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Abstract

The exponential family, relative entropy, and distortion are methods of transforming prob-

ability distributions. We establish a link between those methods, focusing on the relation

between relative entropy and distortion. Relative entropy is commonly used to price risky

financial assets in incomplete markets, while distortion is widely used to price insurance

risks and in risk management. The link between relative entropy and distortion provides

some intuition behind distorted risk measures such as value-at-risk. Furthermore, distorted

risk measures that have desirable properties, such as coherence, are easily generated via

relative entropy.
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Risk, Entropy, and the Transformation of Distributions

1 Introduction

A considerable variety of applications use reweighted probability distributions. These appli-

cations come from areas such as statistics, financial economics, insurance, and risk manage-

ment. Not surprisingly, many methods can be used to transform one probability distribution

into another.

Importance sampling (Fishman 1995) is a well-known example from statistics that uses

a transformed distribution to improve the efficiency of Monte Carlo simulations. In financial

economics, risky assets are typically priced under a risk-neutral measure, which is given by a

transformation of the original real-world measure (Björk 1998). Many insurance premiums

can be expressed as the expected value of some deformed probability distribution (Wang

1996a,b). In risk management, one is usually interested in some feature (e.g., percentile) of

the loss distribution of a portfolio at some fixed date in the future, say 10 days from the

present. As a result, real-world predictions of market conditions 10 days hence are required.

Using these future market conditions, the portfolio is marked-to-market using a risk-neutral

measure to price the individual assets, thus generating the future loss distribution (Duffie

and Singleton 2002).

We examine three methods of transforming probability distributions: the exponential

family, relative entropy, and distortion. We establish a link between those methods, focusing

on the relation between relative entropy and distortion. Relative entropy is commonly used

to price risky financial assets in incomplete markets, while distortion is widely used to price

insurance risks and in risk management.

These three approaches to modifying a distribution may at first seem to be quite different.

According to the entropy optimization postulate, however, distributions reweighted via the

exponential family or via distortion can also be obtained as the solution to an entropy

optimization problem.

Remark 1 (Entropy optimization postulate) Every probability distribution, theoreti-

cal or observed, is an entropy optimization distribution; i.e., it can be obtained by maximiz-

ing an appropriate entropy measure or by minimizing a cross-entropy measure with respect to

an appropriate a priori distribution, subject to its satisfying appropriate constraints (Kapur

and Kesavan 1992, 297).
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Risk, Entropy, and the Transformation of Distributions

In section 2, we discuss the exponential family, relative entropy, and distortion, not-

ing the obvious connection between relative entropy and the exponential family. Section 3

establishes the connections between minimum relative entropy distributions and distorted

probability distributions. In particular, we show the relation between the set of moment

constraints imposed on the distribution in the entropy optimization problem and the dis-

tortion function. This relation provides a way to construct distortion functions via entropy

optimization as well as some intuition about the effect a given distortion function has on

the original distribution.

Section 4 introduces the Choquet integral and its properties. We also give results about

distortion functions and the corresponding Choquet integral that are relevant in risk mea-

surement. In section 5 we discuss the measurement of financial and insurance risks, noting

in particular the concept of a coherent risk measure. Section 6 gives examples of distortion

functions and the corresponding moment constraints in the entropy optimization framework,

and discusses some properties of the implied distorted risk measures. Section 7 summarizes

the findings of our research.

2 The Exponential Family, Relative Entropy,

and Distortion

2.1 Exponential families of distributions

One simple method of embedding a given distribution, P , in a family of distributions is pro-

vided by the usual notion of an exponential family of distributions. For example, suppose

that P is a probability distribution of X (P might be a prior distribution or some loss distri-

bution). Suppose that G1(X), . . . , GN (X) are any N statistics or functions of the random

variable X. The exponential family of distributions is a parametric family of distributions,

Pλ, described by their Radon-Nykodym derivative with respect to P . Namely,

dPλ
dP

= exp

(
N∑
i=1

λiGi(x)− ψ(λ)

)
, (1)

2



Risk, Entropy, and the Transformation of Distributions

where λ = (λ1, ..., λN ) is the vector of parameters, and ψ is defined by

exp (ψ(λ)) = EP

[
exp

(
N∑
i=1

λiGi(x)

)]
. (2)

Furthermore, we assume that EP
[
exp

(∑N
i=1 λiGi(x)

)]
< ∞ for all λ in some neighbour-

hood of 0 and EP [·] denotes the expected value taken with respect to the distribution P .

The definition of ψ is such that the resulting measures, Pλ, are probability distributions,

all absolutely continuous with respect to P. The statistic (G1(X), ..., GN (X)) is the canon-

ical sufficient statistic and in some sense represents the natural transformation of the data

for identification of parameters in this model. Indeed, it provides the minimum variance

unbiased estimator of its mean. Virtually all common statistical distributions (the normal,

Poisson, binomial, beta, gamma, and negative binomial, for example) are special cases of

the exponential family of distributions. See Lehmann (1983, section 1.4) for details.

2.2 Relative entropy

Relative entropy optimization is another method for deforming distributions that is closely

related to the exponential family. Relative entropy provides a notion of distance from one

probability distribution to another. For example, suppose that G1(X), . . . , GN (X) are

functions of a loss random variable, X, the moments of which are used to describe some

aspect of the risk. Specifically, let X be a random variable, c1, . . . , cN be constants, andM

be a set of moment constraints of the form

E [Gi(X)] = ci, for i = 1, ..., N, (3)

that we want X to satisfy under the new distribution. Using relative entropy as a measure

of distance, the minimum relative entropy distribution is the measure that is closest to the

original distribution, satisfies the set of moment constraints,M, and is absolutely continuous

with respect to the original distribution. The minimum relative entropy distribution is

simply a reweighting of the original measure. Let us formally define relative entropy and

the minimum relative entropy distribution.

3



Risk, Entropy, and the Transformation of Distributions

Definition 1 (Relative entropy) Given two probability measures, P and P̃ , such that

P̃ � P , the relative entropy of P̃ with respect to P is defined by

H
(
P̃ |P

)
= EP̃

[
ln

(
dP̃

dP

)]
= EP

[
dP̃

dP
ln

(
dP̃

dP

)]
, (4)

where dP̃
dP is a Radon-Nykodym derivative. If the absolute continuity condition, P̃ � P , is

not satisfied, define the relative entropy to be infinite.

