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ABSTRACT

In this paper, we discuss some methodologies for estimating poten-
tial output and the output gap that have recently been studied at the Bank
of Canada. The assumptions and econometric techniques used by the dif-
ferent methodologies are discussed in turn, and applications to Canadian
data are presented.

The use of the Hodrick-Prescott (HP) filter to measure the output
gap has been justified on the basis that this filter extracts business-cycle fre-
quencies from the data and that it can estimate an unobserved cyclical
component. We note that the HP filter is unlikely to do well in achieving
these objectives for series whose spectra have the typical Granger shape,
such as real output, and that it will often fail to measure cyclical compo-
nents adequately. The problems of the HP filter are accentuated at the end
of samples, which is the place most relevant for policymakers. Finally, we
note that univariate filters will only be able to give us information about
the current output gap if the gap is Granger-caused by output growth; this
is not the case if we believe that potential output is exogenous.

Extensions to the HP filter, such as those proposed by Laxton and
Tetlow (1992) and Butler (1996), have focussed on incorporating additional
information derived from assumed or estimated economic relationships.
The motivation behind these “hybrid” methods is a desire to obtain esti-
mates of the output gap that are conditioned by structural information but
that remain “smooth.” However, existing hybrid methods have proved
hard to estimate. In addition, they may not be robust to alternative reason-
able calibrations, and they do not allow for easy calculation of confidence
intervals. We also find that Butler’s method does not perform as well as the
simple HP filter in terms of isolating fluctuations of output originating
from business-cycle frequencies. We also discuss the “TOFU” approach (a
Trivial Optimal Filter that may be Useful), which replaces the smoothness
assumptions of the hybrid methods with an unrestricted but linear filter.

We then turn to multivariate filtering methods based on VARs that
incorporate long-run restrictions. Unlike univariate filters, VAR-based
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methods do not suffer from obvious end-of-sample problems, and they can
provide projected values for the output gap. Relative to other multivariate
methods (such as the multivariate Beveridge-Nelson method), one advan-
tage of the VAR method using long-run restrictions is that it does not
restrict the dynamics of potential output a priori. We investigate the impli-
cations of long-run restrictions on real output only and on real output and

inflation. We argue that the latter approach should be of interest for policy-
makers focussing on movements of real output associated with move-
ments in the trend of inflation. Unfortunately, the VAR applications that we
consider display wide confidence intervals, similar to those reported on
the basis of other methods. Using VARMAs or constrained VARs instead of
unconstrained VARs may reduce that uncertainty.
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RÉSUMÉ

Les auteurs de l’étude se penchent sur les méthodes d’estimation de
la production potentielle et de l’écart de production récemment étudiées à
la Banque du Canada, passent en revue les hypothèses et les techniques
économétriques sur lesquelles repose chacune d’elles et fournissent des
exemples d’applications aux données canadiennes.

Certains économistes justifient l’emploi du filtre de Hodrick-Pres-
cott (HP) pour mesurer l’écart de production par le fait que ce filtre permet
d’extraire des données les fréquences correspondant au cycle économique
et d’estimer une composante cyclique non observée. Les auteurs de l’étude
constatent quant à eux que le filtre HP réussit mal à extraire ces fréquences
dans le cas de séries telles que la production réelle, dont la forme spectrale
ressemble à celle que Granger a mise en lumière, et qu’il parvient rarement
à mesurer correctement la composante cyclique.  Les lacunes du filtre HP
s’accentuent également en fin d’échantillon, là où les valeurs présentent le
plus d’intérêt pour les décideurs publics. Enfin, les auteurs font remarquer
que les filtres univariés ne peuvent fournir des indications sur l’écart de
production observé que si cet écart est déterminé, au sens de Granger, par
la croissance de la production. Si la production potentielle est considérée
comme exogène, ces filtres ne sont d’aucune utilité.

Les tentatives visant à améliorer la tenue du filtre HP, comme celles
de Laxton et Tetlow (1992) et de Butler (1996), ont surtout consisté à lui
incorporer des éléments d’information additionnels tirés de relations
économiques hypothétiques ou estimées. Ces méthodes hybrides sont
motivées par le désir d’obtenir des estimations de l’écart de production qui
tirent parti de renseignements de nature structurelle mais dont le profil
reste lisse. Toutefois, il s’est avéré difficile d’estimer l’écart de production à
l’aide de ces méthodes. En outre, celles-ci sont sensibles au choix de l’étal-
onnage, et le calcul des intervalles de confiance est malaisé. Les auteurs de
l’étude constatent également que la méthode proposée par Butler ne réus-
sit pas aussi bien qu’un simple filtre HP à isoler les fluctuations de la pro-
duction qui sont d’origine conjoncturelle. Ils examinent aussi l’approche
« TOFU », qui repose sur l’emploi d’un filtre ne comportant aucune restric-
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tion mais ayant une forme linéaire, et non sur l’imposition de contraintes
de lissage, propre aux méthodes hybrides.

Les auteurs analysent ensuite les méthodes de filtrage à plusieurs
variables qui font appel à des vecteurs autorégressifs (VAR) assortis de
restrictions de long terme. À la différence des filtres univariés, ces méth-
odes ne présentent pas de lacunes manifestes en fin d’échantillon et per-
mettent de prévoir les valeurs de l’écart de production. Comparativement
aux autres méthodes multivariées (p. ex. la méthode de Beveridge-Nelson),
les méthodes reposant sur l’emploi de VAR assortis de contraintes de long
terme ont l’avantage de ne pas restreindre a priori la dynamique de la pro-
duction potentielle. Les auteurs étudient les conséquences de l’imposition
de restrictions de long terme à la production réelle seule, puis à la fois à la
production réelle et à l’inflation. Ils font valoir que les résultats de cette
deuxième approche devraient intéresser les décideurs publics qui
s’attachent aux mouvements de la production réelle associés aux variations
du taux de l’inflation tendancielle. Malheureusement, les résultats qu’ils
obtiennent au moyen de VAR sont assortis d’intervalles de confiance aussi
larges que ceux que produisent les autres méthodes. Il est possible que
l’utilisation de VARMA au lieu de simples VAR réduise l’incertitude rela-
tive aux estimations.
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1 INTRODUCTION

Most macroeconomic models used for forecasting and policy analy-
sis require an estimate of potential output. At the Bank of Canada, for
example, estimates of potential output are important inputs in various
“Phillips-curve” models and in the staff’s Quarterly Projection Model,
where the gap between actual and potential output is a key variable deter-
mining the evolution of prices and wages. A level of real GDP above
potential (a positive output gap) will often be seen as a source of inflation-
ary pressures and a signal that monetary authorities interested in avoiding
an acceleration of inflation should tighten monetary conditions. A level of
real GDP below potential (a negative output gap) will have the opposite
implication.

The output gap can thus be defined as the component of real output
that is associated with changes in inflation.1 Note that gaps could be calcu-
lated in markets other than goods and services. For example, gaps in the
labour market have frequently been calculated, and authors such as Hen-
dry (1995) have presented “money gaps.”

Unfortunately, measuring the output gap is not an easy task. Differ-
ent sets of assumptions can be used in combination with various econo-
metric techniques to provide different measures of the output gap. One
common assumption is that the output gap is some part of the transitory
(cyclical) component of real output. The methods discussed in this paper
make that assumption.

The purpose of this paper is to examine in detail the properties of
the various methods themselves rather than the economic reasonableness
of the measures produced by those methods.

The first group of methods we consider are those that simply use
some implicit or explicit assumptions about the dynamics of real output to

1. To be more precise, we should take into account expected inflation, and therefore
define the output gap with respect to unexpected changes in inflation. Some models also
imply a relationship between the change in the gap and inflation.
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identify the output gap. For example, if real output is believed to be com-
posed of a stationary component and a simple log-linear trend, the output
gap could be measured as the residuals of a regression of log output on a
linear time trend. Unfortunately, such a simple model does not adequately
describe the behaviour of output, and measuring the temporary compo-
nent in more complex models is problematic.

In this paper, we will assume that real output is I(1); that is, that the
level of output is subject to permanent shocks so there is no deterministic
trend towards which output tends to revert.2 Many approaches have been
proposed to identify the permanent and cyclical components of real output
in such models, such as those proposed by Hodrick and Prescott (1997),
Watson (1986) or Beveridge and Nelson (1981). The problem is that the
measured cyclical component may differ considerably from one method to
another. Quah (1992) argues that this is an intrinsic problem and that
“...without additional ad hoc restrictions those [univariate] characteriza-
tions are completely uninformative.”

These problems have not prevented the widespread use of Hodrick
and Prescott’s filter to identify the cyclical component of output.3 Argu-
ments commonly made to justify its use are that

• it extracts the relevant business-cycle frequencies of output

• it closely approximates the cyclical component implied by reasona-
ble time-series models of output

2. This is the most common assumption in modern applied macroeconomics and is con-
sistent with the view that real output can be permanently affected by shocks such as tech-
nological innovations. An alternative view is that output is stationary around a time
trend, but that this time trend is subject to occasional random changes in its slope and
intercept. Evidence for such a view is discussed by Perron (1989) and Weber (1995). Since
detecting changes in the slope or intercept near the end of a sample is quite difficult, such
models imply that one cannot reliably measure the current deviations from trend. Since
we argue below that this is what policymakers wish to measure, adoption of the “break-
ing-trend” model per se is not a solution to the problems of measuring output gaps.

3. We will henceforth refer to this method as the HP filter, although Hodrick and Pres-
cott note that their method owes much to Whittaker (1923) and Henderson (1924). Note
that, although the Hodrick and Prescott article was published in 1997, their working
paper dates from 1981.
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We examine these arguments in Sections 2.2 and 2.3. We also note
that, unlike much of the literature on “detrending,” the main problem fac-
ing policymakers is to estimate the deviation from trend at the end rather
than in the middle of a data sample.4 We conclude that such methods are
unlikely to be suitable for use in a policy context, and we discuss economic
factors that limit our ability to estimate the current output gap.

An important class of alternatives to these univariate dynamic
methods are approaches that combine their assumptions with information
from assumed or “structural” relationships between the output gap and
other economic variables, such as a Phillips curve or Okun’s law. We exam-
ine some of these in Section 3. Among them are the multivariate HP filters
(MHPF) proposed by Laxton and Tetlow (1992) and Butler (1996), repre-
senting the general approach currently used in the staff economic projec-
tion of the Canadian economy at the Bank of Canada. In Section 3, we note
that calibration of the MHPF methods has been problematic and that their
estimates of the output gap have wide confidence intervals despite the
inclusion of structural information. Spectral analysis of the Canadian out-
put gap resulting from the application of the MHPF method also gives the
disturbing result that the gap includes a very large proportion of cycles
that are much longer than what is usually defined as a typical business
cycle. A reaction to these methods is the “Trivial Optimal Filter that may be
Useful” (TOFU) approach suggested by van Norden (1995), which replaces
the HP smoothing problem with the simpler restriction of a constant linear
filter. The TOFU approach has yet to be shown to be workable.

