A Risk Assessment Model for Skeena River Sockeye Salmon

S. Cox-Rogers, J.M.B Hume, K.S. Shortreed, and B. Spilsted

Science Branch, Pacific Region
Fisheries and Oceans Canada
North Coast Stock Assessment Unit
Prince Rupert, BC
V8J 1G8

2010

Canadian Manuscript Report of

 Fisheries and Aquatic Sciences 2920
Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426-1550 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuscrits contiennent des renseignements scientifiques et techniques ques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications complètes. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l'index annual des publications scientifiques et techniques du Ministère.

Les numéros 1 à 900 de cette série ont été publiés à titre de manuscrits (série biologique) de l’Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Les rapports manuscrits sont produits a l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Manuscript Report of

Fisheries and Aquatic Sciences 2920

2010

A RISK ASSESSMENT MODEL FOR SKEENA RIVER SOCKEYE SALMON

by
S. Cox-Rogers ${ }^{1}$, J.M.B Hume ${ }^{2}$, K.S. Shortreed ${ }^{2}$ and B. Spilsted ${ }^{1}$
${ }^{1}$ Science Branch, Pacific Region
Fisheries and Oceans Canada
North Coast Stock Assessment Unit
Prince Rupert, BC
V8J 1G8
${ }^{2}$ Science Branch, Pacific Region
Fisheries and Oceans Canada
Cultus Lake Salmon Research Laboratory
Cultus Lake, BC
V2R 5B6
© Her Majesty the Queen in Right of Canada 2010 Cat. No. Fs 97-4/2920E ISSN 0706-6473

Correct citation for this publication:

Cox-Rogers, S., Hume, J.M.B., Shortreed, K.S., and Spilsted, B. 2010. A risk assessment model for Skeena River sockeye salmon. Can. Manuscr. Rep. Fish. Aquat. Sci. 2920: viii + 60 p.

TABLE OF CONTENTS

1.0 Introduction 1
1.1 Overview of Skeena River Sockeye Lakes. 1
2.0 Methods and Background 2
2.1 Data Sources 2
2.2 Photosynthetic Rate (PR) Model for Estimating Lake Rearing Capacity 2
2.2.1 Data Collection 3
2.2.2 PR Variability 3
2.2.3 Model Equations 4
2.2.4 Adjustments to Model Predictions. 4
2.2.5 PR Model and the Ricker Model 6
2.2.6 Further Adjustments to PR-derived Stock and Recruitment Relationships for Skeena Lakes 7
2.3 Fishery Model 8
2.3.1 Production Module 8
2.3.2 Harvest Module 9
2.3.3 Simulation Structure 10
2.3.4 Fishery Value. 11
3.0 Results 11
3.1 Stock Status from Adults 11
3.1.1 Stock-specific Run-timing 11
3.1.2 Aggregate-stock Catch, Escapement and Exploitation 12
3.1.3 Wild-stock Catch and Escapement 12
3.1.4 Wild-stock Exploitation 13
3.2 Stock Status from Juveniles 14
3.2.1 Sustainable Exploitation 15
3.3 Projected Stock Status Using Fishery Simulation 15
3.3.1 Reference Point Probabilities 16
3.3.2 Conservation Probabilities. 16
4.0 Summary Conclusions 18
5.0 Recommendations 19
6.0 References 19

List of Figures

Figure 1. Skeena River sockeye salmon nursery lakes... 23
Figure 2. Relationship between seasonal mean $\mathrm{PR}\left(\mathrm{PR}_{\text {mean }}\right)$ and PR from the fall of the same year. Inner dashed lines are the 95\% CI and the outer lines are the 95\% prediction interval from one fall sample.24

Figure 3. Weight of age-1sockeye smolts from eight rearing lakes in British Columbia. The solid line is fitted to all data. The mean size from all escapements greater than 20TE/ha is shown (dotted line).25

Figure 4. Comparison of Ricker curves generated from the PR model with Ricker curves fitted to the observed juvenile biomass from four Fraser system lakes. Two standard errors of the PR estimate for $S_{\text {max }}$ and $R_{\text {max }}$ are shown26

Figure 5. Comparison of model and management parameters from the Ricker curves shown in Fig.
\qquad
4.27

Figure 6. Comparison of the Ricker curve generated from the PR model with the Ricker curve fitted to the observed juvenile biomass for Babine Lake (1960-1995).28

Figure 7. Structure of the Skeena River sockeye simulation model.. 29
Figure 8. Comparison of sockeye tag recoveries at various Skeena River spawning areas plotted by the dates when the fish were estimated to have passed the river boundary (source Aro and McDonald 1968).

30

Figure 9. Skeena River sockeye salmon aggregate total stock and escapement 1951-2001. The dashed line is the aggregate-stock escapement goal past the Tyee test fishery of 900,000 $+150,000$ for FSC allocations. Note the y-axis is plotted on a logarithmic scale. The smoothed trend line is a LOWESS fit. Data prior to 1970 are not reconstructed through all fisheries and therefore may underestimate total stock.

Figure 10. Skeena River sockeye salmon exploitation rates for the aggregate stock: 1951-2001. The smoothed trend line is a LOWESS fit. Data prior to 1970 are not reconstructed through all fisheries and may therefore underestimate total exploitation. Average exploitation (all fisheries) since enhancement of Babine Lake began in the late 1960's has been in the 0.60-0.65 range.32

Figure 11. Sockeye salmon counts through the Babine River counting fence at Babine Lake and estimated sockeye escapements for aggregated non-Babine nursery lakes: 1950-2002. Note the y-axis is plotted on a logarithmic scale. The smoothed trend line is a LOWESS fit. Note that under-estimate error and/or missing survey data for some lakes in some years has not been incorporated into the estimated escapements for the aggregated nonBabine nursery lakes.33

Figure 12. Available escapement records for non-Babine sockeye nursery lakes: 1950-2002. All except Kitwanga Lake 1999-2002, the Sustut Fence 1992-2002, and Slamgeesh Lake 2000-2001 are visual estimates. Note the y-axis is plotted on a logarithmic scale. The smoothed trend lines are LOWESS fits.34

Figure 13. Sockeye salmon escapement counts through the Sustut River counting fence (19922002) and the estimated decline rate (about 75\%) from 1992-2002. The Sustut fence is located on the upper Sustut River and enumerates sockeye escapements into both Sustut and Johanson Lakes. Note the y-axis is plotted on a logarithmic scale. The smoothed trend line in the upper graph is a LOWESS fit. The decline rate is calculated from the linear regression of smoothed fence count escapement (5yr running avg.) over the past 10 years. The dashed lines show the zero, $30 \%, 50 \%$, and 80% decline lines.

Figure 14. Trends in reconstructed escapements to Babine Lake by run-timing group. 1950-1996. The smoothed trend line is a LOWESS fit. Source. Wood et al (1998).

Figure 15. Computed Area 4 weekly harvest rates (catch/ (catch+escapement) for the Skeena River aggregate sockeye salmon stock: 1956-2002. The smoothed trend line is a LOWESS fit. Data points for 1997-2002 include outer Area 3 and Area 5.37

Figure 16. Estimated marine exploitation rates (Alaska+Canada) on Skeena River sockeye substocks peaking in Area 4 during specific weeks: 1970-2002. The smoothed trend line is a LOWESS fit. 38

Figure 17. Estimated percentage of juvenile rearing capacity being achieved for each Skeena sockeye rearing lake based upon un-adjusted PR model data (see text). The percentage of juvenile rearing capacity being achieved = observed smolt biomass/estimated maximum smolt biomass at capacity*100.

Figure 18. Estimated percentage of juvenile rearing capacity being achieved for each Skeena sockeye rearing lake based upon adjusted PR model data (see text). The percentage of juvenile capacity being achieved = observed smolt biomass/maximum smolt biomass at capacity*100. The adjusted PR model data reflect reductions in estimated juvenile rearing capacity as a result of suspected parameter over-estimation error and/or the presence of factors other than lake rearing capacity limiting sockeye productivity in the nursery lakes.

Figure 19. The estimated distribution of sustainable exploitation at MSY for Skeena sockeye stocks (nursery lakes).41

Figure 20. Probabilities of escapements to Skeena sockeye lakes being within various escapement "reference point" zones at the end of the next 3 generations (15 years) under recent historic (1990-1999) average Area 3/4/5 harvest rates, Alaskan exploitation, and inriver FSC exploitation. The PRP "prudent reference point" represents 10% of Smax spawning escapement. Maxan/Bulkley Lakes not included due to lack of production data. Dennis and Aldrich Lakes included with McDonnel due to a lack of observed smolt biomass data for establishing seed escapement size. Morrison Lake is included with Babine Lake.

Figure 21. Probabilities of quasi-extinction for Skeena sockeye stocks (lakes) within the next 100 years and within the next 15 years under recent (2000-2002) average Area 3/4/5 harvest rates, Alaskan exploitation, and in-river FSC exploitation. Quasi-extinction is defined as escapements of 100 or fewer spawners for each of five consecutive years (1 generation). The probabilities represent the proportion of simulation trials where this criterion was met for each stock. Maxan/Bulkley Lakes not included due to lack of production data. Dennis and Aldrich Lakes included with McDonnell due to lack of observed smolt biomass data for establishing seed escapement size. Morrison Lake is included with Babine Lake.

Figure 22. Predicted median escapement decline rates for Skeena sockeye stocks (lakes) over the next 3 generations (15 years) under recent (2000-2002) average Area 3/4/5 harvest rates, Alaskan exploitation, and in-river FSC exploitation. The upper dashed line (50\% decline rate) corresponds to IUCN listing category Endangered (EN). The lower dashed line corresponds to IUCN listing category Vulnerable (VU). Maxan/Bulkley Lakes not included due to lack of production data. Dennis and Aldrich Lakes included with McDonnell due to lack of observed smolt biomass data for establishing seed escapement size. Morrison Lake is included with Babine Lake.

Figure 23. Calculated decline rate (zero) for Morice Lake sockeye based on 1987-2002 visual escapement data records (2001 and 2002 based on mark-recapture estimates). The decline rate is calculated from the linear regression of smoothed escapement (5yr running avg.) over the past 3 generation (15 years) period. The data indicate an increasing rate of 47% over the time span, primarily driven by high escapements during the mid-1990's, although escapements have been actually trending downwards since the late 1990's. Note the y-axis is plotted on a logarithmic scale. The dashed lines show the zero, $30 \%, 50 \%$, and 80% decline lines.

List of Tables

Table 1. Skeena sockeye nursery lakes, associated river drainages, and surface areas. 46
Table 2. Estimated Area 3/4/5 run-timing peaks for Skeena sockeye stocks and assumed variability. 47
Table 3. Quality of lake trophic data and juvenile data used in arriving at estimates in Appendix Table 7. 48
Table 4. Explanation of data quality characteristics used in Table 3. 49
Table 5. Pr data for Skeena sockeye nursery lakes (April 03 revisions, source J. Hume FOC) and adjusted Smax and Rmax as described in the text. 50
Table 6. Calculated Ricker parameters for Skeena sockeye nursery lakes (standardized by lake area)... 51
List of Appendices
Appendix Table 1. Estimated run-timing (weekly proportions) for Skeena River sockeye into Area 3/4/5 in 2000 based on DNA analysis ${ }^{(1,2)}$ 53
Appendix Table 2. Estimated run-timing (weekly proportions) for Skeena River sockeye into Area 3/4/5 in 2001 based on DNA analysis ${ }^{(1,2)}$ 54
Appendix Table 3. Estimated run-timing (weekly proportions) for Skeena River sockeye into Area $3 / 4 / 5$ in 2002 based on DNA analysis ${ }^{(1,2)}$ 55
Appendix Table 4. Available escapement records for non-Babine sockeye lakes: 1950-2002 ${ }^{(1)}$ 56
Appendix Table 5. Estimated Weekly Area 4 sockeye harvest rates: 1956-2002 (outer Area 3+5 included starting in 1997) 57
Appendix Table 6. Exploitation rates for Skeena sockeye stocks peaking in each week (Marine = Alaska + Canada) 58
Appendix Table 7. Predicted and Observed production data for Skeena sockeye nursery lakes (April 03 revisions). 59
Appendix Table 8. Draft simulation example using recent 3-year mean (2000-2002) Area 3/4/5 harvest rates, Alaska exploitation $(0,10)$ and in-river FSC harvest rates ${ }^{1}$ 60

Abstract
Cox-Rogers, S., Hume, J.M.B., Shortreed, K.S., and Spilsted, B. A risk assessment model for Skeena River sockeye salmon. Can. Manuscr. Rep. Fish. Aquat. Sci. 2920: viii + 60 p.

This paper presents a risk assessment simulation model for Skeena River sockeye salmon harvested in marine and in-river fisheries in northern British Columbia. This paper also provides production and stock status background for Skeena River sockeye lakes. The model can be used to generate probabilistic statements about stock-specific catch, escapement, harvest rates, and fishery values under different or optional fishing scenarios. The model can also be used to evaluate re-building and recovery options.

The model utilizes a stock and recruitment "engine" for predicting future production from specific escapements. The stock and recruitment parameters (productivity and capacity) used in the model are inferred from photosynthetic rate (PR) assessments of lake rearing capacity for 29 sockeye lakes (stocks) in the Skeena River drainage. User-supplied harvest rates are applied to estimated run-timing proportions (by stock) to calculate catch and escapement in each fishery. The model is spreadsheet-based and is run stochastically as a Monte Carlo simulation. We consider the simulation approach outlined in this paper to be a starting point for further work and development.

Résumé

Cox-Rogers, S., Hume, J.M.B., Shortreed, K.S., and Spilsted, B. A risk assessment model for Skeena River sockeye salmon. Can. Manuscr. Rep. Fish. Aquat. Sci. 2920: viii + 60 p.

Ce document décrit un modèle de simulation du risque portant sur les stocks de saumon rouge de la Skeena pêchés dans les eaux marines et fluviatiles du Nord de la Colombie-Britannique. Il donne également un aperçu de la productivité et de l'état général des stocks dans les lacs où transite le saumon rouge de la Skeena. Ce modèle peut être utilisé pour produire des bilans de probabilité concernant les prises monospécifiques, les échappements, les taux de récolte et la valeur d'une pêcherie donnée selon divers scénarios d'activité de pêche. Le modèle peut également servir à l'évaluation des stratégies de reconstruction et de rétablissement des stocks.

Le modèle utilise un « moteur» de calcul des stocks et du recrutement pour prédire la productivité future de certaines échappées. Les paramètres de stock et de recrutement (productivité et capacité) sont inférés de l'évaluation des taux de photosynthèse (TP) établis pour vingt-neuf lacs de transit des stocks de saumon rouge du bassin de la Skeena. Les taux de capture fournis par les usagers sont appliqués aux proportions de remonte estimatives (par stock) afin de calculer les prises et les échappées pour chaque pêcherie. Le modèle est formalisé sous forme de tableur et utilisé stochastiquement comme simulation Monte Carlo. Nous considérons la méthode de simulation décrite dans ce document comme un point de départ pour d'autres travaux d'études.

1.0 Introduction

This paper presents a risk assessment simulation model for Skeena River sockeye salmon harvested in marine and in-river fisheries in northern British Columbia. The model generates probabilistic statements about stock-specific catch, escapement, harvest rates and fishery values under different fishing regimes. The model utilizes stock and recruitment production relationships derived from photosynthetic rate (PR) assessments of lake rearing capacity for 29 sockeye lakes (stocks) in the Skeena River drainage (Shortreed et al; 2001, Cox-Rogers et al 2004). User-supplied harvest rates are applied to estimated runtiming proportions (by stock) to calculate catch and escapement in each fishery. The model is spreadsheetbased and is run stochastically as a Monte Carlo simulation. The simulation model component described in this paper comes from a draft PSARC working paper S2003-09 (Cox-Rogers 2003) which was subsequently split into Cox-Rogers et al 2004 describing just the production dynamics of Skeena sockeye lakes, and this document which also outlines the production dynamics of Skeena sockeye lakes but also includes the simulation model itself. For this reason, readers will notice that all of the production tables in this document simply duplicate those in Cox-Rogers et al 2004. As well, references to the model described in this paper also appear in various summary memos (Cox-Rogers, memos to file, Prince Rupert B.C.) outlining internal Wild Salmon Policy evaluations from 2003-2005.

1.1 Overview of Skeena River Sockeye Lakes

Skeena River sockeye lakes are distributed from the coast to the high interior regions and vary in size and productivity (Fig. 1). The Skeena system has one very large sockeye rearing lake (BabineNilkitkwa) and approximately 28 smaller ones (Table 1). Babine Lake comprises about 67% of the total Skeena sockeye rearing area (Shortreed et al. 1998). Babine Lake was enhanced in the late 1960's and early 1970’s with the development of the Pinkut Creek and Fulton River spawning channels (West and Mason 1987). Both wild and enhanced sockeye populations rear in Babine Lake and production dynamics for both components have been extensively studied (Levy and Hall 1985; Wood et al. 1998). Tagging studies (Smith and Jordan 1973) identified three distinct runs of sockeye into Babine Lake (early, mid, and late-timing). Wood et al. (1998) concluded that these runs were sub-populations rather than distinct populations because they are connected by relatively high rates of gene flow. Wood et al. (1998) provide the most recent assessment of sockeye production dynamics for Babine Lake.

In addition to Babine Lake, 10 other Skeena nursery lakes are considered important sockeye producers: Alastair, Bear, Johanson, Kitsumkalum, Kitwanga, Lakelse, Morice, Morrison, Sustut, and Swan (Shortreed et al 1998). These 10 lakes comprise about 29% of the total Skeena sockeye rearing area (Shortreed et al 1998). There are also 18 other smaller Skeena lakes that are utilised by juvenile sockeye: Aldrich, Asitka, Atna, Azuklotz, Club, Damshilgwit, Dennis, Johnston, Kluatantan, Kluayaz, McDonell, Motase, Sicintine, Stephens, Slamgeesh, Spawning, Maxan, and Bulkley. These smaller lakes comprise about 4\% of the total Skeena nursery area. Several of the smaller lakes are part of larger lake systems within the same drainage watershed. The level of gene flow between the sockeye populations homing to each of these lakes is not known. Co-joined lake systems include Aldrich-Dennis-McDonnell in the Zymoetz River drainage, Azuklotz-Bear in the Bear River drainage, Atna-Morice in the Morice River drainage, Club-Stephens-Swan in the Kispiox River drainage, the Damshilgwit-Slamgeesh in the Slamgeesh River drainage, and the Morrison-Babine-Nilkitkwa in the Babine River drainage.

