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Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of Joseph 

Waksberg, who has made many important contributions to survey methodology. Each year a prominent 

survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The paper 

reviews the development and current state of a significant topic within the field of survey methodology, and 

reflects the mixture of theory and practice that characterized Waksberg’s work.  

Please see the announcements at the end of the Journal for information about the nomination and 

selection process of the 2012 Waksberg Award. 

This issue of Survey Methodology opens with the tenth paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Leyla Mohadjer (Chair), 

Daniel Kasprzyk, Elisabeth A. Martin and Wayne Fuller for having selected Ivan P. Fellegi as the author of 

this year’s Waksberg Award paper. 
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The organisation of statistical methodology and  
methodological research in national statistical offices 

Ivan P. Fellegi 
1
 

Abstract 

The paper explores and assesses the approaches used by statistical offices to ensure effective methodological input into their 
statistical practice. The tension between independence and relevance is a common theme: generally, methodologists have to 
work closely with the rest of the statistical organisation for their work to be relevant; but they also need to have a degree of 
independence to question the use of existing methods and to lead the introduction of new ones where needed. And, of 
course, there is a need for an effective research program which, on the one hand, has a degree of independence needed by 
any research program, but which, on the other hand, is sufficiently connected so that its work is both motivated by and feeds 
back into the daily work of the statistical office. The paper explores alternative modalities of organisation; leadership; 
planning and funding; the role of project teams; career development; external advisory committees; interaction with the 
academic community; and research. 

 

Key Words: Methodology; Official statistics; Statistical organisation; Research; Relevance; Independence. 
 
 

1. Introduction 

 

It is a great honour to accept an award named after Joe 

Waksberg. Joe has been a close personal friend, as well a 

good friend of Statistics Canada.  

I came to know Joe during his latter years in the Bureau 

of the Census when Morris Hansen asked me to become a 

member of what was then a most imposing methodology 

advisory committee of the Bureau chaired by Bill Cochran. 

Subsequently, in the late 1970s, when Statistics Canada had 

serious problems of image and of internal management, 

Statistics Canada asked a group of prominent statisticians to 

review   what was wrong. At my recommendation, Joe was 

one of the three wise men asked to take part (the others 

being Richard Ruggles and the chairman, Claus Moser). Joe 

immediately agreed and in his inimitable low-key manner 

made invaluable contributions to Statistics Canada; the very 

helpful basic message being that while we had serious 

management problems, there was nothing much wrong with 

our methodology.  

A few years ago the Census Bureau honoured me by 

asking to give one of their annual “wise elders” lectures. 

While I objected strongly on the grounds that I neither 

considered myself “wise”, nor “elder”, in the end I accepted 

their kind invitation. With typical grace, Joe took the time to 

show up for my talk, even though he was well into the 

middle of his eighties but still very busy as chairman of the 

board of WESTAT. We had a really good chat; and that was 

the last time I saw him. What a career; what a life! 

So it is not only a professional honour to accept the 

Waksberg Award, but also a personal pleasure to be 

associated with Joe one more time.   

I was told that generally the recipients of the Waksberg 

Award give an overview of an area of methodology. But 

while, as you know, I did spend the first half of my career as 

a methodologist, I stopped being a practitioner some 

decades ago – although I am still an ardent advocate (see 

Fellegi 2004). So I thought I would join the first half of my 

career – methodology – to the second half – management of 

statistical offices. I shall therefore, talk about the lessons I 

learnt about the organisation of applied methodological 

work and methodology research in national statistical 

offices; what works well and what less so (I assume that the 

basic conditions for an effective methodology function 

exist: there is a supply of trained statisticians in the country, 

the statistical office has a functioning infrastructure, salaries, 

if they are not competitive, are at least within sight of what 

is offered in the private sector, and so on). 

I have two overall themes. Managing the tension 

between independence and relevance is one of them: 

generally, methodologists must work closely with the rest of 

the statistical organisation for their work to be relevant. 

Indeed, they must strive to serve the objectives of external 

clients, represented inside the office by subject matter 

experts. However, for them to be effective they must enjoy 

the necessary independence to question the use of existing 

methods, and to champion new ones if they believe they 

could reduce costs or increase statistical quality.  

But the effectiveness of methodology also depends on a 

strong methodology research capacity which, on the one 

hand, has the necessary independence needed by any 

research program, but which, on the other hand, is 

sufficiently connected to on-going work so that it is both 

motivated by and feeds back into the daily practice of the 
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statistical office. The organisation of methodology research 

will be my second them.  

But first I want to define what I mean in the present 

context by the terms methodology, relevance and 

independence.  

 
2. Some definitions 

 
Methodology  
The unique service performed by methodology is to 

maximise statistical quality given an imposed budget (or 

conversely). They do so through the application of statistical 

practice that is either based on statistical theory or on 

organized empirical observation. In other words method-

ologists are wizards of the relevant statistical theories; but 

also of “organised empirical observation” where formal 

theory abandons us. By organised empirical evidence I 

mean designed experiments or analytically assessed 

experience. So I am including all organized knowledge 

about the use of methods and approaches that result in the 

objective of maximising quality within a budget – or 

conversely, minimising the budget needed to achieve a 

stated quality level.  

This would include such things as sample design, 

estimation, data editing, imputation, exploitation of 

administrative data, record linkage, seasonal adjustment, 

questionnaire design, measurement of accuracy and quality 

assurance of censuses and surveys, the use of experimental 

designs, and so on.  

Methodologists are predominantly mathematical statis-

ticians and they work on the applied end of their subject. 

Because of the interdisciplinary nature of official statistics 

they interact with survey managers, experts in data collec-

tion, IT personnel, geographers, sociologists, economists, etc.   
Relevance 
 

Methodology is relevant if the day to day practice of the 

statistical office is actually based on sound methodology. A 

major issue in the organization of methodology is how to 

balance the intrinsically service nature of methodology 

against the need for the function to provide strong and 

effective guidance. Much of the paper will deal with all 

those arrangements needed to ensure the objective of 

relevance.  

In the case of methodological research, relevance means 

that the research is both motivated by and informs applied 

work.  
 
Independence 
 

The notion of independence of methodology means the 

ability to provide sound methodological guidance to 

projects, irrespective of the hierarchical arrangement of line 

organisations that can be debated but not ignored; and that 

this debate is based on evidence, not authority. So my 

definition of independence is not that methodologists should 

be able to “do their own thing” but rather that they should 

have an authoritative voice.  

Independence is frequently contrasted with relevance. 

Since relevance is about embedding methodology into 

practice, this is often attempted by building methodological 

services right into the fabric of subject matter organisations. 

