the mean absolute forecasting error, rather than the mean squared error as discussed in Section 3.
This does not have a significant effect on the results.  The Netlab toolbox can be downloaded free of charge
from http://www.ncrg.aston.ac.uk/netlab/index.html.
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In Figure 11, the estimated weights are presented for various sections of the
network.  The connections from the inputs and BiasH to the hidden unit H1 are presented
in Panel A.  Panel B presents a similar diagram for the connections between the inputs
and H2.  Panel C displays the estimated weights between the hidden units and the output
unit and Panel D illustrated the direct connections from the inputs to the output.

Figure 11
Estimated weights
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4.3  Producing forecasts

Suppose we want to produce a forecast of real GDP growth for 1998Q2.  The
values of the regressors/inputs for 1998Q2 are given below:

Lt-1 = 0.66 Rt-9 = 1.13
Et   = 0.67 Ft-3  = 0.84
Et-1 = 0.75 D1 = D2 = D3 = D4 = 0
Ct   = 1.1497

In the case of the linear regression model, the forecast for 1998Q2 is
straightforward:

GDPt =  -1.695  +  0.075·(0.66)  + 0.304·(0.67)  +  0.251·(0.75)  +  1.9·(1.1497)
    -  0.175·(1.13)  -  0.320·(0.84)  -  1.155·(0)  +  1.168·(0)  -  0.906·(0)
    -  0.843·(0) (14)

= 0.46

The linear regression model forecasts real GDP growth of 0.46 per cent in 1998Q2.
Actual real GDP growth in 1998Q2 was 0.44 per cent.

In the neural network, the first step consists in calculating the value of the hidden
units. To obtain a value for H1, the network must first multiply the value of each input by
the corresponding weight, as depicted in Panel A of Figure 11.  This value is denoted Z1.

Z1   =  -0.401  -  0.058·(0.66)  +  0.292·(0.67) –  0.207·(0.75)  +  0.550·(1.1497)
           + 0.754·(1.13) + 0.294·(0.84) – 1.038·(0) + 0.487·(0) - 0.29·(0) - 0.209·(0) (15)

=  1.332

The value of H1 is obtained by inserting Z1 into the hyperbolic tangent activation
function:

H1 =  
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  =  0.8697 (16)

In a similar fashion, using the weights in Panel B of Figure 11, H2 can be shown to equal:

H2 =  
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ee
ee

TANH  = -0.6043 (17)

Using the analogy of the human brain and remembering that the values produced
by the hyperbolic tangent function are bounded between –1 and 1, it could be said that the
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neuron H1 is being strongly stimulated by the specific stimuli provided by the input
values, while H2 is moderately stimulated.

The output unit GDPt has an identity activation function, meaning that the
hyperbolic tangent function will not be used to process the linear combination of the
"stimuli" reaching the output unit.  The network's forecast will simply be equal to the
linear combination of the hidden units (panel C of Figure 11) and the inputs (panel D):

GDPt =  -0.081   +   1.45·H1   +  0.604·H2   +   0.084·Lt-1   +   0.335·Et

     +  0.751·Et-1   +   0.339·Ct   -   1.067·Rt-9   -   0.649·Ft-3   +   0.048·D1
     +  0.21·D2   -   0.256·D3   -   0.55·D4 (18)

Evaluating this equation with the values for 1998Q2 yields:

GDPt =  -0.081  +  1.45·(0.8697)  + 0.604·(-0.6043)  +  0.084·(0.66)  +  0.335·(0.67)
     +  0.751·(0.75)  +  0.339·(1.1497)  -  1.067·(1.13)  -  0.649·(0.84)
     +  0.048·(0)   +  0.21·(0)  -  0.256·(0)  -  0.55·(0) (19)

=  0.30

The network therefore forecasts real GDP growth of 0.30 per cent for 1998Q2,
which is considerably less accurate than the linear model's forecast.  Obviously, the
calculations required to make a forecast using a neural network are significantly more
complex than in the case of a linear regression model.  Fortunately, these calculations can
be executed instantaneously by the same software that estimated the network weights.

Equation (18) clearly illustrates how the augmented neural network encompasses
the linear regression model.  If the second and third terms of the right-hand side of this
equation are removed, equation (18) becomes a simple linear combination of the inputs.
These two terms, which are nonlinear transformations of the inputs, help the network to
capture nonlinear relationships among the variables.  If the network had not detected any
nonlinearities in the data generating process, the estimated weights for H1 and H2 would
have been zero and the network would have become a standard linear regression model.
In the current example, the non-zero values of the weights for H1 and H2 suggest the
presence of some nonlinearities.

