Prevalence of Hyperactivity-Impulsivity and Inattention Among Canadian Children: Findings from the First Data Collection Cycle (1994-1995) of the National Longitudinal Survey of Children and Youth

Final Report

Elisa Romano, Raymond H. Baillargeon, and Richard E. Tremblay Applied Research Branch

Strategic Policy Human Resources Development Canada

June 2002

SP-561-01-03E
(également disponible en français)

Paper/Papier
ISBN: 0662-33903-7
Cat. No./N ${ }^{0}$ de cat.: RH63-1/561-01-03E
Internet
ISBN: 0662-33904-5
Cat. No./ N^{0} de cat.: RH63-1/561-01-03E-IN

General enquiries regarding the documents published by the Applied Research Branch should be addressed to:

Human Resources Development Canada
Publications Centre
140 Promenade du Portage, Phase IV, Level 0
Hull, Quebec, Canada
K1A 0J9

Facsimile: (819) 953-7260
http://www.hrdc-drhc.gc.ca/sp-ps/arb-dgra

Si vous avez des questions concernant les documents publiés par la Direction générale de la recherche appliquée, veuillez communiquer avec :

Développement des ressources humaines Canada Centre des publications
140 Promenade du Portage, Phase IV, niveau 0 Hull (Québec) Canada
K1A 0J9
Télécopieur : (819) 953-7260
http://www.hrdc-drhc.gc.ca/sp-ps/arb-dgra

Table of Contents

Abstract

1. Introduction 1
2. Literature Review 3
2.1 Prevalence of Attention Deficit-Hyperactivity Disorder (ADHD) 3
2.2 ADHD Subtypes 5
2.3 Diagnostic Uncertainty 6
2.4 Latent Class Approach 7
3. Method 9
3.1 Sample and Procedure 9
3.2 Measures 10
3.3 Statistical Analyses 10
4. Results 13
4.1 Latent Class Models 13
4.1.1 Latent Class Model of Hyperactivity-Impulsivity 13
4.1.2 Latent Class Model of Inattention 18
4.1.3 Conclusion 23
4.2 Conditional Behaviour Rating Probability Estimates 23
4.2.1 Conclusion 28
4.3 Latent Class Probability Estimates 28
4.3.1 Hyperactivity-impulsivity 28
4.3.2 Inattention 30
4.3.3 Conclusion 32
4.4 Posterior Conditional Probability Estimates 32
5. Discussion 35
Appendix 1 37
Appendix 2 43
References 49

List of Tables

Table 1 Six-month ADHD Prevalence Rates from two Community Surveys of Children and Adolescents 4
Table 2 Prevalence Rates (\%) of ADHD Subtypes from four General Population Studies of Children and Adolescents 5
Table 3 Distribution of Children from the First NLSCY Cycle (1994-1995) 9
Table 4 Latent Class Models of Hyperactivity-Impulsivity for 2-11-Year-Old Girls 14
Table 5 Latent Class Models of Hyperactivity-Impulsivity for 2-11-Year-Old Boys 16
Table 6 Latent Class Models of Inattention for 2-11-Year-Old Girls 19
Table 7 Latent Class Models of Inattention for 2-11-Year-Old Boys 21
Table 8 Conditional Behaviour Rating Probability Estimates Under the Unrestricted Three-Class Model for Hyperactivity-Impulsivity in 2-11-Year-Old Girls 24
Table 9 Conditional Behaviour Rating Probability Estimates Under the Unrestricted Three-Class Model for Hyperactivity-Impulsivity in 2-11-Year-Old Boys 25
Table 10 Conditional Behaviour Rating Probability Estimates Under the Unrestricted Three-Class Model for Inattention in 2-11-Year-Old Girls 26
Table 11 Conditional Behaviour Rating Probability Estimates Under the Unrestricted Three-Class Model for Inattention in 2-11-Year-Old Boys 27
Table 12 Latent Class Probability Estimates Under the Unrestricted Three-Class Model for Hyperactivity-Impulsivity in 2-11-Year-Old Girls 29
Table 13 Latent Class Probability Estimates Under the Unrestricted Three-Class Model for Hyperactivity-Impulsivity in 2-11-Year-Old Boys 29
Table 14 Latent Class Probability Estimates Under the Unrestricted Three-Class Model for Inattention in 2-11-Year-Old Girls 31
Table 15 Latent Class Probability Estimates Under the Unrestricted Three-Class Model for Inattention in 2-11-Year-Old Boys 31
Table 16 Latent Class Membership Under the Unrestricted Three-Class Model of Hyperactivity-Impulsivity 33
Table 17 Latent Class Membership Under the Unrestricted Three-Class Model of Inattention 34
Table A. 1 Posterior Conditional Probability Estimates for Hyperactivity-Impulsivity Under the Unrestricted Three-Class Model 37
Table A. 2 Posterior Conditional Probability Estimates for Inattention Under the Unrestricted Three-Class Model 43
List of Figures

Figure 1 Illustration of a two Latent Class Model of Inattention

Abstract

Hyperactivity, impulsivity, and inattention are among the most common behaviour problems in children. The aim of this study was to estimate the prevalence of hyperactivity-impulsivity and inattention in the Canadian population of 2-11-year-old girls and boys, using data from the first National Longitudinal Survey of Children and Youth (NLSCY) collection cycle (1994-1995). Latent class analyses indicated that an unrestricted three-class model provided an adequate fit to the hyperactivity-impulsivity and inattention data for the majority of 2-11-year-old girls and boys. The preferred 3-item-combination for hyperactivity-impulsivity included Can't sit still, is restless, or hyperactive; Has difficulty awaiting turn in games or groups; and Cannot settle to anything for more than a few moments. The preferred 3-item-combination for inattention included Can't concentrate, can't pay attention for too long; Stares into space; and Is inattentive. The first latent class (i.e., low) included children who did not tend to manifest hyperactive-impulsive and inattentive behaviours. The second latent class (i.e., medium) included children who tended somewhat to manifest hyperactive-impulsive and inattentive behaviours. The third latent class (i.e., high) included children who tended often to manifest hyperactive-impulsive and inattentive behaviours. Findings indicated that between 5% and 17% of 2-11-year-old girls and between 9% and 23% of 2-11-year-old boys often manifested hyperactive-impulsive behaviours. The majority of children, however, either did not manifest hyperactive-impulsive behaviours or did so only on an occasional basis. We found a similar pattern of results for inattention. Specifically, between 1% and 18% of 2-11-year-old girls and between 1% and 14% of 2-11-year-old boys often manifested inattentive behaviours. However, the majority of children either did not manifest inattentive behaviours or did so only occasionally. Our results indicate that children differ in their probability of manifesting hyperactive-impulsive and inattentive behaviours. As such, it may be important to view hyperactive-impulsive and inattentive behaviours along a continuum of increasing frequency rather than as behaviours that are either present or absent in a child. The results of our study have several important public policy implications. We provided estimates of the prevalence of hyperactivity-impulsivity and inattention separately for 2-11-year-old girls and boys from the Canadian population. These prevalence estimates may help guide decisions about the needs of children with behaviour problems with regard to treatment interventions and to efforts aimed at preventing the worsening of behaviour problems over time. Additionally, we provided a means of identifying children with problematic hyperactive-impulsive and inattentive behaviours. Given the limited public resources that currently exist for mental health services, our findings may help public policy makers to best channel resources toward children who are most in need.
ii Prevalence of Hyperactivity-Impulsivity and Inattention Among Canadian Children:
Findings From the First Data Collection Cycle (1994-1995) of the National Longitudinal Survey of Children and Youth

1. Introduction

Hyperactivity, impulsivity, and inattention are among the most common behaviour problems in children. The aim of this study was to estimate the prevalence of hyperactivity-impulsivity and inattention in the Canadian population of 2-11-year-old children. We obtained gender-specific prevalence estimates using latent class analysis based on data from the first cycle (1994-1995) of the National Longitudinal Survey of Children and Youth.

2. Literature Review

2.1 Prevalence of Attention Deficit-Hyperactivity Disorder (ADHD)

In a review of general population studies of ADHD in school-age children, Scahill and Schwab-Stone (2000) reported the best prevalence estimate to range from $5-10 \%$. Two Canadian community surveys that examined ADHD prevalence in children and adolescents were the Quebec Child Mental Health Survey (Breton et al., 1999; Valla et al., 1994) and the Ontario Child Health Study (Offord et al., 1987; Offord, Boyle, \& Racine, 1989; Szatmari, Offord, \& Boyle, 1989). The Quebec study collected child, parent, and teacher interview data for 2,400 6-14-year-old children. The Ontario study collected data on 2,674 4-16 year olds using child, parent, and teacher behaviour checklists. Both studies had approximately equal numbers of girls and boys.

Table 1 presents six-month prevalence rates of ADHD. Both studies found overall prevalence rates that were consistent with those reported in Scahill and Schwab-Stone's (2000) review. The Quebec study found significant gender and age effects according to child and parent reports. Boys had higher ADHD rates than girls, and 6-8 year olds had higher rates than 12-14 year olds. Child reports also indicated a significantly higher rate of ADHD for 9-11-year-old children, compared to 12-14 year olds. Teacher reports from the Quebec study showed a significant gender by age interaction. Specifically, 6-8-year-old girls had higher ADHD rates than 9-11-year-old girls, and 9-11-year-old boys had higher ADHD rates than 9-11-year-old girls. In the Ontario study, ADHD rates were higher for boys than girls across informants.

Table 1 Six-month ADHD Prevalence Rates from two Community Surveys of Children and Adolescents						
			Age Group (Years)			
Study	Informant	Gender	6-8	9-11	12-14	6-14
Quebec Child Mental Health Survey (Breton et al., 1999; Valla et al., 1994)	Child	Girls Boys Total	$\begin{aligned} & 1.8 \\ & 5.6 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 6.9 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 2.8 \\ & 1.8 \\ & \hline \end{aligned}$	3.3 (2.6, 4.2)
	Parent	Girls Boys Total	$\begin{aligned} & 4.1 \\ & 9.6 \\ & 6.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 7.3 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 5.1 \\ & 3.5 \\ & \hline \end{aligned}$	5.0 (4.1, 6.0)
	Teacher	Girls Boys Total	$\begin{array}{r} 7.5 \\ 12.1 \\ 9.8 \\ \hline \end{array}$	$\begin{array}{r} 2.9 \\ 13.2 \\ 8.1 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{a} \\ & \mathrm{a} \end{aligned}$	8.9 (7.4, 10.7)
	Informant	Gender	$4-11^{\text {b }}$	12-16 ${ }^{\text {c }}$		
Ontario Child Health Study (Offord et al., 1987; Offord et al., 1989; Szatmari et al., 1989)	Parent	Girls Boys	$\begin{aligned} & 0.8 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.1 \\ & \hline \end{aligned}$		
	Teacher/Child	Girls Boys	$\begin{aligned} & \hline 2.5 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 4.0 \end{aligned}$		
${ }^{a}$ Teacher interviews were not collected; ${ }^{\text {b }}$ Based on parent and teacher reports; ${ }^{\text {c }}$ Based on parent and child reports Note: 95% confidence intervals are in parentheses.						

2.2 ADHD Subtypes

While most past epidemiological studies have focused on the prevalence of ADHD as a whole, the current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association, 1994) identifies three ADHD subtypes - predominantly inattentive, predominantly hyperactive-impulsive, and combined. The combined subtype refers to children who meet symptom criteria for both inattention and hyperactivity-impulsivity. A number of epidemiological studies have used the DSM case identification strategy to investigate the prevalence of ADHD subtypes in children and adolescents. Table 2 presents four such studies originating from the United States (Nolan, Gadow, \& Sprafkin, 2001; Wolraich, Hannah, Pinnock, Baumgaertel, \& Brown, 1996), South America (Pineda et al., 1999), and Australia (Gomez, Harvey, Quick, Scharer, \& Harris, 1999).

Table 2 Prevalence Rates (\%) of ADHD Subtypes from four General Population Studies of Children and Adolescents							
					Prev. Rates (\%)		
Study	Sample Size	Informant	ADHD Subtype	Gender	$\begin{gathered} \text { Age } \\ \text { 3-5 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Age } \\ 5-12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Age } \\ \text { 12-18 } \end{gathered}$
United States (Nolan et al., 2001)	3,006	Teacher ratings	Inattentive	Girls Boys	$\begin{aligned} & 4.0 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.0 \\ 14.4 \end{array}$	$\begin{array}{r} 8.0 \\ 14.5 \end{array}$
			HyperactiveImpulsive	Girls Boys	$\begin{aligned} & \hline 5.1 \\ & 7.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 1.6 \\ & \hline \end{aligned}$
			Combined	Girls Boys	$\begin{array}{r} 4.6 \\ 10.1 \end{array}$	$\begin{aligned} & 1.1 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 4.0 \end{aligned}$
					$\begin{aligned} & \text { Age } \\ & 5-12 \end{aligned}$		
United States (Wolraich et al., 1996)	8,258	Teacher ratings	Inattentive	Girls Boys	$\begin{aligned} & 3.5 \\ & 7.2 \end{aligned}$		
			HyperactiveImpulsive	Girls Boys	$\begin{aligned} & \hline 0.9 \\ & 3.8 \\ & \hline \end{aligned}$		
			Combined	Girls Boys	$\begin{aligned} & \hline 1.6 \\ & 5.3 \end{aligned}$		
					$\begin{aligned} & \text { Age } \\ & 5-11 \end{aligned}$		
Australia (Gomez et al., 1999)	1,275	Parent ratings	Inattentive	Girls Boys	$\begin{aligned} & 1.9 \\ & 6.8 \end{aligned}$		
			HyperactiveImpulsive	Girls Boys	$\begin{aligned} & 1.9 \\ & 3.6 \\ & \hline \end{aligned}$		
			Combined	Girls Boys	$\begin{aligned} & 1.8 \\ & 4.1 \end{aligned}$		
		Teacher ratings	Inattentive	Girls Boys	$\begin{aligned} & \hline 3.0 \\ & 8.9 \\ & \hline \end{aligned}$		
			HyperactiveImpulsive	Girls Boys	$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$		
			Combined	Girls Boys	$\begin{array}{r} \hline 0.9 \\ 3.5 \\ \hline \end{array}$		
					$\begin{aligned} & \text { Age } \\ & 4-17 \end{aligned}$		
South America (Pineda et al., 1999)	540	Parent checklists	Inattentive	Girls Boys	$\begin{aligned} & 3.4 \\ & 5.1 \end{aligned}$		
			HyperactiveImpulsive	Girls Boys	$\begin{aligned} & 7.1 \\ & 9.9 \\ & \hline \end{aligned}$		
			Combined	Girls Boys	$\begin{aligned} & 1.9 \\ & 4.8 \end{aligned}$		

Results indicate that the U.S. and Australian studies tended to identify inattention as the most frequent subtype for girls and boys. This finding is consistent with reviews of population-based samples (Carlson \& Mann, 2000). In the South American study, the most frequent subtype for girls and boys was hyperactivity-impulsivity. All four studies found boys to have higher rates than girls for each ADHD subtype, with the exception of 3-5 year olds in Nolan et al.'s (2001) study. These differences, however, were not tested statistically in the Australian study and in the U.S. study by Wolraich et al. (1996). In the South American study, the gender difference reached statistical significance only for the combined subtype. Turning to age effects, the South American study found that 4-5 year olds had the highest levels of hyperactivity-impulsivity, while the inattentive and combined subtypes were most frequent in 6-11 year olds (results not shown). These age differences, however, were not tested for statistical significance. Findings on age effects from the U.S. study by Nolan et al. (2001) were consistent with those from South America in showing that preschool children had higher rates of hyperactivity-impulsivity while older children and adolescents had higher inattention rates.

2.3 Diagnostic Uncertainty

There are various approaches to identifying children with problems of inattention and hyperactivity-impulsivity. In the DSM-IV, a child receives a diagnosis of ADHD-predominantly inattentive type if six or more inattentive symptoms (out of nine) are endorsed. A child receives a diagnosis of ADHD-predominantly hyperactive-impulsive type if six or more hyperactive-impulsive symptoms (out of nine) are endorsed. If six or more inattentive and hyperactive-impulsive symptoms are endorsed, a child receives a diagnosis of ADHD-combined type.

Most studies investigating ADHD prevalence have relied on a categorical approach, such as that used in the DSM-IV, where a diagnosis is made if the number of symptoms that an individual has exceeds a specified cut-off or threshold value. Strictly speaking, there is no cut-off that distinguishes perfectly between those individuals who suffer from a particular disorder and those who do not, given that symptoms do not possess perfect sensitivity (defined as the probability that an individual who truly has a disorder will manifest the symptoms in question) and specificity (defined as the probability that an individual who truly does not have a disorder will not manifest the symptoms in question). Therefore, some individuals will incorrectly be classified as having a disorder while others will incorrectly be classified as not having a disorder. These misclassification errors will produce biased disorder prevalence estimates. In other words, when estimating the prevalence (p) of a particular disorder, a number of truly non-disordered individuals will be classified as cases $([1-p] *[1-$ cut off's specificity $]$), and a number of truly disordered individuals will be classified as non-cases (p^{*} [1 - cut off's sensitivity]). Let us consider a situation where the cut off's sensitivity and specificity are both high (.80), and the disorder's true prevalence rate is .05 . In this case, the estimated prevalence rate of $.23([p *$ sensitivity $]+[(1-p) *(1-$ specificity $)])$ would be biased by a factor of 4.6.

2.4 Latent Class Approach

While there is no "gold standard" for distinguishing perfectly between individuals with and without a disorder, it is possible to obtain maximum likelihood estimates of the prevalence of a particular behaviour problem using latent class analysis (LCA; Rindskopf \& Rindskopf, 1986). Let us consider a situation where three imperfectly sensitive and specific inattention behaviours are rated by a single informant as either present or absent. These behaviours may be used to distinguish between two inattentive states, specifically children with inattention and children without inattention. In this two-class model, each child is assumed to belong in only one of the two latent classes within a single latent variable. Children who belong in the inattention latent class tend to manifest inattentive behaviours, while children in the no inattention latent class tend not to manifest inattentive behaviours. This basic LCA model can be described more formally using two types of parameters, namely latent class probabilities and conditional behaviour rating probabilities. Latent class probabilities refer to the probability that a randomly selected child in the population will belong to each of the latent classes. In this way, latent class probabilities provide information about the prevalence of inattention. Conditional behaviour rating probabilities refer to the probability that a specific behaviour will be present among children in the inattention latent class (i.e., behaviour sensitivity) and absent among children in the no inattention latent class (i.e., behaviour specificity). Figure 1 illustrates this two-class model of inattention. Latent class probabilities are represented as π_{1} (i.e., no inattention latent class) and π_{2} (i.e., inattention latent class). Note that $\pi_{1}+\pi_{2}=1$. The figure also illustrates the sensitivity and specificity of the three inattention behaviours $(\mathrm{A}, \mathrm{B}, \mathrm{C})$. In particular, $\pi_{\mathrm{A}(1) \mid 1}$ represents the specificity for behaviour A; that is the probability that behaviour A is absent (1) among children with no inattention (1). Conversely, $\pi_{\mathrm{A}(2) \mid 2}$ represents the sensitivity for behaviour A ; that is the probability that behaviour A is present (2) among children with inattention (2).

Figure1: Illustration of a two Latent Class Model of Inattention

Note: A, B, and C are behaviour items. π_{1} represents the first latent class of No Inattention. π_{2} represents the second latent class of Inattention. $\pi_{\mathrm{A}(1) \mid 1}, \pi_{\mathrm{B}(1) \mid 1}$, and $\pi_{\mathrm{C}(1) \mid 1}$ represent the probability of behaviours A, B, and C being absent in the first latent class of No Inattention. $\pi_{\mathrm{A}(2) \mid 2}, \pi_{\mathrm{B}(2) \mid 2}$, and $\pi_{\mathrm{C}(2) \mid 2}$ represent the probability of behaviours A, B, and C being present in the second latent class of Inattention.

8 Prevalence of Hyperactivity-Impulsivity and Inattention Among Canadian Children:
Findings From the First Data Collection Cycle (1994-1995) of the National Longitudinal Survey of Children and Youth

3.1 Sample and Procedure

The National Longitudinal Survey of Children and Youth (NLSCY) is a Canadian nation-wide household survey that is being conducted by Human Resources Development Canada and Statistics Canada. It conducts biennial assessments on a representative sample of newborn to 11-year-old Canadian children. Households included in the survey were chosen using a stratified multistage probability sample design based on information collected by Statistics Canada's Labour Force Survey (LFS), which produces unemployment estimates. The LFS defines a household as all individuals living within a selected dwelling (residence). It surveys approximately 59,000 Canadian households and covers 97% of the population aged 15 years and older. The LFS excludes children living in institutional facilities, on Aboriginal reserves, and in the two Canadian territories. It should be noted, however, that data for Aboriginal children and children living in the Canadian territories are being collected in separate surveys (Statistics Canada and Human Resources Development Canada, 1995, 1997).

The NLSCY is a longitudinal-sequential design, encompassing both a cross-sectional and longitudinal dimension. The first NLSCY data collection cycle (1994-1995) surveyed a maximum of four 0-11-year-old children per household. In each household, the child's mother (in 89.4% of cases) completed a personal interview on child, parent, and family characteristics. Complete cycle 1 data were obtained from 13,439 households across Canada, representing an overall response rate of 86.3% and resulting in a sample of 22,831 newborn to 11 -year-old children. Our study was cross-sectional as we focused exclusively on 2-11-year-old children from the first data collection cycle whose mothers responded to interview items on hyperactivity-impulsivity and inattention. Table 3 presents the distribution of children by age, gender, and behaviour. There were comparable numbers of girls and boys, and the non-response rate was minimal (below 5%).

Table 3 Distribution of Children from the First NLSCY Cycle (1994-1995)						
	Girls			Boys		
Age (Years)	Total ${ }^{\text {a }}$	HyperactivityImpulsivity (\%) ${ }^{\text {b }}$	$\begin{gathered} \text { Inattention } \\ (\%)^{c} \end{gathered}$	Total	HyperactivityImpulsivity (\%)	Inattention (\%)
2	963	96.3	97.3	1,000	96.4	96.9
3	928	97.2	97.8	1,018	97.4	97.7
4	966	98.3	98.7	968	97.5	97.4
5	878	98.5	98.4	916	96.1	96.2
6	850	98.0	97.9	951	97.6	97.6
7	892	97.1	97.2	857	97.8	97.7
8	887	97.6	97.7	893	96.9	96.9
9	838	97.4	98.1	896	97.1	97.1
10	863	98.4	98.6	904	98.3	98.2
11	822	98.8	98.9	845	98.2	98.3
Total	8,887	97.7	98.1	9,248	97.3	97.4

[^0]
3.2 Measures

The behaviour items included in the NLSCY interviews were based on measures used in the Montreal Longitudinal and Experimental Study (Tremblay et al., 1991; Tremblay, Vitaro, Gagnon, Royer, \& Piché, 1992) and the Ontario Child Health Study (Boyle et al., 1987; Offord et al., 1987). Five items measured hyperactivityimpulsivity, namely: (1) Can't sit still, is restless, or hyperactive, (2) Fidgets, (3) Has difficulty awaiting turn in games or groups, (4) Is impulsive, acts without thinking, and (5) Cannot settle to anything for more than a few moments. The four items that measured inattention were (1) Is distractible, has trouble sticking to any activity, (2) Can't concentrate, can't pay attention for too long, (3) Stares into space, and (4) Is inattentive. Mothers rated each item along a 3-point scale from never or not true to sometimes or somewhat true to often or very true.