Skeena sockeye salmon migrate seaward from April through June predominantly as age- 1 smolts having spent one full summer in the rearing lakes. Some populations have significant proportions of age-2 and some age- 3 smolts (e.g. Morice Lake). Most returning adults are age-4 or age-5 and pass through southern southeast Alaska waters and into the terminal Skeena fishing areas from mid-June through late August. The stocks do not share the same migration timing and are therefore differentially impacted by fisheries primarily directed on the productive mid-late timed Babine enhanced component (peaking in the third week of July). Spawning takes place in lake tributary streams and along lake shorelines from late August through early October.

Skeena River sockeye are caught in a complex array of mixed-stock fisheries in southern southeast Alaska, northern British Columbia (Statistical Areas 1 through 5), and in First Nations food, social, and ceremonial fisheries (FSC) and escapement surplus to spawning requirement fisheries (ESSR) within the Skeena River itself. Sprout and Kadowaki (1987) provide a historical review of the marine commercial fishery and its management. The aggregate escapement goal for Skeena River sockeye salmon is 900,000 plus 150,000 for native food, social, and ceremonial purposes, although management has typically aimed to increase both escapement and exploitation when abundance is high. A daily inseason management model (Cox-Rogers 1994) is used to develop fishing plans and to manage the Area 3/4/5 fishery. In-season sockeye escapement into the Skeena River is estimated by a gillnet test fishery located at Tyee near the escapement boundary (Cox-Rogers and Jantz 1993).

2.0 Methods and Background

2.1 Data Sources

All data used to configure the risk assessment model presented in this paper are either referenced or come from unpublished records on file with the primary author (Steve Cox-Rogers, DFO Stock Assessment, Prince Rupert, B.C). Historical catch, escapement, and harvest rate data for Skeena River sockeye from 1951-2002 were compiled by the responsible manager (M. Potyrala, DFO, Prince Rupert, B.C. pers. comm.). These data include reconstructed catches of Skeena sockeye salmon in mixed-stock fisheries in Alaska and northern British Columbia, based on updated stock reconstructions for 1982-2001 using methodology summarized by Gazey and English (1996) and updated through 2001 (English et al. 2004). Reconstructed catches of Skeena sockeye from 1951-1981 are approximate and were based on application of 1982-1983 tagging data (English et al 1985) to annual catch estimates. Sub-stock escapement records (e.g. B.C. 16's) for Skeena sockeye nursery lakes come from electronic files maintained by FOC stock assessment staff in Prince Rupert. Limnological and limnetic data for Skeena River nursery lakes come from published and unpublished records provided by FOC's Lake Research Unit (Ken Shortreed and Jeremy Hume, Cultus Lake, B.C.).

2.2 Photosynthetic Rate (PR) Model for Estimating Lake Rearing Capacity

Predicting the production capacity for fish in a particular body of water has long been an objective of freshwater research in North America (see Leach et al. 1987 for a review). It has relevance to management of recreational and commercial fisheries (sustainable yield) and to enhancement (amount that recruitment to a lake can be increased). There have been numerous attempts to develop empirical relationships between lake productivity and fish yield. Since a direct measure of productivity (i.e., photosynthetic rate) was not usually available, investigators used a number of other limnological variables as surrogates for PR. These included mean depth and total dissolved solids (Ryder 1965), summer average chlorophyll concentration (Oglesby 1977; Jones and Hoyer 1982), lake area (Youngs and Heimbuch 1982), euphotic zone depth (Koenings and Burkett 1987), and total phosphorus concentration (Downing et al. 1990).

Fee (1985) and Downing et al. (1990) reported that PR measurements were positively correlated to fish yield. Further, Downing et al. (1990) found that PR was more closely correlated to fish yield than other variables commonly used as indices of lake productivity (chlorophyll, total phosphorus). While surrogates may be correlated to PR, using abiotic or biomass variables instead of PR in empirical relationships with fish yield will introduce additional scatter. Further, an improved understanding of energy flow between lake trophic levels is more likely when rate measurements at each trophic level are used.

The PR model (Hume et al. 1996) was derived from the euphotic volume (EV) model (Koenings and Burkett 1987; Koenings and Kyle 1997), which was developed using data from a number of Alaskan lakes. Both models provide predictions of optimum escapement, optimum spring fry recruitment, and maximum smolt output. The EV model uses euphotic zone depth as a surrogate for productivity. In B.C. lakes euphotic zone depth is not an appropriate surrogate for productivity (Hume et al. 1996). The PR model uses a direct measure of lake productivity (photosynthetic rate), and so is applicable to a wider range of lakes. Shortreed et al. (2000) revised the PR model, tested the model predictions, discussed model assumptions, and presented model predictions for many B.C. lakes, including lakes of the Skeena drainage system. Shortreed et al. (2001) reported predictions for additional Skeena River lakes.

2.2.1 Data Collection

PR data used in this paper were collected from 16 lakes of the Skeena River system. Data were collected in 1978 (Stockner and Shortreed 1979), in 1994-1995 (Shortreed et al. 1998), and in 2001-2002 (K. Shortreed and J. Hume, unpublished data). In 10 of the lakes, data were collected once monthly from May-June to October ($\mathrm{n}=5$ to 6) and in the remaining six lakes PR was measured on only one occasion in late August or early September. PR data were collected using in situ incubations and the standard ${ }^{14} \mathrm{C}$ technique using and light and dark bottles. A detailed description of the methods used is available in Shortreed et al. (1998). When seasonal data were available, seasonal average daily $\mathrm{PR}\left(\mathrm{PR}_{\text {mean }}\right)$ in $\mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{~d}^{-1}$ for each lake was computed by integrating daily PR and dividing by the length of the growing season, which we defined as May 1-October 31. Since the PR model requires an estimate of $\mathrm{PR}_{\text {mean }}$, an adjustment was required when data were available for only one sampling date. Using data from a wide range of B.C. lakes, daily PR collected in late summer is significantly correlated with $\mathrm{PR}_{\text {mean }}\left(\mathrm{PR}_{\text {mean }}=\mathrm{PR}\right.$ $\mathrm{x} 0.748, \mathrm{r}^{2}=0.60$, $\mathrm{n}=113$) (Figure 2). We applied this adjustment to estimate $\mathrm{PR}_{\text {mean }}$ when data from only one sampling date were available. We calculated total seasonal PR in tonnes C/lake ($\mathrm{PR}_{\text {total }}$) by multiplying $\mathrm{PR}_{\text {mean }}$ by the length of the growing season and by lake area.

2.2.2 PR Variability

Variability in annual estimates of $\mathrm{PR}_{\text {mean }}$ from any particular lake, or location within a lake, could be a combination of measurement error and annual variability in a number of factors such as sunlight, temperature, nutrient loading, and turbidity. In a lake in Michigan for which data are available for 14 consecutive years, annual variability in $\mathrm{PR}_{\text {mean }}$ was $\pm 9 \%$ 2SE (Wetzel 2001). To calculate annual variability in $\mathrm{PR}_{\text {mean }}$ for B.C. lakes, we compiled data for all B.C. lakes where 3 or more years of $\mathrm{PR}_{\text {mean }}$ were available. There were multiple years of data for 6 lakes and a total of 24 locations within the lakes. There were 3 to 5 years of data for each location. We determined the variance in $\mathrm{PR}_{\text {mean }}$ for each location and the weighted mean variance for all locations (variance was weighted by years) and then calculated 2 SE's. Two SE's ranged from 3 to 44% for the individual locations while the weighted mean SE was 8.0% of the weighted mean of $123 \mathrm{mg} \mathrm{C} \cdot \mathrm{m}^{-2} \cdot \mathrm{~d}^{-1}$. In lakes where we have a full season's sampling (5-6 monthly sampling dates) we used this estimate of variability in the fishery model.

In lakes where we have only collected PR data from a single late summer sampling trip there are two sources of variance. The first is the previously mentioned variability associated with the relationship between the late summer estimate and the seasonal mean estimate. Secondly, seasonal mean PR, as shown above, also has an associated variability of 8.0% (2SE's). We are examining appropriate methods for combining these two sources of variability. As a first estimate for the purposes of this paper we used +/2SE's of 20%.

2.2.3 Model Equations

The revised PR model in Shortreed et al. (2000) uses the following forms:

```
Maximum smolt biomass \((\mathrm{kg})=45.5 \times \mathrm{PR}_{\text {total }}\)
Optimum escapement \((\mathrm{N})=187 \times \mathrm{PR}_{\text {total }}\)
Maximum smolts \((\mathrm{N})=10,120 \times \mathrm{PR}_{\text {total }}\)
```

where:
Maximum smolt biomass $\left(\mathrm{R}_{\max }\right)$ = Maximum number of smolts times a mean smolt weight of 4.5 g . The weight of 4.5 g was chosen because in Alaskan lakes maximum adult production occurred when smolts were $4-5 \mathrm{~g}$ in weight (Koenings and Burkett 1987). Optimum escapement $\left(\mathrm{S}_{\max }\right)=$ Number of spawners needed to maximize smolt production. Maximum smolts = Maximum number of 4.5 g smolts a lake can produce. This was based on observed maximum production in Alaskan lakes (Koenings and Burkett 1987) $\mathrm{PR}_{\text {total }}=$ Total seasonal (May-October) carbon production (metric tons).

2.2.4 Adjustments to Model Predictions

Littoral productivity Implicit in PR model predictions is the assumption that sockeye fry do not benefit from littoral (benthic) PR. The majority of B.C. sockeye nursery lakes are deep and steep-sided, so the littoral zone makes up a small proportion of total lake area. In these lakes, this assumption is likely to be valid, as littoral PR is insignificant compared to limnetic PR. However, a number of Skeena system sockeye lakes (e.g. Kitwanga, Lakelse, Slamgeesh) are relatively shallow, so the littoral zone comprises a substantial proportion of lake surface area. In these lakes, littoral PR may not be insignificant relative to limnetic PR. Sockeye could benefit from littoral PR in two ways: first, directly by grazing on zoobenthos; and second, limnetic zooplankton could be grazing food items originating in the littoral zone (e.g. dislodged periphyton or bacteria). If littoral PR is of benefit to sockeye, then $\mathrm{PR}_{\text {total }}$ and PR model predictions would increase. While sockeye fry are often shore-oriented for part of their lake residence, even at these times their diet consists of limnetic zooplankton (Morton and Williams 1990). France (1995) compiled published data on littoral and pelagic food webs from a wide range of (non-sockeye) lakes from around the world and concluded that "With the exception of a few transzonal migrating species such as lake trout, littoral benthic food webs appear to be largely uncoupled from planktonic carbon flow". However, in a large and relatively deep Alaskan lake (Iliamna), Kline et al. (1993) used biota $\delta^{15} \mathrm{~N}$ and $\delta^{13} \mathrm{C}$ to estimate the relative importance of littoral and limnetic diet items to juvenile sockeye. They reported that the littoral zone contributed 14% of the diet of age- 0 O. nerka and 5% of the diet of age- $1 O$. nerka. The contribution of littoral PR to juvenile sockeye rearing capacity needs to be better documented in all types of sockeye lakes and particularly in shallow lakes. Until such data are available, we have applied no littoral component to $\mathrm{PR}_{\text {total }}$.

Limnetic competitors In many sockeye rearing lakes there is often competition with sockeye for the zooplankton food source. Actual or potential competitors include fish such as kokanee (O. nerka) or stickleback (Gasterosteus spp.) and invertebrates such as mysids, Chaoborus, and Leptodora. Since the PR model predicts the capacity of the limnetic zone to produce total tertiary biomass, model predictions need to be adjusted when competitors are present. Data on the abundance, biomass, diet, and temporal variability of juvenile sockeye competitors is often limited. In the lakes reported here, we have made preliminary estimates of the biomass of competitors, but considerably more work is required to improve these preliminary estimates.

In Skeena system lakes, there are a variety of species which have the potential to compete with sockeye fry. In most of these lakes, little is known about the sockeye competitors. In most cases, we have sampled the limnetic region with a midwater trawl on one occasion only. We estimated the biomass of potential competitors in each lake from a number of data sources including midwater trawls, acoustic
counts and target strength, limnetic gill net sets, and reports by others. We assumed that the abundance, biomass, and type of competitor species present during our trawl surveys was constant and would not change if sockeye fry biomass increased to capacity. We also assumed (sometimes with literature confirmation) that the diet of the competitor was the same as age- 0 sockeye and that competitor biomass used the same proportion of available food as an equivalent amount of sockeye biomass. This is the most conservative approach as we know from sampling that these species occupy the lake's limnetic zone and that they are planktivorous. To account for competition, we adjusted $\mathrm{PR}_{\text {total }}$ by the proportion (by biomass) of $\mathrm{PR}_{\text {total }}$ utilized by a competitor with the following formula:

Adjusted $\mathrm{PR}_{\text {total }}=\mathrm{PR}_{\text {total }}-\mathrm{PR}_{\text {total }} \mathrm{x}\left(\mathrm{C}_{\text {max }} / \mathrm{R}_{\text {max }}\right)$ where $\mathrm{C}_{\max }=$ observed competitor biomass (kg) in the lake.

Smolt weights at $\boldsymbol{S}_{\boldsymbol{m a x}}$ Koenings and Burkett (1987) reported that maximum adult returns occurred when juvenile sockeye densities were sufficiently high to produce $4-5 \mathrm{~g}$ smolts. Obviously, average smolt size strongly affects the numbers of smolts produced by a predicted maximum smolt biomass. The PR model uses this Alaskan average of 4.5 g in its predictions for B.C. lakes. In order to test the validity of this average smolt size, we collated age- 1 smolt size data from eight sockeye rearing lakes in B.C. and compared it to the total escapement 2 years earlier. These included seven sample years from Quesnel Lake, five from Shuswap Lake (Hume et al. 1996), 36 sample years from Babine Lake (Wood et al. 1998; Hume and MacLellan 2000), 48 sample years from Chilko Lake, 6 from Morice Lake, three from Sustut Lake (DFO, data on file), nine from Meziadin Lake (Bocking et al. 2001), and 22 sample years from Cultus Lake (Schubert et al. 2002).

With data from all these lakes combined, there was a weak but significant negative logarithmic relationship between age-1 smolt size and total escapement ($\mathrm{P}<0.001, \mathrm{R}_{\text {adj }}^{2}=0.087$) (Figure 3) Little of the variation in smolt size was explained by the logarithmic relationship but it did explain more than did a linear relationship ($\mathrm{P}<0.01, \mathrm{R}_{\text {adj }}^{2}=0.067$). However, at higher spawner densities (20-165 spawners/ha), average smolt size was $4.6 \mathrm{~g}(\pm 2 \mathrm{SE}=12 \%)$. These empirical data support the PR model's use of 4.5 g as a maximum smolt size when maximum smolt biomass is being produced.

Lakes which produce small smolts Some B.C. lakes (e.g. Morice, Owikeno) do not produce age- 1 smolts as large as 4.5 g even at low escapements. In these lakes, we assumed that PR model predictions of maximum smolt biomass were still valid. Consequently, maximum smolt numbers needed to be increased to account for their smaller size. Also, predicted optimum escapements needed to be increased to account for the higher fry recruitment necessary to increase smolt numbers. To make these adjustments, we increased predictions of both maximum smolt numbers and optimum escapement by the ratio of 4.5 g to observed smolt size at the highest observed escapement:

Adjusted maximum smolt numbers $=R_{\text {max }} \times$ (4.5/observed smolt size)
Adjusted $\mathrm{S}_{\text {max }}=\mathrm{S}_{\text {max }} \mathrm{x}$ (4.5/observed smolt size)

Presence of age-2 smolts In some lakes, a proportion (sometimes the majority) of sockeye fry from each brood year reside in the lake for more than one year, leaving as age- 2 or occasionally age- 3 smolts. These older fish compete directly with age-0 sockeye, but they also contribute to smolt production, so they cannot be treated as simple competitors. While the presence of older smolts will not affect the predicted maximum smolt biomass a lake can produce, it can have a substantial effect on the numbers of smolts that make up this biomass. We accounted for older smolts by weighting the mean size of each age class by its proportion in the smolt run of each brood year.

Significant numbers of age 2 smolts are known to occur in Morice and Kitwanga lakes. We used available age- 1 and age- 2 smolt catch data from these lakes to determine the mean proportion and size of age- 2 smolts (data on file). In five brood years from 1958 to 1963, the proportion of age- 2 smolts in Morice Lake ranged from 36 to 75% and averaged 46%. Mean size of age-1 and age-2 smolts was 3.7
(range $=2.8-4.8 \mathrm{~g}$) and 7.8 g (range $=6.6-9.5 \mathrm{~g}$), respectively. We used these means in the model. Kitwanga smolts were enumerated and measured in 2000 and 2001(Mark Cleveland, Gitanyow Fishery Authority, personal communication). Scale ageing found 97% were age-2 smolts with an average weight of 9 g . As very little data were available on the size of the age -1 smolts, we used 4.5 g . While escapements were well below the PR estimate of $S_{\text {max }}$, we have no data on smolt size or age at higher escapements, and so assumed sizes would not change at higher densities.