By contrast, independence is thought to be enhanced by 

giving methodologists their own organisation(s). In this 

sense, therefore, there is a tension between the two. How-

ever, I would argue that relevance cannot be achieved if 

methodological guidance is ignored, so appropriate arrange-

ments to ensure independence are necessary for relevance.  

Independence of methodological research is different: it 

is generally meant to refer to an environment in which 

researchers have predominant say in the choice of their 

topics. Clearly, providing researchers with such an environ-

ment does create a permanent tension with the need to be 

relevant at all times, particularly when it is not at all obvious 

in the short term where the relevance lies. 

In my discussion of how to balance relevance and 

independence of both the applied methodology function and 

of methodology research I will describe not only orga-

nisational arrangements, but a wide variety of tools and 

arrangements that should be considered in the pursuit of this 

objective. I shall use Statistics Canada as a concrete 

illustration. What I wish to emphasize is that the issue is 

much more complicated than what the terms “centralisation” 

and “decentralisation” denote for whichever of these basic 

organisational arrangements is adopted, many additional 

tools are needed to offset their disadvantages while 

maintaining their intrinsic advantages. Indeed, I have 

organised the rest of the paper around a discussion of the 

main tools (in choosing these tools for discussion, I 

borrowed from the paper by Brackstone 1997) involved 

under the following headings:   
• Organisation;  

• Leadership; 

• Planning and funding;  

• Project teams; 

• Career development;  

• Advisory Committees; 

• Interaction with the academic community; and 

• Research. 

 
3. Organisation  

General thoughts 
 

National statistical offices differ in the way they organise 

their methodology functions. In some it is distributed to 
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individual parts of the agency, each responsible for a given 

subject (e.g., labour). In other agencies decentralisation is 

only partial, e.g., to broader subject matter areas (such as 

demography or business statistics).  The US Bureau of the 

Census, for example has largely decentralised its 

methodology function. By contrast, Statistics Canada and 

the Australian Bureau of Statistics have largely centralised 

it. Many factors influence the organizational choice. For 

example, in France and in India where all professionals 

share similar background in statistics and are largely 

recruited from a single teaching institution the accent is 

obviously on centralizing training and to a lesser extent 

research.  

The traditional arguments are that decentralisation 

favours relevance and centralisation favours independence. 

However, the aim should be to have both. That being the 

case the question is how we can enhance independence in 

the case of decentralised methodology organisations, and 

relevance in the case of centralised ones.  

Decentralisation, while potentially serving to underscore 

relevance, has some built-in disadvantages. Since each unit 

to which methodology is decentralized is necessarily smaller 

than it would be in more centralized options, it is less likely 

to facilitate specialisation and research. It is also less likely 

to encourage cross-fertilisation by methodologists working 

on other issues. Also, since the line organisations to which 

methodology is decentralised are typically not headed by 

methodologists, this model tends to result in lower 

hierarchical positions for the heads of the decentralised 

methodology units.  In case of “conflicts” – and these will 

be inevitable because of different perceptions of priority, 

cost, quality and so on -  other things being equal it will be 

more difficult for methodologists to defend their 

professional advice. If left without a counterweight, this 

kind of organization could get out of balance.    

A critical counterweight could be a “chief meth-

odologist” who reports directly to the head of the statistical 

office and inevitably is called upon to play an important role 

in long term planning and resource allocation. The “Chief 

Methodologist” could have his hand strengthened if given 

direct line responsibility for a strong research and 

development function which could serve as the “intellectual 

home base” for the decentralised methodology staff.  

Project teams, brought together for large developments, 

are another important tool to enhance independence in the 

case of centralised organisations. Such projects – which if at 

all significant are necessarily multi-disciplinary – are carried 

out by ad hoc project teams which operate off-line from the 

agency’s line organization. The organization of project 

teams is a matter to which Statistics Canada devoted 

considerable attention and it has been refined over time. 

Among its elements there is the feature that whenever 

professional disputes within the teams arise and the team 

believes that their solution requires outside intervention, the 

dispute is referred to a senior group of which someone from 

the staff of the “chief methodologist” is a member (this is 

automatically the case if the methodologist comes from a 

centralised group). It is this senior steering group that can 

contribute to protecting independence.  

Consideration might also be given to providing some 

additional tools for the “chief methodologist”: he could be 

authorised and funded to develop a strong methodology 

training program; he could be given a strong role in the 

allocation and career development of the methodology staff; 

he could be supported by a strong external advisory 

committee; and so on.   These features recognize that the 

role of “chief methodologist” is particularly delicate and 

could become more so if his place in the hierarchy were 

dependent on the size of the staff he controls directly 

without provision – as there is in some countries – to have 

his level of access and place in the ladder depend on his 

personal prestige rather than on the size or level of 

supporting staff.   
 

Centralisation: the Statistics Canada model  
Many years ago Statistics Canada opted for the 

centralised model (see Fellegi 1996) and that option was 

never seriously challenged (it was challenged for a brief 

period of time in the late seventies but in concrete terms the 

challenge did not get anywhere), and put in place a number 

of practices designed to reduce the threat that centralisation 

might result in diminished relevance.   
1. Project teams: These are inter-disciplinary and 

include as a matter of course a methodologist but 

they are headed by a project manager whose 

association with the project is subject matter and who 

is likely to assume operational responsibility for the 

completed project.   

2. Funding: much of the funding for the methodology 

function is controlled by the rest of Statistics Canada. 

Program areas (within limits that I will describe 

further) are free to spend their money on buying 

methodology services or not so long as they do not 

fall foul of the agency’s quality norms and accepted 

standards. With their budget largely on the line year 

after year, this accountability means that it is very 

much in the interest of methodologists to be 

responsive to the needs of the Agency’ s Programs.  

3. Organisation of the methodology function: it largely 

parallels the organisation of Statistics Canada. There 

are four methodology divisions: three of them 

provide methodology input to three different areas of 

the agency, while the fourth is devoted to research. In 
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fact, the three applied methodology divisions are 

themselves organised by subject matter in parallel 

with the manner in which the bureau is organised 

(regular rotation of methodology staff ensures broad 

development opportunities for methodologists). 

4. Co-location of methodology staff:  methodologists 

are occasionally physically moved to the offices of 

the subject matter areas whose surveys they help to 

design.  This is an additional measure taken to ensure 

that they focus on the right issues.  

5. Finally, as a matter of sound practice, methodologists 

conduct – and follow up on the results of – client 

satisfaction surveys which provide feedback on all 

aspects of their performance and first and foremost 

on the relevance thereof.  

 
4. Leadership 

 
General thoughts  
Leadership is crucial. The leader of the methodology 

function, in addition to a proper academic background and a 

great deal of experience in methodology, must possess a 

strategic vision and a personality that inspires confidence. 

