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Abstract

This paper summarizes the results of recent research evaluating the Bank of Canada’s Qu

Projection Model (QPM). Because QPM consists of a steady-state model and a dynamic m

our evaluation work consists of two parts.

The first part assesses the calibration of QPM’s core steady-state using a variant of Canov

(1994, 1995) Monte Carlo approach. Using parameter values drawn from prior distributions

assess QPM’s sensitivity to various plausible parameter values. Our approach differs some

from the recent literature in that it specifically takes into account the uncertainty that surrou

the estimates of the steady-state values we are trying to evaluate. Instead of attempting to 

exactly the desired properties of the data, we calculate confidence intervals around the me

the variable we wish to match, subsequently discarding parameterizations that result in sim

data falling outside this interval.

The second part of the evaluation uses artificial data, generated stochastically with QPM, t

the dynamic model’s ability to replicate key historical moments. Autocorrelations, reduced-

regressions, and temporal bivariate correlations are used to compare historical data with d

produced by QPM. We also assess the sensitivity of our results to the structure of the stoch

shocks and the specification of the monetary policy rule.

The results of the two evaluations reveal some strengths and weaknesses in the model. Fo

example, while most of the parameter calibrations in the steady-state model appear reason

there are some parameters for which other values may be more appropriate. Similarly, whi

dynamic model can replicate most of the key historical moments, some work is required to

develop the linkages between foreign and domestic variables.

JEL classification: C52, E17, E30, E37
Bank classification: Economic models
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Résumé

Les auteurs exposent les résultats des recherches qu’ils ont menées récemment sur le Mo

trimestriel de prévision (MTP) de la Banque du Canada. Comme le MTP se compose d’un m

de régime permanent et d’un modèle dynamique, son évaluation se présente en deux vole

Dans le premier, les auteurs évaluent l’étalonnage du régime permanent de base du MTP 

moyen d’une variante de la méthode de Monte-Carlo utilisée par Canova (1994 et 1995). À

de valeurs tirées de lois de probabilité a priori, ils estiment la sensibilité du MTP à diverses

valeurs paramétriques plausibles. Leur méthode diffère quelque peu de celle employée da

études récentes, en ce sens qu’elle tient compte spécifiquement de l’incertitude qui entour

estimations des paramètres de régime permanent qu’ils tentent d’évaluer. Plutôt que d’ess

reproduire exactement les propriétés souhaitées des variables, les auteurs calculent des int

de confiance autour de la moyenne de la variable qu’ils désirent reproduire, pour ensuite éli

les valeurs des paramètres qui font déborder les données simulées de cet intervalle.

Dans le second volet de leur évaluation, les auteurs s’appuient sur des données artificielle

générées de manière stochastique à l’aide du MTP, pour tester la capacité du modèle dynam

reproduire des moments historiques clés. Ils se servent d’autocorrélations, de régressions à

réduite et de corrélations temporelles bivariées pour comparer les données historiques ave

données produites au moyen du MTP. Ils évaluent en outre la sensibilité de leurs résultats 

structure des chocs stochastiques et à la formulation de la règle de politique monétaire.

Les deux évaluations font ressortir certains points forts et certaines faiblesses du modèle. 

exemple, bien que l’étalonnage de la plupart des paramètres semble raisonnable dans le mo

régime permanent, des valeurs plus adéquates pourraient être affectées aux paramètres d

certains cas. De même, si le modèle dynamique peut reproduire la plupart des moments

historiques clés, les liens entre les variables intérieures et étrangères méritent d’être étoffé

Classification JEL : C52, E17, E30, E37
Classification de la Banque : Modèles économiques
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1. Introduction

Dynamic general-equilibrium models have become the standard method for analyzing man

important economic questions, including those related to monetary policy issues. Following

influential work of Lucas (1976) and Kydland and Prescott (1982), many economists starte

moving away from reduced-form models towards dynamic general-equilibrium models to ana

different economic issues. The internal consistency of dynamic general-equilibrium models

which lends itself nicely to examining economic problems, often implies, however, a layer o

complexity that makes it difficult to evaluate the performance of a model against a well-spe

metric. The evaluation of such models concerns not only their internal coherence, which fo

the researcher to work with the complete model, but also multiple sources of error when

performing the following tasks: (i) selecting the specific functional forms linking the endogen

to the exogenous variables of the model, (ii) parameterizing the structure of the model, and

specifying a distribution for the exogenous processes. Consequently, many of the reduced-

tests that have been used so effectively to evaluate 1970s-style models cannot be applied 

dynamic general-equilibrium models. Other approaches must be used.

In this paper, we merge the results of two recent lines of research to report on our attempts

evaluate the Bank of Canada’s Quarterly Projection Model (QPM). The bank developed QP

1993, and although it was evaluated before it went into production, the evaluation focused 

properties of the model in deterministic simulation. Important issues, such as confronting th

stochastic properties of real-world data using formal statistical methods or evaluating the

calibration of QPM, were not performed in a systematic manner. Improvements in computin

speed and refinements in the model-evaluation literature allow us to assess the stochastic

properties and calibration of QPM using formal metrics.

QPM is used by Bank staff to prepare economic projections and to conduct research on po

analysis. Its purpose is to bridge the gap between forecasting models and more structural 

designed solely for policy analysis. In a strict sense, therefore, QPM is distinct from the dyn

general-equilibrium model typically observed in the economic literature. QPM is calibrated 

match a wide variety of stylized facts of the Canadian economy. For example, estimated ve

autoregressions (VARs) have been used to establish short-run responses that are consiste

the historical data. Empirical results from other research have also been used in selecting 

key parameters.

QPM consists of a steady-state model (SSQPM) and a dynamic model. SSQPM, based on

Blanchard-Weil model of household behaviour, describes the determinants of long-term ch
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made by profit-maximizing firms and overlapping generations of consumers, given the polici

the fiscal and monetary authorities, all in the context of an open economy with important tie

the rest of the world. The economic behaviour of these agents, given their long-run budget

constraints and the market-clearing conditions of an open economy, determine the long-run

equilibrium or steady state to which the dynamic model converges. Black et al. (1994) prov

detailed description of SSQPM.

Dynamic QPM, in contrast, traces out the path of the economy from its initial conditions to 

steady state determined by SSQPM. The dynamic model has two key features. First, agen

forward looking. In particular, they act based on intertemporal optimization, conditioned by

expectations that are modelled as a mixture of forward-looking and backward-looking

components. The evolution of these expectations plays an important role in the overall dyn

response to innovations. In addition, adjustment of both prices and quantities is assumed t

costly (more specifically, quadratic), so there is an intrinsic component to the model’s dyna

properties.

The second key feature of the dynamic model is that it is stable and converges on the equili

defined by SSQPM. In other words, the model provides a complete and consistent solution

stocks and flows. There are three key stocks in QPM: government bonds, private sector ph

capital, and net foreign assets. The steady-state levels of these stocks are consistent with 

economic theory in SSQPM, and the necessary flows are supported by relative price move

In other words, if a shock affects a stock, then the flows will adjust such that the model mov

its steady state.

Our evaluation, like the QPM system, consists of two parts: (i) assessing the calibration of

SSQPM, and (ii) evaluating the ability of dynamic QPM to replicate important statistical

properties found in the historical data. The first part of our evaluation assesses the calibrat

SSQPM using a variant of Canova’s (1994, 1995) Monte Carlo approach. Our procedure

formalizes the choice of parameters and the evaluation of the model, and provides a system

way of conducting a sensitivity analysis of model parameters. The second part examines th

dynamic properties of QPM by focusing on artificial data generated via stochastic simulation

particular, we investigate the ability of QPM to generate artificial data that reproduces emp

correlations: autocorrelations, bivariate correlations, and partial correlations of key

macroeconomic variables. From these exercises we hope to determine which areas of QPM

should focus on in our ongoing model development efforts. We emphasize that the purpose

paper is to document the margins that the model performs well and the margins that it doe

we leave a full diagnosis of the unsatisfactory results that we uncover for future work.
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This paper is organized as follows. Section 2 describes our methodology for evaluating SS

and reports the results of its application to the steady-state model. Section 3 details the

construction of the stochastic environment in which we simulate QPM, and presents eviden

highlighting the ability of dynamic QPM to match important statistical moments found in the

historical data. Section 4 considers whether the evaluation of dynamic QPM is affected by alt

certain aspects of the stochastic environment or the monetary policy reaction function emb

in QPM. Section 5 provides concluding comments and identifies areas for future work.

2. Evaluation of the Steady-State Model, SSQPM

SSQPM summarizes our beliefs about the steady-state structure of the Canadian economy

set of theoretical relationships, involving different sectors of the economy, whose influence

quantified by the model’s parameters. As such, the validity of SSQPM is a function both of 

theoretical structure and of its parameterization. This paper deals primarily with the calibratio

SSQPM, leaving an evaluation of its theoretical structure for future work.

When SSQPM was originally calibrated, the values that the model-builders gave to various

parameters no doubt involved a trade-off among three objectives: (i) the parameters should

correspond closely with what one expects from economic theory, (ii) the model properties t

result from a given choice of parameters should be reasonable, and (iii) the simulated mod

should reasonably match some long-run properties of the data. The methodology that we u

evaluate the calibration of SSQPM should therefore reflect the same three objectives.