2.2.5 PR Model and the Ricker Model

In Skeena system sockeye nursery lakes where no stock recruit data exist, the PR model provides a basis for generating theoretical stock recruit relationships. The model makes predictions of both the maximum sockeye smolt biomass produced by a lake and the total (optimum) escapement needed to produce that biomass. Equivalent parameters are generated by stock and recruit models for semelparous species such as sockeye salmon (Ricker 1975; Hilborn and Walters 1992). For the Ricker stock recruit model in the form:

$$
\begin{equation*}
R=a S e^{-b S} e^{w} \tag{1}
\end{equation*}
$$

R is smolt recruitment (biomass) measured in tonnes, S is spawning escapement, a is the theoretical recruits per spawner at very low stock sizes (productivity), b describes how quickly recruits per spawner drops as S increases (capacity parameter), and e^{w} is the residual error term. The peak of the curve, $\mathrm{R}_{\text {max }}$, is the maximum predicted recruits (smolt biomass) generated by $S_{\text {max }}$, the predicted escapement required to produce $\mathrm{R}_{\text {max }}$. After Hilborn and Walters (1992):

$$
\begin{equation*}
R_{\max }=(a / b) e^{-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\max }=1 / b \tag{3}
\end{equation*}
$$

Consequently, where suitable PR data are available, we can use PR model predictions of optimum escapement and maximum smolt biomass $\left(\mathrm{S}_{\max }\right.$ and $\left.\mathrm{R}_{\max }\right)$ to estimate the Ricker model parameters a and b for generating theoretical Ricker models for each lake.

Comparison of the PR and Ricker models using data from Fraser system lakes To examine the validity of the PR-derived stock-recruit model, we compared it to the Ricker model fitted to available data on adult escapement and juvenile biomass from four sockeye lakes (Chilko, Cultus, Quesnel, Shuswap) in the Fraser River system. Sockeye escapement data are available for most Fraser River lakes (Schubert 1998; NuSEDS). Many Fraser River sockeye stocks have highly variable female spawning success, so to better reflect actual escapements we used estimates of effective female escapement for Chilko, Quesnel, and Shuswap Lake sockeye. Cultus Lake effective females have rarely been enumerated, so for that lake we used estimated total female escapement. We modified the PR model $S_{\text {max }}$ by the weighted mean proportion of effective females from 1938 to 2002 (we weighted the proportion of females by total escapement in each year). Average female spawners were 51\% EFS in Chilko Lake, 49\% EFS in Shuswap Lake, 48% EFS in Quesnel Lake, and 55\% FS in Cultus Lake.

Smolt numbers and size data are available from fences on Chilko and Cultus lakes (Hume et al. 1996; Bradford et al. 2000; Schubert et al. 2002; data on file). On average, 95% of Chilko sockeye smolt in their second spring (age-1), but on occasion age-2 smolts comprise up to 26% of the total and are 2-4 times the size of age- 1 smolts. PR model predictions of $\mathrm{S}_{\max }$ and $\mathrm{R}_{\max }$ for Chilko Lake were adjusted by the average proportion of age-2 smolts. Age-2 smolts are rare in Cultus Lake (Schubert et al. 2002). Smolt
numbers are not available for Quesnel and Shuswap lakes, but fall fry numbers and size are available from acoustic and trawl surveys (Hume et al. 1996; Shortreed et al. 2000; data on file). To convert fall fry biomass to smolt biomass, we made the assumption that sockeye biomass lost to overwinter mortality would be counteracted by winter and spring growth. Consequently, we assumed that observed fall fry biomass was equal to smolt biomass. However, these fall estimates of juvenile O. nerka biomass needed to be adjusted for kokanee abundance.

Kokanee are present in both Shuswap and Quesnel lakes and can be a significant proportion of the limnetic fish community in years of low sockeye escapement (Hume et al. 1996). Age-0 juvenile kokanee are difficult to separate from age-0 sockeye and estimates have only been made occasionally. In Shuswap Lake, Hume et al. (1996) reported that in the non-dominant brood year (1989), kokanee comprised 73\% of the O. nerka population or $0.67 \mathrm{~kg} / \mathrm{ha}$. In Quesnel Lake, in the nondominant 1999 brood year, the population of age-0 kokanee was estimated at $4 \%(0.08 \mathrm{~kg} / \mathrm{ha})$ using marine Sr in the otolith core (data on file). We assumed these estimates were the same in all years and corrected for kokanee biomass in the manner described above for limnetic competitors. To facilitate comparisons between lakes, we normalized both the juvenile and adult data with lake surface area.

Although significant Ricker curves were fitted to all four sets of juvenile biomass data ($\mathrm{P}<0.05$, based on $\log R / S$ vs S), less than 50% of the variance in juvenile biomass was explained by spawner density. Given the variance in the Ricker juvenile biomass/spawner model and in the PR model, the predictions for $S_{\text {max }}$ from the two models are reasonably close, except in Cultus Lake where PR $S_{\max }$ is considerably higher (Figure 4). In Chilko and Quesnel lakes, the juvenile and PR $\mathrm{R}_{\max }$ are also close but $\mathrm{R}_{\max }$ estimates from the PR model in Shuswap and Cultus lakes are considerably higher than the estimates from the Ricker juvenile model. This may indicate other constraints on production in Cultus and Shuswap lakes, such as limited spawning ground capacity or high juvenile mortality from fish predation. Fish predators have been documented as major sources of juvenile mortality in both Cultus (summarized in Schubert et al. 2002) and Shuswap lakes (Williams et al. 1989).

The productivity parameter, Ricker a, estimated from the PR model was similar in all 4 lakes, varying from 1.38 in Quesnel Lake to 1.20 in Cultus Lake (Figure 5). There was a bigger difference between lakes for the Ricker a estimate from the juvenile model than from the PR model. Shuswap sockeye were much more productive with a juvenile Ricker a estimate of 1.12 . This was at least 1.3 times higher than the other stocks, indicating a much higher stock productivity than that estimated for the other 3 stocks (Ricker $a=0.77-0.84$). The higher values of Ricker a from the PR model than from the juvenile model may indicate the presence of factors other than primary productivity that controls the productivity of the sockeye stocks. However, at least some of the discrepancy (possibly most of it) may be due to errors in estimating the parameters from inherently highly variable data.

The capacity parameter, Ricker b, from both models varied more than did Ricker a ranging from 0.01-0.07 for the PR model and from 0.02-0.05 for the juvenile model. Unlike the productivity parameter, there was no consistent difference between Ricker b for the two models. The estimate of Ricker b from the PR model was higher in Quesnel and Chilko lakes. This may indicate that food supply (as measured by PR) is not the limiting factor but that other factors (e.g. spawning ground capacity) are limiting the capacity of these lakes to rear juvenile sockeye. As above, parameter estimate error may also explain much of the differences.

2.2.6 Further Adjustments to PR-derived Stock and Recruitment Relationships for Skeena Lakes

For Skeena nursery lakes, only in Babine Lake is it possible to compare PR-derived stock and recruitment relationships against empirical data (Figure 6). The Ricker curve from the PR model is very similar to the Ricker fit to the smolt data. Both curves generate essentially the same estimates for $\mathrm{S}_{\text {max }}$ but the PR-derived $\mathrm{R}_{\text {max. }}$ is about double the fitted curve $\mathrm{R}_{\text {max }}$. Initial simulations using the PR-derived stockrecruit curves for other Skeena lakes suggested high sustainable exploitation at MSY for many lakes and higher predicted smolt biomass and escapements, under recent patterns of estimated exploitation, than has
actually been observed from juvenile surveys. As for some Fraser system lakes, we suspect our PRderived stock and recruitment model may overestimate productivity for some Skeena sockeye lakes. Reasons for this may be both parameter estimation error and/or the presence of factors other than lake rearing which limit sockeye production. Bodker (2001) made similar observations in her comparison of optimal escapements and maximum recruitment based on Bayesian PR methods and empirical data.

The Ricker parameters from the PR-derived stock and recruitment curves for Skeena lakes can be manipulated to account for possible parameter estimation error and/or other factors affecting lake productivity. For example, factors affecting the quality of the incubation habitat can be modelled by changing Ricker a while factors affecting the extent of incubation habitat can be modelled by changing Ricker b. The difficulty lies in knowing how much to adjust each parameter in order to generate SR curves that might best approximate current productivity regimes in each Skeena nursery lake?

One option is to first adjust $S_{\max }$ for suspected spawning limitation in some lakes (see Shortreed et al 1998) (note this also revises $\mathrm{R}_{\max }$ for those lakes), and then sequentially adjust Ricker a (productivity) until predicted future escapements stabilise or "go flat" under estimated recent exploitation rates and estimated escapement levels for each lake. Average exploitation on Skeena sockeye has been relatively stable since the early 1970’s (Cox-Rogers 2003) and so the observed juvenile densities in the lakes today should (we assume) reflect the cumulative affects of historic exploitation patterns. Currently, unadjusted Ricker parameters (when used in the simulation model) generate increasing escapement trends and smolt biomass levels for most Skeena nursery lakes under recent levels of estimated exploitation. Adjusting Ricker a downwards too much eventually generates decreasing escapement trends and smolt biomass levels for each lake under recent levels of estimated exploitation. The adjustment procedure does not specifically identify the causal mechanisms generating production "bottlenecks" in each nursery lake (parameter estimation error or biotic factors affecting sockeye productivity) but it does account for their probable effects.

Sub-stock exploitation can be estimated for each stock (see Results section on wild stock exploitation) by applying reconstructed sockeye Area $3 / 4 / 5$ weekly harvest rates to the estimated weekly run-timing proportions for each stock through the Area $3 / 4 / 5$ fishery and adding additional estimates for Alaska and in-river FSC/ESSR exploitation. The adjustment procedure provides revised estimates of smolt biomass, $\mathrm{R}_{\text {max, }}$ for each lake. Ricker a values for Skeena lakes were all >1.32 prior to the adjustment process. Our revised Ricker a values range from $0.45-0.98$, or slightly less than has been empirically observed for Fraser Lakes. The adjustment procedure is approximate and assumes stock-specific exploitation rates are being estimated within some reasonable range of accuracy. Empirical stock-recruit data from some Skeena sockeye lakes is required to allow comparison of our adjusted PR-derived stock and recruit relationships with known data.

2.3 Fishery Model

The simulation model consists of a production module (e.g. the PR-derived stock and recruit relationships) linked to a fishery-harvesting module (Figure 7). Seed recruits to each Skeena sockeye stock (lake) are "fished" in the harvest module to generate catch. Escapements are then looped through the production module to generate future streams of age-specific recruits back into the fishery. Probabilistic statements about future escapement trends for each stock, relative to various spawning escapement "reference point" guidelines and COSEWIC conservation thresholds, are produced by the simulation model. Economic predictions about future fisheries value are also generated. The model predicts annual escapements 100 years into the future under fixed fishing regimes. The model is spreadsheet-based (Excel) and is run as a Monte Carlo simulation where key inputs, such as run-timing and the PR-model parameters, are allowed to vary stochastically using triangular, uniform, or normal probability distributions.

2.3.1 Production Module

For each stock (lake) in the fishery model, escapements generate smolt biomass recruits (t/lake) according to equation (1). Random recruitment is assumed lognormal about the average stock and recruitment curves described by equation (1). Due to the lack of lake-specific data, we assume the same variance structure about the stock-recruit relationship for all stocks (ln R/S vs S) based on the empirical stock-recruit analysis of smolt biomass vs spawners for Babine Lake. This approach may over or underestimate recruitment variability for some non-Babine sockeye stocks and is assumed approximate at this time. The residual error term for (1) follows Hilborn and Walters (1992):

$$
\begin{equation*}
e^{w}=e^{\sigma^{2} / 2} \tag{4}
\end{equation*}
$$

where σ is the standard deviation of the residuals from the regression of $\ln (\mathrm{R} / \mathrm{S})$ vs S for Babine Lake.

In the production module, predicted smolt biomass is converted to numbers of smolts using the empirical relationship between smolt weight and spawners/hectare for British Columbia nursery lakes shown in Figure 3. Smolt numbers are then converted to adult recruits assuming average smolt-to-adult survival rates for Babine Lake (0.04+/- SD, data from Wood et al 1998) applied to all stocks equally. As with recruitment variability, this approach may over or underestimate smolt-adult survival for some nonBabine sockeye stocks and is considered approximate at this time. Proportions of age-4, age-5, and age-6 fish in the historical time series for the aggregate stock (Cox-Rogers 2003) are used to partition recruits into age-4, age-5, and age-6 for stocks where age composition data were not available.

Maximum sustained yield escapement, $\mathrm{S}_{\mathrm{msy}}$, and MSY equilibrium exploitation, $\mathrm{U}_{\mathrm{msy}}$, for each nursery lake follow the approximation equations listed in Table 7.2 of Hilborn and Walters (1992):

$$
\begin{align*}
& S_{m s y}=\ln (a / b) *(0.5-(0.07-\ln a) \tag{5}\\
& U_{m s y}=0.5(\ln a)-0.07(\ln a)^{2} \tag{6}
\end{align*}
$$

In the production module, the estimates allowed to vary stochastically include Rmax, $\mathrm{S}_{\text {max }}$, smoltmarine survival, smolt weight, smolt biomass recruitment, and age composition.

2.3.2 Harvest Module

The harvest module is based on a more complex daily harvest model currently used to manage the Area 3/4/5 fishery (Cox-Rogers 1994). Five fisheries are modelled: South-southeast Alaska, Canadian Areas 3/4/5, in-river Skeena native FSC, in-river Skeena native ESSR, terminal native FSC, and terminal native ESSR. Recreational fisheries impacting sockeye within the Skeena River are not yet configured into the harvest module but will be incorporated.

Seed recruitment (incoming return) for each stock is either set to one for calculating exploitation rates alone, or set to a specific N for calculating numerical catch and escapement. Alaska marine catch (C) and escapement (E) for each stock (j) is calculated using a fixed exploitation rate (u) applied to seed abundance (N) for each stock:

$$
\begin{align*}
& C_{\text {alaska }_{j}}=N_{\text {total }_{j}} * u_{\text {alaska }} \tag{6}\\
& E_{\text {alaska }_{j}}=N_{\text {total }_{j}}-C_{\text {alaska }_{j}} \tag{7}
\end{align*}
$$

From run-reconstructions, Alaskan exploitation of the aggregate stock has averaged about 0.10 since the mid-1990's. This rate is currently applied equally to all stocks in the model although stock-specific values are likely higher or lower depending upon run-timing.

Stock-specific escapement from Alaska into the Canadian Area $3 / 4 / 5$ fishery is distributed on a weekly basis in the model using normal-curve distributions to approximate run-timing into Area 3/4/5 (CoxRogers 1994):
$N_{i j}=E_{\text {alaska } j} * f_{i j}$
$f_{i j}=\frac{1}{\sigma_{j} \sqrt{2 \pi}} \exp \left[-\left(\ln X_{i}-x_{j}\right)^{2} / 2 \sigma_{j}{ }^{2}\right]$
where $N_{i j}$ is the weekly (i) abundance of stock (j) in Area 3/4/5, $f_{i j}$ is the weekly proportion of stock (j) present in Area $3 / 4 / 5$ each week X_{i}, x_{j} is the estimated peak week of entry for fish of a specific stock into Area $3 / 4 / 5$, and σ_{j} is the estimated standard deviation about the peak for each stock in weeks.

Weekly catch (C) and escapement (E) for each stock (j) in Area 3/4/5 is calculated in the model by applying user-supplied weekly sockeye harvest rates (h) to the weekly abundance of each stock. Catch and escapement by week are then summed to generate total Area $3 / 4 / 5$ catch and escapement past the escapement boundary for each stock.

$$
\begin{array}{lll}
C_{i j}=N_{i j} * h_{i} & \text { and } & C_{\text {total }_{j}}=\sum C_{i j} \\
E_{i j}=N_{i j}-C_{i j} & \text { and } & E_{\text {total }_{j}}=\sum E_{i j} \tag{11}
\end{array}
$$

Historical daily and weekly sockeye harvest rates for the Area 4 fishery have been established by run-reconstruction of the aggregate stock from 1985-2002 (see Cox-Rogers 1994) and include outer Area 3 and 5 from 1997 onwards. Daily harvest rates in Area 3/4/5 are correlated with fishing effort (Cox-Rogers 1994) and so catch can be varied by adjusting daily harvest rates to achieve specific weekly harvest rate and annual exploitation rate objectives.

Catches in the in-river FSC and terminal FSC fisheries are generated using fixed (user-supplied) harvest rates estimated from historical catch and escapements records and an in-river harvest model (Gazey 2001). Terminal ESSR catches for each nursery lake (and at the Babine Fence) are triggered by harvesting a fixed proportion (0.25) of surplus escapement above MSY levels, although this proportion can be set to any value. For Babine Lake, additional ESSR catches at Pinkut and Fulton creeks are triggered by harvesting a fixed proportion (0.75) of surplus escapement above channel requirements. Again, this proportion can be set to any value.

In the harvest module, the inputs configured to vary stochastically include peak week run-timing (and SD) for each stock, Alaska exploitation rates, weekly Area 3/4/5 harvest rates, and in-river FSC and ESSR harvest rates. Currently, only run-timing is allowed to vary stochastically for the Monte Carlo simulation (using a triangular distribution and range) as the harvest controls are fixed to assess the affects of specific fishing regimes.

2.3.3 Simulation Structure

As noted, spawning escapement (S) to each stock is looped through the production module to generate future recruitments back into the fishery. S_{t} is initialised as the estimated number of spawners producing observed juvenile density levels in the nursery lakes, either from empirical data where available (e.g. fence counts) or from the stock-recruit relationships. The simulation model proceeds in annual time steps for years $t=5$ to 100. The escapement at S_{t-4} results in simulated age-4, age-5, and age-6 recruits according to equation (1) in years $t, t+1$, and $t+2$. The model freezes all parameter estimates for each single trial calculation of S for $\mathrm{t}=5$ to 100 . The process is then repeated for a total of 1000 simulation trials. Currently, there is no co-variance structure among stocks built into the simulation model.

The simulation model does not explicitly consider depensatory population dynamics that may increase the risk of extirpation at low population sizes (e.g. Allee effects). As an approximation, we use an extirpation threshold of 50 spawners (for each of five consecutive years) to approximate the spawning levels below which such effects might be expected (e.g. recruits go to zero).

