

Geological Survey of Canada

CURRENT RESEARCH 2001-F4

⁴⁰Ar-³⁹Ar geochronological investigations in the central Hearne domain, western Churchill Province, Nunavut: a progress report

H.A. Sandeman

Natural Resources Canada

Ressources naturelles Canada

Purchase pour acheter Titles Article Article

©Her Majesty the Queen in Right of Canada, 2001 Catalogue No. M44-2001/F4E-IN ISBN 0-662-30759-3

Available in Canada from the Geological Survey of Canada Bookstore website at: http://www.nrcan.gc.ca/gsc/bookstore (Toll-free: 1-888-252-4301)

A copy of this publication is also available for reference by depository libraries across Canada through access to the Depository Services Program's website at http://dsp-psd.pwgsc.gc.ca

Price subject to change without notice

All requests for permission to reproduce this work, in whole or in part, for purposes of commercial use, resale, or redistribution shall be addressed to: Earth Sciences Sector Information Division, Room 200, 601 Booth Street, Ottawa, Ontario K1A 0E8.

⁴⁰Ar-³⁹Ar geochronological investigations in the central Hearne domain, western Churchill Province, Nunavut: a progress report¹

H.A. Sandeman

Canada–Nunavut Geoscience Office

CURRENT RESEARCH RECHERCHES EN COURS

Sandeman, H.A., 2001: ⁴⁰Ar-³⁹Ar geochronological investigations in the central Hearne domain, western Churchill Province, Nunavut: a progress report; Radiogenic Age and Isotopic Studies: Report 14; Geological Survey of Canada, Current Research 2001-F4, 23 p.

Contribution to the Western Churchill NATMAP Project

Artic

Abstract

The western Churchill Province of the northwest Canadian Shield was originally defined on the basis of widespread, Proterozoic K-Ar ages, but early mapping in conjunction with sparse, old K-Ar ages indicated that it contained preserved remnants of Archean supracrustal and granitoid rocks. A reconnaissance ⁴⁰Ar-³⁹Ar thermochronological investigation of a segment of crust lying along a north-northwest-trending transect from Kaminak Lake (central Hearne domain) in the south to Yathkyed Lake (northern Hearne domain) in the northwest, indicates that the Archean supracrustal belts preserve primary Archean igneous and metamorphic cooling ages for hornblende, but biotite ages were reset in the Proterozoic. The domain lying between the two supracrustal belts yielded Proterozoic ages for all dated minerals. The resetting of the ⁴⁰Ar-³⁹Ar systematics is attributed to *large-scale thermal overprinting during Hudsonian deformation and magmatism at ca. 1830–1810 Ma and subsequent slow cooling. Local evidence for ca. 1750 Ma resetting of mica ages exists, but no unequivocal evidence for a ca. 1900 Ma tectonothermal event can be discerned in the* ⁴⁰*Ar-*³⁹*Ar thermochronological data.*

Résumé

La Province de Churchill occidentale, dans la partie nord-ouest du Bouclier canadien, a été à l'origine définie par la présence répandue d'unités livrant des âges K-Ar du Protérozoïque. Cependant, les travaux initiaux de cartographie géologique et l'identification ici et là d'unités affichant des âges K-Ar plus anciens indiquaient que cette partie de la province de Churchill renferme des vestiges de roches supracrustales et de granitoïdes de l'Archéen dont la signature a été conservée. Une étude thermochronologique de reconnaissance à l'aide du couple ⁴⁰Ar-³⁹Ar a été menée le long d'un transect s'étendant de la ceinture de roches supracrustales de Kaminak Lake (partie centrale du domaine de Hearne) en direction du nord-nord-ouest jusqu'à la ceinture de roches supracrustales de Yathkyed Lake (partie méridionale du domaine de Hearne). Dans les bandes de roches supracrustales de l'Archéen, les résultats indiquent que la hornblende a su conservé ses âges originels de cristallisation magmatique et de refroidissement métamorphique de l'Archéen, mais que dans la biotite les horloges isotopiques ont été remises à zéro au Protérozoïque. Dans le domaine compris entre les deux ceintures de roche supracrustales, par ailleurs, tous les minéraux datés ont livré des âges situés dans le Protérozoïque. La remise à zéro du système ⁴⁰Ar-³⁹Ar est attribuée à une surimpression thermique à grande échelle s'étant produite au cours de la déformation et du magmatisme hudsoniens, à environ 1 830-1 810 Ma, épisode qui a été suivi par un refroidissement lent. Par endroits, on a constaté une remise à zéro des horloges isotopiques du mica à environ 1 750 Ma, mais aucun indice non équivoque d'un événement tectonothermique à 1 900 Ma n'a pu être mis en évidence dans les données thermochronologiques du système ⁴⁰Ar-³⁹Ar.

INTRODUCTION

The Churchill Province of the Canadian Shield was originally defined on the basis of widespread, predominantly Proterozoic (Hudsonian) K-Ar ages (Stockwell, 1961), but early mapping in conjunction with sparse, old K-Ar ages indicated that it contained preserved remnants of Archean supracrustal and granitoid rocks (Burwash et al., 1962; Wright, 1967; Wanless and Eade, 1975). The western Churchill Province, that part of the Churchill Province exposed north and west of Hudson Bay (**Fig. 1**), was subdivided by Hoffman (1988) into Rae and Hearne provinces. Extensive field and supporting laboratory studies have led to further subdivision of the Hearne Province (now termed Hearne domain) into two subdomains, the northern and central Hearne domains. These are characterized by apparently distinct, late Neoarchean and Paleoproterozoic orogenic events (Hanmer and Relf, 2000).

Recent geochronological investigations in the western Churchill Province (Hanmer et al., 1994; Berman et al., 2000: Davis et al., 2000; MacLachlan et al., 2000) have shown that the thermal history of the Churchill Craton has been complex, locally punctuated by at least seven distinct, regional tectonometamorphic intervals, including discrete accretionary/magmatic events as well as other cryptic events that have been recognized only on the basis of detailed Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb and thermobarometric studies (Berman et al., op. cit.). These include 1) ca. 2690 Ma deformation in the northern Hearne domain (Hanmer et al., 1999; Tella et al., 2000); 2) ca. 2685 Ma greenschist-grade metamorphism and deformation in the central Hearne domain (Davis et al., 2000); 3) ca. 2600 Ma granitoid plutonism across the northern Hearne and Rae domains (Davis et al., 2000); 4) ca. 2500–2550 Ma metamorphism and deformation in the northern Hearne domain (Davis et al., 2000); MacLachlan et al., 2000); 5) ca. 1900 Ma metamorphism and deformation in the northern Hearne domain (Berman et al., 2000); 6) ca. 1830 Ma magmatism and deformation in the northern Hearne and Rae domains (Peterson and van Breemen, 1999; Tella et al., 2000) and; 7) ca. 1755 Ma plutonism in the western Hearne and eastern Rae domains (Peterson and van Breemen, 1999).

This study, initiated as part of the Western Churchill NATMAP Project, was designed to examine the field, petrographic, and ⁴⁰Ar-³⁹Ar thermochronological behaviour of potassium-bearing mineral phases in selected rock units exposed within a crustal segment from the Kaminak belt of the central Hearne domain to the Yathkyed belt of the northern Hearne domain. Herein, twenty ⁴⁰Ar-³⁹Ar laser step-heating age dates are reported for rocks from the region and these data are used to examine the regional cooling and tectonometamorphic history of the Hearne domain, western Churchill Province.

GEOLOGICAL SETTING

The study area, lying between Yathkyed Lake in the northwest and Kaminak Lake in the southeast, is situated in the northeastern part of what was formerly termed the Ennadai–Rankin greenstone belt (Fig. 1) of the Churchill Province (Wright, 1967), an areally extensive series of rocks that include the Kaminak, Yathkyed, MacQuoid and Rankin supracrustal belts. The main lithological units in the study area (Fig. 2) comprise greenschist-grade Archean supracrustal and granitoid rocks of the Kaminak Group in the Kaminak belt (Davidson, 1970) and the Henik Group of the Yathkyed belt (Eade, 1986). Archean rocks mainly comprise mafic to felsic volcanic rocks, although locally, and on a regional scale, occurrences of banded iron-formation, siliciclastic sedimentary rocks, and voluminous debris flows associated with felsic volcanic centres are common (Hanmer et al., 1998). Intruding the Archean supracrustal units are a wide range of Neoarchean plutonic rocks, ranging in composition from gabbro to syenogranite.

Purchase pour acheter Titles Article Article

The Kaminak Group is intruded by a suite of ca. 2450 Ma (Heaman, 1994), northeast-trending diabase dykes (Kaminak dykes; Christie et al., 1975), whereas in the Yathkyed belt, Kaminak dykes are apparently absent, but the Archean stratigraphy is crosscut by east-west-trending diabase dykes of the Tulemalu swarm (Eade, 1986). The Archean rocks of both the Kaminak and Yathkyed belts are overlain by the Proterozoic Hurwitz Group (Davidson, 1970), the erosional remnants of an extensive, relatively shallow, Paleoproterozoic intracratonic basin now preserved as a series of outliers across the Hearne domain (Aspler and Chiarenzelli, 1996, 1997). A maximum age of 2450 Ma for the Hurwitz Group is implied by U-Pb dating of baddeleyite in the Kaminak dykes (Heaman, 1994), whereas a 2111 \pm 1 Ma U-Pb baddeleyite age from gabbroic sills in the contained Ameto Formation provides a minimum age of deposition of the lower part of the Group (Heaman and LeCheminant, 1993). Deformation of the Hurwitz Group occurred subsequent to the intrusion of the 2111 \pm 1 Ma gabbro sills, but prior to the intrusion of the ca.1830 Ma lamprophyre dykes associated with the ultrapotassic lavas of the Baker Lake Basin (Tella et al., 1985; Roddick and Miller, 1994; MacRae et al. 1995).

Lying between the Kaminak and Yathkyed belts *proper* are a series of generally flat-lying, amphibolite-facies metasedimentary and metavolcanic rocks assumed to be correlative with the Kaminak and/or Henik Groups that are therefore interpreted to be Archean. These rocks are widely intruded by both schlieren-rich tonalite to monzogranite and by clean, variably foliated, biotite+magnetite±fluorite monzogranite. At least three examples of the latter are known to be Paleoproterozoic (W.J. Davis, pers. comm., 2000; K. MacLachlan, pers. comm., 2000; T.D. Peterson, pers. comm., 2000).

FIELD AND PETROGRAPHIC OBSERVATIONS

The samples under investigation were collected from outcrops located in Figure 2. Brief descriptions of the samples and their UTM co-ordinates are presented in Table 1. The samples include a wide range of rock types including tonalitic and monzonitic intrusive units from the Kaminak belt; metasedimentary and granitoid units from north and northwest of the Kaminak belt, including probable Archean supracrustal rocks and Proterozoic granitoids; and amphibolitic metavolcanic units from the Yathkyed belt.

Geological mapping (Davidson, 1970; Eade, 1986; Aspler and Chiarenzelli, 1996; Relf et al., 1998; Hanmer et al., 1998), in conjunction with U-Pb geochronological investigations (Wanless and Eade, 1975; Mortensen and Thorpe, 1987; Davis et al., 2000; MacLachlan et al., 2000), has roughly outlined the extent of Archean crust in both the Yathkyed and Kaminak belts and has shown that the rocks between these two belts contain a high proportion of variably foliated granite, which, on the basis of field relationships, textures, and local U-Pb ages, are inferred to be predominantly Paleoproterozoic. Moreover, recent U-Pb dating of zircon grains (MacLachlan, pers. comm., 2000) has shown that the oldest rock type in the intervening domain contains a high proportion of metamorphic zircons that yielded ca. 1830 Ma thermal ionization mass spectrometry (TIMS) U-Pb ages.

Specimen PHA-97-H521 represents massive green biotite occurring in veins throughout the host rock. These veins parallel the nearby, para-authochthonous contact with the Paleoproterozoic Hurwitz Group (Fig. 2), and are interpreted to have been emplaced during a hydrothermal event accompanying deformation along this contact.

⁴⁰AR-³⁹AR THERMOCHRONOLOGY

Analytical Methods

All minerals were separated, processed, irradiated and analyzed following the methods outlined in Villeneuve et al. (2000), except for the use of PP-20 hornblende (identical to Hb3gr: apparent age 1072 Ma; Roddick, 1983) that was interspersed along the length of the cannister to arrive at an interpolated J-value for each sample. The two canisters (RAD-28 and RAD-33: GSC Ar geochronological database) were irradiated for approximately 80 hrs in position 5C of McMaster Reactor and these were allowed to cool for 2 months. All data are presented in **Figures 3** through **5**, and numerical data is listed in **Table 2**. All ages are quoted at the 2σ confidence level and include the error in the J-value. Each sample was irradiated within the same 3 mm x 2 mm packet, but was split into multiple aliquots for replicate analysis. These aliquots are marked by alternately shaded portions of the gas release spectra in Figures 3 to 6, with the width of each shaded portion representing the relative volume of ³⁹Ar released for a single aliquot. The width of the shaded band therefore approximates the relative radiogenic argon volume of each analyzed sample.

Hornblende analyses proved somewhat problematic because of changes made to the laser sampling system during the course of the analytical schedule, and because the specimens were under-irradiated for the absolute age of the samples. Hornblende, which releases gas over a narrow temperature window, yielded an erratic and commonly catastrophic release of radiogenic argon within a few incremental increases in laser power. Hence, splitting of gas aliquots was typically difficult. This, coupled with low volumes of ³⁹Ar_K (³⁹Ar generated from ³⁹K during irradiation) due to irradiation, resulted in larger than typical

Purchase pour acheter Titles Article

analytical errors for some specimens. Nevertheless, meaningful data were generated. Even release of gas from mica was much easier to obtain due to the broader temperature window through which the phyllosilicates release their radiogenic argon.

Herein, we report total-gas, integrated ages (equivalent to a K-Ar age: IA), plateau or pseudo-plateau ages (PA), and inverse isotope-correlation ages (CA). Plateaus, traditionally described as three contiguous steps overlapping in error and comprising greater than or equal to 50% of the ³⁹Ar released, were commonly not obtained during this investigation owing to the problems of attaining consistent volume release of gas from all of the minerals. Thus, many of the hornblende plateau ages in particular, as well as those for some of the micas, are referred to as 'pseudo-plateau' ages and represent only best approximations of the 'actual age' of the mineral. The gas steps used in the calculation of the plateaus or pseudo-plateau ages, as well as the inverse isotope-correlation ages, are denoted by asterisks in **Table 2** and are filled black boxes in **Figures 3** through **6**. Below, the approximate Ar closure temperatures (McDougall and Harrison, 1988; Reynolds, 1992) for hornblende (500°C), muscovite (350°C), and biotite (300°C) are used to assist in the interpretation of the cooling history of the region.

Step-heating results

Rocks from the Kaminak and Yathkyed belts (known or inferred Archean ages)

PHA-97-H506

Two aliquots of hornblende from this tonalite pluton yielded a reasonably simple compound spectrum (Fig. 3A) with a total-gas, integrated age of 2669 ± 15 Ma. The plateau age of 2652 ± 15 Ma, representing 91% of the total ³⁹Ar released, overlaps, within error, the integrated age. The corresponding inverse-correlation age (³⁶Ar/⁴⁰Ar versus ³⁹Ar/⁴⁰Ar) of 2654 ± 14 Ma (Mean square of the weighted deviates (MSWD) = 7.5) overlaps, within error, the plateau age, thereby indicating that an age of 2652 ± 15 Ma may be interpreted as a robust cooling age through approximately 500°C for this specimen.

PHA-97-H161

Two aliquots of hornblende from this tonalite pluton yielded only moderately reproducible gas-release patterns (Fig. 3B). The second aliquot, however, gave an internally consistent gas-release spectrum. The combined total-gas, integrated age of 2681 ± 14 Ma is almost identical to the known crystallization age of the rock (Table 1), and suggests the presence of minor excess argon as shown in the initial steps of both aliquots (Fig. 3B). Excess argon is also readily observed in the inverse-isochron plot. Nevertheless, four large gas steps from aliquot 2, all overlapping in error, representing 78% of the ³⁹Ar released

from that aliquot, yield a plateau age of 2623 ± 15 Ma. The corresponding correlation age of 2622 ± 14 Ma (MSWD = 0.6) is in agreement (within error), indicating that the plateau age is a robust estimate of the cooling age of the rock.