This is an intrinsically difficult function. In the over-

whelming majority of offices operational and subject matter 

considerations are the ones that receive the most attention.  

In such an environment an authoritative voice for meth-

odology is needed to ensure adequate resources for the 

methodology function itself, but even more importantly to 

lead the entire agency in directions that are technically 

sound, and conversely to hold back initiatives that cannot be 

supported by sound methodology. “Soundly based” 

involves more than good survey design that uses the best 

available current knowledge. It also includes the notion of 

strategic planning of research, experiments and pilot surveys 

so as to improve the likelihood that whatever knowledge 

will be needed in the future will be available. For the 

opinions of methodologists to make a proper impact they 

must be supported by a leader whose    unchallenged 

personal competence is combined with a seat at the 

statistical agency’s most senior table 

If methodologists do not belong to a central organization 

within the statistical agency  it is all the more important for 

their senior representative to be highly placed in the 

hierarchy since under a decentralized scheme he would not 

have direct line authority  for (the bulk of) methodology 

resources.   
Centralisation: the Statistics Canada model  
Centralisation provides another lever to enable the leader 

of the methodology function to carry out his proper role as it 

enables him to make rational and authoritative assignments 

of the resources under his direction to the most strategic 

projects. The top advocate of sound methodology in 

Statistics Canada has the status of Assistant Chief 

Statistician (ACS) – the rank immediately below that of the 

Chief Statistician of Canada. In order to secure such a high 

position in a government bureaucracy, the line responsibility 

of the ACS (Methodology) includes statistical standards 

(classifications and central registers), as well as informatics 

(IT). While the position is therefore responsible for more 

than methodology, it is by long tradition (over 35 years) 

filled by someone who is a noted expert on methodology 

and can therefore speak at the top table authoritatively about 

its importance in general as well as in the context of 

particular projects.  

 
5. Planning and funding 

 
General thoughts  
The effective functioning of methodology (as indeed the 

entire statistical office) greatly depends on the existence of a 

proper planning system (see Fellegi 1992 and Brackstone 

1991): 

• Planning is a necessary condition to ensure that 

resources are allocated rationally at all times.  

• It also serves to mark explicitly the beginning and the 

end of development projects and therefore constitutes 

the ideal opportunity for methodology to “sign off” on 

the proposed design of new projects.  

• Lastly, the planning system creates an opportunity for 

methodology to make an explicit judgement on whether 

a planned new venture can respect simultaneously its 

budgetary constraints, the agency’s quality standards, 

and the expected maintenance bill. In fact, the planning 

system also provides an opportunity for all represen-

tatives of the disciplines involved in the creation of a 

new project (its planning or its implementation) to “sign 

off” as a mark of assuming professional responsibility 

for the adequacy of its funding or for the integrity of its 

functioning.  
 
Such a planning system is essential where the main 

disciplines (methodology, systems development, data 

collection, etc.) are centralised for otherwise the orga-

nisations responsible cannot make provisions for the needed 

resources. But, for more subtle reasons, decentralised offices 

need it just as much: to provide an explicit forum for the 

leaders of methodology (and, indeed, other key disciplines), 

to make their input during the critical formative stages of 

new projects.  
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Centralisation: the Statistics Canada model  
Every new project or major redesign is approved within 

Statistics Canada’s planning system. In preparation for its 

consideration, a comprehensive budget is developed and all 

major disciplines which are required to contribute sign off 

on the appropriateness of the proposed design and 

operational modalities. If the project is approved, its budget 

is divided up and distributed to participating disciplines, 

including methodology. In turn, these organisations 

“contract” to deliver the agreed contributions within the 

approved budgets. A project manager oversees both 

progress and expenditures, with authority to reassign 

resources, if necessary.    
The budget of the Methodology organization is 

composed of five distinct sources. These are designed, on 

the one hand, to facilitate the sound planning of the use of 

methodology and its thorough integration into the work of 

the Agency, and on the other to secure for it the needed 

funding.   
 

1. The contribution of methodology to developmental 
projects is guaranteed by the planning process of 
Statistics Canada, as indicated above. The financial 
contribution to the methodology budget from these 
sources may vary from year to year, but there is a 
reasonable overall stability (facilitating the hiring 
and development of permanent staff). They ac-
count for almost 30 per cent of the total meth-
odology budget. These projects typically involve 
major redesigns, often with significant experi-
mentation and innovation.  

2. But methodological contributions are also needed for 

maintenance (quality control, monitoring of various 

errors including variance estimation where relevant, 

minor design adjustments, etc.). For these activities 

there are core resources set aside and more or less 

permanently allocated by broad subject matter. This 

constitutes the second component of the methodology 

budget and it accounts for somewhat less than 25%.   

While for methodology this “on-going” work 

accounts for less than 25% of their workload, for 

Statistics Canada as a whole “on-going” work 

accounts for over 90% of our budget.  This is because 

of the innovative nature of methodology work.  

3. A third component comes from supplementary 

resources funded directly by the beneficiary subject 

matter divisions who, in effect, make savings from 

their other expenditures to avail themselves of 

additional methodology contributions. These 

supplementary funds account for a by no means 

negligible 20% or so of the methodology budget. The 

very fact that subject matter divisions consider 

methodology sufficiently valuable to fund method-

logical advice directly says a lot about the health of 

the relationship and of the extent to which it is 

valued. The funds in question are for a mixture of 

projects including enhancements short of a major 

redesign of on-going projects. They also strengthen 

the awareness of methodology staff of the need to 

remain relevant for their users. The kind of service 

they provide has a direct bearing on the amount of 

resources that are made available to them. 

4. The fourth part of the methodology budget (about 

20 per cent) comes from externally funded projects, 

typically from the budget of surveys funded by other 

departments. No more needs to be said about them. 

5. The final part (7 per cent) is for research. This is a 

“block fund”, meaning that a certain fixed amount of 

funds is allocated for the research function. The 

annual allocation is governed by a mechanism 

described below.   
 
The intricacies of the funding mechanism and the 

multiplicity of funding sources are a reflection of the care 

exercised in the agency to balance the virtues of 

independence with those of relevance.  

 
6. Project teams 

 
General thoughts 
 
The use of project teams in developmental projects helps 

to strengthen relevance without it being necessarily at the 

expense of independence. But project teams are not a 

universal panacea as everything depends on establishing 

appropriate checks and balances. In centralised orga-

nisations project teams, most often headed by a project 

manager from the sponsoring subject matter area, help to 

nudge the participating methodology staff to pay proper 

attention to the objectives and constraints of projects. 

Nonetheless there remains an inherent danger that the 

project manager will not give sufficient weight to the 

considered advice of methodologists.  