2.3.4 Fishery Value

The annual stock-specific value of the catch in each fishery is calculated using user-supplied mean weight and price/lb schedules (not the same for all fisheries). A discount rate (0.05) and discounting function (Sandy Fraser, DFO, pers comm.) is used to discount future annual values in each fishery:
$V_{i j}=C_{i j} * 1 /(1+r)^{i+1}$
where $V_{i j}$ is the dollar value of fishery j in year $i, C_{i j}$ is the catch in fishery j in year i, and r is the annual discount rate. Landed value is only one variable in any socio-economic analysis and should be used for comparative purposes only.

3.0 Results

3.1 Stock Status from Adults

Stock status for Skeena nursery lakes is estimated from available adult catch and escapement records and from juvenile densities in the rearing lakes expressed as a proportion of maximum rearing capacity. Only 17 of the 29 Skeena nursery lakes have been surveyed to date. Lake trophic status and juvenile densities have been interpolated for the missing lakes until lake surveys can be conducted (Ken Shortreed, FOC, pers. comm.).

3.1.1 Stock-specific Run-timing

Run-timing for Skeena River sockeye stocks is estimated from historical sockeye tagging studies conducted in Area 4 from 1944 to 1959 (Aro and McDonald 1968, Smith and Jordan 1973), the north coast sockeye tagging project conducted in 1982 and 1983 (English et al 1985), parasite and electrophoretic variation at the Tyee test fishery from 1987 to 1996 (Rutherford et al 1999) and, most recently, DNA variation at the Tyee test fishery for 1996, 1998, 1999 (Beacham et al 2000) and 2000, 2001, and 2002 (Terry Beacham, FOC, pers comm.). These studies generally indicate the earliest stocks to be the Lakelse and Alastair components in late June, followed by the Morice, Swan, Motase, Sustut, McDonnell, early Babine Lake and Pinkut Creek stocks in early-mid July, the mid-timed Morrison (Babine Lake) and Fulton Creek stocks in mid-late July, and the late-timed upper and lower Babine River, Kitsumkalum, Kitwanga, Bear, and stocks in later July-early August.

Figure 8 shows historical Area 4 tag distributions for Alastair, Lakelse, Kitsumkalum, Kitwanga, Morice (Bulkley) Kispiox, Babine, Bear, and Johanson lakes as summarised by Aro and McDonald (1968). Appendix Tables 1, 2, and 3 summarize weekly proportions for the "baseline" DNA sockeye stocks entering Area $3 / 4 / 5$ in 2000, 2001, and 2002 initially estimated in Tyee test fishery escapement samples and subsequently reconstructed back into the commercial fishery. Both the tagging data and the DNA analyses suggest there is considerable run-timing overlap for Skeena sockeye sub-stocks. The DNA data also suggests possible annual variation in run-timing and/or more than one timing peak or population component for some stocks. While this may be true, some of this variability could also be related to sampling issues (e.g. problems of estimating very small stocks in mixtures dominated by the Babine Lake component) and/or missing stocks in the baseline causing miss-assignment. Analyses are ongoing to try and resolve some of these issues.

Table 2 summarizes currently estimated "peak" week run-timing into Area 3/4/5
for Skeena River sockeye sub-stocks. For stocks lacking run-timing data, interim peak timing dates have been assigned based on geographical proximity to stocks where run-timing data exist.

3.1.2 Aggregate-stock Catch, Escapement and Exploitation

Total stock and escapement trends for the Skeena aggregate stock from 1951-2001 (source CoxRogers 2003, data on file) is plotted in Figure 9. Skeena River sockeye returns have steadily increased since enhancement began in the early 1970’s. Average total returns were 2.0 million from 1970-79, 2.9 million from 1980-89, and 3.5 million from 1990-1999. During the 1990's, the range of returns has been quite broad (6.9 million in 1996 to a low of 0.91 million in 1998). Very strong returns were seen in 2000 (4.7 million) and 2001 (4.6 million), but they declined to 1.5 million in 2002 as a result of expected reduced production of age 4 (1998 BY) and age 5 (1997 BY) sockeye (Cox-Rogers 2003). Since 1970, escapements have exceeded or met escapement targets (1.05 million) in all years except 1998, 1999, and 2002. Annual exploitation for the Skeena sockeye aggregate has increased over the time series and has averaged 0.600.65 since enhancement began (Figure 10).

3.1.3 Wild-stock Catch and Escapement

Historic catch records for non-Babine sockeye do not exist except for terminal FSC and ESSR fisheries in-river and so reconstructed returns for the wild stocks cannot be compiled. Stock-specific FSC catch data exist for Morice Lake sockeye captured in the Bulkley River at Hagwilget Canyon (1930-1964) and at Moricetown Falls (1930-present) (Cox-Rogers 2000). Historic First Nations catches in the Bulkley River appear abundance driven in any given year. Stock-specific FSC catch records also exist for jack and adult harvests taken at the Babine River counting fence (1956-present) and in Kitsegass canyon on the lower Babine River (1982-present). A detailed accounting of in-river Skeena catches of sockeye in native FSC and ESSR fisheries from 1982-2000 have been summarised from the many diverse records available and have been summarized by Gazey (2001).

Visual escapement data for Skeena sockeye lakes (B.C 16's) have been collected since the late 1920's. McKinnell and Rutherford (1994) carried out an extensive review of methods of estimating nonBabine sockeye. Visual sockeye escapement data to the smaller Skeena River sockeye lakes is variable and of unknown accuracy because of the wide variety of methods used (Shortreed et al 1998). Escapement estimates to most of the smaller Skeena lakes have been conducted either by foot or air and have not been done consistently, especially in recent years. Fence counts are (or have been) available for some lake systems: from 1962-1967 in Williams and Scully Creeks (tributaries to Lakelse Lake), from 1992-present in the Sustut River below Sustut and Johanson lakes, from 2000-present in the Kitwanga River below Kitwanga Lake, from 2001-present in Slamgeesh Lake, in 2001 in Swan Lake, and in the Babine River below Babine-Nilkitkwa Lake from 1946-present. A sockeye mark-recapture tagging program at

Moricetown Canyon on the Bulkley River was initiated in 2001 to try and improve sockeye escapements estimates into Morice Lake.

Appendix Table 4 summarises 1950-2002 escapement records for the major Skeena sockeye nursery lakes where surveys have been conducted, as well as 1950-2002 sockeye fence counts Babine Lake. The available data suggest escapements to the non-Babine lakes have declined and stabilised at lower levels, relative to Babine Lake, since the 1950's (Figure 11). There is evidence of an increasing trend after the mid-1980’s and into the 1990's for some of the lakes despite the sustained high harvest rates on the Skeena run as whole (Figure 12). Wood et al (1998) presumed this to be a direct result of continuing efforts to harvest the mid-timing Babine sockeye as selectively as possible, but higher freshwater/marine survivals have played a role.

Its unclear how escapement survey error may affect interpretation of escapement trends for nonBabine sockeye lakes. The time series is not complete for all lakes and less effort now goes into surveying escapements than in past years. For wild stocks where fences are in place, recent escapements are actually quite concerning. In Kitwanga Lake for example, fence count escapements were just 320, 231, 198, and 998 sockeye in 1999, 2000, 2001, and 2002 respectively. For Slamgeesh Lake, fence count escapements were 1350 and 324 in 2001 and 2002 respectively. For Sustut and Johanson lakes enumerated at the Sustut River fence from 1992-2002, actual escapements to both lakes combined have trended downward since 1992 (Figure 13). Sustut fence counts were just 221 476, 1258, and 674 sockeye in 1999, 2000, 2001, and 2002 respectively. The calculated decline rate from 1992 to 2002 is estimated at 75% (Figure 13).

A more detailed analysis of sub-stock escapements into Babine Lake was conducted by Wood et al (1998). Their analysis indicated a decline in some Babine lake wild stocks shortly after the first enhanced sockeye returned (Figure 14). They attributed the decline to increased exploitation during fisheries targeting the enhanced stocks. Early timing escapements have been the least affected whereas wild mid-timing escapements (Morrison Lake) have been most affected (Wood et al 1998). Late-timing escapements increased following implementation of more conservative management policies and continue to do so today whereas mid-timing escapements have averaged less than half of pre-enhancement levels (Wood et al 1998).

3.1.4 Wild-stock Exploitation

Annual catch and escapement data do not exist for sockeye originating from non-Babine nursery lakes and so exploitation rates cannot be calculated directly. An alternative approach is to calculate annual exploitation rates using historic weekly harvest rates in Area 4 applied to the normal-curve timing proportions for each individual stock. This was done for the years 1970-2002. Reconstructed (annual) Alaskan and in-river FSC exploitation rates for the aggregate stock can be used to approximate additional marine and FSC exploitation on each of the sub-stocks. While this method may overestimate exploitation for some stocks and under-estimate for others, we feel the general trends resulting from this approach are realistic.

Appendix Table 5 summarises weekly sockeye harvest rates in Area 4 (catch/ (catch+escapement) for the aggregate stock from 1956-2002. Weekly harvest rates have been highest during mid-late July and lowest during early July and early-mid August. They have also varied within weeks over the time series (Figure 15). From Appendix Table 5, decadal mean weekly Area 4 harvest rates are shown below:

Week	Jn 25-1	Jl 1-7	Jl 8-14	Jl 15-21	Jl 22-28	Jl 29-04	Au 5-11	
$1956-59$	0.000	0.000	0.148	0.423	0.367	0.414	0.272	
$1960-69$	0.227	0.380	0.394	0.485	0.476	0.503	0.418	
$1970-79$	0.160	0.331	0.426	0.414	0.568	0.404	0.495	
$1980-89$	0.022	0.108	0.331	0.406	0.498	0.397	0.321	
$1990-99$	0.106	0.318	0.410	0.457	0.415	0.373	0.276	
$2000-09$	0.155	0.383	0.596	0.570	0.550	0.516	0.309	

Appendix Table 6 summarises estimated 1970-2002 marine exploitation (Alaska+Canada) for Skeena sockeye sub-stocks peaking in Area 4 during each specified_week. Marine exploitation by timing group is plotted in Figure 16. We estimate that marine exploitation rates have been lowest for sub-stocks peaking in late June/early July and late July/early August and have been highest for stocks peaking in midlate July. Exploitation rates on the specific sub-stocks are primarily driven by the pattern of weekly harvest rates in Area 3/4/5. From Appendix Table 6, decadal mean marine exploitation rates for stocks peaking in each week are shown below:

	Peaking Wn 25-1	Peaking Jl 1-7	Peaking JI 8-14	Peaking JI 15-21	Peaking Jl 22-28	Peaking JI 29-04	Peaking Au 5-11	
$1970-79$	0.212	0.311	0.396	0.452	0.480	0.481	0.456	
$1980-89$	0.185	0.261	0.352	0.426	0.460	0.454	0.421	
$1990-99$	0.278	0.366	0.438	0.474	0.471	0.439	0.392	
$2000-09$	0.256	0.382	0.487	0.537	0.525	0.463	0.368	

Decadal mean total exploitation (marine + FSC) for each timing group is shown below. ESSR exploitation for certain years primarily affects the mid-timed enhanced component and would represent an add-on for some stocks to the calculations presented here. We suspect our estimates of total exploitation may actually under-estimate exploitation in some fisheries, especially for some in-river FSC fisheries.

Week	Peaking Jn 25-1	Peaking Jl 1-7	Peaking Jl 8-14	Peaking Jl 15-21	Peaking Jl 22-28	Peaking Jl 29-04	Peaking Au 5-11
1970-79	0.262	0.361	0.446	0.502	0.530	0.531	0.506
1980-89	0.245	0.321	0.412	0.486	0.520	0.514	0.481
1990-99	0.338	0.426	0.498	0.534	0.531	0.499	0.452
2000-09	0.279	0.405	0.510	0.560	0.548	0.486	0.391

3.2 Stock Status from Juveniles

It is important to note that our understanding of trophic status and rearing capacity of Skeena Lakes is still evolving and there is some discrepancy among lakes with respect to the quality of the data we are using to make our assessments (Table 3, Table 4). We anticipate better resolution of trophic status and rearing capacity as further studies and/or updates to past evaluations becomes available. Table 5 summarises current (e.g. at the time the surveys were done) estimates of optimum escapement, maximum smolt biomass, observed smolt biomass, and factors limiting production for Skeena sockeye nursery lakes based the PR-model assessments. Table 6 summarises calculated production parameters for the unadjusted and adjusted-PR model stock and recruit relationships. Some of the data in Table 5 differ from previously published or distributed values and reflect updates to the PR model.

Appendix Table 7 summarizes predicted and observed smolt biomass levels in Skeena nursery lakes, PR model calculated escapements producing observed smolt biomass levels, and estimates of MSY escapement and sustainable exploitation at MSY for each nursery lake. Figures 17 and 18 compare the percentages of rearing capacity currently being achieved for each lake for the un-adjusted PR model estimates of rearing capacity and the adjusted PR model estimates of rearing capacity. The unadjusted PR model suggests that smolt biomass levels are at less than 25% of capacity for 21 of the 26 Skeena nursery lakes where data are available. Six of the lakes are estimated to be below 10% of capacity (Kitwanga, Club, Bear, Atna, Johanson, and Kalum). The adjusted PR model suggests that smolt biomass levels are at less than 25% of capacity for 6 of the 26 Skeena nursery lakes where data are available while 2 (Kitwanga and Club) are estimated to be below 10% of capacity. For the adjusted PR model estimates, the majority of the lakes for are estimated to be below 50% of capacity $(17 / 26)$.

It's unclear at this time if the juvenile stock status of each lake is being accurately portrayed by either the un-adjusted PR model data or our adjusted PR model data. As noted, the unadjusted PR model may overestimate rearing capacity in some nursery lakes and thus result in very pessimistic estimates of current stock status. Our adjustments to the PR model estimates attempt to account for possible overestimation of rearing capacity and this results in more optimistic estimates of current stock status. Actual stock status for each lake (observed smolt biomass/potential smolt biomass) may actually lie somewhere in between the two estimates. Still, the most optimistic analysis (the adjusted PR model) suggests that smolt biomass levels for 17 of the 26 Skeena nursery lakes are still at less than 50% of rearing capacity at the current time. Only four lakes (Alastair, Lakelse, Babine, and Slamgeesh) are estimated to be above 70% of rearing capacity. Four lakes are predicted to be at less than 15\% of capacity (Club, Kitwanga, Atna, and Johanson). Maxan and Bulkley Lakes, which have little or no access due to habitat issues, are likely close to 0% of capacity although both lakes, at one time, supported good populations of sockeye. We anticipate that updated assessments and further analytical refinements will help to finalise stock status and of Skeena nursery lakes estimated from juvenile data. As such, the results presented in this working paper should be considered preliminary.

3.2.1 Sustainable Exploitation

Sustainable exploitation rates for Skeena sockeye lakes (Appendix Table 7) suggest the majority of stocks require exploitation below 0.45 , under currently estimated productivity regimes, in order to achieve MSY escapement levels or higher. Figure 19 shows the estimated distribution of sustainable exploitation at MSY for Skeena sockeye nursery lakes. There does not appear to be wide variation in our estimates of MSY exploitation among lakes, which could reflect parameter estimation error. However, while they are low, the estimates of sustainable exploitation at MSY are not un-reasonable considering that most non-Babine nursery lakes are very oligotrophic (Shortreed et al 1998). For the Babine Lake composite stock, which rears both wild and enhanced sockeye, sustainable exploitation at MSY is estimated to be about 0.62 , although this rate is likely too high for the wild stocks and too low for the enhanced Pinkut and Fulton components. As with the stock status analyses presented above, updated assessments and further analytical refinements should help to finalise our estimates of sustainable exploitation for Skeena sockeye lakes.

Under current and historic rates of fishery exploitation, our analysis indicates the majority of nonBabine Lake sockeye stocks are probably over-exploited by combined marine and in-river mixed-stock fishing. Shortreed et al (1998) and Wood et al (1998) reached the same conclusion.

3.3 Projected Stock Status Using Fishery Simulation

A simple simulation example is presented to demonstrate how the simulation model can be used to predict future stock status of Skeena nursery lakes under different fishing regimes. It is not our intention to compare various fishing options in this paper as companion analyses are underway for this purpose. The
lake-specific parameter estimates used for this simulation are still under review and development and so the simulation results are considered preliminary.

The simulation example is based on recent fishing patterns and represents what might be expected if these fishing patterns were to continue into the future. The simulation uses average Area $3 / 4 / 5$ weekly harvest rates for the past 3 years (2000-2002), an Alaskan exploitation rate of 0.10 , which is slightly higher than the 2000-2002 average, and estimated in-river FSC harvest rates for the past three years.

For each stock, the simulation model produces probability distributions of escapement for each year as well as summary graphics showing the median escapement trajectories into the future, median decline rate graphics, annual reference point probabilities, and annual fisheries values. It is not possible in this paper to present these results for all stocks at once and so a summary of simulation results is presented to highlight the major points.

3.3.1 Reference Point Probabilities

The simulation model calculates probabilities of future escapements to each stock falling within various "reference point" escapement zones under different fishing scenarios. We define three escapement reference points for this simulation: a) a lower reference point corresponding to escapements less than 100 fish (quasi-extinction threshold), b) a higher "prudent" reference point (PRP) corresponding to 10% of Smax escapement, which simulations indicate is similar to the escapement level required to achieve, with 90% probability, MSY escapement within three generations under no exploitation for most stocks, and c) a higher reference point corresponding to MSY escapement. The three reference points define four zones of abundance along the spawning escapement continuum. Reference point probabilities are calculated as the proportion of simulation trials meeting the reference point criteria.

Criteria for developing reference points are still being developed and so those used in this paper are presented for example purposes only. For example, Wood (1999) examined other potential reference points for Skeena sockeye including a) escapement needed to produce 10% of Rmax, and b) historical recovery (lowest average 5-year escapement).

