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Abstract

This paper applies the hybrid dynamic general-equilibrium, vector autoregressive (DGE-VA

model developed by Ireland (1999) to Canadian time series. It presents the first Canadian

evidence that a hybrid DGE-VAR model may have better out-of-sample forecasting accuracy

a simple, structure-free VAR model. The evidence suggests that estimated DGE models ha

potential to add good forecasting ability to their natural strength of adding structure to an

economic model.

JEL classification: E32, E37
Bank classification: Business fluctuations and cycles; Economic models

Résumé

Dans cette étude, les auteurs appliquent aux séries chronologiques canadiennes le modèle

dynamique d’équilibre général et vectoriel autorégressif conçu par Ireland (l999). Les résul

montrent pour la première fois, dans le cas du Canada, que l’exactitude des prévisions hor

échantillon peut être supérieure dans un modèle hybride de ce type que dans un modèle V

simple sans structure. Les observations laissent croire que les modèles dynamiques d’équ

général estimés peuvent allier un bon pouvoir de prévision à leur capacité naturelle de stru

un modèle économique.

Classification JEL : E32, E37
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1. Introduction

Ireland (1999) develops a hybrid dynamic general-equilibrium, vector autoregressive
(DGE-VAR) model. The model is a hybrid because it supplements a one-sector, one-
shock real-business-cycle (RBC) model with three non-structural sources of fluctu-
ations. Ireland presents evidence that the parameters related to the structural part
of the model are stable, whereas those originating in its non-structural part are not.
Further, he shows that the model’s out-of-sample forecasting ability is superior to
that of a simple, reduced-form VAR.

In this paper, we apply Ireland’s analysis to Canadian data. We replicate his
results on the stability of the structural parameters and we report the first Cana-
dian evidence that a hybrid model can outperform a simple, reduced-form VAR in
out-of-sample forecasting. Our results thus support the view that macroeconomic
models built on DGE foundations, along with their natural strength in interpreting
macroeconomic data in terms of stable, structural features—preferences, technology,
and optimization—have the potential to deliver good forecasting ability.

The strategy of estimating a DGE-based model by maximum likelihood, rather
than by calibrating it, agrees with a rapidly developing literature that chooses to an-
chor the quantitative expression of DGE models within standard econometrics.1 We
believe that using such techniques to confront the model with the data improves the
identification of the structural parameters, facilitates comparisons with alternative
models, and extends the reach of the DGE methodology.

Ireland’s (1999) paper and our paper contribute to this literature by assessing
the out-of-sample forecasting ability of models based on DGE methodology. This
ability has been examined before, within the Bayesian frameworks of Ingram and
Whiteman (1994) and DeJong, Ingram, and Whiteman (2000), and found to be
surprisingly good, relative to popular alternatives.2 Such results are similar to ours,
which we obtain using a very different econometric strategy. Together, the results
suggest that good forecasting performance might be a robust feature of DGE-based
models.

By relying partly on non-structural sources of fluctuations to capture the dy-
namics of the time series examined, we chose not to attempt a complete structural
characterization of macroeconomic data. This does not mean that such attempts
should not be undertaken. Rather, it recognizes that central banks need good fore-
casting models for policy analysis in the present as well as continuing research to
build the models of the future. Our strategy suggests that a model where structural
and non-structural elements co-exist might constitute, at a given time, the best

1See Leeper and Sims (1994), McGrattan, Rogerson, and Wright (1997), Ireland (1997, 2001a,b),
Kim (2000), and Dib (2001, 2002).

2In a related paper, Altig, Carlstrom, and Lansing (1995) compare the out-of-sample fit of a
calibrated DGE model with those of two alternatives: a reduced-form VAR and the White Book
projections.
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policy model.

This paper is organized as follows. Section 2 reviews the one-sector, one-shock
RBC model and its first-order, approximate solution. Section 3 describes the proce-
dure used to estimate the model. This procedure, suggested by Sargent (1989), uses
the Kalman filter to recursively construct the model’s likelihood. It is at this stage
that non-structural sources of fluctuations are added to the original RBC structure.
Section 4 describes the results on estimation, on the stability of the parameters,
and on the out-of-sample forecasting accuracy of the model. Section 5 discusses
the results. We conjecture that the parsimony inherent in the structural model
may be related to its good relative forecasting accuracy. We also propose different
dimensions along which future work could broaden the results described here.

2. The Model

2.1 The one-sector, one-shock RBC model

Households seek to maximize expected, discounted lifetime utility, subject to a se-
quence of budget constraints.3 The optimization problem is the following:

max
{ct+i,nt+i,kt+1+i}∞i=0

Et

∞∑
i=0

βi(ln(ct+i) + ψ(1 − nt+i)), (1)

subject to:
ct + kt+1 − (1 − δ)kt ≤ rtkt + wtnt, ∀t, (2)

where ct and nt denote consumption and hours worked, respectively, while r t and
w t denote the rental rates on capital and labour. In addition, the discount factor
satisfies 0 < β < 1; the weight on leisure, ψ, is greater than 0; the depreciation rate
satisfies 0 < δ < 1; and the Lagrangian multiplier of the budget constraint is λt.

The first-order conditions with respect to ct, nt, and kt+1 that result from this
optimization problem are as follows:

1/ct = λt; (3)

ψ = λtwt; (4)

λt = β Et [λt+1(rt+1 + 1 − δ)] . (5)

3The exposition of the standard RBC model presented here is brief. Moran (2002) provides
additional details about the model’s derivation and the first-order, approximate solution method
used most often to characterize its equilibrium.
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Firms operate the economy’s technology and produce final output, yt. They are
constrained by the familiar constant-return-to-scale (CRS) production function:

yt = F (kt, nt) = Atkt
α (ηtnt)

1−α
, 0 < α < 1, (6)

where η represents deterministic technological improvements and At expresses tran-
sitory technology shocks around that trend.4 At evolves according to the following
AR(1) process:

ln(At) = (1 − ρ)ln(A) + ρln(At−1) + ξt, ξt ∼ N(0, σξ), (7)

where A denotes the long-run-mean, ρ(< 1) determines the persistence, and ξt de-
notes a (serially uncorrelated) innovation normally distributed with mean zero and
standard deviation σξ.

