

Technical Document for Batch Waste Incineration:

Executive Summary and Overview of the Six-Step Process for Batch Waste Incineration

January 2010

Acknowledgements:

Environment Canada would like to acknowledge the work of A.J. Chandler & Associates Ltd. in the preparation of this technical document.

En14-17/2-2010E-PDF 978-1-100-14951-6

© Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2010.

Aussi disponible en français.

EXECUTIVE SUMMARY

Incineration is recognized as an effective and environmentally sound disposal method for a wide range of wastes, and is used in facilities and jurisdictions across Canada. Waste generators located in remote areas may have limited options for cost-effective and environmentally sound waste management, and incineration may therefore be considered an appropriate waste management option. Remote commercial activities, such as exploration and development of natural resources, can create large volumes and varieties of wastes that must be managed appropriately. Residual wastes from industry, research activities, and the health care sector may require thermal treatment as an environmentally sound method to control the spread of disease from plants, animals or humans. Furthermore, there are certain locations in Canada where incinerating waste is an important means of avoiding potentially dangerous interactions between humans and wildlife. In all cases, reduction and diversion should be the primary waste management objectives, prior to considering any disposal option.

There are, however, some important potential environmental concerns associated with waste incineration that must be addressed through proper equipment selection, operation, maintenance and record keeping. These include potential releases of mercury, as well as dioxins and furans (PCDD/F), which are persistent organic pollutants (POPs). Mercury and POPs bio-accumulate in the environment and may cause adverse effects to human health and the environment. They can also be transported over long ranges; data from measurements in the North reveal concentrations far greater than what might be explained by local production. Dioxins/furans can be generated when inadequate incineration technology is used or when an incinerator is improperly operated. Mercury is not created in an incineration system; emissions are directly related to the presence of mercury in certain waste materials. Therefore, the best method to control mercury emissions is to limit the quantity of mercury in the waste fed to the incinerator.

The Stockholm Convention on Persistent Organic Pollutants (POPs) (which entered into force in May 2004 and to which Canada is a Party), identifies incineration as a potential source of POPs, and establishes a range of measures to reduce and, where feasible, eliminate their release. It also requires that the best available techniques (BAT) and best environmental practices (BEP) be applied for both new and substantially modified sources of POPs. Additionally, the Canadian Council of Ministers of the Environment (CCME) adopted the Canada-wide Standards for Dioxins and Furans in 2001, identifying incineration for action to reduce emissions, and adopting specific air emission standards. The CCME also adopted the Canada-wide Standards for Mercury Emissions in 2000 which include limits on mercury emissions from incinerators. Both mercury and dioxins/furans are on the List of Toxic Substances in Schedule 1 of the Canadian *Environmental Protection Act, 1999* (CEPA 1999).

The Technical Document for Batch Waste Incineration was developed to provide guidance for owners and operators on proper system selection, operation, maintenance and record keeping, with the goals of achieving the intent of the Canada-wide Standards for dioxins/furans and mercury, and reducing releases of other toxic substances. The document includes:

- A discussion of the importance of reducing, reusing and recycling to divert wastes from disposal;
- Methods for the selection of appropriate incineration technologies to meet specific waste management requirements;
- Operational requirements that should allow batch incinerators to meet the intent of the Canada-wide Standards for dioxins/furans and mercury, and to reduce the release of other toxic substances; and

• Recommendations on record keeping and reporting.

This Technical Document focuses on minimizing dioxins/furans and mercury emissions from batch waste incinerator systems ranging in size from 50 kg to 3000 kg of waste/batch, the latter representing the largest batch incinerator currently in use in Canada. Batch waste incinerators are those that operate in a non-continuous manner (i.e. they are charged with waste prior to the initiation of the burn cycle, and the door remains closed until the ash has cooled inside the primary chamber). Air emission testing completed by Environment Canada in 2002 using a modern Canadian-built batch waste incinerator demonstrated that, when properly operated and maintained, these systems are capable of meeting the Canada-wide Standards for dioxins/furans (80 pg I-TEQ/Rm³ @ 11% O₂) and mercury (20 μ g/Rm³ @ 11% O₂). Stack testing can be carried out as required by the regulatory authorities (e.g. federal, provincial/territorial) to verify that these standards are met.

The Technical Document recommends and describes a six-step process for batch waste incineration:

- Step 1 Understand Your Waste Stream
- Step 2 Select the Appropriate Incinerator (or Evaluate the Existing System)
- Step 3 Properly Equip and Install the Incinerator
- Step 4 Operate the Incinerator for Optimum Combustion
- Step 5 Safely Handle and Dispose of Incinerator Residues
- Step 6 Maintain Records and Report

This process will assist owners and operators of batch waste incinerators to achieve the intent of the Canada-wide Standards for dioxins/furans and mercury, and reduce the potential for releases of other toxic substances to the environment.