Definition 2 (Minimum relative entropy distribution) A minimum relative entropy

distribution is a distribution, P ∗, that solves the convex optimization problem:

min
P̃

H
(
P̃ |P

)
subject to the constraints (5)

EP̃ [Gi(X)] = ci, for i = 1, ..., N,∫
dP̃ = 1, and

P̃ � P.

The above optimization problem is easily solved by Lagrangian methods, yielding an

explicit expression for the minimum relative entropy distribution. One of the consequences of

this minimization problem is that it results in exactly the exponential family of distributions

(see equation (1) and Theorem 1). The functions whose moments are constrained in the

minimum relative entropy distribution are exactly the canonical sufficient statistics in the

exponential family.

Theorem 1 If there is a measure satisfying the constraints in (5), then the unique solution,

P ∗, to the constrained minimum relative entropy optimization problem has the form

dP ∗

dP
= exp

(
N∑
i=1

λiGi(x)− ψ(λ)

)
, (6)

where ψ satisfies (2) and λ = (λ1, ..., λN ) is determined uniquely by the moment constraints.

This result provides a simple link between the solution to minimum relative entropy

optimization problems and the exponential family of distributions. The many attractive

properties of the exponential family of distributions seem to indicate that minimizing relative

4
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entropy between a distribution and a target subject to certain moment constraints is natural.

As we alter the constants, ci, in the constraints of the optimization problem (5), we remain

within the same class of distributions, with only the parameters, λ, varying.

2.3 Distortion

Suppose that, under the probability measure, P , a random variable, X, has cumulative dis-

tribution function (cdf) F defined by F (x) = P [X ≤ x]. There are several other simple ways

to transform a distribution through either the cdf of a random variable or the decumulative

distribution function (ddf): S(x) = P [X ≥ x] = 1−F (x−) = 1− limh↓0 F (x−h). For exam-

ple, if g(u) is a left-continuous distortion function (see Definition 3) and S(x) is a ddf, then

S∗(x) = g(S(x)) is a ddf corresponding to a distorted probability distribution. Similarly, we

can apply a distortion function to the cdf to obtain F ∗(x) = g(F (x)). Distorted probability

distributions are special cases of the more general theory of monotone set functions and

non-additive measures. See Denneberg (1994) for a careful treatment of the more general

theory. We begin by defining a distortion function and a distorted probability distribution.

Definition 3 (Distortion function) A distortion function, g, is any non-decreasing func-

tion on [0, 1] such that g(0) = 0 and g(1) = 1.

We have seen that a distorted probability distribution can be defined in terms of the ddf

by

S∗(x) = g(S(x)). (7)

Depending on whether g is continuous, right continuous, or left continuous, equation (7) may

not correctly define a ddf at discontinuity points of S(x). However, since there are at most

countably many such points, (7) is assumed to hold only at continuity points and uniquely

determines the distribution. For the rest of this paper, we assume identity in equations

such as (7) at all x except possibly those corresponding to discontinuities in S(x). We also

assume throughout this paper that all integrals (e.g., expected values and Choquet integrals)

are properly defined.

We use the ddf rather than the cdf because it is compatible with the Choquet integral

(Definition 5). We have shown that there are two possible ways to distort a distribution:

5
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one through the cdf and the other through the ddf. These methods correspond with the

replacement of the distortion function with a dual distortion function.

Definition 4 (Dual distortion function) Given a distortion function, g, the dual dis-

tortion function, ḡ, is defined by

ḡ(u) = 1− g(1− u).

The dual distortion has the useful property that if S∗ is obtained from S using distortion

function g, then the corresponding cumulative distribution functions are related via the dual

distortion function:

S∗(x) = g(S(x)) if and only if F ∗(x) = ḡ(F (x)). (8)

This is easily seen, since, if S∗(x) = g(S(x)), it follows that

F ∗(x) = P ∗(X ≤ x) = 1− S∗(x−)

= 1− g(S(x−)) = 1− g(1− F (x−))

= ḡ(F (x−)),

and this equals ḡ(F (x)) except at the (at most countably many) discontinuity points of F .

For differentiable distortion functions, equation (7) provides a way to compute the dis-

torted probability density function (pdf). Namely,

f∗(x) = − d

dx
S∗(x) = − d

dx
g(S(x)) = f(x)g′(S(x)), (9)

where f is the original pdf of X. Furthermore, the distorted probability distribution derived

using the dual distortion function has pdf

f∗(x) = − d

dx
ḡ (S∗(x)) =

d

dx
ḡ(F (x)) = f(x)ḡ′(F (x)). (10)

This is exactly the density obtained by using F instead of S in the distortion function, g.

3 Link Between Relative Entropy and Distortion

Equations (6) and (9) reveal an obvious link between distorted probability distributions and

minimum relative entropy distributions. Theorem 2 formalizes this relationship. For the

6
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purpose of this theorem, we will refer to a random variable, X, as discrete if it takes values

on a countable ordered set, x1 < x2 < . . . .

Theorem 2 Let X be a discrete or continuous random variable with ddf S(x).

(i) If S∗ is the minimum relative entropy distribution satisfying a set of moment con-

straints, M, then S∗(x) = gM(S(x)) for some distortion function, gM.

(ii) If a distorted probability distribution, P ∗, is defined by S∗(x) = g(S(x)) for a differ-

entiable distortion function, g, and if a Radon-Nykodym derivative

dP ∗

dP

has finite ν moment for some ν > 1; i.e., if

EP

[(
dP ∗

dP

)ν]
<∞,

then S∗ is the minimum relative entropy distribution satisfying a set of moment con-

straints.

Proof. Suppose that S∗ is a minimum relative entropy distribution. Then, by Theorem 1

for some values of λ1, . . . , λN ,

dP ∗

dP
= exp

 N∑
j=1

λjGj(x)− ψ(λ)

 . (11)

Define a pseudo-inverse on (0, 1) by

S−(y) = inf{z;S(z) ≤ y},

and note that

S−(S(x)) = x,

except possibly on a set of x values having P -probability zero. Assume that S(x) is contin-

uous and define

gM(u) =
∫ u

0

exp

 N∑
j=1

λjGj
(
S−(v)

)
− ψ(λ)

 dv. (12)

7
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Obviously, the condition gM(0) = 0 is satisfied and equation (11) ensures that gM(1) = 1.

Furthermore, gM is non-decreasing, and hence is a distortion function. Then,

dP ∗

dP
= g′M(S(x)) = exp

 N∑
j=1

λjGj(x)− ψ(λ)

 almost surely (P ),

and therefore S∗(x) = gM(S(x)). In the case of a discrete random variable with probability

functions f(x) and f∗(x) corresponding to the original and the distorted distributions, let

si = S(xi) and note that 1 = s1 > s2 > . . . , and sN → 0 as N →∞. Define

g(1) = 1, g(0) = 0,

and

g(s) = g(si)− (si − s) exp

∑
j

λjGj(xi)− ψ(λ)

 , for si > s ≥ si+1.