Accordingly, we modify Canova’s (1994, 1995) methodology, as it applies to the evaluation

steady-state models, to achieve this end.

Our methodology can best be described as an informal Bayesian approach to the evaluatio

calibrated models. It is Bayesian because it takes into account two sources of information: (

prior beliefs, expressed through prior distributions of the parameters of SSQPM, and (ii) Can

economic data. It is informal because the influence of the data does not enter the analysis 

formal likelihood function but, instead, is imposed through inequality constraints that the simu

data are required to satisfy.

Section 2.1 describes in greater detail our approach to the calibration evaluation, and secti

discusses the results. Section 2.3 concludes the SSQPM evaluation and suggests some ar

future investigation.
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2.1 The SSQPM evaluation methodology

2.1.1 Assigning prior distributions

Following Canova (1994, 1995), our methodology starts with the assignment of prior distribu

to the model’s parameters. By assigning prior distributions that, for the most part, reflect ou

interpretation of economic literature, we meet one of the objectives of SSQPM’s model-buil

parameter values should correspond closely with economic theory. Furthermore, by allowing

distribution rather than a single value for each parameter, we can evaluate the sensitivity of m

properties to plausible alternative characterizations of SSQPM’s calibration.

The objective of this exercise is to trace out the effects of varying the domestic non-policy

parameters in SSQPM. As such, we do not allow all the parameters embodied in SSQPM to

parameters that apply to “rest-of-world” (ROW) variables, such as those that describe the fo

production function, and domestic policy parameters, such as tax rates, are held constant.

Prior distributions are assigned on a parameter-by-parameter basis and, where possible, th

literature is used to guide the choice of parameter values. For some parameters, economic

or empirical evidence can help to pin down a range of possible values. In such cases, we can

normal distribution with a mean and standard deviation reflecting the average and dispersio

estimates in the literature. The distribution can be truncated to reflect theoretical considera

that restrict the admissible parameter values. Alternatively, in cases where the theory and

empirical evidence are less helpful, we adopt an uninformative prior, the uniform distributio

while still looking to the literature to provide some guidance for a feasible range of values. 

1 shows the prior distributions chosen for the parameters of SSQPM.

2.1.2 Evaluating model properties

The end result of our evaluation is an assessment of the model properties of SSQPM. We typ

analyze model properties in SSQPM by looking at the effects of various standard shocks. F

example, based on the non-Ricardian structure of SSQPM as incorporated through the sm

open-economy Blanchard-Yaari model, we would expect that an increase in the governmen

to-output-ratio would reduce consumption, output, and net foreign assets, and cause the exc

rate to depreciate. The government debt-to-output-ratio standard shock in SSQPM simulat

effect of such a shock on the model, and allows us to quantify its results on economic variab

interest.
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We assess the sensitivity of model properties to various plausible choices for the paramete

SSQPM as follows: a set of parameters are drawn randomly from the prior distributions, an

effects of our standard shocks are simulated under each parameterization. By repeating th

process (10,000 times), we can build up empirical distributions that describe the effects of 

various shocks on key variables, and the corresponding likelihood of each outcome. In add

we can assess the outcome of a shock under SSQPM’s current parameterization relative to

distribution. For example, we can evaluate how close outcomes under the current SSQPM

calibration are to the central tendency of the empirical distributions. Alternatively, we can g

the uncertainty associated with the effects of any standard shock with, say, a 95 per cent

confidence interval of the empirical distribution.

2.1.3 Matching the model to the data

The methodology we have described to this point follows closely Canova’s methodology as

applies it to steady-state models. We introduce modifications that allow us to deal in a more

satisfactory way with the question of matching the simulation outcomes to the data. As stat

the introduction to this section, the ability of the model to match the data1 was undoubtedly an

important influence on the original calibration of SSQPM. This follows directly from the fact t

SSQPM, together with its dynamic counterpart, QPM, is used to produce an economic proje

once each quarter. Nonetheless, the ability of the simulated model to match the data is not th

characteristic that is important. As noted above, the calibration of SSQPM no doubt resulted

trading off this objective against the other two objectives of achieving reasonable model

properties and choosing parameters that accord with theory. Our evaluation procedure for 

calibration of SSQPM must therefore balance these objectives.

Because of the role that QPM (and SSQPM) plays in producing projections, its data-match

requirements go beyond those of the more recent literature on dynamic general-equilibrium

models. Davis and Espinoza (1998), for example, build empirical distributions of model

properties by repeated sampling of parameters from their prior distributions, but they do no

assess whether the parameterizations under consideration allow model simulations to reas

match the data. Alternatively, studies where data-matching is a priority typically emphasize

model’s ability to replicate a small set of features in the data; i.e., those that the researcher is

interested in for the purpose of their analysis. Canova (1995), for example, examines the

sensitivity of the simulated effect of a change in taxation on consumer welfare. Obviously, t

1. In this section, “matching simulations to the data” means “matching a control simulation (e.g., w
actual values of exogenous variables),” not the shock simulations (e.g., the effect of alternative
policies) that we refer to in later sections.
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approach is unsatisfactory for the purposes of this evaluation, because SSQPM should be 

replicate a broad range of features in the data.

Other studies match model outcomes to the data in different ways, one of which (e.g., Harr

and Vinod 1992, Abdelkhalek and Dufour 1998) is to divide the parameters of a model into

groups: calibration parameters and economic parameters. Calibration parameters are set t

values required (conditional on the choices for the economic parameters) to make the simu

dataexactly match the actual data.2 In these studies, the value of calibration parameters is of n

economic interest; only the economic parameters are relevant and they are varied random

according to their prior distributions. In SSQPM, however, almost all parameters embody w

defined theoretical concepts. To use this methodology, some of SSQPM’s economic param

would therefore have to be classified as calibration parameters; their values would be chos

solely by the requirement that simulated data match actual data, and all economic informat

about these parameters would be ignored. This seems inappropriate; in terms of the three

objectives of SSQPM’s model-builders, it overemphasizes the objective that the model be a

match the data at the cost of disregarding whether parameter values accord with economic

In addition, an evaluation of a steady-state model’s ability to match the data must deal with

fact that an economy’s steady state is unobservable. We have only an actual time series,

representing each variable’s out-of-steady-state behaviour, and we therefore must construc

estimates of the steady state. Of course, we can use the long-run average of a variable as 

estimate of its steady state (as long as it is stationary), but this estimate has a degree of unce

that is, in practice, unknown. Our evaluation must acknowledge this uncertainty.

To deal with the issue of data-matching, we first choose five key variables to evaluate whet

model simulations match the data: the consumption/income ratio, investment/income ratio,

export/income ratio, import/income ratio, and financial assets/income ratio. For each variab

calculate a mean (our point-estimate of the steady state), standard deviation, and 95 per c

confidence interval over the period 1965–1999.3 We then simulate the model repeatedly, drawin

parameter values randomly from their prior distributions, and rejecting from our analysis tho

sets of parameters for which any of the five key variables fall outside their 95 per cent confid

interval.4 We also impose an additional constraint on our simulations: parameters must be ch

2. Typically, simulated data would be constrained to match actual data in a year that is chosen as a
year.

3. If a ratio shows a clear trend over the period, we detrend it (linearly) before calculating its standa
deviation.

4. The choice of a 95 per cent confidence interval for our data constraints is quite generous, in that
amounts to agreeing to consider all but the most extreme values of the actual data as potential s
state values. On the other hand, from a statistical viewpoint, the 95 per cent confidence interval is
conventional. Were we to set up a hypothesis test, we would probably reject the hypothesis test
actual value is a steady-state value only if it fell within the 5 per cent tail of the distribution.
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in a way that meets the two stability conditions embodied in SSQPM.5 Any potential

parameterizations of the model that do not meet the stability conditions are rejected and om

from further analysis.

We think that this approach provides the kind of balance, with respect to the objectives of

calibration, that we outlined earlier. It gives the influence of prior beliefs a more prominent ro

the evaluation than do some studies in the literature (e.g., Harrison and Vinod 1992, Abdelk

and Dufour 1998). It does not do so, however, at the expense of an assessment of the mod

ability to fit the data, as in Davis and Espinoza (1998). At the same time, it concedes that th

considerable uncertainty surrounding the outcomes to which simulations should be benchm

2.2 Results of the SSQPM evaluation

This section describes the results of applying our methodology to SSQPM. To start, we con

the impact of the data constraints, first by examining the results of SSQPM simulations unde

prior parameter distributions, and then by examining, ex post, how the data constraints affe

view of plausible parameter values. We then analyze the model’s response to various shoc

examining whether the model’s properties accord with theory, and how dispersed the effec

those shocks are under various parameterizations.

2.2.1 The data constraints

Figures 1 to 5 illustrate the effects of our inequality data constraints on the model, showing

effects of alternative parameterizations of SSQPM on the control simulation when there are

data constraints. Superimposed on this graph is the SSQPM control value for the variable u

consideration, as well as bands that show our data inequality constraints. This information

therefore allows us to assess whether the current SSQPM model falls within our inequality

constraints, and to evaluate roughly what proportion of the alternative parameterizations of

SSQPM coming from our prior distributions would pass the data constraints.