OVERVIEW OF THE SIX-STEP PROCESS FOR BATCH WASTE INCINERATION

Step 1: Understand Your Waste Stream

The first step in managing waste is to understand the quantity and composition of the waste that is generated. A waste audit should be completed, where practical, to:

- Determine the quantity of waste generated in the various parts of an operation;
- Characterize the waste from each type of operation;
- Examine the waste stream to determine what opportunities exist for:
 - Reducing the quantity of waste generated;
 - Reusing materials; and
 - Recycling as much as possible before considering disposal.

Where waste audits are not practical, it is still necessary to develop an estimate of the waste quantities and characteristics before a strategy for waste diversion and disposal can be completed. Owners should investigate waste generation and diversion data from similar operations/facilities in order to estimate the waste types and quantities that will be generated at their own facilities. Sources of such information may include industry associations, waste industry consultants, provincial/territorial authorities and other regulatory bodies.

Based on the results of the waste audit/characterization, an assessment of appropriate disposal options should be undertaken. Where possible, disposal alternatives (other than incineration) for the residual waste stream (i.e. post 3Rs – Reduce, Reuse, Recycle) should be examined. When assessing disposal options, it is important to note that waste should neither be open-burned nor burned in a barrel. In both cases, the appropriate temperatures for a clean burn will not be achieved, and toxic contaminants, in particular dioxins and furans, will be released.

Step 2: Select the Appropriate Incinerator (or Evaluate the Existing System)

The characteristics of the residual waste stream destined for incineration should be incorporated into a call for proposals from incinerator manufacturers. Specifying the quantity and composition of the waste stream will ensure that proposals include suitable incinerators. It should be noted that incinerators built for a specific waste stream, such as animal carcasses, liquid wastes and hazardous wastes, are available and should be used as required.

For facilities with existing incinerators, owners/operators should reassess the suitability of the existing system to manage the current waste stream.

For facilities incinerating **more than 26 tonnes of waste per year**, dual chamber controlled air incinerators are the recommended configuration. These systems are capable of incinerating a wide range of wastes and, when properly maintained and operated, will achieve emissions of PCDD/F and mercury below the level of the Canada-wide Standards. These systems should be equipped with a large secondary chamber sized to provide a residence time of at least one second at a temperature higher than 1000°C, to ensure complete combustion and minimize PCDD/F emissions.

For facilities incinerating less than 26 tonnes of waste per year, "determined efforts"

as defined in the Canada-wide Standards for dioxins and furans¹ should be undertaken. Should circumstances restrict the ability to use a dual-chamber incinerator with a large secondary chamber, a single chamber incinerator with an afterburner should be used. It should be noted that such systems are less likely to be able to meet the emission standards than dual chamber incinerators.

Step 3: Properly Equip and Install the Incinerator

Building Considerations

- Incinerators should be installed inside a building to protect the equipment and the operators from weather conditions.
- In designing the installation site, care should be taken to maximize clearance between incinerator components, including the stack, and combustible construction materials.
- Insulation should be used to protect combustible building materials.
- The building should be equipped with sufficient fresh air inlet capacity for the incinerator. Both combustion air and dilution air for the barometric damper are required. Care should be taken to introduce air in a manner that does not lead to low-temperature operating problems.

Equipment Considerations

The incinerator system should come complete with the following equipment to monitor and record performance parameters:

- A scale to measure the weight of all materials charged to the incinerator; and
- A computerized process control and data acquisition system to store operating data from the incinerator.

Operational data should be collected and stored, at a minimum, every minute that the system is operating. The intent is to be able to summarize operating parameters during start-up, operation and cool-down for every cycle. If the required operating conditions are not achieved these data will allow the operators, the manufacturers and the regulator to identify the contributing factors for the failure. From this information, operating procedures can be adjusted to improve performance. Provisions should be made for the manufacturers to be able to remotely access and review the operating data for trouble shooting purposes.

It is highly recommended that batch incinerators not be equipped with heat recovery devices. The temperature of the stack gases in heat recovery systems will be lower than in systems without heat recovery, and may be in a temperature range that can lead to the formation of greater quantities of PCDD/F. Similarly, air pollution control systems are not recommended for batch waste incineration systems to control PCDD/F emissions. Stack gases should be released directly to the atmosphere at temperatures higher than 700°C to reduce the chances of the inadvertent formation of PCDD/F through the *de novo* synthesis process.