The third and final class of methods that we consider uses multivar-
iate rather than univariate dynamic relationships, often in combination
with structural relationships from economic theory, to estimate output
gaps as a particular transitory component of real output. Some of these are

4. This is an oversimplification. More accurately, policymakers will usually be most
interested in expected future values of the output gap, particularly when these expecta-
tions are conditioned by specific policy actions. This is more demanding than simply esti-
mating the output gap at the end of sample, so our discussion of the additional difficulties
introduced by end-of-sample problems underestimates the true difficulty of the policy
problem. For that reason, we think good end-of-sample performance is a necessary rather
than a sufficient condition for reliable estimation of the deviation from trend.
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examined in Section 4. One example is the decomposition method sug-
gested by Cochrane (1994) (henceforth CO). This method is based on the
permanent-income hypothesis and uses consumption to define the perma-
nent component of output, which can then be used as a measure of poten-
tial output. Multivariate extensions of the Beveridge-Nelson
decomposition method (MBN) have also been proposed to identify the
permanent component of output (Evans and Reichlin 1994). A major
restriction, used by both the CO and the MBN methods, is that the perma-
nent component of real output is a random walk.

Section 4.1 of this paper, which draws heavily on Dupasquier, Guay,
and St-Amant (1997), discusses the CO and MBN methodologies and com-
pares them with a structural vector autoregression methodology based on
long-run restrictions imposed on output (LRRO). This method was pro-
posed by Blanchard and Quah (1989), Shapiro and Watson (1988), and King
et al. (1991). One characteristic of the LRRO approach is that it does not
impose restrictions on the dynamics of the permanent component of out-
put. Instead, it allows for a permanent component comprising an esti-
mated diffusion process for permanent shocks that can differ from a
random walk. The output gap then corresponds to the cyclical component
of output excluding the diffusion process of permanent shocks, which is
instead assigned to potential output. Section 4.2 presents an application of
the LRRO method to Canadian data.

In Section 4.3 (which draws from Lalonde, Page, and St-Amant
(forthcoming)), we present another methodology based on long-run
restrictions imposed on a VAR that associates restrictions imposed on real
output and inflation. The output gap is then a part of the cyclical compo-
nent of real output that is consistent with changes in the trend of inflation.5

The final section concludes with some directions for future research.

5. Lalonde, Page, and St-Amant also present a method that associates the output gap
with changes in the trend of inflation but does not impose that the output gap is station-
ary.
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2 THE HP FILTER

In recent years, mechanical filters have frequently been used to
identify the permanent and cyclical components of time series. The most
popular of these mechanical filters is that proposed by Hodrick and Pres-
cott (1997). This section evaluates the basic Hodrick-Prescott (HP) filter’s
ability to provide a useful estimate of the output gap. Section 3 then dis-
cusses some recently proposed extensions and alternatives to the basic HP
filter.

Guay and St-Amant (1996) show that the HP filter does a poor job of
extracting business-cycle frequencies from macroeconomic time series.
Consequently, it does not constitute an adequate approach for estimating
an output gap constrained to correspond to the business-cycle frequencies
of real GDP. This is discussed in Section 2.2, where we further argue that
constraining the output gap in that way is not very attractive in any case.
Guay and St-Amant also show that the HP filter is likely to do a poor job of
extracting an output gap assumed to correspond to the unobserved cyclical
component of real GDP. This is discussed in Section 2.3. In Section 2.4, we
focus explicitly on the HP filter’s end-of-sample problems and conclude
that these raise further doubts about the appropriateness of using the HP
filter to estimate the output gap. Finally, Section 2.5 investigates what eco-
nomic theory has to say about the possible usefulness of filters for estimat-
ing output gaps at the end of sample.

Most of the arguments in this section of the paper are drawn from
Guay and St-Amant (1996) and van Norden (1995). Note that Guay and St-
Amant show that the main conclusions they reach concerning the HP filter
also apply to the band-pass filter proposed by Baxter and King (1995).

2.1 The optimization problem

The HP filter decomposes a time series  into an additive cyclical
component  and a growth component :

. (1)

yt
yt

c yt
g

yt yt
g yt

c+=
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Applying the HP filter involves minimizing the variance of the cyclical
component  subject to a penalty for the variation in the second difference
of the growth component . This is expressed in the following equation:

, (2)

where , the smoothness parameter, penalizes the variability in the growth
component. The larger the value of , the smoother the growth compo-
nent. As  approaches infinity, the growth component corresponds to a lin-
ear time trend. For quarterly data, Hodrick and Prescott propose setting
equal to 1,600. King and Rebelo (1993) show that the HP filter can render
stationary any integrated process of up to the fourth order.

2.2 How well does the HP filter extract business-cycle
frequencies?

Authors such as Singleton (1988) have shown that the HP filter can
provide an adequate approximation of a high-pass filter when it is applied
to stationary time series. Here we need to introduce some elements of spec-
tral analysis. A zero-mean stationary process has a Cramer representation
like:

, (3)

where  is a complex value of orthogonal increments, i is the imagi-
nary number ( ) and  is frequency measured in radians, i.e.,

 (see Priestley 1981, Chapter 4). In turn, filtered time series can
be expressed as

, (4)

with

. (5)

Equation (5) is the frequency response (Fourier transform) of the filter. That
is,  indicates the extent to which  responds to  at frequency

yt
c

yt
g

yt
g{ }t 0=

T 1+ argmin yt yt
g

– 
 2

λ yt 1+
g yt

g–( ) yt
g yt 1–

g–( )–[ ]2+

t 1=

T

∑=

λ

λ

λ

λ

yt εiωt z ω( )d
π–

π
∫=

z ω( )d

1–( ) ω

π ω π≤ ≤–

yt
f α ω( )e

iωt
z ω( )d

π–

π
∫=

α ω( ) ahe
iωh–

h k–=

k

∑=

α ω( ) yt
f

yt ω



7

and can be seen as the weight attached to the periodic component
. In the case of symmetric filters, the Fourier transform is also

called the gain of the filter.

An ideal high-pass filter would remove low-frequency, or long-
cycle, components and allow high-frequency, or short-cycle, components
to pass through, so that  for , where  has some prede-
termined value and  for . Figure 1 shows the squared
gain of the HP filter. Very high frequencies are left out because the focus is
business-cycle frequencies as defined by NBER researchers since Burns
and Mitchell (1946), i.e., cycles lasting no fewer than six and no more than
thirty-two quarters. We see that the squared gain is 0 at zero frequency and
is close to 1 from around frequency  (cycles of sixteen quarters) and up.
On the basis of Figure 1, the HP filter would appear to be an adequate
approximation of a high-pass filter in that it removes most low frequencies
and passes through most higher frequencies, including business-cycle fre-
quencies.

The output gap could be associated with business-cycle frequencies
plus higher frequency volatility in the data. Figure 1 would then suggest
that the HP filter is an adequate measure of the output gap. One problem
with this approach is that most macroeconomic time series are either inte-
grated or highly persistent processes. In their study, Guay and St-Amant
(1996) conduct a systematic investigation of the HP filter’s ability to cap-
ture business-cycle frequencies, i.e., the area delimited by the spectrum of
an original series at frequencies between six and thirty-two quarters. Their
main finding is that, when the peak of a series is at zero frequency and the
bulk of the variance is located in low frequencies, which is the shape
described by Granger as typical for macroeconomic time series, the HP fil-
ter cannot adequately capture business-cycle frequencies. This is illus-
trated in Figure 2, which shows the spectrum of an autoregressive process
having its peak at zero frequency and the spectrum of the cyclical compo-
nent resulting from the application of the HP filter.

In Figure 2, the spectrum of the cyclical component resulting from
the application of the HP filter is very different from that of the original

e
iωt

z ω( )d

α ω( ) 0= ω ωp≤ ωp

α ω( ) 1= ω ωp>

π 8⁄
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FIGURE 1. Squared gain of the HP filter

FIGURE 2. Spectrum of a series with Granger’s typical shape and of that series HP-filtered
(AR(3) coefficients: 1.2, -0.11, -0.16)
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series. This comes as no surprise, since the filter is designed to extract low
frequencies from the data. However, we can see that business-cycle fre-
quencies are not left intact. In particular, the HP filter induces a peak inside
business-cycle frequencies even though such a peak is absent from the
original series, and it fails to capture a significant fraction of the variance
contained in business-cycle frequencies but captures some variance origi-
nating outside these frequencies. Guay and St-Amant (1996) show that this
is typical of time series having the typical Granger shape, i.e., most macro-
economic series. Indeed, the unfiltered spectrum shown in Figure 2 is a
parametric estimate of the spectrum of U.S. real GDP.

The intuition behind this result is simple. Figure 1 shows that the
gain of the HP filter at low business-cycle frequencies is smaller than that
of the ideal filter. Indeed, the squared gain of the HP filter is 0.49 at fre-
quencies corresponding to 32-quarter cycles and does not reach 0.95 before
frequency . Note also that the squared gain does not fall immediately
to zero at lower frequencies. The problem is that a large fraction of the
power of typical macroeconomic time series is concentrated in the band
where the squared gain of the HP filter differs from that of an ideal filter.
Also, the shape of the squared gain of the HP filter is such that a peak in
the spectrum of the cyclical component is induced when it is applied to
typical macroeconomic time series. In short, applying the HP filter to series
dominated by low frequencies results in the extraction of a cyclical compo-
nent that does not capture an important fraction of the variance contained
in the business-cycle frequencies of the original series, but does capture an
important part of variance situated at lower frequencies than business-
cycle frequencies and induces spurious dynamic properties.

An additional problem is that associating the output gap with the
business-cycle frequencies in the data might not be a good idea in the first
place. Note in particular that part of the variance associated with business-
cycle frequencies could reflect the dynamics of shocks to potential output.
As noted by King et al. (1991), “productivity shock[s] [set] off transitional
dynamics, as capital is accumulated and the economy moves toward a new
steady state.” To the extent that such dynamics reflect the evolution of
potential output itself, one might prefer to use a different approach to iden-

π 8⁄
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tify potential output and the output gap. Section 4 of the paper provides a
more detailed discussion of this point.