Appendix Table 8 presents summary results for the simulation example. Not shown are the calculated fishery values for each stock at $\mathrm{t}=15$ and $\mathrm{t}=25$ years into the future respectively. Figure 20 shows the probability of each stock being within one of four escapement "reference point" zones at the end of the next 3 generation (15 years) period. Assuming a minimum probability level of $p=0.50$ can be used to indicate a stock being in one zone or another, then 2 stocks (lakes) would be in the quasi-extinct escapement zone ($\mathrm{n}<100$ spawners), 8 stocks (lakes) would be in the escapement zone between quasiextinction and the PRP, 9 stocks would be in the escapement zone between the PRP and MSY, and 4 stocks (lakes) would be in the escapement zone above MSY. Note, for Babine Lake, the model applies ESSR harvest rate rules for terminal harvesting and so the escapement levels predicted by this simulation are being reduced by catches occurring at the Babine Fence and the mouths of Pinkut Creek and Fulton River.

3.3.2 Conservation Probabilities

COSEWIC criteria for classifying species at risk in Canada can be applied to the projected escapements to each Skeena sockeye stock (lake) under different fishing scenarios. COSEWIC uses a quantitative system (the Red List) developed by the World Conservation Union (IUCN v.3.1 2001) for classifying species at risk. The categories are extinct, extinct in the wild, threatened, near threatened, least concern, and data deficient. The category "threatened" encompasses three sub-categories most applicable to Skeena sockeye assessments: "critically endangered", "endangered", and vulnerable". A stock is assigned to any of these sub-categories if one of five criteria conditions (A through E, IUCN v3.1 2001)
within each sub-category is met. The criteria conditions are applied to observed or predicted reductions (and associated probabilities) in the number of mature individuals over 10 years or three generations, whichever is longer, and predicted population sizes (and associated probability) of mature individuals.

Decline rates are estimated in our model across a three-generation window (15 years) for a onegeneration smoothed trend (running five-year average) using the natural logarithm of median adult spawner abundance. We define a stock to be quasi-extinct if fewer than 100 mature spawners occur for any consecutive 5 year period (1 generation) and extirpated if fewer than 50 mature spawners occur for any consecutive 5 year period (IUCN extinction level is $n=50$). COSEWIC probabilities are calculated as the fraction of the total simulation trials meeting the category criteria.

Quasi-extinction

Figure 21 shows calculated probabilities of quasi-extinction for each Skeena sockeye stock (lake) for this simulation example. Over 100 years, the probability of quasi-extinction is between 0 and 0.25 for 11 stocks, between 0.25 and 0.50 for 6 stocks, and greater than 0.50 for one stock. Over the next 15 years, the probability of quasi-extinction is between 0 and 0.25 for 3 stocks and zero for all of the other stocks. It's unclear how realistic or useful the 100 year simulation actually is given that the same fishing plan would not actually be implemented each year as simulated. Over the next 15 years, probabilities of quasiextinction would be very low under this fishing regime for all stocks except Spawning Lake (0.26). This simulation example may under-estimate quasi-extinction probabilities if recruitment variability is actually greater than specified in our simulation model.

Decline Rates

Figure 22 shows projected decline rates for each Skeena sockeye stock (lake) for this simulation example. Four stocks (Bear, Damshilgwit, Kitwanga, and Sicintine) are predicted to experience decline rates $>50 \%$ and generate IUCN listings of Endangered (EN) while 3 stocks (Azuklotz, Kalum, and Motase) are predicted to experience decline rates > 30\% and generate IUCN listings of Vulnerable (VU). That so many stocks show a declining trend is not surprising given the high exploitation rates (Appendix Table 8) this simulated "status quo" fishing pattern generates.

Interestingly, our simulation does not generate listable decline rates for Sustut or Johanson lakes where observed fence counts (Figure 13) actually suggest a marked decline in escapements (75\%) over the past ten years leading to a potential IUCN listing of Endangered (EN) to Critically Endangered (CR). While the simulation does indicate some probability of 30% and 50% decline rates for these stocks (Appendix table 8) we suspect our simulation model could either be a) (still) over-estimating productivity for these lakes b) under-estimating recruitment variability, c) using inappropriate run-timing relative to weekly harvest rate structure, or d) be affected by lake survey data sampled during a period of possibly higher production. These concerns also extend to other Skeena lakes where production information is either poor (Table 3) or is missing and has been interpolated. For example. Slamgeesh Lake is estimated to be very productive and able to sustain high exploitation rates, while its co-joined lake (Damshilgwit) cannot. The stock status of Lakelse Lake is estimated to be quite good based on available data, yet extremely low spawner abundances in the lake tributaries were reported in 2002 (D. Wagner, FOC, pers. comm.). As previously noted, we anticipate better resolution of stock-specific production dynamics for Skeena sockeye nursery lakes as further studies and/or updates to past evaluations become available.

One concern in applying decline rate criteria to trigger conservation listings is the maintenance of small Skeena sockeye stocks at very low levels without decline under relatively stable yet high exploitation rates. For example, Kitwanga Lake sockeye appear to have been maintaining very low annual escapement levels (about 100-500 spawners) under high exploitation for many years. Applying decline rate criteria to past escapements would not necessarily trigger a conservation listing for this stock. The same concern applies to other, perhaps smaller sockeye stocks within the Skeena system which have very low productive capacities and are perhaps being maintained at stable yet low escapement levels.

The opposite concern applies to stocks which show no evidence of decline until recent years. For example, Morice Lake sockeye have been exploited at moderate yet stable levels and appear to be responding to variations (we suspect) in freshwater and/or marine survival that offset decline trends evaluated with the IUCN criteria. Because of relatively high escapements mid-way through the past 3 generation period, Morice Lake actually shows an increasing trend when the decline rate criteria are applied to the past 3 generation visual escapement record (Figure 23). However, recent escapements appear to be returning to the lower escapement levels maintained throughout the 1960's and into the early 1990's (1000-10000 fish) which are less than 10% of estimated spawning capacity.

4.0 Summary Conclusions

Table 5 perhaps best summarises and re-enforces our impressions of overall stock status of Skeena sockeye nursery lakes. Although many lakes still require evaluation and production parameter estimates are still under review, our findings re-enforce previous assessments (Shortreed et al 1998, 2001) concluding that the majority of Skeena nursery lakes that have been surveyed are oligotrophic, appear to be largely fry-recruitment limited (not enough spawners) and producing sockeye below potential production. In addition to recruitment limitation, some lakes are also being limited by factors such as low spawning ground capacity or quality, low in-lake growth and/or survival, nutrient limitation, glacial turbidity, and species competition. All of these factors act to reduce sockeye productivity and limit sustainable exploitation rates. Increased fry recruitment through increased escapements, combined with lake-specific restorative and/or enhancement techniques, has been suggested for improving sockeye production from non-Babine nursery lakes (Shortreed et al 1998, 2001).
-Rearing capacity estimates from the PR model were modified to account for other limnetic competitors, variations between lakes in smolt size at rearing capacity, and multiple ages of smolts. Further adjustments were made through the use of the simulation model to account for other limiting factors (e.g. spawning grounds, predation). These modifications and adjustments resulted in reduced estimates of rearing capacity for each stock. From the limnetic and juvenile surveys of the nursery lakes, estimated juvenile densities (at the time of sampling) are estimated to be at less than 15% of adjusted capacity for 4 lakes, at less than 25% of adjusted capacity for 6 lakes, at less than 50% of adjusted capacity for 18 lakes, and at less than 75% of capacity 23 lakes. Juvenile densities in just 4 Skeena nursery lakes (Babine, Alastair, Lakelse, and Slamgeesh) are estimated to be at more than 75% of adjusted capacity.
-From the exploitation rate assessments, recent average decadal exploitation rates have been higher than estimated sustainable exploitation at MSY for approximately 19 Skeena sockeye nursery lakes.
-From the escapement assessments of non-Babine lakes where fences have been in place for several years, adult escapement counts have either been very low (Kitwanga), or have been declining (Sustut/Johanson).
-From the visual escapement assessments of most non-Babine lakes, escapement trends have either been declining or have stabilised to lower than historic levels. The only Skeena sockeye nursery lake showing strong evidence of increasing escapements and production appears to be Babine Lake where early wild, late wild, and enhanced Pinkut and Fulton stocks appear to be doing well.
-Simulation modelling based on PR-model derived production relationships suggests that 7 nonBabine sockeye stocks risk escapement decline rates ranging from 30% to $>50 \%$ under continued patterns of high fisheries exploitation. Simulation modelling can be used to evaluate alternative impacts of different fishing regimes on Skeena sockeye stocks. Simulation modelling can also be used to evaluate re-building and recovery options.
-Three Skeena sockeye nursery lakes warrant special mention either because of observed low juvenile abundances, observed low or declining adult escapements, or both (Kitwanga Lake, Sustut Lake,
and Johanson Lake). Two other Skeena sockeye nursery lakes are also of concern because of probable habitat issues restricting sockeye access (Maxan and Bulkey Lakes).

5.0 Recommendations

1) Data on many Skeena lakes are either very limited or non-existent and are needed to improve both empirical knowledge of these systems and model predictions. Obtaining additional data on current sockeye stock status and factors affecting stock status should be a priority. These factors include juvenile sockeye abundance and growth rates, lake productivity, factors limiting lake productivity, and other factors which could be constraining sockeye production (e.g. access to the lakes, spawning ground capacity/quality, predators, competitors, temperature ranges, and seasonal oxygen depletion).
2) A schedule of rotational assessment surveys should be developed for updating stock status of Skeena lakes in future years. Juvenile surveys provide estimates of lake capacity utilization and are best suited to assessing stock status in sockeye nursery lakes where accurate adult escapement (and associated catch) is difficult or logistically impossible to collect.
3) For all non-Babine sockeye nursery lakes, examining options for increasing fry recruitment through increased escapements, combined with lake-specific restorative and/or enhancement techniques, should be evaluated as a means of improving sockeye production from non-Babine nursery lakes. Recovery plans for addressing low or declining sockeye escapements to several Skeena nursery lakes should be an immediate priority. These lakes include Kitwanga, Sustut, Johanson, Maxan, and Bulkley Lakes.
4) Fishing plans for marine and in-river mixed-stock Skeena sockeye fisheries should be developed with strong consideration of the effects of exploitation on sockeye from all Skeena sockeye lakes where the probabilities of generating or maintaining low escapements (e.g. below PRP’s) and associated juvenile production is high.

6.0 References

Aro, K.V., and McDonald, J. 1968. Times of passage of Skeena River sockeye and pink salmon through the commercial fishing area. Fish. Res. Bd. Canada. MS Rep. Series No. 984. 169p.

Beacham, T.D., Wood, C.C., Withler, R.E., Le, K.D., and Miller, K.M. 2000. Application of microsatellite DNA variation to estimation of stock composition and escapement of Skeena River sockeye salmon (Oncorhynchus nerka). N. Pac. Anad. Fish. Comm. Res. Bull. 2: 263-276.

Bocking, R.C., Link, M.R., Baxter, B. Nass, B., and Jantz, L. 2001. Meziadin Lake biological escapement goal and considerations for increasing yield of sockeye salmon (Oncorhynchus nerka). MS 51p.

Bodker, K.M. 2001. Precautionary reference points for Fraser River sockeye salmon escapement goals based on productivity of nursery lakes and stock-recruitment analyses. MSc. Thesis. Simon Fraser University. School of Resource and Environmental Management. Project No. 279. 72p.

Bradford, M.J., Pyper, B., and Shortreed, K.S. 2000. Biological responses of sockeye salmon to the fertilization of Chilko Lake, a large lake in the interior of British Columbia. N. Am. J. Fish Manage. 20: 661-671.

Cox-Rogers, S., and Jantz, L. 1993. Recent trends in the catchability of sockeye salmon in the Skeena River gillnet test fishery and impacts on escapement estimation. Can. Man. Rep. Fish. Aquat. Sci. 2219. 19p.

Cox-Rogers, S. 1994. Description of a daily simulation model for the Area 4 commercial salmon fishery. Can. Man. Rep. Fish. Aquat. Sci. 2256. 46p.

Cox-Rogers, S. 2000. Stock status update for Morice-Nanika sockeye. (Memo to file, FOC, Prince Rupert, B.C.)

Cox-Rogers, S. 2003. Pre-season 2003 stock size forecasts for Skeena River and Nass River sockeye salmon. PSARC Working paper S2003-01. 20p.

Cox-Rogers, S. et al. 2003. Stock status and lake based production relationships for wild Skeena River sockeye salmon. Draft PSARC Working document S2003-09.

Cox-Rogers, S., Hume, J.M.B., and Shortreed, K.S. 2004. Stock status and lake based production relationships for wild Skeena River sockeye salmon. CSAS Research Document 2004/010. 55p.

Downing, J.A., Plante, C., and Lalonde, S. 1990. Fish production correlated with primary productivity, not the morphoedaphic index. Can. J. Fish. Aquat. Sci. 47: 1929-1936.

English, K.K., Gazey, W.J., Peacock, D., and Oliver, G. 2004. Assessment of the Canadian and Alaskan sockeye stocks harvested in the northern boundary fisheries using run reconstruction techniques, 1982-2001. Pacific Salmon Comm. Tech. Rep. No. 13: 93p.

English. K.K., Hall, D., and Taylor, J. 1985. The north coast salmon tagging project: management information: Volume A: Introductory volume guide to figures and tables.

English. K.K., Hall, D., and Taylor, J. 1985. The north coast salmon tagging project: management information: Volume C: 1983 sockeye salmon.

Fee, E.J., Stainton, M.P., and Kling, H.J. 1985. Primary production and related limnological data for some lakes of the Yellowknife, NWT area. Can. Tech. Rep. Fish. Aquat. Sci. 1409.

France, R.L. 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40: 1310-1313.

Gazey, W.J. 2001 In-river Skeena Model (unpublished MS on file, FOC, Prince Rupert, B.C.)
Gazey, W.J., and English, K.K. 1996. Assessment of sockeye and pink salmon stocks in the northern boundary area using run reconstruction techniques 1982-92. PSARC Working Paper S96-04.

Hilborn R., and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman and Hall, London. p. 570.

Hume, J.M.B., and MacLellan, S.G. 2000. An assessment of the juvenile sockeye salmon (Oncorhynchus nerka) populations of Babine Lake. Can. Tech. Rep. Fish. Aquat. Sci. 2327: 37p.

Hume, J.M.B., Shortreed, K., and Morton, K. 1996. Juvenile sockeye rearing capacity of three lakes in the Fraser River system. Can. J. Fish. Aquat. Sci. 53: 719-733.

Jones, J.R., and Hoyer, M.V. 1982. Sportfish harvest predicted by summer chlorophyll-a concentration in midwestern lakes and reservoirs. Trans. Am. Fish. Soc. 111: 176-179.

Kline, T.C., Goering, J.J., Mathisen, O.A., and Poe, P.H. 1993. Recycling of elements transported upstream by runs of Pacific salmon: II. Evidence in the Kvichak River watershed, Bristol Bay, south-western Alaska. Can. J. Fish. Aquat. Sci. 50: 2350-2365.

Koenings, J.P., and Kyle, G.B. 1997. Collapsed populations and delayed recovery of zooplankton in response to heavy juvenile sockeye (Oncorhynchus nerka) foraging. Alaska Department of Fish and Game. Alaska Fishery Research Bulletin. 4:120-135

Koenings, J.P., and Burkett, R.D. 1987. Population characteristics of sockeye salmon (Oncorhynchus nerka) smolts relative to temperature regimes, euphotic volume, fry density and forage base within Alaskan lakes. Pages 216-234 in H. D. Smith, L. Margolis, and C. C. Wood, editors. Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

Leach, J.H., Dickie, L.M., Shuter, B.J., Borgmann, U., Hyman, J., and Lysack, W. 1987. A review of methods for prediction of potential fish production with application to the Great Lakes and Lake Winnipeg. Can. J. Fish. Aquat. Sci. 44: 471-485.

Levy, D.A., and Hall, K.J. 1985. A review of the limnology and sockeye salmon ecology of Babine Lake. Westwater Research Centre, UBC, Canada, Tech Rep. No. 27. 78p.

McKinnell, S., and Rutherford, D. 1994. Some sockeye salmon are reported to spawn outside the Babine Lake watershed in the Skeena drainage. PSARC Working Paper S94-11: 52 p.

Morton, K.F., and Williams, I.V. 1990. Sockeye salmon (Oncorhynchus nerka) utilization of Quesnel Lake, British Columbia. Can. Tech. Rep. Fish. Aquat. Sci. 1756: 27 p.

Oglesby, R.T. 1977. Relationship of fish yield to lake phytoplankton standing crop, production, and morphometric factors. J. Fish. Res. Bd. Can. 34: 2271-2279.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd. Can. 191.

Rutherford, D.T., Wood, C.C., Cranny, M., and Spilsted, B. 1999. Biological characteristics of Skeena River sockeye salmon (Oncorhynchus nerka) and their utility for stock composition analysis of test fishery samples. Can. Tech. Rep. Fish. Aquat. Sci. 2295. 48p.

Ryder, R.A. 1965. A method for estimating the potential fish production of north-temperate lakes. Trans. Am. Fish. Soc. 94: 214-218.

Schubert, N., Cass, A., Cone, T., Fanos, B., Foy, M., Gable, J., Grout, J., Hume, J., Johnson, M., Morton, K., Shortreed, K., and Staley, M. 2002. Status of Cultus Lake sockeye salmon (Oncorhynchus nerka). Pacific Scientific Advice Review Committee, PSARC Working Paper S2002-11.

Schubert, N.D. 1998. The 1994 Fraser River sockeye salmon (Oncorhynchus nerka) escapement. Can. Tech. Rep. Fish. Aquat. Sci. 2201: 62 p.

Shortreed, K.S., Hume, J.M.B., and Stockner, J.G. 2000. Using photosynthetic rates to estimate the juvenile sockeye salmon rearing capacity of British Columbia lakes, p. 505-521. In E.E. Knudsen, C.R. Steward, D.D. MacDonald, J.E. Williams, and D.W. Reiser [eds.]. Sustainable Fisheries Management: Pacific Salmon. CRC Press LLC, Boca Raton, New York.

Shortreed, K.S., Hume, J.M.B., Morton, K.F., and MacLellan, S.G. 1998. Trophic status and rearing capacity of smaller sockeye nursery lakes in the Skeena River system. Can. Tech. Rep. Fish. Aquat. Sci. 2240: 78 p.