Then, it is easy to check the requirement that

f∗(xi)
f(xi)

=
g(si+1)− g(si)
si+1 − si

= exp

∑
j

λjGj(xi)− ψ(λ)

 .

For part (ii), assume that S∗(x) = g(S(x)). Then, if the distribution is continuous, the

pdf satisfies

f∗(x) = f(x)g′(S(x)) (13)

= f(x) exp(φ(x)),

where we define φ(x) = ln(g′(S(x))) if g′(S(x)) is positive and φ(x) = −∞ if g′(S(x)) = 0.

Now, consider distributions supported on the set B = {x; g′(S(x)) > 0}. If we solve for the

minimum relative entropy distribution subject to the constraint

E(φ(X)) = c,

the solution takes the form

f∗(x) = f(x) exp(λφ(x)− ψ(λ)),

8
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implicitly defining the function ψ. When λ = 1, equation (13) implies that ψ(1) = 0, and

therefore the distorted probability distribution is also a minimum relative entropy distribu-

tion for a particular value of c. The discrete case is similar, with g′(si) replaced by a forward

difference:

g(si+1)− g(si)
si+1 − si

.

A consequence of Theorem 2 is that distortion functions are implicitly defined through

the formulation of a minimum relative entropy optimization problem. The implied distortion

in the continuous case is given by

g(S(x)) =
∫ S(x)

0

exp

 N∑
j=1

λjGj
(
S−(u)

)
− ψ(λ)

 du, (14)

with ψ(λ) chosen so that g(1) = 1. The conditions are quite mild. For example, if X is

continuous, the condition

∞ > EP

[(
dP ∗

dP

)ν]
= EP

[
(g′(S(X)))ν

]
= EP

[
(g′(U))ν

]
,

where U ∼ Uniform[0, 1] holds for some ν > 1 provided that g has a bounded first derivative.

The constraints are not uniquely determined by the distortion function in part (ii) of

Theorem 2. Indeed, typically there is an infinite set of constraints that lead to the same

minimum relative entropy distribution, P ∗, because there are an infinite number of ways

of interpolating between two distributions within the exponential family of distributions.

For example, suppose that P is the uniform distribution on the interval [0, 1]. Consider

minimizing the relative entropy H(P ∗|P ) subject to the moment constraints:

EP∗(X) = 0.7420

EP∗(X2) = 0.6084.

The solution is a pdf of the form

f∗(x) = exp
(
λ0 + λ1x+ λ2x

2
)
, for 0 < x < 1,

with λ0 = −ψ(λ) = −1.5707, λ1 = 1, and λ2 = 2. This same pdf, however, solves a

minimum relative entropy problem, with the above moment constraints replaced by

EP∗(X + 2X2) = 1.9588.

9
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The method used in the above proof is not always the most convenient. For a member

of an exponential family of distributions, the natural sufficient statistic provides the usual

moment constraint and the whole family of distributions can be generated by simply varying

the constants, ci, in the constraints E(Gi(X)) = ci. Table 2 gives examples of the families

of distortion functions that result.

For the applications to be studied later, it is of interest to know whether a distortion

function is concave or convex. Theorem 3 gives a necessary and sufficient condition on the

moment constraints to determine the concavity or convexity of the corresponding distortion

function.

Theorem 3 Suppose that a distortion function, g, is defined by the moment constraints in

a relative entropy optimization problem. Thus, g is as given in equation (14). Define the

functions hj = GjoS
−, assumed to be differentiable, for j = 1, . . . , N . Then,

(i) g is concave if and only if
∑N
i=1 λih

′
i(u) ≤ 0 for all u ∈ [0, 1].

(ii) g is convex if and only if
∑N
i=1 λih

′
i(u) ≥ 0 for all u ∈ [0, 1].

Proof. Differentiating g′, we get

g′′(u) = exp

(
N∑
i=1

λihi(u)− ψ(λ)

)
N∑
i=1

λih
′
i(u), (15)

and, since g is a distortion function, it is non-decreasing; hence, g′ ≥ 0. Since g is a

non-negative twice-differentiable function with g′ ≥ 0, then g is concave ⇔ g′′ ≤ 0 ⇔∑N
i=1 λih

′
i(u) ≤ 0 for all u ∈ [0, 1].

The proof of part (ii) is similar.

One can construct more complicated distortion functions by mixing and composing ex-

isting ones. These operations preserve the property of concavity or convexity as stated in

the following lemma (Wang 1996b).

Lemma 4 Let gi, i = 1, . . . , n be concave (convex) distortion functions.

(i) For pi ≥ 0 with
∑n
i=1 pi = 1, the function g =

∑n
i=1 pigi is a concave (convex)

distortion function.

(ii) The function g = g2 ◦ g1 is a concave (convex) distortion function.

10
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3.1 The constraints

Throughout this section, let X be a random variable, with f, F, and S its pdf, cdf, and ddf,

respectively. One can reasonably apply various constraints to naturally occurring random

variables in deforming a distribution. Note that, under the true distribution, S(X) and

F (X) are both uniformly distributed on [0, 1]. It is natural to apply constraints to various

functions of these quantities, since they operate on easily understood scales. For example,

both S(X) and F (X) are uniformly distributed if X has a continuous distribution and both

Θ(X) = − ln(S(X)) and Θ̄(X) = − ln(F (X)) have a standard exponential distribution.

Because they are monotone functions of X, increasing them increases (or decreases) the

values of X.

Perhaps a more natural quantity that can be used to express the severity of a change in

the loss distribution or the attitudes to risk is a ratio

T+(X) =
S∗(X)
S(X)

,

for some transformed loss distribution, S∗(X). For example, suppose that we constrain

EP∗ [T+(X)] = 10.

Then, under the transformed distribution, losses of magnitude greater than X occur with

10 times the frequency that they have under the original distribution. Because T+(X)

represents the ratio of tail probabilities, it is a natural vehicle for constraints.

Similarly, the ratio

T−(X) =
F ∗(X)
F (X)

represents the ratio of left tail probabilities and, if we wish to control them, it is natural to

constrain the expected value of T−(X). Therefore, moments of T− or T+ such as T ν+ appear

to be reasonable quantities to constrain in a risk-management model. We might use the

powers such as ν = 1 or logarithms (the equivalent of ν = 0).