Figure 1 shows the consumption/income ratio: the majority of the alternative parameterizat

taken from the prior distributions generate consumption/income ratios that fall within a 95 p

cent confidence interval of the long-run average ratio. The consumption/income ratio assoc

with the SSQPM parameterization is close to the midpoint of the 95 per cent confidence int

We would therefore not expect the consumption/income ratio data restriction to have a larg

influence on the allowable parameter values. As Figures 2 to 5 show, the same is true for m

the other variables that we use in our data restrictions.

5. These stability conditions ensure that wealth will remain finite in the simulations.
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The results of these simulations can provide additional information as to what, given the m

structure, are plausible parameterizations. To formally quantify this information, we constru

posterior distributions for the model’s parameters. Specifically, we discard those combinatio

parameter values that result in simulations that do not meet our data constraints; those that r

are pooled to create a posterior distribution. The top panel in Figures 6 through 10 shows t

initial random sample of parameter values taken from the prior distribution, while the bottom

panel in those figures shows the corresponding posterior distribution. In addition, the thick 

vertical line shows how the SSQPM value for the parameter fits within that parameter’s

distribution.

Figure 6 shows the prior and posterior distributions for the parameter ASOELX_SS (the “al

small-open-economy” parameter, which captures the effect of foreign economic activity on

Canadian exports). In this case, the two distributions are very similar, indicating that the Can

data impose very little constraint on the plausible parameter values. In fact, this result is typic

those obtained for many of the parameters in SSQPM; the data are simply not very helpful

pinning down plausible parameter values. In addition, the current SSQPM value for the para

typically lies near the centre of both the prior and posterior distributions, reflecting that, for 

most part, the current SSQPM parameter values are reasonable.

There are, however, some cases where the data are more informative. For example, Figure

shows the prior and posterior distributions for DEPRKBUS_SS, the steady-state rate of

depreciation of capital. The difference between the top and bottom panels indicates that th

constraints allow us to pin down admissible values for this parameter much more precisely

bottom panel also reveals that the current SSQPM value for this parameter is appropriate, in

is close to the mean of the posterior distribution.

There are some cases where the data indicate that the current SSQPM parameterization m

less appropriate. Figure 8, for example, shows that the data are helpful in narrowing the fea

range of values for the parameter RKBUS_R, the risk premium on the cost of capital. It als

shows that the SSQPM value for that parameter lies at the low range of admissible values.

similar observation can be made for the parameter SIGMA (Figure 9), the coefficient of rela

risk aversion, for which the current SSQPM value also lies at the low end of the posterior

distribution.

2.2.2 The model properties

We next analyze the effects of various standard shocks on key economic variables. While t

can often guide us on the direction of a shock’s effect, it may have little to say about its magni
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We therefore consider qualitative aspects of these simulations, such as how frequently our M

Carlo simulations generate, say, a negative response for a variable. The frequency with wh

shock moves the artificial economy in the predicted direction provides some information on

robustness of the theory that underpins the model. We also examine how dispersed the eff

the shock are under different parameterizations. The distribution of a variable’s response to

shock that is built up by the Monte Carlo simulations allows us to consider, for example, wh

the existing SSQPM estimate of the effect of a shock is situated within the empirical distribu

We do not use this to “test” whether the SSQPM value for the effect of a shock is accurate,

because we would invariably expect the SSQPM value to fall within the 95 per cent confide

interval that we generate. This would always occur if the model-builders did their job well a

met their objectives of building a model with parameters that seem reasonable from the

perspective of economic theory (i.e., close to the central tendency of the prior distribution),

reasonably fit the data, and that produce reasonable model properties. Instead, we use the

confidence interval to derive a measure of the uncertainty that remains regarding model prop

even after we have given the parameters plausible values and ensured that the simulated m

can reasonably fit the data.

The first shock we examine is a 10 per cent increase in the government debt-to-output ratio

Blanchard-Yaari model for consumption, which is embodied in SSQPM, would have consum

decline (because of the non-Ricardian nature of the model) in response to this shock. The 

works its way through the system as follows: foreign indebtedness increases as agents shi

towards holding more government debt and fewer net foreign assets. This higher foreign

indebtedness results in higher interest payments on foreign debt, and the exchange rate m

depreciate to allow net exports to rise and cover these higher interest payments. The exchan

depreciation causes the cost of imported investment goods, and thus the cost of capital, to

and, as a result, lowers the levels of both the capital stock and output.

Figure 10 shows the effect of this shock on consumption and reveals that 100 per cent of th

Monte Carlo simulations give the predicted negative response. The difference between the

SSQPM response and the mean of the empirical distribution generated by the Monte Carlo

simulations is minute (in fact, the two are indistinguishable in Figure 10). The empirical

distribution is skewed, no doubt reflecting the fact that the theoretical economic structure o

model cuts off part of the distribution that would otherwise lead to positive values for

consumption. The 95 per cent confidence interval taken from the empirical distribution give

range of about -0.6 per cent to -0.2 per cent for the effects of the 10 per cent government d

shock. From an economic perspective, then, there seems to be considerable precision as t

effects of a government debt shock on consumption.
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Figure 11 shows the effect that this shock has on output. Recall that the theoretical structu

SSQPM suggests that the capital stock and output should fall. Indeed, in our empirical

distribution, output falls in 96 per cent of simulations of this shock, leaving, somewhat

surprisingly, a few simulations with plausible parameterizations in which output rises. The

SSQPM effect of the shock on output, -0.05 per cent, is very small. Using the effect of a

government debt shock on output as a measure of the degree of Ricardian equivalence (th

other definitions are possible), one would conclude that SSQPM is very close to being Rica

equivalent, despite its Blanchard-Yaari structure. Furthermore, the 95 per cent confidence in

given by the empirical distribution indicates that this effect, again from an economic standpoi

precisely estimated. In contrast, a recent U.S. survey paper on the effects of government d

indicated a consensus view that output would fall by about 0.4 per cent in response to a 10

cent increase in debt (Elmendorf and Mankiw 1998). The SSQPM response is about 1/10th

size of the U.S. estimate.

For the other key economic variables, the impact of the government debt shock, in terms o

empirical distributions, is as expected. That is, the SSQPM results for the shock are consis

with the theory embodied in the model and generally sit near the central tendency of the emp

distributions.

Next, we examine the effect of a 1 per cent total factor productivity increase. In general, we

expect this shock to have a fairly neutral effect on the model, with real variables rising by a

that reflects the labour share coefficient in the production function (which is random in our

empirical distributions) combined with the increase in factor productivity. The almost-small-

open-economy assumption dictates that, for exports to rise with domestic output, the excha

rate must depreciate slightly (i.e., the price of foreign exchange must rise).

The effects of this shock are shown in Figures 12 through 16. Figure 12 shows that the amou

which the exchange rate depreciates in SSQPM is slightly above the mean of the empirica

distribution. This depreciation causes net exports to rise slightly, and the SSQPM response

about one standard deviation above the central tendency of the empirical distribution, altho

economically, this difference is unimportant (Figure 13). The SSQPM response of the curre

account (Figure 14) is also well below the central tendency of the empirical distribution but,

again, not by an economically significant amount. Similarly, while the relative price of impor

(Figure 15) generated by SSQPM is above the central tendency of the empirical distribution

difference is less than one standard deviation.

One anomaly in this simulation is the effect on financial assets (Figure 16); in SSQPM, fina

assets (which include government debt, the capital stock, and net foreign assets) fall by abou
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cent in response to the productivity shock, whereas the mean effect from the empirical distrib

is close to 0. Though this difference is not “statistically significant” (i.e., outside the 95 per c

confidence interval of the empirical distribution), it is still economically important.

Next we examine the effect of a 10-basis-point decline in the rate at which consumers disc

future utility (Figures 17 and 18). For almost all of the variables of interest, although the SSQ

values lie close to the central tendencies of the empirical distributions, there is a great dea

uncertainty, as evidenced by the wide confidence bands. Furthermore, differences between

SSQPM values and the central tendencies of the empirical distributions, which might not se

statistically significant, are sometimes fairly large from an economic viewpoint.

Figure 17 shows the effect of this shock on consumption. The entire distribution of consum

responses to this shock is positive, as one would expect, given that the lower discount rate

encourages agents to accumulate more financial wealth, thereby supporting higher consum

in the new steady state. The SSQPM response is 0.30, compared with a mean response fr

empirical distribution of 0.39. The 95 per cent confidence interval, which covers the range 0

1.3, is large, given the size of this shock. Likewise, the confidence interval for the effect of t

shock on total wealth ranges from about 0.6 per cent to 4.5 per cent, with an SSQPM value

(Figure 18).

2.3 Overall evaluation of SSQPM

Our evaluation methodology has pointed to a number of areas that require further investiga

For example, the posterior distributions for several parameters (e.g., SIGMA, the coefficien

relative risk aversion) indicate that the current SSQPM calibration is out of line with the cen

tendencies of these distributions. Our analysis also indicates which model properties we hold

a good deal of confidence, compared with those we are quite uncertain about, assuming th

are willing to agree that the basic structure of SSQPM is appropriate. For example, the em

distributions of model properties for the government debt/output shock are fairly concentrat

indicating relatively little uncertainty about the quantitative effects of this shock. In contrast,

results of a discount rate shock are very uncertain, with wide confidence intervals for its effec

key macroeconomic variables.