Project teams in decentralised organisations are just as 

important to ensure that the views of methodologists are 

given appropriate weight. Here, however, the dice are 

clearly weighted in favour of relevance and against 

independence. Moreover, an exaggerated emphasis on 

“relevance” has its danger as well since it can lead to local 

optimisation. Local optimisation is a situation where 

surveys are optimised without regard to agency wide 

objectives. An example might be a situation where surveys 

are customised to an extent such that the introduction of 

important efficiencies through the use of agency-wide 
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standards and general systems becomes difficult (the 

widespread use of generalized approaches, systems and 

tools can be a source of considerable agency-wide 

efficiencies: they shorten implementation times, reduce the 

expenditure on both systems development and maintenance, 

facilitate staff rotation, etc. However, generalized systems 

might lack some features which could enhance the 

efficiency of any given operation.  Decentralized orga-

nizations are more likely to favour such locally developed 

solutions in preference to agency-wide standard tools, even 

though the latter might lead to substantial long-run 

efficiencies).   
Centralisation: the case of Statistics Canada  
In Statistics Canada project teams working on major 

development projects are accountable and report to steering 

committees typically composed of the heads of the 

participating disciplines. A steering committee approves the 

broad project strategy, and serves, if needed, as a forum to 

which issues can be referred that could not be resolved 

within the team itself. In practice such appeals are rare and 

are restricted to cases where professional principles or truly 

strategic issues are involved. Steering committees ensure 

that issues do not get resolved within the project team on the 

basis of rank but rather on the basis of professional merit.  

Methodologists serving on project teams carry out a dual 

function:  

• At a strategic level, they help ensure that the overall 

survey design achieves the project’s substantive 

objectives, while striking a balance between reliability, 

cost, timeliness and respondent burden. While striving 

for this balance concerns the entire project team it is the 

methodologists who provide the framework and 

techniques that must be considered in seeking the 

optimum balance.  

• At a tactical level the methodologists provide the 

statistical methods and tools that are incorporated into 

the overall survey design: the sample design, the 

estimation and weighting approach, quality control, 

editing and imputation strategies, coverage checks, 

analytic methods and the like.   
Project teams function best in an organisation dedicated 

to making decisions on the basis of merit; where everyone 

can pose questions and expect reasoned answers; one that is 

devoted to making maximum use of the expertise of 

everyone involved.  

 
7. Career development  

General considerations  
Career development is essential for all professional 

groups, and it involves both formal training as well as 

formal and informal approaches to facilitate on-the-job 

learning. Methodology staff, in my view, requires special 

attention in this respect. The reason is that universities in 

general offer few, if any, courses in survey methodology 

(there is an increasing number of exceptions, although their 

numbers are still far from overwhelming. A most notable 

one is the Joint Program in Survey Methodology, University 

of Maryland. But there are also degree programs on official 

statistics in the UK, Ireland and New Zealand which include 

survey methodology). Since a thorough professional 

knowledge is essential for both relevance and independence, 

most statistical offices wanting to maintain a strong 

methodology staff have no alternative to having a carefully 

designed career development program – whether meth-

odology is organised in a centralised or decentralised 

manner. 

For the courses to be relevant, it is desirable that a 

substantial portion of courses should be taught by staff 

members who are themselves active practitioners. This is 

easier arranged in centralised organisations where the senior 

methodologists can not only deploy staff to do teaching 

(typically on a part time basis), but can also arrange suitable 

replacements for them in their current project work.  

The broader aspects of career development are also easier 

arranged in centralised organisations: they can more readily 

manage the periodic assignment of staff to different types of 

survey work, attendance at scientific conferences, the 

provision of research opportunities to those interested in and 

capable of doing part-time research work, and most 

importantly the service of apprenticeships under more 

experienced methodologists.   
 
The case of Statistics Canada  
Training, not only in methodology, is emphasized by 

Statistics Canada (see Statistics Canada 1995). Overall, 

expenses on training amount to about 3% of its budget (or 

$15 million) on formal training – plus a great deal more on 

various means of career development. But, in line with the 

centrality of training in methodology, the percentage of 

methodology budget spent on it is almost twice as much 

(bordering on 6 per cent in the 2008-09 fiscal year).  

Training is provided in formal courses within Statistics 

Canada’s Training Institute which currently (in 2009) offers 

some 20 courses in methodology, ranging in level from 

introductory courses to graduate level material. Most 

courses are taught by in-house staff, occasionally university 

personnel, mostly from local universities, are engaged if 

they are interested to teach and/or help develop our staff in 

other ways (e.g., consultation) (in the latter modality we 

have been particularly fortunate in having had the 

contributions of Professor J.N.K. Rao of Carleton 

University over a period of some decades). 
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All recruits have to take a basic six weeks course which 

teaches (and provides practice in) survey design, survey 

operations, processing and analysis. This introductory 

training serves a multiplicity of purposes. Since the same 

basic six-week course in survey work is taken by all new 

professionals, it helps early on to inculcate in everyone a 

basic knowledge of all that is involved in survey work ; and, 

even more importantly, to drive home the critical 

importance of inter-disciplinary team work. It is also at this 

stage that new recruits from other disciplines are exposed 

for the first time to the requirements of methodology in 

survey design 

Career development involves much more than training. 

The staff, particularly at the earlier stage of their career, is 

regularly given opportunities to work on different types of 

work: demographic, socio-economic, business surveys, use 

of administrative records, record linkage, etc. Significant 

numbers also attend scientific conferences. For example, 

during the last several years some 17 per cent of the 

methodology staff attended various Canadian and 

international professional conferences per annum. Staff is 

also encouraged to work on research projects and publish 

findings in peer reviewed journals, including Statistics 

Canada’s Survey Methodology. Finally, for many years now 

Statistics Canada has organised an international meth-

odology symposium to which leading research personnel 

from around the world are invited. These symposia are, of 

course, open to all Statistics Canada personnel and most 

methodologists choose to attend them. 

 
8. Advisory Committee 

 
General considerations  
A Methodology Advisory Committee can serve a most 

useful function (a) ensuring sound methodology practices, 

(b) integrating these practices into the daily work of 

statistical organisations, and (c) training staff. But the 

Committee can only be effective if (a) its advice is sought 

on significant issues of methodology and (b) there are 

mechanisms to ensure that the Committee’s views are given 

due weight. I have observed Methodology Advisory 

Committees playing an equally useful role in a centralised 

office (Statistics Canada) and in a decentralised one (the 

Bureau of the Census in the 1960s).   
The case of Statistics Canada  
Statistics Canada’s Methodology Advisory Committee 

plays a key role. There are several factors that contribute to 

its usefulness and standing:  

• The personal standing of the Committee’s members is 

part of the reason.  

• Every significant project of Statistics Canada is referred 

to the Committee for advice.  