PHA-97-H418

Two aliquots of hornblende from this monzonite intrusion yielded a complex, irregular spectrum (Fig. 3C) having an integrated, total-gas age of 2743 ± 15 Ma and a broad scatter about an average age (pseudo-plateau) of 2660 ± 15 Ma for the mid- to high-temperature steps (representing 66% of the total ³⁹Ar released). The correlation plot for this specimen yields no geologically sensible age. Because this hornblende age overlaps (within error) with that determined for PHA-97-H506 (*see* above), it is interpreted as a maximum age for the specimen.

Two aliquots of biotite yielded spectra having comparable shapes with high-power steps indicating the presence of alteration phases in the mineral (**Fig. 4A**). Furthermore, the plateau age for each aliquot is distinct by ca. 30 Ma. The plateau age of 1914 ± 12 Ma for aliquot 1, representing 38% of the total ³⁹Ar released, is 29 Ma younger than the corresponding plateau age for aliquot 2 of 1943 ± 13 Ma (representing 35% of the ³⁹Ar released). These do not overlap within error, but the minimum cooling age for this biotite is interpreted to be Proterozoic, between ca. 1914 and 1943 Ma.

Purchase pour acheter Titles Article Article

CS-96-1302.

Two aliquots of hornblende from this fine-grained amphibolite from the Yathkyed belt gave an old, total-gas, integrated age of 2901 ± 16 Ma, significantly older than crystallization ages for igneous rocks from the region (Eade, 1986; Loveridge et al., 1988; MacLachlan et al., 2000). The two aliquots yielded comparable spectra (Fig. 3D) characterized by small saddles near the high-power end of the patterns. The saddles are interpreted as representing the 'true' cooling age, whereas the remainder of the steps represent gas contaminated by excess argon. The plateau steps, representing 12% of the total ³⁹Ar released, yield an age of 2670 ± 16 Ma. The inverse isotope-correlation age for all of the gas steps yields an age of 2630 ± 78 Ma (MSWD = 73.5). Because the specimen contains a large amount of excess argon, and the plateau and correlation ages do not overlap within error, we interpret the correlation age as a best estimate of the cooling age of the hornblende.

YD97-7116a

Two aliquots of hornblende from this specimen of amphibolitic metavolcanic rock gave an integrated, total-gas age of 2662 ± 15 Ma. Gas from this specimen was released over a very narrow power interval (for both aliquots: Fig. 3E) but yielded five roughly concordant steps (especially on the bulk of the gas released in aliquots 1 and 2), representing 80% of the ³⁹Ar released, and a pseudo-plateau age of 2513 ± 14 Ma. The corresponding argon-correlation age of 2485 ± 14 Ma (MSWD =72.2) is similar, implying that the plateau age represents a reasonable estimate of the cooling age of the hornblende.

YD97-9059

Three aliquots of hornblende from this specimen of amphibolite-facies metavolcanic rock from the Yathkyed belt yielded irregular gas-release patterns and a total-gas, integrated age of 2493 ± 14 Ma. Three steps, one from each aliquot, represent the bulk of the gas release and give similar ages (Fig. 3F). These yield a plateau age of 2460 ± 14 Ma (representing 78% of the ³⁹Ar released). The inverse isotope-correlation age of 2459 ± 14 Ma (MSWD =0.7) for this specimen is essentially identical, suggesting that this represents a robust metamorphic cooling age of the hornblende.

Two aliquots of biotite yielded roughly comparable age spectra (**Fig. 4B**), exhibiting gradual increases in apparent age with laser power, and giving a total-gas, integrated age of 1768 ± 11 Ma. The high-power steps of both aliquots, excluding the final step of aliquot 1, yielded a pseudo-plateau age of 1785 ± 11 Ma, representing 63% of the gas released. Given the continually climbing ages with increasing laser power, this plateau age should be considered as a minimum and likely implies that the biotite has undergone a secondary thermal event that has partially reset the ⁴⁰Ar-³⁹Ar systematics. The corresponding argon isotope-correlation age of 1785 ± 11 Ma (MSWD = 9.8) is identical, and is interpreted as the metamorphic cooling age of the biotite when it last cooled through approximately 300° C.

PHA-97-H524A

Two aliquots of biotite from this tonalite pluton from the Kaminak belt yielded comparable, saddle-shaped, convex-upwards release patterns (**Fig. 4C**) and a total-gas integrated age of 1980 ± 12 Ma. Saddle-shaped spectra are commonly attributed to the release of ³⁹Ar that underwent recoil during irradiation (McDougall and Harrison, 1988). Therefore the age maxima for the saddles may be an overestimation of the cooling age of the biotite, but nevertheless suggests a maximum, ca. 2000 to 2100 Ma cooling age for this biotite.

PHA-97-H521

Two aliquots of vein biotite from this specimen of tonalite yielded generally concordant age spectra with the exception of one step (Fig. 4D). The resultant plateau age of 1722 ± 11 Ma, representing 92.6% of the ³⁹Ar released, is interpreted as the age of tectonic hydrothermal activity that resulted in the emplacement of the vein network. The corresponding inverse-correlation age is 1721 ± 11 Ma (MSWD = 4.1).

Rocks exposed in the transect between the supracrustal belts (Proterozoic or Archean)

PHA-97-H487

Two aliquots of hornblende from this psammitic gneiss gave irregular argon release patterns (**Fig. 5A**) wherein the majority of the radiogenic argon was released in two large steps. Both aliquots gave spectra characterized by young apparent ages in both low and high laser-power steps, but roughly concordant, large gas steps at intermediate laser power. The analyses did not yield a sensible plateau, *sensu stricto*, but gave a total-gas integrated age of 1797 ± 12 Ma. The two large steps gave overlapping (within error) ages, the integrated age for these two steps being 1795 ± 12 Ma, representing 86% of the ³⁹Ar released. This is interpreted as a reasonable estimate of the cooling age of the hornblende.

Purchase Information pour acheter Titles Article Article

Two aliquots of biotite from this sample yielded generally concordant spectra wherein young ages were recorded in the low- and higher-power gas steps (Fig. 5B). The analysis yielded a total-gas integrated age of 1720 ± 11 Ma and a plateau age of 1725 ± 11 Ma (represented by 87% of the ³⁹Ar released). This sample yielded an isotope-correlation age of 1722 ± 11 Ma (MSWD=6.0), similar to the plateau age.

PHA-97-N48

Two aliquots of biotite gave similar, convex-down argon-release patterns (**Fig. 5C**) typically associated with ³⁹Ar recoil. The major difference between the two was the volume of ³⁹Ar released: the second aliquot yielded four times that of aliquot one and moreover, yielded a good plateau. The first aliquot clearly comprised a significantly altered biotite, whereas the second yielded a gas-release spectrum characteristic of a relatively fresh mica. We therefore only used aliquot 2 in our age calculations. The resultant total-gas, integrated age of aliquot 2 is 1732 ± 12 Ma, which is slightly younger than the plateau age of 1743 ± 12 Ma (78% of the total ³⁹Ar released) and identical to the inverse correlation age of 1742 ± 12 Ma (MSWD = 2.6).

Two aliquots of muscovite from this sample yielded roughly concordant spectra (**Fig. 5D**) having a combined integrated and plateau age of 1736 ± 11 Ma. The corresponding isotope-correlation age is 1737 ± 11 Ma (MSWD = 4.0). This is interpreted as the time of closure of the muscovite lattice to argon diffusion (T = 350° C), presumably during a Paleoproterozoic tectonothermal event.

Purchase pour Titles Article Article

PHA-97-J249

Two aliquots of biotite from this specimen of semipelitic schist yielded roughly concordant spectra, although the second aliquot yielded a larger volume of gas and a better defined plateau (*sensu stricto*). We therefore use only the second aliquot in our calculations. The sample gave a total-gas, integrated age of 1711 ± 11 Ma (Fig. 5E). Eleven of 16 steps form a rough plateau yielding an age of 1718 ± 11 Ma and representing 94% of the total ³⁹Ar released. The corresponding inverse isotope-correlation age of 1719 ± 11 Ma (MSWD = 0.3) is identical, within error, implying that the mineral's argon systematics have remained closed to the addition or removal of argon since recrystallization.

PHA-97-H348

One aliquot of biotite from this specimen of well lineated tonalite yielded a spectrum characterized by progressively older steps with laser power (**Fig. 5F**). The total-gas integrated age of 1707 ± 11 Ma is essentially identical to the plateau age (91% of the ³⁹Ar released) of 1718 ± 11 Ma. This is also identical (within error) to the isotope-correlation age yielded by the same gas steps of 1722 ± 11 Ma (MSWD = 2.8).

PHA-97-H479

Two aliquots of hornblende from this schlieren-laden monzogranite gave very irregular argon-release patterns (Fig. 6A). Both aliquots exhibited saddle-shaped spectra having gas steps with large individual errors, and declining to ca. 1745 Ma minima in their high-power gas steps. The analyses did not yield a sensible plateau, but gave a total-gas integrated age of 1772 ± 12 Ma. Because the majority of the

steps gave ages between 1780 and 1740 Ma, the integrated age for all steps in this interval, i.e. a pseudo-plateau, yielded an age of 1754 \pm 12 Ma (59% of the ³⁹Ar released). A corresponding isotope-correlation age is 1748 \pm 11 (MSWD=5.9), overlapping, within error, the plateau age. The plateau age is therefore interpreted as a reasonable estimate of the cooling age of the hornblende.

Two aliquots of biotite from this specimen gave generally concordant spectra wherein young ages were recorded in the first gas steps but the remainder formed a rough plateau (**Fig. 6B**). The analysis yielded a total-gas integrated age of 1721 ± 11 Ma and a plateau age of 1727 ± 11 Ma (represented by 90% of the ³⁹Ar released). This corresponds well with the correlation age of 1727 ± 11 Ma (MSWD=10.0).

PHA-97-H319

Two aliquots of biotite from this clean, unfoliated Paleoproterozoic monzogranite (**Table 1**) gave generally concordant spectra wherein young ages were recorded in the first gas steps, but the remainder formed a rough plateau (**Fig. 6C**). The analyses yielded a total-gas integrated age of 1728 ± 11 Ma. and a plateau age of 1739 ± 11 Ma (represented by 72% of the ³⁹Ar released). The correlation age is identical, yielding an age of 1738 ± 11 Ma (MSWD=3.1).

PHA-97-N50a

Two aliquots of biotite from this clean, well foliated Paleoproterozoic monzogranite (**Table 1**) gave generally concordant spectra wherein young ages were recorded in the first gas steps but the remainder formed a rough plateau (**Fig. 6D**). The analysis yielded a total-gas integrated age of 1705 ± 11 Ma, a plateau age of 1713 ± 11 Ma (represented by 88% of the ³⁹Ar released), and an identical correlation age of 1713 ± 11 Ma (MSWD=2.3).

DISCUSSION

erein we discuss the ⁴⁰Ar-³⁹Ar thermochronological data in light of the results presented above. All of the results, along with other geochronological determinations for rocks of the region, are presented schematically in **Figure 7** and tabulated in **Table 3**.

Intrusive rocks from the Kaminak supracrustal belt preserve primary igneous textures including interlocking quartz and plagioclase that are intergrown with platy biotite and stubby, euhedral grains of prismatic titanite and hornblende. Although these units yield variable argon-release plateaus, they are typically characterized by Archean cooling ages for hornblende. This implies that the interior parts of the Kaminak supracrustal belt, although having undergone Archean, greenschist-grade tectonometamorphism, record primary Archean hornblende cooling ages. Biotite from these specimens, however, typically yielded convex-down argon-release patterns typical of specimens that have experienced ³⁹Ar recoil, a feature compatible with observed petrographic evidence for minor chloritization or alteration of the biotite. The biotite yields Paleoproterozoic ages ranging from ca. 2084 to 1914 Ma, indicating that the primary Archean argon systematics have been reset, probably during a Paleoproterozoic tectonothermal event.

Purchase pour acheter Titles Article

One specimen of biotite (PHA-97-H521) from an intrusive unit in the Kaminak belt was obtained from a biotite-rich vein, exposed as a series of veins crosscutting the pluton and paralleling the adjacent contact with the Paleoproterozoic Hurwitz Group (Fig. 2). This specimen yielded a well defined argon-release pattern having a plateau age of 1722 ± 11 Ma and interpreted as representing crystallization during a Paleoproterozoic tectonothermal event.

Amphibolitic metamorphic rocks from the Yathkyed supracrustal belt yield a range of hornblende cooling ages from \leq 2630 to 2460 Ma. These are interpreted to reflect regional cooling after a late Archean regional metamorphic event. This suggestion is corroborated by U-Pb ages for metamorphic monazite, zircon, and titanite from supracrustal and intrusive rocks of the Yathkyed belt that range in age from ca. 2491 to 2568 Ma (MacLachlan et al., 2000). Biotite from one of the rocks yielded a reasonable plateau having an age of 1785 \pm 11 Ma. This determination is interpreted to reflect Paleoproterozoic resetting of the biotite argon systematics.

Rocks exposed in a north-south corridor between the northern edge of the Kaminak belt and the southern edge of the Yathkyed belt yield roughly comparable Paleoproterozoic cooling ages ranging from 1713 to 1795 Ma. These data include analyses of hornblende, muscovite, and biotite from rocks that are known to be Paleoproterozoic, as well as metasedimentary and gneissic units interpreted to be correlative with rocks of the Kaminak and Henik groups (Davidson, 1970; Hanmer et al., 1998). In general, hornblende cooling ages are older than those for the micas. Ages for biotite and muscovite from a single specimen (PHA-97-N48) overlap, within error, are essentially identical, and therefore indicate rapid cooling through the muscovite and biotite closure temperatures (approximately 350–300°C). These data are imply that the region lying between the two supracrustal belts has been extensively affected by Paleoproterozoic tectonothermal activity at temperatures above 500°C, the closure temperature of hornblende (McDougall and Harrison, 1988). This tectonothermal event probably accompanied and was followed by intrusion of

Purchase pour acheter Titles Article

the voluminous, ca. 1830 Ma Hudsonian granitoid rocks exposed therein, but may have been associated with intrusion of the ca. 1755 Ma Nueltin granitoid suite (Peterson and van Breemen, 1999). The latter suite, however, is not know to occur in the study area. Significantly, no unequivocal evidence for a cryptic, ca. 1900 Ma thermal event (*see* Berman et al., 2000) can be discerned from the thermochronological data. Many of these data are comparable to a hornblende plateau age of 1780 ± 20 Ma (Miller et al., 1995) the only other reported ⁴⁰Ar-³⁹Ar step-heating age from the region.

ACKNOWLEDGMENTS

Yannick Beaudoin, Thomas Hadlari, and Jim Ryan are thanked for their assistance in the field. Fred Quigg, Anastasia Turner, and Mike Villeneuve helped in the acquisition of the thermochronological data. Mike Villeneuve kindly provided a thorough review of the manuscript. This represents a Western Churchill NATMAP Project contribution.

REFERENCES

Aspler, L.B. and Chiarenzelli, J.R.

- 1996: Relationship between the Montgomery Lake and Hurwitz Groups, and revised stratigraphic revision of the lower Hurwitz Group, District of Keewatin; Canadian Journal of Earth Sciences, v. 33, p. 1243–1255.
- 1997: Initiation of ~2.45–2.1 Ga intracratonic basin sedimentation of the Hurwitz Group, Keewatin Hinterland, Northwest Territories, Canada; Precambrian Research, v. 81, p.265–297.
- Berman, R., Ryan, J.J., Tella, S., Sanborn-Barrie, M., Stern, R., Aspler, L., Hanmer, S., and Davis, W.
- 2000: The case of multiple metamorphic events in the western Churchill Province: evidence from linked thermobarometric and in-situ SHRIMP data, and jury deliberations; *in* GeoCanada 2000; Geological Association of Canada–Mineralogical Association of Canada, Annual Meeting, Abstracts, CD-ROM.

Burwash, R.A., Baadsgaard, H., and Peterman, Z.E.

1962: Precambrian K-Ar dates from the western Canada sedimentary basin; Journal of Geophysical Research, v. 67, p. 1617–1625.