Firms equate the marginal products of labour and capital to their respective
rental rates, so that:

(1 − α)Atkt
αηt(1−α)n−α

t = wt; (8)

αAtk
α−1
t (ηtnt)

1−α
= rt. (9)

Using these two equations to eliminate wt and rt from the households’ first-order
conditions and from the budget constraint, we can describe the equilibrium of this
model with the following five equations and five unknowns, yt, ct, nt, kt, and λt:

1/ct = λt; (10)

ψ = λt(1 − α)Atkt
αηt(1−α)n−α

t ; (11)

λt = β Et

[
λt+1(αAt+1kt+1

α−1 (ηt+1nt+1)
1−α

+ 1 − δ)
]
; (12)

ct + kt+1 − (1 − δ)kt = yt; (13)

yt = Atkt
α (ηtnt)

1−α
. (14)

These equations depend on the values of eight structural parameters describing
preferences and technology: β, δ, ψ, α, η, A, ρ, and σξ.

4The separation of technology into a deterministic trend, η, and a stationary shock, At, implies
that output, consumption, and investment are also stationary around a linear trend. This assump-
tion contrasts with results from the empirical literature, suggesting that many economic time series
can be well characterized by integrated processes. See section 5 for an additional discussion.
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2.2 Solving the structural model

For given values of the eight parameters, the model can be solved using a first-order
approximation around the non-stochastic steady-state values. The first step in such
a solution is thus to compute steady-state values of the five variables. This is done by
eliminating all time subscripts from equations (10) to (14), fixing At to its long-run
mean, A, and solving the five equations in five unknowns.5

Next, a first-order Taylor approximation of the five equations (plus equation (7),
which describes the evolution of the productivity shock, At) around the steady state
is computed. Each equation is thus rewritten in a linearized form, with variables now
expressed as deviations from their steady-state values. For example, the linearized
version of (10) is:

λ̂t + ĉt = 0, (15)

where ̂ expresses the percentage deviation of the variable from its steady-state
value.6

Once the six equations are linearized, algorithms presented in Blanchard and
Kahn (1980), King, Plosser, and Rebelo (1988a), or King and Watson (1998) are
used to transform the forward-looking system into one expressing all variables as
a linear function of state (predetermined) variables and of the innovation to the
exogenous shocks. In general terms, the solution has the following form:

st+1= M1st+M2εt+1;
f t= Πst,

(16)

where st represents the state variables of the system, εt+1 is the innovation to the
exogenous shocks, and ft represents all other endogenous (flow) variables. In our
example, we would have st = (k̂t, Ât), εt+1 = ξt+1, and f t = (ŷt, ĉt, n̂t, λ̂t)

′.
The matrices M1,M2, and Π are known (non-linear) functions of the structural

parameters of the economy. That is, once values for these parameters have been
established, the matrices and the system in (16) represent a complete solution of
the model. One can then proceed to any simulation desired, tracing out, for example,
impulse responses following a 1 per cent shock to ξt.

A calibration strategy for the model would thus proceed by assigning values to
these parameters. Such values could be taken from other studies, chosen so that
the steady-state version of the model replicates long-term averages in the data, or
even be arbitrary, if one were interested in exploring the sensitivity of the solution
to those values.

5In addition, the four variables that exhibit growth in the steady state (yt, ct, kt, and λt) must
first be deflated to ensure the existence of such a steady state. Note that the assumption of trend
stationarity makes the detrending straightforward. See Moran (2002) for further details.

6We thus have ĉt = (ct−css)
css

. Ireland uses a slightly different notation, in which the deviation
of consumption from its steady-state value would be noted as ĉt = ln(ct/css).
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3. Estimation

3.1 Estimation procedure

The estimation of the model seeks to assign values to the parameters by confronting
the solution in (16) with the data. Anticipating the fact that the estimation will
be conducted using a state-space framework, the first step in the estimation pro-
cedure is to interpret the two equations of (16). The first equation (now labelled
the “state” equation) describes the evolution of unobserved state variables of the
economy. The second equation (now labelled the “observation” equation) describes
how the observed flow variables depend only on the values of the state variables.

The second step is to realize that not all variables in the vector ft may actually
be observed. In our case, while we do have data for output, consumption, and hours,
we obviously do not have data on λ̂t, the Lagrangian multiplier. We need to redefine
the vector ft so that it contains only variables for which we have data. This, in turn,
requires that we drop the lines of the matrices Π that correspond with the dropped
variable(s) in ft. Our redefined vector now reads f∗t = (ŷt, ĉt, n̂t)

′, while the redefined
matrix Π∗ consists of the first three lines of Π.7

If one of the structural parameters appears only in the line of Π that is dropped,
the econometric model will not be able to estimate that parameter. Even if the
deleted line of Π does not preclude the estimation of a parameter, it might seriously
diminish the efficiency of the estimation.

To this point the solution exhibits only one type of shock, (ξt) for three ob-
served variables (ŷt, ĉt, and n̂t), and as such the econometric model contains linear
combinations of the variables that hold exactly. Confronted with data where these
combinations do not hold, an estimation procedure based on maximum likelihood
would break down.

To circumvent this singularity issue, consider augmenting the model in (16) by
adding serially correlated residuals, as in the following:

st+1 = M1st + M2εt+1;
f∗t = Π∗st+ut;

ut+1 = Dut + νt+1, νt+1 ∼ N(0,V).
(17)

Alternative interpretations can be given to the residuals ut. Sargent (1989) and
McGrattan, Rogerson, and Wright (1997) view them as measurement errors in the
endogenous variables ft. Such an interpretation naturally leads to the assumption

7We might also have data on some of the state variables, although they are assumed to be
unobservable by the state-space framework. We could have, for example, constructed a quarterly
series for physical capital (kt). Such a situation could be accommodated by adding a variable to
the vector ft and another line to Π. We thus would have f∗t = (ŷt, ĉt, n̂t, k̂t)′ and the vector [1, 0]
added to the bottom of the matrix Π, so that the equality in the observation equation is preserved.
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that the matrices D and V are diagonal. It also shapes the view that these errors
are not an interesting (economically) source of the dynamics present in the data.