There are, of course, some potential limitations to our analysis. One major concern is wheth

number of simulations (about 10,000 successful simulations in each case) is sufficient to ge

accurate estimates of the distributions we are seeking to characterize. While the number o

simulations is similar to that used in other studies, there are more parameters in SSQPM th

most models in the literature. As a crude check on the accuracy of our empirical distributio
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resimulated 10,000 replications of the government debt shock using a different random dra

sets of parameter values. We found in this experiment that the shape of the empirical distribu

was not greatly changed, leading us to conclude that 10,000 replications are sufficient to y

reasonably accurate characterization of the distributions.

As we noted in the introduction to this section, our evaluation of SSQPM to date has focuse

exclusively on the calibration of SSQPM. Future work should evaluate various aspects of th

structure of SSQPM against competing economic models in the literature. Perhaps such an

evaluation could use a Bayesian-type approach similar to that in Schorfheide (1999).

3. Evaluation of Dynamic QPM

In this section, we set up a stochastic environment for dynamic QPM, conduct stochastic

simulations of the model, and compare moments of simulated and actual data to evaluate h

closely QPM can replicate key features of the historical data. The stochastic environment a

allows us to evaluate certain overidentifying restrictions.

We view these evaluation procedures for dynamic QPM as very stringent tests of the mode

expect that any dynamic economic model, whether calibrated (as QPM is) or estimated, wo

“fail” many of the tests, both formal and informal, that we rely on here. One of the difficultie

then, in evaluating our results is that our tests provide an absolute standard of how well QP

certain important characteristics of the data, but no relative standard—that is, no measure 

QPM does relative to other plausible models of the Canadian economy. In future work, we pl

address this issue. For example, we could estimate a VAR of the Canadian economy that

incorporates the variables that we consider in our present analysis. An estimated VAR shou

encompass many important dynamic features of the data. We would simulate the VAR

stochastically, then conduct the same analysis of correlations between simulated and actua

that we consider here with QPM. A comparison of the correlation analysis based on QPM

simulations with that generated by the VAR would then give us a measure of the relative fit o

model. For the present, however, we consider only the properties of QPM in isolation.

3.1 Stochastic specification

The first step in our evaluation of the dynamic model is to arrive at a base-case set of stoch

perturbations to simulate QPM. Since foreign variables in QPM are exogenous, we simulat

statistically a four-variable VAR that loosely represents key ROW variables and use them a

inputs into our QPM simulations. This represents an attempt to mimic, albeit crudely, the effe
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foreign variables on the Canadian economy. For key domestic variables, we treat shock

measurement as a method-of-moments problem and use an informal estimation-by-simula

approach to measure the magnitude and persistence of the shocks. The simulated ROW v

and final parameterized domestic shock terms constitute the stochastic environment.

3.1.1 VAR and ROW variables

A VAR is estimated using four key QPM ROW variables: world commodity prices, price leve

output gap, and short-term interest rate. The estimated VAR is then simulated stochasticall

(using the estimated orthogonalized variance-covariance matrix) and the resulting dynamic

are used to represent the exogenous ROW variables in QPM. This simple method allows u

include data-measured persistence and covariance in the ROW variables.

The variables in the VAR are the quarterly growth rate in world commodity prices (or

 in QPM parlance), the quarter-over-quarter G-6 GDP inflation rate

( ), the G-6 output gap ( ), and a measure of a G-6 short-term nomi

interest rate ( ). The VAR is estimated over the 1973Q1 to 1999Q4 sample period

maintain consistency with our other empirical work) and is identified by a Wold causal orde

of commodity price inflation, GDP deflator inflation, output gap, and short-term interest rate.6 To

get a sense of the dynamic behaviour of the ROW variables within the VAR, we examine th

resulting impulse-response functions (IRFs). Figure 19 displays the 20-period IRFs of each

variable along with one standard error interval.7 The main diagonal IRFs represent the variable

that is being shocked, while each column traces out the responses to a particular innovatio

Column 1, therefore, corresponds with the dynamic response of the variables to a one-stan

deviation world commodity price shock.

Overall, the IRFs conform broadly to what we would expect. Consider, for instance, column

which displays the IRFs to a one-standard-deviation (0.6 per cent) innovation in the G-6 ou

gap. The innovation induces world commodity prices to increase by 0.3 per cent and GDP

inflation to rise gradually over six quarters. As a consequence of higher inflation and a pos

output gap, the short-term interest rate rises by about 0.6 per cent within one year. Other im

responses appear equally plausible, except for the one that corresponds with the G-6 inter

6. The optimal data-based lag choice for our VAR is 3. We use 2 lags, however, since this VAR offer
smoother IRFs without a loss in their general shape. The lag length does not affect our forthcom
conclusions.

7. The confidence intervals are generated using Monte Carlo integration. We sample antithetically
instead of randomly, from the posterior density. Geweke (1988) finds the antithetic approach to b
more efficient than the random approach.

∆LPCOMROW

∆LPROW LYROW_GAP

R1ROWzz
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shock. In this case, a positive innovation to short-term interest rates leads to short-lived (2 

periods) increases in prices and output, which suggests that we may be omitting an inflatio

indicator variable that is in the information set of the monetary authorities but not included in

VAR (Christiano and Eichenbaum 1995). While it would be useful to explore a larger-dimensi

VAR, the limited number of foreign variables in QPM prevents us from doing so. An alterna

and more viable approach to resolving the puzzle of the short-lived response of price and out

the interest rate shock is to relax our recursive-causal ordering. Along this margin, we exam

many sets of IRFs based on different exclusion restrictions and were unable to find a set o

restrictions that resolved the price and output puzzles without introducing other problems.8 We

also examine how well the simulated data approximates the actual by comparing some sum

statistics (Table 2) across the two data sets. These statistics suggest that the simulated data

to capture reasonably well both the volatility and persistence of the historical data.

To shed some light on the open-economy linkages within dynamic QPM, we simulated it w

only ROW variables as stochastic disturbances.9 One feature is especially notable: ROW variable

account for only a small proportion of the variability of most real variables. For example, RO

shocks account for less than 25 per cent of the volatility in quarterly exports movements an

than 20 per cent of the quarter-over-quarter fluctuations in the real exchange rate. In other w

QPM displays very little propagation of external shocks. Later work suggests that the represen

of international linkages in QPM is an area for future development.

3.1.2 Estimation by simulation and domestic shocks

We also need a set of stochastic shocks for domestic variables to simulate QPM. While the

several approaches to shock measurement, we choose a method that allows both QPM an

empirical data to influence the measurement of the innovations. More specifically, we start w

simple AR(1) representation of innovations and then reparameterize them until QPM produ

standard deviations and autocorrelation coefficients of the economic variables that match

approximately those in the data. Loosely speaking, we reparameterize the persistence ( )

variance ( ) of the following shock process,

; ,

8. The volatility and persistence of the artificial data are reasonably robust to alternative VAR mode
For instance, we considered a VAR with exclusion restrictions that gave us an almost diagonal
reduced-form variance-covariance matrix (the polar case to our base-case VAR), and did not fin
this alternative VAR changed grossly the moments of the simulated data.

9. The following conclusion is based on 100, 108 period, simulations of QPM.

ρ
σu

2

εt ρεt 1– ut+= ut iid 0,σu
2( )∼
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until we match approximately the population moments of the artificial (or model-generated)

with the empirical sample moments; that is, , where  are the

moments under consideration calculated from empirical data and  are QPM simu

moments based on a specific parameterization of  and . This approach can be conside

informal method-of-moment estimation, where we estimate the free parameters to set the di

between moments of the artificial and empirical data within some confidence interval (for a

formal treatment of estimation by simulation, see McFadden 1989).10 One potential problem with

informal moment-matching is that parameters can be selected even if they are not identifia

other words, we are forcing innovations to be some AR(1) process even though their true

representation may not be. Another potential concern is that the parameterization of the sh

may not be unique; another set of parameterizations could lead us to similar population mom

The set of stochastic shocks that allow QPM to reproduce empirical standard deviations an

autocorrelations will provide us with overidentifying restrictions to test the model properties

QPM. That is, since the set of shocks is designed only to match two sets of moments, othe

properties of the data provide testable overidentifying restrictions of QPM. For example,

aggregate output and the terms of trade in QPM are built up from variables that have direct s

terms, so the ability of QPM to produce aggregate output and terms-of-trade data that matc

empirical properties of their sample counterparts would constitute testable overidentifying

restrictions.

In addition, the fact that the shocks designed in the first step remain fixed during the tests o

restrictions strengthens the results from these tests, as it does not allow the shocks to be ch

fit some restriction. In the current case, for instance, shocks are parameterized on their abi

match empirical standard deviations and autocorrelations but not, say, temporal correlation

the ability of QPM to reproduce the latter moment is a strong test of the model, and one tha

be explored later in this paper. One disadvantage to this approach is that both shocks and 

constitute the model in stochastic simulation, so a rejection of an overidentifying restriction

be a rejection of the model, the shocks, or both. This disadvantage, however, arises regard

the innovation measurement methodology.