Shortreed, K.S., Morton, K.F., Malange, K., and Hume, J.M.B. 2001. Factors limiting juvenile sockeye production and enhancement potential for selected B.C. nursery Lakes. Can. Sci. Adv. Sec. Res. Doc. 2001/098.

Smith, H.D., and Jordan, F.P. 1973. Timing of Babine Lake sockeye stocks in the north-coast commercial fishery as shown by several taggings at the Babine counting fence and rates of travel through the Skeena and Babine Rivers. Fish. Resr. Bd. Can. Tech Rep. 418.

Sprout, P.E., and Kadowaki, R.K. 1987. Managing the Skeena River sockeye salmon (Oncorhynchus nerka) fishery - the process and the problems. pp. 385-395 in H.D. Smith, L. Margolis, and C.C. Wood (ed.) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

Stockner, J.G., and Shortreed, K.S. 1979. Limnological studies of 13 sockeye salmon lakes in British Columbia, Canada. Fish. Mar. Serv. Tech. Rep. 865.

West, C.J., and Mason, J.C. 1987. Evaluation of sockeye salmon (Oncorhynchus nerka) production from the Babine Lake Development Project. Pp. 176-190 in H.D. Smith, L. Margolis, and C.C. Wood (ed.) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

Wetzel, R.G. 2001. Limnology: lake and river ecosystems, $3^{\text {rd }}$ ed. Academic Press. London, U.K.
Williams, I.V., Brock, D., Gilhousen, P., Gjernes, T., Morton, K., Johnson, R., and Saito, W. 1989. Studies on the lacustrine biology of sockeye salmon (Oncorhynchus nerka) in the Shuswap system. Bull. Int. Pac. Salmon Fish. Comm. No. 24: 108 p.

Wood, C.C., Rutherford, D.T., Bailey, D., and Jakubowski, M. 1998. Assessment of sockeye salmon production in Babine Lake, British Columbia with forecast for 1998. Can. Tech. Rep. Fish. Aquat. Sci. 2241: 50 p.

Wood, C.C. 1999. Conceptual framework for choosing limit reference points. Unpublished MS April 1999, FOC, Nanaimo. 14p.

Youngs, W.D., and Heimbuch, D.G. 1982. Another consideration of the morphoedaphic index. Trans. Am. Fish. Soc. 111: 151-153.

Figure 1. Skeena River sockeye salmon nursery lakes.

Figure 2. Relationship between seasonal mean $P R\left(P R_{\text {mean }}\right)$ and $P R$ from the fall of the same year. Inner dashed lines are the $\mathbf{9 5 \%}$ CI and the outer lines are the $\mathbf{9 5 \%}$ prediction interval from one fall sample.

Figure 3. Weight of age-1sockeye smolts from eight rearing lakes in British Columbia. The solid line is fitted to all data. The mean size from all escapements greater than 20TE/ha is shown (dotted line).

Figure 4. Comparison of Ricker curves generated from the PR model with Ricker curves fitted to the observed juvenile biomass from four Fraser system lakes. Two standard errors of the PR estimate for $S_{\text {max }}$ and $R_{\text {max }}$ are shown.

Figure 5. Comparison of model and management parameters from the Ricker curves shown in Fig. 4.

Figure 6. Comparison of the Ricker curve generated from the PR model with the Ricker curve fitted to the observed juvenile biomass for Babine Lake (1960-1995).

Figure 7. Structure of the Skeena River sockeye simulation model.

Figure 8. Comparison of sockeye tag recoveries at various Skeena River spawning areas plotted by the dates when the fish were estimated to have passed the river boundary (source Aro and McDonald 1968).

- Total Stock
\times Escapement

Figure 9. Skeena River sockeye salmon aggregate total stock and escapement 1951-2001. The dashed line is the aggregate-stock escapement goal past the Tyee test fishery of $\mathbf{9 0 0 , 0 0 0}+\mathbf{1 5 0 , 0 0 0}$ for FSC allocations. Note the y-axis is plotted on a logarithmic scale. The smoothed trend line is a LOWESS fit. Data prior to 1970 are not reconstructed through all fisheries and therefore may underestimate total stock.

Figure 10. Skeena River sockeye salmon exploitation rates for the aggregate stock: 1951-2001. The smoothed trend line is a LOWESS fit. Data prior to 1970 are not reconstructed through all fisheries and may therefore underestimate total exploitation. Average exploitation (all fisheries) since enhancement of Babine Lake began in the late 1960's has been in the 0.60-0.65 range.

- Non-Babine Wild
\times Babine Fence

Figure 11. Sockeye salmon counts through the Babine River counting fence at Babine Lake and estimated sockeye escapements for aggregated non-Babine nursery lakes: 1950-2002. Note the y-axis is plotted on a logarithmic scale. The smoothed trend line is a LOWESS fit. Note that under-estimate error and/or missing survey data for some lakes in some years has not been incorporated into the estimated escapements for the aggregated nonBabine nursery lakes.

Figure 12. Available escapement records for non-Babine sockeye nursery lakes: 1950-2002. All except Kitwanga Lake 1999-2002, the Sustut Fence 1992-2002, and Slamgeesh Lake 2000-2001 are visual estimates. Note the y-axis is plotted on a logarithmic scale. The smoothed trend lines are LOWESS fits.

Figure 13. Sockeye salmon escapement counts through the Sustut River counting fence (1992-2002) and the estimated decline rate (about 75\%) from 1992-2002. The Sustut fence is located on the upper Sustut River and enumerates sockeye escapements into both Sustut and Johanson Lakes. Note the y-axis is plotted on a logarithmic scale. The smoothed trend line in the upper graph is a LOWESS fit. The decline rate is calculated from the linear regression of smoothed fence count escapement (5yr running avg.) over the past 10 years. The dashed lines show the zero, $\mathbf{3 0 \%}$, $\mathbf{5 0 \%}$, and $\mathbf{8 0 \%}$ decline lines.

Figure 14. Trends in reconstructed escapements to Babine Lake by run-timing group. 1950-1996. The smoothed trend line is a LOWESS fit. Source: Wood et al (1998).

Figure 15. Computed Area 4 weekly harvest rates (catch/ (catch+escapement) for the Skeena River aggregate sockeye salmon stock: 1956-2002. The smoothed trend line is a LOWESS fit. Data points for 1997-2002 include outer Area 3 and Area 5.

Figure 16. Estimated marine exploitation rates (Alaska+Canada) on Skeena River sockeye substocks peaking in Area 4 during specific weeks: 1970-2002. The smoothed trend line is a LOWESS fit.

Figure 17. Estimated percentage of juvenile rearing capacity being achieved for each Skeena sockeye rearing lake based upon un-adjusted PR model data (see text). The percentage of juvenile rearing capacity being achieved = observed smolt biomass/estimated maximum smolt biomass at capacity*100.

Figure 18. Estimated percentage of juvenile rearing capacity being achieved for each Skeena sockeye rearing lake based upon adjusted PR model data (see text). The percentage of juvenile capacity being achieved = observed smolt biomass/maximum smolt biomass at capacity* 100 . The adjusted PR model data reflect reductions in estimated juvenile rearing capacity as a result of suspected parameter over-estimation error and/or the presence of factors other than lake rearing capacity limiting sockeye productivity in the nursery lakes.

Figure 19. The estimated distribution of sustainable exploitation at MSY for Skeena sockeye stocks (nursery lakes).

Figure 20. Probabilities of escapements to Skeena sockeye lakes being within various escapement "reference point" zones at the end of the next 3 generations (15 years) under recent historic (1990-1999) average Area 3/4/5 harvest rates, Alaskan exploitation, and in-river FSC exploitation. The PRP "prudent reference point" represents 10% of Smax spawning escapement. Maxan/Bulkley Lakes not included due to lack of production data. Dennis and Aldrich Lakes included with McDonnel due to a lack of observed smolt biomass data for establishing seed escapement size. Morrison Lake is included with Babine Lake.

Probability of quasi-extinction in next 100 years

Probability of quasi-extinction in next 15 years

Figure 21. Probabilities of quasi-extinction for Skeena sockeye stocks (lakes) within the next 100 years and within the next 15 years under recent (2000-2002) average Area 3/4/5 harvest rates, Alaskan exploitation, and in-river FSC exploitation. Quasi-extinction is defined as escapements of $\mathbf{1 0 0}$ or fewer spawners for each of five consecutive years (1 generation). The probabilities represent the proportion of simulation trials where this criterion was met for each stock. Maxan/Bulkley Lakes not included due to lack of production data. Dennis and Aldrich Lakes included with McDonnell due to lack of observed smolt biomass data for establishing seed escapement size. Morrison Lake is included with Babine Lake.

Escapement Decline Rate over next 3 Generations

Figure 22. Predicted median escapement decline rates for Skeena sockeye stocks (lakes) over the next 3 generations (15 years) under recent (2000-2002) average Area 3/4/5 harvest rates, Alaskan exploitation, and in-river FSC exploitation. The upper dashed line (50\% decline rate) corresponds to IUCN listing category Endangered (EN). The lower dashed line corresponds to IUCN listing category Vulnerable (VU). Maxan/Bulkley Lakes not included due to lack of production data. Dennis and Aldrich Lakes included with McDonnell due to lack of observed smolt biomass data for establishing seed escapement size. Morrison Lake is included with Babine Lake.

Figure 23. Calculated decline rate (zero) for Morice Lake sockeye based on 1987-2002 visual escapement data records (2001 and 2002 based on mark-recapture estimates). The decline rate is calculated from the linear regression of smoothed escapement (5yr running avg.) over the past 3 generation (15 years) period. The data indicate an increasing rate of $\mathbf{4 7 \%}$ over the time span, primarily driven by high escapements during the mid-1990's, although escapements have been actually trending downwards since the late 1990's. Note the y-axis is plotted on a logarithmic scale. The dashed lines show the zero, $\mathbf{3 0 \%}$, $\mathbf{5 0 \%}$, and $\mathbf{8 0 \%}$ decline lines.

Table 1. Skeena sockeye nursery lakes, associated river drainages, and surface areas.

Lake	Geographical Location	Associated River Drainage	Surface Area (km^2)	\% of Total
Alastair	Lower Skeena	Gitnadoix	6.9	1.0\%
Aldrich	Middle Skeena	Zymoetz (Copper)	0.5	0.1\%
Asitka	Upper Skeena	Sustut	0.4	0.1\%
Atna	Middle Skeena	Morice	5.1	0.7\%
Azuklotz	Upper Skeena	Bear	2.2	0.3\%
Babine-Nilkitkwa	Upper Skeena	Babine	461.0	67.4\%
Bear	Upper Skeena	Bear	19.0	2.8\%
Bulkley	Middle Skeena	Morice	0.5	0.1\%
Club	Middle Skeena	Kispiox	0.4	0.1\%
Damshilgwit	Upper Skeena	Slamgeesh	0.3	0.0\%
Dennis	Middle Skeena	Zymoetz (Copper)	0.5	0.1\%
Johanson	Upper Skeena	Sustut	1.4	0.2\%
Johnston	Lower Skeena	Ecstall	1.9	0.3\%
Kitsumkalum	Middle Skeena	Kalum	19.0	2.8\%
Kitwanga	Middle Skeena	Kitwanga	7.8	1.1\%
Kluatantan Lks.	Upper Skeena	Kluatantan	0.2	0.0\%
Kluayaz	Upper Skeena	Kluatantan	1.4	0.2\%
Lakelse	Lower Skeena	Lakelse	13.0	1.9\%
Maxan	Middle Skeena	Morice	0.6	0.1\%
McDonell	Middle Skeena	Zymoetz (Copper)	2.2	0.3\%
Morice	Middle Skeena	Morice	96.0	14.0\%
Morrison	Upper Skeena	Babine	13.0	1.9\%
Motase	Upper Skeena	Motase	14.0	2.1\%
Sicintine	Upper Skeena	Sicintine	0.7	0.1\%
Slamgeesh	Upper Skeena	Slamgeesh	0.4	0.1\%
Spawning	Upper Skeena	Sustut	0.2	0.0\%
Stephens	Middle Skeena	Kispiox	1.9	0.3\%
Sustut	Upper Skeena	Sustut	2.5	0.4\%
Swan	Middle Skeena	Kispiox	18.0	2.6\%
		Total	684.1	100.0\%

Table 2. Estimated Area 3/4/5 run-timing peaks for Skeena sockeye stocks and assumed variability.

Lake	Estimated Peak Timing	Peak Week	Management Group	Allow ed Range	Standard Deviation	Allow ed Range
Alastair	June 24-30	64	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Aldrich	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Asitka	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Atna	July 1-7	71	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Azuklotz	July 22-28	74	LNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Babine-Nilkitkw a	July 8-Aug 4	72-75	BAB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Bear	July 22-28	74	LNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Bulkley	July 1-7	71	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Club	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Damshilgw it	July 15-22	73	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Dennis	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Johanson	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Johnston	June 24-30	64	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Kitsumkalum	July 22-28	74	LNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Kitw anga	July 22-28	74	LNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Kluatantan Lks	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Kluayaz	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Lakelse	June 24-30	64	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Maxan	July 1-7	71	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
McDonell	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Morice	July 1-7	71	ENB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Morrison	July 15-22	73	BAB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Motase	July 15-22	73	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Sicintine	July 15-22	73	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Slamgeesh	July 15-22	73	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Spaw ning	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Stephens	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Sustut	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek
Swan	July 8-15	72	MNB	+/-1 w eek	1.5 w eeks	+/-1/2 w eek

(1) Run-timing variability for each stock assumes a triangular distribution for the peak and its s.d.:
e.g. for Alastair, the peak w eek is set to 64 (June 24-30) with a minimum of w eek 63 and a maximum of w eek 71 -the standard deviation about the peak w eek is set to 1.5 w eeks (Cox-Rogers 1994) with a minimum of 1 w eek and a maximum of 2 w eeks.

Table 3. Quality of lake trophic data and juvenile data used in arriving at estimates in Appendix Table 7.

Lake	Date of Last Limnological Assessment	Date of Last Juvenile Assessment	Bathymetric charts	PR	Data	Current biomass	Smolt size at capacity	Competitors	Age at smolting	Mean data Quality	 "OK" data
Babine	1995	annually	1		1	1	1	1	1	1.0	6
Morice	2002	2002	3		1	2	2	3	2	2.2	4
Slamgeesh	2001	2001	1		3	1	2	3	2	2.0	4
Sustut	1996	1993	2		2	3	2	3	2	2.3	4
Kitsumkalum	1996	1993	2		2	2	3	3	3	2.5	3
Alastair	1996	1994	2		2	3	4	3	3	2.8	2
Lakelse	1996	1993	2		2	3	3	3	3	2.7	2
Swan	1996	2002	2		2	3	4	3	3	2.8	2
Kitwanga	1996	1994	2		2	3	4	3	3	2.8	2
Johanson	1996	1993	2		2	3	4	3	3	2.8	2
Bear	1996	1994	2		2	3	4	3	3	2.8	2
Morrison	1996	1994	3		2	3	3	3	2	2.7	2
Stephens	2002	2002	2		3	3	4	3	3	3.0	1
Club	2002	2002	2		3	3	4	3	3	3.0	1
Maxan	no	no	2		4	4	4	4	4	3.7	1
McDonell	2001	2002	2		3	3	4	3	3	3.0	1
Dennis	2001	no	2		3	4	4	3	4	3.3	1
Aldrich	2001	2001	2		3	3	4	3	3	3.0	1
Azuklotz	no	no	2		4	4	4	4	4	3.7	1
Johnston	no	no	2		4	4	4	4	4	3.7	1
Sicintine	no	no	2		4	4	4	4	4	3.7	1
Motase	no	no	2		4	4	4	4	4	3.7	1
Atna	no	no	4		4	4	4	4	4	4.0	0
Asitka	no	no	4		4	4	4	4	4	4.0	0
Damshilgwit	no	no	4		4	4	4	4	4	4.0	0
Kluatantan	no	no	4		4	4	4	4	4	4.0	0
Kluayaz	no	no	4		4	4	4	4	4	4.0	0
Spawning	no	no	4		4	4	4	4	4	4.0	0
Good =1											
$\mathrm{OK}=2$											
Poor=3											
Very poor=4											

Table 4. Explanation of data quality characteristics used in Table 3.

Data Quality				
Data Type	1 Good	2 OK	3 Poor	4 Very poor, None
Bathymetric charts	CHS Charts or charts of simple lakes based on multiple acoustic transects.	more complex lakes with multiple acoustic transects, not done by CHS.	Data source unknown known errors, poor coverage.	none used surface area from Fish Wizard
PR Data	Two or more years of seasonal data.	One year of seasonal data.	One sampling period only.	Never sampled, used a similar, nearby lake if needed.
Current biomass	Measured smolt abundance and size.	Fall acoustic/trawl estimate, using 3×7 trawl and a simple midwater fish (\& competitor community).	Fall acoustic/trawl estimate, using 2×2 trawl, often with a complex midwater fish (\& competitor community).	Never sampled, guessed at by multiplying Rmax by mean \% currently utilized in other lakes.
Smolt size at capacity	Measured smolts when lake is at estimated capacity.	Measured smolts over a wide range of escapements but probably not at capacity.	smolts or fall fry sampled using 3×7 trawl on only a few occasions.	Fall fry sampled using 2×2 trawl or never sampled.
Competitors	Good seasonal acoustic and 3×7 trawl estimates of simple limnetic communities.	Good single acoustic and 3×7 trawl estimates of simple limnetic communities.	Potential competitors detected in non-quantitative sampling, possibly only in other lake in watershed.	Never sampled.
age @ smolting	Scale aged smolts when lake is at estimated capacity.	Scaled aged smolts or fall fry from a 3x7 trawl over a wide range of escapements but probably not at capacity.	Scale ages from smolts or fall fry on only a few occasions.	Never sampled, assumed to be all age-1.