Conversely, Ireland (1999) interprets the errors ut as capturing all data dynamics
not explained by the structural model. He thus views ut not as a noise process
merely enabling the estimation to proceed, but as a bona fide part of the model,
contributing substantially to its stochastic structure.8

One interpretation of Ireland’s view could be that the residuals ut are a stand-in
for shocks arising from the demand side of the economy (monetary policy and fiscal
shocks), and not modelled within the RBC framework. Alternatively, they could
be interpreted as imperfections in the optimizing process underlying solution (16),
which decay at rates governed by the matrix D.9

Ireland’s modelling strategy shares some similarities with the procedure used to
build the Quarterly Projection Model (QPM), in which an optimizing core struc-
ture is supplemented by estimated dynamic elements, enabling the model to better
match data.10 Ireland’s approach is distinguished by the separation of the struc-
tural and the non-structural parts of the model and the simultaneous and systematic
estimation of the complete model using standard econometric procedures.

To estimate (17), rewrite it as follows:[
st+1

ut+1

]
=

[
M1 0
0 D

] [
st

ut

]
+

[
M2 0
0 I

] [
εt+1

νt+1

]
f∗t =

[
Π∗ I

] [
st

ut

]
.

(18)

This structure has the form of a state-space representation (see Hamilton 1994,
chapter 13), with the state equation on the top and the observation equation on
the bottom (recall that the vector f∗t now contains only ŷt, ĉt, and n̂t). From this
representation, the Kalman filter can be used to evaluate the log-likelihood for any
observed sample {ft}T

t=1.
11 The following estimation strategy is used. First, establish

a starting guess for the 23 parameters (8 structural and 15 non-structural, of which
9 are in matrix D and 6 are in matrix V).12 Second, use Hamilton’s method to

8The lag length associated with the data generating process (DGP) for the ut variables could
be chosen, in principle, according to a likelihood ratio test, rather than being imposed as 1.

9Another estimation strategy that circumvents the singularity problem consists of introducing
additional structural shocks in the model. Such shocks augment the dimension of the vector εt until
it includes as many structural shocks as there are observed variables. Examples of this estimation
strategy and its implications are given in Ireland (1997), Kim (2000), and Dib (2001, 2002).

10The QPM is the Bank’s main policy model. Black et al. (1994) and Coletti et al. (1996)
describe the model in detail.

11Appendix A briefly reviews the method by which the filter is used to evaluate the likelihood.
12The matrices D and V can be written as:

D =


 dyy dyc dyh

dcy dcc dch

dhy dhc dhh


and V =


 υ2

y υyc υyh

υyc υ2
c υch

υyh υch υ2
h


 .
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evaluate the value of the log-likelihood at those guesses. Third, update each guess
in a likely direction of increase in the log-likelihood.13

As in Ireland (1999), preliminary estimations report unreasonably low values
for β and high values for δ. To retain a plausible structural interpretation, these
parameters should, respectively, be close to 1 and close to 0. We thus impose
values (standard in the calibration literature) of 0.99 for β and 0.025 for δ, before
proceeding to estimate the remaining 21 parameters.14

3.2 The data

All the data used for the empirical estimation of the model are taken from Statistics
Canada’s National Accounts. The series are quarterly and run from 1964Q1 through
2001Q1.

Consumption, Ct, is defined as real personal expenditures on consumer goods
and services. Investment, It, is defined as real investment (business investment in
machinery, equipment, non-residential construction, and residential construction).
Output, Yt, is defined as the sum of Ct and It.

15 A series for hours worked, Ht, is
obtained by multiplying average hours per week by total employment (summing the
monthly series for average hours to a quarterly frequency). Consumption, invest-
ment, output, and hours worked are then converted into per-capita terms, using a
population of age 15 and over.

4. Results

4.1 A benchmark for comparison: a two-lag, reduced-form
VAR

Before reporting on the estimation results of our hybrid model, it is useful to intro-
duce a reduced-form model as a benchmark. The benchmark will help us to assess
the within-sample and out-of-sample performances of our model.

13We use two types of minimization routine to suggest such directions: the simplex, which does
not use derivatives, and the quasi-Newton, which does. We repeat all of our numerical experiments
with different starting values to identify global optima. Numerical computations are conducted
using Matlab.

14This weakness of our results is not always encountered by researchers estimating DGE models.
Both Ireland (2001a) and Kim (2000) report estimates of β comprised between 0.99 and 1. The
presence of these calibrated, rather than estimated, parameters reinforces the sense in which the
hybrid model considered in this paper is a parsimonious, restricted model, relative to benchmark
reduced-form VARs. See section 5 for further discussion.

15Since the model abstracts from government activities and expenditures, such a definition of
output maximizes the correspondence between the model and data aggregates.
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The benchmark is a two-lag VAR in the log-levels of output, consumption, and
hours. A constant and a trend are added to the estimation of each equation: the
reduced-form model thus embodies the same hypothesis of trend stationarity that
is at the base of the hybrid model. The equation for output, for example, has the
following form:

yt = α + βt+ δ11yt−1 + δ12yt−2 + δ21ct−1 + δ22ct−2 + δ31ht−1 + δ32ht−2 + et. (19)

The lag-length is chosen by likelihood ratio tests that point to the data preferring
the two-lag specification over alternatives with one, three, or four lags. Ljung-
Box tests for serial correlation of up to four quarters in the residuals indicate that
such correlation, present when only one lag is used, disappears once the two-lag
specification is adopted. Augmented Dickey-Fuller (ADF) tests indicate that the
residuals for the three equations are I(0). The likelihood attained by this model is
1519.47.

A difference-stationary specification of the reduced-form VAR (with or without
cointegration) would have been a natural alternative to explore. We do not ex-
plore it, to confront the hybrid model with a reduced-form benchmark that rests
on the same hypothesis of trend stationarity. In future work, we plan to explore
the consequences of assuming a difference-stationary representation, by imposing it
simultaneously on the hybrid and the reduced-form model. See section 5.2 for a
further discussion.

