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Abstract

Using wavelets, the author estimates the fractional order of integration of a common lon
money-demand relationship whose parameters are obtained from a full-information maxim
likelihood procedure. Because the order of integration is found to be significantly higher
zero, a grid-search procedure is used over the local parameter space to isolate the par
required to lower the fractional order of integration. When Canadian data from 1968–99
examined, a 25 per cent reduction in the interest semi-elasticity, accompanied by a corresp
increase in the income elasticity, is required to render the equilibrium relationship m
stationary. However, given the large standard errors around the estimates of the fractional o
integration, the improvement in the estimate of the cointegration relationship is relatively mo
This suggests that money, output, prices, and interest rates are, at best, fractionally cointeg

JEL classification:  E41, C13
Bank classification: Monetary aggregates; Econometric and statistical methods

Résumé

L’auteur a recours aux ondelettes pour estimer l’ordre d’intégration fractionnaire d’une fon
type de demande de monnaie à long terme dont il a obtenu les paramètres à l’aide d’une tec
de calcul du maximum de vraisemblance à information complète. L’ordre d’intégration s’é
révélé nettement supérieur à zéro, l’auteur se livre à une recherche manuelle dans l’espac
des paramètres afin de déterminer les valeurs que ceux-ci doivent prendre pour que
d’intégration fractionnaire diminue. Lorsqu’on utilise les données canadiennes relatives
période 1968–99, il faut réduire de 25 % la semi-élasticité par rapport au taux d’intérêt et acc
d’autant l’élasticité par rapport au revenu pour diminuer le degré de non-stationnarité
relation d’équilibre. Toutefois, étant donné l’ampleur des écarts-types qui entourent l’estim
de l’ordre d’intégration fractionnaire, l’amélioration obtenue en ce qui concerne le degr
cointégration est relativement modeste. Ce résultat donne à penser que la monnaie, la prod
les prix et les taux d’intérêt sont, au mieux, des séries cointégrées d’ordre fractionnaire.

Classification JEL : E41, C13
Classification de la Banque : Agrégats monétaires; Méthodes économétriques et statistiqu
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1. Introduction

Work on the demand for money experienced considerable growth in the early 1

because of the advent of econometric techniques capable of isolating long-run equili

relationships in a system of economic variables. The maximum-likelihood (ML) estim

proposed by Johansen (1988) has proven particularly useful at estimating stationary

relationships for a set of non-stationary (I(1)) variables. This two-step procedure pre

the orders of integration of the variables entering the system, choosing between I(1

I(0) alternatives. It then tests for the existence of cointegration vectors among the

variables, in essence determining whether a particular linear combination of the vari

in the system is of lower order than the individual variables themselves.

Although popular and intuitively appealing, the two-step procedure can encou

errors in either of its steps because of its restrictive focus on I(1) and I(0) possibil

Diebold and Rudebusch (1991) have shown that some unit root tests have low power a

fractional integration alternatives (I(d), where 0 <d < 1). In other words, the null of a unit

root may be incorrectly accepted by the testing procedure, and non-I(1) variables m

included in the cointegration system. Furthermore, the test for cointegration is simply

of I(1) versus I(0), this time on the cointegration residuals. The I(0) alternative may be

stringent, and therefore cointegration may not be found if it indeed exists. In addi

researchers may erroneously believe that they have uncovered cointegration if the va

entering the system are of a lower order than first believed. If the variables enterin

system are all I(0) but are thought to be I(1), then any I(0) estimated equilibr

relationship would not prove the existence of cointegration, which by definition shoul

a linear combination of the variables that has an order of integration lower than the ori

variables. That is, the cointegration vector and original variables cannot be of the

order of integration.