• The Committee’s review is facilitated by the 

preparation of a paper for each item of the agenda 

which is introduced by a brief oral presentation by staff. 

• Designated members of the Committee serve as formal 

discussants of each item on the agenda. The discussants 

present their views formally.  Given that most of the 

papers are prepared by mid-career staff, these 

discussions make not only a substantive contribution to 

the projects that are discussed, but also to the training of 

the staff concerned – and that of the audience.  

• Meetings of the Committee are attended not only by a 

large number of the relevant methodologists, but also 

by senior personnel of the subject matter division 

concerned, including often the Chief Statistician as well 

as one or two of his assistants.   

• The Committee meets regularly: twice a year, for a day 

and a half on each occasion.  

• The Committee regularly reviews the follow-up arising 

from its conclusions and formal recommendations; this 

helps ensure that their advice is taken seriously.    

 
9. Research 

 
General considerations  
I am taking it for granted that for this audience I do not 

need to spend time underscoring the intrinsic importance of 

research in a statistical agency. But let me stress the 

following points: 

• Careful thought should be given to organising the 

research function in a manner that maximises both its 

relevance and the likelihood that its benefits will be 

successfully transmitted into daily practice. It is crucial 

to avoid the twin dangers of research being self-serving, 

or alternatively so completely task-oriented that it 

becomes pedestrian. 

• Research needs to be adequately funded.  

• In-house research needs to develop and to maintain 

close links with relevant extramural research.  
The case of Statistics Canada   
One of the four methodology divisions is formally 

devoted to full time research. But the research is organised 

in a particular manner. Even though the research budget 

provides for the equivalent of 22 full time research staff, the 

research division itself has only six full time members. The 

remaining budget is assigned to finance the part-time 

research work of some other 70 methodologists. This 

arrangement serves a variety of purposes. First, it 

contributes to the relevance of research. Secondly, it 
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contributes to the adoption of the results of research. And 

thirdly, it helps morale for while not everyone wants to do 

research (or is able to do so), many want to try their hand at 

it. And the very act of conducting some research, by those 

capable of it, leads to more open mindsets and a better 

informed practice.  

We are trying to ensure that the particular projects 

approved for research are in line with the broad research 

priorities of Statistics Canada, but at the same time leave 

some scope for self-initiated research. We do this by 

establishing broad priorities each year and inviting 

proposals in those areas from staff. The proposals are 

subject to formal adjudication: the best ones are selected and 

staff are assigned to work on them. Senior advice and 

guidance is provided by the Director of the Statistical 

Research and Innovation Division and its small permanent 

staff.  

The following are additional measures that help the 

quality of research carried out: 

• The possibility of publishing papers in Survey 

Methodology, Statistics Canada’s own publication, 

serves as an incentive. While the peer review of the 

articles is rigorously managed by an international 

editorial board, the existence of a local yet prestigious 

outlet for methodology research represents a visible 

commitment by senior management. 

• We regularly co-author papers with well known 

external research personnel (both Canadian and non-

Canadian). 

• We hold regular methodology interchanges with 

methodology staff in the US Bureaus of the Census and 

of Labour Statistics.  

• We participate actively in Canadian, American and 

international statistical organisations. 

 
10. Concluding comments 

 
As indicated in the introduction, the bulk of the paper 

was devoted to the tools that should be considered by 

statistical offices in establishing and supporting the 

methodology function and the associated research, tools that 

in appropriate combination can enhance both the 

professional independence as well as the relevance of the 

function. I want to emphasise, however, that this is not a 

cook book. More important than all the tools is the 

environment: whether the statistical office welcomes 

questioning and ensures that substantive questions are 

answered in substance; whether change is intrinsically 

frowned upon; whether it fosters collegiality; whether 

intelligent risk taking is encouraged or frowned upon; 

whether experiments are welcomed, assessed on their 

merits, and acted upon. These are the attributes that come 

from the top leadership of the statistical office and tools 

cannot substitute for them. Under the wrong leadership the 

best methodology staff (or, indeed, the best statistical office 

itself) will wither. But the contrary is not true: it is essential 

to have a careful understanding of the subtle balances 

advocated in this paper, as well as a careful deployment of 

the tools that give them effect. And even then, only a long 

term strategy can succeed.  

I am completely certain that Joe would agree with my 

conclusion (see Waksberg 1998). 
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Design for estimation:  
Identifying auxiliary vectors to reduce nonresponse bias 
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Abstract 

This article develops computational tools, called indicators, for judging the effectiveness of the auxiliary information used to 

control nonresponse bias in survey estimates, obtained in this article by calibration. This work is motivated by the survey 

environment in a number of countries, notably in northern Europe, where many potential auxiliary variables are derived 

from reliable administrative registers for household and individuals. Many auxiliary vectors can be composed. There is a 

need to compare these vectors to assess their potential for reducing bias. The indicators in this article are designed to meet 

that need. They are used in surveys at Statistics Sweden. General survey conditions are considered: There is probability 

sampling from the finite population, by an arbitrary sampling design; nonresponse occurs. The probability of inclusion in 

the sample is known for each population unit; the probability of response is unknown, causing bias. The study variable (the 

y-variable) is observed for the set of respondents only. No matter what auxiliary vector is used in a calibration estimator (or 

in any other estimation method), a residual bias will always remain. The choice of a “best possible” auxiliary vector is 

guided by the indicators proposed in the article. Their background and computational features are described in the early 

sections of the article. Their theoretical background is explained. The concluding sections are devoted to empirical studies. 

One of these illustrates the selection of auxiliary variables in a survey at Statistics Sweden. A second empirical illustration is 

a simulation with a constructed finite population; a number of potential auxiliary vectors are ranked in order of preference 

with the aid of the indicators. 
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1. Introduction 
 

Large nonresponse is typical of many surveys today. This 

creates a need for techniques for reducing as much as 

possible the nonresponse bias in the estimates. Powerful 

auxiliary information is needed. Administrative data files 

are a source of such information. The Scandinavian coun-

tries and some other European countries, notably the 

Netherlands, are in an advantageous position. Many poten-

tial auxiliary variables (called x-variables) can be taken from 

high quality administrative registers where auxiliary vari-

able values are specified for the entire population. Variables 

measuring aspects of the data collection is another useful 

type of auxiliary data. Effective action can be taken to 

control nonresponse bias. Beyond sampling design, design 

for estimation becomes, in these countries, an important 

component of the total design. Statistics Sweden has 

devoted considerable recourses to the development of 

techniques for selecting the best auxiliary variables. 

Many articles discuss weighting in surveys with non-

response and the selection of “best auxiliary variables”. 