4.2 Full-sample estimation

Let us now examine the results from the estimation of the hybrid model. Table 1
reports our estimates of the six structural parameters (ψ, α, µ, A, ρ, and σξ) and of
the 15 non-structural ones. It also reports standard errors for those estimates as
well as their t-statistics.

The structural estimates have economically meaningful values and are highly
significant at conventional confidence levels. This high significance mirrors that
reported in Ireland (1999). To some extent, it also appears in Dib (2001, 2002),
using Canadian data. The estimate η = 1.0038 implies an annualized, steady-state
growth rate of real, per-capita output of 1.5 per cent. The capital share (α) is
estimated to be close to 30 per cent, a value similar to those used in the calibration
literature. Our estimates of the persistence of technology shocks (ρ = 0.9860) and
the standard deviation of their innovations (σξ = 0.0054) are close to those reported
by Ireland and those used in the calibration literature. They differ slightly, however,
from those reported by Dib (2001, 2002).

The second panel of Table 1, which reports the estimates of the non-structural
parameters, illustrates the importance of that portion of the model. In particu-
lar, the estimates imply that matrix D has two complex eigenvalues of modulus

8



0.9208 and one, real-valued, equal to 0.5571. These high eigenvalues are the non-
structural counterparts to the high persistence of the technology shock. In addition,
two standard-deviation estimates (those associated with output, νy, and consump-
tion, νc) exceed the estimated standard deviation of the innovation to technology.
The non-structural fluctuations are thus volatile and persistent, contributing signif-
icantly to the model’s overall dynamics.16 Again, on that dimension, our results
concur with those reflecting the U.S. experience reported by Ireland.

The likelihood attained by this vector of estimates is 1489.66, which is noticeably
lower than the value reported above for the reduced-form model. Although a formal
test is not available, the data seem to prefer the reduced-form to the hybrid model.17

Table 2 reports the fraction of the k-steps-ahead forecast error variance in out-
put, consumption, investment, and hours worked that results from the technology
shocks featured in the model. Panel A of the table indicates that between a third
and a half of the forecast variance of output (around the linear trend identified
by our estimation) results from the technology shocks. Such levels of explanatory
power are lower than those commonly emphasized in the calibration and estimation
literature.18 These lower estimates suggest that domestic technology shocks are less
important in explaining fluctuations in the Canadian economy; this finding is consis-
tent with the great openness of the Canadian economy. Dib (2001), however, finds
results that agree better with Ireland’s. Panel A also shows that the forecasting
horizon at which the explanatory power of the technology shocks is lowest, from
8 to 12 quarters ahead, are those most commonly associated with business cycles.
Again, Ireland reports similar findings for the U.S. experience.19

Table 2 also reports that, as the forecast horizon increases, technology shocks
account for an increasing fraction of the forecasting variance of consumption, with
this fraction peaking at 80 per cent for the unconditional variance. By contrast, the
table also suggests that shorter forecasting horizons of investment and employment
are linked to the technology shocks. This feature is particularly striking in the case
of employment.

Another way to judge the results of the full-sample estimation consists of visu-
ally assessing the fit of the model. Figure 1 shows the in-sample residuals of the
model (labelled “hybrid”) and compares them with those arising from our bench-
mark (labelled “reduced-form”). The most striking feature of Figure 1 is that our
model does not exhibit wildly different residuals from that of the benchmark, the

16The ranking of the estimates νy, νc, and νn matches the ranking in volatility of the deviations
from linear trends of the actual data. The estimate νn is not, however, statistically different from
0.

17Likelihood ratio tests cannot be performed because the two models are not nested.
18Prescott (1986) suggests that over 70 per cent of the output variance is explained by technology

shocks. Ireland reports estimates suggesting that this figure is around 85 per cent.
19This result echoes Watson (1993), in which a spectral decomposition of the output series arising

from a simple RBC model reveals the dominance of very low and very high frequencies.
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difference in likelihoods notwithstanding.

4.3 Stability of the parameters

To test for the stability of the parameters, two subsamples of equal lengths are
employed. The first subsample runs from 1964Q1 through 1982Q3 and the second
runs from 1982Q4 through 2001Q1. This break point marks the midpoint of our
complete sample.

Table 3 reports estimates of the parameters (along with their standard errors)
for the two subsamples. The estimates for ψ, α, and A are almost identical. The
estimate of η, however, is higher in the first subsample than in the second (1.0042
rather than 1.0029). This decrease could be interpreted as a reflection of the produc-
tivity slowdown. Similarly, the first-sample estimates of ρ and σξ lie slightly above
the full-sample estimates; this situation is reversed when the second subsample is
used. This result suggests that technology shocks were slightly more volatile and
persistent before 1982. Overall, however, the changes in the estimated values of
the structural parameters from one subsample to the next appear modest. By con-
trast, the bottom panel of Table 3 indicates that the estimates for the non-structural
parameters exhibit stronger variation across the two samples. This observation sug-
gests that the structural part of the model is relatively invariant across samples,
compared with the non-structural portion.

To assess this suggestion, Table 4 reports the results of stability tests. We first
test for the stability of all 21 parameters, then for the stability of the 6 structural
ones, and then for the stability of the remaining 15 non-structural parameters.20 Ta-
ble 4 indicates that, first, we reject the null hypothesis of stability of all 21 estimated
parameters at the 1 per cent significance level. Second, we fail to reject the null
hypothesis of stability in the 6 structural parameters, at conventional significance
levels. Finally, the third test rejects the null of stability of the 15 non-structural
parameters. At a minimum, these results suggest that there is considerably less
evidence against the stability of the structural parameters than there is against the
stability of the non-structural parameters.21

20The first test is based on a likelihood-ratio argument. The statistic is LR = 2[lnL(θ1) +
lnL(θ2) − lnL(θ)] with θ1, θ2, and θ the full vectors of estimates for the first subsample, the
second subsample, and the full sample, respectively. The statistic is asymptotically distributed
as a χ2

(21). The two other tests are Wald tests where the statistic is W = (θ1
q − θ2

q)′[cov(θ1
q) +

cov(θ2)q]−1(θ1
q − θ2

q), where θ1
q and θ2

q are estimates of the subset of parameters under study,
determined using the first and second subsamples, respectively.