Allowing for I(d) processes, in a broader definition of cointegration a line

combination of the variables can be located that has an order of integration lower tha

original variables, or I(d-b) for some b > 0. Under this scenario, the variables a

fractionally cointegrated, and the cointegration relationship has a markedly diffe

behaviour relative to an I(0) process. In particular, if 0 <d-b < 0.5, the cointegration

relationship will be a long-memory process, and any deviations from equilibrium wil

closed only in the long run. Significantly larger values than 0.5 imply that the proce

covariance non-stationary, and that the return to equilibrium following a shock wil

longer still.
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As an example of the limitations of integer-valued orders of integration, Baillie

Bollerslev (1989) found that the exchange rates of seven industrial countries

cointegrated using an ML estimator. Diebold et al. (1994) later argued that the cointegr

relationship of Baillie and Bollerslev is not robust, because it vanishes when the const

removed from the cointegration space. Baillie and Bollerslev (1994) reconsidered

results, and found that the equilibrium relationship in their earlier work had an orde

integration not of zero but of 0.89, implying that the exchange rates are fraction

cointegrated, since each individual exchange rate was I(1). Any shock to this system

therefore, not dissipate for a long time.

There is growing theoretical and empirical evidence that many economic varia

follow I(d) processes. Parke (1999) states that I(d) processes can occur naturally whe

allowing for shocks that are stochastic in both magnitude and duration. Any observed

of a variable can be considered to be a weighted sum of past shocks, and these

noticeably affected by only a few long-lasting shocks. Porter-Hudak (1990) arrives a

I(d) conclusion for money; Diebold and Rudebusch (1989) for output; Baillie et al. (19

for inflation; and Backus and Zin (1993) and Tkacz (2000) for interest rates. With moun

evidence favouring I(d) processes for several key macroeconomic series, Barkoulas e

(1999) argue that estimated models using such variables must take into accou

fractionally integrated properties of the data, which cannot be captured with traditi

linear vector autoregressions.

In light of the above evidence, we reconsider the long-run demand for mone

determine whether allowing for non-integer orders of integration in the individual and j

processes changes our beliefs about the existence of stationary, long-run money-d

relationships. Much work in the area has followed the methodology of Johansen

Juselius (1990), who isolate stationary long-run money-demand relations for Finland

Denmark using an ML procedure to estimate the cointegration vectors. Hendry (1

successfully uses this approach to estimate a long-run money-demand relationsh

Canada. However, this approach does not allow for the possibility of I(d) processes,

implying that the multivariate ML estimator of Johansen (1988) can suffer from the s

limitations as the univariate Dickey-Fuller unit root tests when I(d) processes are permitted

Section 2 estimates a typical long-run money-demand relationship for Canada

the fractional order of integration of the resulting equilibrium relationship using a wav

transformation of the autocorrelation function, as proposed by Jensen (1999). This w

estimator is more powerful than the frequency domain estimators typically used in
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literature. Section 3 analyzes the sensitivity of individual elasticities. Using a grid se

procedure, we locate the elasticities required to minimize the fractional order of integra

and find that the equilibrium relationship is most sensitive to changes in the interest s

elasticity.

2. Traditional Money-Demand Formulation

2.1 Theory

The demand for money is well grounded in theory, where balances held for transac

are usually a function of income and the opportunity cost of holding money, proxied

representative short-term interest rate. The long-run demand for nominal balances c

specified as

, (1)

wheremt is a nominal monetary aggregate,yt the real level of aggregate income,Rt a short-

term interest rate,pt the price level, andηt an identically, independently distributed

disturbance. Lower-case variables are in logarithms, and upper-case variables are in

In this specification,εy is the long-run income elasticity of money demand,εR the interest

semi-elasticity, andεp the price elasticity, all of which must be estimated.

Specification (1) has been used successfully as a foundation for error-corre

models. In one of the more complete studies on money demand in Canada, Hendry (

estimates several M1 equations, and finds that a dummy variable accounting for stru

shifts due to financial innovations in the early 1980s is required to induce long

parameter stability. A second specification that we therefore consider is

, (2)

whereDt is a shift dummy taking a value of 0 prior to 1982, and 1 thereafter.

Because we examine only the fractional orders of integration of typical mon

demand relationships, we refrain from exhaustive specification searches.