Examples include Eltinge and Yansaneh (1997), Kalton and 

Flores-Cervantes (2003), and Thomsen, Kleven, Wang and 

Zhang (2006). Weighting in panel surveys with attrition 

receives special attention in, for example, Rizzo, Kalton and 

Brick (1996), who suggest that “the choice of auxiliary 

variables is an important one, and probably more important 

than the choice of the weighting methodology”. The review 

by Kalton and Flores-Cervantes (2003) provides many 

references to earlier work. As in this paper, a calibration 

approach to nonresponse weighting is favoured in Deville 

(2002) and Kott (2006).  

Some earlier methods are special cases of the outlook in 

this article, which is based on a systematic use of auxiliary 

information by calibration at two levels. Recently the search 

for efficient weighting has emphasized two directions: (i) to 

provide a more general setting than the popular but limited 

cell weighting techniques, and (ii) to quantify the search for 

auxiliary variables with the aid of computable indicators. 

Särndal and Lundström (2005, 2008) propose such indica-

tors, while Schouten (2007) uses a different perspective to 

motivate an indicator. An article of related interest is 

Schouten, Cobben and Bethlehem (2009). 

This content of this article has four parts: The general 

background for estimation with nonresponse is stated in 

Sections 2 to 4. Indicators for preference ranking of x-

vectors are presented in Sections 5 and 6, and the 

computational aspects are discussed. The linear algebra 

derivations behind the indicators is presented in Sections 7 

and 8. The two concluding Sections 9 and 10 present two 

empirical illustrations. The first (Section 9) uses real data 

from a large survey at Statistics Sweden. The second 

(Section 10) reports a simulation carried out on a con-

structed finite population. 
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2. Calibration estimators for a survey  

       with nonresponse 
 

A probability sample s is drawn from the population 

{1, 2,..., , ..., }.U k �=  The sampling design gives unit k 

the known inclusion probability π Pr( ) 0k k s= ∈ >  and the 

known design weight 1/π .k kd =  Nonresponse occurs. The 

response set r is a subset of s; how it was generated is 

unknown. We assume ,r s U⊂ ⊂  and r non-empty. The 

(design weighted) response rate is 

kr

ks

d
P

d
=
∑
∑

 (2.1) 

(if A is a set of units, ,A U⊆  a sum k A∈∑  will be written 

as ).A∑  Ordinarily a survey has many study variables. A 

typical one, whether continuous or categorical, is denoted y. 

Its value for unit k is ,ky  recorded for ,k r∈  not available 

for .k U r∈ −  We seek to estimate the population y-total, 

.U kY y∑=  Many parameters of interest in the finite 

population are functions of several totals, but we can focus 

on one such total. 

The auxiliary information is of two kinds. To these 

correspond two vector types, k

∗x  and .kx�  Population 

auxiliary information is transmitted by ,k

∗x  a vector value 

known for every .k U∈  Thus U k

∗∑ x  is a known population 

total. Alternatively, we allow that U k

∗∑ x  is imported from 

an exterior source and that k

∗x  is a known (observed) vector 

value for every .k s∈  Sample auxiliary information is 

transmitted by ,kx�  a vector value known (observed) for 

every ;k s∈  the total U k∑ x�  is unknown but is estimated 

without bias by .s k kd∑ x�  The auxiliary vector value 

combining the two types is denoted .kx  This vector and the 

associated information is 

; .
kUk

k

k k ks
d

∗∗   
 = =      

∑
∑

xx
x X

x x
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 (2.2) 

Tied to the thk  unit is the vector ( , , π ).k k ky x  Here, πk  is 

known for all , kk U y∈  for all ,k r∈  the component k

∗
x  of 

kx  carries population information, the component kx
�  of kx  

carries sample information. 

Many x-vectors can be formed with the aid of variables 

from administrative registers, survey process data or other 

sources. Among all the vectors at our disposal, we wish to 

identify the one most likely to reduce the nonresponse bias, 

if not to zero, so at least to a near-zero value. 

We consider vectors having the property that there exists 

a constant non-null vector µµµµ  such that 

1 for allk k U′ = ∈µ x  (2.3) 

“Constant” means that ≠µ 0µ 0µ 0µ 0  does not depend on k, nor on s 

or r. Condition (2.3) simplifies the mathematical derivations 

and does not severely restrict .kx  Most x-vectors useful in 

practice are in fact covered. Examples include: (1) 

(1, ) ,k kx ′=x  where kx  is the value for unit k of a 

continuous auxiliary variable x; (2) the vector representing a 

categorical x-variable with J mutually exclusive and 

exhaustive classes, 1( , ..., , ..., ) ,k k k jk Jk
′= = γ γ γx γ  where 

1jkγ =  if k belongs to group j, and 0jkγ =  if not, 

1, 2, , ;j J= …  (3) the vector kx  used to codify two 

categorical variables, the dimension of kx  being 1J +  

2 1,J −  where 1J  and 2J  are the respective number of 

classes, and the ‘minus-one’ is to avoid a singularity in the 

computation of weights calibrated to the two arrays of 

marginal counts; (4) the extension of (3) to more than two 

categorical variables. Vectors of the type (3) and (4) are 

especially important in statistics production in statistical 

agencies (the choice ,k kx=x  not covered by (2.3), leads to 

the nonresponse ratio estimator, known to be a usually poor 

choice for controlling nonresponse bias, compared with 

(1, ) ,k kx ′=x  so excluding the ratio estimator is no great 

loss). 

The calibration estimator of ,U kY y∑=  computed on the 

data ky  for ,k r∈  is 

CAL
ˆ

k kr
Y w y=∑  (2.4) 

with 1{1 ( ) ( ) }.r rk k k k k k k kw d d d −∑ ∑′ ′= + −X x x x x  The 

weights kw  are calibrated on both kinds of information: 

,r k kw∑ =x X  which implies r Uk k kw ∗ ∗∑ ∑=x x  and 

.r sk k k kw d∑ ∑=x x� �  We assume throughout that the 

symmetric matrix r k k kd∑ ′x x  is nonsingular (for compu-

tational reasons, it is prudent to impose a stronger 

requirement: The matrix should not be ill-conditioned, or 

near-singular). In view of (2.3), we have CAL
ˆ

r k kY w y∑=  

with weights k k kw d v=  where 1( ) .rk k k k kv d −∑′ ′= X x x x  

The weights satisfy ,r k k kd v∑ =x X  where X has one or 

both of the components in (2.2). 