Christie, K.W., Davidson, A., and Fahrig, W.F.

1975: The paleomagnetism of Kaminak dikes — no evidence of significant Hudsonian plate motion; Canadian Journal of Earth Sciences, v. 12, p. 2048–2064.

Davidson, A.

1970: Precambrian Geology, Kaminak Lake map-area, District of Keewatin; Geological Survey of Canada, Paper 69–51, 27 p.

Davis, W.J., Hanmer, S., Aspler, L., Sandeman, H., Tella, S., Zaleski, E., Relf, C., Ryan, J., Berman, R., and MacLachlan, K.

2000: Regional differences in the Neoarchean crustal evolution of the western Churchill Province: can we make sense of it?; *in* GeoCanada 2000; Geological Association of Canada–Mineralogical Association of Canada, Annual Meeting, Abstracts, CD-ROM.

Eade, K.E.

1986: Precambrian geology of the Tulemalu Lake–Yathkyed Lake area, District of Keewatin; Geological Survey of Canada, Paper 84-11, 31 p.

Hanmer, S. and Relf, C

2000: Western Churchill NATMAP Project: new results and potential significance; *in* GeoCanada 2000; Geological Association of Canada–Mineralogical Association of Canada, Annual Meeting, Abstracts, CD-ROM.

Hanmer, S., Parrish, R., Williams, M., and Koph, C.

1994: Striding–Athabasca mylonite zone: complex Archean deep-crustal deformation in the East Athabasca mylonite triangle, northern Saskatchewan; Canadian Journal of Earth Sciences, v. 31, p. 1287–1300.

Hanmer, S., Peterson, T.D., Sandeman, H.A., Rainbird, R.H. and Ryan, J.J.

1998: Geology of the Kaminak greenstone belt from Padlei to Quartzite Lake, Kivalliq Region, Nunavut (Northwest Territories); *in* Current Research 1998-C; Geological Survey of Canada, p 85–94.

Hanmer, S., Tella, S., Sandeman, H.A., Ryan, J.J., Hadlari, T. and Mills, A.

1999: Proterozoic reworking in western Churchill Province, Gibson Lake–Cross Bay area, Northwest Territories (Kivalliq region, Nunavut). Part 1: general geology; *in* Current Research 1999-C; Geological Survey of Canada, p. 55–64.

Heaman, L.M.

1994: 2.45 Ga global mafic magmatism: Earth's oldest superplume?; *in* Abstracts of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, (ed.) M.A. Lanphere, G.B. Dalrymple, and B.D. Turrin; United States Geological Survey, Circular 1107, p. 132.

Heaman, L.M. and LeCheminant, A.N.

1993: Paragenesis and U-Pb systematics of baddeleyite (ZrO₂); Chemical Geology, v. 110, p. 95–126.

Hoffman, P.F.

1988: United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia; Annual Review of Earth and Planetary Science Letters, v. 16, p. 543–603.

Loveridge, W.D., Eade, K.E., and Sullivan, R.W.

1988: Geochronological studies of Precambrian rocks from the southern District of Keewatin; Geological Survey of Canada, Paper 88-18, 36 p.

MacLachlan, K., Relf, C., and Davis, W.J.

2000: U/Pb geochronological constraints on structures controlling distribution of tectonothermal domains, Yathkyed Lake area, western Churchill Province; *in* GeoCanada 2000; Geological Association of Canada–Mineralogical Association of Canada, Annual Meeting, Abstracts, CD-ROM.

MacRrae, N.D., Armitage, A.E., Miller, A.R., Roddick, J.C., Jones, A.L., and Mudry, M.P.

1995: The diamondiferous Akluilâk lamprophyre dyke, Gibson Lake area, Northwest Territories; *in* Searching for Diamonds in Canada, (ed.) A.N. LeCheminant, D.G. Richardson, R.N.W. DiLabio, and K.A. Richardson; Geological Survey of Canada, Open File 3228, p. 101–107.

McDougall, I., and Harrison, T.M.

1988: Geochronology and thermochronology by the ⁴⁰Ar/³⁹Ar method; Oxford Monographs on Geology and Geophysics #9, Oxford University Press, Oxford, United Kingdom, 212 p.

Miller, A.R., Balog, M.J., and Tella, S.

1995: Oxide iron-formation-hosted lode gold, Meliadine Trend, Rankin Inlet Group, Churchill Province, Northwest Territories; *in* Current Research, 1995-C, Geological Survey of Canada, p. 163–174.

Mortensen, J.K. and Thorpe, R.I.

1987: U-Pb zircon ages of felsic volcanic rocks in the Kaminak Lake area, District of Keewatin; in Radiogenic and Isotope Studies: Report 1; Geological Survey of Canada, Paper 87-2, p. 123–128.

Peterson, T.D., and van Breemen, O.

1999: Review and progress report of Proterozoic granitoid rocks of the western Churchill Province, Northwest Territories (Nunavut); *in* Current Research 1999-C, Geological Survey of Canada, p. 119–127.

Relf, C., Irwin, D., MacLachlan, K., and Mills, A.

1998: New insights into the geology of the Yathkyed Lake greenstone belt, western Churchill Province, Northwest Territories; *in* Current Research 1998-C, Geological Survey of Canada, p. 67–75.

Reynolds, P.H.

Low temperature thermochronology by the ⁴⁰Ar/³⁹Ar method; *in* Short Course Handbook on Low Temperature Thermochronology, (ed.) M. Zentilli and P.H. Reynolds; Mineralogical Association of Canada, p. 3–19.

Roddick, J.C.

1983: High precision intercalibration of ⁴⁰Ar/³⁹Ar standards; Geochimica et Cosmochimica Acta, v. 47, p. 887–898.

Roddick, J.C. and Miller, A.R.

1994: An ⁴⁰Ar-³⁹Ar age from the REE-enriched Enekatcha alkaline intrusive suite and implications for timing of ultrapotassic magmatism in the central Churchill Structural Province; *in* Radiometric age and isotope studies: Report 8; Geological Survey of Canada, 1994-F, p. 69–74.

Stockwell, C.H.

1961: Structural provinces, orogenies, and time classification of rocks of the Canadian Precambrian Shield; *in* Age Determinations by the Geological Survey of Canada, Report 2 : Isotopic Ages; Geological Survey of Canada, Paper 61-17, p. 108–118.

Tella, S., Hanmer, S., Ryan, J.J., Sandeman, H., Davis, W., Berman, R., Wilkinson, L., and Mills, A.

2000: 1:100 000 scale bedrock geology compilation map of the MacQuoid Lake–Gibson Lake–Coss Bay–Akunak Bay region, Western Churchill Province, Nunavut, Canada; *in* GeoCanada 2000; Geological Association of Canada–Mineralogical Association of Canada, Annual Meeting, Abstracts, CD-ROM.

Tella, S., Heywood, W.W., and Loveridge, W.D.

1985: A U-Pb age on zircon from a quartz syenite intrusion, Amer Lake, District of Keewatin, Northwest Territories; *in* Current Research, Part B; Geological Survey of Canada, Paper 85-1B, p. 367–370.

Villeneuve, M., Sandeman, H.A., and Davis, W.J.

2000: A method for intercalibration of U-Th-Pb and ⁴⁰Ar-³⁹Ar ages in the Phanerozoic; Geochimica et Cosmochimica Acta, v. 64, p. 4017–4030.

Wanless, R.K. and Eade, K.E.

1975: Geochronology of Archean and Proterozoic rocks in the southern District of Keewatin; Canadian Journal of Earth Sciences, v. 12, p. 95–114.

Wright, J.

1967: Geology of the southeastern Barren Grounds, parts of the Districts of MacKenzie and Keewatin; Geological Survey of Canada, Memoir 350, 91 p.

Figure 1. Simplified geological map of north-central Canadian Shield showing the location of the study area in the western Churchill Province (*modified after* Hoffman, 1988). Key: KB – Kaminak belt; YB – Yathkyed belt; MB – MacQuoid belt; RB – Rankin Inlet belt; STZ – Snowbird tectonic zone.

Figure 2. Simplified geological map of the central Hearne domain showing the locations of the analyzed specimens in relation to the approximate domain boundaries discussed in the text. Key: YL – Yathkyed Lake; HL – Henik Lakes; KL – Kaminak Lake.

Figure 3. ⁴⁰Ar-³⁹Ar release spectra for hornblende grains from known Archean units exposed in the Kaminak and Yathkyed supracrustal belts. Gas steps used in the calculation of plateaus and inverse isotope-correlation ages are black, those not used in the calculations are grey. Key: PA – plateau age; IA – total-gas, integrated age; CA – inverse isotope-correlation age; M – maximum age (best estimate).

Figure 5. ⁴⁰Ar-³⁹Ar release spectra for hornblende, muscovite, and biotite from a north-south transect between the Kaminak and Yathkyed supracrustal belts. These units are interpreted to be Archean (Table 1). Gas steps used in the calculation of plateaus and inverse isotope-correlation ages are black, those not used in the calculations are grey. Key: PA – plateau age; IA – total-gas, integrated age; CA – inverse isotope-correlation age.

Figure 7. Graphical compilation of geochronological data for the study area. This includes data for rocks exposed within the three domains discussed in the paper. Published data for rocks in or adjacent to the domain boundaries are not incorporated. Zircon, monazite, and titanite ages for the Yathkyed belt are from MacLachlan et al. (2000), whereas the metamorphic zircon age from the intervening domain is from MacLachlan (pers. comm.). Zircon, monazite, and titanite ages for the Intervening domain and the Kaminak belt are from Davis et al. (2000), Peterson and van Breemen (1999), and Davis (pers. comm.).

Table 1.	Rock type,	location	(UTM zone.	eastings	and northings)	and brief	descriptions	of the anal	yzed si	pecimens.
JTM coo	rdinates are	given in	the NAD 19	927 proje	ction.					

	UT	UTM co-ordinates ^a				U-Pb age ^c
Sample	Zone	Easting	Northing	Unit	Description ^b	(Ma)
PHA-97-H161	15	413687	6907424	Kaminak pluton	Medium-grained hornblende+biotite+titanite tonalite	2679±2 Ma
PHA-97-H319	14	615474	6879582	Kogtok pluton	Medium-grained biotite+titanite monzogranite	ca .1830 Ma
PHA-97-H348	14	642664	6895264	unnamed	Strongly foliated and lineated biotite tonalite	ca . 2680 Ma
PHA-97-H418	15	364369	6887892	Carr Lake monzonite	Medium-grained hornblende+biotite monzxonite	2679±2 Ma
PHA-97-H479	15	642344	6933737	McKenzie Lake monzogranite	Medium-grained, schlieren-rich, biotite+titanite monzogranite	ca . 1830 Ma
PHA-97-H487	14	645782	6930447	McKenzie lake metasediments	Hornblende+biotite psammitic gneiss	ca. 2680 Ma
PHA-97-H506	15	412816	6906390	Kaminak pluton	Medium-grained hornblende+biotite+titanite tonalite	2679±2 Ma
PHA-97-H524	15	415775	6906951	Kaminak pluton	Medium-grained hornblende+biotite+titanite tonalite	2679±2 Ma
PHA-97-H521	15	398890	6918747	Ferguson pluton	Medium-grained biotite+titanite tonalite	ca. 2679 Ma
PHA-97-N48c	15	349736	6959203	McKenzie Lake metasediments	Muscovite+biotite semipelitic schist	ca. 2680 Ma
PHA-97-N50a	15	350226	6959831	McKenzie Lake monzogranite	Strongly foliated biotite+monazite monzogranite	1827± 3 Ma
PHA-97-J249	14	643760	6917985	McKenzie Lake metasediments	Muscovite+biotite semipelitic schist	ca. 2680 Ma
CS96-1302	14	529870	6855283	Yathkyed greenstone belt	Fine-grained hornblende+plagioclase amphibolite	ca. 2692 Ma
YD97-7116a	14	578225	6922425	Yathkyed greenstone belt	Banded, medium-grained, hornblende±garnet amphibolite	ca. 2692 Ma
YD97-9059	14	600900	6949500	Yathkyed greenstone belt	Medium-grained, hornblende±garnet amphibolite	ca. 2692 Ma
a UTM as and	in ata a ai		1007 project	lon		

- UTM co-ordinates given in NAD 1927 projection.

^b - Field description supplemented by petrography. ^c - U-Pb TIMS zircon or monazite age (Davis et al., 2000)

Table 2. ⁴⁰Ar-³⁹Ar analytical data. Asterisks denote steps excluded from plateau and inverse-correlation age calculations. J-values were determined through interpolation.