2.3 How well does the HP filter extract the cyclical
component?

In the previous section, we have seen that the HP filter does not
have sufficiently good spectral properties to be able to isolate accurately
the component of a series associated with fluctuations at business-cycle
frequencies. As discussed by King and Rebelo (1993), another justification
for the use of the HP filter is that in some cases it will be the optimal filter
for identifying the cyclical component of a series. However, as shown by
King and Rebelo and by Harvey and Jaeger (1993), these are cases when, in
particular, the series is I(2), there are identical propagation mechanisms for
innovations in the growth rate and in the cycle (or the transitory compo-
nent is white noise), and the smoothing parameter  is known. These con-
ditions are rarely met in practice.

Of course, the fact that the HP filter is not an optimal filter does not
necessarily mean that it will not be a good approximation of an optimal fil-
ter. We therefore consider whether the HP filter can reliably isolate the
cyclical component of a variety of time series.

It is often argued that macroeconomic time series actually comprise
a permanent component and a cyclical component. The permanent compo-
nent could be driven by an I(1) technological process with drift, while
monetary shocks, among others, could generate the cyclical component. In
order to assess the HP filter’s ability to extract such a cyclical component,
consider the following data-generating process (DGP):

, (6)

where

(7)

(8)

λ

yt µt ct+=

µt µt 1– εt+=

ct φ1ct 1– φ2ct 2– η+
t

+=
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and

, . (9)

Equation (6) defines  as the sum of a permanent component, ,
which in this case corresponds to a random walk, and a cyclical compo-
nent, .6 The dynamics of the cyclical component are specified as a sec-
ond-order autoregressive process, so that the peak of the spectrum could
be at zero frequency or at business-cycle frequencies. We assume that
and  are uncorrelated.

Data are generated from equation (6) with  set at 1.2 and different
values for  to control the location of the peak in the spectrum of the
cyclical component. We also vary the standard-error ratio for the distur-
bances  to change the relative importance of each component. We
follow the standard practice of assigning a value of 1,600 to , the HP filter
smoothness parameter. We also follow Baxter and King’s (1995) suggestion
of dropping 12 observations at the beginning and at the end of the sample,
which should favour the filter considerably by partly eliminating its end-
of-sample problems (see Section 2.4). The resulting series contains 150
observations, a standard size for quarterly macroeconomic data. The
number of replications is 500.

The performance of the HP filter is assessed by comparing the auto-
correlation function of the cyclical component of the true process with that
obtained from the filtered data. We also calculate the correlation between
the true cyclical component and the filtered cyclical component and report
their relative standard deviations ( ). Table 1 presents the results.

Table 1 shows that the HP filter performs particularly poorly when
there is an important permanent component. Indeed, in most cases the cor-
relation between the true and the filtered components is not significantly
different from zero for high  ratios. The estimated autocorrelation
function is invariant to the change in the cyclical component in these cases
(the values of the true autocorrelation functions are given in brackets and

6. This is Watson’s (1986) specification for U.S. real GDP.
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TABLE 1: Simulation results for the HP filter

DGP Estimated values

Autocorrelations

Correlation1 2 3
10 0 0 .71[0]

(.59,.80)
.46[0]

(.30,.60)
.26[0]

(.08,.43)
.08

(-.07,.21)
12.96

(10.57,15.90)

10 1.2 -.25 .71[.96]
(.61,.80)

.47[.90]
(.31,.61)

.27[.84]
(.08,.44)

.08
(-.11,.28)

4.19
(2.77,6.01)

10 1.2 -.40 .71[.86]
(.60,.80)

.46[.63]
(.30,.60)

.26[.41]
(.08,.44)

.13
(-.12,.36)

6.34
(4.82,8.07)

10 1.2 -.55 .71[.77]
(.60,.80)

.46[.38]
(.29,.60)

.26[.03]
(.06,.43)

.14
(-.08,.33)

6.93
(5.36,8.70)

10 1.2 -.75 .71[.69]
(.60,.78)

.46[.27]
(.30,.59)

.25[-.19]
(.07,.41)

.15
(-.01,.31)

6.37
(4.79,7.95)

5 0 0 .69[0]
(.58,.78)

.45[0]
(.30,.58)

.26[0]
(.09,.41)

.15
(.02,.27)

6.50
(5.28,7.85)

5 1.2 -.25 .71[.96]
(.61,.80)

.46[.90]
(.32,.61)

.26[.84]
(.08,.43)

.16
(-.01,.36)

2.11
(1.43,3.04)

5 1.2 -.40 .72[.86]
(.61,.80)

.46[.63]
(.31,.60)

.25[.41]
(.08,.42)

.23
(-.01,.45)

3.26
(2.47,4.15)

5 1.2 -.55 .71[.77]
(.61,.80)

.46[.38]
(.30,.59)

.24[.03]
(.06,.41)

.24
(.01,.44)

3.60
(2.83,4.52)

5 1.2 -.75 .70[.69]
(.61,.79)

.43[.27]
(.26,.57)

.20[-.19]
(.00,.38)

.29
(.11,.44)

3.30
(2.53,4.17)

1 0 0 .43[0]
(.27,.57)

.28[0]
(.11,.42)

.20[0]
(-.02,.31)

.59
(.49,.70)

1.61
(1.41,1.85)

1 1.2 -.25 .76[.96]
(.67,.83)

.51[.90]
(.37,.62)

.29[.84]
(.11,.44)

.51
(.33,.68)

.66
(.44,.91)

1 1.2 -.40 .75[.86]
(.67,.81)

.44[.63]
(.28,.55)

.16[.41]
(-.03,.33)

.71
(.56,.82)

1.02
(.83,1.22)

1 1.2 -.55 .72[.77]
(.66,.78)

.34[.38]
(.21,.47)

.01[.03]
(-.17,.19)

.76
(.56,.82)

1.15
(.83,1.22)

1 1.2 -.75 .68[.69]
(.63,.72)

.15[.27]
(.04,.27)

-.27[-.19]
(-.44,.10)

.83
(.75,.89)

1.16
(1.04,1.29)

.5 0 0 .16[0]
(.01,.32)

.10[0]
(-.04,.24)

.04[0]
(-.10,.18)

.82
(.75,.88)

1.16
(1.07,1.27)

.5 1.2 -.25 .79[.96]
(.71,.85)

.53[.90]
(.38,.65)

.30[.84]
(.11,.46)

.61
(.41,.79)

.55
(.37,.76)

.5 1.2 -.40 .77[.86]
(.69,.81)

.43[.63]
(.29,.54)

.13[.41]
(-.05,.29)

.84
(.73,.92)

.87
(.74,.99)

.5 1.2 -.55 .72[.77]
(.67,.78)

.28[.38]
(.17,.39)

-.10[.03]
(-.25,.06)

.89
(.83,.94)

.98
(.89,1.07)

.5 1.2 -.75 .67[.69]
(.63,.71)

.07[.27]
(-.03,.18)

-.42[-.19]
(-.57,-.27)

.94
(.90,.96)

1.02
(.97,1.08)

.01 0 0 -.08[0]
(-.21,.06)

-.06[0]
(-.21,.06)

-.06[0]
(-.19,.06)

.98
(.96,.99)

.97
(.94,.99)

.01 1.2 -.25 .80[.96]
(.72,.86)

.54[.90]
(.38,.67)

.30[.84]
(.11,.48)

.66
(.45,.83)

.51
(.34,.69)

.01 1.2 -.40 .78[.86]
(.72,.83)

.43[.63]
(.30,.55)

.12[.41]
(-.05,.28)

.90
(.82,.96)

.81
(.71,.90)

.01 1.2 -.55 .73[.77]
(.67,.77)

.26[.38]
(.15,.37)

-.14[.03]
(-.30,.01)

.96
(.91,.99)

.92
(.86,.96)

.01 1.2 -.75 .67[.69]
(.62,.71)

.02[.27]
(-.08,.13)

-.50[-.19]
(-.61,-.35)

.99
(.97,1.0)

.97
(.95,.99)

σε ση⁄ φ1 φ2 σ̂c σc⁄
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the confidence band in parenthesis). When the ratio  is equal to 0.5
or 1 and the peak of the cyclical component is located at zero frequency
( .43), the dynamic properties of the true and the filtered cyclical
components are significantly different, as indicated by the estimated
parameter values. In general, the HP filter adequately characterizes the
series’ dynamics when the peak of the spectrum is at business-cycle fre-
quencies and the ratio  is small. However, even when the ratio of
standard deviations is equal to 0.01 (i.e., the permanent component is
almost absent), the filter performs poorly when the peak of the spectrum of
the cyclical component is at zero frequency. Indeed, for .25, the
dynamic properties of the filtered component differ significantly from
those of the true cyclical component, the correlation is only equal to 0.66,
and the standard deviation of the filtered cyclical component is half that of
the true cyclical component.

It is interesting to note that the HP filter does relatively well when
the ratio  is equal to 1, 0.5, or 0.01 and the spectrum of the original
series has a peak at zero frequency and at business-cycle frequencies (i.e.,
the latter frequencies contain a significant part of the variance of the
series). Consequently, the conditions required to identify adequately the
cyclical component with the HP filter can be summarized as follows: the
spectrum of the original series must have a peak located at business-cycle
frequencies, and these frequencies must account for an important part of
the variance of the series. If the variance of the series is dominated by low
frequencies, which is the case for most macroeconomic series in levels,
including real output, the HP filter does a poor job of extracting an output
gap associated with the cyclical component of real output.

2.4 The HP filter at the end of samples

In examining the performance of the HP filter in the last two sec-
tions, we looked at how well it isolates particular business-cycle frequen-
cies or the cyclical component of the series. Both cases implicitly looked at
the performance of the HP filter over the available sample of data as a
whole. However, it is useful to remember that the focus for policy advice is
on estimating the current output gap. This is a more difficult task, since

σε ση⁄

φ2 0–>

σε ση⁄

φ2 0–=

σε ση⁄
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future information will presumably be useful in determining whether
recent changes in output are persistent or transitory. We should therefore
consider how the conclusions from the two previous sections might be
affected by this added complication.7

To understand how the HP filter behaves at the end of sample, recall
that the optimization problem it solves trades off the size of deviations
from trend and the smoothness of that trend. In the face of a transitory
shock, the filter is therefore “reluctant” to change the trend very much
since this implies raising the trend before the shock and lowering it after-
wards. At the end of the sample, however, the latter penalty is absent,
implying that the optimal trend will be more responsive to transitory
shocks at the end of sample than in mid-sample.