4.4  Relative forecasting performance

Is all this computational effort worthwhile? A comparison of the forecasting
accuracy of both methods provides some insight into this question.  Table 1 compares the
forecasting performance of this neural network and the linear regression model for one-
quarter ahead forecasts. Three common criteria were used to compare the two models: the
mean absolute error, the mean squared error and the Theil inequality coefficient.   The
table suggests that the network was more accurate than the linear regression model, both
in-sample and out-of-sample. The network reduced the forecasting errors by between
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13 and 25 per cent for the in-sample period and by 20 to 40 per cent for out-of-sample
forecasts.

Table 1:  Comparative forecasting accuracy of both models
In-sample

               1978Q1 to 1993Q2            
Out-of-sample

            1996Q1 to 1998Q2            

Linear
regression

model

Neural
network

Difference
(in %)

Linear
regression

model

Neural
network

Difference
(in %)

Mean absolute
error 0.2604 0.2241 -14.0 0.2914 0.2240 -23.1

Mean squared
error 0.1092 0.0823 -24.6 0.1295 0.0774 -40.2

Theil inequality
coefficient1 0.1553 0.1348 -13.2 0.2161 0.1721 -20.4
1. The Theil inequality coefficient is bounded between 0 and 1.  The value of the coefficient approaches zero as

forecasting accuracy increases.

From a theoretical point of view, this result is not too surprising.  Given that an
augmented neural network encompasses the linear regression model, the network should
not, in theory, perform worse than a linear model.  Two factors could nonetheless have
led the network to perform worse than the linear model.  First, the optimizing algorithm
could have remained trapped in a local minimum that was far from the global minimum.
To avoid this problem, the network weights were re-estimated using 800 sets of random
starting values.  The network with the greatest accuracy in the validation set was retained.
Second, the network could have overfit the data despite the use of the early stopping
procedure.  When the number of observations in the training and validation sets is small,
overfitting might still occur when using the early stopping procedure.  This does not seem
to have occurred in the current example, given the relatively good out-of-sample
forecasting performance of the network.

Four statistical tests were used to assess whether the improvement in forecasting
accuracy was statistically significant: Wilcoxon's signed-rank test, a non-parametric sign
test, the Diebold and Mariano (1995) test and the Ashley, Granger and Schmalensee
(1980) test.    In each of these tests, the null hypothesis postulates that the forecasting
accuracy of both models is the same.  All tests were two-tailed and were applied to the
mean squared error and the mean absolute error.  The results, which are summarized in
Table 2, suggest that there is only limited evidence that the improvement in forecasting
accuracy was statistically significant.  At a 90-per-cent level of confidence, the null
hypothesis could only be rejected in four or five of the fourteen possibilities presented in
the table.  Although the point estimates in Table 1 suggest that the neural network
outperformed the linear model, the standard deviations of the test statistics were too large
to conclude that the improvement was statistically significant.
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Table 2: Significance levels1 for four tests assessing the statistical significance of the
improvement in forecasting accuracy

          Mean squared error                 Mean absolute error       
In-sample Out-of-sample In-sample Out-of-sample

Wilcoxon's signed-rank
test 0.065 0.203 0.060 0.333

Non-parametric
sign test 0.374 0.754 0.374 0.754

Diebold and Mariano
(1995) test 0.0952 0.244 0.072 0.277

Ashley, Granger and
Schmalensee (1980) test 0.038 0.250 NA3 NA3

1. The significance level (p-value) provides the probability of observing a given difference in forecasting accuracy
between the two models, if the null hypothesis is true (i.e. both models have the same accuracy).

2. The Diebold and Mariano test might not be accurate for the in-sample mean squared error because this test requires
that the difference in the MSE between both models have a normal distribution.  A Jarque-Bera test on the in-sample
MSE differential led us to strongly reject a normal distribution.

3. The Ashley, Granger and Schmalensee test only applies to the mean squared error.

Additionally, forecast encompassing tests (cf. Chong and Hendry, 1986) were
conducted for both the in-sample and out-of-sample periods.  The results did not allow us
to reject the null that neither model encompassed the other.  Hence, based on all our tests,
we cannot conclude that the improvement in forecasting accuracy is statistically
significant.

The neural network developed in this section should be viewed as a complement
to the linear regression model, rather than a substitute, because it used the explanatory
variables of the linear model as a starting point. Although this may seem like a trivial
point, it is in fact very important.  The computational effort required to design a neural
network makes it virtually impossible to build the model from scratch, without the help of
a linear regression model. As explained in Section 3.2 (cf. Figure 8), the design of a
neural network is a lengthy process of trial and error. For a given set of explanatory
variables and a given network architecture, a neural network must be re-estimated
hundreds or thousands of times with different sets of starting values in order to avoid a
local minimum12. This entire process of re-estimation must be repeated for each different
network architecture under consideration before a conclusion can be made as to the out-
of-sample forecasting accuracy associated with a given set of explanatory variables.
Thus, each time a change is made to the set of explanatory variables, the network must be
re-estimated under several different architectures, each one requiring several hundreds or
thousands of starting values. This process would be much too long if it were followed to
the letter.