Before we can proceed to the shock-estimation stage, we must decide on the number of sh

and their initial magnitude. For the former, we append shock terms to some important behav

10. Estimation by simulation is closely related to the approach of calibrating model parameters to m
statistic generated by the model with that in the data. Kydland and Prescott (1982), for instance,
calibrate the coefficient of relative risk aversion in their real business-cycle model by matching th
variance of detrended output.

min ŴT WT
˜ ρ̃,σ̃u

2( )–arg ŴT

WT
˜ ρ̃,σ̃u

2( )
ρ σu

2
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variables: consumption, investment, exports, GDP price deflator, and real G-6 exchange ra11

For the initial magnitude of the shocks, we start with identically, independently distributed (

shocks parameterized to match the standard deviation of empirical residuals from an AR(k) model

for the variables under consideration. The estimation period is 1973Q1 to 1999Q4. Moreove

need to decide on a set of standard deviations and autocorrelations (of consumption, inves

exports, GDP price deflator, and real G-6 exchange rate) to match. Obviously, moments mus

for the comparison to be meaningful, so the data must often be transformed to induce station

Singleton (1988) and Cogley and Nason (1995) show that the detrending method consider

calculating moments may itself have a large effect on conclusions, so in an effort to control

such problems we consider three methods for inducing stationarity: first difference, fourth

difference, and Hodrick-Prescott (H-P) detrending.

For each simulation, QPM is run over 116 quarters, with the first 8 quarters omitted from ana

this leaves 108 quarters, which corresponds with the length of the historical sample over whic

calculate the moments to be matched. Each complete experiment is based on 100 success

(stable) replications. The distributions for variables of interest are built up by averaging acr

time and across replications. After each complete experiment, we compare the persistence

volatility of the artificial data with the historical data, and then reparameterize the shock ter

accordingly, until we are able to match each moment within a 95 per cent confidence interv

Table 3 presents the final shock estimates and Table 4 reports moments of the artificial dat

bold type) relative to those from the historical data. The latter reports the standard deviation

autocorrelation coefficients surrounded by their upper and lower 95 per cent asymptotic

confidence intervals.

The final calibration of the shocks allows us to examine our so-called overidentifying restricti

As stated earlier, several important variables in QPM do not have shock terms, but are buil

from those variables with direct shock terms, so the ability of QPM to produce artificial data

the former variables that match the empirical properties of their sample counterparts would

constitute testable overidentifying restrictions. Table 5 reports the empirical standard devia

and first-order autocorrelation coefficients, along with their 95 per cent confidence intervals

detrended output, employment and imports, and the levels of the terms of trade and differe

interest rates. The values based on the artificial data are shown in bold type. In sum, excep

11. Admittedly, our choices are somewhat arbitrary, but previous work suggests that these five varia
are sufficient to induce QPM to produce sufficiently variable volatility. An obvious omission is a
productivity shock. In previous work, however, we found, given the current structure and calibratio
the shocks, only a small effect arising from productivity shocks. In ongoing work we are attemptin
find a more prominent role for productivity innovations.
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those corresponding with employment fluctuations, all of the overidentifying variance restrict

are rejected. In particular, imports and the terms of trade display much less volatility than in

historical data, suggesting, perhaps, that QPM is relatively insensitive to ROW fluctuations.

there is too much volatility in output and interest rates. The excessive volatility in output sugg

that there may be undue correlation among the components of aggregate output, as the vari

the components is either within or below its historical range. We explore this issue further in

next section.

The excessive movement in interest rates is likely caused by two factors: (i) the link betwee

interest rates, output, and inflation embedded in QPM, and (ii) the monetary authority’s goa

inflation targeting. The first factor means that excessive volatility in output will tend to be

translated into excess volatility in inflation. The second factor means that, since the objective

stabilize inflation, volatile output, which would otherwise make inflation volatile, will have to

offset by even more volatile interest rates. The variance of artificial CPI inflation (excluding f

and energy) data is excessive when compared with the variance of historical CPI inflation

calculated using its implicit target instead of its mean to centre the data.12 This, presumably,

better matches the definition of historical CPI inflation with that in QPM, which has an expli

inflation target of 2 per cent. However, the estimated price-shock term fell to zero when we

attempted to match with these target-centred CPI inflation data. Since we believe that price s

have been an integral feature of Canadian economic history, we choose to estimate our pri

shock term by focusing on mean-centred GDP inflation data.

3.2 Dynamic model evaluation

3.2.1 Autocorrelations

In this section, we explore in more depth whether QPM is able to generate artificial data that

similar degree of persistence to that found in the historical data. In particular, we consider t

ability of QPM data to replicate empirical autocorrelation functions (ACFs). For many variab

the first-order autocorrelation is not particularly interesting, since the disturbance terms for 

variables are parameterized such that the AR(1) coefficient of the simulated data matches 

historical counterpart (see previous section). In other words, the results are biased towards fi

a favourable result, at least for the first autocorrelation. There are, however, four key variable

do not have direct shock terms, but are built up from other aggregates: terms of trade; real

12. As a measure of the implicit inflation target, we use the staff economic projection 2-year-ahead
inflation expectation over the 1974Q4 to 1992Q4 period. Thereafter, we use the Bank’s stated infl
targets (see Amano 1997 for more details).
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exchange rate; output; and consumer prices, excluding food and energy. These variables p

another set of overidentifying tests and should indicate the ability of QPM to generate persis

in some key data series. All data, except the terms of trade, are first differenced to induce

stationarity.13

To test the match between empirical and artificial ACFs, we compute a series of the genera

Q-statistic, which is defined as:

,

where the vector is the historical data ACF, and is the QPM-generated ACF. The lat

estimated by averaging autocorrelations across our 100 artificial samples. The variance ma

is simply the autocorrelation variance estimated from the historical sample. The genera

Q-statistic has an approximate chi-squared distribution with degrees of freedom equal to th

number of elements in .14 As with a standard Q-statistic, the results are a function of the

number of lags used in the analysis. In an effort to control for this problem, we present

generalized Q-statistics over the 2-, 4-, 8-, and 20-period horizon (Table 6). A large value o

indicates that the QPM ACF is a poor match for the historical ACF. Overall, the artificial dat

appear to match the historical data quite well, in that none of the calculated Q-statistics are

significant at the 5 or 10 per cent level.

Figure 20 illustrates our previous conclusions by plotting the 20-period empirical ACF along

the ACF calculated using artificial QPM data. The dash-dot line represents the average

autocorrelations based on artificial data, the thick solid line depicts empirical autocorrelatio

and the dashed lines are the corresponding 95 per cent empirical confidence intervals. Wit

exception of the exchange rate at the three-quarter horizon, for which the QPM-generated

autocorrelation coefficient falls just outside the historical confidence interval, the artificial da

appear to capture historical persistence quite well.

3.2.2 Bivariate temporal correlations

In this section, we examine how well QPM is able to reproduce temporal bivariate correlatio

found in the historical data. Before we begin with this comparison, however, we must selec

correlations to consider. We use two criteria: (i) the correlations must be important from the

perspective of a monetary authority, and (ii) the correlations must display a clear and consi

(or stable) pattern. We omit, for instance, the economically relevant correlation between the

13. Unless otherwise noted, all level variables are in log form.
14. See Hogg and Craig (1978).

Q AC˜ AC–( )
T
VAC

1–
AC˜ AC–( )=

AC AC˜

VAC

AC
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of commodities and exports, since the historical data do not provide a clear and consistent

correlation pattern. Based on some preliminary work, the following key temporal correlations

found to be reasonably stable over time: output and consumption; output and investment; o

and employment; output and interest rate; consumption and interest rate; output and excha

rate; price inflation and wage inflation; and output and inflation. In addition to the above mome

we examine other stable bivariate relationships and, although perhaps not of primary impo

from a monetary policy perspective, they are still of interest, since they may help gauge QP

ability to mimic properties of the empirical data. Again, since inferences drawn may depend

the moments used, we attempt to control for this problem by considering three different me

of inducing stationarity: first difference, fourth difference, and H-P detrending.15

In Figures 21 through 36, the upper, middle, and lower panels display dynamic correlations b

on first-differenced, fourth-differenced, and H-P detrended data, respectively. The solid line

each figure represents correlations calculated using historical data over the 1973Q1 to 199

period, while the long dashed line represents the average temporal correlations based on t

artificial data. The short dashed lines represent 95 per cent confidence intervals, based on

historical data and constructed using den Haan and Levin’s (2000) data-dependent VARHA

estimator.