We can show this difference in several ways. Figure 3 shows the HP-
filter trend expressed as a moving average of the unfiltered data. The
weights in this moving average change as we move from the mid-sample
towards the end of sample. The former gives us a smooth two-sided aver-
age in which no observation receives more than 6 per cent of the weight.
The latter, however, gives a one-sided average where the last observation
alone accounts for 20 per cent of the weight. Not surprisingly, this makes
the HP trend more variable at the end of sample. Figure 4 shows that the
deviations from the HP trend have different frequency responses as a
result. In particular, the one-sided or end-of-sample filtered deviations
from trend capture less of the variation at business-cycle frequencies (indi-
cated by the dotted vertical lines).8

Figures 5 and 6 show how the deviations from the HP trend differ
depending on whether we are at the end of sample or at mid-sample. The
solid line in Figure 5 shows the usual deviation from the HP trend for
Canadian GDP. The dashed line then shows the estimate obtained by using

7. This problem has been mentioned in other studies as well. Much of the analysis we
present can also be found in Butler (1996).

8. The squared gains of the two HP trends also look quite different. For example, at the
frequency corresponding to cycles of six quarters, the end-of-sample filter has a squared
gain of about 1 while the mid-sample filter has a squared gain of about 0.75.



15

FIGURE 3. MA representation of the HP filter as a function of sample position
(128 observations, )

FIGURE 4. Squared gain of the HP Filter (128 observations, )

λ 1 600,=

λ 1 600,=
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FIGURE 5. HP detrended real GDP (Canada, )

FIGURE 6. HP detrended real GDP, mid-sample to end of sample (Canada, )

λ 1 600,=

λ 1 600,=
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only data available up to that point in time (i.e., the corresponding end-of-
sample estimates). Although the two series tend to move together, there
are some important differences in size and timing. Comparing Figure 5
with Figure 6, we see that while deviations from trend are usually less than
3 per cent of GDP, the difference between its mid-sample and end-of-sam-
ple estimates is often as large as 2 per cent of GDP. Suppose we accept that
the difference between these two measures is simply one component of the
measurement error of end-of-sample estimates. This implies that the meas-
urement errors of the latter must be roughly as large as the estimates them-
selves.9 The implication is that end-of-sample estimates cannot be very
reliable estimates of deviations from trend.

Figure 7 shows the implications of applying the HP filter to the
“typical Granger-shape” series we considered previously. At the end of
sample, even less of the variance of the deviations from the HP trend is due
to variations at business-cycle frequencies and more is due to “leakage”
from lower frequencies. This suggests that the results we obtained in
Section 2.2 probably overstate the reliability of the HP filter for identifying
an output gap associated with business-cycle frequencies. This is consist-
ent with the results of Laxton and Tetlow (1992) and Butler (1996), who
note that related filters also seem to perform worse at the end of samples.
These related filters are discussed in Section 3.

9. We reach the same conclusion if we look at the range of the series, or at their standard
deviations. The range (maximum - minimum) of the one-sided estimate is 8.7 per cent of
GDP while the range of the difference between the one- and two-sided estimates is 7.5 per
cent; the comparable standard errors are 1.8 per cent and 1.8 per cent. These comparisons
are only approximate; small sample problems in the one-sided estimate at the beginning
of the sample may make their difference appear excessively volatile, while the fact that the
two estimates are constrained to be identical at the end of the sample will tend to under-
state the volatility of their difference.
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FIGURE 7. Spectrum of series with typical Granger shape (128 observations, )

2.5 Limits to one-sided filtering

Part of the end-of-sample problem discussed in Section 2.4 reflects
the fact that the HP filter behaves differently at the end of sample and at
mid-sample, as shown in Figure 3. This suggests that other univariate fil-
ters might be able to measure output gaps more reliably. In this section, we
consider one intrinsic limit to the ability of univariate filters to measure the
current output gap, and show how this will in turn relate to beliefs about
the economic relationships between actual and potential output. We show
that models in which potential output is exogenous with respect to actual
output and the output gap indicate that univariate filters will never be able
to provide much information about contemporaneous output gaps.10

Suppose that potential output can be expressed as a linear filter of
actual output, so that

10. This section draws heavily on van Norden (1995).

λ 1 600,=
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, (10)

where  is (the log of) potential output,  is (the log of) actual output,
is an innovations process that is uncorrelated with  at all leads and lags,
and  is a two-sided polynomial in the lag operator (i.e., it takes a
weighted sum of leads, lags and contemporaneous values of ). A suffi-
cient but not necessary condition for such a representation to exist is that
output  has a unit root and that the output gap  is stationary.

We typically think of  as being non-stationary in mean, since it
tends to drift upwards over time. To ensure that  and  move together
in the long run (so that the gap is stationary), we will further assume that

, (11)

which simply means that the weights in  must sum to one. This in turn
implies that we can write

, (12)

and therefore that

. (13)

Thus, we should be able to express the output gap as the weighted
sum of past, present, and future output growth. The difference between
equation (13) and the HP filter representation of the output gap is that the
HP filter implies a particular set of restrictions on  that vary with the
position in the sample. Let

(14)

and

, (15)

where  is the set of all past, present, and future values of .
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Ã L( )

E qt yt– Hy( ) Ã L( ) ∆yt⋅=
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So far, we have assumed that  is two-sided, whereas its use for
policy purposes requires that it be one-sided. To understand how such a
restriction on  will affect the accuracy of our estimate, note that the law
of iterated expectations and equation (14) imply that

, (16)

where  is the set of all past values of . If we define

, (17)

where  has only positive powers of  and  has only non-posi-
tive powers of , then equation (16) implies that

(18)

where  is simply the coefficient on  in . Similarly, we can show
that

, (19)

where  is the variance of the error in forecasting  given the infor-
mation set .

Equation (18) and equation (19) have an intuitive interpretation. The
extent to which the one-sided filter  is less informative than  will
depend on the weight that  ascribes to current and future values of
and the extent to which those future values can be predicted from current
and past values. The former will in turn depend on the Granger-causal
relationship between  and , while the latter will depend on the
degree to which output growth is serially correlated.

For most industrialized nations, 12 lags of quarterly output growth
predict only 20 to 40 per cent of the variance of current output growth.
Much of this explanatory power seems to come from the first few lags. This
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-( ) E Ã+ L( ) ∆yt⋅ Hy
-( )+
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suggests that since predictability can be low, the extent of Granger-causal-
ity will play an important role in determining how accurately the one-
sided univariate filter can estimate the current output gap. For simplicity,
the role of Granger-causality will be discussed under the assumption that
the past history of output growth is of no use in predicting present and
future output growth.

From equation (18), we can see that  will tell us as much about
the output gap as  when , which in turn implies that
does not Granger-cause . Van Norden (1995) shows that the latter con-
dition in turn implies that  does not Granger-cause . If  and  are
cointegrated, this would imply that there is unidirectional causality from

 to . In other words, exogenous shocks to potential output would have
no subsequent effect on actual output, but persistent shocks to actual out-
put would eventually be followed by a similar change in potential. Such
behaviour could describe a particularly severe form of hysteresis: one
where output has no tendency to return to potential, but potential output is
driven in the long run only by previous variations in actual output. In this
kind of world, univariate filters can hope to be as effective in estimating
the current output gap as they are in estimating past output gaps.

The latter will not be the case when  Granger-causes .
Therefore, univariate methods will estimate the current output gap less
accurately than past output gaps as long as output growth appears to
respond in some degree to past changes in the output gap. The intuition
behind this result should be clear. Since future output growth will reflect
the influence of the current output gap, information about the current gap
may be gained by observing future growth.

Univariate methods will be of no use in estimating the current out-
put gap when  does not Granger-cause .11 In other words, if out-
put growth that is faster or slower than normal tends to have no

11. Again, this conclusion assumes that past output growth is of no use in predicting
future variations in output growth. As mentioned earlier, the data show that there is some
serial correlation in output growth, so time-series methods would still have some explan-
atory power even in this case.
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subsequent effect on the size of the output gap, then time-series estimates
of the current gap will be as uninformative as possible. The intuition is
similar to the explanation offered above. Past output growth is the only
information about the gap that we have; if it tells us nothing about the cur-
rent gap, then our estimates will not be enlightening.

It is more difficult to characterize the kind of economic model that
could generate this kind of result, since Granger-causality from  to

 does not directly correspond to any statement about Granger-cau-
sality between  and .12 However, it is possible to give examples in
which this result would hold. One simple case would be that where

. (20)

Potential output follows a random walk that is independent of the
behaviour of output. Actual output in turn is generated by a simple error-
correction model, which ensures that actual and potential output move
together in the long run. Such a model precisely satisfies the condition for
no Granger-causality from  to .

Clearly, there is a range of models in which univariate time-series
methods will be of little use at the end of sample. Furthermore, it is the
short-run dynamics of potential and actual output that are critical to deter-
mining whether models belong to this class. This is not an empirically test-
able question, since we cannot directly observe potential. However, we can
try to ensure that our views on the determination of potential are consist-
ent with the methods we use to measure it.

12. See van Norden (1995).
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3 EXTENSIONS OF THE HP FILTER

The Bank of Canada has used various extensions of the HP filter to
obtain measures of the output gap and to help guide policy. These
“hybrid” methods were developed in the 1990s to try to balance the
strengths and weaknesses of “structural” and “astructural” approaches to
measuring the output gap for policymakers. The key papers explaining the
justification for and implementation of this approach are Laxton and Tet-
low (1992) and Butler (1996). Work in a similar vein has been pursued both
at some of the Federal Reserve Banks (see Kuttner 1994) and at the OECD
(see Giorno et al. 1995).

Understanding the contribution of these methods requires an appre-
ciation of the problems these authors were trying to avoid. Laxton and Tet-
low argue that there is insufficient knowledge about the true structural
determinants of the supply side of the economy to make the purely struc-
tural approach practicable. At the same time, for policy purposes we need
to distinguish between those movements in output caused by supply
shocks and those caused by demand shocks, whereas most astructural
(time-series) models attempt to distinguish between permanent and transi-
tory components of output. They suggest as an alternative a way to com-
bine the two approaches that we refer to as the multivariate HP filter.13

As is explained in Section 3.1, this methodology consists of adding
the residuals of a structural economic relationship to the minimization
problem that the HP filter is seeking to solve. Section 3.2 discusses the pro-
duction function variant of this methodology. In Section 3.3, we examine
additional modifications introduced to the filter to improve its perform-
ance at the end of the sample. Section 3.4 looks at these approaches from a

13. Laxton and Tetlow call their particular filter the “Multivariate Filter (MVF)” and But-
ler calls his the “Extended Multivariate Filter (EMVF).” In this paper, we broadly refer to
all multivariate extensions of the univariate Hodrick-Prescott filter as multivariate HP fil-
ters (MHPF), which include the MVF and EMVF as special cases. The method currently
used to estimate Canadian potential output for the Bank’s staff projection will also be
referred to as the EMVF. The latter differs somewhat from the implementation described
in Butler (1996), but is conceptually the same.
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different perspective and relates them to both the methods of Section 2 and
other methods that use additional structural relationships.