2.2   Data

The data were obtained from CANSIM. We use nominal M1, nominal GDP, the 90-

commercial paper rate, and the consumer price index (CPI). Real GDP is obtaine

mt εyyt εRRt εppt ηt+ + +=

mt εyyt εRRt εppt βDt ηt+ + + +=
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deflating nominal GDP with the CPI. The sample ranges from 1Q68–4Q99, giving

observations.

Table 1 shows ordinary augmented Dickey-Fuller (ADF) unit root tests on e

series. Consistent with previous studies, we are unable to reject the unit root null f

series. However, as stated earlier, unit root tests can have low power against fracti

integrated alternatives. In Table 2 we therefore estimate the fractional orders of integ

of each series using two different methods. The first three columns estimated using the

wavelet ordinary least sequence (OLS) estimator of Jensen (1999). The final three co

estimate frequency domain using the estimator of Geweke and Porter-Hudak (1

henceforth GPH. The wavelet estimator was shown by Jensen to have considerably

power than the GPH estimator and thus it is our preferred estimator; we retain estim

using the GPH because it is more widely used. We present estimates for several dif

wavelets and frequency ordinates to verify their robustness. The appendix discusse

estimator in detail.

The results from the wavelet estimator (Table 2) show that the nominal M1,

GDP, and CPI have the highest estimates, and are within two standard error

approximate 95 per cent confidence interval) of a unit root. The interest rate has notic

lower estimates, and in two cases it is more than two standard errors away from a uni

This is consistent with the results of Tkacz (2000), and indicates that shocks to this va

will not be infinitely lived, although they will likely take several years to dissipate. Park

(1999) error-duration interpretation of fractional integration indicates that this process

be heavily influenced by a handful of long-lasting shocks that have occurred since 1

The estimates of the various fractional orders of integration using the GPH estim

are shown in the final three columns of Table 2. Corroborating the wavelet estimate

interest rate has the lowest orders of integration. However, the large errors around

estimates do not allow us to conclude whether this series possesses a unit root. The s

errors are heavily influenced by the small number of frequency regression ordinates u

the estimation, which range from only 11–18.

2.3 Cointegration vectors

We estimate two systems, one that includes a dummy variable to capture a potential r

shift in the early 1980s, and one that does not. We use Johansen’s multiple-equatio

estimator; it can estimate multiple cointegration relationships simultaneously, should
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exist, and it outperforms most single-equation methods (Gonzalo (1994)).

Table 3 shows the results of the cointegration tests and the estimated cointeg

vectors. Based on the Trace test, there is at most one significant cointegration vector i

system, while theλ-max test indicates that a second vector may exist in the system wit

a dummy. When the test results conflict it is advisable to side with the Trace test, be

it is more powerful. Furthermore, the estimated elasticities in the first cointegration ve

have theoretically valid signs, and are of magnitudes that would be consistent with

long-run money-demand relationships. These vectors are prime candidates for a

extensive analysis of long-run money demand.

As stated earlier, ADF tests perform poorly if we allow for fractional cointegrat

under the alternative hypothesis. The Johansen ML estimator is a multivariate version

ADF test, thus it too may be unreliable under fractional integration. Because Tab

indicates that at least one of our variables may be fractionally integrated, scrutinizati

the estimated, disequilibrium terms, or money gaps, is warranted.

Table 4 shows the results of unit root tests on the two disequilibrium terms that

from our ML-estimated cointegration vectors. Using standard ADF critical values, the

of a unit root is rejected at the 95 per cent level for both gaps.1 Visual inspection of the gaps

plotted in Figure 1, reveals evidence of mean-reversion. However, both gaps have

negative since 1990, indicating that mean-reversion is not rapid.

Although the unit root tests on the money gaps offer preliminary evidence a

whether the estimated relationships are mean-reverting, such tests are not conclusiv

cases. To examine more closely the mean-reversion speeds of the estimated relatio

we explicitly estimate the fractional order of integration using the wavelet and freque

domain estimators.