If it is necessary to introduce additional waste to the incinerator during the burn cycle, the incinerator should be equipped with a ram charge system to limit the disruption of combustion in the primary chamber during the waste charging process.

¹ Available on-line at: <u>http://www.ccme.ca/ourwork/air.html?category_id=97</u>

Step 4: Operate the Incinerator for Optimum Combustion

Operational Considerations

Wastes received at the incinerator building should be separated according to their heating value characteristics: wet or low-energy wastes (e.g. food waste); mixed wastes with average energy values; and other materials with high energy values, such as oily waste materials. To facilitate this separation, all waste should be collected in transparent bags. To further assist with separation, wastes could be collected in coloured-coded bags.

Batch incinerators are designed to accept wastes within a specified range of energy (i.e. calorific) values. The operator should select waste from each category and mix it to achieve the manufacturer's specified input calorific value. Each bag should be weighed, its source should be noted, and the total weight of each category should be tallied before completing the loading. This information should be recorded by the computerized data acquisition equipment installed with the incinerator. (Refer to step 6 for further record keeping requirements).

Batch incinerator systems have limited charging capacity (both in terms of waste quantity and the calorific value of the waste charge). To assist the operator with the charging task, particularly for smaller incinerators, several batches could be weighed and placed in their own containers prior to loading the incinerator. The same weighing and logging procedures should be used for each batch and, once recorded, the batch can be charged when appropriate.

When the incinerator is charged with the appropriate mix and quantity of waste, the operator should close the door, ensure all interlocks are engaged, and start the burn cycle. The operator should observe the burn for at least 15 minutes after ignition of the primary chamber burner to ensure the volatility of the waste charged is not creating too much gas for the secondary chamber to handle. The rate of combustion can be slowed by reducing the quantity of under-fired air. The primary chamber should be operated in the temperature range specified by the manufacturer (typically 500^oC to 800^oC).

When satisfied that the burn is proceeding in a controlled manner, the operator may leave the incinerator area while the equipment completes the burn cycle.

The burn cycle should not be interrupted by opening the charging door until after the burn is complete and the unit has cooled down. No additional waste should be added to the primary chamber unless the incinerator is equipped with an appropriate ram feed device.

When the burn is complete and the unit has cooled, the operator should open the door only when wearing protective equipment such as gloves, dust mask, face shield and goggles.

The operator should remove the ash from the previous burn cycle before reloading the incinerator. Any unburned materials found in the ash should be recharged to the primary chamber after the operator has cleaned the air ports, and before putting a fresh charge into the incinerator.

Training Considerations

Operators should be properly trained by the incinerator manufacturer. The training course should include, as a minimum, the following elements:

- System safety including identification of hazards that the operator should recognize;
- Waste characterisation and how waste composition can affect operation;
- Loading limitations, including materials that should NOT be charged to the incinerator, and the allowable quantities of different types of wastes that can be charged;
- Start-up procedures for the incinerator and the normal operation cycle;
- Operation and adjustment of the incinerator to maximise performance;
- Clean out procedures at the end of the cycle;
- Troubleshooting procedures;
- Maintenance schedule; and
- Record keeping and reporting.

Managers should be involved in the training session so that continuity can be maintained with different operators.

Step 5: Safely Handle and Dispose of Incinerator Residues

Ash from the primary chamber of the incinerator can contain materials deleterious to the operator's health and the environment. Operators should use personal protective equipment when handling this material. The material should be carefully removed from the hearth and placed in covered metal containers suitable for transporting the ash to an approved disposal site. The operator should weigh, and maintain records of, the quantity of ash produced.

Step 6: Maintain Records and Report

To demonstrate appropriate operation and maintenance of the incinerator, the facility should maintain records and prepare an annual report containing at least the following information:

- A list of all staff who have been trained to operate the incinerator; type of training conducted and by whom; dates of the training; dates of any refresher courses;
- All preventative maintenance activities undertaken on the equipment;
- Records of operation of the incinerator in electronic format with full data backup;
- Summarized annual auxiliary fuel usage;
- A list of all shipments of incinerator residues, including the weight transported and disposed of by type if necessary, and the location of the disposal site;
- Results of any emissions measurements or any ash sampling data collected during the period.

All raw data records from the operation of the incinerator should be retained for inspection by the appropriate authorities for the period designated by those authorities, or for at least 2 years. The owner should work with the incinerator manufacturer or supplier and the regulators to determine the appropriate level of summary data that should be sent to the regulatory body (e.g. federal, provincial/territorial). The reports should be approved by the facility's senior management before submission.