A closely related calibration estimator is based on the 

same two-tiered vector kx  but with calibration only to the 

sample level: 

CAL k k kr
Y d m y=∑ɶ  (2.5) 

where  

( ) ( ) 1

.k k k k k k ks r
m d d

−′ ′= ∑ ∑x x x x  (2.6) 

The calibration equation then reads r k k kd m∑ =x  

,s k kd∑ x  where kx  has the two components as in (2.2). The 

auxiliary vector kx  serves two purposes: To achieve a low 

variance and a low nonresponse bias. From the variance 

perspective alone, CALŶ  is usually preferred to CALYɶ  because 

the former profits from the input of a known population 

total .U k

∗∑ x  But this paper studies the bias. From that 

perspective, we are virtually indifferent between CALŶ  and 
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CAL,Yɶ  and we focus on the latter. Under liberal conditions, 

the difference between the bias of 1

CAL
ˆ� Y−  and that of 

1

CAL� Y− ɶ  is of order 1,n−  thereby of little practical 

consequence even for modest sample sizes n, as discussed 

for example in Särndal and Lundström (2005). 

An alternative expression for (2.5) is 

( )CAL k ks
Y d

′= ∑ xx Bɶ  (2.7) 

where 

( ) 1

| ;r d k k k k k kr r
d d y

−
′= = ∑ ∑x xB B x x x  (2.8) 

is the regression coefficient vector arising from the ( kd -

weighted) least squares fit based on the data ( , )k ky x  for 

.k r∈  

A remark on the notation: When needed for emphasis, a 

symbol has two indices separated by a semicolon. The first 

shows the set of units over which the quantity is computed 

and the second indicates the weighting, as in | ;r dxB  given 

by (2.8), and in weighted means such as ;r dy =  

/ .r rk k kd y d∑ ∑  If the weighting is uniform, the second of 

the two indices is dropped as in (1/ ) .UU ky � y∑=  

 
3. Points of reference 

 
The most primitive choice of vector is the constant one, 

1k =x  for all k. Although inefficient for reducing 

nonresponse bias, it serves as a benchmark. Then 1/km P=  

for all k, where P is the survey response rate (2.1), and CALYɶ  

is the expansion estimator: 

EXP ;
ˆ(1/ ) k k r dr

Y P d y � y= =∑ɶ  (3.1) 

where ˆ
s k� d∑=  is design unbiased for the population size 

�. The bias of  EXPYɶ  can be large.  

At the opposite end of the bias spectrum are the 

unbiased, or nearly unbiased, estimators obtainable under 

full response, when .r s=  They are hypothetical, not 

computable in the presence of nonresponse. Among these 

are the GREG estimator with weights calibrated to the 

known population total ,U k

∗∑ x  

FUL
ˆ

k k ks
Y d g y=∑  

where 11 ( ) ( ) ,U s sk k k k k k k kg d d
′∗ ∗ ∗ ∗ − ∗∑ ∑ ∑′= + −x x x x x  and 

FUL refers to full response. The unbiased HT estimator 

(obtained when 1kg =  for all k) is 

FUL ;
ˆ .k k s ds

Y d y � y= =∑ɶ  (3.2) 

It disregards the information ,U k

∗∑ x  which may be 

important for variance reduction. But for the study of bias in 

this paper, we are indifferent between FULŶ  and FUL.Yɶ  The 

difference in bias between the two is of little consequence, 

even for modest sample sizes. We can focus on FUL .Yɶ  

 
4. The bias ratio 

 
For a given outcome (s, r), consider the estimates 

CAL,Yɶ EXPYɶ  and FULYɶ  given by (2.5), (3.1) and (3.2) as three 

points on a horizontal axis. Both EXPYɶ  (generated by the 

primitive 1)k =x  and CALYɶ  (generated by a better x-vector) 

are computable, but biased. As the x-vector improves, CALYɶ  

will distance itself from EXPYɶ  and may come near the 

unbiased but unrealized ideal FUL .Yɶ  We consider therefore 

three deviations: EXP FUL EXP CAL,Y Y Y Y− −ɶ ɶ ɶ ɶ  and CAL FUL,Y Y−ɶ ɶ  

of which only the middle one is computable. The unknown 

“deviation total”, EXP FUL,Y Y−ɶ ɶ  is decomposable as 

“deviation accounted for” (by the chosen x-vector) plus 

“deviation remaining”: 

EXP FUL EXP CAL CAL FUL( ) ( ).Y Y Y Y Y Y− = − + −ɶ ɶ ɶ ɶ ɶ ɶ  (4.1) 

If computable, CAL FULY Y−ɶ ɶ  would be of particular 

interest, as an estimate of the bias remaining in CALYɶ  (and in 

CAL
ˆ ),Y  whereas EXP FULY Y−ɶ ɶ  would estimate the usually 

much larger bias of the benchmark, EXP .Yɶ  The bias ratio for 

a given outcome (s, r) sets the estimated bias of CALYɶ  in 

relation to that of EXP
ˆ :Y   

CAL FUL

EXP FUL

bias ratio .
Y Y

Y Y

−
=

−

ɶ ɶ

ɶ ɶ
 (4.2) 

We scale the three deviations by the estimated population 

size ˆ
s k� d∑=  and use the notation ,T A R∆ = ∆ + ∆  where 

T suggests “total”, A “accounted for” and R “remaining”. 

Noting that ( ) 0,r k k kd y∑ ′− =xx B  we have  

1

EXP FUL ; ;

1

CAL FUL ; ;

1

EXP CAL ; ;

ˆ ( ) ;

ˆ ( )

ˆ ( ) ( )

T r d s d

R s d s d

A r d s d

� Y Y y y

� Y Y y

� Y Y

−

−

−

∆ = − = −

′∆ = − = −

′∆ = − = −

x

x

x B

x x B

ɶ ɶ

ɶ ɶ

ɶ ɶ

 

where ; ;/ , / ,s s r rs d k k k r d k k kd d d d∑ ∑ ∑ ∑= =x x x x  and 

;s dy  and ;r dy  are the analogously defined means for the y-

variable. Then (4.2) takes the form 

; ;

; ;

( )
bias ratio 1 1 .

r d s dR A

T T r d s dy y

′−∆ ∆
= = − = −
∆ ∆ −

xx x B
 (4.3) 

We have bias ratio = 1 for the primitive vector 1.k =x  

Ideally, we want the auxiliary vector kx  for CALYɶ  to give 

bias ratio 0.≈  For a given outcome (s, r) and a given y-

variable, we take steps in that direction by finding an x-

vector that makes the computable numerator A∆ =  

; ;( )r d s d
′− xx x B  large (in absolute value). This is within our 
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reach. But whatever our final choice of x-vector, the 

remaining bias of CALYɶ  is unknown. Even with the best 

available x-vector, considerable bias may remain. We have 

then attempted to do the best possible, under perhaps 

unfavourable circumstances. 