For continuous distributions, the cumulative hazard function Θ(x) = − ln(S(x)), and,

if we apply a constraint to its expected value, EP∗(Θ(X)) = EP∗(− ln(S(X))), under the

transformed measure, then we are changing the mean of an exponential(1) random variable

11
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by altering the expected cumulative hazard experienced over a lifetime. This constraint has

another simple interpretation as an expected value under the original distribution. Using

integration by parts and assuming a continuous distribution,

EP∗ [ln(T+(X))] + 1 = EP∗ [Θ(X)] (16)

= −
∫

ln(S(x))f∗(x)dx

=
∫

1
S(x)

f(x)S∗(x)dx

= EP

[
S∗(X)
S(X)

]
= EP [T+(X)] .

Thus, constraining the logarithm of the (original) survivor function under the distorted

measure is equivalent to constraining the first moment of T+ under the original measure.

Similarly,

EP∗
[
Θ̄(X)

]
= EP

[
F ∗(X)
F (X)

]
= EP [T−(X)] ,

EP [Θ∗(X)] = EP∗
[
T−1

+ (X)
]
, and

EP
[
Θ̄∗(X)

]
= EP∗

[
T−1
− (X)

]
.

In general, constraints on the logarithm of the cdf or the ddf under one measure translate

to constraints on the expected cdf ratio or ddf ratio under the other measure.

According to Table 1, simple constraints applied to functions of T− and T+ introduce

specific terms into the distortion function, g (actually, its derivative), in the relation S∗(x) =

g(S(x)). The constant K ensures that the condition g(1) = 1 is satisfied.

12
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Table 1: Moment constraints corresponding to terms in a distortion function

Constraint on g′(u) multiplied by K×

EP∗ [Θ(X)], or,
EP∗ [ln(T+(X))], or,
EP [T+(X)]

ua−1

EP∗ [Θ̄(X)], or,
EP∗ [ln(T−(X))], or,
EP [T−(X)]

(1− u)b−1

EP∗ [S(X)], or,
EP∗ [F (X)]

e−u/c

EP∗ [T−1
+ (X)], or,

EP [Θ∗(X)], or,
EP [ln(T+(X))]

exp(λ u
g(u) )

EP∗ [T−1
− (X)], or,

EP [Θ̄∗(X)], or,
EP [ln(T−(X))]

exp(λ 1−u
1−g(u) )

13
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4 The Choquet Integral, Distortion Functions,

and Risk Measurement

In this section, we define the Choquet integral and list some of its well-known properties. We

also provide additional results about the Choquet integral that are useful in the construction

of insurance premium principles and risk measures with desirable characteristics. Since many

insurance premium principles and risk measures have a Choquet integral representation

(Wang 1996a,b, Wang, Young, and Panjer 1997, Wirch and Hardy 1999), these properties

may also be used to verify whether a given risk measure or premium principle has a certain

characteristic. Desirable characteristics of risk measures and premium principles are briefly

mentioned in this section and discussed more fully in section 5. Although this section focuses

almost entirely on distortion functions, the reader is reminded of the equivalence of relative

entropy and distortion. To motivate the discussion, suppose that X is a random variable and

g is a distortion function that leads to a distorted distribution defined by S∗(x) = g(S(x))

or, equivalently, F ∗(x) = ḡ(F (x)). Notice that the expected value of the random variable

under the distorted distribution is given by

EP∗ [X] = EP∗
[
X+
]
− EP∗

[
X−
]

(17)

=
∫ ∞

0

S∗(x)dx−
∫ ∞

0

F ∗(−x)dx

=
∫ ∞

0

g(S(x))dx−
∫ ∞

0

ḡ(F (−x))dx

=
∫ ∞

0

g(S(x))dx−
∫ ∞

0

[1− g(S(−x))]dx

=
∫ ∞

0

g(S(x))dx+
∫ 0

−∞
[g(S(x))− 1]dx,

where X+ = max(X, 0) and X− = max(0,−X). This leads to the definition of the Choquet

integral.

14
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Definition 5 (Choquet integral) For any random variable X with ddf S(x), the Cho-

quet integral with respect to distortion function g is defined by (Denneberg 1994):

Hg(X) =
∫ ∞

0

g(S(x))dx+
∫ 0

−∞
[g(S(x))− 1]dx

=
∫ ∞

0

[1− ḡ(F (x))]dx−
∫ 0

−∞
ḡ(F (x))dx.

According to (17), if X is a random variable, then the Choquet integral is equivalent to

the expected value of X under the deformed probability distribution with ddf S∗. That is,

for any distortion, g,

Hg(X) = EP∗ [X] . (18)

Note that Hg(·) is not to be confused with the notation for relative entropy introduced in

section 2.2.

Definition 6 (Comonotonic random variables) Two random variables, X and Y , are

comonotonic if there exists another random variable, Z, and increasing real-valued functions,

u and v, such that

X = u(Z) Y = v(Z). (19)

A class, C, of random variables is called comonotonic if and only if each pair of random

variables in C is comonotonic (Denneberg 1994).

If X and Y represent risks and are comonotonic, this means that one is not a hedge for

the other. For example, a stock and a call option written on the stock are comonotonic

risks. Theorem 5 lists some well-known properties of the Choquet integral (see Denneberg

1994, chapters 5 and 6).

Theorem 5 (Properties of Hg) For any distortion function, g, and real-valued random

variables, X,Y , the following properties hold:

(i) Monotonicity

X ≤ Y implies Hg(X) ≤ Hg(Y ).

(ii) Positive homogeneity

Hg(cX) = cHg(X) for c ≥ 0.

15
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(iii) If X = c for any constant c, then Hg(X) = c.

(iv) Translation invariant

Hg(X + c) = Hg(X) + c for any constant c.

(v) Comonotonic additivity

If X,Y are comonotonic, then Hg(X + Y ) = Hg(X) +Hg(Y ).

(vi) Subadditive for concave g

If g is concave, then Hg(X + Y ) ≤ Hg(X) +Hg(Y ).

(vii) Superadditive for convex g

If g is convex, then Hg(X + Y ) ≥ Hg(X) +Hg(Y ).

(viii) Asymmetry

Hg(−X) = −Hḡ(X), where ḡ is the dual distortion function of g.

Note that the monotonicity property shown above ensures that

Hg(X) ≤ max(X) (20)

for any distortion, g, and any random variable, X. This corresponds to the principle of non-

excessive loading. That is, the price of a risk should not exceed the maximum possible loss.