For the nominal money-demand systems (Table 5), the orders of integration r

from I(0.69)–I(0.83), with or without a dummy. For two of the three wavelets used in

estimation, the I(1) scenario is sufficiently remote to be discarded. The magnitudes of

estimates, however, suggest that a shock to the system will take several years to dis

since the short-run stationary I(0) case is far more remote than the random walk I(1)

1. Since the money gaps are estimated series, the ordinary ADF critical values may not be

appropriate. In Table 20.2 in Davidson and MacKinnon (1993), the corrected critical values

imply that we would be unable to reject the unit root null.
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The GPH estimates range from I(0.66)–I(0.79), but because of the large standard

associated with these estimates we are unable to discard the unit root hypothesis.

3. Grid Search for Lowestd

To uncover the estimated cointegrating relationship parameters that are responsible

persistence of shocks to the system, we examine how the money gap’s fractional or

integration changes in response to movements in the elasticities around their

Johansen estimates. We focus solely on the system without a dummy for several re

First, there is evidence that the estimated parameters provide a money gap that at

mean-reverting in the long run. Second, the estimated parameters have sign

magnitudes that are not implausible with economic theory. And third, the dummy var

adds little to the estimated relationship, as demonstrated by the unit root tests, esti

orders of integration, and graphical evidence. Imposing few restrictions will allow u

further understand the data-generating process behind the long-run relationship of m

income, interest rates, and prices.

To understand the sensitivity of the money-demand system to changes

individual elasticities, we first allow only one elasticity to vary in isolation from the init

Johansen vector. We then consider varying two elasticities simultaneously, and finally

all elasticities to vary. By computing the fractional order of integration for each new mo

gap that ensues when at least one elasticity changes, we can uncover the lo

relationship that produces the most stationary money gap. A stationary money gap a

us to understand how money demand changes in response to income, interest rate, an

changes. Depending on the magnitude of the fractional order of integration, we hop

money demand will respond rapidly enough to return the system to equilibrium ov

period that is useful to policy-makers (one to two years). Furthermore, a stationary m

gap can provide useful information in short-run forecasting models.

3.1   One variable elasticity

We denote the elasticities byεi, for i = {y, R, p}, such that a cointegration relationship ca

be written as [1, -εy, -εR, -εp]. In Figure 2 we allow the income elasticity to deviate from i

initial estimate, while the interest semi-elasticity and the price elasticity remain fixe

their initial Johansen estimates. We therefore consider the cointegrating systems [εy,

0.207, -0.934], whereεy lies in the interval [0.500, 2.500]. The interval over which w
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allow the income elasticity to vary is largely driven by economic theory, as we wo

deem implausible any suspiciously small or large income elasticities.2 Figure 2 shows that

the fractional order of integration of the money gap varies little with income elasticity

the base case vector we have I(0.697), which dips to I(0.585) whenεy grows to 1.600.

However, even with this large income elasticity, the confidence interval around

estimate ofd widens noticeably, so that even the unit root hypothesis cannot be exclu

Beyond 1.600 the fractional order of integration rises again, settling around I(0.75).

Figure 3 shows that the interest semi-elasticity varies in the interval [0.000, 0.5

while the income and price elasticities remain constant. There is substantial movem

the fractional order of integration of the money gap when the interest semi-elasticity is

At -0.02 it is above I(1), while at -0.124 it falls to I(0.539). Beyond that it settles arou

I(0.75). Figure 3 shows that to lower the overall order of integration, the interest rate s

elasticity would likely require adjustment. Any non-stationarity observed in the Joha

money gap may be due to an imprecise interest semi-elasticity since, as Table 2 show

interest rate is the most likely variable to be fractionally integrated.

Figure 4 allows for a variable price elasticity over the interval [0.500,2.500].

witness the same kind of “smile” that we had for the variable income elasticity. The low

value of d is attained for a price elasticity of 1.253, which is associated with w

confidence bands. The fractional order of integration converges towards I(0.80) as the

elasticity increases.