3.1 A multivariate HP filter

As noted previously, the original Hodrick-Prescott filter chooses the
trend as the solution to

, (21)

where  and . The multivariate HP fil-
ter adds a term to the equation:

, (22)

where . Another economic variable of interest is , and
 models  as a function of both some explanatory variables  and the

unobserved trend . Since equation (22) includes a new term in , the
trend is chosen to simultaneously minimize deviations of output from
trend, minimize changes in the trend’s growth rate, and maximize the abil-
ity of the trend to fit some structural economic relationship . The rela-
tive weights put on these different objectives are reflected by  and .

The key to implementing the multivariate HP filter for the purpose
of estimating potential output (or an output gap) is to specify
so as to capture some structural relationship that depends on either poten-
tial output or the output gap. For example, one could specify a Phillips-
curve equation that relates observed inflation to a measure of inflation
expectations, the output gap, and perhaps additional explanatory variables
(such as oil prices).  would then be the residual from this Phillips-curve
equation, so the trend of output would be chosen in part to improve the
explanatory power of the output gap for inflation. Alternatively, one could
use an Okun’s law relationship to link the rate of unemployment to the
output gap and to various structural variables determining the non-accel-
erating inflation rate of unemployment (NAIRU). The trend of output
would then be influenced by the evolution of the unemployment rate and
its structural determinants.
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Of course, there is no reason that we have to restrict ourselves to a
single structural relationship. Equation (22) can be generalized to include
an arbitrary number n of structural relationships with a common trend ,
giving

. (23)

The original Laxton and Tetlow (1992) paper used information from
both a Phillips-curve and an Okun’s law relationship, while Butler (1996)
also uses multiple structural relationships simultaneously.

The usefulness of the multivariate HP filter depends on several fac-
tors. Obviously, the extent to which it improves upon the original HP filter
will depend on the reliability and information content of the structural
relationship(s) with which it is combined. These potentially offer a way of
mitigating the problems of HP filters noted in Section 2. However, given
the importance of obtaining good end-of-sample estimates of output gaps,
we require structural relationships that can give good contemporaneous
information.14

For the particular data-generating process they examine, Laxton
and Tetlow find that the degree to which their filter does better than the
univariate HP filter at estimating the output gap increases with the relative
importance of demand shocks to supply shocks. While the MHPF can pro-
duce a large improvement, Laxton and Tetlow find that there is still sub-
stantial uncertainty in their point estimates of the output gap and that this
uncertainty is larger at the end of sample. In their base case, they find that
the 95 per cent confidence interval for the output gap at the end of sample
is about 4 per cent on both sides, which implies that policymakers would
rarely observe statistically significant output gaps.

Another factor key to the success of the multivariate HP filter is cal-
ibration. Instead of having a single  parameter with a standard value of
1,600, we now have vectors of parameters  without a clear guide as to

14. In that respect, there may be limitations to the information we can expect to gain from
Phillips-curve relationships if we believe that inflation responds to output gaps with a lag.
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their appropriate values. In addition, we now also need to estimate the
form of the structural relationships involving potential output. If we
attempt to do this before calculating , then we will be estimating a
structural relationship that may be inconsistent with the values of
produced by the MHPF. Furthermore, theory will often not be a sufficient
guide to allow us to calibrate such a relationship tightly. The approach
used by Laxton and Tetlow (1992) and Butler (1996) is to experiment with
alternative weightings to see which produce reasonable results and how
sensitive the outcomes are to these choices.

An alternative explored by Harvey and Jaeger (1993) and by Côté
and Hostland (1994) is to estimate the structural relationship simultane-
ously with  and  via maximum-likelihood methods.15 Côté
and Hostland found that the results can be sensitive to the specification of
the structural relationships,16 that the usefulness of the structural informa-
tion vanishes when one considers only end-of-sample performance,17 that
the structural parameters cannot be estimated with much accuracy, and
that maximization of the likelihood function was problematic.

To give some idea of how such filters perform in practice, Figure 8
compares three different estimates of the output (GDP) gap. The first is that
produced by the Butler (1996) filter (labelled EMVF).18 The others are those
produced by a one-sided HP (1,600) filter and by the LRRO filter
(described in Section 4). We can see from Figure 8 that the three methods
produce gaps of roughly the same amplitude, and that there is a tendency

15. Butler (1996) mentions that a direct maximum-likelihood estimation was attempted
but did not produce reasonable results for the s.

16. They find that specifying the dynamic relationship in levels or first differences has a
large effect on the estimated values of .

17. Côté and Hostland approximate the behaviour of the one-sided filter by using only
the lags from the mid-sample representation of the HP filter. They also obtain much more
useful results when they apply the two-sided filter at the end of sample using forecast val-
ues for the required leads in the filter.

18. The details of the filter used for the Bank’s staff projection of the Canadian economy
evolve over time in response to ongoing research and may therefore, as noted in footnote
13, differ slightly from the exposition in Butler (1996). The EMVF gaps shown in the figure
reflect the specification used in the staff’s December 1996 economic projection.
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for the three series to rise and fall at similar times. While all three series
show negative output gaps (i.e., excess supply) in the early 1990s, the
LRRO and the HP show the economy returning to potential after a few
years, while the EMVF shows large output gaps remaining through to the
end of the sample (1996Q3). As we see in the next section, however, this
last difference is more a reflection of the differences in the structural infor-
mation used.

FIGURE 8. Comparison of three different measures of the Canadian output gap

3.2 The production-function approach

Another important feature of the EMVF filter is that rather than fil-
tering output directly, it decomposes output into a number of components
that are then individually filtered. This allows both for a more direct link to
sources of structural information and for an easier interpretation of the
source of changes in the gap or potential.

The decomposition is based on a production function. Consider an
aggregate Cobb-Douglas constant-returns-to-scale production function
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, (24)

where  is total factor productivity,  is labour,  is the capital stock, and
 is the labour-output elasticity (as well as labour’s share of income). With

some algebra, we can show that

, (25)

where lower-case letters are the logs of their upper-case counterparts. This
means that to estimate the trend in output, we estimate the trends in
employment, the marginal product of labour, and the labour-output elas-
ticity, and then sum them. One nice feature of the decomposition in
equation (25) compared with equation (24) is that it avoids the problem of
trying to estimate the capital stock reliably. We can then use the further
decomposition that the log of total employment n is given by

, (26)

where Pop is the log of the working-age population,  is the log of the par-
ticipation rate, and  is the rate of unemployment.

Within this framework, the level of potential output is defined as the
level of output consistent with existing population, trend rates of unem-
ployment and participation, and trend levels of the marginal product of
labour and the output share of labour. In practice, the trend levels of the
participation rate and the output share of labour are determined by a com-
bination of judgment, demographic factors, and univariate HP smoothing.
Separate MHPF systems are then used to identify the trend level of the
marginal product of labour and the trend unemployment rate. The deter-
mination of the trend unemployment rate is partly based on the structural
method described in Côté and Hostland (1996) and the Phillips curve
described in Laxton, Rose, and Tetlow (1993). A long-run relationship
between the marginal product of labour and producer wages and a modi-
fied Okun’s law relationship serve to identify the trend level of the mar-
ginal product of labour.
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Analysis of the performance of the EMVF in Butler (1996) shows
that this method has its own strengths and weaknesses. Butler notes, on
the one hand, that the rolling and full-sample estimates of the trend unem-
ployment rate and the equilibrium marginal product of labour are quite
similar, and that the labour market gaps are highly correlated with infla-
tion. On the other hand, he also notes that there is significant correlation in
the errors across structural equations, suggesting that further efficiency
gains may be possible.

To understand the source of the persistent output gap that the
EMVF produces in the 1990s, we can decompose the output gap into its
three components, as shown by the dotted lines in Figure 9. This shows
that the aggregate output gap largely reflects a deviation of the participa-
tion rate from its trend level. Note that the participation rate is not filtered
and that its trend level is essentially determined by judgment.

However, it would be wrong to attribute the aggregate gap entirely
to structural information, as can be seen by comparing the filtered output
gap (top-left graph, dotted line) with its unfiltered or “raw” counterpart
(same graph, solid line). This shows that the effects of filtering over the
most recent period have tended to increase the estimated size of the output
gap by 1 to 2 per cent of GDP. The fact that the filtered unemployment rate
gap is very close to its unfiltered counterpart implies that most of the dif-
ference between the filtered and unfiltered output gap is due to the effects
of the filter on the marginal product of labour gap.
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FIGURE 9. Decomposition of the EMVF output gap

3.3 The end-of-sample problem

While it has been demonstrated that both the filter and the struc-
tural information play important roles in the EMVF’s estimate of recent
output gaps, so far, the end-of-sample problems of HP filters noted in
Section 2.4 have not been addressed. However, the EMVF contains two
novel features intended to modify its end-of-sample behaviour.

First, the EMVF contains an additional growth-rate restriction. If we
temporarily ignore the structural information for expositional simplicity,
the modified filter solves the problem

,

(27)

where  is a constant equal to the steady-state growth rate of potential
output and  is the weight put on the growth-rate restriction. The key
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feature is that  only penalizes deviations from the steady-state growth
rate in the last j periods of the sample, effectively “stiffening” the filter.
This restriction assumes that the growth rate of potential reverts towards a
constant, whereas the theoretical justification for HP filters as optimal fil-
ters (noted in Section 2) assumes that this growth rate contains a stochastic
trend and therefore will not show any such reversion. Whether such a
restriction leads to more accurate estimates of the output gap depends on
the accuracy with which the appropriate value of  can be determined.

The second novel feature of the EMVF’s treatment of end-of-sample
problems is the introduction of a recursive updating restriction. This sim-
ply adds an additional term to equation (27), giving

(28)

where  is the tth element of . This restricts the filter to choos-
ing  and maximizes the degree to which new observations modify
estimates of  based on shorter spans of observations. Not surprisingly,
perhaps, Butler (1996) shows that this gives a one-sided estimate of the
output gap that behaves more like the subsequent two-sided estimate.
While this makes estimates of the output gap behave in a more “orderly”
fashion at the end of sample, the net effect on the accuracy of the estimated
output gap is unclear.

One way to understand better the effects of these two changes at the
end of samples is to compare the resulting one-sided filter with the one-
and two-sided HP filters examined in Section 2.19 As shown in Figure 10,
these modifications cause the EMVF to put much less weight on the last
few observations of the sample than the one-sided HP filter, and they bring

19. The remainder of this section expands the analysis of the EMVF filter properties pre-
sented in Butler (1996) to include the effects of the recursive updating restriction.
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its weights more closely in line with those of the two-sided HP filter. If we
look in the frequency domain, however, we see that this change causes the
one-sided EMVF to pass more of the undesired low-frequency or “trend”
components than either of the HP filters. In fact, Figure 11 shows that the
squared gain of the filter is greater than 0.2 for all frequencies.