Power ^a	Volume ³⁹ Ar x10 ⁻¹¹ cc	³⁶ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	⁴⁰ Ar/ ³⁹ Ar	% ⁴⁰ Ar ATM	* ⁴⁰ Ar/ ³⁹ Ar	f ₃₉ (%)	Apparent Age Ma ^c
PHA-97-H	479 Biotite; J ^d =0).01823610 (Z5435)			Aliquot: A				
*1.5 *2.0	3.7615 7.9498	$\begin{array}{c} 0.0070 \pm 0.0002 \\ 0.0018 \pm 0.0002 \end{array}$	$\begin{array}{c} 0.007 \pm 136.812 \\ 0.003 \pm 224.576 \end{array}$	0.050 ± 0.001 0.045 ± 0.001	80.022 ± 0.207 85.927 ± 0.264	2.6 0.6	77.958 ± 0.205 85.394 ± 0.270	1.8 3.9	$\begin{array}{c} 1595.64 \pm 2.79 \\ 1693.93 \pm 3.47 \end{array}$
2.2	16.6263 4.9079	0.0019 ± 0.0003 0.0018 ± 0.0002	0.004 ± 271.344 0.004 ± 159.278	0.046 ± 0.001 0.045 ± 0.001	88.374 ± 0.575 87.947 ± 0.312	0.6 0.6	87.819 ± 0.581 87.409 ± 0.315	8.1 2.4	1724.86 ± 7.35 1719.67 ± 3.99
2.8 3.0	8.2359 18.4797	0.0018 ± 0.0002 0.001 ± 0.0002 0.0013 + 0.0003	0.004 ± 46.887 0.002 ± 117.542 0.003 + 74.059	0.047 ± 0.002 0.045 ± 0.001 0.045 ± 0.001	89.168 ± 0.198 89.085 ± 0.496	0.8	87.937 ± 0.562 88.855 ± 0.203 88.689 ± 0.502	4.0 9.0	1726.35 ± 7.10 1737.92 ± 2.54 1735.83 ± 6.31
3.4 4.0	18.0873 16.6161	0.001 ± 0.0003 0.0015 ± 0.0002	0.004 ± 229.253 0.004 ± 156.259	0.048 ± 0.001 0.048 ± 0.001	88.422 ± 0.327 88.772 ± 0.402	0.4 0.5	88.099 ± 0.337 88.324 ± 0.406	8.8 8.1	1728.40 ± 4.26 1731.24 ± 5.12
20.0	6.5376	0.0035 ± 0.0002	0.006 ± 39.753	0.048 ± 0.001	89.301 ± 0.336 Aliquot: B	1.1	88.275 ± 0.338	3.2	1730.63 ± 4.27
*1.0	0.0982	0.1340 ± 0.0080	0.122 ± 358.130	0.092 ± 0.008	66.796 ± 2.385	59.3	27.194 ± 1.725	0.1	726.58 ± 37.95
*1.5 1.8	9.0267 14.772	0.0025 ± 0.0002 0.0015 ± 0.0002	0.003 ± 156.910 0.002 ± 737.692	0.042 ± 0.001 0.042 ± 0.001	86.573 ± 0.164 87.452 ± 0.327	0.9 0.5	85.824 ± 0.170 87.018 ± 0.333	4.4 7.2	1699.45 ± 2.18 1714.70 ± 4.24
2.0 2.2	7.6331 10.9009	0.0007 ± 0.0002 0.0005 ± 0.0001	0.003 ± 188.375 0.002 ± 315.536	0.041 ± 0.001 0.041 ± 0.001	87.469 ± 0.435 87.757 ± 0.268	0.2 0.2	87.260 ± 0.436 87.607 ± 0.268	3.7 5.3	1717.78 ± 5.54 1722.18 ± 3.40
2.4 2.6	7.4602 17.4477	0.0006 ± 0.0002 0.0009 ± 0.0002	0.002 ± 259.148 0.011 ± 96.023	0.042 ± 0.001 0.041 ± 0.001	87.772 ± 0.496 88.383 ± 0.368	0.2 0.3	87.590 ± 0.500 88.107 ± 0.374	3.7 8.5	1721.96 ± 6.33 1728.51 ± 4.71
2.8 3.0	2.763 4.2464	0.0014 ± 0.0005 0.0009 ± 0.0003	0.020 ± 22.704 0.086 ± 17.672	0.041 ± 0.001 0.042 ± 0.001	87.731 ± 0.450 88.100 ± 0.319	0.5 0.3	87.331 ± 0.462 87.846 ± 0.325	1.4 2.1	1718.67 ± 5.87 1725.20 ± 4.11
3.4 4.0	4.5104 1.4669	$\begin{array}{c} 0.0010 \pm 0.0002 \\ 0.0025 \pm 0.0007 \end{array}$	0.110 ± 21.906 0.344 ± 32.864	0.040 ± 0.002 0.046 ± 0.003	88.041 ± 0.539 88.410 ± 1.574	0.3 0.8	87.746 ± 0.540 87.681 ± 1.576	2.2 0.7	1723.93 ± 6.82 1723.11 ± 19.96
20.0	2.0994	0.0025 ± 0.0006	0.330 ± 28.570	0.042 ± 0.001	88.308 ± 0.567	0.8	87.560 ± 0.578	1.0	1721.58 ± 7.32
РНА-97-Н	479 Hornblende	; J=0.01819780 (Z54	135)		Aliquot: A	1 1			
*2.0 *2.5	0.4696 4.0937	0.8680 ± 0.0226 0.0191 ± 0.0006	1.875 ± 48.191 4.924 ± 9.266	0.284 ± 0.013 0.260 ± 0.003	349.296 ± 8.321 99.202 ± 0.542	73.4 5.7	92.796 ± 10.665 93.553 ± 0.566	0.6 5.1	1784.35 ± 130.22 1793.56 ± 6.87
2.8 3.0	4.0938 21.0367	0.0048 ± 0.0003 0.0013 ± 0.0002	4.933 ± 18.086 5.042 ± 10.484	0.254 ± 0.003 0.250 ± 0.003	92.185 ± 1.081 90.990 ± 0.563	1.5 0.4	90.778 ± 1.083 90.620 ± 0.565	5.1 26.0	1759.54 ± 13.41 1757.57 ± 7.01
3.2 3.4	1.9799 1.8088	0.0037 ± 0.0007 0.0031 ± 0.0005	5.099 ± 8.970 5.112 ± 12.980	0.240 ± 0.004 0.243 ± 0.005	90.005 ± 0.388 90.349 ± 0.614	1.2 1	88.911 ± 0.416 89.430 ± 0.612	2.5 2.2	1736.28 ± 5.22 1742.77 ± 7.64
*3.6 4.0	0.4605	0.0159 ± 0.0022 0.0035 ± 0.0006	4.309 ± 18.643 4.646 ± 8.403	0.215 ± 0.006	89.933 ± 0.730 90 586 ± 0 470	5.2 1 1	85.221 ± 0.762 89 556 ± 0 475	0.6 2 1	1689.39 ± 9.80 1744.35 + 5.92
5.0	5.4965	0.0018 ± 0.0002 0.0084 ± 0.0004	5.238 ± 7.099	0.252 ± 0.002 0.250 ± 0.004	90.400 ± 0.351 94.293 + 1.245	0.6	89.877 ± 0.354	6.8	1748.34 ± 4.41
					Aliquot: B				
*2.0	0.3306	1.3643 ± 0.0210	4.030 ± 23.299	1.952 ± 0.034	523.271 ± 5.534	77	120.132 ± 8.276	0.4	2090.61 ± 85.27
*2.5	25.4783	0.0149 ± 0.0005 0.0014 ± 0.0003	5.200 ± 7.842 5.660 ± 7.072	0.277 ± 0.005 0.256 ± 0.002	93.301 ± 0.336	4 0.4	105.148 ± 0.325 92.893 ± 0.351	2.5 31.5	1929.20 ± 3.66 1785.53 ± 4.28
3.0 3.4	6.101 0.5979	0.0021 ± 0.0002 0.0097 ± 0.0018	5.484 ± 6.150 5.162 ± 18.267	0.256 ± 0.003 0.243 ± 0.005	90.691 ± 0.319 92.671 ± 1.039	0.7 3.1	90.079 ± 0.323 89.796 ± 1.063	7.5 0.7	1750.87 ± 4.03 1747.34 ± 13.25
*4.0 5.0	0.1309 1.3899	$\begin{array}{c} 0.0398 \pm 0.0091 \\ 0.0064 \pm 0.0006 \end{array}$	4.861 ± 28.420 5.729 ± 16.967	0.261 ± 0.016 0.234 ± 0.005	92.318 ± 2.069 93.331 ± 1.039	12.7 2	80.561 ± 2.617 91.425 ± 1.035	0.2 1.7	1628.41 ± 34.85 1767.53 ± 12.75
20.0 PHA-97-H	1.4309 348 Biotite; J=0.	0.0042 ± 0.0006 01814680 (Z5437)	9.350 ± 12.749	0.268 ± 0.004	90.670 ± 0.733	1.4	89.435 ± 0.731	1.8	1742.83 ± 9.13
*0.0	0 1110	0.0077 + 0.0004	0.000 + 141.074	0.070 + 0.000	Aliquot: A	77	05 040 + 7 000	0.0	000 70 + 150 01
*3.0	4.9835	0.0033 ± 0.0002	0.239 ± 141.274 0.006 ± 200.038	0.012 ± 0.009	82.856 ± 0.270	1.2	25.348 ± 7.082 81.881 ± 0.271	0.2 9.1	1642.86 ± 3.56
*3.4 3.8	10.5195 5.3694	0.0013 ± 0.0001 0.0014 ± 0.0002	0.004 ± 181.774 0.003 ± 455.841	0.007 ± 0.000 0.008 ± 0.000	87.332 ± 0.495 87.602 ± 0.746	0.4 0.5	86.944 ± 0.495 87.182 ± 0.746	19.3 9.9	1708.34 ± 6.29 1711.36 ± 9.46
4.2 5.0	7.7729 6.2431	$\begin{array}{c} 0.0007 \pm 0.0002 \\ 0.0011 \pm 0.0003 \end{array}$	0.004 ± 286.085 0.006 ± 132.224	$\begin{array}{c} 0.007 \pm 0.000 \\ 0.009 \pm 0.001 \end{array}$	$\begin{array}{c} 87.722 \pm 0.482 \\ 88.088 \pm 0.433 \end{array}$	0.2 0.4	87.504 ± 0.483 87.754 ± 0.442	14.3 11.5	$\begin{array}{c} 1715.43 \pm 6.11 \\ 1718.60 \pm 5.59 \end{array}$
5.7 6.4	8.84 5.6594	$\begin{array}{c} 0.0007 \pm 0.0001 \\ 0.0012 \pm 0.0002 \end{array}$	0.009 ± 113.191 0.036 ± 37.178	0.007 ± 0.000 0.008 ± 0.000	88.158 ± 0.463 88.559 ± 0.203	0.2 0.4	87.946 ± 0.463 88.210 ± 0.208	16.2 10.4	1721.01 ± 5.85 1724.34 ± 2.62
6.9 12.0	2.9229 2.1004	$\begin{array}{c} 0.0022 \pm 0.0006 \\ 0.0035 \pm 0.0005 \end{array}$	0.022 ± 57.958 0.243 ± 55.894	$\begin{array}{c} 0.009 \pm 0.001 \\ 0.010 \pm 0.000 \end{array}$	88.966 ± 0.602 89.375 ± 0519	0.7 1.1	88.323 ± 0.620 88.351 ± 0.524	5.4 3.9	1725.76 ± 7.79 1726.12 ± 6.59
a - As mea	sured by laser in	% of full nominal po	wer (10W)		d - Nominal J-value, r	eferenced t	o PP-20 (Hb3gr)=1072	Ma (Rod	ldick, 1983).

c - Errors are analytical only and do not reflect error in irradiation parameter J

All uncertainties quoted at 2s level

	Value 39	* 	1	1	1	40			
Power ^a	volume ³³ Ar x10 ⁻¹¹ cc	³⁶ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	⁴⁰ Ar/ ³⁹ Ar	% ⁴⁰ Ar ATM	* ⁴⁰ Ar/ ³⁹ Ar	f ₃₉ (%)	Apparent Age Ma ^C
PHA-97-H	524A Biotite; J=	0.01796820 (Z5442)			Aliquot: A				
1.5	6.9859	0.0147 + 0.0002	0.020 + 36.113	0.016 + 0.001	115.974 + 0.641	3.7	111.638 + 0.642	7.0	1985.57 + 6.93
1.8	14.7246	0.0025 ± 0.0003	0.015 ± 118.431	0.010 ± 0.000	117.606 ± 0.330	0.6	116.870 ± 0.340	14.7	2041.13 ± 3.55
2.0	1.9449	0.0046 ± 0.0005	0.011 ± 230.586	0.009 ± 0.002	120.568 ± 0.442	1.1	119.218 ± 0.448	1.9	2065.51 ± 4.62
2.2	9.5161	0.0021 ± 0.0004	0.020 ± 123.611	0.010 ± 0.001	121.604 ± 1.090	0.5	120.986 ± 1.097	9.5	2083.66 ± 11.20
2.4	4.2569	0.0012 ± 0.0004	0.017 ± 30.459	0.009 ± 0.000	121.251 ± 0.575	0.3	120.904 ± 0.584	4.3	2082.83 ± 5.96
2.6	9.8475	0.0016 ± 0.0007	0.029 ± 38.925	0.009 ± 0.001	119.663 ± 0.618	0.4	119.188 ± 0.650	9.8	2065.20 ± 6.70
2.8	3.5623	0.0026 ± 0.0002	0.033 ± 25.427	0.010 ± 0.000	116.839 ± 0.886	0.7	116.079 ± 0.886	3.6	2032.84 ± 9.30
3.0	4.515	0.0026 ± 0.0003	0.054 ± 47.391	0.010 ± 0.000	112.904 ± 0.567	0.7	112.146 ± 0.569	4.5	1991.04 ± 6.12
3.4	1.2437	0.0073 ± 0.0007	0.115 ± 28.270	0.013 ± 0.001	107.515 ± 1.181	2	105.349 ± 1.175	1.2	1916.44 ± 13.16
20.0	2.7218	0.0072 ± 0.0004	0.106 ± 58.731	0.010 ± 0.000	93.536 ± 0.630	2.3	91.416 ± 0.634	2.7	1753.14 ± 7.77
			1	I.	Aliquot: B	1			
1.5	9.3904	0.0123 ± 0.0002	0.028 ± 48.663	0.018 ± 0.001	105.577 ± 0.883	3.4	101.945 ± 0.884	9.4	1877.89 ± 10.12
1.8	20.0719	0.0012 ± 0.0003	0.036 ± 26.019	0.013 ± 0.000	109.724 ± 0.650	0.3	109.382 ± 0.656	20.0	1961.08 ± 7.17
2.0	2.4622	0.0014 ± 0.0006	0.043 ± 37.948	0.014 ± 0.000	111.611 ± 0.846	0.4	111.200 ± 0.856	2.5	1980.85 ± 9.26
2.2	5.3413	0.0011 ± 0.0002	0.364 ± 13.797	0.012 ± 0.000	106.890 ± 0.557	0.3	106.576 ± 0.557	5.3	1930.14 ± 6.19
2.4	0.7349	0.0048 ± 0.0016	0.988 ± 20.201	0.017 ± 0.002	79.202 ± 0.602	1.8	77.778 ± 0.662	0.7	1577.57 ± 8.95
2.8	0.2823	0.0086 ± 0.0033	1.059 ± 35.042	0.025 ± 0.005	98.727 ± 1.284	2.6	96.189 ± 1.270	0.3	1810.77 ± 15.08
20.0	2.6222	0.0023 ± 0.0008	0.181 ± 47.218	0.008 ± 0.001	71.374 ± 0.541	0.9	70.705 ± 0.576	2.6	1479.31 ± 8.22
'HA-97-H	161 Hornblende	; J=0.01834190 (Z54	144)		Aliquot: A				
*2.0	0.2552	0.2027 ± 0.0052	2 270 ± 20 277	0.957 ± 0.024	946 600 ± 15 060	7 1	796 714 ± 15 217	0.5	4026 E6 ± 22 86
*0.0	0.3332 E 0021	0.2027 ± 0.0003	5.279 ± 39.277	0.057 ± 0.024	100 414 ± 1 027	0.7	107.062 ± 1.046	7.0	4930.30 ± 32.80
*0.4	0.50031	0.0049 ± 0.0009	3.469 ± 10.008	0.137 ± 0.003	167 606 ± 0 117	1.5	16F 100 ± 0.170	7.0	2703.29 ± 13.91
2.4 *0.6	0.5693	0.0085 ± 0.0023	4.007 ± 21.007	0.114 ± 0.003	107.020 ± 2.117	1.5	100.102 ± 2.173	0.6	2013.72 ± 17.60 2720.00 ± 12.47
2.0	0.4227	0.0047 ± 0.0007	5.700 ± 15.243	0.144 ± 0.002	194.446 ± 1.637	0.7	193.073 ± 1.850	0.0	2/30.00 ± 13.47
2.0	1 6171	0.0020 ± 0.0006	5.766 ± 12.154	0.128 ± 0.002	164.135 ± 1.212 175.770 ± 0.015	0.3	174 692 ± 0.222	10.4	2009.24 ± 9.27
3.0	1.0171	0.0037 ± 0.0009	5.525 ± 21.606	0.089 ± 0.003	175.770 ± 2.315	0.0	174.062 ± 2.323	2.1	2590.76 ± 18.29
3.4	0.3178	0.0141 ± 0.0030	6.935 ± 25.397	0.113 ± 0.003	1/2.00/ ± 2.1/3	2.4	100.513 ± 2.109	0.4	2541.53 ± 17.54
*20.0	2.0796	0.0073 ± 0.0012 0.0089 ± 0.0009	8.876 ± 16.705	0.124 ± 0.002	163.106 ± 1.779	1.6	160.480 ± 1.794	2.7	2475.35 ± 15.06
					Aliquot: B				
*2.0	0.1648	0.5382 + 0.0168	3.946 + 34.042	1.786 + 0.054	1396.404 + 21.335	11.4	1237.361 + 21.839	0.2	5710.49 + 30.50
*2.2	0.2332	0.0742 + 0.0037	3,882 + 29,292	0.267 + 0.008	211,214 + 2,565	10.4	189,279 + 2,506	0.3	2702.14 + 18.55
*2.4	0.2891	0.0268 ± 0.0038	3.141 ± 61.343	0.082 ± 0.017	132.886 ± 3.150	6	124.978 ± 3.196	0.4	2149.75 ± 32.12
*2.6	4,5957	0.0047 ± 0.0006	5.915 ± 11.144	0.197 ± 0.003	200.425 ± 1.176	0.7	199.026 ± 1.190	6.1	2772.86 ± 8.47
2.8	4.2871	0.0019 ± 0.0002	5.190 ± 16.129	0.158 ± 0.002	179.598 ± 1.751	0.3	179.049 ± 1.751	5.6	2624.80 ± 13.52
3.0	18.6968	0.0014 ± 0.0004	5.322 ± 7.219	0.136 ± 0.001	179.171 ± 0.667	0.2	178.762 ± 0.679	24.6	2622.59 ± 5.26
3.2	5.1406	0.0012 ± 0.0003	5.431 ± 10.190	0.124 ± 0.003	178.413 ± 1.107	0.2	178.071 ± 1.109	6.8	2617.23 ± 8.61
3.4	7.0839	0.0023 ± 0.0008	5.573 ± 19.847	0.102 ± 0.003	179.780 ± 1.809	0.4	179.090 ± 1.823	9.3	2625.12 ± 14.08
*4.0	0.6679	0.0062 ± 0.0014	6.282 ± 29.428	0.128 ± 0.005	169.428 ± 2.480	1.1	167.593 ± 2.480	0.9	2534.07 ± 20.15
*20.0	4.2555	0.0014 ± 0.0005	6.792 ± 8.177	0.125 ± 0.001	163.871 ± 0.847	0.3	163.457 ± 0.857	5.6	2500.16 ± 7.08
PHA-97-N	48 Muscovite; J=	=0.01825610 (Z5447	7)		Aliquot: A				
3.0	0.0104	0.5278 ± 0.1458	1.552 ± 665.602	0.259 ± 0.136	130.972 ± 35.226	119.1	-24.995 ± -48.631	0.0	-1099.39 ± -2946.0
3.8	0.0038	0.3851 ± 0.4571	4.613 ± 1129.731	1.220 ± 0.960	251.750 ± 218.535	45.2	137.966 ± 246.192	0.0	2269.73 ± 2304.40
4.2	0.0065	0.4794 ± 0.2312	3.506 ± 368.800	0.200 ± 0.175	141.564 ± 52.082	100.1	-0.101 ± -74.197	0.0	-3.34 ± -2449.30
5.0	0.0066	0.7255 ± 0.4951	2.742 ± 938.427	0.035 ± 0.184	181.684 ± 127.562	118	-32.707 ± -189.447	0.0	-1640.06 ± -15487.0
5.4	0.0075	0.7167 ± 0.4132	2.877 ± 725.957	0.400 ± 0.292	129.782 ± 80.733	163.2	-82.009 ± -141.521	0.0	0.00 ± 0.00
12.0	40.227	0.0008 ± 0.0001	0.002 ± 293.958	0.003 ± 0.000	88.583 ± 0.316	0.3	88.346 ± 0.318	32.4	1732.74 ± 4.01
			1		Aliquot: B	-			
3.0	46.0863	0.0010 ± 0.0002	2.261 ± 378.362	0.003 ± 0.000	88.938 ± 0.206	0.3	88.644 ± 0.224	37.1	1736.48 ± 2.82
3.5	19.6508	0.0003 ± 0.0005	5.382 ± 316.505	0.003 ± 0.001	88.758 ± 0.488	0.1	88.676 ± 0.523	15.8	1736.89 ± 6.58
4.0	1.4476	0.0033 ± 0.0015	6.579 ± 859.005	0.005 ± 0.001	90.629 ± 0.787	1.1	89.662 ± 0.964	1.2	1749.25 ± 12.04
12.0	3.4466	0.0000 ± 0.0006	7.037 ± 203.486	0.002 ± 0.001	89.275 ± 0.453	0	89.271 ± 0.492	2.8	1744.35 ± 6.16
PHA-97-N	48 Biotite; J=0.0	1822390 (Z5447)			Aliquot: A				
*2.0	0.1455	0.1515 ± 0.0056	0.172 ± 179.486	0.159 + 0.007	74.033 + 1.895	60.5	29,274 + 1,599	0.3	771.34 + 34.29
*2.4	0.3748	0.0303 + 0.0024	0.059 ± 260.698	0.086 + 0.003	74.221 + 1.285	12.1	65.266 + 1.252	0.9	1413.74 + 18.81
*3.0	3.5964	0.0031 + 0.0003	0.005 ± 549.052	0.049 + 0.001	90.064 + 0.278	1	89,152 + 0.283	8.4	1740.89 + 3.54
*3.4	1.6257	0.0047 ± 0.0005	0.016 ± 193,260	0.048 ± 0.002	93.888 ± 0.707	1.5	92.485 ± 0.700	3.8	1782.16 ± 8.57
*3.8	1.0102	0.0058 ± 0.0017	0.019 ± 392.087	0.050 ± 0.002	94.648 ± 0.917	1.8	92.947 ± 1.005	2.4	1787.81 ± 12.27
*4.2	0.5404	0.0086 ± 0.0033	0.036 ± 232.810	0.052 ± 0.002	95.634 ± 1.899	2.7	93.081 ± 2.073	1.3	1789.46 ± 25.28
*5.2	0.5336	0.0173 ± 0.0015	0.044 ± 102.123	0.050 ± 0.002	96.996 ± 1.589	5.3	91.876 ± 1.567	1.2	1774.70 ± 19.27
*12.0	0.6721	0.0136 ± 0.0016	0.024 ± 377.732	0.046 ± 0.002	94.795 ± 1.283	4.2	90.788 ± 1.299	1.6	1761.27 ± 16.09