3.2 Two variable elasticities

Figure 5 plots income elasticities on the x-axis, interest semi-elasticities on the y-axis

(1-d) on the z-axis. We have (1-d) instead ofd on the z-axis purely to improve the visua

aspects of the diagrams. Maximizing (1-d) is equivalent to minimizingd, so we are

searching for the highest points on the three-dimensional diagrams. A dramatic

occurs for an income elasticity of 1.15 and an interest semi-elasticity of -0.145.

fractional order of integration of the money gap at these coordinates is I(0.179), whi

the closest to stationarity that we have been thus far.

In Figure 6 we allow the income and price elasticities to vary. The smallest orde

integration, I(0.572), occurs at an income elasticity of 0.75 and a price elasticity of 1

2. For space limitations we present only the estimates that use the Daubechies-4 wavelet.

Estimates that use other wavelets do not differ noticeably.
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This improves little upon the orders of integration uncovered when only one or the oth

these variables was allowed to vary in Figures 2 and 4, respectively. Fixing the int

semi-elasticity at -0.207, therefore, does not allow us to significantly lower the orde

integration of the money gap.

In Figure 7 we allow the interest semi-elasticity and the price elasticity to v

Mirroring the findings in Figure 5, there is a single dramatic peak for an interest s

elasticity of -0.150 and price elasticity of 1.05. Apparently, the responsiveness of m

demand to interest rate changes would have to be lowered by about 25 per cent, from

-0.20 to about -0.15, for the stationarity of the money gap to be improved.

3.3   Three variable elasticities

In this least restrictive, and most exhaustive, of searches, we allow all three elasticit

deviate freely from their initial Johansen ML estimates. Being unable to plot the res

we present the vector that produces the lowest fractional order of integration. S

180,000 possible gaps were explored, and the cointegration relationship with the lo

order of integration was as follows:

[1, -εy, -εR, -εp] = [1, -1.205, 0.145, -0.908].

The estimated order of integration of the disequilibrium term arising from the ab

equilibrium relationship is only I(0.022). However, a substantial standard error of 0

makes a precise inference concerning stationarity difficult. Furthermore, the money

from this relationship is entirely negative, implying that a constant is required in

cointegration space to have this relationship fluctuate around zero. After correcting fo

long-run mean of this gap (-2.644), we obtain the money gap plotted in Figure 8. Comp

to the original Johansen money gap, the gap that minimizesd is less volatile, implying that

deviations from equilibrium are less pronounced.

It is likely that these variables are fractionally cointegrated, since no lin

relationships appear to exist between these variables that are pure I(0) processes. Es

of money gaps that are near I(0) are associated with very high standard errors, m

inference difficult. However, a number of relationships have been estimated that are a

I(0.50), and as long as any of them are significantly lower than the fractional orde

integration of the interest rate, which is around I(0.80), fractional cointegration would e
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4. Conclusion

This paper extends the long-run analysis of money demand into the sphere of frac

cointegration. This extension is motivated by the fact that traditional methods

cointegration analysis yield relationships that are not as stationary as they are belie

be. Our results demonstrate that money gaps arising from simple money-demand sy

are at best fractionally integrated, and at worst random walks.

To find stationary long-run relationships, we use grid searches to isolate

parameters that minimize the fractional order of integration of the money gap. Relati

the initial Johansen ML estimates, the interest semi-elasticity must be about 25 pe

lower, while the income elasticity must be about 10 per cent higher. The price elastic

relatively unchanged, remaining just below one. The money gap arising from this ana

however, is associated with a wide confidence band. The order of integration seems

most sensitive to changes in the interest semi-elasticity in the range from zero to -

Future work should examine why the demand for M1 is sensitive to changes in the int

semi-elasticity when the latter is low. A threshold model, allowing for different inter

semi-elasticities in low and high interest rate regimes, may allow some of this instabili

be captured.