Subadditivity is another nice property for a risk measure; it simply states that there should

be no incentive to split risks. The following proposition addresses the issue of subadditivity

of the Choquet integral.

Proposition 6 Let g be a continuous distortion function. Then, the following are equiva-

lent:

(i) g is concave.

(ii) Hg is subadditive. That is, Hg(X + Y ) ≤ Hg(X) +Hg(Y ) for all random variables X

and Y .

(iii) Hg(X + Y ) ≤ Hg(X) +Hg(Y ) for all Bernoulli random variables X and Y .

16
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Proof. Notice that 1 implies 2 by Theorem 5 and for all concave distortion functions.

Clearly, 2 implies 3. To show that 3 implies 1, suppose that Hg is subadditive for Bernoulli

random variables X and Y , and consider the random variables X and Y with the discrete

joint distribution given in the following chart with 0 ≤ r ≤ s ≤ 1:

\ Y

X 0 1

0 1− s s−r
2

1 s−r
2 r

The Choquet integrals are

Hg (X) = g

(
s+ r

2

)
,

Hg (Y ) = g

(
s+ r

2

)
, and

Hg (X + Y ) = g (s) + g (r) .

Subtracting, we have that

Hg (X + Y )− (Hg (X) +Hg (Y )) = g (s) + g (r)− 2g
(
s+ r

2

)
≤ 0,

where the inequality follows from the assumed subadditivity of Hg. This becomes

g(r) + g(s)
2

≤ g
(
r + s

2

)
. (21)

For a continuous function, g, this is sufficient to prove concavity. We will prove this by

induction.

In particular, we wish to prove that

g (λr + (1− λ)s) ≥ λg(r) + (1− λ)g(s). (22)

We know that (22) holds for all r ≤ s and for λ = 1/2. Suppose that it holds for all r ≤ s

and for all λ of the form λj,n = j2−n, where 0 ≤ j ≤ 2n. We will show that it holds for

all r ≤ s and for all λ of the form λk,n+1 = k/2n+1. We may assume that k is odd, since

otherwise the result is a trivial consequence of the assumption that it holds for all λj,n;

17
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therefore, we assume that k = 2j + 1, with j < 2n. Define xj,n = λj,nr + (1 − λj,n)s and

xj+1,n = λj+1,nr + (1− λj+1,n)s. Then,

g (λk,n+1r + (1− λk,n+1)s )

= g

(
xj,n + xj+1,n

2

)
≥ g(xj,n) + g(xj+1,n)

2

≥ 1
2

[λj,ng(r) + (1− λj,n)g(s) + λj+1,ng(r) + (1− λj+1,n)g(s)]

= λk,n+1g(r) + (1− λk,n+1)g(s),

where the first inequality follows from (21), the second inequality follows from the induction

hypothesis, and the final equality follows from 1
2 (λj,n + λj+1,n) = λk,n+1. For a general

value of λ, it is possible to find values λjn,n = jn2−n, which approach λ as n → ∞. The

general result follows from the continuity of the function g(u). Wirch and Hardy (2000)

give an alternate proof valid under stronger conditions.

For insurance and risk-management applications of the Choquet integral, it is useful to

know conditions on the distortion function that ensure that the integral is bounded below

by the expected value of the random variable (non-negative loading). The condition is quite

simple, as the following result shows.

Proposition 7 For a distortion function, g, the following are equivalent:

(i) g(u) ≥ u for all u ∈ [0, 1].

(ii) E[X] ≤ Hg(X) for all random variables, X.

(iii) E[X] ≤ Hg(X) for all Bernoulli random variables.

Proof. First note that, from (17),

Hg(X)− E(X) =
∫ ∞
−∞

h(S(x))dx,

where h(u) = g(u)−u. If h(u) ≥ 0 for all u, then, clearly, Hg(X)−E(X) ≥ 0 for all random

variables. Clearly, 2 implies 3. Assume that Hg(X) − E(X) ≥ 0 for all Bernoulli random

18
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variables, X. We modify a proof from Wirch and Hardy (2000). Define a Bernoulli random

variable by

X =

 0 w.p. 1− u0

1 w.p. u0

(23)

and note that Hg(X) − E(X) =
∫ 1

0
(g(u0) − u0)dx = g(u0) − u0 ≥ 0 for all u0 implies

g(u) ≥ u for all u ∈ [0, 1].

For the purposes of constructing risk measures via the Choquet integral and distortion

(or relative entropy), the following result says that concavity of the distortion function, g,

is sufficient to ensure that Hg is subadditive and bounded below by the mean.

Corollary 8 If g is a concave distortion function, then Hg is subadditive and E[X] ≤

Hg(X).

Proof. Theorem 5 gives the subadditivity property. By noting that concavity implies

g(u) ≥ u for all u ∈ [0, 1], Proposition 7 gives E[X] ≤ Hg(X).

In Theorem 2 we showed the equivalence of distorted probability distributions and min-

imum relative entropy distributions. The following corollary ties together (i) Choquet inte-

grals that are subadditive and bounded below by the mean, (ii) concave distortion functions,

and (iii) conditions on the moment constraints in the corresponding relative entropy opti-

mization problem. This may be used to test whether a given risk measure with a Choquet

integral representation is subadditive and bounded below by the expected value.

Corollary 9 For all random variables and a twice-differentiable distortion function, g, with

g′(u) = exp

(
N∑
i=1

λihi(u)− ψ(λ)

)
, (24)

where hi are given functions and λ = (λ1, . . . , λN )′ and ψ satisfy ∂ψ
∂λi

= Ci for given numbers

Ci, i = 1, . . . , N , the following are equivalent:

(i) Hg is subadditive and E[X] ≤ Hg(X).

(ii) g is a concave distortion function.

(iii)
∑N
i=1 λih

′
i(u) ≤ 0.
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Proof. Proposition 6 shows that 1 ⇒ 2. Corollary 8 shows that 1 ⇐ 2. Theorem 3 shows

that 2⇔ 3.

5 Measuring Risks

Risk measures are used extensively in finance and insurance. Prices of risks, such as an

insurance premium, are determined by measuring the risks associated with the product.

Exchanges and clearing houses determine margin requirements by measuring the riskiness

of an investor’s portfolio. Risk measures are also used to set capital requirements to help

ensure the solvency of the company. These requirements may be imposed by a regulator or

by a company’s internal risk-management protocol. Companies with many lines of business

use risk measures to rate the performance of each business line through its risk-adjusted

return on capital (RAROC). The need for good risk measures is quite apparent.