3.3 Statistical Analyses

We used latent class analysis to estimate the prevalence of hyperactivity-impulsivity and inattention in the Canadian population of 2-11-year-old children using data from the first NLSCY cycle (1994-1995). We tested three latent class models, specifically independence, unrestricted two-class, and unrestricted three-class model. The independence model posits one latent variable composed of one latent class. In other words, the ratings for any one observed behaviour are statistically independent of ratings for the remaining observed behaviours. The unrestricted two-class model posits one latent variable composed of two latent classes (e.g., inattention and no inattention). The model is unrestricted because no restrictions have been placed on the values that the parameters can assume. The unrestricted three-class model posits one latent variable composed of three latent classes: a low latent class in which children tend to be rated by their mothers as never or not true on all behaviours; a medium latent class in which children tend to be rated by their mothers as sometimes or somewhat true on all behaviours; and a high latent class in which children tend to be rated by their mothers as often or very true on all behaviours. This model was used successfully by Baillargeon, Tremblay, and Willms (1999) to estimate the prevalence of physical aggression in 2-11-year-old Canadian children using data from the first NLSCY cycle.

All statistical analyses were conducted using the freely distributed LEM computer program for the analysis of categorical data (Vermunt, 1997). The fit of latent class models were assessed with the Pearson chi-square $\left(\chi^{2}\right)$ and the likelihood-ratio chi-square (L^{2}) statistics (Clogg, 1979; Dillon \& Mulani, 1984; McCutcheon, 1987). The Cressie-Read (CR; Cressie \& Read, 1984) goodness-of-fit statistic also was useful when there was a discrepancy between the χ^{2} and L^{2} statistics. While we had information on five hyperactivity-impulsivity items and four inattention items, we decided to test latent class models that included only three items. Including all items
would have resulted in large multidimensional tables with a number of zero or near-zero frequency cells. This would have made it difficult to assess the fit of our latent class models using the χ^{2} and L^{2} goodness-of-fit statistics (Fienberg, 1980). We ran each latent class model 100 times to better guard against the problem of local maximum solutions. ${ }^{1}$ We assessed the fit of latent class models using a conservative alpha level $(\alpha=.01)$ to take into account the NLSCY's design effect (i.e., increased risk of falsely rejecting the null hypothesis). Data were weighted according to NLSCY procedures that took into account non-response and post-stratification. All statistical analyses were conducted separately by gender and age.

[^1]
4. Results

4.1 Latent Class Models

4.1.1 Latent Class Model of Hyperactivity-Impulsivity

We tested the independence, unrestricted two-class, and unrestricted three-class models for all 10 3-behaviour-item combinations of hyperactivity-impulsivity behaviour items. Results showed that the unrestricted three-class model provided the most acceptable fit to the following 3-behaviour-item combination: Can't sit still, is restless, or hyperactive; Has difficulty awaiting turn in games or groups; and Cannot settle to anything for more than a few moments. The same three behaviour items were chosen for girls and boys. The unrestricted three-class model is a general model that includes many parameters. In cases where the model does not provide an adequate fit to the data for a particular 3-behaviour-item combination, there may be a problem of local dependence which, strictly speaking, indicates that the 3 behaviour items do not measure a single construct (refer to Uebersax's web page).

Girls. Table 4 presents goodness-of-fit statistics for the latent class models that were tested on the chosen 3-behaviour-item combination. The $\chi^{2}, \mathrm{~L}^{2}$, and CR statistics showed that the independence model could be rejected across all age groups ($\mathrm{p}<.01$). This suggests that the three hyperactivity-impulsivity behaviour items are not statistically independent of one another. The unrestricted two-class model also could be rejected across all age groups ($\mathrm{p}<.01$), suggesting that the hyperactivity-impulsivity data cannot be accounted for by a single latent variable composed of two mutually exclusive and exhaustive latent classes (i.e., hyperactivity-impulsivity and no hyperactivity-impulsivity). The $\chi^{2}, \mathrm{~L}^{2}$, and CR statistics showed an acceptable fit for the unrestricted three-class model across all age groups ($\mathrm{p}>.01$), with the exception of 4 year olds. However, there were no standardized residuals with absolute values exceeding 2.58 for this age group, suggesting that observed frequencies did not differ significantly from expected frequencies. In fact, there were no elevated standardized residuals across all age groups for the unrestricted three-class model. In addition, the unrestricted three-class model explained most of the variance in the hyperactivity-impulsivity data (i.e., $1-\left[\mathrm{L}^{2}\right.$ three-class model / L^{2} independence model]).

Boys. Table 5 indicates that the independence and unrestricted two-class models could be rejected across all age groups, according to the $\chi^{2}, \mathrm{~L}^{2}$, and CR statistics. There was an acceptable fit for the unrestricted three-class model across all age groups ($\mathrm{p}>.01$), with the exception of 8 and 9 year olds. There were several elevated standardized residuals for 9 year olds, suggesting that observed frequencies differed significantly from expected frequencies (i.e., outliers). For the remaining age groups, there were no standardized residuals with absolute values exceeding 2.58. The unrestricted three-class model also explained most of the variance in the hyperactivity-impulsivity data.

Table 4 Latent Class Models of Hyperactivity-Impulsivity for 2-11-Year-Old Girls											
	2-year-olds										
Model	X^{2}	p	L^{2}	p	CR	p	AIC	BIC	$\begin{gathered} \text { \|Std. Res.\| } \\ >1.96 \\ \hline \end{gathered}$	$\begin{gathered} \mid \text { Std. Res. } \mid \\ >2.58 \\ \hline \end{gathered}$	\% Explained Variance
Independence	436.56	. 00	257.81	. 00	339.23	. 00					
Unrestricted two-class	104.60	. 00	89.79	. 00	97.60	. 00	63.7863	1.0895	8	7	65.17
Unrestricted three-class	14.53	. 02	15.10	. 02	14.68	. 02	3.1027	-25.8342	0	0	94.14
	3-year-olds										
Independence	338.16	. 00	243.86	. 00	286.31	. 00					
Unrestricted two-class	43.90	. 00	43.69	. 00	43.23	. 00	17.6864	-44.8708	3	2	82.08
Unrestricted three-class	10.48	. 11	11.11	. 09	10.52	. 10	-0.8892	-29.7617	0	0	95.44
	4-year-olds										
Independence	545.98	. 00	365.03	. 00	443.83	. 00					
Unrestricted two-class	105.15	. 00	102.31	. 00	103.44	. 00	76.3071	13.1141	9	9	71.97
Unrestricted three-class	31.46	. 00	32.78	. 00	31.76	. 00	20.7825	-8.3836	3	0	91.02
	5-year-olds										
Independence	513.30	. 00	376.08	. 00	432.59	. 00					
Unrestricted two-class	67.55	. 00	66.66	. 00	66.20	. 00	40.6567	-21.1586	7	4	82.28
Unrestricted three-class	5.39	. 50	4.98	. 55	5.22	. 52	-7.0243	-35.5544	0	0	98.68
	6-year-olds										
Independence	294.79	. 00	201.62	. 00	242.51	. 00					
Unrestricted two-class	87.12	. 00	84.31	. 00	85.27	. 00	58.3053	-3.0442	7	5	58.18
Unrestricted three-class	4.23	. 65	5.10	. 53	4.36	. 63	-6.9027	-35.2179	0	0	97.47
	7-year-olds										
Independence	410.93	. 00	261.03	. 00	326.25	. 00					
Unrestricted two-class	47.93	. 00	50.88	. 00	48.11	. 00	24.8800	-37.1365	4	2	80.51
Unrestricted three-class	7.25	. 30	8.22	. 22	7.41	. 28	-3.7823	-32.4053	0	0	96.85

$\begin{aligned} & 9 Z^{\prime} G 6 \\ & Z 6 \cdot z 8 \end{aligned}$	0 \downarrow	0	$\begin{aligned} & \text { 901て'9Z- } \\ & \text { Z969'9ع- } \end{aligned}$	$\begin{aligned} & \angle G 0 O^{\circ} Z \\ & 06 \varepsilon t^{\circ} \downarrow 乙 \end{aligned}$	$\begin{aligned} & 70^{\circ} \\ & 00^{\circ} \\ & 00^{\prime} \end{aligned}$	$6 て ゙ \varepsilon 1$ 0909 9く…	$\begin{aligned} & \varepsilon 0^{\circ} \\ & 00^{+} \\ & 00^{-} \end{aligned}$	レーロレ カガOG 0がG6Z	$\begin{aligned} & \left\llcorner 0^{\circ}\right. \\ & 00^{\circ} \\ & 00^{\circ} \\ & \hline \end{aligned}$	てし゚とし Gl゙LL เ0．9ヶ9	 әэиәриәdәри
splo－леəK－レレ											
$\begin{aligned} & \hline \text { s8't6 } \\ & \text { Z6. } 88 \end{aligned}$	0 L	0 1	しカヤ8＊Lて－ LSEで8七	18ヶ9 ع667＊	$\begin{aligned} & 90^{\circ} \\ & 00 \\ & 00 \\ & \hline \end{aligned}$	$\varepsilon 6 \cdot \neg \downarrow$ $\angle L \cdot 8 \varepsilon$ $6 \varepsilon^{\prime} \angle 8 \varepsilon$	$\begin{aligned} & \hline \mathrm{SO}^{\circ} \\ & 0^{-} \\ & 00^{-} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S9'Z1 } \\ & 00^{\circ} 6 \varepsilon \end{aligned}$ $L \angle \cdot S \hbar Z$	$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \\ & \hline \end{aligned}$		 әэиәриәdәри
splo－леәK－01											
$\begin{aligned} & \text { Zで } 66 \\ & \text { Lレ・08 } \end{aligned}$	0 ε	0		$\begin{aligned} & 6 \angle 8 G^{\prime} \dagger \\ & \angle 0 \varepsilon 6^{\circ} 0 \varepsilon \end{aligned}$	Z0 00 00 00	GZ＇G1七8＇6ヵ 96．90t	$\begin{aligned} & \hline 10^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	6G＇91 ع6．9G 	$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \cdot G 1 \\ & 2 t^{\prime} 8 t \\ & 68 \cdot 09 G \end{aligned}$	 әэиәриәdәри｜
sp｜o－леәК－6											
$\begin{aligned} & 8 L^{\prime} G 6 \\ & \varepsilon 8 \cdot \varepsilon L \end{aligned}$	0	0 t		L66で0 t6tく	80 00 00 00	$\begin{aligned} & \text { ZL'LI } \\ & \text { Z0' } 29 \end{aligned}$ $96^{\circ} \downarrow \subseteq \varepsilon$	$\begin{aligned} & 90^{\circ} \\ & 00^{-} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline 0 \varepsilon \cdot Z L \\ & \mathrm{GL} \cdot 99 \\ & 80^{\prime} \mathrm{GGZ} \end{aligned}$	$\begin{aligned} & \hline 60^{\circ} \\ & 00^{-} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline 76 \cdot 01 \\ & \varepsilon G^{\prime} 69 \\ & 8 G^{\circ} 99 t \end{aligned}$	ssejo－0мұ рәңっ！ısəıuп әэиәриәdәри
spןo－леәK－8											

Table 5Latent Class Models of Hyperactivity-Impulsivity for 2-11-Year-Old Boys											
	2-year-olds										
Model	X^{2}	p	L^{2}	p	CR	p	AIC	BIC	$\begin{gathered} \text { \|Std. Res. } \mid \\ >1.96 \end{gathered}$	$\begin{gathered} \text { \|Std. Res. } \mid \\ >2.58 \end{gathered}$	\% Explained Variance
Independence	491.40	. 00	338.87	. 00	408.39	. 00					
Unrestricted two-class	76.09	. 00	75.45	. 00	75.13	. 00	49.4528	-13.7538	6	6	77.73
Unrestricted three-class	14.16	. 03	15.29	. 02	14.36	. 03	3.2916	-25.8806	0	0	95.49
	3-year-olds										
Independence	597.39	. 00	374.93	. 00	477.57	. 00					
Unrestricted two-class	160.77	. 00	133.81	. 00	147.65	. 00	107.8073	44.1402	7	5	64.31
Unrestricted three-class	11.09	. 09	11.73	. 07	11.05	. 09	-0.2676	-29.6524	0	0	96.87
	4-year-olds										
Independence	411.19	. 00	352.52	. 00	380.71	. 00					
Unrestricted two-class	36.12	. 00	37.48	. 00	36.31	. 00	11.4837	-51.5809	2	2	89.37
Unrestricted three-class	9.37	. 15	9.45	. 15	9.39	. 15	-2.5515	-31.6582	0	0	97.32
	5-year-olds										
Independence	535.68	. 00	347.10	. 00	431.78	. 00					
Unrestricted two-class	92.98	. 00	77.94	. 00	85.32	. 00	51.9413	-10.2298	4	4	77.55
Unrestricted three-class	12.98	. 04	13.48	. 04	13.08	. 04	1.4765	-27.2178	0	0	96.12
	6-year-olds										
Independence	636.12	. 00	435.16	. 00	529.41	. 00					
Unrestricted two-class	96.11	. 00	90.80	. 00	93.89	. 00	64.8018	1.9235	6	4	79.13
Unrestricted three-class	10.50	. 11	9.93	. 13	10.22	. 12	-2.0671	-31.0878	0	0	97.72
	7-year-olds										
Independence	740.90	. 00	406.60	. 00	558.43	. 00					
Unrestricted two-class	88.74	. 00	81.16	. 00	84.79	. 00	55.1563	-6.2861	3	3	80.04
Unrestricted three-class	2.97	. 81	2.91	. 82	2.94	. 82	-9.0923	-37.4503	0	0	99.28

$\begin{aligned} & 9 \varepsilon^{\prime} 96 \\ & \mathrm{~s} \cdot \end{aligned}$	0	ε		$\begin{aligned} & \text { Z6tG'0- } \\ & 66 \hbar \varepsilon^{\circ} \dagger \end{aligned}$	$\begin{aligned} & \mathrm{SO}^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & 69^{\circ} \mathrm{ZL} \\ & \text { Z9'L } \\ & 69^{\prime} 1 S \varepsilon \end{aligned}$	$\begin{aligned} & 80^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	Sガレレ Sع＇0ع くガャレと	$\begin{aligned} & +0^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	8t゙とし 61．とを でㅇ0t	 әэиәриәдәри
splo－」еəK－レレ											
$\begin{aligned} & 6 z^{\prime} 96 \\ & 9 \varepsilon^{\prime} \dagger 8 \end{aligned}$	O	0 L	$\begin{aligned} & \text { L080`GZ- } \\ & \text { Z9।て'てZ- } \end{aligned}$	$\begin{gathered} \hline \forall Z O L \cdot \varepsilon \\ 8 S t L^{\circ} 0 力 \end{gathered}$	$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline 01 . \mathrm{GL} \\ & \text { S6. } 9 \\ & 16.8 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$0 L^{\circ} \mathrm{G}$ Sl＇99 て6‘Zて†	$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \\ & \hline \end{aligned}$	て6＂\downarrow 09 ＇99 88．90	 әәиәриәdәри
splo－леәK－0レ											
$\begin{aligned} & \angle L^{\prime} 68 \\ & 06^{\prime} \varepsilon L \end{aligned}$	Z t	2 g		$\begin{aligned} & \text { 6Z9G'GZ } \\ & \text { L8I8'69 } \end{aligned}$	00 00 00 0	$\begin{aligned} & \text { LL'GE } \\ & 08 . L O L \\ & \varepsilon L \cdot 9 \varepsilon t \end{aligned}$	$\begin{aligned} & 00^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & 9 G^{\prime} \angle \varepsilon \\ & z 8^{\prime} G 6 \\ & \nabla l^{\prime} \angle 9 \varepsilon \end{aligned}$	$\begin{aligned} & 00^{\circ} \\ & 00^{\prime} \\ & 00^{\circ} \end{aligned}$	$七 L^{\circ} 9 \varepsilon$ 98이 89＇9Zs	 әәиәриәdәри
sp｜O－леәК－6											
$\begin{aligned} & \angle Z^{\prime} \varepsilon 6 \\ & \text { ® }^{\circ} 0 \mathrm{~L} \end{aligned}$	0 9	Z		6ヶt6＂$\downarrow \downarrow$ S08t＇06	$\begin{aligned} & 00^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \varepsilon 8^{\prime} 9 Z \\ & z 0 \cdot 91 L \\ & \varepsilon \angle \cdot 6 \angle t \end{aligned}$	$\begin{aligned} & 00^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline \mathrm{G} 6^{\prime} 9 \mathrm{Z} \\ & 8 \mathrm{t}^{\prime} 9 \mathrm{LI} \\ & 99^{\prime} 00 \mathrm{t} \end{aligned}$	$\begin{aligned} & 00^{\circ} \\ & 00^{-} \\ & 00^{-} \end{aligned}$	$\begin{aligned} & 96^{\circ} 9 Z \\ & 90^{\circ} \angle L \\ & L^{\prime} Z \angle G \end{aligned}$	 əәиәриәdəри｜
sp｜O－леәК－8											
（p，quoŋ）s әqеュ											

4.1.2 Latent Class Model of Inattention

We tested the independence, unrestricted two-class, and unrestricted three-class models for the 4 3-behaviour-item combinations of inattention. The unrestricted three-class model showed the most acceptable fit to the following 3-behaviour-item combination: Can't concentrate, can't pay attention for too long; Stares into space; and Is inattentive. The same three behaviour items were chosen for girls and boys.

Girls. Table 6 presents goodness-of-fit statistics for the latent class models that were tested on the chosen 3-behaviour-item combination. The independence model could be rejected across all age groups ($\mathrm{p}<.01$). The unrestricted two-class model also could be rejected across all age groups ($\mathrm{p}<.01$), with the exception of 5 and 9 year olds. However, for 5 year olds, the L^{2} and CR statistics showed an acceptable fit but the χ^{2} statistic did not. For 9 year olds, all three statistics showed an acceptable fit. We therefore turned to the AIC and BIC statistics. The AIC suggested that the preferred model was the unrestricted three-class model, compared to the unrestricted two-class model (i.e., the AIC value was more negative for the three-class model). In contrast, the BIC suggested that the unrestricted two-class model was preferable. However, the unrestricted three-class model had no elevated standardized residuals, and it explained most of the variation in the inattention data. The unrestricted three-class model showed an acceptable fit across the χ^{2}, L^{2}, and CR statistics ($\mathrm{p}>.01$), with the exception of 2 , 6 , and 8 year olds. However, there was only one standardized residual for 2 year olds whose absolute value exceeded 2.58 , and there were no standardized residuals with absolute values exceeding 2.58 for 6 and 8 year olds. In addition, the unrestricted three-class model explained most of the variance in the inattention data.

Boys. Table 7 indicates that the independence and unrestricted two-class models could be rejected across all age groups ($\mathrm{p}<.01$). There was an acceptable fit for the unrestricted three-class model across all age groups ($p>.01$), with the exception of 2 year olds. There was one standardized residual whose absolute value exceeded 2.58 for this age group. For the remaining age groups, there were no elevated standardized residuals. The unrestricted three-class model also explained most of the variance in the inattention data.