                                                
12 In the current example, a Pentium 350 MHz took about 25 hours to re-estimate the network with 800 sets
of starting values.
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It is far more efficient to start by using a linear regression model to experiment
with different sets of explanatory variables.  Once a satisfactory set of variables has been
identified, the researcher can proceed to evaluate different architectures.  Thus, one of the
three levels of minimization identified in Section 3.2 can be greatly shortened using a
linear regression model.  The linear model is thus an essential tool to facilitate the
implementation of a neural network.

5.  OTHER EXAMPLES OF NEURAL NETWORK APPLICATIONS

Obviously, one empirical example cannot serve as a basis to assess the
effectiveness of neural networks.  The empirical literature on the subject provides
additional information in this respect. This section presents only a sample of the work
that has been done.  Much of the research performed in the fields of economics and
finance has focused on forecasting the behaviour of various financial instruments, such as
exchange rates or the prices of stocks, options and commodities.  In this section, we will
emphasize studies that forecast macroeconomic variables of interest to economists.

5.1  Encouraging results

The literature on neural networks contains numerous articles that proclaim the
usefulness of these models for various forecasting exercices.  However, as stressed by
Chatfield (1993), many of these papers are unreliable because they lack methodological
rigour.  One frequently encountered deficiency occurs when researchers use the
observations of their test set to guide the training process. Tal and Nazareth (1995) and
Andersson and Falksund (1994) seem to have fallen into this trap.  As explained in
Section 3.2, the resulting forecasting errors are biased in favour of the neural network.
Other authors provide their neural network with many more explanatory variables than
the competing models (e.g. Bramson and Hoptroff, 1990), thus making the comparison
somewhat unfair.  Some authors do not even attempt to compare the accuracy of their
networks with that of competing models. The authors simply calculate the average
forecasting errors of their networks and conclude that the errors are “small” (e.g. Aiken,
1999 and Aiken and Bsat, 1999).

This kind of result cannot be used to judge the relative merits of neural networks.
Thus, in the following discussion, we will only mention the articles that seem to have
applied a more rigorous methodology. As will be shown, the literature suggests that
neural networks perform well for forecasting economic output and various financial
variables.

Hill et al. (1994) surveyed the literature comparing the forecasting performance of
neural networks and statistical models.  In the studies surveyed, neural networks
performed as well as or better than standard statistical techniques for the forecasting of
macroeconomic variables, measured in terms of the mean absolute percentage error.  In
time-series applications, results from some papers suggested that neural networks were
more accurate in the later periods of the forecast horizon.  They also seemed to perform
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better for higher frequency data (i.e. with monthly and quarterly data), leading the authors
to speculate that higher frequency data contained more nonlinearities.  However, the
authors concluded that the literature on the subject was still inconclusive.

This relatively positive outlook for neural networks is confirmed by three studies
attempting to forecast economic output. Tkacz (1999) compared the accuracy of linear
models and neural networks in forecasting Canada's real GDP growth using a series of
financial indicators.  At the 1-quarter and 4-quarter horizons, neural networks produced
more accurate out-of-sample forecasts than the linear models.  Using various tests, the
improvement in forecasting accuracy obtained by the networks was generally found to be
statistically significant.  The author concluded that the networks may have been capturing
some nonlinearities in the relationship between real GDP growth and financial indicators.
Similarly, Fu (1998) found that neural networks outperformed linear regression models
for out-of-sample forecasts of US real GDP growth.  The neural networks were able to
reduce the out-of-sample sum of squared residuals by between 10 and 20 per cent.
Moody, Levin and Rehfuss (1993) obtained analogous results when forecasting the
growth rate of the U.S. Index of Industrial Production.  For all forecast horizons
considered (which ranged from 1 to 12 months ahead), their two neural networks were
found to be more accurate than a univariate autoregressive model and a multivariate
linear regression model.