21We experimented with a different date for separating the two subsamples: 1979Q4. It leaves
the subsamples unbalanced in length but is appealing because it ends a decade of generally rising
inflation. While the evidence arising from the experiment was not as clear-cut as the experiment
presented in Table 4, the result that there is less evidence against the stability of the structural
parameters remained.
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4.4 Out-of-sample forecasting accuracy

We compute forecasts of the model over the period from 1985Q1 to 2001Q1. More
precisely, we first use data from 1964Q1 through 1984Q4 to estimate the model.
Once estimated, the model is used to produce forecasts 1 to 4 quarters ahead; i.e.,
forecasts for 1985Q1 to 1985Q4. Next, we add the 1985Q1 data point to the original
data set, re-estimate the model, and forecast again 1 to 4 quarters ahead; i.e., for
1985Q2 to 1986Q1. We update our estimation and forecasts in such increments
until the next-to-last data point (2000Q4) has been added to the estimation. We
thus obtain series for one-quarter-ahead forecasts (running from 1984Q4 through
2000Q4), for two-quarter-ahead forecasts (from 1984Q4 through 2000Q3), and so
on. These forecasts can then be confronted with observed data.

We also report on the predictive capability of the benchmark VAR introduced in
section 4.1. Recall that the benchmark VAR contains no structural identifications
of shocks, technology, or preferences. Tables 5 and 6 show the results. Each table
reports the forecasting performance—as measured by the root-mean-square of the
forecasting errors (RMSE)—for each model and variable, for forecasting horizons of
1 to 4 quarters. Table 5 relates to the full period for which we compare forecasts
with realized values (1985Q1 to 2001Q1), whereas Table 6 focuses on the 1990s, to
allow a separate analysis of that period.

A glance at the two tables suggests that the RMSEs for the hybrid model are
lower than those for the reduced-form benchmark. To determine whether any of the
differences are statistically significant, we use the Diebold and Mariano (1995) test
on the forecasts from the two models.22 When the test suggests that one model’s
RMSE is lower, Tables 5 and 6 signal it with a “D” superscript over the value of
the RMSE for that model.

Table 5 (forecasting the period 1985–2001) reports that the hybrid model out-
performs the reduced-form model 13 times out of 16, while in the second experiment
(Table 6, 1990–2001) it does so 11 times out of 16. The reduced-form model does not
outperform the hybrid in any of the 32 comparisons. The results thus suggest a po-
tential advantage in forecasting these series using the hybrid model. Note that in the
second experiment (covering the period 1990–2001), the RMSE of the reduced-form
model is sometimes lower than that of the hybrid model (in forecasting consump-
tion). These differences are not sufficient, however, to give the reduced-form model
an advantage: the Diebold-Mariano statistic does not view this difference as statis-
tically significant. The somewhat weaker results in favour of the hybrid model over
the 1990s might be the result of the smaller sample size (we examine the forecasting
accuracy over 45, rather than 65, quarters). Alternatively, they could arise because
the 1990s, having a more stable monetary policy environment, are easier to forecast

22The Diebold and Mariano test assesses the null hypothesis of no difference between the RMSEs
of two competing models. It produces a statistic that, under the null, is asymptotically normally
distributed.
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using a reduced-form VAR.

Tables 5 and 6 report evidence that the hybrid model often has lower RMSEs
than the reduced-form model. One still wonders whether forecasts from the reduced-
form model contain any useful information about future realizations of the variables,
over and above that already contained in the forecasts arising from the hybrid model.
The forecast-encompassing test, originally devised by Chong and Hendry (1986), is
used to answer this question. In effect, it measures whether a combination of the
forecasts from the hybrid model and the forecasts from the reduced-form model
would improve on the forecasts from the hybrid model alone. When such is not the
case, we say that the hybrid model forecast encompasses the reduced-form model
and, in Tables 5 and 6, indicate that fact with a superscript “F” over the RMSE of
the hybrid model.23 Table 5 indicates that in 11 cases out of 16, the hybrid model
forecast encompasses the reduced-form model. In Table 6, this happens in 13 cases
out of 16. The evidence from this test reinforces the evidence obtained using the
Diebold-Mariano test and strongly suggests that the hybrid model posseses a better
out-of-sample forecasting ability than the reduced-form model.

The results described in Tables 5 and 6 are expressed visually in Figures 2 and
3, which graph the out-of-sample forecasting error of the hybrid model (labelled
“hybrid”) and the benchmark (“reduced-form”). Figure 2 shows the errors arising
from forecasting one quarter ahead while Figure 3 shows those errors arising from
the four-quarters-ahead forecasts.

The first panel in Figures 2 and 3 illustrates the case of output forecasting. Both
figures show that, for long periods in the late 1980s, the mid-1990s, and the end
of the 1990s, the hybrid model forecasts noticeably better than the benchmark. In
the cases of consumption and employment, the improvements of the hybrid over the
benchmark are not clearly visible when forecasting one quarter ahead (Figure 2),
but become noticeable in the four-quarters-ahead forecasts (Figure 3). Again, the
late 1980s and the mid-1990s stand out as periods where the hybrid model performs
better than the benchmark.