Table 5. Pr data for Skeena sockeye nursery lakes (April 03 revisions, source J. Hume FOC) and adjusted Smax and

			PR Mode		Observ	d Age-O fall	fry/smolt	biomass								
Lake	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{km}^{2}\right) \end{aligned}$	$S_{\text {max }}$ optimum escapem ent	$\mathrm{R}_{\text {max }}$ Smolt biomass (t/lake)	$\mathrm{R}_{\text {maxn }}$ Smolt number	$\begin{gathered} \text { Age-0 } \\ \text { size (g) } \\ \hline \end{gathered}$	Density (n/ha)	Biomass (kg/ha)	$\begin{gathered} \text { Biomass } \\ \text { (t/lake) } \\ \hline \end{gathered}$	Proportion of potential smolt biomass productio n (\%)	Adjusted $S_{\text {max }}$ optimum escape (1)	$\begin{gathered} \text { Adjusted } \\ R_{\text {max }} \\ \text { Smolt } \\ \text { bomass } \\ \text { (t/lake) (2) } \\ \hline \end{gathered}$	Adjusted Proportion of potential smolt biomass productio n (\%)	Limiting Factors	Restoration Required	Rationale	Information needed
Alastair	6.9	32,811	7.99	1,775,648	1.7	1,994	3.39	2.34	29	33000	3.20	73	3,5,6	11	13	15,16
Lakelse	13.5	26,233	6.39	1,419,646	6.12	311	1.90	2.57	40	26000	2.88	89	1	7,8	13	15,16,19
Swan	17.5	24,227	5.90	1,311,120	2.0	193'	0.39	0.68	11	24000	2.36	29	1,3,4	?	13	15,16,17
Stephens	2.0	6,967	1.7	377,043	2.5	897	2.24	0.44	26	7000	0.71	62	?	?		15,16,17
Club	0.4	581	0.142	31,457	2.0	56	0.11	0.00	3	600	0.10	4	?	?		15,16,17
Morice	96.1	204,053	61.7	11,042,891	3.3	160	0.53	5.07	8				1,3,4	7,10	12	15,16,17
Morice (3)	96.1	120,000	21.4	6,492,000	3.3	160	0.53	5.07	24	120000	10.70	47				
Atna	5.1	13,786	3.35	745,434	No data a	ailable	0.27	0.14	4	14000	1.17	12	?	?		15,16,17
Maxan	6.4	17,338	4.22	937,454	No acces		0.00	0.00	o	?	?	?	?	?		15,16,17
Slamgeest	0.4	789	0.192	42,695	10	436	4.36	0.18	92	800	0.19	92	?	?	13	15,16,17
Kitwanga	7.8	18,117	9.59	980,476	2.36	77	0.18	0.14	1	18000	1.53	9	1,2,6	7,8,9	13	15,16,18,19
Kitsumkalt	18.5	20,531	5.00	1,111,110	1.61	125	0.20	0.37	7	20500	2.20	17	1,2,3,6	7	13	15,16
McDonell	2.3	3,566	0.869	193,001	1.5	595	0.89	0.21	24	3600	0.36	58	1 ?	7,?	13	15,16,17
Dennis	0.9	546	0.133	29,532	No data	ailable			12	550	0.07	29	1 ?	7,?	13	15,16,17
Aldrich ${ }^{\text {f }}$	0.6	1,116	0.272	60,391	No socke	e in catch				1100	0.12		1 ?	7,?	13	15,16,17
Johanson	1.4	3,107	0.757	168,168	0.88	321	0.28	0.04	5	3100	0.34	12	1,3,4	7,10	13	15,16
Sustut	2.5	2,750	0.670	148,828	0.89	1,779	1.58	0.08	12	2800	0.34	24	1,3,4	7,10	13	15,16
Bear	18.8	103,064	25.1	5,577,584	3.89	132	0.51	0.97	4				1,2	7,8	13	15
Bear (3)	18.8	30,000	7.3	1,623,529	3.89	132	0.51	0.97	13	30000	3.26	30				
Asitka	0.4	1,099	0.27	59,444	No data a	ailable	1.44	0.05	20	1100	0.11	49	?	?		15,16,17
Morrison	13.2	43,960	10.7	2,378,992	4.29	377	1.62	2.13	20	44000	3.96	54	1	7,8	13	15,16
Babine	461.0	2,170,508	529	117,462,800	4.5	1,600	7.20	332	63	2200000	396.00	84	?	?		15,16,17
Azuklotz	2.2	12,815	3.12	692,896	No data a	ailable	2.89	0.62	20	13000	1.28	49	?	?		15,16,17
Damshilgu	0.3	995	0.24	53,809	No data a	ailable	1.54	0.05	20	1000	0.10	48	?	?		15,16,17
Johnston	1.9	6,685	1.63	361,437	No data a	ailable	1.78	0.33	20	6700	0.68	48	?	?		15,16,17
Kluatantan	0.5	1,611	0.39	87,089	No data a	ailable	1.46	0.08	20	1600	0.17	46	?	?		15,16,17
Kluayaz	1.4	4,067	0.99	219,879	No data a	ailable	1.46	0.20	20	4100	0.42	47	?	?		15,16,17
Sicintine	0.7	2,122	0.52	114,734	No data a	ailable	1.46	0.10	20	2100	0.21	49	$?$?		15,16,17
Spawning	0.2	582	0.14	31,480	No data a	ailable	1.46	0.03	20	600	0.06	47	?	?		15,16,17
Motase	14.0	82,201	20.00	4,444,604	No data a	ailable	2.89	4.00	20	82000	8.00	50	?	?		15,16,17

Notes (1) after Shortreed et al (1998) Table 11 based on consideration of available spawning area. Recommended Smax escapement based on the PR model
estimated historic exploitation rates for each stock, see text for methodology
Rationale for restoration
12 Enhancement larger stock with probable short-term economic benefit
13 Resortaion conservation of small or weak stock-possible long-term economic benefit
14 Creation of new run

Information needs
15 Escapement
16 Limnetic fish abundance and growth rates
17 Limnology or updated limnology
18 Spawning ground capacity
19 Other
Table 6. Calculated Ricker parameters for Skeena sockeye nursery lakes (standardized by lake area)

Lake	Area (hec)	Optimum Escape Smax	Unadjusted Smolt Biomass Rmax (t/lake)	Adjusted Smolt Biomass Rmax (t/lake)	Smax (1) females/hec	Unadjusted Rmax kg/hec	Ricker a	Ricker b	Adjusted Rmax kg/hec	Ricker a	Ricker b
Alastair	690	33000	7.99	3.20	24	11.58	1.32	0.04	4.64	0.53	0.04
Lakelse	1350	26000	6.39	2.88	10	4.73	1.34	0.10	2.13	0.60	0.10
Swan	1750	24000	5.90	2.36	7	3.37	1.34	0.15	1.35	0.53	0.15
Stephens	197	7000	1.70	0.71	18	8.63	1.32	0.06	3.61	0.55	0.06
Club	39	600	0.14	0.10	8	3.61	1.29	0.13	2.54	0.91	0.13
Morice	9610	120000	21.40	10.70	6	2.23	0.97	0.16	1.11	0.48	0.16
Atna	513	14000	3.35	1.17	14	6.54	1.30	0.07	2.28	0.45	0.07
Maxan	640	n/a									
Slamgeesh	41	800	0.19	0.19	10	4.73	1.30	0.10	4.73	1.30	0.10
Kitwanga	780	18000	9.59	1.53	12	12.29	2.90	0.09	1.96	0.46	0.09
Kitsumkalum	1850	20500	5.00	2.20	6	2.70	1.33	0.18	1.19	0.58	0.18
McDonell	232	3600	0.87	0.36	8	3.74	1.31	0.13	1.55	0.54	0.13
Dennis	90	550	0.13	0.07	3	1.47	1.31	0.33	0.77	0.69	0.33
Aldrichf	64	1100	0.27	0.12	9	4.23	1.34	0.12	1.87	0.59	0.12
Johanson	140	3100	0.76	0.34	11	5.41	1.33	0.09	2.43	0.60	0.09
Sustut	250	2800	0.67	0.34	6	2.68	1.30	0.18	1.36	0.66	0.18
Bear	1880	30000	7.30	3.26	8	3.88	1.32	0.13	1.73	0.59	0.13
Asitka	37	1100	0.27	0.11	15	7.19	1.32	0.07	2.96	0.54	0.07
Morrison	1320	44000	10.7	3.96	17	8.11	1.32	0.06	3.00	0.49	0.06
Babine	46100	2200000	528.58	396.00	24	11.47	1.31	0.04	8.59	0.98	0.04
Azuklotz	219	13000	3.12	1.28	30	14.25	1.30	0.03	5.85	0.54	0.03
Damshilgwit	32	1000	0.24	0.10	16	7.57	1.32	0.06	3.13	0.54	0.06
Johnston	186	6700	1.63	0.68	18	8.76	1.32	0.06	3.66	0.55	0.06
Kluatantan	55	1600	0.39	0.17	15	7.19	1.33	0.07	3.12	0.58	0.07
Kluayaz	138	4100	0.99	0.42	15	7.19	1.31	0.07	3.05	0.56	0.07
Sicintine	72	2100	0.52	0.21	15	7.19	1.34	0.07	2.92	0.54	0.07
Spawning	20	600	0.14	0.06	15	7.19	1.28	0.07	3.05	0.54	0.07
Motase	1404	82000	20.00	8.00	29	14.25	1.33	0.03	5.70	0.53	0.03

(1) assuming 50% females, 50% males

Left Blank On Purpose
Appendix Table 1. Estimated run-timing (weekly proportions) for Skeena River sockeye into Area $3 / 4 / 5$ in 2000 based on

Baseline Stock	Associated Lake	62	63	64	71	72	73	74	75	81	82	83	
			Jun14-24	Jun25-Jul1	Jul2-8	Jul9-15	Jul16-22	Jul23-29	Jul30-Aug5	Aug6-12	Aug13-25		Total
McDonnell	McDonnell	0.000	0.167	0.334	0.250	0.166	0.083	0.000	0.000	0.000	0.000	0.000	1.000
Motase	Motase	0.000	0.001	0.000	0.000	0.000	0.250	0.499	0.250	0.000	0.000	0.000	1.000
Grizzly	Babine	0.001	0.001	0.007	0.109	0.268	0.276	0.171	0.076	0.036	0.037	0.018	1.000
Sw an	Swan	0.000	0.103	0.353	0.397	0.147	0.000	0.000	0.000	0.000	0.000	0.000	1.000
UpperBabine	Babine	0.000	0.007	0.022	0.049	0.158	0.246	0.199	0.154	0.113	0.044	0.008	1.000
Pinkut	Babine	0.002	0.038	0.115	0.171	0.210	0.218	0.145	0.063	0.028	0.010	0.000	1.000
FultonLate	Babine	0.000	0.000	0.008	0.041	0.136	0.240	0.257	0.195	0.093	0.024	0.005	1.000
Low erBabine	Babine	0.000	0.020	0.052	0.057	0.039	0.092	0.231	0.280	0.178	0.051	0.000	1.000
Nanika	Morice	0.049	0.098	0.145	0.296	0.306	0.105	0.000	0.000	0.000	0.000	0.000	1.000
Morrison	Morrison	0.011	0.037	0.042	0.017	0.002	0.085	0.267	0.302	0.158	0.060	0.020	1.000
Williams	Lakelse	0.250	0.500	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
Schulbuckhand	Lakelse	0.000	0.250	0.500	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
Pierre	Babine	0.010	0.052	0.085	0.055	0.101	0.195	0.214	0.198	0.090	0.000	0.000	1.000
SalixBear	Bear	0.011	0.064	0.158	0.168	0.154	0.210	0.150	0.030	0.014	0.027	0.014	1.000
Alastair	Alastair	0.036	0.152	0.195	0.080	0.000	0.040	0.153	0.185	0.094	0.044	0.022	1.000
Kitw anga	Kitw anga	0.250	0.500	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
Kalum	Kalum	0.039	0.079	0.095	0.110	0.121	0.132	0.155	0.178	0.089	0.000	0.000	1.000
Tw ain_Cr	Babine	0.174	0.348	0.174	0.020	0.039	0.020	0.000	0.056	0.113	0.056	0.000	1.000
Four Mile	Babine	0.006	0.011	0.006	0.000	0.108	0.292	0.262	0.137	0.119	0.060	0.000	1.000
Tahlo	Babine	0.000	0.022	0.052	0.077	0.114	0.136	0.200	0.242	0.130	0.023	0.003	1.000
Lakelse	Lakelse	0.134	0.384	0.366	0.116	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
low er Skeena	combin.	0.030	0.141	0.203	0.118	0.055	0.066	0.124	0.148	0.075	0.027	0.014	1.000
upper Skeena	combin.	0.009	0.069	0.185	0.201	0.148	0.176	0.136	0.032	0.011	0.022	0.011	1.000
Bulkley	Morice	0.049	0.098	0.145	0.296	0.306	0.105	0.000	0.000	0.000	0.000	0.000	1.000
Babine	Babine	0.002	0.017	0.043	0.070	0.138	0.208	0.217	0.179	0.096	0.026	0.005	1.000

(1) Estimated from mDNA analysis (Source T. Beacham, FOC, Nanaimo) of weekly Tyee Test Fishery escapement samples and subsequent
w eekly reconstruction of stock-specific abundance entering Area $3 / 4 / 5$ B7using know n Area $3 / 4 / 5$ w eekly harvest rates.
Weekly abundance by stock= (4 day lagged w eekly escapement by stock)/(1-w eekly harvest rate)
Weekly harvest rate $=($ w eekly total catch $) /($ w eekly total catch +4 day lagged w eekly total escapement $)$
(2) The w eekly proportions have been smoothed using ($a+(2 b)+c) / 4$)
Appendix Table 2. Estimated run-timing (weekly proportions) for Skeena River sockeye into Area 3/4/5 in 2001 based on

Baseline	Associated	61	62	63	64	71	72	73	74	75	81	82	83	84	91	92	
Stock	Lake	June 12-16		June 17-21	June 27-28	July 2-7	July 8-14	July 15-22	July 22-28 July 29-Aug ،		Aug 5-11	Aug 12-18	Aug 19-25	Aug 26-01	Sep 2-22	Total	
Alastair	Alastair	0.015	0.044	0.085	0.150	0.180	0.120	0.105	0.142	0.071	0.012	0.032	0.029	0.011	0.003	0.001	1.000
Kalum	Kalum	0.000	0.000	0.000	0.000	0.000	0.000	0.141	0.357	0.291	0.087	0.036	0.046	0.030	0.010	0.001	1.000
Kitw anga	Kitw anga	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.247	0.493	0.247	0.000	0.003	0.007	0.003	1.000
McDonnell	Mc Donell	0.000	0.000	0.055	0.304	0.443	0.194	0.000	0.000	0.001	0.002	0.001	0.000	0.000	0.000	0.000	1.000
Motase	Motase	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.247	0.493	0.247	0.000	0.003	0.007	0.003	1.000
SalixBear	Bear	0.008	0.018	0.012	0.038	0.072	0.119	0.167	0.174	0.203	0.141	0.037	0.008	0.001	0.002	0.001	1.000
Sustut	Sustut	0.000	0.000	0.000	0.240	0.480	0.240	0.000	0.000	0.003	0.007	0.003	0.000	0.007	0.013	0.007	1.000
Sw an	Sw an	0.009	0.018	0.009	0.021	0.082	0.281	0.399	0.179	0.000	0.001	0.000	0.000	0.000	0.000	0.000	1.000
Nanika	Morice	0.008	0.022	0.067	0.111	0.127	0.202	0.256	0.164	0.043	0.000	0.000	0.000	0.000	0.000	0.000	1.000
Four_Mile	Babine	0.010	0.033	0.080	0.122	0.124	0.143	0.189	0.181	0.092	0.019	0.004	0.001	0.001	0.000	0.000	1.000
FultonLate	Babine	0.000	0.003	0.006	0.029	0.067	0.134	0.222	0.243	0.177	0.078	0.022	0.012	0.005	0.002	0.000	1.000
Grizzly	Babine	0.024	0.053	0.095	0.197	0.236	0.139	0.035	0.054	0.109	0.055	0.001	0.002	0.001	0.000	0.000	1.000
Lower_Babine	Babine	0.000	0.003	0.012	0.017	0.010	0.040	0.175	0.294	0.243	0.119	0.046	0.023	0.013	0.003	0.001	1.000
Morrison	Morrison	0.006	0.015	0.029	0.075	0.101	0.058	0.143	0.297	0.207	0.053	0.013	0.003	0.000	0.000	0.000	1.000
Pierre	Babine	0.010	0.048	0.112	0.161	0.197	0.203	0.146	0.078	0.028	0.005	0.008	0.003	0.000	0.000	0.000	1.000
Pinkut	Babine	0.004	0.013	0.027	0.043	0.102	0.216	0.244	0.177	0.116	0.047	0.005	0.003	0.002	0.001	0.000	1.000
Tahlo	Babine	0.002	0.008	0.013	0.011	0.005	0.080	0.258	0.323	0.200	0.072	0.019	0.005	0.003	0.001	0.000	1.000
Twain_Cr	Babine	0.002	0.004	0.094	0.185	0.093	0.144	0.288	0.144	0.007	0.019	0.017	0.005	0.000	0.000	0.000	1.000
Upper_Babine	Babine	0.000	0.001	0.006	0.010	0.006	0.098	0.256	0.252	0.151	0.107	0.076	0.030	0.005	0.001	0.000	1.000
Schulbuckhand	Lakelse	0.006	0.012	0.006	0.241	0.481	0.241	0.000	0.000	0.003	0.007	0.003	0.000	0.000	0.000	0.000	1.000
Williams	Lakelse	0.080	0.226	0.288	0.218	0.076	0.000	0.000	0.000	0.026	0.053	0.026	0.002	0.003	0.002	0.000	1.000
Lower Skeena	combin.	0.008	0.022	0.054	0.138	0.181	0.101	0.096	0.175	0.120	0.032	0.027	0.028	0.014	0.004	0.001	1.000
Upper Skeena	combin.	0.008	0.017	0.010	0.042	0.099	0.199	0.262	0.166	0.100	0.071	0.019	0.004	0.001	0.002	0.001	1.000
Bulkley	Morice	0.008	0.022	0.067	0.111	0.127	0.202	0.256	0.164	0.043	0.000	0.000	0.000	0.000	0.000	0.000	1.000
Babine	Babine	0.004	0.014	0.034	0.057	0.078	0.133	0.210	0.222	0.148	0.063	0.022	0.010	0.004	0.001	0.000	1.000
Lakelse	Lakelse	0.071	0.201	0.256	0.220	0.121	0.028	0.001	0.001	0.024	0.047	0.024	0.001	0.003	0.001	0.000	1.000
Total		0.005	0.016	0.036	0.060	0.081	0.134	0.208	0.218	0.144	0.062	0.022	0.010	0.004	0.001	0.000	1.000