From a policy-making perspective, any advice that stems from the use of m

gaps should focus on the relevant horizon. The speed with which such gaps close is

and if the fractional order of integration is high and not statistically different from one,

cannot accurately predict the time it will take for the gap to vanish. This problem ca

exacerbated if further financial innovations take place in the economy.
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Table 1

ADF unit root tests on data

Sample: 1968Q1–1999Q4

Variable Lags Statistic

Nominal M1
mt

6 -2.9938
(-3.4472)

Real GDP
yt

9 -2.3971
(-3.4481)

Interest rate
Rt

1 -2.5043
(-3.4458)

CPI
pt

12 -0.1957
(-3.4491)

Constant and trend are included in the ADF regressions. Lags to correct for serial correlation are chosen by minim
Akaike’s information criterion, allowing for a maximum of 12 lags. Critical values in parentheses are from MacKinn
(1991), and are used to test the unit root hypothesis at the 95 per cent significance level. All variables, except 
interest rate, are in logarithms.

Table 2

Estimated fractional orders of integration of data

Sample: 1968Q1–1999Q4

Variable
Wavelet domain estimates

Jensen (1999)
Frequency domain estimates

Geweke and Porter-Hudak (1983)

Daubechies-
4

Daubechies-
12

Daubechies-
20

T0.5 T0.55 T0.60

Nominal
M1
mt

0.8910
(0.0515)

0.9169
(0.0600)

0.9045
(0.0435)

0.9891
(0.2725)

0.9825
(0.2302)

0.9779
(0.1945)

Real GDP
yt

0.8701
(0.0718)

0.9078
(0.0717)

0.9047
(0.0483)

0.9724
(0.2725)

0.9752
(0.2302)

0.9598
(0.1945)

Interest
rate
Rt

0.7746*
(0.0978)

0.8721
(0.0649)

0.8287*
(0.0769)

0.5758
(0.2725)

0.5591
(0.2302)

0.7339
(0.1945)

CPI
pt

0.9539
(0.0760)

0.9922
(0.0718)

0.9828
(0.0546)

1.0775
(0.2725)

1.0500
(0.2302)

1.0405
(0.1945)

Estimates from the wavelet domain are computed using the Daubechies wavelet and three different levels of smoo
The frequency domain estimates are computed for three different numbers of frequency, which are powers of t
number of observations in the sample,T=128. Standard errors are in parentheses. (*) indicates that the variable is m
than two standard errors from a unit root.
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Table 3

Johansen cointegration vectors

Sample: 1968Q1–1999Q4

System Cointegration vectors λ-max Trace

[mt, yt, Rt, pt] [1, -0.958, 0.207, -0.934] 42.34*
19.24*

66.24*
23.90

[mt, yt, Rt, pt, Dt] [1, -1.041, 0.207, -0.700, -0.246] 51.73*
18.84

85.82*
34.09

Four lags, corresponding to the frequency of the data, are used for each system. (*) indicates that the statistic for
ence of the cointegration vector is significant at the 95 per cent level.

Table 4

ADF unit root tests on money gaps

Sample: 1968Q1–1999Q4

System AIC (Lags) BIC (Lags)

[mt, yt, Rt, pt] -2.492* (1) -2.492* (1)

[mt, yt, Rt, pt, Dt] -2.541* (1) -2.541* (1)

No constant and no trend are included in the ADF regressions. (*) indicates that the unit root null can be reject
the 95 per cent level.

Table 5

Estimated fractional orders of integration, money gaps

Sample: 1968Q1–1999Q4

System
Wavelet domain estimates

Jensen (1999)
Frequency domain estimates

GPH (1983)

Daubechies-
4

Daubechies-
12

Daubechies-
20

T0.5 T0.55 T0.60

[mt, yt, Rt, pt] 0.697* 0.817 0.826* 0.660 0.681 0.732

[mt, yt, Rt, pt, Dt] 0.692* 0.823 0.831* 0.795 0.788 0.793

Estimates from the wavelet domain are computed using the Daubechies wavelet with three different levels of
smoothing. The frequency domain estimates are computed for three different numbers of frequency, which are p
ers of the number of observations in the sample,T=128. (*) indicates thatd is more than two standard errors below
1, roughly equivalent to a 95 per cent confidence level.
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Figure 1: Johansen money gaps
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Figure 2: εy and d for Johansen money gap

System [mt, yt, Rt, pt]: [1, −εy, 0.207, -0.934]