In the field of financial markets, several studies have reported favourable results
regarding neural networks.  We will only discuss two studies that focus on variables of
interest to macroeconomists.  Verkooijen (1996) compared the accuracy of various
models in forecasting the monthly US dollar–Deutsche Mark exchange rate at horizons
varying between 1 and 36 months ahead. For out-of-sample forecasts, the neural network
models were found to be slightly more accurate than linear regression models and random
walk forecasts, particularly at longer forecast horizons. The relative performance of the
networks was even better when forecasting the direction of change of the exchange rate.
In another study, Refenes, Zapranis and Francis (1994) compared the accuracy of a
feedforward neural network and a multivariate linear regression model in forecasting
stock performance within the framework of the arbitrage pricing theory.  Their results
showed that the neural network was more precise for both in-sample and out-of-sample
forecasting.

Donaldson and Kamstra (1996) produced perhaps the only study examining the
advantages of using neural networks to combine the forecasts of various models.  The
individual forecasts in their combining exercise were forecasts of the volatility of daily
returns of four major stock market indices, as produced by a moving-average variance
model (MAV) and a GARCH(1,1) model.  When these individual forecasts were
combined with neural networks, the resulting forecast generally had a lower out-of-
sample mean squared error than when they were combined with linear techniques, such
as the simple average of individual forecasts or a weighted sum of individual forecasts.
Furthermore, encompassing tests revealed that the neural network pooled forecast
encompassed several of the other pooled forecasts, but it was the only model that was
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never encompassed by any other. Thus, they concluded that neural network combining
produced better forecasts than the more traditional combining methods.

5.2  Less promising results

Church and Curram (1996) seems to be the only reliable study that has not found
neural networks to be more accurate than linear models for macroeconomic forecasting.
These authors compared the accuracy of neural networks with some linear models in
forecasting aggregate consumption in the U.K. in the late 1980s.  The linear models were
taken from the literature that has sought to explain the significant decline in the growth
rate of consumer spending in the late 1980s.  Using the same explanatory variables as in
the linear models, the networks produced forecasts that were equivalent to but no better
than the linear forecasts.  They conclude that, regardless of which type of model is
estimated, the choice of explanatory variables is the main determinant of forecasting
accuracy.

Although three other studies have concluded that neural networks are no better
than linear models, these papers contain methodological deficiencies that make their
results less reliable. These three studies will be discussed below, since they have received
some attention in the economic literature on neural networks.

To our knowledge, Stock and Watson (1998) is the largest forecasting
competition for macroeconomic time series that includes neural networks.  A total of
49 univariate forecasting methods – including 15 feedforward neural networks – and
various forecast pooling procedures were used to forecast 215 U.S. monthly
macroeconomic time series at three forecasting horizons. The various pooling procedures
provided the most accurate out-of-sample forecasts, suggesting that neural networks may
help improve forecasting accuracy when combined with other forecasts13.  However,
when comparing the out-of-sample forecasting accuracy of individual models, the neural
networks performed poorly relative to a "naïve" AR(4) forecast and relative to most other
methods in the competition. The networks were also worse than the only other nonlinear
method included in the competition, the logistic smooth transition autoregression model.
Unfortunately, it does not appear that the authors applied the early stopping procedure or
any other method to minimize the overfitting problem.  This would explain the poor out-
of-sample forecasting performance of their networks. In addition, it seems that a
relatively small number of parameter vectors were used as initial values for the Gauss-
Newton minimizing algorithm, thus reducing the likelihood of finding a solution close to
the global minimum. These two factors, combined with the fact that the paper only
examined univariate models, limit the scope of their results.

In another forecasting competition, Swanson and White (1997) compared various
methodologies for forecasting nine U.S. macroeconomic variables. The methods studied
included autoregressive models, vector autoregressive systems, feedforward neural

                                                
13 The literature contains very little research on the merits of combining neural network forecasts with those
of other models.  Further research in this area would be very useful.
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networks, professional "consensus" forecasts and a "no change" rule. A similar
methodology was used in Swanson and White (1995) to compare various models for out-
of-sample forecasting of spot interest rates.  In both papers, the neural networks posted a
rather ordinary performance.  However, two factors tend to reduce the scope of these
results.  First, as in the case of Stock and Watson (1998), it seems that the authors did not
apply any procedure to minimize the overfitting problem.  Furthermore, the architectures
for all the networks in Swanson and White (1995 and 1997) were selected using the
Schwarz Information Criterion (SIC).  After discussing the results in their 1997 paper, the
authors acknowledged that this criterion "cannot reliably be used as a shortcut to
identifying models that will perform optimally out of sample."  A little further, they
concluded that "in-sample SIC does not appear to offer a convenient shortcut to true out-
of-sample performance measures for selecting models, or for configuring ANN [Artificial
Neural Network] models when forecasting macroeconomic variables." The wording of
the conclusion in the 1995 paper is almost identical to the above quotes.  Hence, their
conclusions suggest that the framework of their papers and the use of the SIC did not do
justice to the true potential of the neural network methodology.