The end result is shown clearly in Figure 12, where both the EMVF
output gap and each of its three components appear to be dominated by
low-frequency movements not normally associated with business cycles.
Compared with Figure 7, the end-of-sample modifications of the EMVF
impair the filter’s ability to isolate fluctuations at business-cycle frequen-
cies compared with its simple HP filter counterpart. One way to quantify
this effect is to use the estimated spectrum to calculate the correlation of
the “measured” EMVF gap with an “ideally filtered” gap that perfectly iso-
lates business-cycle frequencies. The measured EMVF output gap has a
correlation of 31.4 per cent with the “ideally filtered” gap, while its two fil-
tered components—the unemployment gap and the labour productivity
gap—have correlations of 24.9 per cent and 44.0 per cent, respectively.

The differences in weights between the one-sided HP filter and the
one-sided EMVF also imply that since relatively more of its weight comes
from observations with greater lags, the EMVF must have a greater phase
shift than the HP filter at the end of sample. This in turn implies that the
measured EMVF output gap will tend to lag the true output gap by more
than the measured HP output gap. The extent of this difference depends on
the frequency of the data series, as shown in Figure 13. For all but the low-
est of the business-cycle and the sub-business-cycle frequencies, the differ-
ence between the two is small, with phase shifts roughly constant at a lag
of about two quarters. For lower frequencies, however, the phase shift of
HP falls to zero and then becomes negative, while that of the EMVF
reaches five quarters by the lower bound of the business-cycle frequencies
and increases rapidly thereafter. If we weight these different phase shifts
by the relative importance of various frequencies in measured output gaps,
we obtain a weighted average measure of the overall phase lag for the dif-
ferent measures. This gives an overall phase lag of roughly 0 for the one-
sided HP filter, compared with a lag of 3.3 quarters for the EMVF output
gap, 3.8 for the EMVF employment-rate gap, and 2.1 for the EMVF labour-
productivity gap.
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FIGURE 10. MA Representation of the EMV and HP ( ) filters

FIGURE 11. Squared gain of the EMV and HP ( ) filters
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FIGURE 12. Spectrum of the EMVF gap and its components (Ar(3) fit for 1954Q4-1996Q4)

FIGURE 13. Phase shift of the EMV and HP ( ) filtersλ 1 600,=
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3.4 TOFU

In Section 2, we investigated how well a time-series method (in this
case, the HP filter) measured output gaps, and we concluded that by itself
it did not produce very reliable estimates for policymakers. So far in
Section 3, we have looked at how adding sources of structural information
to HP and related filters might improve the situation. One of the strengths
of the MHPF approach is that it clearly states the problem that the resulting
estimate of the output gap solves. However, some components of that opti-
mization problem may be easier to accept than others. It seems reasonable
to us for the estimated output gap to be as consistent as possible with one
or more structural economic relationships. The justification for the smooth-
ing portion of the filter is more difficult, as noted in Section 2, and it is
unclear how helpful the particular assumptions of the HP filter are in iden-
tifying output gaps in the presence of structural information. Furthermore,
as the complexity of the filter increases, the question of how to choose the
parameters controlling the filter’s behaviour becomes more difficult. While
it is conceptually straightforward to estimate the filter parameters jointly
with the structural relationships (as in Côté and Hostland 1994), this can be
quite difficult to implement. Accordingly, it would be useful to restate the
optimization problem in a way that allows for easier estimation and easier
justification.20 This leads to an alternative to the HP filter.

From equation (13), we see that we can estimate the output gap in
terms of the observable variable  if we can identify . Presumably, if
we know of an economic relationship that involves the output gap, we
could use this to define an optimal estimate of , say . For example,
we might consider a Phillips curve of the form

, (29)

where  is a vector of additional observable variables,  is an independ-
ent and identically distributed mean-zero error term, and  are
one-sided polynomials in non-negative powers of L. We could substitute
equation (13) into equation (29) to obtain

20. This section draws heavily on van Norden (1995).
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, (30)

where . Equation (30) can now be estimated by conventional
methods to obtain optimal estimates of , since it is now specified
entirely in terms of observable variables. This would allow us to estimate

 and thereby use equation (13) to estimate the output gap.21

We call this estimator of the output gap TOFU: a Trivial Optimal Fil-
ter that may be Useful. It is optimal in the sense that estimation by maxi-
mum likelihood is straightforward, so our estimates of  will be
efficient. The estimator imposes quite general assumptions on the time-
series properties of the series involved, so the restrictions should be rea-
sonable. It incorporates a simple structural relationship in order to identify
the output gap. Furthermore, if we wish to estimate the output gap at the
end of sample, we can simply replace  with  (i.e., use only lagged
values of ). This estimator therefore potentially avoids some of the
problems mentioned at the start of this section.

Of course, the TOFU estimate of the output gap is obviously related
to the estimate obtained by “inverting” the structural relationships. The
difference is simply that inversion calculates the implicit value of the out-
put gap that would exactly fit the structural relationship. TOFU therefore
lies halfway between such methods and the MHPF methods of Section 3.1.
The HP methods are optimal filters only for quite special cases, whereas
the TOFU methods provide the optimal linear filter estimate of the output

21. We should note two minor caveats. First, equation (30) identifies  only up to
the scaling factor . Strictly speaking, therefore, we only recover an index of the output
gap. This should be reasonable for the purpose of, say, deciding whether interest rates
should be higher or lower to achieve a given target, since the current value of the index
can be readily compared with its historical values. Second, consistent estimation of this
relationship requires an implicit assumption. Ordinary-least-squares (OLS) estimation
requires  for consistency. If this condition is not satisfied, then instru-
ments for  will be required for estimation. Consistent instrumental variables (IV) esti-
mation in turn will depend on the assumption that the chosen instruments are valid. This
estimator may be extended in a number of ways. If the output gap were to enter the struc-
tural equation in a non-linear fashion, we could estimate the system via general method of
moments (GMM) rather than least-squares techniques. If we had a series of structural
equations involving the output gap, we could estimate them simultaneously, subject to
cross-equation restrictions on the coefficients of .
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gap. TOFU offers less smoothing than MHPF methods but more than sim-
ple inversion of the structural equations.

Unfortunately, the information gained from structural relationships
is contaminated by considerable “noise.” Inversion of structural equations
is therefore rarely used as a guide to policy, since the resulting estimates of
the output gap are usually considered to be too volatile to be of practical
use. Whether estimated TOFU filters can reduce this noise enough to be a
useful tool for policymakers remains to be seen. If so, they may offer a trac-
table alternative to the MHPF methods. If not, it suggests that MHPF esti-
mates may be dominated by the arbitrary assumptions they impose on the
dynamics of the output gap rather than on the information coming from
structural relationships. This suggests that other sources of information on
these dynamics should be investigated, which we turn to in the next sec-
tion.
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4 USING LONG-RUN RESTRICTIONS TO ESTIMATE
THE OUTPUT GAP

In this section, we discuss approaches based on long-run restrictions
imposed on a VAR. These approaches allow the identification of structural
shocks and structural components on the basis of a limited number of eco-
nomic restrictions imposed on an estimated VAR. The chosen restrictions
can be those widely agreed upon in the literature. No arbitrary mechanical
filter has to be imposed on the data. Compared with methods based on
mechanical filters, the methods discussed in this section do not suffer from
obvious end-of-sample problems and provide forecasted values of the out-
put gap.

In Section 4.1, we discuss the method based on long-run restrictions
imposed on output (LRRO) put forward by Blanchard and Quah (1989),
Shapiro and Watson (1988), and King et al. (1991). This method is com-
pared with two VAR-based alternatives: the multivariate Beveridge-Nel-
son method (MBN) and Cochrane’s (1994) method (CO).22 We argue that
one important advantage of the LRRO approach over the MBN and CO
approaches is that it allows the diffusion process of shocks to potential out-
put to be estimated. Section 4.2 considers an application of the LRRO
methodology to Canadian data. Many of the arguments presented in Sec-
tions 4.1 and 4.2 are drawn from Dupasquier, Guay, and St-Amant (1997).

In Section 4.3, we present a method involving restrictions on real
output and inflation (LRROI) that yields an output gap corresponding to
that part of the cyclical component of real output associated with the trend
of inflation. This should be of interest to policymakers concerned about an
output gap associated with movements in that trend as opposed to cyclical
movements of output unrelated to that trend. This method is discussed in
more detail in Lalonde, Page, and St-Amant (forthcoming).

22. See Cogley (1996) for another comparison of the MBN and CO methodologies.
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4.1 The LRRO, CO, and MBN methodologies

Let  be an n x 1 stationary vector including an n1-vector of I(1)
variables and an n2-vector of I(0) variables such that .
By the Wold decomposition theorem,  can be expressed as the following
reduced form:

, (31)

where  is deterministic,  is a matrix of polynomial
lags,  is the identity matrix, the vector  is the one-step-ahead
forecast errors in  given information on lagged values of , ,
and  with  positive definite. We assume that the determi-
nantal polynomial  has all its roots on or outside the unit circle,
which rules out the non-fundamental representations emphasized by Lippi
and Reichlin (1993).

Beveridge and Nelson (1981) show that equation (31) can be decom-
posed into a long-run component and a transitory component:

, (32)

with  and . We define  as the
long-run multiplier of the vector . If the rank of  is less than n1,
there exists at least one linear combination of the elements in  that is
I(0). In other words, there exists at least one cointegration relationship
between these variables.

The LRRO approach assumes that  has the following structural
representation:

, (33)

where  is an n-vector of structural shocks, , and
(a simple normalization). We can retrieve the structural form equation (33)
from the estimated reduced form by using the following relationships:

, , and .
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The long-run covariance matrix of the reduced form is equal to
. From equation (31) and equation (33) we can derive:

. (34)

This relation suggests that we can identify matrix  with an appro-
priate number of restrictions on the long-run covariance matrix of the
structural form. Blanchard and Quah (1989) and Shapiro and Watson
(1988) use long-run restrictions to identify shocks with  having full
rank. King et al. (1991) work in a context where the rank of  is less
than n1 and use cointegration restrictions.

Let us assume that the log of real output is the first variable in the
vector . It is then equal to

, (35)

where  is the vector of permanent shocks affecting output,  is the vec-

tor of shocks having only transitory effects on output, and

reflects the dynamic effects of these shocks. Potential output growth based

on the LRRO method can then be defined as:

. (36)

Thus, “potential output” corresponds to the permanent component
of output. The part of output due to purely transitory shocks is defined as
the “output gap.”