23The test is implemented by the following regression:

yt − ŷu
t = α + β(ŷs

t − ŷu
t ) + et,

where ŷu
t and ŷm

t represent the forecasts from the reduced-form and hybrid model, respectively.
The two following null hypotheses are tested: H1

0 : β = 0, and H2
0 : β = 1. Note the consequence

of either null hypothesis being true: the forecasts from one model only are sufficient to explain
realized values. If the data reject H1

0 but not H2
0 , the hybrid model is said to forecast encompass

the reduced-form model. Such a result expresses the idea that the combination of the forecasts
from both models does not perform better than those from the hybrid model alone, but does
perform better than those from the reduced-form model alone. Conversely, if it were to occur (but
it does not) that H2

0 is rejected but H1
0 is not, the reduced-form model would forecast encompass

the hybrid. The cases (Reject, Reject) and (Accept, Accept) are taken to be inconclusive. This
method of implementing the forecast-encompassing test follows Chan and Lafrance (2001), and is
slightly different from the original test proposed by Chong and Hendry (1986).
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5. Discussion

5.1 Why the hybrid model performs better: within-sample

versus out-of-sample fit

Researchers have identified several dimensions along which the empirical implica-
tions of simple RBC models are at odds with observed features of the data. For
example, Cogley and Nason (1995) show that the simple RBC model, because of
its weak internal propagation mechanism, cannot match the autocorrelation func-
tion of output or the impulse responses of Blanchard and Quah (1989). Chow and
Kwan (1998) demonstrate that the same model, once translated into a VAR in em-
ployment, investment, and productivity, implies restrictions on that VAR that are
strongly rejected by the data.

Models that extend the simple RBC structure by introducing nominal rigidities
and multiple sources of volatility, such as those in Ireland (1997) and Kim (2000), are
less at odds with the data. Nevertheless, both researchers report that the likelihood
attained by their structural models is lower than that of corresponding reduced-form
VARs.24

The hybrid model that we consider adds three non-structural shocks to the simple
RBC structure, to overcome the weak propagation mechanism singled out by Cogley
and Nason (1995). It is therefore expected to possess a good fit with the data. As
indicated above, however, the likelihood of the reduced-form model (at 1519.67) is
still noticeably higher than the one attained by the hybrid model (which stands at
1489.66).

In such a context, the evidence that structural models may display better out-
of-sample forecasting ability, reported in Ireland (1999), our paper, and elsewhere,
may seem surprising.25 Taken generally, this evidence would suggest that restricted
or parsimonious specifications (like the hybrid model), although rejected within-
sample, may often outperform unrestricted alternatives (the reduced-form model)
in out-of-sample exercises. Clements and Hendry (1998, 1999) assess the valid-
ity of this conjecture. The main trade-off discussed is that of sampling variability
(introduced in the unrestricted specification by the estimation of numerous parame-
ters) versus inconsistency (introduced in parsimonious models by imposing possibly
false restrictions). Clements and Hendry conclude that, without frequent structural
breaks, parsimony is unlikely to significantly improve forecasting ability. Conversely,
the presence of frequent structural breaks leaves open the potential for significant

24Recall that no formal likelihood tests can be performed because, in both cases, the structural
and the reduced-form models are not nested.

25As stated in the introduction, Ingram and Whiteman (1994) and DeJong, Ingram, and White-
man (2000) display such evidence. In an earlier paper, Ireland (1995) reports that, once translated
into a bivariate VAR, the simple version of the permanent income theory is rejected within-sample
but helps the model to better forecast out-of-sample.

13



improvements by imposing some restrictions (among them over-differencing) and
better estimating the deterministic elements of the model.

There is no doubt that our dataset contains several instances of structural breaks.
The results of section 4.2, where the non-structural parameters are found to have
changed significantly across two subsamples, are only one way to characterize this
evidence. Therefore, according to Clements and Hendry, our context may be one
where a restricted model, while rejected by the data within-sample, can nevertheless
outperform the benchmark in out-of-sample forecasting exercises. Furthermore, the
estimation of the deterministic trends in the hybrid model proceeds in a manner
consistent with Clements and Hendry’s prescription: the hybrid model restricts the
trend in output and consumption to be the same and the trend in hours to be
zero, while the reduced-form benchmark estimates three separate trends for these
variables.

The evidence in favour of parsimony is reinforced by conducting the following
experiment. Consider using a one-lag reduced-form VAR as the benchmark, rather
than the two-lag one used until now. Recall that such a specification is found
to be lacking by likelihood ratio tests and by evidence of serial correlation in the
residuals of the three equations. Table 7 presents the results of using this VAR as the
benchmark. First, a comparison of the lines labelled RMSE (reduced-form model)
in Tables 5 and 7 shows that, for short horizons, the RMSEs of the one-lag VAR are
larger than those of the two-lag model. As the forecasting horizon increases, however,
the instances of where the parsimonious model, the one-lag model, performs better
increase. In forecasting relatively long horizons ahead, the model that is found to
be lacking using within-sample measurements may be performing better. Further,
observe in Table 7 that while the hybrid model still dominates the reduced-form
model, the evidence is slightly weaker than it was in Table 5: the Diebold-Mariano
test indicates a stronger performance for the hybrid model in 12 cases out of 16,
rather than 13 cases out of 16, the result in Table 5.

5.2 Future research

Development of the best possible economic model is a never-ending task. A central
bank cannot wait for the perfect model to be constructed to conduct monetary
policy. It needs good forecasting models for policy analysis in the present as well.
In this context, the set-up in (17) has considerable potential as a bridge between the
theoretical and empirical traditions that cohabit within most central banks. Future
work could develop as follows.

First, expanding the structural model to include nominal variables, of obvious
interest to central banks, is not only possible but by now relatively standard. Ireland
(2001a, b) and Dib (2001, 2002), for example, include inflation and money in the
vector of flow variables, ft. In their models, the shocks affecting the inflation and
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money equations have a structural interpretation. One natural extension of their
work would be to establish the accuracy of their models in out-of-sample forecasting,
much as we do in this paper. Further, combining the forecasts arising from DGE-
based models with those issued from reduced-form models would likely improve the
forecasting ability of either type of model.26

It might be, however, that the dynamics implied by the money and inflation
shocks in Ireland (2001a, b) and Dib (2001, 2002) do not fit observed ones very
well. Were such a situation to occur, the set-up presented here, where the shocks
to the variables do not necessarily have to be given a structural interpretation that
constrains the estimation, would suggest a second area of future research. One could
add to the structural model the empirical representation of money and inflation
dynamics favoured by a central bank. As an example, the view of money as a reliable
indicator of future price pressures (embodied in the M1 vector-error-correction model
(M1-VECM) used by the Bank27) could be added and the resulting hybrid model
could become an important building block of future policy models.