Recently, the Choquet integral has been identified as an important tool in the measuring

and pricing of financial and insurance risks. Chateauneuf, Kast, and Lapied (1996) use it to

explain apparent discrepancies in observed market prices, such as violation of put-call parity,

owing to friction in the market caused by the bid/ask spread. The Choquet integral with

the normal distortion function (see section 6.3) has been proposed to price both financial

and insurance risks (Wang 2000). Many recent papers in the insurance literature illustrate

the use of the Choquet integral as a premium principle. Some examples are Wang (1995,

1996a,b), Wang and Young (1998), Kamps (1998), and Wang and Dhaene (1998).

In fact, by taking an axiomatic approach to insurance prices, Wang, Young, and Panjer

(1997) show that any market premium functional that satisfies the prescribed axioms has

a Choquet integral representation. Artzner et al. (1999) use a similar axiomatic approach

for general risk measures. Premium principles can be thought of more generally as risk

measures and therefore the generic term “risk measure” includes them in what follows. We

outline the axioms of Artzner et al. below and show that the Choquet integral is useful

not only in constructing good risk measures but also in testing the properties of a given

risk measure (Wirch 1999). The link between relative entropy and distortion gives further

insight into risk measures that have a Choquet integral representation.
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5.1 Coherent risk measures

The definitions and axioms presented here are slightly modified versions of those given by

Artzner et al. (1999).

Definition 7 (Risk) A risk, X, is a random variable representing the future net loss of

an investor at some particular time in the future. X < 0 represents a gain and X ≥ 0

represents a loss.

Definition 8 (Risk measure) A risk measure, ρ, is a functional that maps X to the real

line, ρ : X 7→ <.

For simplicity, we assume that the risk-free rate of interest is zero. Artzner et al. (1999)

identify the following axioms as desirable characteristics of a risk measure:

(i) Monotonicity

If P (X ≤ Y ) = 1, then ρ(X) ≤ ρ(Y ).

(ii) Positive homogeneity

For all λ ≥ 0, ρ(λX) = λρ(X).

(iii) Translation invariance

For all risks and real numbers, α, ρ(X + α) = ρ(X) + α.

(iv) Subadditivity

For all risks X,Y, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(v) Relevance

For all non-negative risks with P (X > 0) > 0, ρ(X) > 0.

The monotonicity axiom says that if risk Y is always greater than risk X, then the risk

measure for Y should also be greater than the risk measure for X. The axiom ensures

that the property of non-excessive loading is satisfied, ruling out the standard deviation

principle, for example. Positive homogeneity reflects that the size, λ, of a position taken on

risk X increases the risk measure associated with X by a factor of λ. Translation invariance

means that adding (subtracting) the sure amount, α, to risk X increases (decreases) the risk
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measure by α. That is, if α units of the risk-free asset are removed from a portfolio, then

the risk measure should increase by the same amount. Subadditivity can be restated as “a

merger does not create extra risk,” or “there is no incentive to split risks.” The relevance

axiom is a necessary, but not sufficient, condition to prevent concentration of risks to remain

undetected.

Definition 9 (Coherent risk measure) A risk measure is coherent if it satisfies the four

axioms of monotonicity, positive homogeneity, translation invariance, and subadditivity.

From Proposition 4.1 in Artzner et al. (1999), we see that if ρ is a coherent risk measure,

then it is bounded below by the mean net loss; that is,

ρ(X) ≥ E[X] (25)

for all risks, X. We call this the non-negative loading property, consistent with insurance

premium terminology.

From Theorem 5 we see that, for any distortion function, the Choquet integral satisfies

the axioms of monotonicity, positive homogeneity, and translation invariance. The other

results in section 4 address necessary and sufficient conditions on the distortion function

for the Choquet integral to be subadditive and satisfy the non-negative loading property.

As such, the Choquet integral is a natural tool for constructing coherent risk measures by

specifying an appropriate distortion function. Furthermore, if a given risk measure has a

Choquet integral representation, the results from section 4 allow one to verify whether the

risk measure is coherent.

Definition 10 (Distorted risk measure) A risk measure is a distorted risk measure if

it has a Choquet integral representation. The notation ρg is used to denote the distorted risk

measure with distortion function g.

Commonly used risk measures such as value-at-risk (VaR) and tail-VaR have a Choquet

integral representation; hence, they are examples of distorted risk measures (Wirch and

Hardy 1999). Corollary 8 provides sufficient conditions on the distortion function to ensure

that a distorted risk measure is coherent. This is useful for constructing coherent risk

measures. We restate the result in terms of the coherence of the distorted risk measure.
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Corollary 10 If g is a concave distortion function, then the distorted risk measure, ρg(X),

is coherent.

Typically, risk measures are used to compute capital requirements or reserves to protect

a company against ruin. A risk measure that considers only the loss part of the distribution

is conservative, as potential losses are not offset by potential gains. As stated in Artzner et

al. (1999, remark 4.5), actuaries have been considering only the loss part of the distribution

since the 1800s. The condition g(u) ≥ min
(

1, u
S(0)

)
for all u ∈ [0, 1] is sufficient to ensure

that the relevance axiom is satisfied, as only the loss part of the distribution is used to

calculate the distorted risk measure. It is quite strong, however, and can probably be

relaxed somewhat for particular distributions. Finally, note that distorted risk measures

always satisfy the relevance axiom for non-negative random variables.

As previously stated, the properties of the Choquet integral can be used to test the

coherence of a given distorted risk measure. The following corollary provides a test for

certain distortion functions and also reminds us of the link to relative entropy (compare

with Corollary 9).

Corollary 11 For all random variables and a twice-differentiable distortion function, g,

with

g′(u) = exp

(
N∑
i=1

λihi(u)− ψ(λ)

)
, (26)

where hi are given functions and λ = (λ1, . . . , λN )′ and ψ satisfy ∂ψ
∂λi

= Ci for given numbers

Ci, i = 1, . . . , N , the following are equivalent:

(i) the distorted risk measure ρg(X) is coherent.

(ii) g is a concave distortion function.

(iii)
∑N
i=1 λih

′
i(u) ≤ 0.

5.1.1 Risk preferences through distortion

For random variables X representing potential loss, one could define a distorted risk measure

depending only on the positive part of the loss by ρg(X) = Hg (X+). One can think of the
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distortion function, or equivalently the moment constraints, as reflecting attitudes towards

risk. Distorted risk measures can therefore be tailored to specific risk attitudes by specifying

the distortion function and its parameters.