	Volume ³⁹ Ar					% ⁴⁰ Ar		f ₂₀ b	Apparent Age
Power ^a	x10 ⁻¹¹ cc	³⁶ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	⁴⁰ Ar/ ³⁹ Ar	ATM	* ⁴⁰ Ar/ ³⁹ Ar	(%)	Ma ^c
PHA-97-N	48 Biotite; J=0.0	1822390 (Z5447) (c	ont.)		Aliquot: B				
*2.4	1.4139	0.0173 ± 0.0013	0.013 ± 367.221	0.049 ± 0.002	77.370 ± 0.583	6.6	72.257 ± 0.663	3.3	1515.78 ± 9.40
*2.9	3.9921	0.0030 ± 0.0003	0.008 ± 177.601	0.042 ± 0.001	88.091 ± 0.677	1	87.209 ± 0.678	9.3	1716.38 ± 8.62
4.0	15.2/3	0.0013 ± 0.0002 0.0012 ± 0.0001	0.005 ± 317.224	0.042 ± 0.002	89.817 ± 0.674	0.4	89.424 ± 0.676	35.6	1744.30 ± 8.46
4.2	3.64	0.0012 ± 0.0001	0.003 ± 505.505	0.043 + 0.001	90.115 + 0.558	0.5	89.709 + 0.558	8.5	1747.86 + 6.96
5.7	2.0101	0.0026 ± 0.0006	0.007 ± 452.409	0.039 ± 0.001	89.537 ± 0.559	0.9	88.768 ± 0.568	4.7	1736.08 ± 7.14
6.6	0.7871	0.0069 ± 0.0011	0.022 ± 290.617	0.045 ± 0.002	89.994 ± 1.028	2.3	87.942 ± 1.013	1.8	1725.67 ± 12.80
12.0	0.655	0.0062 ± 0.0015	0.020 ± 468.781	0.049 ± 0.002	90.719 ± 2.055	2	88.878 ± 2.060	1.5	1737.46 ± 25.85
PHA-97-H	487 Biotite; J=0.	01819180 (Z5450)			Aliquot: A			1	
*2.1	1.4395	0.0102 ± 0.0005	0.018 ± 181.243	0.065 ± 0.003	84.330 ± 0.593	3.6	81.307 ± 0.581	2.3	1637.95 ± 7.69
2.3	2.0434	0.0022 ± 0.0005	0.011 ± 175.174	0.056 ± 0.003	88.969 ± 0.521	0.7	88.331 ± 0.520	3.3	1728.61 ± 6.55
3.1	2.7012	0.0025 ± 0.0006	0.007 ± 462.472	0.056 ± 0.001	88.937 ± 0.571	0.8	88.207 ± 0.590	4.4	1727.05 ± 7.44
3.0	5 9446	0.0007 ± 0.0002	0.003 ± 165.060	0.055 ± 0.001	88 689 ± 0.431	0.2	00.305 ± 0.433 88.425 ± 0.428	0.01	1729.05 ± 5.45
5.0	7,1903	0.0009 ± 0.0002	0.002 ± 303.000 0.004 ± 154.128	0.053 ± 0.002	88.572 ± 0.524	0.3	88.314 ± 0.525	11.7	1728.41 ± 6.62
5.4	1.9234	0.0024 ± 0.0007	0.007 ± 355.350	0.053 ± 0.001	87.981 ± 0.615	0.8	87.275 ± 0.628	3.1	1715.27 ± 7.97
*6.3	1.4549	0.0050 ± 0.0005	0.017 ± 101.204	0.057 ± 0.002	87.871 ± 0.816	1.7	86.386 ± 0.807	2.4	1703.97 ± 10.30
*6.6	0.3102	0.0275 ± 0.0025	0.064 ± 75.838	0.082 ± 0.005	93.596 ± 2.195	8.7	85.480 ± 2.128	0.5	1692.37 ± 27.34
*12.0	0.4393	0.0095 ± 0.0045	0.021 ± 1029.532	0.057 ± 0.006	90.419 ± 1.911	3.1	87.607 ± 2.247	0.7	1719.48 ± 28.43
					Aliquot: B				
*2.2	0.4113	0.0196 ± 0.0022	0.044 ± 209.101	0.065 ± 0.002	78.028 ± 1.325	7.4	72.246 ± 1.311	0.7	1513.81 ± 18.59
*3.0	2.9038	0.0029 ± 0.0005	0.007 ± 286.233	0.052 ± 0.002	86.879 ± 0.360	1	86.009 ± 0.371	4.7	1699.15 ± 4.75
3.3	2.5427	0.0014 ± 0.0006	0.009 ± 120.739	0.052 ± 0.002	88.197 ± 0.779	0.5	87.786 ± 0.790	4.1	1721.74 ± 9.99
-3.8	0.0154	0.0394 ± 0.0645	0.869 ± 379.695	0.306 ± 0.071	59.901 ± 14.594	19.4	48.2/3 ± 15.48/ 87.30/ + 0.106	15.3	1716 70 + 2 /8
5.1	5.0534	0.0009 ± 0.0002	0.003 ± 403.035 0.004 ± 539.165	0.051 ± 0.001	87.823 ± 0.385	0.2	87.556 ± 0.387	8.2	1718.84 ± 4.90
5.7	2.1014	0.0018 ± 0.0006	0.007 ± 520.519	0.054 ± 0.003	88.095 ± 0.943	0.6	87.561 ± 0.951	3.4	1718.90 ± 12.04
6.7	4.7912	0.0020 ± 0.0003	0.007 ± 227.033	0.056 ± 0.002	89.423 ± 0.487	0.7	88.821 ± 0.491	7.8	1734.77 ± 6.16
12.0	0.755	0.0071 ± 0.0021	0.014 ± 550.980	0.054 ± 0.001	89.336 ± 1.045	2.4	87.224 ± 1.150	1.2	1714.63 ± 14.60
PHA-97-H	487 Hornblende;	; J=0.01811670 (Z54	150)		Aliquot: A				
*4.0	0.0462	0.4018 ± 0.0303	2.785 ± 169.334	0.233 ± 0.042	357.311 ± 17.055	33.2	238.576 ± 18.270	0.2	3016.25 ± 112.20
*4.4	0.0614	0.2347 ± 0.0156	3.101 ± 66.858	0.246 ± 0.027	159.347 ± 5.943	43.5	90.007 ± 5.967	0.3	1744.96 ± 74.13
*4.9	0.1011	0.0389 ± 0.0103	5.690 ± 85.813	0.375 ± 0.022	111.492 ± 6.301	10.3	100.004 ± 6.423	0.5	1865.08 ± 74.67
*5.1	0.1702	0.0293 ± 0.0063	4.979 ± 39.649	0.332 ± 0.013	122.362 ± 2.893	7.1	113.700 ± 3.012	0.8	2017.65 ± 32.17
5.5	8 9708	0.00011 ± 0.0007	5 220 + 6 981	0.328 ± 0.011	94 756 ± 0 378	0.3	90.005 ± 2.050 94.439 ± 0.383	40.9	1799 21 + 4 63
*6.2	0.2179	0.0221 ± 0.0032	5.535 ± 16.608	0.323 ± 0.008	96.890 ± 1.235	6.7	90.361 ± 0.854	1.0	1749.35 ± 10.58
					Aliquot: B	1		r	
*4.0	0.0689	0.5128 ± 0.0438	2.444 ± 78.955	0.485 ± 0.033	261.111 ± 13.970	58	109.565 ± 18.605	0.3	1972.94 ± 203.72
5.1	9.9617	0.0019 ± 0.0001	5.327 ± 4.753	0.335 ± 0.003	94.329 ± 0.291	0.6	93.781 ± 0.291	45.4	1791.26 ± 3.53
*5.4	0.3851	0.0134 ± 0.0069	5.066 ± 20.999	0.321 ± 0.005	95.142 ± 0.948	4.2	91.189 ± 2.130	1.8	1759.59 ± 26.25
*12.0	0.264	0.0120 ± 0.0058 0.0025 ± 0.0008	4.492 ± 47.801 5.466 + 20.202	0.340 ± 0.021 0.328 ± 0.006	90.338 ± 3.035 92.527 + 0.943	3.9 0.8	91.785 + 0.956	7.0	1704.64 ± 42.26 1766.92 + 11.74
DHA-07- I	249 Biotite: I=0 (1808450 (75451)							
-14-9/-J	2+3 Diotile; J=0.(1000400 (20401)	I		Aliquot: A	1			
2.0	0.0366	0.2562 ± 0.0358	0.552 ± 210.150	0.213 ± 0.035	99.740 ± 10.166	75.9	24.029 ± 12.499	0.1	651.01 ± 284.26
2.7	1.0926	0.0077 ± 0.0008	0.015 ± 749.746	0.035 ± 0.001	81.655 ± 0.845	2.8	/9.370 ± 0.837	1.5	1605.83 ± 11.22
3.0	1.0705 0.0870	0.0049 ± 0.0005	0.010 ± 400.440	0.030 ± 0.001	89 959 + 0 801	1.7	88 190 + 0 804	2.2	1720 27 + 10 11
4.6	9.1565	0.0010 ± 0.0002	0.003 ± 139.860	0.031 ± 0.001	89.148 ± 0.129	0.3	88.865 ± 0.136	12.7	1728.75 ± 1.70
5.0	2.0023	0.0030 ± 0.0007	0.004 ± 863.168	0.031 ± 0.001	87.851 ± 0.407	1	86.957 ± 0.439	2.8	1704.70 ± 5.57
5.5	1.3804	0.0043 ± 0.0007	0.016 ± 124.321	0.037 ± 0.002	89.045 ± 0.714	1.4	87.789 ± 0.715	1.9	1715.23 ± 9.01
6.5	0.8488	0.0057 ± 0.0019	0.018 ± 404.193	0.035 ± 0.002	90.256 ± 1.428	1.9	88.560 ± 1.498	1.2	1724.92 ± 18.78
12.0	0.4856	U.0108 ± 0.0015	0.026 ± 539.913	0.037 ± 0.002	88.914 ± 1.193	3.6	85.732 ± 1.136	0.7	1689.10 ± 14.54

Tab	le	2.	(cont.)	
IUN	iC.	<u> </u>	(00111.)	