$\begin{aligned} & 00 \cdot 96 \\ & 86^{\prime}-98 \end{aligned}$	0 	\downarrow	$\begin{aligned} & \text { LL8G"GZ- } \\ & \text { LZOZ'GE- } \end{aligned}$	$\begin{array}{\|l\|} \hline 8 L \angle 0^{\circ} \varepsilon \\ t 906 \cdot 9 Z \end{array}$	$\begin{aligned} & 90 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 6 L \cdot Z 1 \\ & 99^{69} \\ & 69 . \varepsilon 09 \end{aligned}$	$\begin{aligned} & 20 \\ & 00 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 80^{\circ g 1} \\ & 16 \mathrm{ZG} \\ & \mathrm{~s} \cdot \angle L E \end{aligned}$	$\begin{aligned} & 90 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 6 \varepsilon^{\prime Z L} \\ & 06 \cdot \mathrm{~Gb} \\ & 89^{\circ} \mathrm{ElL} \end{aligned}$	ssep－әәциұ рәңэ！ияәлй әэиәриәдәри｜
splo－леә人－L											
8L＇Z6	0	1	てセを＜＇0て－	97Ls＇${ }^{\circ}$	10°	＋6． 21	00°	LS＇61	00°	9881	
6 ＇゙て8	乙	G	060668－	29Zt＇レて	00	$66^{\circ} 09$	00°	$\varepsilon \square^{\circ} \mathrm{L}$	00°	$88^{\prime \prime}$ ¢8	
					00°	$90^{\circ} 0 \chi^{\circ}$	00°	$88^{\circ} 022$	00°	とでて¢ャ	әэиәриәdәри｜
splo－леәК－9											
$6 \varepsilon^{\prime} \mathrm{S} 6$	0	0	8689 ${ }^{\text {L2－}}$	61E80	90°	\＆て＇Zl	90＇	\＆8＇Z1	S0＇	89＇Z1	
90^{\prime} เ6	乙	乙	てして6 29	とってl＇レ－	10	¢ $\underbrace{\prime} 88$	20	$88 \cdot \downarrow$ ¢	00°	てL＇乙̇	ssejo－omi pepoulsaun
					00°	90＇6Lz	00°	¢で8Lて	00°	98.982	әэиәриәdәри
splo－seәK－s											
91．26	0	0	Z¢z9＇1建	9ZSt＇z－	$9{ }^{\circ}$	$00^{\prime} 6$	S＊＊	Sc＇6	ャ＊	99＇6	
98.78	τ	ε	$20 t G^{\prime}$ L $\underbrace{-}$	9999＇ 1	00	เG＇ャ®1	00°	$\angle 9^{\circ} \mathrm{LG}$	00	L1．972	
					00°	$68^{\circ} \downarrow \angle S$	00°	$6 \downarrow^{\prime} 9 \varepsilon \varepsilon$	00°	88＇021＇	әэиәриәdəpuI
splo－леә人－†											
\＆9＇26	0	0	S918＇s¢－	06しt＇9－	GS	86^{\prime}	$\angle{ }^{\circ}$	89＇9	S9＇	96.7	
LL＇ 28	1	1	ع018＇69－	6008＇z	00	69＇9	00°	08．82	00°	9でで	ssejo－омұ рәң！ufseuun
					00°	$89^{\prime}\llcorner$ ¢	00°	カャ＇¢ยz	00°	81－89t	әэиәриәdәри｜
splo－леә人－¢											
89＇88	0	1	LIZL゙91－	680ع＇Zし	00°	L1．92	00°	レヒ๋ワ	00°	9Z＇62	
LL＇6L	乙	ε	เعZ8＇st－	9920 21	00	$9 て ゙ く \downarrow$	00°	80 ¢ \downarrow	00°	ع1＇\＆G	Sseio－omi peppusauun
					00°	くどでて	00°	S6＇zLて	00°	98＇g $¢ 乙$	әэиәриәdәри
$\begin{gathered} \text { әэue!uen } \\ \text { peu!e\|dx } \% \end{gathered}$	｜－say＇pis｜	｜－say＇pis｜	ग19	JIV	d	yo	d	${ }_{7}$	d	${ }_{2} \mathrm{X}$	İpow
splo－леәК－乙											
9 әqe＿											

Table 6 (Cont'd) Latent Class Models of Inattention for 2-11-Year-Old Girls												
	8-year-olds											
Independence	1,659.48	. 00	504.30	. 00	897.44	. 00						
Unrestricted two-class	109.66	. 00	96.03	. 00	99.00	. 00	70.0288	7.9960	7	5	80.96	
Unrestricted three-class	19.68	. 00	21.19	. 00	19.82	. 00	9.1904	-19.4401	1	0	95.80	
	9-year-olds											
Independence	456.81	. 00	288.99	. 00	362.69	. 00						
Unrestricted two-class	20.40	. 09	20.25	. 09	20.01	. 09	-5.7527	-66.9759	1	0	92.99	
Unrestricted three-class	5.27	. 51	4.81	. 57	5.03	. 54	-7.1873	-35.4442	0	0	98.34	
	10-year-olds											
Independence	1,074.23	. 00	488.28	. 00	713.26	. 00						
Unrestricted two-class	90.12	. 00	76.94	. 00	82.99	. 00	50.9406	-10.7994	8	6	84.24	
Unrestricted three-class	6.60	. 36	7.71	. 26	6.78	. 34	-4.2940	-32.7894	0	0	98.42	
	11-year-olds											
Independence	1,591.37	. 00	414.86	. 00	749.07	. 00						
Unrestricted two-class	167.99	. 00	85.15	. 00	113.69	. 00	59.1516	-1.9922	6	4	79.48	
Unrestricted three-class	9.53	. 15	11.69	. 07	9.80	. 13	-0.3139	-28.5341	0	0	97.18	
Note: The latent class models were run for the following 3-behaviour-item combination of inattention behaviours: Can't concentrate, can't pay attention for too long Stares into space; and Is inattentive. There were 20 degrees of freedom for the independence model, 13 degrees of freedom for the unrestricted two-class model, degrees of freedom for the unrestricted three-class model. X2 = Pearson chi-square; L2 = Likelihood-ratio chi-square; CR = Cressie-Read; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; \|Std. Res.	= absolute value of standardized residual.											

$\begin{aligned} & \text { Zナ' } \angle 6 \\ & 0 \angle \circ 8 L \end{aligned}$	0 L	0 L	$\begin{aligned} & \text { 0LZL‘6て- } \\ & \text { ZعLレ'G } \end{aligned}$	$\begin{aligned} & 6 Z L L^{\circ} 0^{-} \\ & L \angle \nabla G^{\prime} 99 \end{aligned}$	$\begin{aligned} & \hline 01 \\ & 00 \\ & 00 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 L^{\circ} 01 \\ & z 0^{\circ} \mathrm{GLL} \\ & 1 \varepsilon^{\prime} \mathrm{Zg9} \end{aligned}$	$\begin{aligned} & 80^{\circ} \\ & 00^{\circ} \\ & 00 \\ & \hline \end{aligned}$	$\begin{aligned} & \varepsilon Z^{\prime} \downarrow \downarrow \\ & \text { Gs'Z6 } \\ & 0 G^{\prime} \downarrow \varepsilon \hbar \end{aligned}$	$\begin{aligned} & 01 \\ & 00 \\ & 00^{\prime} \\ & \hline \end{aligned}$		sseןગ－әәдцł рәృગ！ułsəıun әэиәриәdəри｜
splo－леәK－L											
$\begin{aligned} & \hline 21.86 \\ & 60.08 \end{aligned}$	$\begin{aligned} & 0 \\ & t \end{aligned}$	$\begin{aligned} & 0 \\ & 9 \end{aligned}$		$\begin{aligned} & \hline \text { 8ZLでと- } \\ & \text { เOZて' } 29 \end{aligned}$	$\begin{aligned} & L Z^{\prime} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	078 S9＇G6 06 ．๕ ८9	$\begin{aligned} & \hline 61^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$		$\begin{aligned} & \hline Z^{\prime} \\ & 00^{\prime} \\ & 00^{\circ} \end{aligned}$	8t＊ LG＇tOL 66.088	 әэиәриәdəри
splo－леәК－9											
$\begin{aligned} & \hline \varepsilon^{\circ} \downarrow 6 \\ & \text { L6' } 18 \end{aligned}$	$\begin{aligned} & 0 \\ & t \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 88 \angle 8^{\circ} \varepsilon Z^{-} \\ & \angle Z 9 \varepsilon^{\circ} \angle \varepsilon^{-} \end{aligned}$		$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline 86^{\prime} \downarrow \downarrow \\ & \angle G^{\prime} 69 \\ & 9 Z^{\prime} \downarrow 0 \hbar \end{aligned}$	$\begin{aligned} & 160^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 98^{\circ} 91 \\ & 06.09 \end{aligned}$ ૬\&’Z৪Z	$\begin{aligned} & \hline 20^{\circ} \\ & 00^{\prime} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \angle S^{\prime} \forall L \\ & S L \cdot \varepsilon 6 \\ & \angle 6^{\prime} \forall \angle 9 \end{aligned}$	 әэиәриәdəри
splo－леәK－g											
$\begin{aligned} & 19^{\prime}+6 \\ & \varepsilon s^{\prime} 9 L \end{aligned}$	$\begin{aligned} & 0 \\ & \varepsilon \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 9 Z S カ{ }^{9} \angle Z^{-} \\ & \left.\angle L \angle G^{\circ} 6\right)^{-} \end{aligned}$	$\begin{aligned} & \hline \text { S6S9'L } \\ & 9+09^{\circ} \varepsilon \varepsilon \end{aligned}$	$\begin{aligned} & \hline \mathrm{SO} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline G L \cdot Z L \\ & t l \cdot 88 L \\ & 69 \cdot 9 z 9 \end{aligned}$	$\begin{aligned} & \hline \varepsilon 0^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	99° ® 09＇6G 67 と乌己	$\begin{aligned} & \hline 9^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \text { SG’ZL } \\ & \text { Z1.00G } \\ & 9 \varepsilon^{\prime} Z Z l^{\prime} Z \end{aligned}$	 әэиәриәdəри
splo－」eəK－t											
$\begin{aligned} & 19.96 \\ & 29.08 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 0 \\ & \square \end{aligned}$	$\begin{aligned} & \angle \nabla \angle 8^{\circ} 6 Z^{-} \\ & \varepsilon 01 \angle \cdot 8 \varepsilon^{-} \end{aligned}$		$\begin{aligned} & 80^{\circ} \\ & 00 \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \hline \triangleright Z \cdot L L \\ & 98 \cdot Z 6 \\ & Z L^{\prime} 6 \angle \varepsilon \end{aligned}$	$\begin{aligned} & \hline \angle 0^{\circ} \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { 9G'LL } \\ & 90 . L G \\ & \text { LS.E9Z } \\ & \hline \end{aligned}$	$\begin{aligned} & 80^{\circ} \\ & 00^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \text { to'レL } \\ & \text { sZ'L91 } \\ & \text { 6G'6Z9 } \end{aligned}$	 әэиәриәdәри
splo－леәК－${ }^{\text {a }}$											
$\begin{aligned} & \nabla l^{\prime} 88 \\ & \angle \varepsilon^{\prime} \varepsilon L \end{aligned}$	$\begin{aligned} & l \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { ZZSL•8L- } \\ & \text { 8LOG' } \angle \varepsilon^{-} \end{aligned}$	$\begin{aligned} & 9610^{\circ} L L \\ & 8 \angle 69^{\circ} \mathrm{G} Z \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	カガヤて 8で6G ع0ㄴレZ	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	Z0・モ乙 0L．LG とじ七61	$\begin{aligned} & 00 \\ & 00 \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & Z 8^{\circ} \angle Z \\ & 89^{\circ} 0 \angle \\ & 1 \angle 6 G Z \end{aligned}$	 әэиәриәdәри
$\begin{gathered} \text { әэие!ıе^ } \\ \text { pәu!e\|dxヨ \% } \end{gathered}$	$\begin{gathered} 89^{\prime} Z< \\ \|\cdot s o y \cdot p+s\| \end{gathered}$	$96.1<$ $\mid \cdot$ sey płS	319	JIV	d	¢J	d	χ^{7}	d	${ }_{\text {z }}{ }^{\text {X }}$	ІәроW
splo－леәК－乙											
L өрqе＿											

Table 7 (Cont'd) Latent Class Models of Inattention for 2-11-Year-Old Boys												
	8-year-olds											
Independence	743.14	. 00	523.89	. 00	621.30	. 00						
Unrestricted two-class	122.81	. 00	127.60	. 00	122.04	. 00	101.5949	39.5176	10	9	75.64	
Unrestricted three-class	13.88	. 03	13.38	. 04	13.50	. 04	1.3793	-27.2718	1	0	97.45	
	9-year-olds											
Independence	659.94	. 00	433.60	. 00	520.02	. 00						
Unrestricted two-class	74.34	. 00	57.20	. 00	65.45	. 00	31.1975	-30.9090	5	4	86.81	
Unrestricted three-class	9.28	. 16	11.82	. 07	9.72	. 14	-0.1760	-28.8405	0	0	97.27	
	10-year-olds											
Independence	756.56	. 00	444.61	. 00	567.61	. 00						
Unrestricted two-class	110.44	. 00	85.83	. 00	95.85	. 00	59.8274	-2.5296	5	4	80.70	
Unrestricted three-class	10.90	. 09	14.63	. 02	11.61	. 07	2.6333	-26.1469	0	0	96.71	
	11-year-olds											
Independence	630.54	. 00	491.85	. 00	546.18	. 00						
Unrestricted two-class	50.14	. 00	42.58	. 00	45.80	. 00	16.5779	-44.9062	3	2	91.34	
Unrestricted three-class	8.61	. 20	9.39	. 15	8.75	. 19	-2.6063	-30.9836	0	0	98.09	
Note: The latent class models were run for the following 3-behaviour-item combination of inattention behaviours: Can't concentrate, can't pay attention for too long; Stares into space; and Is inattentive. There were 20 degrees of freedom for the independence model, 13 degrees of freedom for the unrestricted two-class model, degrees of freedom for the unrestricted three-class model. X2 = Pearson chi-square; L2 = Likelihood-ratio chi-square; CR = Cressie-Read; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; \|Std. Res.	= absolute value of standardized residual.											

4.1.3 Conclusion

Overall, the results indicated that the unrestricted three-class model provided an adequate fit to the hyperactivity-impulsivity and inattention data for the majority of 2-11-year-old girls and boys. In cases where the unrestricted three-class model did not fit the data for certain age groups, the standardized residuals generally were not large (i.e., absolute values did not exceed 2.58). This suggested that observed frequencies did not differ significantly from expected frequencies and that the model did, in fact, provide an adequate fit to the data.

4.2 Conditional Behaviour Rating Probability Estimates

Tables 8 to 11 present the conditional behaviour rating probability estimates under the unrestricted three-class model. In particular, Tables 8 and 9 contain the hyperactivity-impulsivity parameter estimates for 2-11-year-old girls and boys, respectively. Tables 10 and 11 contain the inattention parameter estimates for 2-11-year-old girls and boys, respectively.

We find that the conditional behaviour rating probability estimates $\left(\pi_{\mathrm{j}(\mathrm{k}) \mathrm{t}}\right)$ reveal a clear ordering among the three latent classes. For instance, the odds of being rated in the first category (i.e., never or not true) tend to be higher for children who belong to the first latent class than for those who belong to the second latent class. Furthermore, the odds of being rated in the first category tend to be higher for children who belong to the second latent class than for those who belong to the third latent class. To illustrate, consider the odds of being rated in the first category on the third hyperactivity-impulsivity behaviour item (i.e., Cannot settle to anything for more than a few moments) for 2 -year-old girls. Here, the odds were $(.90 / .10)=9$ for girls who belong to the first latent class, compared to $(.33 / .67)=0.49$ for girls in the second latent class and $(.05 / .95)=0.05$ for girls in the third latent class (see Table 8). Therefore, the odds of being rated in the first category were $(9 / 0.49)=18.37$ times higher for 2 -year-old girls in the first latent class than for those in the second latent class and $(0.49 / 0.05)=9.8$ times higher for 2 -year-old girls in the second latent class than for those in the third latent class.

In addition, the odds of being rated in the second category (i.e., sometimes or somewhat true) tend to be higher for children who belong to the second latent class than for those who belong to either the first or third latent class. If we continue to focus on the third hyperactivity-impulsivity behaviour item (i.e., Cannot settle to anything for more than a few moments) for 2 -year-old girls, we see that the odds of being rated in the second category were $(.65 / .35)=1.86$ for girls who belong to the second latent class, compared to $(.10 / .90)=0.11$ for girls in the first latent class and $(.15 / .85)=0.18$ for girls in the third latent class (see Table 8). Therefore, the odds of being rated in the second category were $(1.86 / 0.11)=16.91$ times higher for 2 -year-old girls in the second latent class than for those in the first latent class and $(1.86 / 0.18)=10.33$ times higher for 2 -year-old girls in the second latent class than for those in the third latent class.

Table 8 Conditional Behaviour Rating Probability Estimates Under the Unrestricted Three-Class Model for Hyperactivity-Impulsivity in 2-11-Year-Old Girls										
First Latent Class (Low Hyperactivity-Impulsivity)										
	2 years	3 years	4 years	5 years	6 years	7 years	8 years	9 years	10 years	11 years
$\pi_{\text {A(1) }}$. 56 (.06)	. 51 (.05)	. 76 (.11)	. 66 (.04)	. 65 (.05)	. 65 (.03)	. 68 (.03)	. 66 (.06)	. 77 (.07)	. 82 (.07)
$\pi_{\text {A(2) }}$. 44 (.06)	. 43 (.05)	. 16 (.14)	. 34 (.04)	. 31 (.04)	. 33 (.03)	. 22 (.02)	. 27 (.06)	. 14 (.08)	. 13 (.07)
$\pi_{\text {A (3) }}$. 00 (.00)	. 06 (.01)	. 08 (.05)	. 00 (.00)	. 04 (.05)	. 02 (.02)	. 10 (.02)	. 07 (.02)	. 09 (.03)	. 05 (.02)
$\pi_{\text {B(1) }}$. 56 (.05)	. 45 (.03)	. 66 (.07)	. 54 (.03)	. 64 (.05)	. 66 (.03)	. 74 (.02)	. 75 (.05)	. 77 (.05)	. 84 (.03)
$\pi_{\mathrm{B}(2)}$. 36 (.04)	. 49 (.03)	. 33 (.06)	. 39 (.03)	. 32 (.05)	. 31 (.03)	. 23 (.02)	. 23 (.05)	. 20 (.05)	. 13 (.03)
$\pi_{\mathrm{B}(3)}$. 08 (.03)	. 06 (.02)	. 01 (.03)	. 07 (.01)	. 04 (.02)	. 03 (.01)	. 03 (.01)	. 02 (.01)	. 03 (.01)	. 03 (.01)
$\pi_{\mathrm{C}(1)}$. 90 (.06)	. 85 (.04)	. 86 (.05)	. 97 (.03)	. 93 (.04)	. 90 (.03)	. 85 (.02)	. 96 (.02)	. 99 (.04)	. 98 (.03)
$\pi_{\mathrm{C}(2)}$. 10 (.06)	. 14 (.04)	. 14 (.05)	. 03 (.03)	. 07 (.04)	. 10 (.03)	. 13 (.02)	. 04 (.02)	. 01 (.05)	. 02 (.03)
$\pi_{\mathrm{C}(3)}$. 00 (.00)	. 01 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 02 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)
Second Latent Class (Medium Hyperactivity-Impulsivity)										
$\pi_{\text {A(1) }}$. 13 (.04)	. 03 (.06)	. 23 (.11)	. 14 (.05)	. 28 (.05)	. 16 (.08)	. 00 (.00)	. 17 (.10)	. 40 (.15)	. 23 (.10)
$\pi_{\text {A (2) }}$. 70 (.04)	. 77 (.05)	. 71 (.10)	. 72 (.07)	. 54 (.04)	. 70 (.10)	. 82 (.08)	. 69 (.11)	. 56 (.14)	. 68 (.08)
$\pi_{\text {A (3) }}$. 17 (.04)	. 20 (.06)	. 06 (.15)	. 14 (.08)	. 18 (.03)	. 14 (.10)	. 18 (.08)	. 14 (.14)	. 04 (.07)	. 09 (.09)
$\pi_{\mathrm{B}(1)}$. 26 (.03)	. 20 (.04)	. 23 (.10)	. 22 (.04)	. 18 (.06)	. 21 (.09)	. 12 (.08)	. 34 (.10)	. 46 (.12)	. 56 (.09)
$\pi_{\mathrm{B}(2)}$. 52 (.03)	. 55 (.06)	. 63 (.08)	. 65 (.05)	. 69 (.05)	. 77 (.10)	. 80 (.08)	. 66 (.16)	. 51 (.11)	. 44 (.09)
$\pi_{\mathrm{B}(3)}$. 21 (.03)	. 25 (.07)	. 14 (.03)	. 13 (.03)	. 13 (.03)	. 02 (.03)	. 08 (.03)	. 00 (.00)	. 03 (.03)	. 00 (.00)
$\pi_{\text {c(1) }}$. 33 (.07)	. 23 (.16)	. 60 (.07)	. 18 (.15)	. 44 (.08)	. 20 (.19)	. 44 (.07)	. 44 (.29)	. 69 (.12)	. 59 (.10)
$\pi_{\text {C(2) }}$. 65 (.07)	. 77 (.16)	. 40 (.07)	. 82 (.15)	. 55 (.08)	. 80 (.19)	. 56 (.07)	. 56 (.29)	. 31 (.12)	. 41 (.10)
$\pi_{\mathrm{C}(3)}$. 02 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 01 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 00 (.00)
Third Latent Class (High Hyperactivity-Impulsivity)										
$\pi_{\text {A(1) }}$. 17 (.07)	. 00 (.00)	. 01 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 11 (.09)	. 09 (.04)	. 00 (.00)	. 01 (.02)
$\pi_{\text {A(2) }}$. 04 (.07)	. 53 (.08)	. 13 (.04)	. 14 (.05)	. 11 (.09)	. 18 (.08)	. 06 (.06)	. 20 (.11)	. 30 (.10)	. 32 (.07)
$\pi_{\text {A (3) }}$. 79 (.09)	. 47 (.08)	. 86 (.04)	. 86 (.05)	. 89 (.09)	. 82 (.08)	. 83 (.11)	. 71 (.12)	. 70 (.10)	. 67 (.08)
$\pi_{\mathrm{B}(1)}$. 33 (.08)	. 15 (.06)	. 16 (.04)	. 11 (.04)	. 48 (.09)	. 26 (.08)	. 21 (.07)	. 16 (.06)	. 21 (.06)	. 30 (.07)
$\pi_{\mathrm{B}(2)}$. 07 (.06)	. 21 (.06)	. 50 (.09)	. 49 (.06)	. 23 (.08)	. 39 (.07)	. 35 (.09)	. 33 (.15)	. 43 (.08)	. 46 (.09)
$\pi_{\mathrm{B}(3)}$. 60 (.09)	. 64 (.07)	. 34 (.07)	. 40 (.07)	. 29 (.08)	. 35 (.09)	. 44 (.09)	. 51 (.15)	. 36 (.08)	. 24 (.08)
$\pi_{\mathrm{C}(1)}$. 05 (.13)	. 20 (.19)	. 12 (.14)	. 36 (.07)	. 53 (.14)	. 41 (.09)	. 14 (.11)	. 20 (.10)	. 09 (.09)	. 12 (.10)
$\pi_{\text {C(2) }}$. 15 (.19)	. 12 (.35)	. 50 (.05)	. 35 (.10)	. 00 (.00)	. 36 (.10)	. 43 (.08)	. 43 (.12)	. 64 (.08)	. 62 (.08)
$\pi_{\mathrm{C}(3)}$. 80 (.23)	. 68 (.34)	. 38 (.16)	. 29 (.07)	. 47 (.14)	. 23 (.07)	. 43 (.11)	. 37 (.09)	. 27 (.08)	. 26 (.09)
Note: Standard errors are in parentheses. Behaviour A refers to Can't sit still, is restless, or hyperactive. Behaviour B refers to Has difficulty awaiting turn in games or groups. Behaviour refers to Cannot settle to anything for more than a few moments. For example, $\mathrm{pA}(1)$ refers to the probability of a rating never or not true to behaviour A . Conditional behaviour rating probabilities for a specific behaviour sum to 1 across latent										