As it can be seen from the above discussion, the empirical literature on neural
networks does not offer a unanimous verdict, as empirical evidence on macroeconomic
forecasting remains sparse.  This problem is compounded by the fact that many studies
seem to have methodological deficiencies.  As suggested by Chatfield (1993), a greater
effort must be made to establish fair comparisons between both approaches before any
firm conclusions can be reached.

Overall, there seem to be more studies that conclude in favour of neural networks
than against them.  However, since the literature is not entirely conclusive, it may be
preferable to examine the relative advantages and disadvantages of neural networks from
a more theoretical point of view.  This may help us isolate the areas where their
application may be potentially fruitful.

6.  RELATIVE STRENGTHS AND WEAKNESSES OF NEURAL
NETWORKS VERSUS OTHER STATISTICAL TECHNIQUES

Despite progress made in nonlinear regression theory, the vast majority of
applications in econometrics continue to assume a linear relationship between the
dependent variable and the regressors.  The simplicity of the linear model and the
possibility of linearizing certain nonlinear relationships make the linear regression model
a very attractive and powerful tool.  The largest part of our discussion will therefore focus
on comparing neural networks to linear regression models.  Table 3 summarizes the
relative strengths and weaknesses of neural networks that will be discussed in the
following sections.
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Table 3:  Relative strengths and weaknesses of neural networks
Strengths

Can successfully model nonlinear relationships
Do not require a priori information on the functional form of a relationship
The same architecture is very flexible

Weaknesses
It is difficult to interpret the estimated network weights ("black box" problem)
Unlikely to find the global minimum
Usually require large samples
The construction of the network architecture can be time consuming.

6.1  Relative strengths of neural networks

Can successfully model nonlinear relationships

First, neural networks with nonlinear activation functions should be more
effective than linear regression models in dealing with nonlinear relationships.  Figure 12
illustrates the classic problem that arises when estimating a nonlinear relationship with a
linear model.  If data from 0 to t are used to estimate a linear model, the one-period-ahead
forecast (B) will be quite close to the actual value of the variable studied, since a linear
function can give a reasonable approximation of the local behaviour of a nonlinear
function.  However, if one attempts to make forecasts several periods into the future, the
estimated value of the linear model (C) can potentially get further and further from the
true value of the variable.  This might explain why some studies surveyed by Hill et
al. (1994) and the results from Tkacz (1999) suggest that neural networks are more
precise than other models in the later periods of the forecast horizon.

Figure 12
Forecasting a nonlinear variable with a linear model
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Do not require a priori information on the functional form of a relationship

Although many nonlinear functions can be linearized using relatively simple
mathematical transformations, this supposes that the researcher has some a priori
knowledge of the nature of the nonlinearity that enables him to identify the appropriate
transformation to apply to the data.  Needless to say, such information is rarely available
in the field of macroeconomic forecasting.

One could argue that nonlinear regression techniques would perform as well as
neural networks when dealing with a nonlinear phenomenon.  In theory, this is absolutely
true.  However, in practice, the estimation of a nonlinear regression model requires the
econometrician to assume an a priori functional form for the relationship studied.
Selecting the wrong functional form will lead to imprecise coefficient estimates and bad
forecasts.  On the other hand, when estimating a neural network, the researcher does not
really need to worry about the functional form of the phenomenon studied because the
"universal approximator" property of networks will allow it to mimic almost any
functional form.  No a priori knowledge is necessary to obtain precise forecasts.

The same architecture is very flexible

A third advantage of neural networks stems from the relative flexibility of
network architectures.  As illustrated at the beginning of this paper, a wide spectrum of
statistical techniques (e.g. linear regression, a binary probit model, autoregressive models,
etc.) can be specified by simply making minor modifications to the activation functions
and the network structure (such as changing the number of units in each layer).  The same
basic architecture is therefore very flexible and can accommodate both discrete and
continuous dependent variables.

6.2  Weaknesses and limitations of neural networks

It is difficult to interpret the estimated network weights ("black box" problem)

The complex nonlinear functional form of the network makes it very difficult to
interpret the estimated network weights.  In linear regression models, the values of the
estimated coefficients provide a direct measure of the contribution of each variable to the
model's output. In the case of neural networks, it is very complicated to analytically
identify the impact of an input on the estimated output value.  Even in the simplest of
networks, such as in Figure 5, each input is fed through a nonlinear activation function
and is also affected by two different weights (aij and bj).  Looking at equation (10), it is
very difficult to trace the impact of either X1 or X2 on Y.  Because of these difficulties,
neural networks are sometimes called "a black box":  the network uses the inputs to
calculate the output, but the researcher does not clearly understand why a given value is
forecasted.  It must be noted that this problem can be greatly alleviated by applying the
sensitivity analysis proposed by Refenes, Zapranis and Francis (1994).  This procedure
will be discussed in Section 6.3.
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Unlikely to find the global minimum

As with all nonlinear estimation methods, it is difficult to find the global
minimum of the error function. According to Goffe, Ferrier and Rogers (1994), an
estimation problem with 35 weights (such as the network developed in Section 4) could
yield several quintillion local minima. Nonetheless, some local minima could produce
very accurate forecasts if they are reasonably close to the global minimum.