	20		1	1		1			
	Volume ³⁹ Ar					% ⁴⁰ Ar		f ₂₀ b	Apparent Age
Power ^a	x10 ⁻¹¹ cc	³⁶ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	⁴⁰ Ar/ ³⁹ Ar	ATM	* ⁴⁰ Ar/ ³⁹ Ar	(%)	Ma ^c
DU 4 07 1		4000450 (75454) (1				
PHA-97-J	249 Biotite; J=0.0	J1808450 (Z5451) (cont.)		Aliquet: P				
	1				Allquot. B	r			
*2.1	0.2849	0.0639 ± 0.0037	0.049 ± 345.532	0.063 ± 0.003	71.136 ± 1.565	26.5	52.258 ± 1.626	0.4	1200.26 ± 27.27
*2.4	0.3903	0.0192 ± 0.0025	0.033 ± 760.619	0.040 ± 0.002	65.093 ± 0.824	8.7	59.408 ± 0.837	0.5	1316.36 ± 13.17
*3.0	5.6199	0.0020 ± 0.0003	0.005 ± 131.691	0.032 ± 0.001	87.716 ± 0.341	0.7	87.134 ± 0.347	7.8	1706.94 ± 4.40
3.8	9.6749	0.0009 ± 0.0002	0.002 ± 300.500	0.031 ± 0.001	88.441 ± 0.250	0.3	88.161 ± 0.254	13.4	1719.91 ± 3.19
3.9	4.9264	0.0012 ± 0.0002	0.005 ± 355.675	0.031 ± 0.001	88.497 ± 0.496	0.4	88.146 ± 0.496	6.8	1719.72 ± 6.25
4.6	16.3056	0.0022 + 0.0002	0.010 + 94.543	0.031 + 0.001	88.574 + 0.466	0.7	87,910 + 0,469	22.5	1716.75 + 5.90
5.0	9 3302	0.0006 ± 0.0001	0.010 ± 155.135	0.030 ± 0.001	88 180 ± 0 294	0.2	88 000 ± 0 294	12.9	1717 88 + 3 71
5.8	6.4458	0.0010 ± 0.0003	0.028 + 20.809	0.032 ± 0.001	88 360 ± 0.204	0.2	88 072 ± 0.336	8.0	1718 70 ± 4.22
*6.0	0.4450	0.0010 ± 0.0005	0.020 ± 20.003	0.032 ± 0.001	00.003 ± 0.020	0.5	00.072 ± 0.000	0.5	1670 57 ± 20 10
*10.0	0.3204	0.0180 ± 0.0025	0.073 ± 138.812	0.039 ± 0.002	89.955 ± 2.500	5.0	09.446 + 1.707	0.5	1650.61 + 02.04
12.0	0.2446	0.0176 ± 0.0032	0.064 ± 343.567	0.055 ± 0.004	66.702 ± 1.903	5.9	03.440 ± 1.707	0.3	1059.01 ± 23.24
PHA-97-H	506 Hornblende	J=0.01802020 (Z54	167)						
					Aliquot: A				
			5 / TO . / OT OOO				1574 104 1 100 050		
^3.0	0.0312	2.2520 ± 0.1817	5.170 ± 127.903	1.470 ± 0.138	2239.651 ± 154.530	29.7	15/4.181 ± 163.353	0.1	6097.63 ± 180.84
*4.0	0.0375	0.3115 ± 0.0247	2.376 ± 69.168	0.247 ± 0.031	381.483 ± 13.600	24.1	289.429 ± 13.484	0.1	3296.19 ± 70.54
*4.6	0.3432	0.0273 ± 0.0027	3.684 ± 30.505	0.082 ± 0.002	183.856 ± 1.450	4.4	175.798 ± 1.440	0.9	2575.20 ± 11.23
*4.9	0.0276	0.2863 ± 0.0433	6.861 ± 159.629	0.349 ± 0.046	285.008 ± 31.465	29.7	200.417 ± 32.397	0.1	2757.68 ± 228.39
*5.2	2.4155	0.0039 ± 0.0006	5.545 ± 14.855	0.184 ± 0.003	193.800 ± 1.743	0.6	192.639 ± 1.747	6.4	2702.00 ± 12.70
5.3	0.4829	0.0145 ± 0.0025	5.411 ± 40.433	0.169 ± 0.008	189.180 ± 3.890	2.3	184.899 ± 3.918	1.3	2644.83 ± 29.41
5.5	1.2118	0.0045 ± 0.0010	5.378 ± 25.103	0.166 + 0.004	184,772 + 1,269	0.7	183,444 + 1,282	3.2	2633.88 + 9.69
6.0	1 9906	0.0037 + 0.0007	5 638 ± 16 223	0 171 + 0 004	187 596 ± 1 955	0.6	186 511 + 1 960	5.3	2656 89 + 14 62
6.6	3 7051	0.0027 ± 0.0004	5 578 ± 16 520	0.161 ± 0.003	186 604 ± 1.884	0.0	185 801 ± 1 885	0.0	2652 26 ± 14.09
12.0	14 1060	0.0027 ± 0.0004	5.578 ± 10.520	0.101 ± 0.003	100.094 ± 1.004	0.4	100.091 ± 1.000	9.0	2002.20 ± 14.09
12.0	14.1202	0.0021 ± 0.0003	5.955 ± 10.762	0.200 ± 0.003	100.700 ± 1.977	0.3	100.103 ± 1.979	37.4	2034.29 1 14.77
					Aliquot: B				
	0.0050				4500 000 - 447 770	17.1	1005 570 . 110 000		5750 00 · 000 00
^3.0	0.0256	0.9029 ± 0.0916	3.351 ± 141.452	1.317 ± 0.145	1562.392 ± 147.776	17.1	1295.576 ± 149.833	0.1	5759.39 ± 200.08
*4.0	0.0333	0.1924 ± 0.0457	1.393 ± 250.267	0.186 ± 0.047	183.850 ± 31.727	30.9	127.004 ± 33.427	0.1	2147.73 ± 330.45
4.6	5.2009	0.0030 ± 0.0003	5.971 ± 9.659	0.219 ± 0.003	188.575 ± 0.601	0.5	187.698 ± 0.604	13.8	2665.72 ± 4.49
4.8	0.8116	0.0067 ± 0.0016	5.839 ± 33.431	0.212 ± 0.007	185.411 ± 3.277	1.1	183.441 ± 3.291	2.2	2633.85 ± 24.85
5.4	1.3365	0.0044 ± 0.0010	6.640 ± 26.968	0.168 ± 0.005	185.463 ± 2.629	0.7	184.158 ± 2.639	3.5	2639.26 ± 19.86
6.2	4.3469	0.0022 ± 0.0004	9.723 ± 10.517	0.109 ± 0.002	185.479 ± 0.844	0.4	184.828 ± 0.848	11.5	2644.29 ± 6.38
6.6	0.5127	0.0125 ± 0.0017	7.992 ± 33.182	0.160 ± 0.005	184.285 ± 3.957	2	180.588 ± 3.953	1.4	2612.18 ± 30.20
*7.4	0 4057	0.0116 + 0.0018	7 595 + 28 413	0 207 + 0 010	194 452 + 2 227	1.8	191 025 + 2 180	11	2690 23 + 15 95
*12.0	0 7387	0.0060 ± 0.0013	7 758 + 21 215	0 163 ± 0 004	184 840 + 2 249	1	183 076 ± 2 252	2.0	2631.09 ± 17.03
12.0	0.7007	0.0000 ± 0.0010	1.100 ± 21.210	0.100 ± 0.004	104.040 ± 2.240		100.070 ± 2.202	2.0	2001.00 ± 17.00
PHA-97-H	319 Biotite; J=0.	01863640 (Z5468)							
					Aliquot: A				
*1 5	12 474	0 0079 ± 0 0009	0 012 + 204 449	0.007 ± 0.001	82 648 ± 0 392	28	80 315 ± 0.473	52	1650 75 ± 6 37
*1.7	3 6003	0.0012 ± 0.0005	0.008 + 87 172	0.007 ± 0.001	86 260 ± 0.055	0.4	85 929 ± 0 965	1.5	1724 82 + 12 47
1.7	3.0093	0.0012 ± 0.0003	0.000 ± 07.172	0.003 ± 0.001	80.209 ± 0.955	0.4	85.929 ± 0.905	1.0	1724.02 1 12.47
-1.9	15.4729	0.0016 ± 0.0002	0.011 ± 101.795	0.003 ± 0.000	85.867 ± 0.421	0.6	85.380 ± 0.423	6.4	1/1/./0 ± 5.50
^2.2	23.1224	0.0011 ± 0.0001	0.009 ± 65.476	0.003 ± 0.000	86.174 ± 0.550	0.4	85.860 ± 0.551	9.6	1/23.92 ± 7.12
2.4	15.3995	0.0012 ± 0.0003	0.015 ± 73.409	0.003 ± 0.001	87.378 ± 0.470	0.4	87.013 ± 0.479	6.4	1738.77 ± 6.14
2.6	28.3529	0.0007 ± 0.0002	0.015 ± 44.815	0.003 ± 0.000	87.552 ± 0.473	0.3	87.333 ± 0.478	11.7	1742.87 ± 6.11
2.8	7.0522	0.0006 ± 0.0001	0.005 ± 149.717	0.002 ± 0.000	87.530 ± 0.572	0.2	87.364 ± 0.571	2.9	1743.26 ± 7.31
3.4	12.2727	0.0009 ± 0.0004	0.011 ± 302.455	0.004 ± 0.000	87.225 ± 0.536	0.3	86.959 ± 0.546	5.1	1738.08 ± 7.01
20.0	7.6935	0.0008 ± 0.0002	0.007 ± 150.221	0.003 ± 0.000	86.560 ± 0.294	0.3	86.318 ± 0.298	3.2	1729.84 ± 3.84
					Allowed D				
			1		Allquot: B	1		,	
*1.3	1.0538	0.0753 ± 0.0017	0.030 ± 224.521	0.026 ± 0.001	90.926 ± 0.913	24.5	68.682 ± 1.002	0.4	1486.89 ± 14.78
*1.5	12.4842	0.0025 ± 0.0004	0.007 ± 230.881	0.006 ± 0.000	84.478 ± 0.367	0.9	83.741 ± 0.386	5.2	1696.31 ± 5.07
17	3 2686	0 0017 + 0 0005	0 008 + 237 837	0.004 ± 0.000	87 493 ± 0 627	0.6	86 986 ± 0 636	14	1738 43 + 8 16
1 9	12 5001	0.0016 ± 0.0003	0.012 ± 47.568	0.005 ± 0.000	87 429 ± 0 562	0.5	86 965 ± 0 567	5.2	1738 16 + 7 27
2.9	24 3210	0.0013 ± 0.0003	0.012 + 70.024	0.003 ± 0.000	87 705 + 0 207	0.3	87 405 ± 0.007	10.1	17/3 80 + 3 81
2.2	24.3219	0.0013 ± 0.0001	0.012 ± 70.034	0.003 ± 0.000	07.190 I U.29/	0.4	07.400 I U.290	10.1	1790 44 + 0.00
2.4	7.8696	0.0009 ± 0.0002	0.004 ± 1/1.200	0.003 ± 0.000	07.202 ± 0.251	0.3	00.90/ ± 0.25/	3.3	1/30.44 ± 3.30
2.8	15.1019	0.0014 ± 0.0005	0.021 ± 42.121	0.003 ± 0.001	87.166 ± 0.550	0.5	86.753 ± 0.566	6.2	1735.43 ± 7.27
3.4	17.8079	0.0013 ± 0.0002	0.011 ± 156.052	0.002 ± 0.000	87.457 ± 0.693	0.5	87.059 ± 0.696	7.4	1739.35 ± 8.91
20.0	22.2172	0.0015 ± 0.0003	0.007 ± 309.144	0.003 ± 0.000	87.027 ± 0.622	0.5	86.571 ± 0.627	9.2	1733.09 ± 8.06
PHA-97-H	521 Biotite: J=0	01857320 (75471)		•					
1114 97 1	Diotite, 0=0.	01001020 (20411)			Aliquot: A				
*0.0	0.0040	0.2558 ± 0.0161	0.263 + 126 /51	0 125 ± 0 014	134 614 ± 6 000	E6 0	50 012 ± 7 614	0.1	1335 10 ± 101 70
~2.0	0.0846	0.2000 ± 0.0161	0.203 ± 136.451	0.125 ± 0.014	134.014 ± 0.808	50.2	59.012 ± 7.614	0.1	1335.12 ± 121./2
2.6	3.7008	0.0010 ± 0.0004	0.025 ± /9.//3	0.009 ± 0.001	00.904 ± 0.478	0.6	00.420 ± 0.480	3.7	1/2/.43 ± 0.25
3.8	9.687	0.0005 ± 0.0002	0.015 ± 86.462	0.007 ± 0.000	86.933 ± 0.474	0.2	86.778 ± 0.476	9.6	1731.97 ± 6.10
*4.6	6.5006	0.0008 ± 0.0002	0.160 ± 30.551	0.013 ± 0.000	90.031 ± 0.748	0.3	89.796 ± 0.749	6.4	1770.28 ± 9.41
5.0	5.9753	0.0008 ± 0.0002	0.021 ± 121.391	0.007 ± 0.000	86.395 ± 0.330	0.3	86.145 ± 0.333	5.9	1723.82 ± 4.30
5.8	7.5522	0.0010 ± 0.0002	0.045 ± 21.816	0.007 ± 0.000	86.285 ± 0.144	0.3	85.993 ± 0.152	7.5	1721.86 ± 1.96
12.0	7.2982	0.0016 ± 0.0002	1.182 ± 10.279	0.009 ± 0.000	85.925 ± 0.318	0.6	85.444 ± 0.320	7.2	1714.78 ± 4.13