Table 9 Conditional Behaviour Rating Probability Estimates Under the Unrestricted Three-Class Model for Hyperactivity-Impulsivity in 2-11-Year-Old Boys										
First Latent Class (Low Hyperactivity-Impulsivity										
	2 years	3 years	4 years	5 years	6 years	7 years	8 years	9 years	10 years	11 years
$\pi_{\text {A(1) }}$. 65 (.09)	. 49 (.06)	. 58 (.06)	. 56 (.05)	. 64 (.07)	. 54 (.03)	. 59 (.05)	. 68 (.05)	. 76 (.08)	. 88 (.10)
$\pi_{\text {A(2) }}$. 35 (.09)	. 48 (.05)	. 34 (.05)	. 39 (.04)	. 23 (.07)	. 38 (.03)	. 36 (.04)	. 27 (.04)	. 19 (.08)	. 12 (.10)
$\pi_{\text {A }(3)}$. 00 (.00)	. 03 (.03)	. 08 (.03)	. 05 (.02)	. 13 (.03)	. 08 (.02)	. 05 (.03)	. 05 (.02)	. 05 (.03)	. 00 (.00)
$\pi_{\mathrm{B}(1)}$. 52 (.05)	. 45 (.04)	. 46 (.04)	. 51 (.03)	. 67 (.05)	. 60 (.03)	. 67 (.04)	. 66 (.03)	. 74 (.04)	. 77 (.03)
$\pi_{\mathrm{B}(2)}$. 45 (.04)	. 44 (.03)	. 48 (.04)	. 42 (.03)	. 29 (.04)	. 36 (.03)	. 29 (.03)	. 31 (.03)	. 24 (.04)	. 21 (.03)
$\pi_{\mathrm{B}(3)}$. 03 (.02)	. 11 (.02)	. 06 (.02)	. 07 (.02)	. 04 (.02)	. 04 (.01)	. 04 (.02)	. 03 (.01)	. 02 (.01)	. 02 (.01)
$\pi_{\text {C(1) }}$. 82 (.04)	. 99 (.01)	. 83 (.04)	. 91 (.03)	. 95 (.03)	. 83 (.03)	. 99 (.04)	. 90 (.03)	1.00 (.00)	. 95 (.03)
$\pi_{\text {C(2) }}$. 18 (.05)	. 00 (.00)	. 16 (.04)	. 09 (.03)	. 05 (.03)	. 15 (.03)	. 01 (.04)	. 06 (.03)	. 00 (.00)	. 04 (.03)
$\pi_{\mathrm{C}(3)}$. 00 (.00)	. 01 (.01)	. 01 (.01)	. 00 (.00)	. 00 (.00)	. 02 (.01)	. 00 (.00)	. 04 (.01)	. 00 (.00)	. 01 (.01)
Second Latent Class (Medium Hyperactivity-Impulsivity)										
$\pi_{\text {A(1) }}$. 01 (.07)	. 08 (.01)	. 02 (.04)	. 03 (.04)	. 12 (.05)	. 01 (.05)	. 16 (.04)	. 05 (.04)	. 26 (.05)	. 16 (.15)
$\pi_{\text {A }(2)}$. 84 (.08)	. 70 (.03)	. 58 (.08)	. 73 (.05)	. 78 (.07)	. 61 (.06)	. 51 (.04)	. 62 (.05)	. 67 (.05)	. 84 (.15)
$\pi_{\text {A(3) }}$. 15 (.05)	. 22 (.03)	. 40 (.10)	. 24 (.05)	. 10 (.05)	. 38 (.06)	. 33 (.05)	. 33 (.05)	. 07 (.06)	. 00 (.00)
$\pi_{\mathrm{B}(1)}$. 21 (.05)	. 22 (.02)	. 11 (.04)	. 16 (.04)	. 25 (.05)	. 10 (.05)	. 27 (.04)	. 28 (.04)	. 43 (.05)	. 48 (.08)
$\pi_{\mathrm{B}(2)}$. 63 (.05)	. 60 (.03)	. 60 (.05)	. 76 (.06)	. 66 (.06)	. 80 (.06)	. 55 (.04)	. 66 (.04)	. 52 (.04)	. 46 (.07)
$\pi_{\mathrm{B}(3)}$. 16 (.04)	. 18 (.02)	. 29 (.06)	. 08 (.04)	. 09 (.02)	. 10 (.04)	. 18 (.03)	. 06 (.02)	. 05 (.02)	. 06 (.02)
$\pi_{\text {C(1) }}$. 44 (.07)	. 25 (.09)	. 26 (.11)	. 25 (.09)	. 59 (.05)	. 20 (.08)	. 38 (.07)	. 38 (.06)	. 60 (.08)	. 62 (.09)
$\pi_{\text {C(2) }}$. 56 (.07)	. 74 (.09)	. 74 (.11)	. 75 (.09)	. 39 (.05)	. 80 (.08)	. 61 (.07)	. 62 (.06)	. 39 (.08)	. 38 (.09)
$\pi_{\text {C(3) }}$. 00 (.00)	. 01 (.02)	. 00 (.00)	. 00 (.00)	. 02 (.02)	. 00 (.00)	. 01 (.02)	. 00 (.00)	. 01 (.01)	. 00 (.00)
Third Latent Class (High Hyperactivity-Impulsivity)										
$\pi_{\text {A(1) }}$. 05 (.03)	. 02 (.03)	. 02 (.02)	. 02 (.02)	. 00 (.00)	. 04 (.04)	. 09 (.09)	. 00 (.00)	. 00 (.00)	. 05 (.06)
$\pi_{\text {A(2) }}$. 27 (.06)	. 13 (.06)	. 22 (.05)	. 27 (.07)	. 21 (.06)	. 07 (.04)	. 07 (.04)	. 12 (.06)	. 17 (.06)	. 23 (.08)
$\pi_{\text {A(3) }}$. 68 (.06)	. 85 (.07)	. 76 (.06)	. 71 (.08)	. 79 (.06)	. 89 (.05)	. 84 (.06)	. 88 (.06)	. 83 (.06)	. 72 (.10)
$\pi_{\mathrm{B}(1)}$. 26 (.04)	. 17 (.05)	. 11 (.04)	. 18 (.07)	. 22 (.04)	. 06 (.04)	. 26 (.05)	. 12 (.06)	. 32 (.04)	. 31 (.04)
$\pi_{\mathrm{B}(2)}$. 22 (.05)	. 20 (.06)	. 44 (.06)	. 27 (.06)	. 31 (.04)	. 25 (.06)	. 25 (.05)	. 34 (.08)	. 36 (.05)	. 56 (.04)
$\pi_{\mathrm{B}(3)}$. 52 (.06)	. 63 (.07)	. 45 (.06)	. 55 (.08)	. 47 (.05)	. 69 (.07)	. 49 (.06)	. 54 (.08)	. 32 (.05)	. 13 (.02)
$\pi_{\text {C(1) }}$. 21 (.05)	. 13 (.07)	. 00 (.00)	. 27 (.07)	. 08 (.04)	. 11 (.05)	. 00 (.00)	. 19 (.07)	. 05 (.05)	. 32 (.04)
$\pi_{\text {C(2) }}$. 45 (.06)	. 12 (.11)	. 35 (.39)	. 38 (.09)	. 44 (.05)	. 36 (.08)	. 08 (.15)	. 35 (.10)	. 60 (.05)	. 54 (.04)
$\pi_{\mathrm{C}(3)}$. 34 (.06)	. 75 (.12)	. 65 (.39)	. 35 (.09)	. 48 (.06)	. 53 (.08)	. 92 (.15)	. 46 (.10)	. 35 (.06)	. 14 (.03)
Note: Standard errors are in parentheses. Behaviour A refers to Can't sit still, is restless, or hyperactive. Behaviour B refers to Has difficulty awaiting turn in games or groups. Beha refers to Cannot settle to anything for more than a few moments. For example, $\mathrm{pA}(1)$ refers to the probability of a rating never or not true to behaviour A . Conditional behaviour probabilities for a specific behaviour sum to 1 across latent classes and are conditional on latent class membership.										

First Latent Class (Low Inattention)										
	2 years	3 years	4 years	5 years	6 years	7 years	8 years	9 years	10 years	11 years
$\pi_{\text {A(1) }}$. 97 (.01)	. 82 (.09)	. 76 (.02)	. 85 (.02)	. 98 (.01)	. 85 (.02)	. 90 (.02)	. 85 (.04)	. 94 (.03)	. 98 (.03)
$\pi_{\text {A } 2 \text {) }}$. 00 (.00)	. 17 (.09)	. 23 (.02)	. 14 (.02)	. 00 (.00)	. 15 (.02)	. 10 (.02)	. 14 (.04)	. 05 (.03)	. 01 (.03)
$\pi_{\text {A(3) }}$. 03 (.01)	. 01 (.01)	. 01 (.00)	. 01 (.00)	. 02 (.01)	. 00 (.00)	. 00 (.00)	. 01 (.00)	. 01 (.00)	. 01 (.00)
$\pi_{\mathrm{B}(1)}$. 90 (.02)	. 91 (.02)	. 90 (.01)	. 88 (.02)	. 86 (.02)	. 91 (.02)	. 89 (.02)	. 88 (.02)	. 83 (.02)	. 83 (.02)
$\pi_{\text {B(2) }}$. 10 (.02)	. 09 (.02)	. 10 (.01)	. 12 (.02)	. 13 (.02)	. 07 (.02)	. 11 (.02)	. 12 (.02)	. 16 (.02)	. 17 (.02)
$\pi_{\mathrm{B}(3)}$. 00 (.00)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 01 (.00)	. 02 (.01)	. 00 (.00)	. 00 (.00)	. 01 (.01)	. 00 (.00)
$\pi_{\mathrm{C}(1)}$. 97 (.09)	. 88 (.05)	. 99 (.01)	. 99 (.01)	. 85 (.02)	. 97 (.03)	. 87 (.02)	1.00 (.00)	. 91 (.03)	. 90 (.03)
$\pi_{\text {C(2) }}$. 03 (.09)	. 12 (.05)	. 00 (.00)	. 00 (.00)	. 15 (.02)	. 01 (.03)	. 13 (.02)	. 00 (.00)	. 09 (.03)	. 09 (.03)
$\pi_{C(3)}$. 00 (.00)	. 00 (.00)	. 01 (.00)	. 01 (.01)	. 00 (.00)	. 02 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 01 (.00)
Second Latent Class (Medium Inattention)										
$\pi_{\text {A(1) }}$. 22 (.20)	. 12 (.10)	. 26 (.02)	. 31 (.03)	. 00 (.00)	. 31 (.05)	. 14 (.05)	. 52 (.05)	. 23 (.07)	. 24 (.08)
$\pi_{\text {A } 2 \text { (}}$. 78 (.20)	. 88 (.10)	. 70 (.03)	. 60 (.03)	. 94 (.03)	. 69 (.05)	. 72 (.05)	. 48 (.05)	. 77 (.07)	. 76 (.08)
$\pi_{\text {A }}$ (3)	. 00 (.00)	. 00 (.00)	. 04 (.01)	. 09 (.02)	. 06 (.03)	. 00 (.00)	. 14 (.03)	. 00 (.00)	. 00 (.00)	. 00 (.00)
$\pi_{\mathrm{B}(1)}$. 86 (.03)	. 81 (.03)	. 78 (.02)	. 70 (.03)	. 64 (.03)	. 52 (.04)	. 43 (.04)	. 73 (.04)	. 52 (.04)	. 48 (.05)
$\pi_{\text {B(2) }}$. 12 (.02)	. 19 (.03)	. 22 (.02)	. 30 (.03)	. 32 (.03)	. 46 (.04)	. 56 (.04)	. 27 (.04)	. 46 (.04)	. 52 (.05)
$\pi_{\mathrm{B}(3)}$. 02 (.01)	. 00 (.00)	. 00 (.00)	. 00 (.00)	. 04 (.01)	. 02 (.01)	. 01 (.01)	. 00 (.00)	. 02 (.02)	. 00 (.00)
$\pi_{\text {C(1) }}$. 65 (.06)	. 33 (.12)	. 00 (.00)	. 00 (.00)	. 39 (.03)	. 24 (.06)	. 21 (.05)	. 20 (.23)	. 20 (.07)	. 28 (.06)
$\pi_{\text {C(2) }}$. 35 (.06)	. 64 (.12)	. 99 (.01)	. 97 (.01)	. 61 (.03)	. 73 (.06)	. 79 (.05)	. 80 (.23)	. 76 (.06)	. 72 (.06)
$\pi_{\text {C(3) }}$. 00 (.00)	. 03 (.01)	. 01 (.01)	. 03 (.01)	. 00 (.00)	. 03 (.01)	. 00 (.00)	. 00 (.00)	. 04 (.02)	. 00 (.00)
Third Latent Class (High Inattention)										
$\pi_{\text {A(1) }}$. 32 (.08)	. 00 (.00)	. 02 (.10)	. 37 (.18)	. 56 (.16)	. 07 (18)	. 02 (.03)	. 07 (.05)	. 00 (.00)	. 24 (.09)
$\pi_{\text {A(2) }}$. 48 (.08)	. 16 (.27)	. 00 (.00)	. 46 (.16)	. 17 (.15)	. 00 (.00)	. 34 (.09)	. 59 (.08)	. 17 (.15)	. 11 (.06)
$\pi_{\text {A }}(3)$. 20 (.06)	. 84 (.27)	. 98 (.10)	. 17 (.11)	. 27 (.11)	. 93 (.18)	. 64 (.09)	. 34 (.08)	. 83 (.15)	. 65 (.10)
$\pi_{\mathrm{B}(1)}$. 56 (.08)	. 58 (.10)	. 02 (.08)	. 00 (.00)	. 22 (.15)	. 41 (.09)	. 18 (.07)	. 36 (.08)	. 26 (.07)	. 15 (.07)
$\pi_{\mathrm{B}(2)}$. 43 (.08)	. 23 (.08)	. 84 (.13)	. 58 (.21)	. 73 (.14)	. 30 (.09)	. 32 (.09)	. 47 (.08)	. 36 (.07)	. 48 (.08)
$\pi_{\mathrm{B}(3)}$. 01 (.01)	. 19 (.08)	. 14 (.11)	. 42 (.21)	. 05 (.05)	. 29 (.09)	. 50 (.09)	. 18 (.05)	. 38 (.08)	. 37 (.08)
$\pi_{\text {C }(1)}$. 00 (.00)	. 07 (.10)	. 00 (.00)	1.00 (.00)	. 00 (.00)	. 00 (.00)	. 06 (.06)	. 00 (.00)	. 00 (.00)	. 00 (.00)
$\pi_{\text {C(2) }}$. 92 (.03)	. 78 (.10)	. 27 (.17)	. 00 (.00)	. 57 (.18)	. 82 (.07)	. 07 (.11)	. 84 (.05)	. 55 (.07)	. 70 (.08)
$\pi_{\mathrm{C}(3)}$. 08 (.03)	. 15 (.07)	. 73 (.17)	. 00 (.00)	. 43 (.18)	. 18 (.07)	. 87 (.12)	. 16 (.05)	. 45 (.07)	. 30 (.08)
Note: Standard errors are in parentheses. Behaviour A refers to Can't concentrate, can't pay attention for too long. Behaviour B refers to Stares into space. Behaviour C refers to Is inatte For example, $\mathrm{pA}(1)$ refers to the probability of a rating never or not true to behaviour A. Conditional behaviour rating probabilities for a specific behaviour sum to 1 across latent classes and conditional on latent class membership.										

（ 20° ） ZZ°	（91．）8が	（60）$\downarrow \varepsilon^{\circ}$	（ 0° ） 87°	（S1＊） E°	（ $\left.\downarrow \vdash^{\circ}\right) \angle \varepsilon^{\circ}$	（9Z＇） LS°	（して＇） 06	（ $\angle L^{\circ}$ ）$\dagger \varepsilon^{\circ}$	（80 ）S1 ${ }^{\circ}$	（ह）Ј 4
（ $20 \cdot{ }^{\circ}$ ） 9°	（Gレ）てガ	（てし「） $9 \varepsilon^{\circ}$	（ 0° ）$\angle t^{\circ}$	（レレ＇） SO°		（ $\angle 1 \cdot) \mathrm{c}^{\prime}$	（しで） 01	（ $\angle L^{\circ}$ ）99	（80＇） c°	（z）$)_{1}$
（90）St．	（90） $0 \vdash^{\circ}$	（60） $0 \varepsilon^{\circ}$	（ $\dagger 0^{\circ}$ ） co°	（レレ＇）てし「	（G0） 60°	（0て＇）$\downarrow \downarrow^{*}$	（00） 00	（00＇） 00°	（00＇） $00{ }^{\circ}$	（し）\downarrow
（G0．）St．	（80）乙て＇	（ $七 0^{\circ}$ ） ZL	（ $\dagger 0^{\circ}$ ） 61°	（ 20° ） $8 \chi^{\circ}$	（ 20° ） 81°	（8レ）乙¢	（ $\angle L^{*}$ ） $\mathrm{s} \varepsilon^{\circ}$	（ 20° ） $\mathrm{Z} \mathrm{l}^{\circ}$	（ $\mathrm{CO}{ }^{\circ}$ ） ZO°	（ ε ）ε_{4}
（90．） OG°	（80）$\angle \varepsilon^{\circ}$	（90．） $8 \mathrm{~S}^{\circ}$	（ c° ）乙¢	（80＇） $9 \varepsilon^{\circ}$	（90＇） $0 \varepsilon^{\circ}$	（ャて＇） 6 ＇$^{\prime}$	（ャレ＇）${ }^{\text {（ }}$	（00） 00°	（01．） $9 \varepsilon^{\circ}$	（z） E_{4}
（80） s^{\prime}	（60）レガ	（90） $0 \varepsilon^{\circ}$	（G0） 66°	（80＇） $9 \varepsilon^{\circ}$	（01．） Zs°	（ $0 \varepsilon^{\circ}$ ） $6 \varepsilon^{\prime}$	（ $\left\llcorner\vdash^{\circ}\right.$ ）$\varepsilon \square^{\circ}$	（ 20° ） 88°	（01．） Ca°	（1） E_{4}
（90．） $9 \varepsilon^{\circ}$	（ \downarrow－） 06	（80．） $8 \mathrm{~S}^{\circ}$	（ c° ） $\mathrm{s} L^{\circ}$	（80 ）$\downarrow L^{\circ}$	（90．） $98{ }^{\circ}$	（ャて＇）99＊	（91＊） 6°	（00＇） $00 \cdot 1$	（60．） 87°	（ع）$\forall \downarrow$
（90．） 79°	（ $\downarrow \vdash^{\prime}$ ） $0 \vdash^{\circ}$	（80） Zt°	（c0） c^{\prime}	（90＇）乙て＇	（ c° ）tı．	（ャて＇）カャ＊	（91．） 90	（00） 00°	（80）${ }^{\circ}$	（z）$\forall 14$
（00） 00°	（00） 00°	（00） 00	（10） 10°	（G0．）$\dagger 0$	（00．） 00°	（00） $00{ }^{\circ}$	（00） $00{ }^{\circ}$	（00＇） 00°	（01．） 19°	（1）$\forall 1$
（00＇） 00°	（z0＇） CO°	（00＇） 00	（00＇） 00°	（00＇） 00	（00） 00°	（ $\downarrow 0^{\circ}$ ）$\downarrow 0^{\circ}$	（10）${ }^{\circ}{ }^{\circ}$	（10） ZO°	（00＇） $00{ }^{\circ}$	（ह） 1
（01．）6 ${ }^{\circ}$	（ co° ）$\downarrow L^{\circ}$	（てし＇） $\mathrm{Z6}{ }^{\circ}$	（90）9 $9 L^{\circ}$	（G0） 68	（60．） $0 L^{\circ}$	（てて＇）ε°	（ 20° ）02	（80＇）$\varepsilon 6^{\circ}$	（ $\varepsilon \vdash^{\circ}$ ） 19°	（z） O_{1}
（0レ＇）Lで	（S0＇）$\varepsilon \mathrm{Z}^{*}$	（てし＇） 80	（90＇）$\downarrow て^{\prime}$	（G0） LI°	（60） $0 \varepsilon^{\circ}$	（ \downarrow て＇） l°	（ 20° ） 88°	（80＇） SO°	（ $\left.\varepsilon \vdash^{\circ}\right) 6 \varepsilon^{\circ}$	（1） O_{1}
（00） 00	（ 10° ） zo	（10） ZO	（10） 10	（10）L0	（00） 00°	（ 10° ） 10°	（00＇） 00	（ 10° ） 10°	（ 10° ） 10°	（E） I_{1}
（90） $1 \varepsilon^{\circ}$	（ $\dagger 0^{\circ}$ ）$\downarrow \downarrow^{\circ}$	（ $七 0^{\circ}$ ） $8 \varepsilon^{\circ}$	（ $\dagger 0 \cdot 0 \nabla^{\circ}$	（ $\dagger 0^{\circ}$ ） st°	（ $七 0$ ） $6 \chi^{\circ}$	（ $\varepsilon 0^{\circ}$ ）$\downarrow \chi^{\circ}$	（て0＇）乙て＇	（ $\left\llcorner 0^{\circ}\right.$ ）$\angle \chi^{\circ}$	（ $\varepsilon 0^{\circ}$ ）$\downarrow \square^{\circ}$	（z） E_{4}
（90） 29°	（ $\dagger 0^{\circ}$ ）$\angle G^{\circ}$	（90） 09	（ $\dagger 0^{\circ}$ ） $6 \mathrm{~S}^{\circ}$	（ $七 0^{\circ}$ ）$\downarrow \mathrm{S}^{\circ}$	（ $七 0^{\circ}$ ）L L°	（ $\varepsilon 0^{\circ}$ ）S L°	（て0＇）8L	（ $\dagger 0^{\circ}$ ）L L	（ع0）${ }^{\circ} 8^{\circ}$	（1） \mathcal{L}_{1}
（G0） 10°	（90）$\angle 0^{\circ}$	（c） 60	（00） 00°	（ع0＇） LL	（ $\varepsilon \vdash^{\circ}$ ）$\varepsilon 0^{\circ}$	（ $\varepsilon 0^{\circ}$ ） 80°	（ $10 \cdot$ ） 20	（G0．） $0{ }^{\circ}$	（ $\varepsilon 0^{\circ}$ ） s°	（（）$\forall \mathcal{L}$
（60）εL°	（90＇） $8 L^{\circ}$	（90）S L°	（90）$\angle L^{\circ}$	（ $七 0^{\circ}$ ） $0 L^{\circ}$	（91．） Sb°	（ $\varepsilon 0^{\circ}$ ） 19	（z0） c°	（ 20° ） $8 L^{\circ}$	（01） $8 L^{\circ}$	（z）$\forall \mathcal{L}$
（01．） $9 \chi^{\circ}$	（G0．）Sl＊	（90） 91°	（co＇） c^{\prime}	（G0＇）εL°	（60．） ZO°	（ c° ） $1 \varepsilon^{\circ}$	（z0） $0 \varepsilon^{\circ}$	（90．）てし＇	（80．） LV ．	（1）$\forall 1$
（00＇） 00°	（00＇） 00°	（00） 00	（00＇） 00°	（00＇） 00	（10） ZO	（10） 10°	（10） 10	（10） 10	（00＇） 00°	（E） 1
（90） 90°	（ $¢ 0^{\circ}$ ）七レ＊	（ $七 0^{\circ}$ ） $\mathrm{Zl}{ }^{\circ}$	（ $\dagger 0^{\circ}$ ） 90°	（ $\varepsilon 0^{\circ}$ ） LL	（ $\varepsilon 0^{\circ}$ ）$\varepsilon 1^{\circ}$	（00＇） 00°	（00） $00{ }^{\circ}$	（G0＇） 81°	（00＇） 00°	（z）${ }^{1}$
（90．） $\mathrm{t6}{ }^{\circ}$	（ع0＇） $98{ }^{\circ}$	（ $七 0^{\circ}$ ） 88	（ $\dagger 0^{\circ}$ ）$\downarrow 6{ }^{\circ}$	（ $\varepsilon 0^{\circ}$ ）$\varepsilon 8^{\circ}$	（ $\varepsilon 0 \cdot$ ） s°	（ $10{ }^{\circ}$ ） $66{ }^{\circ}$	（10＇） 66	（90） 18	（00＇） $00{ }^{\circ}$	（1） \boldsymbol{H}_{1}
（00） 00°	（ 10° ） 10°	（00） 00	（00） 00°	（00） 10	（00） 00	（00） 00°	（00） 00	（00） 00°	（00） 00	（ع） g_{4}
（z0） 60	（z0） 60°	（20） $\mathrm{Z}{ }^{\circ}$	（Z0） $0{ }^{\circ}$	（z0） 80	（z0） 01°	（z0＇）εL°	（Z0＇） 80	（Z0＊） 80°	（Z0） $90{ }^{\circ}$	（z） g_{2}
（20） 16°	（20） 06	（20） 88	（20） $06{ }^{\circ}$	（20） 16	（z0） 06	（ 20° ）$\angle 8^{\circ}$	（z0） $\mathrm{Z6}^{\circ}$	（ ZO° ） $\mathrm{Z6}^{\circ}$	（z0） tb°	（ 1 ）$\underbrace{}_{L}$
（00） 00°	（10） 10°	（00） 00	（ 10° ）$\varepsilon 0^{\circ}$	（10．） ZO	（ $\mathrm{ZO} 0^{\circ} \mathrm{Z} 0^{\circ}$	（00＇） $00{ }^{\circ}$	（00） 00	（ 10° ）$\downarrow 0^{\circ}$	（z0） 10°	（（）$\forall \mathcal{L}$
（90）S0	（ $\ddagger 0^{\circ}$ ） $\mathrm{Z} \vdash^{\circ}$	（ $七 0^{\circ}$ ） LL	（ $\dagger 0^{\circ}$ ）レレ	（ع0＇） LL	（90） 80°	（80＇）0て＇	（90．）91	（ $七 0^{\circ}$ ） $6 \chi^{\circ}$	（81．）εL°	（z）$\forall \mathcal{L}$
（90．） $\mathrm{S6}^{\circ}$	（ $\dagger 0^{\circ}$ ）$\angle 8{ }^{\circ}$	（ $七 0^{\circ}$ ） E ¢	（ $\dagger 0^{\circ}$ ） $98{ }^{\circ}$	（ع0） 18	（90＇） 16°	（01＊） $6 L^{\circ}$	（90．）$\downarrow 8^{\circ}$	$\left(\downarrow 0^{\circ}\right) \angle 9^{\circ}$	（61．） 98.	（1）$\forall 1$
s．」eəK IL	sıeəK 01	s．leəK 6	sıeəK 8	s．ėКK	S．AeəK 9	s．seəK g		s．ıè \mathcal{E}	sıeəK Z	
Lレ Opqe1										