[^0]Appendix Table 3. Estimated run-timing (weekly proportions) for Skeena River sockeye into Area $3 / 4 / 5$ in 2002 based on

Baseline	Associated	63	64	71	72	73	74	75	81	82	83	84	
Stock	Lake		June 22-30	July 1-6	July 7-13	July 14-20	July 21-27	July 28- Aug :	Aug 4-10	Aug 11-17	Aug 18-24		Total
Alastair	Alastair	0.040	0.081	0.040	0.000	0.062	0.182	0.254	0.225	0.103	0.013	0.000	1.000
Kalum	Kalum	0.002	0.094	0.281	0.286	0.098	0.000	0.003	0.029	0.083	0.090	0.034	1.000
Kitw anga	Kitw anga	0.070	0.141	0.070	0.000	0.000	0.000	0.152	0.329	0.205	0.030	0.003	1.000
Mc Donnell	McDonell	0.066	0.245	0.361	0.249	0.068	0.000	0.002	0.005	0.003	0.000	0.000	1.000
Motase	Motase	0.078	0.157	0.078	0.000	0.000	0.000	0.145	0.314	0.195	0.029	0.003	1.000
SalixBear	Bear	0.109	0.315	0.302	0.131	0.069	0.035	0.000	0.000	0.010	0.019	0.009	1.000
Sustut	Sustut	0.002	0.184	0.362	0.180	0.063	0.127	0.067	0.008	0.005	0.001	0.000	1.000
Swan	Sw an	0.001	0.096	0.273	0.331	0.224	0.071	0.001	0.002	0.001	0.000	0.000	1.000
Nanika	Morice	0.103	0.233	0.274	0.265	0.120	0.000	0.001	0.002	0.001	0.000	0.000	1.000
Four_Mile	Babine	0.041	0.119	0.190	0.227	0.179	0.118	0.088	0.036	0.002	0.000	0.000	1.000
FultonLate	Babine	0.001	0.022	0.083	0.164	0.227	0.233	0.164	0.073	0.022	0.008	0.003	1.000
Grizzly	Babine	0.015	0.155	0.267	0.127	0.005	0.095	0.184	0.112	0.029	0.011	0.000	1.000
Low er_Babine	Babine	0.000	0.005	0.078	0.150	0.120	0.142	0.211	0.172	0.082	0.031	0.009	1.000
Morrison	Morrison	0.007	0.056	0.179	0.219	0.106	0.109	0.179	0.109	0.028	0.008	0.001	1.000
Pierre	Babine	0.015	0.082	0.195	0.298	0.274	0.112	0.009	0.001	0.004	0.007	0.004	1.000
Pinkut	Babine	0.010	0.062	0.158	0.248	0.221	0.105	0.074	0.076	0.038	0.009	0.000	1.000
Tahlo	Babine	0.018	0.076	0.150	0.212	0.229	0.152	0.062	0.047	0.037	0.014	0.004	1.000
Tw ain_Cr	Babine	0.000	0.232	0.481	0.267	0.018	0.000	0.000	0.001	0.001	0.000	0.000	1.000
Upper_Babine	Babine	0.000	0.049	0.101	0.057	0.137	0.289	0.216	0.101	0.046	0.005	0.000	1.000
Schulbuckhand	Lakelse	0.070	0.141	0.070	0.000	0.000	0.000	0.152	0.329	0.205	0.030	0.003	1.000
Williams	Lakelse	0.240	0.479	0.240	0.000	0.000	0.000	0.009	0.019	0.012	0.002	0.000	1.000
Low er Skeena	combin.	0.040	0.139	0.204	0.150	0.072	0.077	0.111	0.106	0.065	0.027	0.008	1.000
Upper Skeena	combin.	0.050	0.206	0.296	0.222	0.135	0.060	0.008	0.003	0.006	0.009	0.004	1.000
Bulkley	Morice	0.103	0.233	0.274	0.265	0.120	0.000	0.001	0.002	0.001	0.000	0.000	1.000
Babine	Babine	0.008	0.047	0.122	0.188	0.203	0.179	0.136	0.076	0.029	0.010	0.003	1.000
Lakelse	Lakelse	0.228	0.456	0.231	0.006	0.003	0.000	0.016	0.035	0.022	0.003	0.000	1.000
Total		0.011	0.057	0.132	0.189	0.196	0.170	0.129	0.073	0.029	0.010	0.003	1.000

[^1]Appendix Table 4. Available escapement records for non-Babine sockeye lakes: 1950-2002 ${ }^{(1)}$

Appendix Table 5. Estimated Weekly Area 4 sockeye harvest rates: 1956-2002 (outer Area 3+5 included starting in 1997)

Week	Jn 25-1	Jl 1-7	Jl 8-14	Jl 15-21	Jl 22-28	Jl 29-04	Au 5-11	Au 12-19	Au 20-27	Au 28-04	Se 05-11
1956	0.000	0.000	0.000	0.585	0.393	0.374	0.207	0.377	0.108	0.065	0.000
1957	0.000	0.000	0.000	0.362	0.443	0.617	0.465	0.250	0.117	0.154	0.260
1958	0.000	0.000	0.315	0.577	0.477	0.664	0.415	0.351	0.169	0.153	0.052
1959	0.000	0.000	0.276	0.168	0.154	0.000	0.000	0.633	0.643	0.592	0.356
1960	0.000	0.000	0.000	0.543	0.410	0.517	0.397	0.305	0.322	0.000	0.188
1961	0.144	0.240	0.235	0.440	0.745	0.531	0.517	0.483	0.289	0.193	0.000
1962	0.830	0.498	0.652	0.623	0.306	0.392	0.551	0.260	0.410	0.422	0.000
1963	0.239	0.395	0.303	0.000	0.040	0.149	0.690	0.398	0.648	0.000	0.000
1964	0.000	0.421	0.611	0.318	0.454	0.555	0.532	0.216	0.709	0.271	0.000
1965	0.000	0.316	0.293	0.550	0.327	0.405	0.000	0.385	0.000	0.270	0.000
1966	0.000	0.385	0.377	0.637	0.530	0.740	0.285	0.726	0.436	0.589	0.000
1967	0.305	0.477	0.442	0.712	0.698	0.732	0.547	0.000	0.873	0.000	0.000
1968	0.380	0.652	0.607	0.605	0.595	0.525	0.311	0.415	0.000	0.000	0.000
1969	0.372	0.416	0.415	0.429	0.656	0.490	0.348	0.280	0.000	0.600	0.000
1970	0.509	0.460	0.275	0.249	0.783	0.000	0.382	0.686	0.301	0.578	0.000
1971	0.000	0.206	0.094	0.183	0.368	0.641	0.471	0.696	0.478	0.617	0.000
1972	0.588	0.707	0.597	0.280	0.730	0.391	0.631	0.822	0.565	0.000	0.000
1973	0.504	0.391	0.230	0.843	0.690	0.574	0.578	0.390	0.000	0.000	0.000
1974	0.000	0.251	0.679	0.657	0.722	0.792	0.541	0.000	0.270	0.000	0.000
1975	0.000	0.755	0.683	0.000	0.585	0.315	0.310	0.189	0.132	0.222	0.000
1976	0.000	0.000	0.000	0.441	0.108	0.486	0.690	0.672	0.417	0.000	0.000
1977	0.000	0.211	0.559	0.458	0.538	0.475	0.396	0.452	0.600	0.000	0.000
1978	0.000	0.332	0.730	0.459	0.551	0.000	0.315	0.398	0.000	0.000	0.000
1979	0.000	0.000	0.412	0.571	0.599	0.366	0.633	0.369	0.000	0.000	0.000
1980	0.000	0.000	0.490	0.587	0.400	0.381	0.000	0.000	0.000	0.000	0.000
1981	0.000	0.000	0.469	0.753	0.606	0.325	0.259	0.398	0.481	0.000	0.000
1982	0.000	0.000	0.580	0.547	0.748	0.696	0.494	0.346	0.000	0.000	0.000
1983	0.000	0.000	0.000	0.074	0.337	0.204	0.216	0.524	0.515	0.106	0.000
1984	0.000	0.000	0.000	0.546	0.536	0.428	0.232	0.353	0.182	0.000	0.000
1985	0.000	0.647	0.492	0.365	0.558	0.612	0.402	0.375	0.385	0.000	0.000
1986	0.000	0.000	0.238	0.134	0.579	0.483	0.124	0.383	0.515	0.000	0.000
1987	0.000	0.000	0.133	0.147	0.360	0.273	0.498	0.436	0.385	0.147	0.000
1988	0.000	0.240	0.421	0.512	0.667	0.277	0.720	0.347	0.518	0.156	0.000
1989	0.223	0.192	0.488	0.395	0.193	0.292	0.269	0.242	0.130	0.104	0.000
1990	0.250	0.235	0.158	0.421	0.555	0.409	0.451	0.453	0.124	0.084	0.155
1991	0.000	0.232	0.349	0.525	0.458	0.530	0.355	0.345	0.329	0.049	0.000
1992	0.000	0.738	0.461	0.329	0.541	0.581	0.543	0.468	0.547	0.052	0.000
1993	0.000	0.407	0.557	0.649	0.529	0.463	0.308	0.251	0.316	0.228	0.000
1994	0.000	0.221	0.442	0.449	0.283	0.428	0.317	0.243	0.269	0.000	0.000
1995	0.091	0.323	0.576	0.635	0.517	0.451	0.237	0.458	0.223	0.000	0.000
1996	0.208	0.401	0.644	0.701	0.718	0.505	0.474	0.215	0.000	0.000	0.000
1997	0.512	0.357	0.618	0.610	0.546	0.364	0.076	0.068	0.000	0.000	0.000
1998	0.000	0.261	0.293	0.251	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1999	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2000	0.409	0.603	0.586	0.667	0.455	0.377	0.268	0.011	0.000	0.000	0.000
2001	0.051	0.342	0.549	0.556	0.603	0.487	0.381	0.343	0.021	0.000	0.000
2002	0.005	0.203	0.652	0.487	0.591	0.683	0.277	0.303	0.272	0.000	0.000
1956-59	0.000	0.000	0.148	0.423	0.367	0.414	0.272	0.403	0.259	0.241	0.167
1960-69	0.227	0.380	0.394	0.485	0.476	0.503	0.418	0.347	0.369	0.235	0.019
1970-79	0.160	0.331	0.426	0.414	0.568	0.404	0.495	0.467	0.276	0.142	0.000
1980-89	0.022	0.108	0.331	0.406	0.498	0.397	0.321	0.340	0.311	0.051	0.000
1990-99	0.106	0.318	0.410	0.457	0.415	0.373	0.276	0.250	0.181	0.041	0.016
2000-20	0.155	0.383	0.596	0.570	0.550	0.516	0.309	0.219	0.098	0.000	0.000

Appendix Table 6. Exploitation rates for Skeena sockeye stocks peaking in each week (Marine = Alaska + Canada)

Appendix Table 7. Predicted and Observed production data for Skeena sockeye nursery lakes (April 03 revisions)

Lake	Optimum Escape. Smax (n)	Observed Smolt Bio. (t/lake)	PR Max. Smolt Bio. (t/lake)	\% Obs of PR Max. Smolt Bio.	Adj. PR Max Smolt Bio. (t/lake)	\% Obs of Adj. PR Max Smolt Bio	PR Estimated Spaw ning Escape (2)	$\begin{array}{r} \text { Visual/Fence } \\ \text { 1990-2002 } \\ \text { Escape (3) } \end{array}$	Possible PRP (7)	Estimated MSY Escapement	Estimated MSY Recruits	Estimated MSY Equil. Exploit	Estimated $90-99$ Mean Exploit.(6)
Alastair	33000	2.34	7.99	29	3.20	73	13200	6385	3300	13575	23233	0.42	0.34
Lakelse	26000	2.57	6.39	40	2.88	89	15500	4369	2600	11301	20149	0.44	0.34
Sw an	24000	0.68	5.90	11	2.36	29	2800	7482	2400	9162	14919	0.39	0.50
Stephens	7000	0.44	1.70	26	0.71	62	2200	w/Sw an	700	2958	5163	0.43	0.50
Club	600	0.00	0.14	3	0.10	4	260	w/Sw an	60	290	568	0.49	0.50
Morice	120000	5.07	21.40	24	10.70	47	26000	19412	12000	40866	62631	0.35	0.43
Atna	14000	0.14	3.35	4	1.17	12	650	w/Morice	1400	4750	7229	0.34	0.43
Maxan (1)	n/a												
Slamgeesh	800	0.18	0.19	92	0.19	92	560	837	80	536	1639	0.67	0.50
Kitw anga	18000	0.14	9.59	1	1.53	9	600	449	1800	6137	9364	0.34	0.53
Kalum	20500	0.37	5.00	7	2.20	17	1300	3606	2050	8374	14263	0.41	0.53
Mc Donnel	3600	0.21	0.87	24	0.36	58	1000	3356	360	1426	2378	0.40	0.50
Dennis	550	n/a	0.13	n/a	0.07	n/a	n/a	w/McDonnel	55	240	428	0.44	0.50
Aldrich	1100	n/a	0.27	n/a	0.12	n/a	n/a	w/McDonnel	110	478	852	0.44	0.50
Johanson	3100	0.04	0.76	5	0.34	12	500	1705	310	1349	2407	0.44	0.50
Sustut	2800	0.08	0.67	12	0.34	24	500	w/Johanson	280	1252	2285	0.45	0.50
Bear	30000	0.97	7.30	13	3.26	30	3600	2313	3000	12666	22092	0.43	0.53
Asitka	1100	0.05	0.27	20	0.11	49	270	w/Johanson	110	463	805	0.42	0.43
Morrison	44000	2.13	10.7	20	3.96	54	13575	8379	4400	19657	35826	0.45	0.50
Babine (all)	2200000	331.92	528.58	63	396.00	84	1400000	1249479	220000	1347548	3511335	0.62	0.53
Azuklotz	13000	0.63	3.12	20	1.28	49	3700	w/Bear	1300	5507	9630	0.43	0.53
Damshilgw it	1000	0.05	0.24	20	0.10	49	80	w/Slamgeesh	100	414	710	0.42	0.50
Johnston	6700	0.33	1.63	20	0.68	49	1800	1090	670	2832	4943	0.43	0.34
Kluatantan	1600	0.08	0.39	20	0.17	47	400	no data	160	695	1238	0.44	0.43
Kluayaz	4100	0.20	0.99	20	0.42	48	1100	no data	410	1699	2923	0.42	0.50
Sicintine	2100	0.10	0.52	20	0.21	50	570	no data	210	870	1496	0.42	0.50
Spaw ning	600	0.03	0.14	20	0.06	48	130	w/Johanson	60	252	437	0.42	0.50
Motase	82000	4.06	20.00	20	8.00	51	23500	no data	8200	34442	59842	0.42	0.53
Non-Bab. Babine	$\begin{array}{r} 461250 \\ 2200000 \end{array}$	$\begin{array}{r} 20.89 \\ 331.92 \end{array}$	$\begin{aligned} & 109.65 \\ & 528.58 \end{aligned}$		$\begin{array}{r} 44.52 \\ 396.00 \end{array}$	47 84	$\begin{array}{r} 113795 \\ 1400000 \end{array}$	$\begin{array}{r} 59383 \\ 1249479 \end{array}$	$\begin{array}{r} 46125 \\ 220000 \end{array}$	$\begin{array}{r} 182191 \\ 1347548 \end{array}$	$\begin{array}{r} 307450 \\ 3511335 \end{array}$	$\begin{aligned} & 0.41 \\ & 0.62 \end{aligned}$	
(1) Maxan+Bulkley Lakes, no PR or juvenile data available, restricted access due to habitat degredation, low flows. Past evidence of Sx in both lakes. (2) The spaw ning escapement required to produce observed smolt biomass levels. Estimated from the adjusted PR stock-recruit curves for each lake. (3) Visual escapement data are of unknow n accuracy but are considered underestimates. Fence counts are for Sustut/Johanson, Babine, and Slamgeesh Lakes. (4) Morris on Lake is included with Babine Lake (5) Recruits ($\mathrm{kg} / \mathrm{hec}$) vs Spaw ners (females/hec) assuming 50:50 sex comp. (6) Does not include ESSR exploitation, which would represent an add-on 1990-1999 average of about 0.05 for some stocks (e.g. Babine) due to probability of extirpation issues.													

Appendix Table 8. Draft simulation example using recent 3 -year mean (2000-2002) Area $3 / 4 / 5$ harvest rates, Alaska exploitation (0,10)

[^0]: (1) Estimated from mDNA analysis (Source T. Beacham, FOC, Nanaimo) of weekly Tyee Test Fishery escapement samples and subsequent
 e.g. Weekly abundance by stock= (4 day lagged w eekly escapement by stock)/(1-w eekly harvest rate)

[^1]: (1) Estimated from mDNA analysis (Source T. Beacham, FOC, Nanaimo) of weekly Tyee Test Fishery escapement samples and subsequent
 w eekly reconstruction of stock-specific abundance entering Area $3 / 4 / 5$ using known Area $3 / 4 / 5$ w eekly harvest rates.
 Weekly abundance by stock= (4 day lagged w eekly escapement by stock)/(1-w eekly harvest rate)
 Weekly harvest rate = (w eekly total catch $) /(w$ eekly total catch +4 day lagged w eekly total escapement $)$
 (2) The w eekly proportions have been smoothed using $(a+(2 b)+c) / 4)$