Another area for future work concerns the assumption of trend stationarity that
is central to the solution of the hybrid model. Voluminous empirical literature has
shown that output and its components can be well characterized by I(1) processes.
King, Plosser, and Rebelo (1988b) show how to modify their solution algorithms
to accommodate this view within a calibrated RBC environment. Ireland (2001b)
compares the out-of-sample forecasting ability of a hybrid model based on trend-
stationary technology shocks with that of another based on difference stationary
shocks. He presents evidence that the trend-stationary environment is the more
powerful one. Future work could thus present an alternative comparison to the
environment described here, where a hybrid model based on difference-stationary
technology shocks would be compared to a benchmark VAR also specified in first
differences and possibly including cointegration. Some authors have argued that
output is also well characterized by a trend-stationary process having experienced a
few breaks in its trend (Perron 1989). It would be interesting to extend the analysis
to accommodate that view.

6. Conclusion

This paper has reported evidence that a hybrid model, in which a simple RBC model
is augmented with a non-structural vector-process of residuals, identifies stable pa-
rameters of the RBC structure and has better forecasting accuracy than a simple,

26Clements and Hendry (1998, chapter 10) discuss the idea that combining the forecasts arising
from two alternative models might lead to a better performance than using either model alone.
They also present simple combination techniques. Li and Tkacz (2001) analyze more complex
methods of combining alternative forecasts.

27See Adam and Hendry (2000) for a description of the M1-VECM.
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reduced-form VAR.

This evidence suggests that DGE models can be framed in an econometric speci-
fication that results in a strong fit with the data and good out-of-sample forecasting
ability. When coupled with their natural strength in structuring a macroeconomic
model, this conformity with the data suggests that hybrid models could be important
building blocks for future policy models at central banks.
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Table 1: Full-Sample Estimates, Standard Errors, and t-statistics

Parameter Estimate Standard error t-statistic

Structural parameters

ψ 0.0031 0.000045 69.6520
α 0.2914 0.0118 24.7072
η 1.0038 0.0005 1854.1325
A 9.4864 0.6862 13.8239
ρ 0.9860 0.0499 19.7398
σξ 0.0054 0.0018 3.0323

Non-structural parameters

dyy 0.9392 0.1293 7.2653
dyc 0.4930 0.2244 2.1964
dyh -0.4104 0.2561 -1.6021
dcy 0.0914 0.0632 1.4456
dcc 0.8660 0.0892 9.7135
dch -0.0949 0.0932 -1.0184
dhy -0.0249 0.1884 -0.1320
dhc 0.5288 0.0997 5.3063
dhh 0.5935 0.1017 5.8369
υy 0.0089 0.0017 5.1635
υc 0.0076 0.0013 5.7378
υh 0.0024 0.0039 0.6178
υyc 0.000033 0.000023 1.4824
υyh -0.000019 0.000030 -0.6474
υch -0.000002 0.000006 -0.2727
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Table 2: Forecast Variance Decomposition (Percentage of Variance
caused by Technology Shocks)

Quarters ahead Output Consumption Investment Hours worked

1 51.9213 19.9500 38.5487 83.5077
4 36.4458 27.2651 31.0333 47.1584
8 32.3095 35.2832 25.1444 31.0766
12 32.3289 41.8723 23.0418 25.0008
40 44.2223 68.1502 23.3799 18.4085
∞ 53.2078 79.0914 24.5144 18.7312
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Table 3: Two Subsamples: Estimates and Standard Errors

Parameter Estimate Standard error Estimate Standard error

Subsample 1; 64Q1-82Q3 Subsample 2; 82Q4-2001Q1

Structural parameters

ψ 0.0032 0.000040 0.0032 0.000092
α 0.2723 0.0111 0.2909 0.0195
η 1.0042 0.0008 1.0029 0.0002
A 10.6643 0.8492 10.3890 1.3290
ρ 0.9874 0.0238 0.9265 0.0446
σξ 0.0059 0.0016 0.0025 0.0005

Non-structural parameters

dyy 0.7086 0.1368 0.9884 0.1074
dyc 0.7431 0.2102 0.5694 0.3214
dyh -0.1350 0.1454 -0.5595 0.2076
dcy 0.0305 0.0667 0.1790 0.0586
dcc 0.8023 0.1629 0.7148 0.2065
dch -0.0669 0.0748 -0.0610 0.1233
dhy -0.1239 0.1024 -0.0228 0.0746
dhc 0.5746 0.1625 0.6038 0.1256
dhh 0.8221 0.1151 0.4423 0.1030
υy 0.0090 0.0026 0.0095 0.0011
υc 0.0091 0.0013 0.0061 0.0005
υh 0.0030 0.0030 0.0025 0.0011
υyc 0.000052 0.000026 0.000031 0.000007
υyh -0.000023 0.000024 -0.000009 0.000006
υch -0.000005 0.000011 0.000008 0.0000004
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Table 4: Two Subsamples: Tests for Parameter Stability

Stability of all 21 estimated parameters: Test statistic
95% confidence interval: 10.3-35.5 55.4071
99% confidence interval: 8.0-41.4

Stability of the 6 structural parameters:
95% confidence interval: 1.24-14.4 13.7242
99% confidence interval: 0.7-18.5

Stability of the remaining 15 parameters:
95% confidence interval: 6.26-27.5 32.0013
99% confidence interval: 4.6-32.8
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Table 5: Forecasting Accuracy: Comparison of the Structural Model
with a Two-Lag, Reduced-Form VAR, 1985Q1-2001Q1

Quarters ahead 1 2 3 4

Panel A: Output
RMSE hybrid model 1.11622D,F 1.80975D,F 2.47052D,F 3.06950D,F

RMSE reduced-form model 1.22660 2.24965 3.31399 4.25331
Panel B: Consumption
RMSE hybrid model 0.67731F 0.95901D 1.23302D 1.58780D

RMSE reduced-form model 0.71490 1.15446 1.63320 2.16990
Panel C: Investment
RMSE hybrid model 4.33331F 6.34281F 8.29900D,F 9.87157D,F

RMSE reduced-form model 4.50063 7.17825 10.07824 12.41626
Panel D: Hours worked
RMSE hybrid model 0.52833D,F 0.82621D,F 1.15416D 1.43775D

RMSE reduced-form model 0.58010 1.02618 1.61342 2.17836

Notes:

Superscript D signals that the model performs better at the 5 per cent significance
level according to the Diebold and Mariano test.