Finally, the odds of being rated in the third category (i.e., often or very true) tend to be higher for children who belong to the third latent class than for those who belong to the second latent class. Furthermore, the odds of being rated in the third category tend to be higher for children who belong to the second latent class than for those who belong to the first latent class. If we consider the odds of being rated in the third category on the third hyperactivity-impulsivity behaviour item (i.e., Cannot settle to anything for more than a few moments) for 2-year-old girls, we find that the odds were $(.80 / .20)=4$ for girls who belong to the third latent class, compared to $(.02 / .98)=0.02$ for girls in the second latent class and $(.001 / .999)=0.001$ for girls in the first latent class (see Table 8). Therefore, the odds of being rated in the third category were (4/0.02) = 200 times higher for 2-year-old girls in the third latent class than for those in the second latent class and $(.02 / 0.001)=20$ times higher for 2-year-old girls in the second latent class than for those in the first latent class.

4.2.1 Conclusion

The conditional behaviour rating probability estimates indicated a clear ordering of the latent classes under the unrestricted three-class model. The first latent class (i.e., low) includes children who do not tend to manifest hyperactive-impulsive and inattentive behaviours. The second latent class (i.e., medium) includes children who tend somewhat to manifest hyperactive-impulsive and inattentive behaviours. The third latent class (i.e., high) includes children who tend often to manifest hyperactive-impulsive and inattentive behaviours.

4.3 Latent Class Probability Estimates

4.3.1 Hyperactivity-Impulsivity

Table 12 presents the latent class probability estimates under the unrestricted three-class model for 2-11-year-old girls. In general, a majority of girls were estimated to belong to the low hyperactivity-impulsivity latent class. These latent class probability estimates ranged from 37% for 4 year olds to 75% for 8 year olds. In contrast, the percentage of girls estimated to belong to the high hyperactivity-impulsivity latent class was much lower, and the latent class probability estimates ranged from 5% for 2 year olds to 17% for 4 year olds. Results for 4 year olds should be interpreted with caution as the unrestricted three-class model did not fit the data for this age group. Additionally, the coefficients of variation, determined by dividing the standard error of the estimate by the estimate, were marginal to unacceptable for most of the medium and high latent classes. A high level of error, therefore, was associated with these estimates.

The latent class probability estimates under the unrestricted three-class model for 2-11-year-old boys are shown in Table 13. Most boys were estimated to belong to either the low or medium latent class. Latent class probability estimates for the low latent class ranged from 38% for 6 year olds to 65% for 7 year olds. Estimates for the medium latent class ranged from 23% for 7 year olds to 50% for 3 year olds. The percentage of boys estimated to belong to the high hyperactivity-impulsivity latent class was lower, and the latent class probability estimates ranged from 9% for 9 year olds to 23% for 11 year olds. It should be noted that the unrestricted three-class model did not fit the data for 8 and 9 -year-old boys. Furthermore, the coefficients of variation were marginal for most of the high latent classes.

$\begin{aligned} & 1 \varepsilon^{\prime}-S \vdash^{\circ} \\ & \varepsilon 0 \\ & \varepsilon Z^{\prime} \end{aligned}$	$\begin{aligned} & 9 Z^{\prime-01} \\ & \varepsilon 0^{\circ} \\ & * 81^{\circ} \end{aligned}$	$\begin{aligned} & t l^{\circ}-\Delta 0^{\circ} \\ & z 0^{\circ} \\ & * 60^{\circ} \end{aligned}$		$\begin{aligned} & \angle L^{\circ}-\angle 0^{\circ} \\ & \mathrm{ZO} \\ & * \mathrm{ZL} \end{aligned}$	$\begin{aligned} & 0 \varepsilon^{\circ}-\vdash \vdash^{\circ} \\ & \varepsilon 0^{\prime} \\ & z Z^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{SZ} \cdot \mathrm{SO}^{\circ} \\ & \mathrm{t} 0^{\circ} \\ & * \mathrm{Sl} \end{aligned}$	$\begin{aligned} & 6 Z^{\circ}-\angle 0^{\circ}- \\ & \angle 0^{\circ} \\ & * * L L^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{SL} \cdot-\mathrm{SO} \\ & \mathrm{ZO} \\ & * 0{ }^{\circ} \end{aligned}$	$\begin{aligned} & \text { Z } \varepsilon^{\circ}-Z \vdash^{\circ} \\ & \text { 七0 } \\ & * \text { * } \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
$\begin{gathered} \hline \mathrm{GS} \cdot-\varepsilon 0^{\circ} \\ 0 \mathrm{l}^{\prime} \\ * * 6 Z^{\prime} \end{gathered}$	$\begin{aligned} & \angle G^{\circ}-\angle Z^{\circ} \\ & 90^{\circ} \\ & Z \nabla^{\circ} \end{aligned}$	$\begin{aligned} & 09^{\circ}-\Delta Z^{\prime} \\ & S 0^{\circ} \\ & \angle \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & 19^{\circ}-1 \varepsilon^{\prime} \\ & 90^{\circ} \\ & 97^{\circ} \end{aligned}$	$\begin{aligned} & 9 \varepsilon^{\circ}-01^{\circ} \\ & 90^{\circ} \\ & \star \varepsilon \varepsilon^{\circ} \end{aligned}$	$\begin{aligned} & 89^{\circ}-\angle Z^{\prime} \\ & \angle 0^{\prime} \\ & * 0 \nabla^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{St} t^{\prime}-\mathrm{Sl} \\ & 90^{\circ} \\ & * 0^{\prime} \end{aligned}$	$\begin{aligned} & \hline \varepsilon G^{\prime}-\varepsilon Z^{\prime} \\ & 90^{\circ} \\ & 8 \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S9}-\mathrm{S} \varepsilon^{\circ} \\ & 90^{\circ} \\ & 0 \mathrm{G}^{\prime} \end{aligned}$	$\begin{aligned} & \hline 09^{\circ}-85^{\circ} \\ & 80^{\circ} \\ & \times 6 \varepsilon^{\prime} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
$\begin{aligned} & L L^{\circ}-G Z^{\prime} \\ & 60^{\circ} \\ & * 85^{\circ} \end{aligned}$	$\begin{aligned} & \hline 89^{\prime}-Z Z^{\prime} \\ & \angle 0^{\prime} \\ & * 0 t^{\circ} \end{aligned}$	$\begin{aligned} & \angle 9^{\circ}-レ \sigma^{\circ} \\ & 90^{\circ} \\ & \downarrow 9^{\circ} \end{aligned}$	$\begin{aligned} & \hline 89^{\circ}-8 Z^{\prime} \\ & 90^{\circ} \\ & \varepsilon t^{\circ} \end{aligned}$	$\begin{aligned} & \text { SL'-GS } \\ & +0^{\circ} \\ & \mathrm{G} 9^{\circ} \end{aligned}$	$\begin{aligned} & 9 G^{\circ}-0 Z^{\prime} \\ & \angle 0^{\circ} \\ & * 8 \varepsilon^{\circ} \end{aligned}$	$\begin{aligned} & 89^{\circ}-Z \nabla^{\circ} \\ & 90^{\circ} \\ & \mathrm{s}^{\circ} \end{aligned}$	$\begin{aligned} & \hline 69^{\circ}-\varepsilon \varepsilon^{\prime} \\ & \angle 0^{\circ} \\ & 19^{\prime} \end{aligned}$	$\begin{aligned} & \hline \text { SS'}^{\circ}-\text { SZ' }^{\prime} \\ & 90^{\circ} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & \angle G^{\prime}-I Z^{\prime} \\ & \angle 0^{\circ} \\ & * 6 \varepsilon^{\prime} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
S．1eəK IL	s．ėK O1	s．JeəK 6	S．JeaK 8	S．ıeəK L	S．leəK 9	S．leaK g	S．JeəK \downarrow	S．JeəK \＆	s．JeəK Z	
عレ əq®ュ										
†еләәи！әэиәр！чиоэ＝Ю＇лонә рлериеџS＝ヨS 										
$\begin{aligned} & 6 L^{\circ}-\varepsilon 0^{\circ} \\ & \varepsilon 0^{\circ} \\ & * \\ & * L^{\circ} \end{aligned}$	$\begin{gathered} t l^{\circ}-\forall 0^{\circ} \\ z 0^{\circ} \\ * 60^{\circ} \end{gathered}$	$\begin{aligned} & \mathrm{SL}^{\circ}-\mathrm{SO} \\ & \mathrm{ZO} 0^{\circ} \\ & * \mathrm{OL}^{\circ} \end{aligned}$	$\begin{aligned} & \forall l^{\circ}-+0^{\circ} \\ & 20^{\circ} \\ & * 60^{\circ} \end{aligned}$	$\begin{aligned} & 0 Z^{\prime}-+0^{\circ} \\ & \varepsilon 0^{\circ} \\ & * Z l^{\circ} \end{aligned}$	$\begin{aligned} & \angle L^{\circ}-10^{\circ} \\ & \varepsilon 0^{\circ} \\ & * 60^{\circ} \end{aligned}$	$\begin{aligned} & \varepsilon Z^{\prime}-20^{\circ} \\ & \varepsilon 0^{\circ} \\ & { }^{\circ} \mathrm{Sl}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{S} \varepsilon^{\circ}-10^{\circ}- \\ & \angle 0^{\circ} \\ & * * \angle L^{\circ} \end{aligned}$	$\begin{aligned} & 81^{\circ}-20^{\circ}- \\ & \downarrow 0^{\circ} \\ & * * 80^{\circ} \end{aligned}$	$\begin{aligned} & \text { OL'-00 } \\ & \text { ZO } \\ & * * 0^{\circ} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ \Perp \end{array}$
$\begin{aligned} & 99^{\circ}-01 \\ & 60^{\circ} \\ & * \varepsilon \varepsilon^{\circ} \end{aligned}$	$\begin{aligned} & 6 L^{\prime}-\varepsilon L^{\circ}- \\ & 8 L^{\prime} \\ & * * \varepsilon \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & \Delta \nabla^{\circ}-80^{\circ}- \\ & 0 l^{\circ} \\ & * * 8 l^{\circ} \end{aligned}$	$\begin{aligned} & \left\llcorner Z^{\prime}-80^{\prime}\right. \\ & \varepsilon 0^{\prime} \\ & * 9 l^{\prime} \end{aligned}$	$\begin{aligned} & 0 \varepsilon^{\circ}-00^{\circ} \\ & 90^{\circ} \\ & * * 1^{\circ} \end{aligned}$	$\begin{aligned} & 19^{\circ}-61^{\circ} \\ & 80^{\circ} \\ & * 07^{\circ} \end{aligned}$	$\begin{aligned} & \text { レー'ーレ } \\ & 90^{\circ} \\ & * 9 Z^{\circ} \end{aligned}$	$\begin{aligned} & \hline Z L^{\circ}-0 Z^{\prime} \\ & 0 L^{\circ} \\ & * 9 t^{\circ} \end{aligned}$	$\begin{aligned} & \hline 0 G^{-}-80^{\circ} \\ & 80^{\circ} \\ & * 6 Z^{\prime} \end{aligned}$	$\begin{aligned} & \varepsilon L^{\prime}-L Z^{\prime} \\ & 60 \cdot \\ & * 0 G^{\prime} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
$\begin{aligned} & \text { Z8'-0 } \\ & 01^{\circ} \\ & * 99^{\circ} \end{aligned}$	$\begin{aligned} & \text { LO } 0^{\circ}-60^{\circ} \\ & 6 L^{\circ} \\ & * 89^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 00 \because レ-\Delta \nabla \\ & L L^{\circ} \\ & Z L^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \varepsilon 8^{\circ}-\angle 9^{\circ} \\ & \varepsilon 0^{\circ} \\ & \text { G }{ }^{\circ} \end{aligned}$	$\begin{aligned} & 98^{\circ}-09^{\circ} \\ & \mathrm{GO} \\ & \varepsilon L^{\circ} \end{aligned}$	$\begin{aligned} & Z L^{\circ}-0 \varepsilon^{\prime} \\ & 80^{\circ} \\ & 1 G^{\prime} \end{aligned}$	$\begin{aligned} & Z L^{-}-9 b^{\circ} \\ & 90^{\circ} \\ & 6 G^{\circ} \end{aligned}$	$L L^{\circ}-\varepsilon 0^{\circ}$ εL° $* * L \varepsilon^{\circ}$	$\begin{aligned} & \hline \downarrow 8^{\circ}-Z{ }^{\circ} \\ & 80^{\circ} \\ & \varepsilon 9^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 89^{\circ}-z \chi^{\prime} \\ & 60^{\circ} \\ & \text { *S } \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ \downarrow \end{array}$
S．1eəK IL	s．eaK 01	s．eəK 6	S．ıeəK 8	sıeәK L	S．ėK 9	S．JeəK g	S．JeəK \downarrow	S．」eəK \＆	s．JeəK Z	
Zレ өq®」										

4.3.2 Inattention

Table 14 presents the latent class probability estimates under the unrestricted three-class model for 2-11-year-old girls. In general, a majority of girls were estimated to belong to the low inattention latent class, with latent class probability estimates ranging from 40% for 2 year olds to 72% for 8 year olds. In contrast, the percentage of girls estimated to belong to the high inattention latent class was much lower, and estimates ranged from 1% for 4 year olds to 18% for 2 year olds. Results for 2 , 6 , and 8 year olds should be interpreted with caution as the three-class model did not fit the data for these age groups. Also, the coefficients of variation were marginal to unacceptable for most of the high inattention latent classes.

The latent class probability estimates under the unrestricted three-class model for $2-11$-year-old boys are shown in Table 15. In general, most boys were estimated to belong to the low latent class, and latent class probability estimates ranged from 38% for 2 year olds to 62% for 3 and 6 year olds. The percentage of boys estimated to belong to the high inattention latent class was much lower, and estimates ranged from 1% for 4 year olds to 14% for 8 year olds. It should be noted that the unrestricted three-class model did not fit the data for 2 -year-old boys. Furthermore, the coefficients of variation were marginal to unacceptable for most of the high latent classes.

$\begin{aligned} & 1 \varepsilon^{\circ}-\mathrm{G} 0^{\circ} \\ & \mathrm{GO} \\ & \times 81^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 91^{\circ}-00^{\circ} \\ & \varepsilon 0^{\circ} \\ & * * 80^{\circ} \end{aligned}$	$\begin{aligned} & L Z^{\circ}-90^{\circ} \\ & \varepsilon 0^{\circ} \\ & * \varepsilon \vdash^{\circ} \end{aligned}$	$\begin{aligned} & \angle L^{\circ}-レ \vdash^{\circ} \\ & 100^{\circ} \\ & \square l^{\circ} \end{aligned}$	$\begin{aligned} & 60^{\circ}-\varepsilon 0^{\circ} \\ & 10^{\circ} \\ & * 90^{\circ} \end{aligned}$	$\begin{aligned} & 0 Z^{\circ}-00 \\ & \star 0^{\prime} \\ & * * 0 l^{\circ} \end{aligned}$	$\begin{aligned} & 60^{\circ}-10^{\circ}- \\ & 20^{\circ} \\ & * * * 0^{\circ} \end{aligned}$	$\begin{aligned} & +0^{\circ}-20^{\circ}- \\ & 10^{\circ} \\ & * * 10^{\circ} \end{aligned}$	$\begin{aligned} & 60^{\circ}-10^{\circ}- \\ & \text { Z0 } \\ & * * \not 0^{\circ} \end{aligned}$		$\begin{array}{r} 10 \% 66 \\ \exists \mathrm{~S} \\ 4 \end{array}$
$\begin{aligned} & S G^{\circ}-\varepsilon V^{\circ} \\ & 80^{\circ} \\ & * \forall \varepsilon^{\prime} \end{aligned}$		$\begin{aligned} & \text { Et }{ }^{\circ}-\angle L^{\circ} \\ & G 0^{\circ} \\ & * 0 \varepsilon^{\circ} \end{aligned}$	$\begin{aligned} & 0 G^{\circ}-\downarrow Z^{\prime} \\ & \mathrm{S} 0^{\circ} \\ & \angle \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & \hline \varepsilon \nabla^{\circ}-\varepsilon \sigma^{\prime} \\ & \downarrow 0^{\circ} \\ & \varepsilon \varepsilon^{\prime} \end{aligned}$		$\begin{aligned} & \varepsilon L-レ レ \\ & Z L \\ & z . \end{aligned}$	$\begin{aligned} & \angle 9^{\circ}-1 \nabla^{\circ} \\ & 90^{\circ} \\ & \mathrm{ts} \end{aligned}$	$\begin{aligned} & \text { ZS'-91' } \\ & \angle 0^{\circ} \end{aligned}$	$\begin{aligned} & 6 L^{\circ}-\varepsilon Z Z^{\prime} \\ & 1 L \\ & 1 G^{\circ} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
uo！̦uełteul un！pow										
$\begin{aligned} & 99^{\circ}-0 \varepsilon^{\circ} \\ & 20^{\circ} \\ & 85^{\circ} \end{aligned}$	$\begin{aligned} & 19 \cdot-1 \circ^{\circ} \\ & 70^{\circ} \\ & 19^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \angle 9^{\circ}-\angle \nabla^{\prime} \\ & \forall 0^{\circ} \\ & \angle 9^{\circ} \end{aligned}$	$\begin{aligned} & \hline z 9^{\circ}-9 \varepsilon^{\prime} \\ & 90^{\circ} \\ & 6 \nabla^{\circ} \end{aligned}$	$\begin{aligned} & L L^{\circ}-L G^{\circ} \\ & +0^{\circ} \\ & L 9^{\prime} \end{aligned}$	$\begin{aligned} & G L^{\prime}-6 \nabla^{\circ} \\ & 90^{\circ} \\ & 29 \end{aligned}$	$\begin{aligned} & \text { Z } 28^{\circ}-9 Z^{\prime} \\ & \text { LI } \\ & \text { * } \dagger G^{\prime} \end{aligned}$	$\begin{aligned} & \hline 8 G^{\circ}-Z \varepsilon^{\prime} \\ & \text { s0 } \\ & \text { st } \end{aligned}$	$\begin{aligned} & \angle L^{\circ}-\angle \nabla^{\circ} \\ & 90^{\circ} \\ & Z 9^{\circ} \end{aligned}$	$\begin{aligned} & \hline 79^{\circ}-Z \vdash^{\circ} \\ & 0 L^{\circ} \\ & * 8 \varepsilon^{\circ} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ \psi \end{array}$
S．120K Iレ	s．eaK 01	S．JeəK 6	S．JEOK 8	s．ıeəK L	S．JeəK 9	S．JeəK 9	S．JeəK \downarrow	s．JeəK \＆	s．JeəK Z	
ио！̣uәれ										
GL өןqe」										
$\begin{aligned} & 60^{\circ}-\varepsilon 0^{\circ} \\ & 10^{\circ} \\ & \times 90^{\circ} \end{aligned}$	$\begin{aligned} & 60^{\circ}-\varepsilon 0^{\circ} \\ & 10^{\circ} \\ & \times 90^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{Sl} \cdot \mathrm{GO} \\ & \mathrm{ZO} \\ & * \mathrm{O}^{\circ} \end{aligned}$	$\begin{aligned} & 20^{\circ}-10^{\circ} \\ & 10^{\circ} \\ & * * 0^{\circ} \end{aligned}$	$\begin{aligned} & \angle 0^{\circ}-10^{\circ} \\ & 10^{\circ} \\ & *+0^{\circ} \end{aligned}$	$\begin{aligned} & 60^{\circ}-10^{\circ}- \\ & 20^{\circ} \\ & * * * 0^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{SO}-10^{\circ}- \\ & 10^{\circ} \\ & * * 20^{\circ} \end{aligned}$	$\begin{aligned} & +0^{\circ}-20^{\circ}- \\ & 10^{\circ} \\ & * * 10^{\circ} \end{aligned}$	$\begin{aligned} & 60^{\circ}-10^{\circ}- \\ & \text { Z0 } \\ & * * \not 0^{\circ} \end{aligned}$	$\begin{aligned} & 1 \varepsilon^{\circ}-\mathrm{G} 0^{\circ} \\ & \mathrm{G} 0^{\circ} \\ & * 81^{\circ} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
$\begin{aligned} & 6 \varepsilon^{\circ}-6 L^{\circ} \\ & 70^{\circ} \\ & 6 Z^{\prime} \end{aligned}$	$\begin{aligned} & 8 \varepsilon^{\prime}-81 \\ & 70^{\prime} \\ & 8 Z^{\prime} \end{aligned}$	$\begin{aligned} & 85^{\circ}-90^{\circ} \\ & 80^{\circ} \\ & * \angle Z^{\circ} \end{aligned}$	$\begin{aligned} & Z \varepsilon^{\circ}-9 \vdash^{\circ} \\ & \varepsilon 0^{\circ} \\ & \star Z^{\circ} \end{aligned}$		$\begin{aligned} & 8 \varepsilon^{\circ}-8 Z^{\prime} \\ & z 0^{\prime} \\ & \varepsilon \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & 9 \varepsilon^{\prime}-9 Z^{\circ} \\ & z 0^{\circ} \\ & L \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & \hline 00^{\circ}-0 \varepsilon^{\circ} \\ & z 0^{\circ} \\ & \mathrm{s} \varepsilon^{\prime} \end{aligned}$	$\begin{aligned} & \text { z2'-O } \\ & 0 \vdash^{\circ} \\ & * 9 \varepsilon^{\circ} \end{aligned}$	$\begin{aligned} & 9 L^{\circ}-80^{\circ} \\ & \varepsilon L^{\circ} \\ & * 2 \hbar^{\circ} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ 4 \end{array}$
ио！！uә立u！un！pew										
$\begin{aligned} & \hline L^{\prime}-\mathrm{G} \\ & \mathrm{t} 0^{\circ} \\ & \mathrm{G} 9^{\circ} \end{aligned}$	$\begin{aligned} & 9 L^{\circ}-99^{\circ} \\ & 70^{\circ} \\ & 99^{\circ} \end{aligned}$	$\begin{aligned} & 78^{\circ}-乙{ }^{\circ} \\ & 80^{\circ} \\ & \varepsilon 9^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & 08^{\circ}-t 9^{\circ} \\ & \varepsilon 0^{\circ} \\ & \text { Z }{ }^{\circ} \end{aligned}$	$\begin{aligned} & \varepsilon L^{\prime}-\varepsilon \Theta^{\prime} \\ & \downarrow 0^{\prime} \\ & \varepsilon 9^{\prime} \end{aligned}$	$\begin{aligned} & 89^{\circ}-89^{\circ} \\ & 20^{\circ} \\ & \varepsilon 9^{\circ} \end{aligned}$	$\begin{aligned} & \text { ZL'-Z9 } \\ & \text { Z0 } \\ & \angle 9^{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69^{\circ}-69^{\circ} \\ & 70^{\circ} \\ & \mathrm{t} 9^{-} \\ & \hline \end{aligned}$	$\begin{aligned} & 98^{\circ}-\downarrow \varepsilon^{\prime} \\ & 0 L^{\prime} \\ & * 09^{\circ} \end{aligned}$	$\begin{aligned} & 89^{\circ}-Z \vdash^{\circ} \\ & \text { L' } \\ & * 0 \dagger^{\circ} \end{aligned}$	$\begin{array}{r} 10 \text { \%66 } \\ \exists \mathrm{S} \\ \Perp \end{array}$
S．E2K IL	S．JėK 01	s．ıėK 6	S．jėK 8	s．seaK L	s．土eəK 9	S．JeəK	S．JeəK \downarrow	s．eəK \mathcal{E}	s．seəK Z	
ио！！uәџएu M07										