Each figure plots the correlation between the first variable identified in the figure title and e

leads and lags of the second variable identified. The vertical axis marks the degree of corre

and the horizontal axis represents the timing of the dynamic correlation. The number -4 alon

horizontal axis, for example, represents a lead of four periods for the second variable. This

exercise is not intended to examine QPM’s ability to reproduce the historical data correlatio

exactly, but to determine its ability to replicate the broad correlation shapes found in the da

The first set of figures we consider focus on the correlation between aggregate output and 

leads and lags of private consumption, investment, and employment (Figures 21 to 23). Fro

Figure 21 it appears that QPM is able to generate correlations between output and private

consumption that capture the broad shape found in the data. For both artificial and empirica

the maximum positive correlation occurs at and falls monotonically towards zero on e

side. Unfortunately, the relationship between output and shorter lags of consumption genera

QPM is somewhat weaker than that found in the empirical data. QPM is less successful at

capturing correlation between output and investment. In this case, both the broad shape an

correlations are misaligned when compared with historical data correlations. The peak emp

15. When calculating statistics with H-P-filtered data, we trim the sample on each side by eight perio
control for the start and end of the sample problem.

t 0=
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correlation, for instance, arises at frequency zero, whereas the maximum correlation genera

QPM occurs at investment leads between three and five. Output and employment correlatio

presented in Figure 23. While QPM generates data that mimics the broad shape of the hist

correlation, there is a two- to three-period phase shift. In particular, the historical data displ

peak correlation at time , while the same correlation generated by QPM peaks at an

employment lead of about two to three quarters; the difference is statistically significant. In

related fashion, the correlation based on artificial data is statistically lower over the  t

 range.

Next, we consider QPM’s ability to match dynamic correlations of the yield spread (the inte

rate measure that affects economic behaviour in QPM) and two key aggregates: private

consumption and output. For these correlations, shown in Figures 24 and 25, it appears tha

does a reasonably good job of capturing the negative correlation between output and lags 

yield spread. The relationship, however, is statistically different over shorter lags of the yiel

spread. Not surprisingly, a similar picture emerges when we consider the correlation betwe

consumption and the yield spread. QPM produces data that capture the negative relationsh

between consumption and the yield spread, but fails to reproduce the magnitude found in t

empirical data. We also consider the effect of another key relative price on Canadian outpu

fluctuations: the real exchange rate. Figure 26 plots the temporal correlations between the 

exchange rate and output fluctuations, and shows that QPM is able to generate a correlatio

structure that replicates the broad shape found in the data, but with a phase shift of about f

periods, or one year. This suggests another timing problem in QPM.

Finally, we consider QPM’s ability to match dynamic correlations that are especially importan

monetary policy-makers: wage and price inflation; and output fluctuations and inflation. Figur

shows the historical and artificial data correlations between wage and core CPI inflation. It 

readily apparent that QPM generates excessive correlation between wages and inflation rela

that found in the historical data. The problem is especially noticeable for first-differenced da

Figure 28 shows the correlations between output fluctuations and CPI inflation. Unlike the

previous figures, the lower panel of Figure 28 does not plot the correlations between two H

filter detrended variables but, instead, the correlation between a quarterly growth rate (of

consumer prices) and H-P-detrended output. This allows us to present correlations that are

economically relevant, in that we can interpret deviations from an H-P trend as deviations f

some equilibrium level. Along this dimension, QPM does a remarkably good job of reprodu

the correlation pattern found in the data except for, perhaps, the relationship between the o

gap and inflation four to eight quarters into the future. The historical data indicate a consisten

reasonably strong positive correlation, whereas the artificial data admit a declining and wea

t 0=

t 0=

t 3=
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correlation between future inflation and the output gap. To the extent that the QPM moneta

authority targets inflation, however, we should expect future inflation and the output gap to 

close to orthogonal (see Rowe and Yetman 2000).

Overall, QPM appears to reproduce data that are reasonably consistent with history. There

course, areas where further development would be useful. Especially notable are the relati

between wage and price inflation; and the timing between employment and output fluctuati

and between output and real exchange rate movements.

As stated earlier, other statistical relationships are considered to obtain a clearer picture of

dynamic properties of QPM. Owing to the fact that Canada is a small open economy, the ex

sector plays a key role in the Canadian economy. We therefore analyze the ability of QPM 

replicate some important open-economy correlations. Figures 29 and 30 show dynamic

correlations between the exports and the real exchange rate, and imports and the real exc

rate. The historical data for the former show a clear pattern, indicating that depreciations a

related to increased exports at all frequencies under consideration. The artificial data corre

suggest that real exchange rate depreciations lead to increased exports in the future and th

declining past exports are related to an exchange rate depreciation. In this case, the artific

correlations seem more sensible than the historical data correlations, but it is important to

remember that these results are based on simple correlations and not careful empirical ana

For the real exchange rate and imports relationship, the historical data are unable to provid

consistent pattern across the detrending methods, so we simply note that artificial data gen

mirror image of the correlation between exports and the real exchange rate.

Figures 31 through 34 show the relationship between imports and exports, ROW output an

Canadian output, output and imports, and exports and ROW output. Figure 31 plots the im

export dynamic correlations, which attempt to capture, at least partially, the “import-for-exp

phenomenon. The historical data display a triangular-shaped correlation structure that pea

zero at about 60 per cent. In contrast, the artificial data generated by QPM display virtually

correlation at a frequency of zero between imports and exports, suggesting that the model f

capture the import-for-export relationship found in the historical data. Similarly, the link betw

Canadian output and ROW output is statistically weaker in QPM than in the data. Figure 32 s

a historical correlation structure that peaks at  and declines monotonically towards ze

over 4-period leads and lags. The artificial data, in contrast, show only a small positive correl

between ROW and Canadian output. The ability of QPM to match the correlation between o

fluctuations and imports is somewhat better (Figure 33). While QPM is unable to reproduce

same timing as in the historical data, it appears to mimic the same broad correlation patter

t 0=
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Figure 34 displays the historical relationship between ROW output and exports, and indica

more success. Although the artificial data are unable to capture the maximum correlation fou

the historical data, QPM is able to reproduce the broad correlation shapes found in the hist

data.

Finally, as noted earlier, output fluctuations display an excessive degree of volatility in QPM,

though the volatility of the components of aggregate output is similar to those found in the

historical data. Indeed, the standard deviation from the historical data is about 3.4 per cent

whereas that from QPM is about 6 per cent. We conjecture that the excessive volatility arises

undue correlation among some components of aggregate output in QPM, and we investiga

whether this conjecture is supported by the evidence. For the sake of brevity, we do not de

the results, but they indicate that QPM, in general, poorly reproduces the historical dynami

correlations between some of the components of real GDP. The contemporaneous correlat

between government and private consumption, for instance, is statistically different and of a

different sign. The other government consumption correlations admit similarly gross non-

matches. Thus, the evidence suggests that the sources of excessive aggregate output variab

spurious relationships amongst some of the components of aggregate output.

3.2.3 Partial correlations

In this section, we investigate the ability of QPM data to reproduce estimation results of two

researched reduced-form equations: inflation and output growth. We define inflation as the

difference of core CPI and specify it as a linear function of inflation at to and

following variables at  to : the output gap (calculated as deviations of log outpu

from its H-P trend), the quarterly growth rate of the nominal exchange rate, and the quarter

change of log commodity prices. Using the same 4-lag structure, the quarterly growth rate 

output is specified as a linear function of itself, the yield spread, the quarterly change in the

real exchange rate, the quarterly growth rate of commodity prices, and the quarterly growth r

ROW output. Both equations are estimated using data from the 1973Q1 to 1998Q1 sample p

It is very likely that these equations are misspecified. To the extent that QPM is a good

approximation of the Canadian economy, however, the equations based on historical and ar

data should be equally misspecified and thus produce similar results.

Table 7 shows the estimation results from the reduced-form inflation equation. To focus on

average effect of any particular variable on inflation, we report the summed parameter estim

rather than any particular parameter estimate. In Table 7, the first column describes the regr

under consideration, the second column reports historical data (summed) point estimates a

t 1–= t 4–=

t 0= t 4–=
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with their 95 per cent confidence intervals, and the third column presents the average (sum

parameter estimate from QPM artificial data.

Table 7 shows that QPM is able to produce inflation with approximately the same degree o

persistence as the historical data (perhaps a little too much), but that it is unable to capture

magnitude of the effect of the other three regressors. In particular, the effect of the exchang

and commodity prices lies within the 95 per cent confidence intervals, but their estimated av

effect on inflation is substantially smaller than that estimated using historical data. Similarly

effect of the artificial data output gap is about 20-fold smaller than that estimated in the histo

data (0.005 versus 0.1). This is an especially odd result, since inflation, or more precisely the

level, is determined in QPM via a Phillips curve relationship, and the artificial data H-P-filte

output gap and the QPM output gap are highly correlated (95 per cent) with a variance rati

almost one. Future work is needed to explore this odd result.

Table 8 lists estimates from reduced-form output equations. The estimates based on the his

data indicate that output growth responds positively to movements in its regressors, althou

effects of lagged output growth and the real exchange rate are not statistically significant. I

contrast, QPM generates artificial output data, which has a negative partial correlation with

simulated commodity price data. This result supports our previous conclusion regarding the

weakness of the open-economy linkages in QPM.

4. Sensitivity Analysis

In this section, we report the results of two perturbations to the base-case simulation exercis

consider, first, a modification to the structure of the stochastic shocks and, second, a change

monetary policy rule. While the sensitivity analysis reported is by no means exhaustive, it d

provide some useful information on directions for future research on QPM.