Search for income elasticity yielding lowest fractional order of integration for the money gap is found

using a grid search in the interval [0.500,2.500] with steps equalling 0.001. The interest and price

elasticities are kept constant at their Johansen ML-estimated values. The Daubechies-4 wavelet is used to

estimate d. Dashed lines are a 95 per cent confidence interval.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with variable income elasticity and lowest d: [1, -1.600, 0.207, -0.934] with d = 0.585.
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0.5
Figure 3: εR and d for Johansen money gap

System [mt, yt, Rt, pt]: [1, −0.958, −εR, -0.934]

Search for interest semi-elasticity yielding lowest fractional order of integration for the money

gap is found using a grid search in the interval [0.000,0.500] with steps equalling 0.001. The

income and price elasticities are kept constant at their Johansen ML-estimated values. The

Daubechies-4 wavelet is used to estimate d. Dashed lines are a 95 per cent confidence interval.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with variable interest semi-elasticity and lowest d: [1, -0.958, 0.124, -0.934] with d = 0.539.
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2.5
Figure 4: εp and d for Johansen money gap

System [mt, yt, Rt, pt]: [1, −0.958, 0.207, −εp]

Search for price elasticity yielding lowest fractional order of integration for the money gap is

found using a grid search in the interval [0.500,2.500] with steps equalling 0.001. The income and

interest elasticities are kept constant at their Johansen ML-estimated values. The Daubechies-4

wavelet is used to estimate d. Dashed lines are a 95 per cent confidence interval.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with variable price elasticity and lowest d: [1, -0.958, 0.207, -1.253] with d = 0.575.
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2

Figure 5: (εy, εR) and d for Johansen money gap

System [mt, yt, Rt, pt]: [1, −εy, −εR, -0.934]

Search for income elasticity and interest semi-elasticity yielding lowest fractional order of integration (d) for

the money gap is found using a grid search in the interval [0.75,1.80] for the income elasticity and [0.05,0.30]

for the interest semi-elasticity, with steps equalling 0.01 for the income elasticity and 0.005 for the interest semi-

elasticity. The price elasticity is kept constant at its Johansen ML-estimated value. The Daubechies-4 wavelet

is used to estimate d.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with fixed price elasticity and lowest d: [1, -1.150, 0.145, -0.934] with d = 0.179.
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2

Figure 6: (εy, εp) and d for Johansen money gap

System [mt, yt, Rt, pt]: [1,−εy, 0.207, −εp]

Search for income and price elasticities yielding lowest fractional order of integration (d) for the money gap is

found using a grid search in the interval [0.75,1.80] for the income elasticity and [0.80,1.80] for the price

elasticity, with steps equalling 0.01. The interest semi-elasticity is kept constant at its Johansen ML-estimated

value. The Daubechies-4 wavelet is used to estimate d.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with fixed interest semi-elasticity and lowest d: [1, -0.750, 0.207, 1.35] with d = 0.572.
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1.8
Figure 7: (εR, εp) and d for Johansen money gap

System [mt, yt, Rt, pt]: [1, -0.958, −εR, −εp]

Search for interest semi-elasticity and price elasticity yielding lowest fractional order of integration (d) for the

money gap is found using a grid search in the interval [0.050, 0.300]] for the interest semi-elasticity and

[0.80,1.80] for the price elasticity, with steps equalling 0.005 for the interest semi-elasticity and 0.01 for the price

elasticity. The income elasticity is kept constant at its Johansen ML-estimated value. The Daubechies-4 wavelet

is used to estimate d.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with fixed income elasticity and lowest d: [1, -0.958, 0.150, -1.050] with d = 0.286.
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Figure 8: Money gap with lowest d

Search for elasticities yielding lowest fractional order of integration (d) for the money gap is found using a grid

search in the interval [0.900,1.300] for the income elasticity, [0.010, 0.200] for the interest semi-elasticity, and

[0.900,1.300] for the price elasticity, with steps equalling 0.001. A constant of 2.644 is used to scale the Min. d
money gap upwards. The Daubechies-4 wavelet is used to estimate d.