4.3.3 Conclusion

Under the unrestricted three-class model, most 2-11-year-old children were estimated to belong to either the low or medium latent class for both hyperactivity-impulsivity and inattention. Latent class probability estimates for the high hyperactivity-impulsivity class ranged from $5-17 \%$ for girls and from $9-23 \%$ for boys. Latent class probability estimates for the high inattention class ranged from 1-18\% for girls and from 1-14\% for boys.

4.4 Posterior Conditional Probability Estimates

Based on the parameter estimates under the unrestricted three-class model, it is possible to assign each child to a specific latent class (i.e., low, medium, high). Assignment is made based on the child's posterior conditional probability of belonging to the low, medium, and high latent class given her or his response pattern. A child is assigned to the latent class that maximizes the probability of observing her or his response pattern. Table 16 indicates the latent class membership for hyperactivity-impulsivity for the 27 response patterns. The actual posterior conditional probability estimates are in Appendix 1. We see that all children who have a response pattern 111 (i.e., mother responded never or not true to all three behaviour items) were assigned to the low hyperactivity-impulsivity latent class. In contrast, all children with a response pattern 333 (i.e., mother responded often or very true to all three behaviour items) were assigned to the high hyperactivity-impulsivity latent class. Table 17 indicates the latent class membership for inattention for the 27 response patterns. The actual posterior conditional probability estimates are in Appendix 2. Again, all children with a response pattern 111 were assigned to the low inattention latent class, while children with a response pattern 333 were assigned to the high inattention latent class. There were a number of inattention response patterns with zero observed frequencies. Interestingly, no child had a response pattern 133 where mothers responded never or not true to the item "Can't concentrate, can't pay attention for too long" and often or very true to the items "Stares into space" and "Is inattentive."

 Lat 2 years Response			Cl												it					
			3 years		4 years		5 years		6 years		7 years		8 years		9 years		10 years		11 years	
Response pattern	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F
111	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
112	L	L	M	L	L	L	L	M	L	L	L	L	M	L	L	L	M	M	L	M
113	H	H			L		L				L		H	L	L	H		L	L	
121	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
122	L	M	M	L	L	M	L	M	M	M	L	L	M	L	M	M	M	M	M	M
123		M	L	L	L	H	L		M		L		H	L	L	H	M		H	
131	L	L	L	L	L	M	L	L	L	L	L	L	L	L	L	L	L	L	L	L
132	L	M	M	L	L	M	L	M	M	M	L	L	M	H	M	H	M	M	M	L
133	H	H	H		H	H	H			M	H		H			H			H	H
211	L	L	L	L	L	M	L	L	L	L	L	L	L	L	L	L	M	L	M	M
212	L	M	M	M	M	M	M	M	M	M	L	M	M	L	M	M	M	M	M	M
213	H	M	H	H	H	H	H	H	H	H	L		H	L	1	H	H	H	H	H
221	M	M	L	L	L	M	L	L	M	M	L	L	M	M	M	L	M	M	M	M
222	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M
223	H	M	M	H	H	H	H	H	H	M	L	H	H	L	L		H	H	H	H
231	M	M	L	L	M	M	L	L	M	M	L	L	M	M	M	L	M	M	M	L
232	M	M	M	M	M	M	M	M	M	M	M	H	M	M	M	H	H	H	M	H
233	H	M	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
311	H	M	M	L	L	L	L	H	L	H	L	L	M	L	L	L	L	L	H	L
312	H	M	M	M	M	H	M	M	H	M	M	H	M	L	M	H	H	H	H	H
313	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
321	M	M	M	L	M	M	M	H	M	M	L	H	M	L	M	L	M	L	H	M
322	M	M	M	M	M	H	M	H	H	M	M	H	M	M	M	H	H	H	H	H
323	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
331	H	M	H	H	M	H	H	H	H	H	H	H	M	H	H	H	H	H	H	H
332	H	M	M	M	M	H	H	H	H	M	H	H	M	H	H	H	H	H	H	H
333	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
Note: The first number of the response pattern refers to the observed rating for the first behaviour item Can't sit still, is restless, or hyperactive. The second number of the response pattern refers to the observed rating for the second behaviour item Has difficulty awaiting turn in games or groups. The third of the response pattern refers to the observed rating for the third behaviour item Cannot settle to anything for more than a few moments. $\mathrm{L}=$ low hyperactivity-impulsivity latent class; $\mathrm{M}=$ medium hyperactivity-impulsivity latent class; $\mathrm{H}=$ high hyperactivity-impulsivity latent class; The gender of the shown in the row ($M=$ male, $F=$ female); Empty cells refer to cells with an observed frequency of zero, for which the latent class to which these children shour assigned is undetermined.																				

5. Discussion

The principal aim of this study was to use data from the first NLSCY collection cycle to estimate the prevalence of hyperactivity-impulsivity and inattention in 2-11-year-old girls and boys. Based on mothers' responses to three hyperactivity-impulsivity items, we found that between 5% and 17% of $2-11$-year-old girls and between 9% and 23% of 2-11-year-old boys often manifested hyperactive-impulsive behaviours. The majority of children, however, either did not manifest hyperactive-impulsive behaviours or did so only on an occasional basis. We found a similar pattern of results for inattention. Specifically, between 1% and 18% of 2-11-year-old girls and between 1% and 14% of 2-11-year-old boys often manifested inattentive behaviours. However, the majority of children either did not manifest inattentive behaviours or did so only occasionally.

Findings from past community studies on ADHD subtypes (Gomez et al., 1999; Nolan et al., 2001; Pineda et al., 1999; Wolraich et al., 1996) generally have reported lower prevalence estimates of hyperactivity-impulsivity and inattention than those found in the present study. The differences most likely reflect methodological variations including the instruments used for data collection, the reliance on different informants, and the classification method used to establish prevalence estimates. It should also be noted that these past community studies attempted to approximate DSM diagnoses for the ADHD subtypes of hyperactivity-impulsivity and inattention. In contrast, we were interested in identifying a combination of items that could best capture hyperactivity-impulsivity and inattention behaviours.

A related aim of the present study was to illustrate the value of a latent class approach to the identification of childhood behaviour problems. While taking into account the lack of perfect symptom sensitivity and specificity, latent class analysis made it possible to identify an appropriate number of groups of children that could best account for mothers' behaviour reports. These mutually exclusive and exhaustive groups of children differed in their probability of manifesting hyperactive-impulsive and inattentive behaviours. As such, it may be important to view hyperactive-impulsive and inattentive behaviours along a continuum of increasing frequency rather than as behaviours that are either present or absent in a child. Our study also demonstrated the ability of latent class analysis to estimate latent class probabilities (which translate into prevalence estimates) and conditional behaviour rating probabilities (which provide information about the presence and absence of behaviours in children who do and do not belong to a specific latent class). Finally, we demonstrated how latent class analysis can be used to assign children to a specific latent class based on their mothers' pattern of responding to the behaviour items.

The results of our study have several important public policy implications. Scahill and Schwab-Stone (2000) noted that "because it could have a fundamental influence on the allocation of resources for prevention and treatment, the prevalence of a disease in the population has important implications for health policy" (p. 542). We provided estimates of the prevalence of hyperactivity-impulsivity and inattention separately for 2-11-year-old girls and boys from the Canadian population. These prevalence estimates may help guide decisions about the needs of children with behaviour problems with regard to treatment
interventions and to efforts aimed at preventing the worsening of behaviour problems over time. Additionally, we provided a means of identifying children with problematic hyperactive-impulsive and inattentive behaviours. Given the limited public resources that currently exist for mental health services, our findings may help public policy makers to best channel resources toward children who are most in need. In other words, the better we can identify children with behaviour problems, the better we can deliver intervention programs to treat these problems as early and as effectively as possible.

Our study had a number of important limitations. First, we were unable to use all of the hyperactive-impulsive and inattentive behaviour items from the NLSCY interviews. Including all the behaviour items would have resulted in a number of empty or near-empty observed frequency cells and would have posed difficulties for our interpretation of results. It is also for this reason that we did not examine hyperactive-impulsive and inattentive behaviour items together. Second, a number of our prevalence estimates had levels of error that ranged from marginal to unacceptable. As such, these estimates should be interpreted with caution. Third, we relied exclusively on mother reports to estimate the prevalence of hyperactivity-impulsivity and inattention. It will be important to validate our findings using data from other informants. Fortunately, the NLSCY includes teacher reports of school-age children's behaviours as well as self-reports from older children. Fourth, our study was cross-sectional in nature. However, data from subsequent NLSCY cycles will permit us to obtain longitudinal estimates of the prevalence of hyperactivity-impulsivity and inattention. In addition, longitudinal data will make it possible to track intra-individual change in these behaviour problems over time. Fifth, our study did not address the issue of comorbidity, despite the literature showing that hyperactivity-impulsivity and inattention frequently co-occur with other disorders, particularly those of a disruptive nature.

0666．0	$0000{ }^{\circ}$	OLOO．0	\＆Z66＊0	Z2000	S000＊0	てZ86＊0	8L1000	0000＊0	0000 ${ }^{\circ}$	0000＊	$0000{ }^{\circ}$	عยย
9861．0	OS8LO	SlZO＇0	عદ0¢＇0	$\angle 969^{\circ} 0$	0000＇0	0ヤをて＇0	099 ${ }^{\circ}$	0000＇0	6t $28{ }^{\circ}$	LSZ1＊0	0000＇0	て\＆ย
80くナ゙0	998．0	9861．0	LOLS＇0	06LE0	と0レレ0	L9Ll＇0	عદZ8＊0	0000＇0	0ヶ08．0	09610	0000＊0	1عย
レーく6．0	0000＊	69Z0＊0	¢9Z6．0	8L900	8900＇0	七\＆LLO	998て＊	0000＇0	0000 ${ }^{\text {L }}$	0000＊	0000＊0	๕て£
SLEO＇0	OヤL8＇0	St60＇0	カレカ000	98960	0000＊0	98LO＊	七986．0	0000＇0	カGレガ0	$978 \mathrm{~S}^{\circ} 0$	0000＇0	てて\＆
8890＇0	8982＊0	\＆\dagger S9．0	E0600	七七L9 0	\＆S\＆で0	9600＇0	七066．0	0000＇0	レヤ6で0	6G0LO	0000＇0	เてE
ع996．0	0000＊0	LEEO＇0	61960	6080 0	ZLOO＇0	9696 0	ヤOヤO＇0	0000＇0	0000 ${ }^{\text {－}}$	0000＊0	0000＊0	\＆レを
LZSO＊		GちOZ＇0	9680 0	†OL60	0000＊0	ャ91レ0	9888＊	0000 0	ZLLL＇0	8て8て＊ 0	0000＊0	てレE
七GSO＊0	88\＆10	8S08．0	ZSEL＇0	8とカャ゙0	Oレで＊	8t80＊0	ZS160	0000 0	6L6G＇0	1てOto	0000＊0	レレE
0七66．0	0000°	0900＇0	9LZ8＊0	L6で0	LてヤO＊O	8tで＇0	ZSLG＊0	0000＇0	9866．0	0000＊	－100＇0	\＆とて
LE90＇0	6868＊	0 E ¢0 0	861000	Z0860	0000＊0	6と00＊0	七Z96．0	98\＆0＇0	6928＇0	七\＆G9＊0	L6100	てદ乙
ع991．0	6とレガ0	86レガ0	6GZ0＊0	9ャレガ0	S6Sc＇0	8100＇0	0ع\＆9＊0	ZS98＇0	G002＊0	七\＆89＊0	เ9レレ0	เع乙
9698＊0	0000＊0	ち0ヤレ＇0	もてレビ0	6Z6ガ0	8t61．0	£て®0＊0	LL960	0000＇0	6LG6．0	0000＊0	してヤ000	とて乙
9800＇0	LعE80	E8GL＇0	0Z0000	08660	0000＇0	Z000＊0	8てヤ6．0	0 ${ }^{\circ} 0^{\circ} 0$	カカャO＊	18L80	SZ80＇0	てZて
91100	عL610	レレ6く0	૪ZOO＊	018E0	9919＊0	$1000{ }^{\circ}$	カ009 0	9667＊	16100	8689＊0	レレセど0	してZ
6とて8＊0	0000＊0	192L0	ZOLT0	とャ8で0	tSOE＇0	9レって＇0	78SLO	0000＊0	6896＊0	0000＊	レレヤ00	として
七\＆100	LS990	¢LてE＇0	St0000	GS660	0000＇0	S100＇0	9LE80	6091＊0	ZOZ1．0	£Z99＊0	SLLで0	てして
10100	7880 0	G106．0	9Z00＇0	Lヤ81．0	LZ18＊	ع000＇0	L6とて＇0	10920	0980＊0	08\＆と0	192900	レレて
			E0S900	60600	L8Gで0	七0ヶ6．0	96S0＊0	0000＇0	St86．0	0000＇0	GSLO＇0	عとL
0000＊0	－60ガo	906G＇0	LてZO＊0	6LL6 0	0000＊0	LS90＇0	GOSLO	LE8L＇0	OZtG＇0	9 $260{ }^{\circ}$	†098＇0	て\＆レ
0000＇0	8180\％	Z896．0	GS00＇0	98L0＇0	6S16．0	レてレ0＊0	6S610	OZ6L＇0	86で「0	6680＇0	ع0\＆8＇0	เعレ
0000＇0	$0000{ }^{\circ}$	0000 1	988．0	ZS6100	$1999{ }^{\circ}$	カ9レーフ	9889 0	0000＊0				とてレ
0000＇0	て6ヶL＇0	8098＊0	てZOO＊	8L660	0000＊0	8Z00＊0	G00L＇0	L96て＇0	6てャ0＊0	09 $0^{\circ} 0$	LI880	てZレ
0000＇0	Z800 0	8166．0	S00000	89900	8Z\＆6＇0	ع000＇0	LSZ1＊0	9t $28 \cdot 0$	0900＇0	OSLO＇0	00860	してし
						0ZL8＊	08てし「0	0000＇0	06L9 0	0000＊	0レてと＇0	とレレ
0000＇0	St90 0	GSE6．0	LSOOO	6ヶ66．0	0000＊0	8S100	96レガ0	9b9 ${ }^{\circ}$	S9t0＇0	1عZ0＊0	ャ0\＆6．0	てレレ
0000＇0	ع800＇0	L966．0	ヤ000＇0	99Z00	Ot 26.0	レレ00＇0	0とヤ0＇0	8SG6．0	ZSO0＇0	カt000	S066．0	レレレ
प6！ H	un！pow	M07	46！H	un！pəW	M07	46！${ }^{\text {H }}$	un！pow	M07	प6！ H	un！pow	M07	$\begin{aligned} & \text { uselped } \\ & \text { esuodsəy } \end{aligned}$
			әјеW			әрщə」			әן¢			
SJPəK						SJEOK Z						

Table A. 1 (Cont'd) Posterior Conditional Probability Estimates for Hyperactivity-Impulsivity Under the Unrestricted Three-Class Model												
	4 years						5 years					
	Male			Female			Male			Female		
Response pattern	Low	Medium	High									
111	0.9979	0.0021	0.0000	0.9202	0.0796	0.0001	0.9970	0.0022	0.0009	0.9923	0.0077	0.0000
112	0.9677	0.0296	0.0027	0.7301	0.2674	0.0025	0.9287	0.0601	0.0112	0.4709	0.5291	0.0000
113	0.8937	0.0000	0.1063				0.7513	0.0000	0.2487			
121	0.9887	0.0113	0.0000	0.6775	0.3219	0.0005	0.9855	0.0129	0.0016	0.9698	0.0302	0.0000
122	0.8520	0.1384	0.0096	0.3298	0.6634	0.0068	0.7085	0.2762	0.0153	0.1813	0.8187	0.0000
123	0.6756	0.0000	0.3244	0.0000	0.0000	1.0000	0.6270	0.0000	0.3730			
131	0.9609	0.0391	0.0000	0.2001	0.7960	0.0039	0.9714	0.0088	0.0198	0.9668	0.0332	0.0000
132	0.6001	0.3462	0.0537	0.0545	0.9180	0.0275	0.6466	0.1740	0.1794	0.1670	0.8330	0.0000
133	0.2082	0.0000	0.7918	0.0000	0.0000	1.0000	0.1159	0.0000	0.8841			
211	0.9112	0.0888	0.0000	0.4263	0.5680	0.0057	0.9052	0.0765	0.0184	0.9235	0.0693	0.0072
212	0.4081	0.5641	0.0278	0.1432	0.8074	0.0494	0.2635	0.6638	0.0727	0.0824	0.8969	0.0207
213	0.2569	0.0000	0.7431	0.0000	0.0000	1.0000	0.1165	0.0000	0.8835	0.0000	0.0000	1.0000
221	0.6589	0.3411	0.0000	0.1191	0.8713	0.0096	0.6471	0.3293	0.0236	0.7413	0.2234	0.0354
222	0.1160	0.8521	0.0319	0.0294	0.9094	0.0613	0.0600	0.9103	0.0297	0.0216	0.9453	0.0331
223	0.0789	0.0000	0.9211	0.0000	0.0000	1.0000	0.0684	0.0000	0.9316	0.0000	0.0000	1.0000
231	0.3523	0.6477	0.0000	0.0156	0.9536	0.0309	0.5497	0.1931	0.2571	0.6449	0.2147	0.1403
232	0.0342	0.8914	0.0744	0.0032	0.8321	0.1647	0.0561	0.5875	0.3564	0.0178	0.8581	0.1241
233	0.0107	0.0000	0.9893	0.0000	0.0000	1.0000	0.0057	0.0000	0.9943	0.0000	0.0000	1.0000
311	0.7899	0.2101	0.0000	0.7122	0.1685	0.1193	0.5748	0.1480	0.2772	0.0000	0.2349	0.7651
312	0.1747	0.6592	0.1661	0.1578	0.1580	0.6843	0.0657	0.5040	0.4303	0.0000	0.5812	0.4188
313	0.0242	0.0000	0.9758	0.0000	0.0000	1.0000	0.0055	0.0000	0.9945	0.0000	0.0000	1.0000
321	0.4143	0.5857	0.0000	0.3019	0.3922	0.3059	0.2926	0.4538	0.2535	0.0000	0.1679	0.8321
322	0.0402	0.8056	0.1542	0.0306	0.1680	0.8015	0.0169	0.7836	0.1995	0.0000	0.4770	0.5230
323	0.0061	0.0000	0.9939	0.0000	0.0000	1.0000	0.0031	0.0000	0.9969	0.0000	0.0000	1.0000
331	0.1661	0.8339	0.0000	0.0272	0.2956	0.6772	0.0759	0.0812	0.8429	0.0000	0.0466	0.9534
332	0.0097	0.6940	0.2963	0.0014	0.0665	0.9320	0.0054	0.1735	0.8210	0.0000	0.1810	0.8190
333	0.0008	0.0000	0.9992	0.0000	0.0000	1.0000	0.0002	0.0000	0.9998	0.0000	0.0000	1.0000