To assess the sensitivity of our results to the type of shocks, we replace the current base-c

AR(1) calibration of the domestic shocks with iid disturbances.16 We parameterize the latter such

that their standard deviations are identical with those induced by the AR(1) innovations. In 

words, we attempt to determine how much our conclusions are an artifact of including persis

into the estimation-by-simulation shock terms. Overall, the temporal correlations across the

disturbance structures are very similar, except for those corresponding with output and

investment. Figure 35 plots correlations between investment and output in both historical dat

data generated by QPM under iid shock parameterization. The solid and short-dash lines rep

16. The simulated ROW variables are not changed for these exercises.
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dynamic correlations based on the historical data and their corresponding 95 per cent confi

interval, while the long-dash line corresponds with correlations based on iid innovations. Fr

the figures, it is readily apparent that the iid innovations induce QPM to generate investmen

correlations that are positive contemporaneously and negative at the first lead and lag. Thi

suggests that the investment aggregate in QPM needs some degree of external persistenc

alia, to generate correlations closer to those in the historical data.

We also re-estimate the reduced-form output and inflation equations specified in the previo

section. Table 9 reports the reduced-form inflation equation estimation results. The first thr

columns reproduce the information provided in Table 7, while the fourth column reports the

summed average parameter estimate from the regressors under consideration. The param

estimates are quite similar to the base-case ones. The reduced-form output equation resul

given in Table 10. The most striking result is that output growth generated by the iid disturba

displays a negative autocorrelation, instead of the positive persistence estimated in the bas

This result is not surprising, however, given the investment behaviour described in the prev

paragraph.

We also consider the effect of a different monetary rule. In particular, we replace the base-c

inflation-forecast-based rule with a simple Taylor rule estimated with Canadian data spann

roughly the same period as that used for our empirical work; that is:

,

where is the yield spread, is the equilibrium yield spread, is the annual consumer

(excluding food and energy) inflation,  is the output gap, and  and  are parameters to 

calibrated.17 Following the empirical results in Amano (1997), we set both parameters to 0.518

Consistent with the conclusions from the iid disturbance exercise, the dynamic correlations

generally similar to the base-case. The correlation between the output gap and future inflatio

deteriorated slightly relative to the base-case. An examination of these correlations (Figure

reveals coefficients at leads of inflation that are now closer to zero than those in the base-c

(Figure 28). As stated earlier, however, we expect this result when a monetary authority tar

inflation.

17. The current inflation-forecast-based rule has a parameter of 1.65 on deviation of future inflation
its target.

18. To allow comparison, we use the same set of shocks as in the base-case.

rslt rslt
* α πt 2–( ) β ỹt+ +=

rsl rsl
* π

ỹ α β
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Again, we re-estimate our reduced-form output and inflation equations. Table 11 reports th

estimation results for the inflation equation. The parameter estimates based on the Taylor-

artificial data are remarkably similar to the base-case results. The estimation results from t

reduced-form output equation (Table 12), however, are quite different from those estimated

the base-case artificial data (Table 9); the real exchange rate and ROW output growth now c

negatively with domestic output changes. Also, output growth generated using the Taylor ru

exhibits more persistence and a smaller response to shifts in the other regressors.

Overall, our modest sensitivity analysis suggests that most of the moments considered are

reasonably robust to perturbations in the innovation structure and monetary policy rule. The

exceptions appear to be the investment aggregate, the behaviour of which seems very sen

the types of stochastic shocks, and the inflation and output relationship, which is, as expec

sensitive to the type and calibration of the monetary policy rule.

5. Conclusion

In this paper, we have presented the results of two recent lines of research aimed at evalua

QPM. The first line of evaluation focused on the steady-state calibration of QPM using a va

of Canova’s (1994, 1995) Monte Carlo method. The approach allows us to formalize the cho

parameters and provides a systematic method to analyze the model’s sensitivity to parame

perturbations. The second line of evaluation examined the ability of QPM to reproduce sam

moments found in the historical data. In particular, we used stochastic simulations to inves

QPM’s ability to generate artificial data that mimic empirical correlations: autocorrelations,

bivariate correlations, and partial correlations of key macroeconomic variables.

The results of our two evaluation methods point to some strengths and weaknesses in the 

system. The main result of our evaluation of the steady-state model is that most of the para

calibrations appear reasonable, in that they lie within the empirical distribution and are clos

the empirical mean. Nevertheless, there is still room for improvement. In cases where the SS

parameters are some distance away from the central tendencies of their respective posteri

distributions, minor improvements in the parameterization of the model may be possible. O

analysis also highlights that the effects of some shocks (such as a government debt shock) s

be known with a good deal of confidence, while for other shocks (such as a discount rate s

there is more uncertainty regarding the magnitude of their effects.

The results corresponding with dynamic QPM indicate that the model is able to reproduce m

the temporal correlations that are important from a monetary policy-maker’s perspective. O
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notable area that needs future development, however, is the wage/price relationship; anothe

external sector. QPM appears to be unable to mimic many of the open-economy moments w

in the data. A modest sensitivity analysis suggests that these conclusions are robust both t

degree of persistence in the shock structure and to the monetary policy rule. These tests, ho

are quite stringent, in that we have no other metric for comparison. We plan to compare the a

of QPM to reproduce the data’s dynamic properties with an estimated model, perhaps a VA

This approach should shed some light on how stringent our tests are, since most estimatio

approaches choose parameters by fitting the data. In other words, we would compare QPM

ability to reproduce data with a model that is designed (estimated) to match correlations in 

data.

It would be useful to formally combine the results from the steady-state and dynamic QPM

evaluations in some fashion. One area where we may be able to integrate the results is the e

sector of QPM. In particular, the Monte Carlo evaluation of the steady-state model suggest

data constraints shed very little light on the ASOE assumption, while the dynamic analysis

indicates that the open-economy linkages in QPM are somewhat weaker than those found

empirical sample data. Perhaps combining these types of information would allow us to fur

refine our methodology and areas for future development.
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Table 1: Prior Distributions on Structural Parameters of SSQPM

Parameter
name

SSQPM
value

Range Definition

asoelx 0.6000 U[0 1] Coefficient on y/yrow in x_y:forex equation

asoepx 0.5/6 U[0 0.1] Coefficient on yrow/y in px equation

crtshar 0.4000 U[0 1] Per cent of rule-of-thumb consumers

delta 0.9646 U[0.9346 0.9946] Consumer’s discount factor

deprkbus 0.0803 U[0.05 0.11] Rate of depreciation of capital stock

el 0.6551 N(0.66, 0.22) truncated [0,1] Labour share in Cobb-Douglas production function

gamma 0.9600 U[0.90 0.99] Probability of survival

ltfp_dq 0.0085 N(0.0085, 0.152) Growth of total factor productivity

r1_r_ss 0.0040 U[0 0.01] Real risk premium on 90-day rates

r40zz_t 0.0050 U[0 0.01] Real risk premium on 10-year bonds

rcon_r 0.0400 U[0.025 0.055] Real consumer discount rate

rgb_r 0.0020 U[0.0005 0.0035] Risk premium on government debt

rkbus_r 0.1450 U[0.08 0.20] Risk premium on the cost of capital

rnfa_r 0.0050 U[0.0013 0.0088] Risk premium on net foreign assets

rslzz 0.0050 U[0, 0.01] Slope of the yield curve

runemp 0.0715 N(0.07, 0.152) NAIRU

sigma 0.6600 U[0.2 1.5] Coefficient of relative risk aversion

xr40zz1 0.7500 U[0.4 1.0] Weight on r40uszz in the r40zz equation

xr40zz2 0.7000 U[0.4 1.0] Weight on r1zz in the r40zz equation

xr40zz3 1.0000 U[0.8 1.0] Weight on the inflation differential in the r40zz equation

xrcc1 0.2500 U[0,1] Weight on r1 in the cost of capital equation

xrgb1 0.3500 U[0,1] Weight on r1 in rgb equation

xrnfa1 0.1600 U[0,1] Weight on r1 in rnfa equation

xxlp2 0.9400 U[0.5 1.5] Coefficient on yrow/y in px equation

xxlpcm2 0.7000 U[0.2 1] Coefficient on real exchange rate in pcm equation

xxlpcx2 0.5300 U[0,1] Weight given to commodity prices in price of exportables equati

xxlpinvm2 0.7000 U[0.3 1] Weight on real exchange rate in pcinvm equation

xxlpm2 0.8250 U[0.5 1] Weight on real exchange rate in pm_pfc equation

/* stab1_ss -- First stability condition */
E1: (1+stab1_ss)**0.25 = 1+(1+rcon_ss)**0.25 - (gamma_ss*y_dq_ss)**0.25,
E2: y_dq_ss = exp(ltfp_dq_ss/el_ss+lfullnemp_dq_ss)

/* stab2_ss -- Second stability condition */
E3: (1+stab2_ss)**0.25 = 1+y_dq_ss**0.25 - (1+rcon_ss)**0.25*(1-((1+mpcw_ss)**0.25-1)),
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Table 2: Summary Statistics from Actual and Simulated ROW Data

Variable
Actual variance

(x1000)
Simulated variance

(x1000)
Actual AR(1)

coefficient
Simulated AR(1)

coefficient

1.77 1.54 0.38 0.35

0.04 0.03 0.94 0.91

0.20 0.20 0.85 0.85

0.90 0.90 0.93 0.93

Table 3: Final Reparameterized AR(1) Shock Terms

Shock term AR coefficient
Standard deviation of the

residual term
(in percentage form)

Consumption 0.45 1.00

Investment 0.90 2.61

Exports 0.40 2.40

GDP deflator 0.70 0.49

Nominal G-6 exchange rate 0.75 1.59

∆LPCOMROW

∆LPROW

LYROW_GAP

R1ROWzz
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Table 4:
Historical and QPM Moments

Standard Deviations and Autocorrelation Coefficient
With Their Corresponding 95 Per Cent Confidence Intervals for Selected Variables

Variablesa

a. Quarterly indicates quarterly growth at annual rates. Annual indicates year-over-year growth and H-P f
corresponds with H-P-detrended log variables.