Superscript F signals that the model performs better at the 5 per cent significance
level according to the forecast-encompassing test.
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Table 6: Forecasting Accuracy: Comparison of the Structural Model
with a Two-Lag, Reduced-Form VAR, 1990Q1-2001Q1

Quarters ahead 1 2 3 4

Panel A: Output
RMSE hybrid model 1.14328D,F 1.86682D,F 2.56218D,F 3.15684D,F

RMSE reduced-form model 1.31746 2.35840 3.39280 4.23789
Panel B: Consumption
RMSE hybrid model 0.71129 0.99388F 1.32742F 1.70904F

RMSE reduced-form model 0.64525 0.93417 1.30660 1.74553
Panel C: Investment
RMSE hybrid model 4.52747F 6.63148D,F 8.68483D,F 10.25775D,F

RMSE reduced-form model 4.99117 8.02066 11.17249 13.45428
Panel D: Hours worked
RMSE hybrid model 0.54691D,F 0.83699D,F 1.16836D 1.44166D

RMSE reduced-form model 0.60755 0.99681 1.52713 1.99167

Notes:

Superscript D signals that the model performs better at the 5 per cent significance
level according to the Diebold and Mariano test.

Superscript F signals that the model performs better at the 5 per cent significance
level according to the forecast-encompassing test.
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Table 7: Forecasting Accuracy: Comparison of the Structural Model
with a One-Lag, Reduced-Form VAR, 1985Q1-2001Q1

Quarters ahead 1 2 3 4

Panel A: Output
RMSE hybrid model 1.11622D,F 1.80975D,F 2.47052D 3.06950D

RMSE reduced-form model 1.35566 2.29463 3.15159 3.88320
Panel B: Consumption
RMSE hybrid model 0.67731F 0.95901F 1.23302 1.58780
RMSE reduced-form model 0.71918 1.09978 1.46889 1.89112
Panel C: Investment
RMSE hybrid model 4.33331D,F 6.34281D,F 8.29900D,F 9.87157D,F

RMSE reduced-form model 5.06337 7.75275 10.11258 11.96880
Panel D: Hours worked
RMSE hybrid model 0.52833D,F 0.82621D,F 1.15416D,F 1.43775D

RMSE reduced-form model 0.69454 1.22180 1.75604 2.27218

Notes:

Superscript D signals that the model performs better at the 5 per cent significance
level according to the Diebold and Mariano test.

Superscript F signals that the model performs better at the 5 per cent significance
level according to the forecast-encompassing test.
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Figure 1: In-Sample Forecasting Errors
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Figure 2: Out-of–Sample Forecasting Errors, 1 Quarter Ahead
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Figure 3: Out-of–Sample Forecasting Errors, 4 Quarters Ahead
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Appendix A: Computing the Log-Likelihood of the

Model using the Kalman Filter: A Brief Overview

Recall our empirical model from (18):[
st+1

ut+1

]
=

[
M1 0
0 D

] [
st

ut

]
+

[
M2 0
0 I

] [
εt+1

νt+1

]
ft =

[
Π I

] [
st

ut

]
.

(A.1)

Compare this system with the one described in Hamilton’s (1993, chapter 13)
discussion of state space models and the Kalman filter:

ξt+1 = F · ξt + vt+1;

yt = A′ · xt + H′ · ξt + wt;

E(vtv
′
t) = Q;

E(wtw
′
t) = R.

The equivalence between the two systems is established by defining yt = ft,
xt = 0, ξt = [s′t u′

t]
′, wt = 0, vt = [M2ε

′
t ν

′
t]
′ as well as the following matrices:

A = 0; H =
[

Π I
]
; F =

[
M1 0
0 D

]
; Q =

[
σ2

εM
′
2M2 0

0 V

]
;R = 0.

The Kalman filter is used to compute the best forecast of the unobserved state,
ξt, conditional on information available at time t-1. Denote this forecast by ξ̂t|t−1.
Further, denote the MSE of this forecast by Pt|t−1.

28 Conditional on starting values
ξ̂1|0 and P1|0, the following recursive structure describing the evolution of ξ̂t+1|t and
Pt+1|t emerges:

Kt = FPt|t−1H(H′Pt|t−1H)−1; (A.2)

ξ̂t+1|t = Fξ̂t|t−1 + Kt(yt − H′ξ̂t|t−1); (A.3)

Pt+1|t = (F − KtH
′)Pt|t−1(F

′ − HK
′
t) + Q. (A.4)

The intuition behind this updating sequence is that, at each step, the econome-
trician uses the observed forecasting errors (yt − H′ · ξ̂t|t−1) and knowledge of the
parametric form of the system to update the best estimate of the unobserved states,
ξt. The mechanics of this updating takes the form of linear projection and is detailed
in Hamilton.

28So that Pt|t−1 = Et−1 [(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)′].
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Under the assumption that the errors are normally distributed, the conditional
likelihood of yt is normal, and given by:

f(yt|It−1, θ) = (2π)−0.5n|H′Pt|t−1H|−0.5exp
[
(yt − H′ · ξ̂t|t−1)

′(H′Pt|t−1H)−1(yt − H′ · ξ̂t|t−1)
]
,

(A.5)
where the likelihood is indexed by θ, the vector of parameters, to remind the reader
that the matrices F,H,Q,Kt, and Pt|t−1 are all functions of this vector. Summing
this sequence of conditional likelihoods gives the log-likelihood for the complete
sample Yt:

logL(Yt|θ) =

T∑
t=0

logf(yt|It−1, θ). (A.6)

This expression is maximized with respect to θ to deliver the maximum-likelihood
estimate of the model. Note that we impose the presence of non-explosive roots in
both matrices M1 and Π by assigning a very low value to the likelihood when the
algorithm tries values of the parameter vector that imply such explosive roots.
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