0000＊	$0000{ }^{\circ}$	0000＊0	6866＊0	000000	L．00＊0	9886＊0	カレレ0＊	0000＊0	9866．0	ヤレ000	0000＊0	عยદ
عL96 0	16Z0＊0	980000	89LL＇0	8ャレで0	七800＊0	0000＇0	8L860	てZしO＊0	ع696．0	18E00	9Z00＊0	て£ย
6G96＊0	G900 0	9LZO＊	ع60L0	て9G1．0	GもEL．0	88L ${ }^{\circ} 0$	てヤ¢で0	0くゅ0＇0	L61900	OLOで0	E6LL＇0	しعE
0000 1	0000＊0	00000	ZZL6．0	00000	8LZO＊0	ع0\＆6＇0	L690＇0	0000＇0	8t86．0	ZSLO＊	0000＊0	๕てE
ZLOG＇0	0レレも゙0	8LZ0＊0	0ヤEL＇0	ع8乙8＇0	LLEO＇0	0000＊0	L186 0	E8L0＇0	Z8L9 0	七ZOE0	76100	てて\＆
G6ヶ9＊0	99EL＇0	6カレで0	0Z60＊0	てESガ0	8tSt＊	LG97＇0	七E99＇0	SILL＇0	Z0ع1．0	Sカレガ0	†G6E．0	してE
0000 1	0000＊0	000000	0888＊0	00000	0Z91＊0	8066．0	て600＇0	0000＊0	てZ66＊0	8LOOO	0000＊0	としE
0LS9＇0	EZSて＇0	$2060{ }^{\circ}$	6ヶ91．0	9029＇0	SカレE＇0	0000＊0	Z0L8 0	86てレ＇0	ع8GL゙0	GZLL＇0	Z6900	てレE
0997＊	レ0ヤ0＊0	6ャ6ャワ	0LZO＊	08900	6ヤ06．0	6ヵてG＇0	98EL0	998と0	96L0 0	08ャレ゙0	ヵZLL＇0	レレE
0000 1	0000＇0	0000＇0	LSE60	00000	$6790{ }^{\circ}$	七ELL＇0	99で＇0	0000＊0	9Z96．0	ャLEO 0	0000＊0	とદ乙
OZZG＇0	七Z98．0	9Sレレ0	レレレレ0	七Z9100	G960＇0	0000＇0	9ZL6＊0	ヤLZO＊	て997＊	\＆GZG＇0	9800．0	て\＆乙
\＆6ャ¢＇0	StS0＇0	Z969＊0	8LSOO	88ヤで0	\checkmark ¢69＊0	1920＇0	LEE900	806で0	عZ8000	8LGL0	0091．0	しદて
0000 1	0000＊0	0000＊0	Z99E0	00000	8\＆ャ9＊0	GEtE＇0	G9G9＇0	0000＊0	8S6900	てヤ0¢0	0000＊0	\＆て乙
00ヶ0＊0	عL98＇0	LZOL＇0	Z2000	ZS980	9くてい＊	0000＊0	06G6＊	0レヤO＊	ZZLO＊0	0ャレ60	6ع100	てて乙
L6E0＇0	18810	8ZLL＇0	ャZ00＊0	8ヤをで0	LZ9L＊	8010＇0	乙ع89＇0	レ90ガ0	080000	98780	七¢91．0	してZ
			GGL0＇0	00000	Gヵて6．0	Z808＊	8レ6100	0000＊	9LL80	七Z8．0	0000＊0	として
ZSGO＊0	レ68to	LSGガ0	GS00\％	s9EE0	1899＊0	0000＊0	9GtL＇0	カヤGで0	6とてし「0	L0080	09200	てして
OG100	66Z0＊0	LSS60	G00000	LZZO＊	69L6＊	LZZO＊0	レ6ヤレ゚0	88Z8＊	カ800＊	Lとカナ゙0	$6 \angle \nabla G^{\prime} 0$	レレて
			8ちを8＊0	0000＊0	ZS91．0	0000＊0	0000 ${ }^{\text {－}}$	0000＊0				عยL
0000＊0	90＜て＇0	七6ZL゙0	カカレビ0	LLLO 0	6と19＊0	0000＇0	0868＊	0201＇0	0000＊0	L69L＇0	と0とでo	て\＆レ
0000＊0	LOLOO	\＆686 0	て8Z000	LGOOO	9996 0	0000＊0	L8E ${ }^{\circ}$	ع199＊0	0000＇0	St0で0	GS6L＇0	しモレ
			七て91．0	0000＊0	9LE8＊0				0000＊0	0000 ${ }^{\text {L }}$	0000＊0	とてレ
0000＊0	6967＊	LEOG＊	GLLOO	S680 0	0ع68＊0	0000＊0	Z978＊	8\＆Gレ．0	0000＇0	Sl8L0	G8Lで0	ててし
0000＊0	08Z0＊0	OZL6 0	レ1000	St00 0	カ七66．0	0000＊0	GZGで0	GLtL＇0	0000＊0	8Gしで0	てヤ8L＇0	してし
			8LZO＊	0000＇0	てZL6＊0							とレレ
0000＊0	Lてレレ0	ع $288{ }^{\circ} 0$	6Z00＊0	GLOO＇0	9686＊0	0000＊0	180ガ0	6169＊0	0000＊0	98980	ャ989＊0	てレレ
0000＇0	LE00 0	ع966 0	200000	ع000＇0	G666．0	0000＇0	90ヶ0＇0	七6S6．0	0000\％	してヤ0＊0	6LG6．0	レレレ
पб！${ }^{\text {¢ }}$	un！pəW	M07	पБ！	un！pəw	M07	पб！	un！pow	M07	पБ！	un！pəW	M07	$\begin{aligned} & \text { usented } \\ & \text { esuodsey } \end{aligned}$
			әрW			әрщə」			әреW			
SJCəK L						SJeəK 9						
（p，ұuoう）L＇V әјqеュ												

Table A. 1 (Cont'd) Posterior Conditional Probability Estimates for Hyperactivity-Impulsivity Under the Unrestricted Three-Class Model												
	8 years						9 years					
		Male			Female			Male			Female	
Response pattern	Low	Medium	High									
111	0.9555	0.0445	0.0000	0.9991	0.0000	0.0009	0.9902	0.0098	0.0000	0.9856	0.0135	0.0009
112	0.1218	0.8646	0.0137	0.9825	0.0000	0.0175	0.8121	0.1879	0.0000	0.6861	0.2839	0.0300
113	0.0000	0.0723	0.9277	0.9283	0.0000	0.0717	1.0000	0.0000	0.0000	0.0785	0.0000	0.9215
121	0.8222	0.1778	0.0000	0.9955	0.0000	0.0045	0.9528	0.0472	0.0000	0.9130	0.0816	0.0053
122	0.0292	0.9636	0.0072	0.9155	0.0000	0.0845	0.4629	0.5371	0.0000	0.2506	0.6766	0.0728
123	0.0000	0.1415	0.8585	0.7142	0.0000	0.2858	1.0000	0.0000	0.0000	0.0127	0.0000	0.9873
131	0.6737	0.3263	0.0000	0.9505	0.0000	0.0495	0.9565	0.0435	0.0000	0.9055	0.0058	0.0887
132	0.0128	0.9426	0.0446	0.4829	0.0000	0.5171	0.4842	0.5158	0.0000	0.1649	0.0321	0.8030
133	0.0000	0.0253	0.9747							0.0008	0.0000	0.9992
211	0.8062	0.1938	0.0000	0.9398	0.0589	0.0013	0.7792	0.2186	0.0022	0.8807	0.1151	0.0042
212	0.0265	0.9695	0.0040	0.6349	0.3467	0.0184	0.1306	0.8590	0.0104	0.1929	0.7612	0.0459
213	0.0000	0.2286	0.7714	0.8884	0.0000	0.1116	0.8686	0.0000	0.1314	0.0154	0.0000	0.9846
221	0.4725	0.5275	0.0000	0.4291	0.5678	0.0031	0.4125	0.5805	0.0070	0.5307	0.4524	0.0169
222	0.0058	0.9922	0.0020	0.0789	0.9093	0.0118	0.0290	0.9573	0.0137	0.0353	0.9089	0.0558
223	0.0000	0.3851	0.6149	0.6056	0.0000	0.3944	0.5268	0.0000	0.4732			
231	0.2857	0.7143	0.0000	0.4215	0.5428	0.0357	0.3923	0.5067	0.1010	0.6271	0.0386	0.3343
232	0.0026	0.9851	0.0123	0.0716	0.8035	0.1248	0.0260	0.7874	0.1866	0.0341	0.0632	0.9027
233	0.0000	0.0899	0.9101	0.1169	0.0000	0.8831	0.0682	0.0000	0.9318	0.0001	0.0000	0.9999
311	0.4807	0.5193	0.0000	0.9302	0.0286	0.0412	0.5271	0.4118	0.0610	0.8590	0.0860	0.0551
312	0.0056	0.9236	0.0708	0.4590	0.1228	0.4181	0.0444	0.8124	0.1432	0.1387	0.4192	0.4421
313	0.0000	0.0158	0.9842	0.2020	0.0000	0.7980	0.1399	0.0000	0.8601	0.0012	0.0000	0.9988
321	0.1662	0.8338	0.0000	0.5325	0.3453	0.1222	0.1784	0.6990	0.1226	0.4810	0.3141	0.2050
322	0.0013	0.9638	0.0349	0.0879	0.4968	0.4152	0.0089	0.8199	0.1712	0.0239	0.4705	0.5056
323	0.0000	0.0329	0.9671	0.0466	0.0000	0.9534	0.0267	0.0000	0.9733	0.0002	0.0000	0.9998
331	0.0817	0.9183	0.0000	0.2329	0.1470	0.6201	0.0664	0.2389	0.6947	0.1221	0.0058	0.8721
332	0.0005	0.8128	0.1867	0.0163	0.0897	0.8940	0.0027	0.2237	0.7737	0.0028	0.0040	0.9932
333	0.0000	0.0053	0.9947	0.0042	0.0000	0.9958	0.0018	0.0000	0.9982	0.0000	0.0000	1.0000

0000 1	$0000{ }^{\circ}$	0000＊0	0000 1	0000	0000＊0	7666．0	0000 0	90000	7666．0	9000＊0	00000	$\varepsilon \varepsilon \varepsilon$
9866 0	0000＊0	ヤレ000	0000 1	0000＊0	0000＊0	9066．0	7800 0	0100\％	98L6 0	ャレてO＊	0000＇0	て\＆દ
6LEL＇0	0000 0	189で0	0000 1	0000 0	0000 0	9999＇0	G620 0	OGSE＊0	8Lt9 0	9をャて「0	9801＊ 0	เعย
0000 1	0000＊	0000＊0	0000 1	0000 0	0000＊0	0966．0	0000 0	0ヤ00＊0	カャ66．0	9G00＊0	000000	\＆て£
GL6L＇0	$766 L^{\circ} 0$	LE000	0000 1	0000＇0	0000＊0	てع06．0	0160＇0	8900＇0	G978＊	SELL＇0	000000	てZ\＆
OGSZ＊0	006t 0	LGSで0	0000 1	0000 0	0000 0	てくもじ0	8S†で0	0209 0	LL91．0	LE8G＇0	9ヵらで0	してE
0000 1	0000＊	0000＊0	0000 1	0000 0	0000＊0	とLL6＊0	0000＊	L8Z0＇0	6ャ66．0	LG00＇0	000000	としを
9659＊0	9GLE0	LヵZO＇0	0000 1	0000 0	0000＊0	0Zレ80	て6ヤレ＇0	8880 0	てレヤ8＊0	88G100	00000	てレE
ャ690 0	\＆GSて＊0	\＆GL90	0000 1	0000＊	0000＊0	88Z000	LL80＇0	9888＊0	カヤOレ＇0	88ع์＇0	8999＇0	レレE
0000 1	0000＊0	0000＇0	LE66．0	0000＊	ع900＊0	9L66 0	0000 0	七Z00＊0	カヤL6．0	9GZ0＊0	000000	عと乙
0866＊0	0000＇0	0200＇0	LOレヤ゙0	LE8G＇0	GS00＇0	LSGL＇0	0てヤで0	6Z00＊0	ELOG＇0	LZ6t＊	0000＊0	て\＆乙
LESE＇0	0000 0	ع9t9＊0	0ع8レ．0	96LLO	EL60＇0	9とレレ＇0	しE090	\＆と8で0	$\varepsilon \angle \triangleright 0^{\circ} 0$	G68L＇0	乙®91．0	しદて
0000 1	$0000{ }^{\circ}$	0000＇0	9986＊0	0000＊	カヤレ0＊0	St86．0	0000 0	SG1000	986 ${ }^{\circ}$	ャレ0で0	0000＊0	とて乙
ZE61．0	LE080	L800＇0	GL9Z＇0	てもてL＇0	て800＊0	690で0	6L8L＇0	\＆G00＊0	6960＊0	LE06．0	0000＊0	てZて
ャ970＊0	Lてヤ8＊0	GIEL＇0	0عOL＇0	てLLLO	6GZ100	ャてレ000	0ヤ8LO	980で0	ZS00＇0	GLZ8＇0	ャ 2910	して乙
0000 1	0000＊0	0000＊0	0606＊0	0000＊0	0レ60＊0	0968＊0	0000＇0	OGOL＇0	LSI80	$678 L^{\circ} 0$	0000＊0	として
7601＊0	Z0L8 0	G0Z0＊0	E9Gl＇0	LOL8 0	0عEO＊0	6Zてレ＊0	LEG80	\＆とて0＊0	G901．0	SE68＊0	0000＊0	てして
0600 0	GZSG＇0	S8Et＇0	してヤ0＊0	$\angle 709^{\circ}$	乙\＆GE＇0	てヤ00＊0	七ع8ャ＊	カてレG＊0	6800＊0	\＆G99＇0	808ガ0	レレて
0000 1	0000＊0	0000＊0	86180	0000＇0	Z081＊0							عยL
G6てヤ＊	0000＊	G0LG＇0	81980	てOLも＊	6L91＊0	0000＊0	ャGレ60	9780＇0	0000＊0	0000 ${ }^{\text { }}$	0000＊0	て\＆レ
6Z00＊0	0000＊0	L $266{ }^{\circ} 0$	SEヤO＊0	E9s．0	Z008＊0	0000＊0	て8しで0	8L8L＇0	0000＇0	ZSLE＇0	8789＊0	しعし
			七ャ99＊0	0000＊0	99Eと＇0				0000＊0	0000 ${ }^{\text {L }}$	0000＇0	とてレ
61Z0＊0	$6868{ }^{\circ}$	E6L0＇0	てOZて＇0	097¢ 0	8t¢で0	0000＊0	カレS60	98ャ0＊0	0000＊0	0000 ${ }^{\text {L }}$	$0000{ }^{\circ}$	てZレ
8000＊0	てLGて＇0	08tL＇0	6610＊0	G9EL＇0	Gとヤ8＊0	0000＊0	¢SEE＇0	St99＊0	0000＊0	002¢＇0	0089＊0	してし
			Oヵてで0	0000＊0	09LL＇0	0000＇0	0000＊0	0000 1				とレレ
2800＇0	St89＊0	890 ${ }^{\circ} 0$	99L0＊0	عย9 ε°	Z099＇0	0000＊0	GLZ8＊0	GZLL＇0	0000＊0	0000 ${ }^{\text {\％}}$	0000＊0	てレレ
10000	0290＇0	6LE6＇0	ع\＆00＇0	レعヤ0＊0	98G6＊0	0000＇0	10レレ0	6688＊	0000＇0	OLレレ0	$0688{ }^{\circ}$	レレレ
46！${ }^{\text {H }}$	un！pow	M07	प6！${ }^{\text {¢ }}$	un！pow	M07	पБ！${ }^{\text {¢ }}$	un！pew	M07	46！${ }^{\text {¢ }}$	un！pow	M07	usəみed esuodsəy
ә¢щə」			əן¢W			өןщə」			əן¢W			
S．JCOK IL						SJEOK OV						

			9866．0	Lヵ00＇0	$9100{ }^{\circ}$	0000ㄴ	0000＊0	0000＊0	0000 ${ }^{\text {L }}$	0000＊0	0000＊0	عยદ
86660	0000＇0	200000	L8S8＇0	GOEL＇0	8010＇0				8902＇0	てャ6で0	0000＇0	乙દย
62860	0000＇0	LLLOO	0000 0	9ZEL＊	† $298^{\circ} 0$	0000＊0	0000 ${ }^{\text {L }}$	00000	0000＇0	09960	Oヤ¢0＊0	เعย
0000 \％	0000＇0	0000＇0				G $266{ }^{\circ}$	0000＇0	SZ00＊0	0000 ${ }^{\text {L }}$	$0000 \cdot 0$	0000＇0	£乙を
99860	0000＇0	七ع100	0000 0	LI960	6880 0	$1866{ }^{\circ}$	6t00＇0	OZOO 0	SOL80	S681．0	0000＇0	てZ६
OS9t＊	0000＇0	OSES 0	0000＇0	88\＆て＇0	て1920	0000＇0	SEZ1＇0	G9280				してE
0000 \％	0000＇0	0000＊0	0tt6 0	91800	\＆ヤてO＊	† Z86．0	00000	92100	0000 1	0000＊0	0000＊0	\＆เを
カカャ6．0	0000＇0	9SS000	80カガ0	カレレガ0	8L80＇0	0696 0	£LZO＇0	LELOO	6ZャG＇0	LLSt＊	0000＊0	てしE
－ 2910	0000＇0	9Z®80	0000 0	6¢90＊0	19860	0000＇0	ャ001＇0	9668 0	0000＇0	6て190	LL88＇0	いレE
0عL80	0＜Zl＇0	0000＇0										\＆と乙
G96s＇0	ヤG680	$1800{ }^{\circ}$	0000＇0	OZE6．0	0890＊0	†七¢L．0	99980	00000	E8S0＊0	$\angle レ ヤ 60$	0000＇0	てદ乙
9891＇0	LLE90	切610	0000 0	カ8ャレ＇0	9198＊0	0000＊0	0000 ${ }^{\text {L }}$	00000	0000＇0	Sl860	98100	1とて
6SILO	レー880	0000＇0	0000 0	61 280	18で「0	0000 ${ }^{\text {L }}$	0000＇0	0000＇0	0000 ${ }^{\text {L }}$	0000＊	0000＇0	\＆て乙
\＆LZO＊0	18 ± 60	LヵZO＇0	0000 0	LS960	\＆๖EO＊0	てちZL＇0	8SLZ＇0	00000	七660＊0	9006 0	0000＇0	てZて
98000	ヤ61く0	0LLて＇0	0000＇0	Sع9て＇0	S9EL＇0	0000＊0	0000 ${ }^{\text {L }}$	00000	0000＇0	七七L8．0	99Zし「0	してて
61200	18 Z 0	0000＇0	0000 0	6969 0	レとOヤ＊	0000 ${ }^{\text { }}$	0000＇0	0000 0	0000 1	0000 0	0000＊0	\＆して
LSLOO	0¢Z6＊	ع19000	0000 0	L6S8 0	と0ヤレ＇0	6عLE＊	19890	00000	L6Z0＇0	E0L6．0	0000＇0	てして
SLOOO	ع $80 \mathrm{~S}^{\circ} 0$	てS67＊	0000＇0	ZZLO 0	8LZ6＇0	0000＊0	0000 ${ }^{\text {L }}$	0000＇0	0000＇0	89tL＇0	て\＆૬で0	$\begin{aligned} & \text { ULZ } \\ & \text { ع६L } \end{aligned}$
			0000 0	9LLt＊	†てZG＇0	\＆レくで0	L8ZL＇0	0000＊0	Z669＇0	800t ${ }^{\circ}$	0000＊0	て\＆レ
0000＇0	†¢80＊0	99160	0000 0	SLIOO	¢886＊0	00000	0000 ${ }^{\text {L }}$	0000 0	$\begin{aligned} & 0000 \% \\ & 0000 \% \end{aligned}$	$\begin{aligned} & 86 \varepsilon 9 \circ \\ & 0000 \cdot 0 \end{aligned}$	$\begin{aligned} & \text { Z09 } 00 \\ & 00000 \end{aligned}$	$\begin{aligned} & \llcorner\varepsilon \downarrow \\ & \varepsilon Z \downarrow \end{aligned}$
0000＇0	t91s．0	9ع8t＊	0000 0	†てら9＊0	9くセを＇0	L0E80	61 ¢＇0	0880 0	ZLCLO	8ZLZ 0	0000 0	てZし
0000＇0	ع $290{ }^{\circ}$	LZE60	0000＇0	عとZ0＇0	L9260	0000＇0	8Z9100	ZLE8．0	0000＇0	26810	80180	してし
0000＇0	0000 ${ }^{\text {L }}$	0000＊0	0000＊0	8680 0	2016．0	6G0＜0	0000＇0	レも6で0	0000 ${ }^{\text {L }}$	0000＊0	0000＇0	とレレ
0000＇0	Lャ6て＇0	ESOLO	0000＊0	0062＇0	00LL＇0	LStto	と90t 0	08tレ＇0	もGZtio	$97 \angle G^{\circ} 0$	0000＇0	てレレ
0000＇0	ヤLZOO	92L60	0000＇0	ZS000	$8766{ }^{\circ}$	00000	SعEL०	G998．0	00000	$6680^{\circ} 0$	10160	いレ
46！	un！pow	M07	46！H	un！pow	M07	46！	un！pow	M07	46！	un！pow	M07	$\begin{aligned} & \text { usə⿰丬士d } \\ & \text { osuodsəy } \end{aligned}$
			əןEW			әןшə」			əן，W			
S．JėK						S．JeəK Z						