Original Johansen vector: [1, -0.958, 0.207, -0.934] with d = 0.697.

Vector with lowest d: [1, -1.205, 0.145, -0.908] with d = 0.022.
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  Appendix
Estimators of d

Consider that a unit root processxt has the following representation:

, (A1)

whereL is the lag operator such that , and is the moving average p

Suppose that we generalize the process to allow for fractional integration:

, (A2)

whered may not necessarily equal 1. Geweke and Porter-Hudak (1983) propose a m

to estimated in the frequency domain. We begin by rewriting the left-hand side of (A2

, (A3)

where and . Combining (A3) and the right-hand side of (A

we then have

, (A4)

with ut denoting a stationary process. Equation (A4) represents an ARFIMA (fraction

integrated ARMA) model. We can estimate the fractional integration paramete

deriving the population spectrum ofzt, , which is

, (A5)

where is the population spectrum of the stationary processut, andi is an imaginary

number such that . Taking logarithms we then have

. (A6)

Hence, we regress the periodogram at frequencies , wh

, such thatT is the total number of observations,K the total number of

spectral ordinates (T0.5, T0.55, or T0.60), andk1 the first spectral ordinate, against a consta

and . This provides an estimate of , and henced.

A recently developed alternative to Fourier transforms are wavelet transfo

where a given functionf(x) can be expressed in the wavelet domain in the following mann

1 L–( )xt ψ L( )εt=

Lxt xt 1–= ψ L( )εt

1 L–( )d
xt ψ L( )εt=

1 L–( )d
xt 1 L–( ) 1 L–( )d 1–

xt 1 L–( )d̃
zt= =

zt 1 L–( )xt= d̃ d 1–=

1 L–( )d̃
zt ψ L( )εt ut= =

f z ϑ( )

f z ϑ( ) 1 iϑ–( )exp–
2d̃–

f u ϑ( ) 4
ϑ
2
--- 

 sinsin
d̃–

f u ϑ( )= =

f u ϑ( )
i 1–=

f z ϑ( ){ }ln f u ϑ( ){ }ln= d̃ 4
ϑ
2
--- 

 sinsin
 
 
 

ln–

I T ϑ j( ) ϑ j 2πj( ) T⁄=

0 k1 j K T<≤ ≤<

4 ϑ j 2⁄( )sinsin{ }ln d̃
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j

, (A7)

with ψ(x) defined as

. (A8)

The group of functions for and are

orthogonal, and collectively form a basis in the space of all square-integrable functionL2

along the [0,1] interval. The indexj is the dilation (or scaling) index, which compresses t

function , and the indexk is the transition index that shifts the function

Generally, any such basis inL2(R) is called a wavelet, and (A8) is called a Haar wavele

Jensen (1999) demonstrates that, for an I(d) processxt with , use of the

autocovariance function implies that the wavelet coefficients cjk in (A7) are distributed as

. If R(j) denotes the wavelet coefficient’s variance at scalej, then after taking

logarithms an estimate ofd can be obtained from

. (A9)

The wavelets are used only in the estimation of thed consistent with the observed

autocovariance function. Furthermore, because of the form of the wavelet expansion

the number of observations for the underlying processxt must be a factor of 2. Severa

different wavelets have been proposed, and they usually involve smoothing the

function (A8). The Daubechies (1988) wavelet is an example of such a smooth wavele

is used in our applications. The degree of smoothing increases with the order of the wa

such that the Daubechies-20 wavelet is smoother than the Daubechies-12 wavelet, w

turn is smoother than the Daubechies-4 wavelet. There is no universal agreement

optimal amount of smoothing for wavelets, a situation akin to the amount of smoot

required for non-parametric kernel regressions. We used the Daubechies wavelet fo

reasons: it is used in many applications outside economics, and Jensen (1999) demon

the desirable properties of the wavelet estimator using this wavelet. Several altern

wavelets are described in Vidakovic (1999).

f x( ) c0 cjkψ 2
j
x k–( )
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2 1–
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∞

∑+=
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2
---<≤
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1
2
--- x 1<≤–
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