Usually require large samples

A relatively simple neural network can contain a large number of weights.  In
small samples, this leaves a limited number of degrees of freedom, which will often lead
to an overfitting of the training set, even when the early stopping procedure is used.  In
fact, the early stopping procedure can exacerbate this problem because it requires that the
sample be split into three data sets, thus limiting the number of observations available for
estimation and out-of-sample forecasting.  For researchers interested in forecasting the
daily price of gold, data availability is not a problem because of the high frequency nature
of the data.  However, as shown in Section 4, an economist might encounter data
constraints when attempting to forecast quarterly macroeconomic variables.  Some of the
studies mentioned earlier were nonetheless able to successfully forecast macroeconomic
variables using relatively small samples. Our example from Section 4 also achieved a
certain degree of success despite a modest sample size.  Hence, the large-sample
requirement of neural networks does not seem to constitute an insurmountable problem.

The construction of the network architecture can be time consuming

As explained above, the network architecture must be designed by trial and error.
Even though this process can be greatly shortened by programming the software package
to evaluate several architectures and by using a linear regression model to accelerate the
choice of network inputs (cf. Section 4.4), the designing and estimation of a network is
still considerably longer than in the case of a linear model.

6.3  A possible cure for the black box problem

As mentioned previously, neural networks are often called a "black box" because
of the difficulty in establishing the direct relationship between a given input and the
output.  To address this issue, Refenes, Zapranis and Francis (1994) designed a simple
but effective way of assessing the sensitivity of the output to each input.  Their method
consists in charting the value of the output for a range of values of a given input 14, while
all other inputs are fixed at their sample mean.  If the value of the output remains
relatively stable for different values of the input in question (within a reasonable range),
we can assume that this input does not contribute significantly to the predictive power of
the network.  By applying this process to all inputs, the researcher can better understand
the dynamics within the network and evaluate the contribution of each input to the

                                                
14 This procedure requires that each input be roughly bounded within a certain range.  This is the case for
virtually all macroeconomic variables that are expressed as a growth rate.



30

estimated output value. The network can then be "pruned" through the elimination of
irrelevant inputs.

This procedure can be illustrated using the network estimated in Section 4.
Figure 13 shows the sensitivity analysis of two of the inputs: the Conference Board's
index of consumer confidence (Ct) and the first difference of the real long-term interest
rate lagged by nine quarters (Rt-9).  Each chart shows the network's forecast of real GDP
growth for various values of the specified input, with all other inputs fixed at their sample
mean. In these charts, the selected range for each input corresponds to the approximate
range observed with the training set (1978Q1 to 1993Q2).

Figure 13
Sensitivity analysis of a neural network to two inputs
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Panel A shows that the contribution of the index of consumer confidence is almost
linear, with a 0.1-percentage-point increase in the index leading to about a
0.1-percentage-point rise in the network's forecast of real GDP growth.

Panel B suggests an interesting nonlinear relationship between the first difference
of the real long-term interest rate and the network's forecast of economic growth.  As
expected, the relationship is generally negative.  However, the flat portion of the curve –
corresponding roughly to an increase or decrease in the real long-term interest rate of less
than one percentage point – indicates that small variations in the interest rate have
virtually no impact on the network's forecast of GDP growth.  This is consistent with
some economic theories that suggest that interest rates must move by a significant
amount before consumers and businesses decide to modify their behaviour in a notable
way.

The vertical amplitude of both curves in Figure 13 also shows that when each
input fluctuates within a reasonable range, the variations in the value of the index of
consumer confidence have less of an impact on the network's forecast of real GDP
growth.  Thus, the network's forecast seems more sensitive to the real long-term interest
rate than to the index of consumer confidence.
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Given the nonlinear nature of the network forecasts, the sensitivity of the output
to each input will change when the values of the other inputs are modified.  Fixing the
other inputs at their sample mean is somewhat arbitrary.  The researcher can therefore
experiment by fixing the other inputs at different values. In particular, the researcher can
fix all other inputs at their current value (i.e. their value at the end of the sample) in order
to evaluate the imminent impact of a given scenario (e.g. if interest rates were to increase
in the upcoming quarter).