The MBN decomposition defines potential output as the level of real
output that is reached after all transitory dynamics have worked them-
selves out. With reference to equation (32), where real output is the first
element of , we can write the following decomposition:

. (37)

Potential output can be defined as the first two terms on the right-
hand side of equation (37):
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. (38)

It is thus simply a random walk with drift.

Note that the MBN approach gives an output gap that is sensitive to
the choice of variables included in the VAR. In general, the more informa-
tion that is brought into the VAR, the more important the transitory com-
ponent. This is not the case with the LRRO approach. Adding additional
information may or may not add to the importance of the cyclical compo-
nent.

Cochrane (1994) uses a two-variable VAR including GNP and con-
sumption to identify the permanent and transitory components of GNP.
The bivariate representation is augmented with lags of the ratio of con-
sumption to GNP. The permanent income theory implies that consumption
is a random walk (for a constant real interest rate). In addition, if we
assume that GNP and consumption are cointegrated, then fluctuations in
GNP with consumption unchanged must be perceived as transitory. It is on
that basis that Cochrane decomposes real GNP into permanent and transi-
tory components. To extract potential output, the errors of the VAR are
orthogonalized so that consumption does not respond contemporaneously
to GNP shocks.

Cochrane shows that, if GNP and consumption are cointegrated and
consumption is a random walk, identification based on the LRRO method
and conventional orthogonalization (i.e., a Choleski decomposition) are
essentially equivalent. Moreover, if consumption is a pure random walk,
Cochrane’s decomposition corresponds exactly to the Beveridge-Nelson
decomposition based on output and consumption.

To extend our comparison of the LRRO approach with the CO and
MBN approaches, let us first write the structural form equation (33) in
terms of the log of real GDP ( ) and the log of real consumption ( )
decomposed between permanent and transitory shocks (assuming that

∆yt
p µy C1 1( )εt+=

yt ct
yt



42

and  are cointegrated):

(39)

, (40)

where  is the long-run multiplier of permanent shocks and
 is their transitory component. The MBN method

considers only the first component of the permanent shocks plus the drift
term, i.e., . The LRRO approach is different in that it also
includes the dynamics of permanent shocks to real output ( ) in
potential output.

With the CO approach, potential output is constrained to be a ran-
dom walk to the extent that consumption is a random walk. Indeed, the
validity of the permanent-income hypothesis would imply that the last
two terms of equation (39) are equal to zero and that . It is
not clear what the CO decomposition corresponds to if consumption is not
a random walk.23

As pointed out by Lippi and Reichlin (1994), modelling the trend in
real output as a random walk is inconsistent with most economists’ inter-
pretation of productivity growth. Indeed, it is generally believed that tech-
nology shocks are absorbed gradually by the economy. Adjustment costs
for capital and labour, learning and diffusion processes, habit formation,
and time to build are factors that imply richer dynamics than a random
walk for these shocks. Again, a crucial advantage of the LRRO approach is
that it lets the data determine the shape of the diffusion process of perma-
nent shocks.24

23. Stochastic growth models—such as in King, Plosser, and Rebelo (1988) or King et al.
(1991)—imply that the ratio of the log of GNP to the log of consumption is stationary but
that consumption is not a random walk because the real interest rate is not constant. In
these models, the transitory component of permanent shocks to consumption is not equal
to zero. The LRRO decomposition is compatible with the predictions of these models.

24. Kuttner (1994) proposes a method based on the univariate unobserved stochastic-
trend decomposition of Watson (1986) augmented with a Phillips-curve equation. As with
the Beveridge-Nelson decomposition, Kuttner’s approach constrains potential output to
follow a random-walk process.
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One implication of defining potential output as a random walk with
drift is that when the contemporary effect of a positive permanent shock is
smaller (greater) than its long-run effect, the output gap, defined as
observed output minus potential, is negative (positive). For example, a
positive technological shock whose short-term impact is smaller than its
long-term impact will cause a transitory negative output gap. Many
researchers and policymakers will find that this feature reduces the attrac-
tiveness of the MBN and CO approaches (in the latter case, under the
assumption that consumption is a random walk). It will often appear pref-
erable to include the diffusion process associated with permanent shocks
in potential output, since the economy is likely to remain on its production
possibility frontier as adjustments unfold. There should be no reason for
the trend of inflation to change during that adjustment process.

4.2 An application of the LRRO approach to Canadian data

For our applications of the LRRO methodology to Canadian data,
we assume that the growth rate of real output ( ) follows a stationary sto-
chastic process responding to two types of structural shocks: permanent
( ) and transitory ( ). Also included in the estimated VARs are the first
differences of: inflation ( ), the unemployment rate ( ), and the real
interest rate ( ). We assume that these series are I(0) and that there is no
cointegration involved.25

We verified that adding money or the exchange rate to the estimated
VARs would have little impact on the results. In selecting the variables, the
aim is to include in the VAR the information necessary to identify the struc-
tural components of interest. Of course, there is a cost in adding informa-
tion in terms of lost degrees of freedom and less-precise estimates.

It is important to note that the assumptions made on the level of
integration of the series could be changed and that they are not part of the

25. Unit root tests support these assumptions. Results are available on request.
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LRRO methodology per se (except for real output, which has to be I(1)).26

Changing these assumptions could significantly affect the results.

Our objective here is to illustrate the methodology. A practitioner
interested in using the approach to estimate the output gap might well
choose to incorporate additional information to obtain a better estimate of
the output gap.

The structural shocks and the variables used in the VAR can be
expressed in the following vector form:

 and . (41)

We use quarterly data on real GDP. Our measure of inflation is the
total CPI. The real interest rate is proxied by the overnight rate (see
Armour et al. 1996 for a discussion of that series) minus inflation (quarterly
growth rate). Our sample extends from the first quarter of 1970 to the
fourth quarter of 1996 in order to focus on the flexible exchange rate
period. The estimation of the output gap based on the LRRO methodology
is fairly robust to the choice of the sample period, however.

The autoregressive reduced form of the model is first estimated as

, (42)

where q is the number of lags and  is a vector of estimated residuals with
.

It is crucial that the estimated VARs include a sufficient number of
lags. Indeed, Monte Carlo simulations by DeSerres and Guay (1995) show
that using a lag structure that is too parsimonious can significantly bias the
estimation of the structural components in a structural VAR. We decided to

26. Indeed, DeSerres, Guay, and St-Amant (1995) assume that money growth is I(0).
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use eight lags. However, we verified that using six or ten lags had little
impact on the results.

The LRRO approach involves the identification of structural shocks
( ) from reduced-form shocks ( ) and their variance. For this, we need to
provide enough identifying restrictions to evaluate the 16 elements in .
Given that  is symmetric, we need to impose six additional restrictions.
The matrix of long-run effects of reduced-form shocks, C(1), is related to
the equivalent matrix of structural shocks, , as follows:

, (43)

where the matrix C(1) is calculated from the estimated VAR. To identify the
system we simply impose the condition that  is triangular, i.e., that
three shocks have no long-run effect on real output and two have no long-
run effect on inflation. There are then three transitory components of real
output that do not need to be identified separately.

FIGURE 14. Response of real GDP to a permanent output shock
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Figure 14 presents the impulse response of real output to a one-
standard-deviation permanent output shock. (Blanchard and Quah sug-
gest interpreting this as an aggregate supply shock.) The horizontal axis
represents the number of years. Confidence intervals were generated using
Monte Carlo simulations in RATS with 1,000 replications.

The most important finding illustrated in Figure 14 is that perma-
nent shocks are characterized by statistically significant dynamics; in other
words, potential output has richer dynamics than a simple random walk.27

As mentioned above, this result could reflect such factors as adjustment
costs on capital and labour, learning, habit formation, and time to build.
One implication of the rejection of the random-walk assumption is that
methods that do not take into account the diffusion process of permanent
shocks could miss an important part of potential output. Indeed,
Dupasquier, Guay, and St-Amant (1997) show that the correlation is rela-
tively small between the output gaps calculated on the basis of the LRRO,
CO, and MBN approaches applied to U.S. data. Part of the reason is the dif-
ferent treatments of the diffusion process of permanent shocks.

Figure 15 shows the output gaps calculated on the basis of the
LRRO methodology as applied in this paper, together with 90 and 67 per
cent confidence intervals.

Another significant point shown in Figure 15 is that there is a high
degree of uncertainty surrounding the estimation of the output gap.
Dupasquier, Guay, and St-Amant (1997) reach the same conclusion using
U.S. data. Staiger, Stock, and Watson (1996), using a different methodology,
also arrive at a similar conclusion concerning the estimation of the NAIRU
for the United States. Some of that uncertainty is attributable to the large
number of lags that have to be included in the estimated VARs. As men-
tioned above, DeSerres and Guay (1995) show that many lags have to be
used to provide an unbiased decomposition into permanent and transitory
components with structural VARs. To a large extent, the purpose of these

27. Dupasquier, Guay, and St-Amant (1997), Blanchard and Quah (1989), and Gali (1992),
among others, report similar results for the U.S. economy.
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lags is to approximate the moving-average part of the underlying DGP.
Preliminary results obtained at the Bank of Canada suggest that the esti-
mation of VARMAs instead of VARs could reduce parameter uncertainty
by allowing the use of more parsimonious models.

FIGURE 15. LRRO-based Canadian output gap

Still, there are episodes of significant output gaps at either the 90 per
cent or the 67 per cent levels. These output gaps appear reasonable, in that
positive output gaps are associated with episodes of accelerating inflation,
while negative output gaps correspond to episodes of decelerating infla-
tion.

It would be of interest to see whether the structural shocks used to
calculate the output gap account for an important part of the variance of
inflation at different horizons. That information is presented in Table 2.
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We can see that transitory shocks affecting real output account for a
large part of the variance of Canadian inflation. This result suggests that
the component of output that we identify includes much of the informa-
tion that one might want to include in the output gap. Note, however, that
there appears to be some additional information related to permanent
shocks, especially at longer horizons. Lalonde, Page, and St-Amant (forth-
coming) discuss another approach that does not require that the output
gap to be part of the cyclical component of output.