Table A. 2 (Cont'd) Posterior Conditional Probability Estimates for Inattention Under the Unrestricted Three-Class Model												
	4 years						5 years					
	Male			Female			Male			Female		
Response pattern	Low	Medium	High									
111	0.9071	0.0929	0.0000	1.0000	0.0000	0.0000	0.9663	0.0337	0.0000	1.0000	0.0000	0.0000
112	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000
113	0.3469	0.6531	0.0000	0.4450	0.5533	0.0017	0.3297	0.6703	0.0000	0.7633	0.2367	0.0000
121	0.7606	0.2394	0.0000	1.0000	0.0000	0.0000	0.9299	0.0701	0.0000	0.9401	0.0000	0.0599
122	0.0000	1.0000	0.0000	0.0000	0.9978	0.0022	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000
123				0.1753	0.5644	0.2603	0.1855	0.8145	0.0000	0.5179	0.4821	0.0000
131	0.5504	0.4496	0.0000	1.0000	0.0000	0.0000				0.0000	0.0000	1.0000
132	0.0000	1.0000	0.0000	0.0000	0.9357	0.0643	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000
133 211	0.4703	0.5297	0.0000	1.0000	0.0000	0.0000	0.7776	0.2148	0.0076	1.0000	0.0000	0.0000
212	0.0000	0.9998	0.0002	0.0000	1.0000	0.0000	0.0000	0.9861	0.0139	0.0000	1.0000	0.0000
213	0.0432	0.8945	0.0623	0.0819	0.9181	0.0000	0.0406	0.6536	0.3057	0.2146	0.7854	0.0000
221	0.2241	0.7759	0.0000	1.0000	0.0000	0.0000	0.6078	0.3627	0.0295	0.6745	0.0000	0.3255
222	0.0000	0.9997	0.0003	0.0000	1.0000	0.0000	0.0000	0.9688	0.0312	0.0000	1.0000	0.0000
223	0.0137	0.8739	0.1123	0.0333	0.9667	0.0000	0.0137	0.4761	0.5102			
231				1.0000	0.0000	0.0000	0.0000	0.1574	0.8426	0.0000	0.0000	1.0000
232	0.0000	0.9757	0.0243	0.0000	1.0000	0.0000	0.0000	0.3209	0.6791	0.0000	1.0000	0.0000
233	0.0005	0.0909	0.9086				0.0000	0.0140	0.9860			
311	0.0000	1.0000	0.0000	1.0000	0.0000	0.0000	0.2683	0.5436	0.1881	1.0000	0.0000	0.0000
312	0.0000	0.9765	0.0235	0.0000	0.9955	0.0045	0.0000	0.8796	0.1204	0.0000	1.0000	0.0000
313	0.0000	0.0937	0.9063	0.0334	0.4925	0.4741	0.0015	0.1797	0.8188	0.1210	0.8790	0.0000
321	0.0000	1.0000	0.0000				0.1131	0.4948	0.3922	0.2982	0.0000	0.7018
322	0.0000	0.9574	0.0426	0.0000	0.5970	0.4030	0.0000	0.7614	0.2386	0.0000	1.0000	0.0000
323	0.0000	0.0531	0.9469	0.0002	0.0069	0.9929	0.0003	0.0874	0.9122	0.0438	0.9562	0.0000
331										0.0000	0.0000	1.0000
332	0.0000	0.2244	0.7756	0.0000	0.0446	0.9554	0.0000	0.0463	0.9537			
333	0.0000	0.0007	0.9993	0.0000	0.0002	0.9998	0.0000	0.0015	0.9985			

L666．0	$0000{ }^{\circ}$	8000＊0	0000 1	0000 0	0000＊0	で86．0	8SLO＊0	0000＊0	0000 1	00000	00000	$\varepsilon \varepsilon \varepsilon$
0000 1	0000＊0	0000＊0	0ع69 0	8t6 ${ }^{\circ}$	LてLOO	七S9E＊	てLZ9＇0	7LO0＇0	8666．0	0000 0	200000	て\＆ย
			L0E6 0	G080 0	88\＆000				$1 \downarrow 66.0$	00000	690000	しعย
L866 0	0000 0	ع100\％	$6666{ }^{\circ}$	0000 0	10000	0266．0	0800 0	00000	6866．0	00000	LLOOO	๕て£
6666 0	0000＊	L0000	91800	8096．0	S $200{ }^{\circ} 0$	LZZG＊0	0\＆Sガ0	$6\rangle$ \％0 0	99680	EL60＇0	19000	てZ\＆
			\＆ระદ＇0	LLOG＇0	0ع910				8Lャ9 0	808．0	カレLレ0	してE
ャ 2860	0000 0	92100	S866＊	0000 0	GLOO 0	L8ヤ6．0	6LGO＊	0000＊0	$1 \downarrow 66.0$	00000	690000	عしを
ع666．0	0000 0	L000 0	6ちて0＊0	ちてし6．0	LZ90＊	9921．0	0てヤぐ0	ャレとレ．0	6LE8＊0	ャレとレ0	9080＊0	てしを
0000＊0	0000＊0	0000 1	て9Z10	GLZで0	ع9t9＊0	0000＊0	988＇0	カレレ9＊0	8ZSE＊0	とてヤレ「0	6ヶOG＇0	レレE
			2666 0	0000＊0	ع000＊0				0666 0	00000	OLOOO	عย乙
0000＊0	ع966 0	L800 0	7860 0	て8t8 0	七\＆G0＊0	6LZ0＊0	18260	0000＊0	6866．0	00000	19000	てદ乙
0000＊0	98Z®＇0	ャレ 290	0968＇0	82910	てLEガ0		0000 ${ }^{\text {L }}$	0000＊0	ヤ 2080	00000	9761．0	しદて
0000＊0	ع9S6＊0	LEtO 0	ع966＊0	0000＊0	LE00＇0	2978＊0	8ELL＇0	0000＊0	ヤ896．0	00000	91t000	とて乙
0000＊0	G666 0	S000 0	GZ00＊0	L186．0	8SLOO	Gてヤ000	GLS6 0	0000＊0	LZヤO＊	8G760	SILOO	てて乙
0000＊0	てヤ640	8GOZ＇0	1080＊0	£Z89＇0	LL8E＇0	000000	0000 1	0000＇0	9ヤレ000	GLE80	6ESL＇0	してZ
0000＊0	6099＊0	レ6とع＇0	てZ96＊0	0000＊0	8LEO＇0	0とレガ0	0289＇0	0000＊0	L6080	00000	E0610	として
0000＊0	Lt66．0	\＆S00＇0	81000	0GL8＊	Lعてレ0	990000	¢ $866{ }^{\circ}$	0000＊0	0620＊0	L8Z6 0	عてヤ0＊0	てして
0000＊0	9GGて＇0	カナtL＇0	2900 0	LStレ＇0	18ヤ8＊0	0000＊0	0000 ${ }^{\text {L }}$	0000＊0	LLOOO	9989＊0	と90ヤ＊	レレて
												とยL
GlZE＊0	8Lt9 0	8080 0	8ヤナ0＊0	七\＆9 ${ }^{\circ}$	LL6G＇0				LEOZ0	00000	696200	て\＆レ
0000＊0	ELEO＇0	LZ96＊	ちGE0＇0	レカレO	GOS6．0	0000＊0	0000＇0	0000 1	990000	00000	¢866．0	しモレ
			69160	0000＊0	Lع80＊0	0000＊	0000 0	0000＊0				とてレ
SSLOO	98L6 0	6900＊0	6100＇0	$670 L^{\circ}$	てع6で0	99レガ0	0000＇0	カ七8G＊0	85000	LLSL＇0	GLE8＊0	ててし
	0ヤ¢で0	099 ${ }^{\circ} 0$	0800＇0	8tGo 0	てZヤ6＊0	0000＊0	0000＇0	0000 1	10000	てZしOO	9L86 0	してし
عとL00	6LEL0	67G8＊0	カレレG0	0000＇0	988が0	0000＇レ	0000＇0	0000＊0	99000	00000	七\＆66．0	とレレ
عLLOO	ع0Z6．0	\＆Z90＇0	S000＇0	9GLで0	6ع8L＇0	LLEOO	0000＇0	ع896 0	01000	6LヤO＊	LIG6．0	てレレ
000000	G9Z0＊0	SEL6．0	ع000＇0	99000	Lع66．0	0000＇0	0000＇0	0000 1	0000＇0	عと00＇0	L966 0	レレレ
46！${ }^{\text {a }}$	un！pow	M07	प6！	un！pow	M07	46！${ }^{\text {a }}$	un！pow	M07	प6！${ }^{\text {¢ }}$	un！pow	M07	$\begin{aligned} & \text { uselyed } \\ & \text { esuodsey } \end{aligned}$
әрщə」			əןEW			әןшə」			ƏןEW			
S．」ėK L						S．」eəK 9						

Table A. 2 (Cont'd) Posterior Conditional Probability Estimates for Inattention Under the Unrestricted Three-Class Model												
	8 years						9 years					
	Male			Female			Male			Female		
Response pattern	Low	Medium	High									
111	0.9667	0.0333	0.0001	0.9938	0.0062	0.0000	0.9938	0.0062	0.0000	0.9583	0.0417	0.0000
112	0.3880	0.6090	0.0030	0.8639	0.1359	0.0001	0.6551	0.3449	0.0000	0.0000	0.9759	0.0241
113							1.0000	0.0000	0.0000	0.0000	0.0000	1.0000
121	0.8221	0.1777	0.0003	0.9395	0.0602	0.0003	0.9716	0.0284	0.0000	0.8932	0.1068	0.0000
122	0.0918	0.9040	0.0042	0.3830	0.6162	0.0009	0.2896	0.7104	0.0000	0.0000	0.9193	0.0807
123	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000				0.0000	0.0000	1.0000
131	0.7944	0.1937	0.0119	0.9490	0.0366	0.0144						
132	0.0703	0.7811	0.1486	0.4799	0.4647	0.0555	0.0000	1.0000	0.0000	0.0000	0.0000	1.0000
133 211	0.5082	0.4822	0.0096	0.7745	0.2234	0.0021	0.8212	0.1230	0.0558	0.8044	0.1956	0.0000
212	0.0213	0.9218	0.0569	0.1210	0.8765	0.0025	0.0703	0.8857	0.0440	0.0000	0.8098	0.1902
213	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0956	0.0000	0.9044	0.0000	0.0000	1.0000
221	0.1415	0.8424	0.0161	0.2507	0.7396	0.0097	0.3747	0.2616	0.3637	0.5992	0.4008	0.0000
222	0.0035	0.9409	0.0556	0.0133	0.9828	0.0039	0.0146	0.8552	0.1302	0.0000	0.5452	0.4548
223	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0074	0.0000	0.9926	0.0000	0.0000	1.0000
231	0.0774	0.5201	0.4025	0.2096	0.3721	0.4184	0.0000	0.1699	0.8301			
232	0.0010	0.2944	0.7046	0.0165	0.7336	0.2500	0.0000	0.6513	0.3487	0.0000	0.0000	1.0000
233	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000
311	0.8630	0.0000	0.1370	0.0000	0.9149	0.0851	0.0000	0.1659	0.8341	1.0000	0.0000	0.0000
312	0.0428	0.0000	0.9572	0.0000	0.9726	0.0274	0.0000	0.6448	0.3552	0.0000	0.0000	1.0000
313	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000
321	0.5120	0.0000	0.4880	0.0000	0.8843	0.1157	0.0000	0.0609	0.9391	1.0000	0.0000	0.0000
322	0.0074	0.0000	0.9926	0.0000	0.9619	0.0381	0.0000	0.3720	0.6280	0.0000	0.0000	1.0000
323	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000
331	0.0224	0.0000	0.9776	0.0000	0.0818	0.9182						
332	0.0002	0.0000	0.9998	0.0000	0.2273	0.7727	0.0000	0.1442	0.8558	0.0000	0.0000	1.0000
333	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000

0000 1	$0000{ }^{\circ}$	$0000{ }^{\circ}$	0000 1	$0000{ }^{\circ}$	0000＊0	0000＊	$0000{ }^{\circ}$	$0000{ }^{\circ}$	0266 0	0800＊0	00000	$\varepsilon \varepsilon \varepsilon$
L666 0	0000＊0	ع000＊0	6666．0	00000	10000	2666．0	0000 0	8000＇0	LLZ6＊0	レレL00	81000	て\＆ย
			\＆S66＊0	0000＊	$\angle \square 00^{\circ}$				69L80	9Z80＊0	G070 0	1عE
0666 0	0000＊	0100\％	6666＊0	0000 0	L0000	0000＊	0000＊0	0000＊0	てLL60	88Z0＊0	000000	๕て£
8Z66．0	0000＊0	Z 2000	St96．0	StEO\％	01000	L 2660	0000 0	6200＇0	L999＊0	S8てカ＊	8700 0	てて\＆
0000 0	0000＊	0000－	てL06．0	9GEO 0	乙ع90＊0	0000＊0	0000 0	0000\％	989t＊	0SEガ0	ع96000	してE
6786．0	0000 0	LSLOO	0666．0	0000＊0	01000	0000\％ 1	0000＇0	0000＊0	七ャ96．0	9SE0＊0	000000	عしを
G006．0	0000 0	S660 0	$1988{ }^{\circ}$	OLOLO	8てLO＊	Ltt6．0	0000 0	ESSO＊0	8ャ6ガ0	099が0	ع680\％	てしを
0000＇0	0000＊	0000 1	969t＇0	L6S0＇0	としくガ0	000000	0000＊	0000 1	レカナで0	てZ8で0	LELナ＇0	レレE
L666 0	0000＊	8000＊0	0000 ${ }^{\text {L }}$	$0000^{\circ} 0$	0000＊0	91680	G801．0	0000＊0	09LL＇0	0ヵてで0	000000	عย乙
			8666．0	00000	Z000＊0	Z9LE＇0	6S190	6L00＇0	8Lレレ0	8L98＊0	カャレ000	てદ乙
0000＊0	LLLC＇0	とててヤ゙0	7986．0	0000＊0	9ャレ0＇0		82990	乙LEE＇0				しદて
8066＊0	0000＊0	て600＊	8666．0	00000	Z000＊0	ャレ8で0	98LL＇0	0000＊0	レ0920	66EL＇0	0000＊0	とて乙
99800	LZL6．0	L200 0	レヤLE＇0	Lヵて， 0	Z1000	18800	ع9960	99000	GE1000	Z626 0	ع 2000	てて乙
0000＊0	ャL960	9てヤ0＊0	89ZE＇0	てZ09＊0	UレLO＇0	000000	Stl80	SS81．0	L600 0	81980	G8Zレ＇0	してZ
			6966＊0	00000	1800\％	000で0	00080	0000＊0	レ0てで0	66LL＇0	000000	として
880000	てZ86．0	0600 0	ZLSL＇0	8SE8＊0	L 2000	8LLOO	ع9G6 0	6GZ0＊0	ャ01000	G986．0	LEG0＊0	てして
0000＊0	Lてし8＊	6L81．0	ZOOL＇0	6L89＇0	6レレE0	000000	0ع8ャ゙0	0LIG＇0	てヤ0000	GL9t＇0	ع8Z9＇0	$\begin{aligned} & \text { レレZ } \\ & \text { ع\&। } \end{aligned}$
9816．0	IレLO 0	$70<00$				00000	ع0ヵG ${ }^{\circ} 0$	L6Sガ0	0000＊0	$\angle 809^{\circ} 0$	عL6E＇0	て\＆レ
0000 0	Z900＇0	8\＆66＊0	0000＊0	0000＇0	0000 ${ }^{\text {L }}$	0000＇0	68ZO 0	レレL60	0000＇0	GZ20＇0	GLZ6＇0	しモレ
ャ $29 L^{\circ} 0$	$0000{ }^{\circ}$	9てとで0							0000＊0	0000 ${ }^{\text {L }}$	0000＊0	とてレ
とยレレ0	8689 0	69ャて「0	0000＊0	$\downarrow \square 060$	6960＊0	0000＊0	レーZL゙0	6GLで0	0000＊0	OGLLO	0Gてて＇0	ててし
0000＊0	乙ع60＇0	8906．0	0000＊0	GOEL＇0	G698＊	0000＇0	とて900	LLE6 0	0000＊0	ヤくヤレ＇0	9ZS8＊0	してし
08L10	0000＊0	OZZ8＊	0000＊0	0000＊0	0000＊	0000＊0	0000 ${ }^{\text {L }}$	0000＊0				Eレレ
L6L0＇0	て928．0	レもG9＊0	0000＇0	LLL9 0	6てZと＇0	0000＊0	ع8Sc 0	$\angle L \downarrow 9^{\circ} 0$	0000＊0	もてしど0	9 $2889^{\circ} 0$	てレレ
00000	七6100	9086＊0	0000＇0	عZE0＇0	L296．0	0000＇0	6とL00	19860	0000＇0	とてZ0＊0	LLL6 0	レレレ
46！${ }^{\text {a }}$	un！pow	M07	46！${ }^{\text {H }}$	un！pow	M07	पБ！	un！pəw	M07	पБ！	un！pow	M07	$\begin{gathered} \text { use⿰ted } \\ \text { osuodsey } \end{gathered}$
			əןEW			әןшə」			əן¢W			
S．EPK IL						sseəK OL						

References

American Psychiatric Association. Diagnostic and statistical manual of mental disorders ($4^{\text {th }}$ ed.). Washington, DC: Author. 1994

Baillargeon, R. H., Tremblay, R. E., \& Willms, J. D. The prevalence of physical aggression in Canadian children: A multi-group latent class analysis of data from the first collection cycle (1994-1995) of the National Longitudinal Survey of Children and Youth (NLSCY). Applied Research Branch Technical Paper. T-99-2E. Human Resources Development Canada. 1999.

Boyle, M. H., Offord, D. R., Hofmann, H. G., Catlin, G. P., Byles, J. A., Cadman, D. T., Crawford, J. W., Links, P. S., Rae-Grant, N. I., \& Szatmari, P. Ontario Child Health Study: I. Methodology. Archives of General Psychiatry, 44, 826-831. 1987.

Breton, J. J., Bergeron, L., Valla, J. P., Berthiaume, C., Gaudet, N., Lambert, J., St-Georges, M., Houde, L., \& Lépine, S. "Quebec Child Mental Health Survey: Prevalence of DSM-III-R mental health disorders." Journal of Child Psychology and Psychiatry, 40, 375-384. 1999.

Carlson, C. L., \& Mann, M. "Attention-deficit/hyperactivity disorder, predominantly inattentive subtype." Child and Adolescent Psychiatric Clinics of North America, 9, 499-510. 2000.

Clogg, C. C. "Some latent structure models for the analysis of Likert-type data." Social Science Research, 8, 287-301. 1979.

Cressie, N., \& Read, T. R. C. "Multinomial goodness-of-fit tests." Journal of the_Royal Statistical Society, Series B, 46, 440-464. 1984.

Dillon, W. R., \& Mulani, N. "A probabilistic latent class model for assessing inter-judge reliability." Multivariate Behavioral Research, 19, 438-458. 1984.

Fienberg, S. E. The analysis of cross-classified categorical data (2 ${ }^{\text {nd }}$ ed.) Cambridge, MA: MIT Press. 1980.

Gomez, R., Harvey, J., Quick, C., Scharer, I., \& Harris, G. DSM-IV AD/HD: "Confirmatory factor models, prevalence, and gender and age differences based on parent and teacher ratings of Australian primary school children." Journal of Child Psychology and Psychiatry, 40, 265-274. 1999.

McCutcheon, A. L. Latent class analysis. (Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-064). Newbury Park, CA: Sage. 1987.

Nolan, E. E., Gadow, K. D., \& Sprafkin, J. Teacher reports of DSM-IV ADHD, ODD, and CD symptoms in school children. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 241-249. 2001.

Offord, D. R., Boyle, M. H., Szatmari, P., Rae-Grant, N., Links, P. S., Cadman, D. T., Byles, J. A., Crawford, J. W., Blum, H. M., Byrne, C., Thomas, H., \& Woodward, C. A. Ontario Child Health Study: II. Six-month prevalence of disorder and rates of service utilization. Archives of General Psychiatry, 44, 832-836. 1987.

Offord, D. R., Boyle, M. H., \& Racine, Y. Ontario Child Health Study: Correlates of disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 856-860. 1989.

Pineda, D., Ardila, A., Rosselli, M., Arias, B. E., Henao, G. C., Gomez, L. F., Mejia, S. E., \& Miranda, M. L. "Prevalence of attention-deficit/hyperactivity disorder symptoms in 4- to 17-year-old children in the general population." Journal of Abnormal Child Psychology, 27, 455-462. 1999.

Rindskopf, D., \& Rindskopf, W. "The value of latent class analysis in medical diagnosis." Statistics in Medicine, 5, 21-27. 1986.

Scahill, L., \& Schwab-Stone, M. "Epidemiology of ADHD in school-age children." Child and Adolescent Psychiatric Clinics of North America, 9, 541-555. 2000.

Statistics Canada and Human Resources Development Canada. National Longitudinal Survey of Children and Youth: Overview of survey instruments for 1994-1995 data collection cycle 1. Ottawa, Ontario: Statistics Canada and Human Resources Development Canada. 1995.

Statistics Canada and Human Resources Development Canada. National Longitudinal Survey of Children and Youth: Overview of survey instruments for 1996-1997 data collection cycle 2. Ottawa, Ontario: Statistics Canada and Human Resources Development Canada. 1997.

Szatmari, P., Offord, D. R., \& Boyle, M. H. "Ontario Child Health Study: Prevalence of attention deficit disorder with hyperactivity." Journal of Child Psychology and Psychiatry, 30, 219-230. 1989.

Tremblay, R. E., Loeber, R., Gagnon, C., Charlebois, S., Larivée, S., \& LeBlanc, M. (1991). Disruptive boys with stable and unstable high fighting behavior patterns during junior elementary school. Journal of Abnormal Child Psychology, 19, 285-300.

Tremblay, R. E., Vitaro, F., Gagnon, C., Royer, N., \& Piché, C. (1992). A prosocial scale for the Preschool Behaviour Questionnaire: Concurrent and predictive correlates. International Journal of Behavioral Development, 15, 227-245.

Valla, J. P., Breton, J. J., Bergeron, L., Gaudet, N., Berthiaume, C., Saint-Georges, M., Daveluy, C., Tremblay, V., Lambert, J., Houde, L., \& Lépine, S. (1994). Enquête québécoise sur la santé mentale des jeunes de 6 à 14 ans 1992. Rapport de synthèse. Hôpital Rivière-des-Prairies et Santé Québec, en collaboration avec le ministère de la Santé et des Services Sociaux, Gouvernement du Québec.

Vermunt, J. K. (1997). LEM: A general program for the analysis of categorical data [computer program]. Tilburg University.

Wolraich, M. L., Hannah, J. N., Pinnock, T. Y., Baumgaertel, A., \& Brown, J. (1996). Comparison of diagnostic criteria for attention-deficit hyperactivity disorder in a county-wide sample. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 319-324.

[^0]: ${ }^{a}$ Total number of children included in the first NLSCY data collection cycle; ${ }^{\text {b }}$ Percentage of children with complete data for the three hyperactivity-impulsivity items selected for analyses; ${ }^{\text {c }}$ Percentage of children with complete data for the three inattention items selected for analyses

[^1]: 1 For a detailed presentation of local maxima problems in latent class analysis, refer to John S. Uebersax's web page (http://ourworld.compuserve.com/homepages/jsuebersax)