In addition to this sensitivity analysis, a researcher may apply the optimal brain
surgeon (OBS) test, developed by Hassibi and Stork (1993), to prune the network.  The
OBS test is essentially a Wald test that allows the researcher to assess if a given weight is
significantly different from zero.  Hence, the researcher may gain even more insight into
the internal dynamics of the model and eliminate superfluous connections from the
network.

6.4  A few myths about neural networks

The growth in popularity of neural networks in recent years has led some
researchers to make partial judgements in favour or against these models.  In this section,
we will review a few of these claims (Table 4).

Table 4: Pseudo-strengths and pseudo-weaknesses of neural networks
Pseudo-strengths

Networks do not require the type of distributional assumptions used in econometrics
Networks are intelligent systems that learn

Pseudo-weaknesses
The architecture of a neural network is totally unrelated to economic theory
The early stopping procedure requires arbitrary decisions by the researcher

6.4.1  Pseudo-strengths of neural networks

Networks do not require the type of distributional assumptions used in econometrics

Some researchers, such as Aiken and Bsat (1999), claim that neural networks are
not constrained by the distributional assumptions used in other statistical methods.
However, as demonstrated by Sarle (1998), neural networks involve exactly the same
type of distributional assumptions as other statistical methods.  For more than a century,
statisticians have studied the properties of various estimators and have identified the
conditions under which these estimators are optimal, i.e. when they yield consistent
unbiased estimates with a minimal variance.  They discovered, for example, that optimal
results are obtained when the errors have a zero mean, are uncorrelated with each other,
and have a constant variance throughout the sample. By rigorously identifying these
optimality conditions, statisticians have been able to assess the consequences of the
violation of these conditions.  Since many neural networks are equivalent to statistical
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methods, they require the exact same conditions to attain an optimal performance. This
implies, among others, that the residuals of a neural network should be subjected to the
same diagnostic tests that are applied to the residuals of a linear regression model.
Researchers who ignore these optimality conditions and proceed to estimate their network
weights will obtain sub-optimal estimates.  Most empirical studies involving neural
networks do not pay attention to these optimality conditions.

Unfortunately, the literature does not contain any thorough investigation of the
statistical properties of the neural network estimators.  In particular, it would be
worthwhile to develop a greater understanding of the variance of the network weights,
which could be used to assess the variance of the network forecasts.

Moreover, researchers also tend to ignore issues of stationarity when building
their network.  A prudent researcher should verify that all variables in the network are
stationary before experimenting with different architectures. In fact, level variables that
are trend stationary but that are not bounded could also pose problems for the network.
Since a hidden unit produces a value that is bounded, the use of input variables that grow
continuously over time could eventually lead the hidden units to reach their maximal or
minimal value.  The contribution of each hidden unit to the network's output (which is
given by the value of the hidden unit multiplied by the weight connecting it to the output
unit) would then remain constant, even if the boundless input continues to grow over
time.  This would result in a deterioration of forecasting accuracy for subsequent
periods15.  Similar problems would arise when attempting to forecast a level variable that
grows continuously over time.  Hence, even trend stationary level variables should be
transformed so that they do not grow continuously over time (e.g. by using the first
difference, the growth rate, the ratio to GDP, etc.)

Networks are intelligent systems that learn

Many researchers place great emphasis on the ability of feedforward neural
networks to "learn" relationships from a set of variables.  They are therefore credited as
being "intelligent" systems.  In reality, the so-called "learning" ability of feedforward
neural networks is simply the result of applying an algorithm to minimize an error
function in order to fit the network output to a given data series.  As such, these networks
do not have any additional "learning" capabilities than say, a linear regression model.
Both methods simply extract correlations from the data to approximate the behaviour of a
given variable.  The terms "learning" and "intelligent", probably borrowed from the
researchers in the field of artificial intelligence that invented neural networks, tend to
create confusion as to the true capabilities of these models.

                                                
15 It is important to note that an augmented network's output is not bounded.  The linear terms included in
the network would still allow its forecast to grow continuously over time, but the network would loose its
nonlinear properties once all hidden units reach their boundary.
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6.4.2 Pseudo-weaknesses of neural networks

The architecture of a neural network is totally unrelated to economic theory

In econometrics, it is standard practice to choose a functional form that is based
on a theoretical model.  However, when working with neural networks, the same basic
functional form (e.g. equation [10]) will be used for a variety of heterogeneous
applications, from forecasting quarterly real GDP growth to predicting the daily price of
IBM ordinary shares.  The "atheoretical" nature of the neural network functional form
could thus be viewed as a weakness to this approach.