For non-negative random variables and differentiable distortion functions, distorted risk

measures can be regarded as expected utility, for some implied utility function, u (Wirch

and Hardy 1999). In particular, if we define the utility function u(y) = −yg′(S(−y)), then

E(u(−X+)) = −
∫ ∞

0

(−x)g′(S(x))f(x)dx (27)

=
∫ ∞

0

xg′(S(x))f(x)dx = −Hg(X+). (28)

In other words, the utility is the negative of the risk. This underlines the fact that distortion

functions or, equivalently, moment constraints in a relative entropy optimization problem

reflect risk preferences. Apparently, the implied utility function, u, depends on the distri-

bution, S, as well as the distortion function, g. In fact, the density g′(S(x)) describes how

much the “risk-neutral” utility, u(x) = x, is modulated by the distortion. As one might

expect, the degree to which a given loss is anticipated (and reflected in risk-averse prices)

in the market depends not only on the size of the loss but also on the historical frequency,

S(x), with which losses of this magnitude are observed.

Distorted risk measures also play a large role in two other economic theories: one by

Yaari (1987), and the other by Schmeidler (1989).

6 Examples

In this section, we provide some examples of specific distortions obtained from the simple

rules on the moment constraints in the relative entropy framework outlined in section 3.1.

The results are summarized in Table 2. Again, note that the constant K ensures that

the condition g(1) = 1 is satisfied. We discuss special cases of these examples and their

corresponding distorted risk measures. For the purposes of exposition, throughout this

section assume that X is a continuous random variable with f , F , and S being its pdf, cdf,

and ddf, respectively.
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6.1 Gamma-beta distortion

The gamma-beta distortion is a very general distortion, because it can be generated via

relative entropy by constraining the expected log ratios of left and right tail probabilities

(ln(T−(X)) and ln(T+(X)), respectively), along with the expected value of the ddf (equiv-

alently, the cdf). It is defined as

g(u) =
∫ u

0

Kta−1(1− t)b−1 exp(−t/c)dt,

where

K−1 =
∫ 1

0

ta−1(1− t)b−1 exp(−t/c)dt,

and the parameters a, b, and c are all positive. Note that K−1 can be obtained from the

moment generating function of a beta random variable. The conditions a ≤ 1, b ≥ 1, and

c > 0 are sufficient to ensure that the corresponding distorted risk measure is coherent

(Corollary 11). The generality of this distortion function is evident by the fact that it

contains a number of other distortion functions as special cases.

6.1.1 Beta distortion

With c = ∞, we obtain the beta distortion function as a special case of the gamma-beta.

This distortion is the incomplete beta function (or the cdf of a β(a, b) random variable),

which is defined as

g(u) =
∫ u

0

1
β(a, b)

ta−1(1− t)b−1dt, (29)

where

K−1 = β(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0

ta−1(1− t)b−1dt, (30)

and Γ(a) =
∫∞

0
ta−1e−tdt is the gamma function.

The link between minimum relative entropy distributions and distorted probability dis-

tributions can be used to determine the parameters (a, b) in terms of (c1, c2). Specifically,

it can be shown that

c1 =
Γ′(a+ b)
Γ(a+ b)

− Γ′(b)
Γ(b)

and c2 =
Γ′(a+ b)
Γ(a+ b)

− Γ′(a)
Γ(a)

.

26



Risk, Entropy, and the Transformation of Distributions

Corollary 11 implies that the beta-distorted risk measure, ρg, is coherent if and only if

a ≤ 1 and b ≥ 1 (these are necessary and sufficient conditions for the concavity of g). The

parameters a and b control the effect of upper and lower tails, respectively. The application

of the beta transform to risk measurement was first proposed by Wirch (1999). The beta

distortion is a two-parameter distortion that includes the proportional hazards and dual

power distortions as special cases.

6.1.2 Proportional hazards distortion

The proportional hazards transform is obtained by constraining the expected integrated

hazard rate Θ(X), or ln(T+(X)), under the deformed distribution. This distortion is a

special case of the gamma-beta distortion simply obtained by setting b = 1 and c = ∞.

Namely,

g(u) = ua,

where K = a. As above, Theorems 1 and 2 together give us the relation

c2 = −a.

Theorem 3 implies that g is concave if and only if a ≤ 1, and convex if and only if a ≥ 1.

Hence, the distorted risk measure is coherent if and only if a ≤ 1, which inflates the right

tail of the distribution of X. This distorted risk measure has been extensively studied in

insurance applications (Wang 1995, 1996a,b, and Wang, Young, and Panjer 1997). It can

easily be shown that the distorted probability distribution has a hazard rate of aθ(t), hence

the name proportional hazards (PH) distortion.

6.1.3 Dual power distortion

This transform is the dual to the PH distortion (hence the name) and is obtained by con-

straining Θ̄(X), or ln(T−(X)), under the distorted distribution. It is another special case

of the gamma-beta distortion with a = 1 and c =∞. Also, using the link between relative

entropy and distortion, it is easy to show that

c1 = −b. (31)
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Furthermore, ρg is coherent if and only if b ≥ 1, where the parameter b has the effect of

deflating the lower tail of the distribution (Wang 1996a,b).

6.1.4 Gamma distortion

This is the gamma cumulative density function conditioned to lie in the interval [0, 1]; that

is,

g(u) =
∫ u

0

Kta−1 exp(−t/c)dt,

giving

K−1 =
∫ 1

0

ta−1 exp(−t/c)dt = caγ(1/c; a),

where γ is the incomplete gamma function. This is yet another special case of the gamma-

beta distortion with b = 1. Thus, a ≤ 1 implies that g is concave, and therefore that ρg is a

coherent risk measure. This distortion includes the exponential distortion (with a = 1) and

the previously discussed PH distortion (g′(u) = aua−1 for c =∞) as special cases.

6.1.5 Exponential distortion

The exponential distortion is simply the cdf of an exponential random variable constrained

to the unit interval. The distortion is generated by restricting the expected right-hand tail,

S(X), under the reweighted distribution. Here we have

g(u) =
1− e−u/c

1− e−1/c
,

with Theorems 1 and 2 implying

c3 = c+
e−1/c

c(1− e−1/c)
.

In this case, the exponential distortion function is always concave and is twice-differentiable;

therefore, ρg is coherent by Corollary 11.

6.2 Piecewise linear distortion

The single most important example of piecewise linear distortions is one in which we alter

the confidence level associated with a VaR. For example, suppose that, under the original
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distribution, VaRα = $100, where 1 − α is the confidence level associated with the VaR.