In this paper the focus remains on methods that impose a stationary
output gap. Although Table 2 suggests that the output gap based on the
LRRO approach accounts for a large fraction of fluctuations in the trend of
inflation, a part of that gap may very well be unrelated to the trend. For
example, it might include very-high-frequency cycles that have little to do
with that trend. This suggests another method: imposing restrictions on
both real output and inflation in order to produce an output gap that is con-
strained to be associated with movements in the trend of inflation.

a. 90 per cent confidence interval

TABLE 2: Variance decomposition of Canada’s inflation rate (LRRO method)
(relative contribution of the different types of shocks, per cent)

Horizon (quarters)
Permanent output

shock
Transitory output

shock

1 11
(0-43)a

89
(57-100)

4 8
(2-36)

92
(64-98)

8 6
(4-30)

94
(69-97)

16 13
(5-49)

87
(51-95)

32 23
(5-66)

77
(34-95)

Long-term 37
(3-84)

63
(16-97)
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4.3 The LRROI approach

Using the four-variable system presented in Section 4.2, it is possi-
ble to identify shocks with no long-run effects on real output but with an
effect on the trend of inflation. Real output was decomposed in the follow-
ing way:

, (44)

with certain shocks having no long-run effect on real output but an effect
on the trend of inflation ( ), certain shocks having no long-run effect on
real output or inflation ( ),28 and certain shocks having long-run effects
on real output but an effect on inflation that is left unconstrained ( ). The
component  could be used as a measure of the output gap. This
is what we call the LRROI method. In Section 4.2, we were not interested in
distinguishing  from , and so we simply added these
components to form one component that was the LRRO output gap.

The LRROI method gives a measure of the output gap that is more
constrained than the LRRO method, in that it combines restrictions on real
output and inflation. With the LRRO approach, it is only necessary to
assume that real output is I(1), but a necessary feature of the LRROI
approach is the additional assumption that inflation is better characterized
as being I(1) over the sample under consideration. Of course, that assump-
tion is not uncontroversial. However, we think it is reasonable. Assuming
that inflation is I(0), in contrast, is in some sense equivalent to assuming
that inflation has to return to a constant mean, whatever the actions of the
monetary authorities. We do not think that this is realistic. The mean of
inflation can vary with factors such as the preferences of the monetary
authorities, the political environment confronting these authorities, and
the state of knowledge about the costs and benefits of targeting a certain
inflation rate. Inflation has to be modelled as a process whose mean can
change over time. One way to do so is to assume that it is I(1).

28. Since there are two shocks that have no long-run impact on the trend of output or
inflation (the last two of equation 44), we simply consider their sum.
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The LRROI method proposes a measure of the output gap that
should be attractive for policymakers interested in that part of the cyclical
component of real output that is associated with movements in the trend of
inflation as opposed to short-run fluctuations of that series. On the other
hand, the measure of the output gap provided by the LRRO method,
which includes cyclical movements, may not be of interest for such policy-
makers. In some sense, the LRROI method could thus provide policymak-
ers with a less “noisy” indicator of changes in the trend of inflation. Short-
run fluctuations of inflation could be caused by factors such as transitory
fluctuations in the exchange rate or changes in indirect taxes. Policymakers
may not be interested in changing their policy stance in response to such
movements. Of course, there might be instances when policymakers will
be interested in reacting to fluctuations of output associated with transi-
tory changes of inflation if these are expected to last for a long enough
period. The LRROI gap would not include the effect of such shocks but the
LRRO gap would.

Figure 16 presents the LRROI output gap calculated on the basis of
the Canadian data used in Section 4.3. Figure 17 compares that output gap
with the gap resulting from the LRRO approach and the gap from the one-
sided HP filter. Table 3 presents the variance decomposition of inflation
corresponding to the LRROI decomposition.

Figure 16 shows that there is as much uncertainty surrounding the
estimation of the LRROI output gap as there is with the LRRO gap. We also
see that the LRROI gaps are generally smaller than those produced by the
LRRO method. This indicates that some cycles included in the LRRO gap
are not related to the trend of inflation.

The variance decomposition of inflation presented in Table 3 sug-
gests that the LRROI approach includes most of the information related to
the cyclical component of output that is relevant for monitoring or fore-
casting medium- and long-term inflation. However, the LRRO gap appears
to include non-negligible information about short-term movements in
inflation. Table 4 shows the variance decomposition of output associated
with the various structural shocks.



51

To conclude this section, we would like to emphasize that the LRRO
and LRROI methods are two variants of a more general VAR-based
approach. Other variants could be considered. For example, one might
want to take into account possible changes in the inflation process due to
changes in the monetary regime (see, for example, Fillion and Léonard
1997). Evans (1992) proposes a time-varying method that could allow for
such non-linearities. One might also want to include different sets of
restrictions, including cointegration and Bayesian types of restrictions, to
ensure that the estimated gap is compatible with a particular macroeco-
nomic model.
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FIGURE 16. LRROI-based Canadian output gap

FIGURE 17. LRRO, LRROI, and one-sided HP-based Canadian output gaps
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a. 90 per cent confidence interval

a. 90 per cent confidence interval

TABLE 3: Variance decomposition of Canada’s inflation rate
(relative contribution of the different types of shocks, in per cent)

Horizon (quarters) Permanent output
shock

Transitory output
shocks affecting

the trend of
inflation

Transitory output
shocks not

affecting the trend
of inflation

1 11
(0-43)a

54
(6-88)

35
(3-81)

4 8
(2-36)

63
(18-85)

29
(7-68)

8 6
(4-30)

70
(33-80)

24
(11-53)

16 13
(5-49)

72
(34-80)

15
(8-35)

32 23
(5-66)

68
(27-83)

9
(4-23)

Long-term 37
(3-84)

61
(16-95)

1
(0-4)

TABLE 4: Variance decomposition of Canada’s real GDP
(relative contribution of the different types of shocks, in per cent)

Horizon (quarters) Permanent output
shock

Transitory output
shocks affecting

the trend of
inflation

Transitory output
shocks not

affecting the trend
of inflation

1 12
(1-72)a

6
(0-25)

83
(23-94

4 44
(5-73)

12
(1-44)

45
(17-82)

8 78
(21-86)

5
(1-40)

17
(8-58)

16 92
(51-94)

2
(1-20)

6
(4-33)

32 97
(75-98)

1
(0-10)

2
(2-16)

Long-term 100
(97-100)

0
(0-1)

0
(0-2)
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5 SUMMARY

Considerable research has been carried out on methods for measur-
ing output gaps, and much remains to be done. In particular, future
research might examine the economic reasonableness of the results
obtained on the basis of different methodologies, something that we have
not undertaken here. On the basis of our research, we think that there
appear to be three main lessons.

i. Univariate time-series methods like the HP filter are not a reliable
way to measure the output gap.

Univariate methods rely on an arbitrary decomposition of a series
into a trend and a cyclical component. Changing the decomposition
method, however, can significantly affect the measured output gap, and
economic theory usually has little or nothing to say about which method
should be favoured. In addition, the causal relationship between potential
and the gap can limit the information obtained about the current gap, and
some popular economic models imply that univariate filters will never be
able to provide much information.

In the particular case of the HP filter, even though this filter is
thought to be close to an ideal high-pass filter, it does not accurately meas-
ure the components from business-cycle frequencies when those series
have the typical Granger shape. Although the HP filter can also be justified
as an optimal filter for particular cases, these cases do not appear to be real-
istic approximations of output, and the filter is generally not a reliable way
to estimate the “cyclical” component. HP filters also behave very differ-
ently at the end of the sample, which is the period policymakers care most
about, and little is known about the trade-off between phase shift and
smoothness at the end of sample.

ii. Existing hybrid methods that combine univariate dynamic methods
and structural relationships are not a panacea.

In practical terms, existing hybrid methods have three problems:
they have proved hard to estimate; they may not be robust to alternative
reasonable calibrations; and it is difficult to calculate their appropriate con-
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fidence intervals. The ability of the EMVF, the filter used to estimate the
output gap in the Bank of Canada’s staff projections of the Canadian econ-
omy, to isolate business-cycle frequencies is worse than that of the HP fil-
ter, and its estimates lag the true output gap by just under a year. These
problems seem to be the result of features introduced to improve the fil-
ter’s estimate of current and recent output gaps.

More generally, the “hybrid” approach is driven not only by a desire
to include structural relationships, but also by a pragmatic desire for
“smooth” estimates of the output gap. If the structural relationships are
very informative, however, then the “smoothing” assumptions may be
unnecessary. Otherwise, it is hard to argue that these assumptions are
innocuous, for the reasons mentioned above in the context of univariate
methods. For that reason, and because they can incorporate the same
sources of structural information, TOFU (Trivial Optimal Filter that may be
Useful) methods may provide a good benchmark for hybrid methods. If
TOFU estimates of the output gap are useful, then the strict (or ad hoc) fil-
ters used in existing hybrid methods are not required. If TOFU methods
are not useful, then structural information alone is not sufficient to identify
the output gap. Relying instead on ad hoc dynamic assumptions for identi-
fication raises questions about the reliability and significance of the result-
ing estimated output gaps.

iii. Methods that combine estimated dynamics with structural informa-
tion offer an interesting alternative that merits further investigation.

This report has explored such methods in the form of VARs with
long-run restrictions suggested by economic theory. Their advantages
include an absence of arbitrary dynamic assumptions, straightforward
estimation, and an ability to estimate both current and expected future out-
put gaps. On the other hand, it is not always clear which variables have to
be included in the VAR, and work to date suggests that the estimated out-
put gaps have wide confidence intervals, comparable to those of other
methods. More work is needed to evaluate the extension of these methods
to VARMA models. It might also be of interest to explore VARs with time-
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varying parameters (as proposed by Evans 1992) in order to deal with pos-
sible non-linearities in structural or dynamic relationships.

The VAR-based methods considered in this report impose relatively
little economic structure on the data and allow the dynamic properties of
the estimated output gaps to be data-determined. This is an advantage,
because economic theory provides little guidance on what the dynamics
should be. Of course, it must be assumed that the estimated VAR includes
the information relevant for the identification of the output gap.

On the other hand, there could be instances when practitioners want
to impose more economic structure on their estimation of the output gap
by incorporating more economic relationships. To some extent, this could
be accommodated within the VAR (or VARMA or VECM) framework.
Many types of economic or statistical restrictions have been discussed in
the literature, including Bayesian priors and cointegration relationships.
Such restrictions could be used to ensure that the estimated output gap is
broadly compatible with some structural model of interest.

However, the TOFU approach might provide a better framework for
those interested in imposing detailed economic relationships on the data
(such as a specific Phillips curve or a NAIRU equation). One advantage of
using detailed economic structure is that the derived measures of potential
output can then be embedded in a model that is consistent with that struc-
ture. As noted briefly in van Norden (1995), extending the TOFU approach
to multiple detailed structural relationships appears to be straightforward,
although this question has yet to be explored in detail. It should be kept in
mind, however, that the usefulness of TOFU output gaps depends on the
validity of the economic structure imposed on the data and that economics
provides very few non-controversial structural relationships.

Our findings suggest that the VAR-based and TOFU approaches
deserve further research and that univariate and arbitrary smoothing
methods should be avoided wherever practicable. Variants of the VAR-
based and TOFU approaches also need to be investigated and their useful-
ness in terms of monitoring and projecting inflation evaluated.
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