	Volumo ³⁹ Ar					40		h	
Power ^a	×10 ⁻¹¹ cc	36 Ar/39 Ar	37 Ar/ ³⁹ Ar	38 Ar/39 Ar	40 Ar/ ³⁹ Ar	% ⁴⁰ Ar ATM	* ⁴⁰ Ar/ ³⁹ Ar	f ₃₉	Apparent Age
Fower	x10 00	Ai/ Ai	Ai/ Ai	AI/ AI	Al/ Al	AIM		(/0)	INICI
PHA-97-H	I521 Biotite; J=0.	01857320 (Z5471) (cont.)		Aliquot: B				
*2 1	0.351	0.3384 + 0.0094	0.064 ± 138.001	0.040 ± 0.008	155 171 + 3 566	64.4	55 165 + 4 448	0.4	1272 55 + 73 63
*2.3	0.5676	0.0506 + 0.0018	0.030 + 180.978	0.011 + 0.003	85.397 + 0.930	17.5	70.431 + 0.956	0.6	1509.01 + 13.89
3.0	7,9597	0.0026 + 0.0003	0.009 + 75.036	0.009 + 0.000	86.162 + 0.304	0.9	85.393 + 0.314	7.9	1714.11 + 4.07
3.8	11.0516	0.0009 + 0.0002	0.006 ± 73.290	0.008 ± 0.000	86 125 ± 0.001	0.3	85 847 + 0 411	10.9	1719 98 + 5 31
4.4	8,2889	0.0015 + 0.0002	0.006 + 40.404	0.007 + 0.000	86.455 + 0.388	0.5	86.008 + 0.392	8.2	1722.07 + 5.06
5.1	8,2919	0.0008 + 0.0001	0.008 + 67.192	0.008 + 0.000	85.889 + 0.569	0.3	85.652 + 0.570	8.2	1717.46 + 7.37
5.8	16,1607	0.0014 + 0.0002	0.012 + 121.006	0.009 ± 0.000	86.726 + 0.536	0.5	86.320 + 0.540	16.0	1726.08 + 6.94
6.5	6.76	0.0013 ± 0.0002	0.017 ± 38.924	0.009 ± 0.001	86.257 ± 0.501	0.4	85.881 ± 0.505	6.7	1720.42 ± 6.52
12.0	0.8566	0.0095 ± 0.0010	0.334 ± 45.979	0.013 ± 0.002	87.760 ± 1.882	3.2	84.965 ± 1.879	0.9	1708.55 ± 24.41
PHA-97-H	418 Hornblende	; J=0.01848480 (Z54	175)		Aliquot: A				
*2.0	0.0092	0 2005 ± 0 0158	1 297 ± 40 445	0.200 ± 0.024	719 217 + 11 502	10	622 277 ± 12 095	0.0	4592 70 ± 21 76
3.0	0.0983	0.2905 ± 0.0158	1.207 ± 49.445	0.399 ± 0.024	210 608 + 8 415	11 7	185 006 + 8 3/3	0.0	4000.79 ± 01.70 2687 84 ± 62 71
4.0	0.0303	0.0129 ± 0.0028	5 716 + 29 744	0.000 ± 0.023	197 115 + 2 679	2	183 205 + 2 722	3.7	2668 10 + 20 69
*5.0	3 177	0.0032 ± 0.0005	7 065 ± 13 740	0.087 ± 0.002	198 291 + 1 378	0.5	197 336 + 1 385	27.1	2771 78 + 9 94
5.0	1.571	0.0032 ± 0.0003	6 815 ± 10.740	0.007 ± 0.002	170 521 + 2 088	0.5	178 303 + 2 151	13.4	2630 47 + 16 70
5.3	0.5962	0.0079 + 0.0017	6 598 + 23 102	0.070 ± 0.002	176 259 + 2 348	13	173 923 + 2 357	5.1	2595 44 + 18 65
5.5	0.3601	0.0139 + 0.0028	6 851 + 39 550	0.082 ± 0.002	179 294 + 2 793	23	175 172 + 2 810	3.1	2605 30 + 22 11
6.0	0.3001	0.0419 ± 0.0020	6 633 ± 18 910	0.002 ± 0.000	180 001 + 1 705	2.5	168 513 + 1 712	17	2552 12 + 13 88
12.0	0.1930	0.0419 ± 0.0040	7.055 ± 0.610	0.088 ± 0.007	100.901 ± 1.795	0.0	106.010 ± 1.712	00.0	2002.12 ± 10.00
12.0	2.023	0.0022 ± 0.0010	7.333 ± 3.012	0.003 ± 0.001	Aliquet: P	0.5	100.202 ± 1.143	22.5	2030.00 ± 0.30
		0.0000 + 0.015-	4 050 + 404 04 1	0.004 - 0.045			050 540 17 00	~ ~	5004 57 - 05 00
^3.0	0.0674	0.2389 ± 0.0167	1.258 ± 101.614	0.824 ± 0.049	1027.150 ± 47.890	6.9	956.546 ± 47.961	0.6	5281.57 ± 85.62
^4.0	0.0741	0.2761 ± 0.0218	0.736 ± 89.436	0.167 ± 0.015	227.916 ± 11.5/2	35.8	146.333 ± 12.681	0.6	2362.77 ± 114.15
^4.7	0.127	0.0423 ± 0.0084	0.808 ± 55.086	0.117 ± 0.006	150.238 ± 3.700	8.3	137.752 ± 3.869	1.1	2283.83 ± 36.39
-4.9	0.0934	0.0535 ± 0.0168	1.983 ± 69.090	0.116 ± 0.008	142.465 ± 3.905	11.1	126.643 ± 5.539	0.8	2176.22 ± 55.29
-5.1	0.0327	0.1971 ± 0.0317	2.336 ± 134.537	0.198 ± 0.031	156.968 ± 15.023	37.1	98.720 ± 15.458	0.3	18/3.46 ± 182.48
-5.3	0.0583	0.0558 ± 0.0146	2.636 ± 55.836	0.105 ± 0.025	138.795 ± 6.123	11.9	122.304 ± 5.712	0.5	2132.37 ± 58.41
5.5	0.1351	0.0538 ± 0.0056	4.821 ± 39.912	0.141 ± 0.009	245.386 ± 3.262	6.5	229.479 ± 2.999	1.2	2988.82 ± 19.09
7.5	1.4601	0.0026 ± 0.0010	6.910 ± 17.516	0.097 ± 0.003	188.5/3 ± 1.9/9	0.4	187.791 ± 1.992	12.4	2701.95 ± 14.86
PHA-97-N	150a Biotite; J=0.	01858680 (Z4796)	0.002 ± 17.027	0.000 ± 0.004	100.042 ± 1.000	2.4	110.040 ± 1.000	4.0	2010.00 1 12.41
	1		[Aliquot: A				[
*2.0	0.026	0.5247 ± 0.0823	0.586 ± 484.063	0.158 ± 0.058	194.570 ± 28.878	79.7	39.528 ± 36.176	0.0	993.77 ± 699.30
*2.3	0.0067	0.8753 ± 0.1897	3.128 ± 340.051	0.410 ± 0.227	229.553 ± 50.201	112.7	-29.095 ± -62.374	0.0	-1404.01 ± -4554.60
*3.1	4.6074	0.0031 ± 0.0002	0.020 ± 25.989	0.027 ± 0.001	80.090 ± 0.529	1.1	79.175 ± 0.530	6.2	1632.47 ± 7.19
3.8	4.3204	0.0012 ± 0.0003	0.009 ± 288.809	0.025 ± 0.000	85.266 ± 0.394	0.4	84.912 ± 0.398	5.9	1708.68 ± 5.19
3.9	7.4751	0.0010 ± 0.0002	0.004 ± 217.916	0.027 ± 0.001	85.810 ± 0.478	0.4	85.500 ± 0.481	10.1	1716.31 ± 6.23
4.2	2.1252	0.0025 ± 0.0006	0.016 ± 310.626	0.026 ± 0.001	86.048 ± 0.874	0.8	85.320 ± 0.881	2.9	1713.98 ± 11.43
5.0	9.261	0.0007 ± 0.0002	0.005 ± 166.974	0.027 ± 0.001	85.039 ± 0.383	0.3	84.824 ± 0.386	12.6	1707.53 ± 5.02
5.6	3.6391	0.0017 ± 0.0003	0.011 ± 118.194	0.027 ± 0.001	85.797 ± 0.336	0.6	85.286 ± 0.340	4.9	1713.54 ± 4.41
6.4	2.8459	0.0026 ± 0.0004	0.011 ± 267.231	0.025 ± 0.001	86.130 ± 0.786	0.9	85.352 ± 0.790	3.9	1714.38 ± 10.24
12.0	12.2531	0.0006 ± 0.0001	0.004 ± 156.762	0.025 ± 0.001	85.446 ± 0.242	0.2	85.283 ± 0.243	16.6	1713.50 ± 3.15
					Aliquot: B				[
*2.0	0.4386	0.0224 ± 0.0030	0.041 ± 304.859	0.047 ± 0.004	69.619 ± 1.763	9.5	63.014 ± 1.862	0.6	1398.70 ± 28.76
*2.8	3.9543	0.0019 ± 0.0004	0.005 ± 234.936	0.024 ± 0.001	84.328 ± 0.275	0.7	83.763 ± 0.287	5.4	1693.67 ± 3.77
3.1	2.4293	0.0022 ± 0.0004	0.011 ± 96.408	0.024 ± 0.001	86.291 ± 0.748	0.8	85.635 ± 0.750	3.3	1718.06 ± 9.70
3.8	6.2023	0.0008 ± 0.0002	0.004 ± 503.557	0.020 ± 0.000	85.778 ± 0.277	0.3	85.555 ± 0.278	8.4	1717.02 ± 3.60
3.9	2.0875	0.0024 ± 0.0004	0.005 ± 988.614	0.021 ± 0.001	86.464 ± 0.612	0.8	85.749 ± 0.611	2.8	1719.53 ± 7.89
4.4	3.2631	0.0020 ± 0.0003	0.008 ± 131.662	0.023 ± 0.000	84.999 ± 0.644	0.7	84.421 ± 0.645	4.4	1702.28 ± 8.41
5.0	4.3466	0.0010 ± 0.0003	0.005 ± 436.661	0.022 ± 0.001	85.849 ± 0.463	0.4	85.541 ± 0.467	5.9	1716.84 ± 6.05
5.8	2.5838	0.0027 ± 0.0005	0.011 ± 175.677	0.024 ± 0.001	85.623 ± 0.642	0.9	84.834 ± 0.652	3.5	1707.67 ± 8.49
6.1	0.8691	0.0053 ± 0.0012	0.025 ± 346.237	0.030 ± 0.002	86.405 ± 2.358	1.8	84.852 ± 2.361	1.2	1707.90 ± 30.71
12.0	1.0453	0.0052 ± 0.0012	0.015 ± 439.298	0.025 ± 0.001	86.141 ± 0.530	1.8	84.613 ± 0.574	1.4	1704.79 ± 7.48
PHA-97-H	418 Biotite; J=0.	01854540 (Z5475)			Aliquot: A				
*2.1	0.3282	0.1785 ± 0.0052	0.227 ± 38.575	0.161 ± 0.011	133.894 ± 2.351	39.4	81.157 ± 2.677	0.7	1656.75 ± 35.75
*2.6	1.4962	0.0092 ± 0.0010	0.122 ± 32.503	0.046 ± 0.003	96.090 ± 0.972	2.8	93.378 ± 0.999	3.2	1813.00 ± 12.24
3.0	6.5359	0.0018 ± 0.0003	0.063 ± 26.227	0.028 ± 0.001	102.356 + 0.443	0.5	101.836 + 0.450	13.8	1913.73 + 5.21
3.8	11.2999	0.0017 ± 0.0003	0.064 ± 28.506	0.025 ± 0.001	102.368 ± 0.365	0.5	101.876 ± 0.378	23.8	1914.20 ± 4.38
*4.6	1.7038	0.0030 ± 0.0007	0.117 ± 58.169	0.024 ± 0.001	101.644 ± 0.837	0.9	100.747 ± 0.844	3.6	1901.07 ± 9.84
*5.0	1.1423	0.0040 ± 0.0011	0.245 ± 55.598	0.028 ± 0.001	99.553 ± 0.971	1.2	98.380 ± 0.999	2.4	1873.25 ± 11.82
*5.9	1.0219	0.0095 ± 0.0008	0.799 ± 42.825	0.026 ± 0.001	94.172 ± 0.673	3	91.371 ± 0.659	2.2	1788.26 ± 8.18
*6.2	0.9424	0.0049 ± 0.0017	1.916 ± 32.602	0.031 ± 0.001	94.223 ± 0.830	1.5	92.786 ± 0.925	2.0	1805.74 ± 11.37
*12.0	1.0467	0.0059 ± 0.0014	1.611 ± 30.195	0.033 ± 0.001	98.532 ± 0.857	1.8	96.801 ± 0.914	2.2	1854.45 ± 10.93

	Volume ³⁹ Ar	36 30	37 30	38 39	40 39	% ⁴⁰ Ar	+40 39	f ₃₉ b	Apparent Age
Power ^a	x10 ⁻¹¹ cc	³⁶ Ar/ ³⁹ Ar	³ 'Ar/ ³⁹ Ar	³⁸ Ar/ ³⁹ Ar	⁴⁰ Ar/ ³⁹ Ar	ATM	Ar/SAr/SAr	(%)	Mač
PHA-97-H	418 Biotite; J=0.	01854540 (Z5475) (cont.)		Aliquot: B				
*2.0	0.2179	0.1109 ± 0.0048	0.237 ± 62.673	0.106 ± 0.006	105.001 ± 2.332	31.2	72.230 ± 2.399	0.5	1533.40 ± 34.31
*2.5	0.6042	0.0134 ± 0.0016	0.231 ± 68.712	0.048 ± 0.002	78.289 ± 0.801	5.1	74.329 ± 0.808	1.3	1563.17 ± 11.37
3.4	13.0217	0.0017 ± 0.0003	0.049 ± 59.084	0.027 ± 0.001	104.834 ± 0.522	0.5	104.330 ± 0.528	27.4	1942.39 ± 6.02
3.8	3.5968	0.0013 ± 0.0004	0.041 ± 38.866	0.022 ± 0.001	105.064 ± 0.510	0.4	104.676 ± 0.515	7.6	1946.33 ± 5.86
*5.4	2.4003	0.0017 ± 0.0007 0.0056 ± 0.0010	1 049 + 21 534	0.024 ± 0.001	100.478 ± 0.914	17	98 820 ± 0.761	21	1878 45 ± 0.87
*6.1	0.3138	0.0140 ± 0.0048	1.234 ± 26.692	0.046 ± 0.002	105.581 ± 1.815	3.9	101.438 ± 2.129	0.7	1909.12 ± 24.73
*12.0	0.7163	0.0103 ± 0.0010	0.940 ± 54.706	0.027 ± 0.001	100.144 ± 0.875	3	97.106 ± 0.838	1.5	1858.09 ± 10.01
AM98-711	6A Hornblende;	J=0.01835500 (Z54	72)		Aliauot A	I.			
*2.5	0.0285	0.4690 ± 0.0986	11 856 + 282 558	3 915 ± 0 771	1589 184 + 295 014	87	1450 600 ± 296 285	0.1	5987 35 + 355 15
*3.0	0.034	0.7488 ± 0.0886	108.871 ± 162.796	4.376 ± 0.457	4640.077 ± 465.601	4.8	4418.820 ± 466.186	0.1	7952.52 ± 188.02
*3.5	0.0216	0.4142 ± 0.0657	64.115 ± 163.089	3.424 ± 0.368	2028.659 ± 208.539	6	1906.256 ± 209.040	0.1	6464.49 ± 192.34
*3.9	0.0702	0.1475 ± 0.0167	19.014 ± 106.730	1.380 ± 0.085	380.717 ± 22.586	11.5	337.121 ± 22.769	0.2	3558.40 ± 104.90
*4.1	0.0258	0.0783 ± 0.0681	19.423 ± 89.815	1.550 ± 0.141	316.042 ± 18.527	7.3	292.902 ± 25.099	0.1	3342.23 ± 130.34
*4.2	2.6656	0.0076 ± 0.0006	22.513 ± 13.733	0.675 ± 0.008	250.604 ± 2.263	0.9	248.355 ± 2.267	8.2	3094.64 ± 13.51
4.3	6 6719	0.0013 ± 0.0013	22.330 ± 37.744	0.340 ± 0.012	163 025 ± 0 549	02	162 634 ± 0.558	2.5	2920.02 ± 10.00 2494.30 ± 4.64
5.0	1,4308	0.0033 ± 0.0011	22.581 ± 10.578	0.347 ± 0.005	159.413 ± 0.644	0.6	158.453 ± 0.700	4.4	2459.22 ± 5.93
*5.6	0.1621	0.0143 ± 0.0065	22.822 ± 47.038	0.393 ± 0.013	153.413 ± 2.380	2.8	149.192 ± 2.508	0.5	2379.00 ± 22.21
12.0	0.9625	0.0027 ± 0.0012	24.151 ± 13.808	0.454 ± 0.007	160.020 ± 0.650	0.5	159.228 ± 0.681	3.0	2465.77 ± 5.75
			II		Aliquot: B		1		
*3.0	0.0389	0.3745 + 0.0667	45.854 + 172.788	2.985 ± 0.351	728,236 + 83,009	15.2	617.581 + 85.010	0.1	4532.80 + 228.20
*3.9	0.0475	0.2196 ± 0.0347	33.210 ± 128.108	2.432 ± 0.199	915.306 ± 72.277	7.1	850.415 ± 72.762	0.2	5069.46 ± 145.06
*4.2	0.0567	0.1425 ± 0.0300	13.150 ± 98.847	1.074 ± 0.059	399.171 ± 17.840	10.5	357.062 ± 19.285	0.2	3648.00 ± 84.55
*4.4	0.049	0.0505 ± 0.0331	12.763 ± 145.335	0.553 ± 0.056	246.167 ± 20.537	6.1	231.254 ± 22.015	0.2	2989.77 ± 139.00
*4.6	2.5262	0.0031 ± 0.0007	21.513 ± 16.847	0.358 ± 0.004	183.859 ± 1.401	0.5	182.948 ± 1.412	7.8	2655.67 ± 10.73
5.0	8.429	0.0042 ± 0.0008	21.819 ± 23.128	0.391 ± 0.007	167.848 ± 1.244	0.7	166.614 ± 1.265	26.0	2527.08 ± 10.33
12.0	8.335	0.0068 ± 0.0005	22.116 ± 15.532	0.367 ± 0.006	168.824 ± 1.203	1.2	166.803 ± 1.214	25.8	2528.61 ± 9.90
BH98-905	9 Biotite; J=0.01	850750 (Z5473)			Aliquot: A				
*2.2	8.6597	0.0856 ± 0.0007	0.036 ± 142.083	0.054 ± 0.002	91.112 ± 0.367	27.7	65.831 ± 0.418	3.1	1437.45 ± 6.29
*2.4	2.1776	0.0098 ± 0.0004	0.037 ± 92.502	0.053 ± 0.002	85.405 ± 0.629	3.4	82.500 ± 0.625	0.8	1672.36 ± 8.26
*2.6	15.6112	0.0041 ± 0.0006	0.024 ± 465.053	0.054 ± 0.001	89.137 ± 0.325	1.3	87.939 ± 0.372	5.7	1742.84 ± 4.73
*2.8	5.6599	0.0043 ± 0.0003	0.017 ± 238.283	0.056 ± 0.001	91.316 ± 0.451	1.4	90.053 ± 0.460	2.1	1769.51 ± 5.76
3.0	15.1987	0.0045 ± 0.0004	0.031 ± 175.680	0.057 ± 0.001	92.803 ± 0.518	1.4	91.461 ± 0.529 91.007 ± 0.350	5.5	1787.06 ± 6.56
3.4	19 9604	0.0037 ± 0.0004	0.043 + 122.044	0.051 ± 0.001	91.345 ± 0.333	1.2	90 263 ± 0.999	7.2	1772 13 + 12 50
3.6	4.5854	0.0019 ± 0.0005	0.015 ± 443.501	0.053 ± 0.001	91.774 ± 0.648	0.6	91.206 ± 0.659	1.7	1783.89 ± 8.19
3.8	8.1949	0.0012 ± 0.0002	0.021 ± 98.096	0.053 ± 0.001	91.593 ± 0.378	0.4	91.231 ± 0.380	3.0	1784.20 ± 4.72
4.2	23.565	0.0014 ± 0.0004	0.029 ± 203.830	0.053 ± 0.001	92.539 ± 0.591	0.4	92.127 ± 0.603	8.5	1795.29 ± 7.45
*12.0	35.023	0.0015 ± 0.0002	0.060 ± 57.663	0.062 ± 0.001	95.092 ± 0.350	0.5	94.646 ± 0.356	12.7	1826.11 ± 4.31
					Aliquot: B				
*2.4	3.3105	0.1823 ± 0.0014	0.080 ± 44.521	0.054 ± 0.001	122.861 ± 0.544	43.9	68.984 ± 0.685	1.2	1484.30 ± 10.04
*2.6	8.0474	0.0100 ± 0.0004	0.051 ± 27.943	0.056 ± 0.001	88.135 ± 0.385	3.3	85.191 ± 0.402	2.9	1707.58 ± 5.21
*2.8	2.7779	0.0084 ± 0.0008	0.042 ± 342.127	0.055 ± 0.001	89.876 ± 0.570	2.8	87.403 ± 0.607	1.0	1736.01 ± 7.74
*3.0	15.7326	0.0051 ± 0.0004	0.036 ± 200.811	0.057 ± 0.001	90.279 ± 0.674	1.7	88.765 ± 0.683	5.7	1753.31 ± 8.64
*3.2	5.1873	0.0046 ± 0.0006	0.022 ± 201.105	0.053 ± 0.000	89.673 ± 0.479	1.5	88.315 ± 0.505	1.9	1/4/.61 ± 6.40
3.4	20.1784	0.0021 ± 0.0002	0.020 ± 417.004	0.051 ± 0.000	90.733 ± 0.530 91.216 ± 0.574	0.7	90.100 ± 0.540 90.464 + 0.578	7.3 2 A	1774 65 + 7 22
3.9	11 657	0.0018 + 0.0001	0.027 + 74.564	0.052 ± 0.001	91 093 ± 0.410	0.0	90 561 ± 0.411	4.2	1775 85 ± 5 13
4.4	18,5672	0.0014 ± 0.0005	0.042 ± 163.959	0.053 ± 0.001	91.725 ± 0.272	0.5	91.310 ± 0.307	6.7	1785.18 ± 3.81
12.0	39.5654	0.0015 ± 0.0002	0.078 ± 17.139	0.056 ± 0.001	92.608 ± 0.261	0.5	92.164 ± 0.270	14.3	1795.75 ± 3.33
BH98-905	9 Hornblende; J	=0.01849550 (Z5473	i)		Aliquet: A		L		
		0 4 407 1 0 000-	0.400 1.00.005	0.044 - 0.005			4474 004 1 10 10-		0000 40 1 47 00
*2.5	0.0661	0.1437 ± 0.0203	3.196 ± 60.989	0.641 ± 0.060	1516.492 ± 40.260	2.8	14/4.024 ± 40.477	0.0	0U28.48 ± 47.80
3.0	0.1000	0.0492 ± 0.0153	2 840 + 46 324	0.420 ± 0.019	130 566 + 0 847	0.1 2.4	127 478 + 1 002	0.1	2185 27 + 9 96
*3.0	1 8427	0.0031 + 0.0027	2.864 + 36 686	0.130 + 0.003	131.786 + 0.946	0.7	130.856 + 0.964	0.2	2218.52 + 9.41
4.2	82.8254	0.0008 ± 0.0002	4.497 ± 15.468	0.048 ± 0.001	157.684 + 0.703	0.2	157.434 + 0.707	36.8	2460.79 + 6.03
*4.6	2.206	0.0027 ± 0.0007	4.587 ± 26.099	0.062 ± 0.001	144.268 ± 2.000	0.6	143.458 ± 2.006	1.0	2337.46 ± 18.32
*4.8	0.4194	0.0054 ± 0.0038	4.912 ± 50.576	0.059 ± 0.003	145.980 ± 1.284	1.1	144.374 ± 1.569	0.2	2345.81 ± 14.27
*5.0	0.443	0.0042 ± 0.0035	5.637 ± 34.437	0.093 ± 0.004	144.857 ± 0.994	0.9	143.615 ± 1.285	0.2	2338.89 ± 11.73
*5.6	0.1979	0.0187 ± 0.0083	5.545 ± 78.348	0.080 ± 0.013	132.684 ± 2.112	4.2	127.171 ± 2.906	0.1	2182.21 ± 28.92
*12.0	3.0513	0.0008 ± 0.0004	4.848 ± 19.659	0.056 ± 0.001	120.954 ± 0.949	0.2	120.712 ± 0.952	1.4	2116.74 ± 9.83
1									