In other words, if X represents the loss in a specific time horizon (e.g., one day), then

P (X ≥ 100) = α. Suppose that, under the transformed distribution, this is VaRk1×α, so

that we apply a constraint P ∗(X > 100) = k1α and, of course, P ∗(X ≤ 100) = 1 − k1α.

According to Table 2, the corresponding distortion function must satisfy g′(u) = k1 or k2

as u ≤ α or u > α. Hence, the transformed distribution is obtained from a piecewise linear

distortion function, namely,

S∗(x) =

k1S(x) if S(x) ≤ α,

1 + k2(S(x)− 1) if S(x) > α,

where k2 = 1−k1α
1−α .

Consider one important special case, in which k1 = 1/α and so the transformed measure

has all of its mass in the right tail, X ≥ 100. In this case, the distortion function is

g(u) = min
(u
α
, 1
)

for 0 < α < 1, u ∈ [0, 1]. (32)

The corresponding risk measure is Hg(X) = E(X|X > 100) and is known as the conditional

tail expectation (CTE) or tail-VaR, defined as E[X|X > F−1(1 − α)]. Interestingly, one

obtains the risk-measure CTE by minimizing the relative entropy between the distorted and

original distributions subject to the constraint that the entire distribution is supported in

the tail {x;x > VaRα}. It is easy to show that CTE is coherent, as its defining distortion

function is concave. Furthermore, it is well-known that VaR is not coherent, as it does not

satisfy the subadditivity property (Artzner et al. 1999).

6.3 Normal distortion

Through the inverse probability transform, the random variable, X, is mapped to a normal

random variable whose mean is then shifted by, µ. This distortion is a special case of the

exponential family of distortions discussed in Reesor (2001, section 4.5). Specifically, we

have

g(u) = Φ
[
Φ−1(u)− µ

]
,
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where Φ is the standard normal cdf. The link between relative entropy and distortion gives

c = µ. From the symmetric property of the normal distribution, the dual distortion is

ḡ(u) = 1− g(1− u) = Φ
[
Φ−1(u) + µ

]
,

which is just the inverse of g. The normal distortion is concave if and only if µ ≤ 0; therefore,

ρg is coherent if and only if this condition holds (Corollary 11).

The use of the normal distortion to price financial and insurance risks through the

Choquet integral was proposed by Wang (2000). He shows that this transform has some

desirable properties. In particular, this distortion is able to reproduce and generalize the

capital asset pricing model (CAPM), to reproduce the Black-Scholes formula, and provides

a symmetric treatment of assets and liabilities (owing to the symmetric nature of the normal

density function). This distortion has also been used in the structural approach to credit-

risk modelling as a mapping between actual and risk-neutral default probabilities (Duffie

and Singleton 2002).

6.4 Generalized Esscher distortion

In a relative entropy optimization problem, it is sometimes more natural to think about

imposing moment constraints on the random variable, X, than on functions of the cdf and

ddf. We can write any function hi as

hi(x) = hi
(
S−(S(x))

)
.

This explicitly shows that the moment constraints in this example can be written as

Ef̃
[
h̄i(S(X))

]
= ci,

where h̄i = hi ◦ S−. The derivative of the distortion function is

g′(u) = exp

{
p∑
i=1

λihi
(
S−(u)

)
− ψ(λ)

}
,

which, upon substituting u = S(x), becomes

g′(S(x)) = exp

{
p∑
i=1

λihi(x)− ψ(λ)

}
.
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When p = 1, this is the generalized Esscher transform given in Kamps (1998). That

is, the distribution obtained through a generalized Esscher transform is exactly the mini-

mum relative entropy distribution obtained by constraining the expected value of h1(X).

If h1(u) = u, then the deformed distribution is the one obtained by the usual Esscher

transform.

From an asset pricing perspective, arbitrage considerations typically prescribe the mean

of the underlying asset, which gives h1(u) = u and p = 1. In addition to the constraint on

the mean, suppose we wish to impose a calibrating volatility on the underlying asset. This

is accomplished with h1(u) = u, h2(u) = u2, and p = 2. These are exactly the constraints

used in the option pricing models developed in Reesor (2001, chapter 1).

In this example, we will not discuss coherence of the related distorted risk measure, as

the distortion function depends very much on the undistorted distribution of X. Using

only one moment constraint (p = 1), the distorted risk measure, ρg, takes the form of some

common premium principles. Namely, ρg is

(i) the net premium principle when h1(u) = 1,

(ii) a modified variance principle when h1(u) = lnu, and

(iii) the Esscher premium principle when h1(u) = u (Kamps 1998).

Kamps points out that when h1 corresponds to a ddf, the resulting ρg has a certain renewal-

theoretic interpretation.

7 Conclusion

This paper has established a relationship between relative entropy and distortion, two com-

monly used methods for reweighting probability distributions. We have shown that moment

constraints of functions of the cumulative and decumulative distribution functions intro-

duce specific terms into the implied distortion function. We have provided some results

of the relationship between the features of a distortion function and the properties of the

corresponding Choquet integral.

The Choquet integral is a natural tool for risk measurement. Risk preferences are con-

tained in the distortion function or in the equivalent moment constraints in the relative
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entropy framework. The link to relative entropy provides additional intuition behind the

many premium principles and risk measures that have a Choquet integral representation.

Our results permit verification of whether a risk measure with a Choquet integral repre-

sentation is coherent. In addition, relative entropy provides an easy way of constructing

new coherent risk measures by prescribing new sets of moment constraints. These ideas are

evident in the examples that were discussed in section 6.

The link between relative entropy and distortion opens many possible avenues for future

research. For example, it may prove interesting to apply concepts from extreme value

theory in the construction of risk measures. A set of constraints may be imposed such

that the deformed distribution has the same mean excess function as the generalized Pareto

distribution (GPD). The GPD is an integral tool in extreme value theory, because it appears

as the limit distribution of scaled excesses over high thresholds (Embrechts, Klüppelberg,

and Mikosch 1997).

The Choquet integral and distortion are central to a dual theory of utility by Yaari

(1987) and another by Schmeidler (1989). The established link provides further intuition

to this dual theory. Furthermore, in the usual expected utility theory, a utility function

contains attitudes towards risk, and maximizing expected utility in this framework is also

equivalent to risk minimization. Using the relation between relative entropy and distortion

developed in this paper, it will be interesting to establish further unifying results connecting

risk minimization, utility theory, and the dual utility theory.

The connection between relative entropy and distortion gives a new perspective to the

growing body of literature that applies the Choquet integral to problems in finance, risk

management, and insurance.
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