Standard deviation
AR(1)

coefficient

Consumption

Quarterly 5.2 <5.7 < 5.9 < 6.8 0.20 < 0.39 <0.46 < 0.58

Annual 3.4 < 3.9 < 4.0 < 4.5 0.63 < 0.84 <0.85 < 1.02

H-P filtered 2.2 < 2.5 <2.6 < 2.9 0.66 < 0.85 <0.86< 1.04

Investment

Quarterly 11.3 < 13.0 <14.0 < 15.0 0.07 <0.22 < 0.26 < 0.45

Annual 7.5 < 8.5 <8.7 < 9.8 0.64 <0.82 < 1.03

H-P filtered 5.0 < 5.7 <5.9 < 6.6 0.68 <0.83< 0.87 < 1.06

Exports

Quarterly 10.4 <11.7 < 11.9 < 13.7 -0.22 < -0.03 < 0.16 <0.22

Annual 5.3 < 6.1 <6.5 < 7.0 0.53 < 0.72 <0.76 < 0.91

H-P filtered 3.4 < 3.9 <4.1< 4.4 0.54 < 0.72 <0.76 < 0.91

GDP price deflator

Quarterly 3.8 <4.1 < 4.3 < 5.0 0.64 <0.69 < 0.83 < 1.02

Annual 3.5 < 3.5 < 4.0 < 4.6 0.76 <0.92 < 0.95 < 1.14

Real G-6 exchange rate

Quarterly 7.2 < 8.2 <8.6 < 9.5 0.21 <0.38< 0.40 < 0.59

Annual 4.9 <5.5 < 5.6 < 6.5 0.66 <0.82 < 0.85 < 1.04
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Table 5:
Test of the Overidentifying Restrictions

Standard Deviations and Autocorrelation Coefficient
With Their Corresponding 95 Per Cent Confidence Intervals for Selected Variables

Variables Standard deviation
AR(1)

coefficient

Output

Quarterly 2.9 < 3.3 < 3.8 <5.9 0.25 <0.29 < 0.44 < 0.63

Annual 2.0 < 2.3 < 2.7 <3.6 0.67 < 0.80 < 0.86 < 1.06

H-P filtered 13 < 1.5 < 1.8 <2.4 0.69 <0.80 <  0.88 < 1.07

Imports

Quarterly 4.2 < 11.0 < 12.6 < 14.5 0.04 < 0.23 < 0.42 <0.84

Annual 3.6 < 6.7 < 7.7 < 8.9 0.60 < 0.79 <0.91 < 0.98

H-P filtered 2.5< 4.0  < 4.5 < 5.2 0.61 < 0.80 <0.92 < 0.99

Employment

Quarterly 2.1 < 2.1 < 2.4 < 2.8 0.38 < 0.57 < 0.76 <0.83

Annual 1.6 < 1.8 < 1.9 < 2.1 0.70 < 0.89 <0.91 < 1.08

H-P filtered 1.1 <1.2 < 1.3 < 1.5 0.72 < 0.91 <0.92 < 1.10

Terms of trade (level ratio) 2.8 < 4.0 < 4.6 < 5.3 0.73 < 0.92 <0.95 < 1.10

Yield spread 1.2 < 1.4 < 1.6 <4.6 0.55 < 0.74 <0.91 < 0.92

10-year interest rate 2.1 < 2.4 < 2.7 <4.3 0.76 <0.93 < 0.95 < 1.14

90-day interest rate 3.0 < 3.5 < 4.0 <8.7 0.74 <0.92 < 1.11
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Table 6: Autocorrelation Function Comparisons, Generalized Q-Statistics

Horizon

Variable 2 4 8 20

Output growth 3.51 7.66 8.81 16.96

Inflation 2.62 2.72 5.83 18.08

Exchange rate 0.35 6.27 8.01 16.85

Terms of trade 0.60 1.82 3.01 11.23

Table 7: Summed Partial Correlations with Inflation

Historical data Base-case artificial data

Lagged inflation
( )

0.808 < 0.896 < 0.984 0.979

H-P filtered output gap
( )

0.044 < 0.100 < 0.155 0.005

Nominal exchange rate
( )

0.016 < 0.069 < 0.123 0.016

ROW commodity price
( )

-0.005 < 0.026 < 0.057 0.007

Table 8: Summed Partial Correlations with Output Growth

Historical data Base-case artificial data

Lagged output growth
( )

-0.093 < 0.242 < 0.578 0.035

Yield spread
( )

-0.010 < 0.075 < 0.161 0.038

Real exchange rate
( )

-0.058 < 0.029 < 0.116 0.268

ROW commodity price
( )

0.016 < 0.055 < 0.094 -0.014

ROW output growth
( )

0.059 < 0.489 < 0.918 0.453

αi
i

k

∑ R
2

0.84= R
2

0.99>

i 1,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =

αi
i

k

∑ R
2

0.60= R
2

0.45=

i 1,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =
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Table 9: Summed Partial Correlations with Inflation, iid Shock Perturbation

Historical data Base-case artificial data iid artificial data

Lagged inflation
( )

0.808 < 0.896 < 0.984 0.979 0.939

H-P-filtered output
Gap ( )

0.044 < 0.100 < 0.155 0.005 0.010

Nominal exchange rate
( )

0.016 < 0.069 < 0.123 0.016 0.040

ROW commodity price
( )

-0.005 < 0.026 < 0.057 0.007 0.016

Table 10: Summed Partial Correlations with Output Growth, iid Shock Perturbation

Historical data Base-case artificial data iid artificial data

Lagged output growth
( )

-0.093 < 0.242 < 0.578 0.035 -0.874

Yield spread
( )

-0.010 < 0.075 < 0.161 0.038 0.102

Real exchange rate
( )

-0.058 < 0.029 < 0.116 0.268 0.329

ROW commodity price
( )

0.016 < 0.055 < 0.094 -0.014 -0.054

ROW output growth
( )

0.059 < 0.489 < 0.918 0.453 0.602

αi
i

k

∑ R
2

0.84= R
2

0.99> R
2

0.96=

i 1,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =

αi
i

k

∑ R
2

0.60= R
2

0.45= R
2

0.46=

i 1,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =
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Table 12: Summed Partial Correlations with Output Growth, Taylor Rule Perturbation

Table 11: Summed Partial Correlations with Inflation, Taylor Rule Perturbation

Historical data Base-case artificial data Taylor rule data

Lagged inflation
( )

0.808 < 0.896 < 0.984 0.979 0.983

H-P-filtered output
Gap ( )

0.044 < 0.100 < 0.155 0.005 0.008

Nominal exchange rate
( )

0.016 < 0.069 < 0.123 0.016 0.022

ROW commodity price
( )

-0.005 < 0.026 < 0.057 0.007 0.009

Historical data Base-case artificial data Taylor rule data

Lagged output growth
( )

-0.093 < 0.242 < 0.578 0.035 0.887

Yield spread
( )

-0.010 < 0.075 < 0.161 0.038 0.003

Real exchange rate
( )

-0.058 < 0.029 < 0.116 0.268 -0.007

ROW commodity price
( )

0.016 < 0.055 < 0.094 -0.014 -0.008

ROW output growth
( )

0.059 < 0.489 < 0.918 0.453 -0.006

αi
i

k

∑ R
2

0.84= R
2

0.99> R
2

0.99>

i 1,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =

αi
i

k

∑ R
2

0.60= R
2

0.45= R
2

0.99>

i 1,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =

i 0,k 4= =
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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Figure 17
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Figure 18
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Figure 19: ROW VAR Impulse-Response Functions
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Figure 21
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’Output and Investment’
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’Output and Employment’
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Figure 24

’Consumption and Yield Curve Gap’
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Figure 25

’Output and Yield Curve Gap’
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’Output and Real Exch.Rate’
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Figure 27

’Wage and Price Inflation’
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Figure 28

’Output and Inflation’
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Figure 29

’Exports and Real Exch.Rate’
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Figure 30

’Imports and Real Exch.Rate’
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Figure 31

’Exports and Imports’
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Figure 32

’Output and ROW Output’
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Figure 33

’Output and Imports’
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Figure 34

’Exports and ROW Output’
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’Output and Inflation’
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