а	Volume ³⁹ Ar	36 39	37 39	38 39	40 39	% ⁴⁰ Ar	*40	f ₃₉ b	Apparent Age
Power"	x10 cc	°°Ar/°°Ar	Ar/ ³⁰ Ar	°°Ar/°°Ar	Ar/ ³⁰ Ar	ATM	Ar/**Ar	(%)	Maĭ
BH98-9059	9 Hornblende; J=	=0.01849550 (Z5473	i) (cont.)		Aliauot: B				
*3.0	0.175	0 1126 + 0 0079	7 552 + 54 861	0.658 ± 0.023	2201 380 + 70 302	1.5	2258 127 + 70 408	0.1	6775 70 + 54 94
*3.5	0.173	0.1120 ± 0.0073 0.0101 ± 0.0032	3 744 + 27 301	0.000 ± 0.020	212 065 + 1 148	1.5	209 082 ± 1 250	0.1	2854 98 + 8 57
*3.9	1 3024	0.0052 + 0.0012	4 548 + 32 749	0.167 ± 0.005	267 402 + 2 825	0.6	265 869 + 2 837	0.6	3207 50 + 16 00
*4 1	8 4993	0.0019 + 0.0007	4 803 + 40 298	0.092 ± 0.002	204 011 + 2 922	0.3	203 440 + 2 932	3.8	2815 87 + 20 53
*4.2	4,2609	0.0008 + 0.0003	4.840 + 18.650	0.069 + 0.001	159.065 + 1.128	0.2	158.822 + 1.128	1.9	2472.60 + 9.56
*4.3	6.748 0.0006 ± 0.0003 4.789 ± 11.136 0.047 ± 0.001 153.621 ± 0.582 0.1 153.433 ± 0.586 3.0 24263								2426.34 ± 5.09
4.5	34.0842	0.0007 ± 0.0003	4.456 ± 10.629	0.049 ± 0.001	157.163 ± 0.535	0.1	156.963 ± 0.540	15.2	2456.77 ± 4.62
*12.0	11.2565	0.0014 ± 0.0007	4.624 ± 33.374	0.052 ± 0.001	152.141 ± 1.833	0.3	151.727 ± 1.843	5.0	2411.45 ± 16.16
			L.		Aliquot: C	1			
*3.0	0 1623	0 1160 ± 0 0160	16 455 + 51 867	0 454 ± 0 018	1137 211 + 37 297	3	1102 943 + 37 555	0.1	5526 62 ± 58 56
*3.5	0.1592	0.0365 + 0.0101	22.548 + 39.006	0.228 + 0.016	241.474 + 4.375	4.5	230,700 + 4,999	0.1	2997.41 + 31.68
*3.9	0.1546	0.0517 ± 0.0072	5.692 ± 67.748	0.218 ± 0.023	173.898 ± 6.686	8.8	158.613 ± 6.779	0.1	2470.82 ± 57.51
*4.2	2,8789	0.0025 ± 0.0009	6.602 + 19.831	0.684 + 0.008	152.655 + 1.163	0.5	151.905 + 1.188	1.3	2413.01 + 10.41
4.6	57.9184	0.0009 ± 0.0009	4.838 ± 26.846	0.080 ± 0.001	157.556 ± 0.567	0.2	157.298 ± 0.631	25.8	2459.64 ± 5.38
*12.0	5.1702	0.0017 ± 0.0004	4.720 ± 13.600	0.121 ± 0.001	140.621 ± 0.626	0.4	140.121 ± 0.635	2.3	2306.72 ± 5.89
CS-96-130	2 Hornblende; J	=0.01831060 (2597	()		Aliquot: A				
*2.5	0.0461	2.0182 + 0.1471	93.114 + 108.325	57,792 + 4,003	4858.097 + 333.492	12.3	4261.713 + 336.121	0.1	7883.71 + 140.49
*3.0	0.0581	1.1368 ± 0.0331	1498.412 ±	26,280 ± 0,600	1747.712 ± 36.221	19.2	1411.785 ± 34.885	0.1	5936.01 ± 42.93
			43.544			-			
*3.5	0.0561	0.4101 ± 0.0450	566.504 ±	13.575 ± 0.845	420.931 ± 26.299	28.8	299.741 ± 29.021	0.1	3373.71 ± 147.76
			117.674						
*3.9	4.3682	0.0044 ± 0.0007	43.800 ± 11.368	28.819 ± 0.215	205.005 ± 1.515	0.6	203.693 ± 1.530	10.8	2803.34 ± 10.68
*4.2	11.8418	0.0038 ± 0.0005	36.567 ± 12.163	29.182 ± 0.231	195.411 ± 1.487	0.6	194.283 ± 1.494	29.3	2736.39 ± 10.84
4.4	0.8137	0.0098 ± 0.0012	37.328 ± 22.123	30.479 ± 0.411	189.775 ± 2.538	1.5	186.885 ± 2.538	2.0	2681.95 ± 18.96
4.6	1.5767	0.0063 ± 0.0009	35.776 ± 17.037	29.665 ± 0.329	186.178 ± 2.044	1	184.309 ± 2.053	3.9	2662.60 ± 15.50
5.0	0.4192	0.0247 ± 0.0027	50.865 ± 22.994	26.455 ± 0.398	191.969 ± 2.758	3.8	184.659 ± 2.794	1.0	2665.24 ± 21.06
5.8	0.3983	0.0157 ± 0.0035	49.475 ± 19.791	27.129 ± 0.306	189.996 ± 2.094	2.4	185.364 ± 2.232	1.0	2670.55 ± 16.78
*12.0	1.3037	0.0058 ± 0.0007	44.891 ± 19.854	29.043 ± 0.362	190.290 ± 2.365	0.9	188.564 ± 2.366	3.2	2694.45 ± 17.56
					Aliquot: B				
*3.0	0.1453	1.7413 ± 0.0718	872.306 ± 68.734	71.302 ± 2.435	4703.558 ± 159.143	10.9	4189.003 ± 157.088	0.4	7853.06 ± 66.78
*3.8	0.7724	0.0529 ± 0.0040	141.731 ± 6.876	23.032 ± 0.110	291.454 ± 1.033	5.4	275.820 ± 1.542	1.9	3247.61 ± 8.42
*4.0	1.8574	0.0033 ± 0.0012	60.125 ± 13.183	24.428 ± 0.177	195.301 ± 1.402	0.5	194.341 ± 1.438	4.6	2736.81 ± 10.42
*4.2	1.2688	0.0101 ± 0.0012	59.789 ± 13.612	25.217 ± 0.203	239.682 ± 1.919	1.2	236.696 ± 1.941	3.1	3020.26 ± 12.02
*4.4	0.5759	0.0148 ± 0.0020	60.170 ± 10.073	27.460 ± 0.151	225.875 ± 1.120	1.9	221.500 ± 1.174	1.4	2923.61 ± 7.66
*4.6	*4.6 9.6582 0.0048 ± 0.0008 48.547 ± 18.404 27.282 ± 0.308 196.119 ± 2.200 0.7 194.702 ± 2.216 23.9 2739.42 ± 16.03							2739.42 ± 16.03	
5.0	1.0226	0.0072 ± 0.0011	52.824 ± 14.868	26.007 ± 0.256	187.419 ± 1.788	1.1	185.302 ± 1.799	2.5	2670.09 ± 13.53
5.8	0.7007	0.0121 ± 0.0018	60.842 ± 7.519	24.788 ± 0.092	189.205 ± 0.692	1.9	185.631 ± 0.770	1.7	2672.56 ± 5.78
*12.0	3.4981	0.0025 ± 0.0004	61.102 ± 12.329	25.738 ± 0.195	191.498 ± 1.436	0.4	190.769 ± 1.440	8.7	2710.73 ± 10.59
a - As mea	sured by laser in	% of full nominal no	wer (10W)		d - Nominal J-value re	eferenced	n PP-20 (Hb3ar)-1072	Ma (Bod	dick 1983)
b Fraction Ar as parent of total run							determination		
^c - Errors a	re analytical only	and do not reflect e	rror in irradiation par	ameter J.	All uncertainties quote	and at $2\sigma \ln t$		allon age	actor minution.

Table 3. Sur	nmary of ⁴⁰ A	r- ³⁹ Ar results				
Sample	Mineral	Integrated age ^a	"Plateau age" ^b	Correlation age ^c (MSWD) ^f	Best estimate ^d ⁴⁰ Ar- ³⁹ Ar	U-Pb age ^e
Kaminak Belt						
PHA-97-H506	Hornblende	2669 ± 15	2652 ± 15	2654 ± 14 (7.5)	2652 ± 14	2679 ⁺³ _2
PHA-97-H161	Hornblende	2681 ± 14	2623 ± 15	2622 ± 14 (0.6)	2623 ± 14	2679 ⁺³ _2
PHA-97-H418	Hornblende	2743 ± 15	2660 ± 15	2646 ± 15 (54.8)	2660 ± 15	2681 ± 1
	Biotite	1904 ± 12	1914±12 & 1943±13	NC	1943 ± 13^{M}	2681 ± 1
PHA-97-H524	Biotite	1980 ± 12	NC	NC	$\textbf{2084} \pm \textbf{11}^{M}$	2679 ⁺³ -2
PHA-97-H521	Biotite	1723 ± 11	1722 ± 11	1721 ± 11 (4.1)	1722 ± 11	ca. 2679
Yathkyed belt				•		
CS-96-1302	Hornblende	2901 ± 16	2670 ± 16	2630 ± 78 (73.5)	2630 ± 78^{M}	ca. 2692
YD97-7116a	Hornblende	2662 ± 15	2513 ± 14	2485 ± 14 (72.2)	2513 ± 14	ca. 2692
YD97-9059	Hornblende	2493 ± 14	2460 ± 14	2459 ± 14 (0.7)	2460 ± 14	ca. 2692
	Biotite	1768 ± 11	1785 ± 11	1785 ± 11 (9.8)	1785 ± 11	ca. 2692
Intervening dom	ain					
PHA-97-H487	Hornblende	1797 ± 12	1795 ± 12	NC	1795 ± 12	ca. 2680
	Biotite	1720 ± 11	1725 ± 11	1722 ± 11 (6.0)	1725 ± 11	ca. 2680
PHA-97-N48c	Muscovite	1736 ± 11	1736 ± 11	1737 ± 11 (4.0)	1736 ± 11	ca. 2680
	Biotite	1732 ± 12	1743 ± 12	1742 ± 12 (2.6)	1743 ± 12	ca. 2680
PHA-97-J249	Biotite	1711 ± 11	1718 ± 11	1719 ± 11 (0.3)	1718 ± 11	ca. 2680
PHA-97-H348	Biotite	1707 ± 11	1718 ± 11	1722 ± 11 (2.8)	1718 ± 11	ca. 2680
PHA-97-H479	Hornblende	1772 ± 12	1754 ± 12	1748 ± 11 (5.9)	1754 ± 12	ca. 1830
	Biotite	1721 ± 11	1727 ± 11	1727 ± 11 (10.0)	1727 ± 11	ca. 1830
PHA-97-H319	Biotite	1728 ± 11	1739 ± 11	1738 ± 11 (3.1)	1739 ± 11	ca. 1830
PHA-97-N50a	Biotite	1705 ± 11	1713 ± 11	1713 ± 11 (2.3)	1713 ± 11	1827 ± 3

40 00

a – Total-gas integrated age (equivalent to K-Ar age).

b - Plateau age or "pseudo-plateau" age (see text).

c – Inverse isotope correlation age. d – Best estimate 40 Ar 39 Ar age. Those marked with a superscript M are maximum ages.

e – U-Pb zircon or monazite age (known or inferred; Davis et al., 2000).

f - MSWD is the mean square of the weighted deviates. The majority of these correlation ages would be

considered to define errorchrons. All ages are quoted in Ma. NC means not calculated.