However, one must remember that the functional forms used in theoretical
economic models are chosen quite arbitrarily.  Economic theory only provides
information on the explanatory variables to be considered and not on the functional form
of a relationship. Although the actual functional form used in a theoretical model is
chosen based on certain characteristics that are consistent with economic theory – such as
being concave or convex, bounded or unbounded, etc. – economic theory itself does not
specify any functional form. The lack of theoretical underpinnings in the selection of the
functional form is a problem inherent to all empirical analyses in economics, not just
neural networks.

The early stopping procedure requires arbitrary decisions by the researcher

When implementing the early stopping procedure, the researcher must make a
certain number of arbitrary decisions that can have a significant bearing on the estimation
results.  First, the researcher must divide the sample into training, validation and test sets.
A commonly used "rule of thumb" consists in retaining 25 per cent of the sample for the
validation set and an equal proportion for the test set, with the remainder being allocated
to the training set.  However, this guideline does not have any theoretical or empirical
foundations. In addition, the researcher must decide which observations to include in
each set.  Some researchers assemble their validation set from the most recent
observations in their time series, while others randomly select observations from the
entire sample. Once again, there is no objective rule to this effect.

These criticisms should not be overemphasized since a researcher can estimate the
network using different allotments of the data into the various sets and thus assess the
sensitivity of the results to this allotment.  Moreover, it is important to remember that
econometricians make similar arbitrary decisions when they withhold observations from
their sample in order to make out-of-sample forecasts. Econometricians using time-series
data typically withhold an arbitrary number of observations from the end of their sample,
since they are interested in assessing the model's capacity to forecast the future.  To the
extent that researchers in the neural network field assemble their validation and test sets
from the last observations of the sample, they will be consistent with standard
econometric practice.
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7. CONCLUSION:  ARE NEURAL NETWORKS RELEVANT FOR
MACROECONOMIC FORECASTING?

The success of some of the studies described above and of the example developed
in Section 4 suggest that some macroeconomic variables lend themselves to accurate
forecasting with neural networks. These results also suggest that the four weaknesses
discussed above do not seem to pose insurmountable obstacles to the effective use of
neural networks.

Ultimately, neural networks will be able to improve on linear models if the
relationships studied present significant nonlinearities.  Although some of the studies
surveyed by Hill et al. (1994) concluded that neural networks were more accurate for
high frequency data, we would argue that these results were obtained only because the
specific time series used in those studies exhibited more nonlinearities in their high
frequency format and because the large samples available with high frequency data
reduced the problem of overfitting16. Thus, those results may have had less to do with the
data frequency than with the fundamental characteristics of the data set.

Neural networks should be viewed as a natural complement to the linear
regression model.  Researchers interested in constructing a neural network would benefit
from using their best linear model as a starting point.  As explained in Section 4.4, a
linear regression model should be used to help choose the network inputs.  Additionally,
a researcher can use the estimated coefficients from the linear model as starting values for
the augmented terms in the network (with the other weights being randomized at very
small values).  By proceeding in this way, we can maximize the probability of finding a
network that will perform better than the linear model.

It is only after this avenue has been explored that the researcher should consider
making more substantial departures from the linear model, such as using inputs that were
not significant in the linear estimations.  In the case of variables that can be accurately
forecasted with linear models, the gains from departing from the linear model are likely
to be small, as the data generating process probably contains few nonlinearities. In the
case of variables that are not easily modelled with a linear equation, the researcher might
have to experiment with networks that depart significantly from the linear model.

Overall, neural networks seem to have some potential to assist economists in their
macroeconomic forecasting.  At the very least, they deserve to be studied further, perhaps
through forecasting competitions with other methods.  It is only by implementing neural
networks in a specific context that economists will be able to evaluate their true potential.

Obviously, acquiring the expertise to implement a high-quality neural network
would involve a substantial investment in time and effort.  This investment could be
                                                
16 We see no reason to believe that all time series will necessarily exhibit more nonlinearities when they are
measured in higher frequencies.  However, at high frequencies, some financial series have a non-gaussian
conditional distribution and some also exhibit an asymmetric behaviour that could be better captured by
neural networks.  This remains an empirical issue.
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justified only if the potential gains from improved forecasting accuracy outweigh the
investment required to implement the network.  This will generally be true in the case of
macroeconomic variables for which there is a lot of room for improved forecasting, i.e.
variables that give rise to substantial forecasting errors with existing techniques
(commodity prices might represent a good candidate in that respect). This would also be
true for variables that are of such great importance that even a marginal improvement in
forecasting accuracy would be desirable.  This could be the case for nominal GDP growth
or interest rates, which have far-reaching implications for the design of fiscal and
monetary policies.
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