To summarize, for a given outcome (s, r) and a given y-

variable, the three deviations have the following features: (i) 

; ;T r d s dy y∆ = −  is an unknown constant value, depending 

on both unobserved and observed y-values; (ii) A∆  is 

computable; it depends on ky  for k r∈  and on the values 

kx  for k s∈  of the chosen x-vector; (iii) R∆  cannot be 

computed; it depends on unobserved values ,ky  and on kx  

for .k s∈   

To follow the progression of the estimates when the x-

vector improves, consider a given outcome (s, r). The 

deviation T∆  can have either sign. Suppose > 0,T∆  

indicating a positive bias in EXP,Yɶ  as when large units 

respond with greater propensity than small ones. When the 

x-vector in CALYɶ  becomes progressively more powerful by 

the inclusion of more and more x-variables, A∆  tends to 

increase away from zero and will, ideally, come near ,T∆  

indicating a desired closeness of CALYɶ  to the unbiased FUL .Yɶ  

As long as the x-vector remains relatively weak, A T∆ < ∆  is 

likely to hold. When the x-vector becomes increasingly 

powerful, A∆  moves closer to the fixed ,T∆  a sign of bias 

nearing zero. It could even “move beyond”, so that an 

“over-adjustment”, > ,A T∆ ∆  has occurred. This not a 

detrimental feature; although R T A∆ = ∆ − ∆  is then 

negative, it is ordinarily small (the analyst can only work 

with ;A∆  it is unknown to him/her whether A∆  and T∆  are 

close, or whether the over-adjustment >A T∆ ∆  has 

occurred). These points are illustrated by the simulation in 

Section 10. If 0,T∆ <  these tendencies are reversed. 

The form of (4.3) may suggest an argument which can 

however be misleading: Suppose that a vector kx  has been 

suggested, containing variables thought to be effective, 

along with an assumption that ,k k ky ′= + εβ x  where kε  is 

a small residual. Then ; ; ; ;( )r d s d r d s dy y ′− ≈ − ≈xx x B  

; ;( ) ,r d s d
′−x x β  and consequently bias ratio 0,≈  sending a 

message, often false, that the postulated vector kx  is 

efficient. One weakness of the argument stems from the 

well-known fact that nonresponse (unless completely 

random) will cause xB  to be biased for a regression vector 

that describes the y-to-x relationship in the population. 

Further comments on this issue are given in Section 8. 

Finally, there is the practical consideration that a typical 

survey has many y-variables. To every y-variable corre-

sponds a calibration estimator, and a bias ratio given by 

(4.3). The ideal x-vector is one that would be capable of 

controlling bias in all those estimators. This is usually not 

possible without compromise, as we discuss later. 

 

5. Expressing the deviation accounted for 
 

The responding unit k receives the weight k kd m  in the 

estimator CAL .r k k kY d m y∑=ɶ  The nonresponse adjustment 

factor 1( ) ( )s rk k k k k k km d d −∑ ∑′ ′= x x x x  expands the design 

weight .kd  We can view km  as the value of a derived 

variable, defined for a particular outcome (r, s) and choice 

of ,kx  independent of all y-variables of interest, and 

computable for k s∈  (but used in CALYɶ  only for 

).k r∈ Using (2.3), we have 

2

; ;

.

k k k k k k k kr s r s

k k k kr s

d m d d m d

d m d m

= =

=

∑ ∑ ∑ ∑

∑ ∑

x x

 

(5.1)

 

Two weighted means are needed: 

; ;

1
;

k k kk k s sr
r d s d

k k kr r s

d d md m
m m

d d P d
= = = =

∑ ∑∑
∑ ∑ ∑

 (5.2) 

where P is the response rate (2.1). Thus the average 

adjustment factor in CAL r k k kY d m y∑=ɶ  is 1/ ,P  regardless 

of the choice of x-vector. Whether a chosen x-vector is 

efficient or not for reducing bias will depend on higher 

moments  of the .km  The weighted variance of the km  is 

2 2 2
| ; ;( ) .m m r d k k r d kr r

S S d m m d= = −∑ ∑  (5.3) 

The simpler notation 2

mS  will be used. A development of 

(5.3) and a use of (5.1) and (5.2) gives 

2
; ; ;( ).m r d s d r dS m m m= −  (5.4) 

The coefficient of variation of the km  is 

;

; ;

cv 1.
s dm

m

r d r d

mS

m m
= = −  (5.5) 

The weighted variance of the study variable y is given by 

2 2 2
| ; ;( )y y r d k k r d kr r

S S d y y d= = −∑ ∑  (5.6) 

(when the response probabilities are not all equal, 2
yS =  

2
| ;y r dS  is not unbiased for the population variance 2

| ,y US  but 

this is not an issue for the derivations that follow). We need 

the covariance 

;

; ;

Cov( , ) Cov( , )

1
( )( )

r d

k k r d k r dr
kr

y m y m

d m m y y
d

= =

− −∑∑

 

(5.7)

 

and the correlation coefficient, , Cov( , ) /( ),y m y mR y m S S=  

satisfying ,1 1.y mR− ≤ ≤  

The deviation ; ;( )A r d s d
′∆ = − xx x B  is a crucial 

component in the bias ratio (4.3). We seek an x-vector that 
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makes A∆  large. The factors that determine A∆  are seen in 

(5.8) to (5.10). Computational tools (indicators) to assist the 

search for effective x-variables are given in (5.11) and 

(5.12). Their derivation by linear algebra is deferred to 

Section 7, which may be bypassed by readers more 

interested in the practical use of these tools in the search for 

x-variables, as illustrated in the empirical Sections 9 and 10. 

We can factorize /A yS∆  as 

,/ cv .A y y m mS R∆ = − ×  (5.8) 

Two simple multiplicative factors determine / :A yS∆  

The coefficient of variation cv ,m  which is free of ky  and 

computed on the known kx  alone, and the (positive or 

negative) correlation coefficient , .y mR  Another factor-

ization in terms of simple concepts is 

,/ cvA y y mS F R∆ = × ×x  (5.9) 

where 2

, ,y yR R=x x  is the coefficient of multiple correla-

tion between y and x, 2
,yR x  is the proportion of the y-

variance 2
yS  explained by the predictor x, and F =  

, ,/y m yR R− x  (formula (7.8) states the precise expression for 
2
, ).yR x  As Section 7 also shows, , ,| |y m yR R≤ x  for any x-

vector and y-variable; consequently 1 1.F− ≤ ≤  

In (5.8) and (5.9), cvm  and ,yR x  are non-negative 

terms, while ,y mR  and F can have either sign (or possibly 

be zero). Hence 

, ,| | / | | cv | | cv .A y y m m y mS R F R∆ = × = × ×x  (5.10) 

All of , ,, cv , ,y m y y mS R Rx  and F are easily computed in 

the survey. Both cvm  and ,yR x  increase (or possibly stay 

unchanged) when further x-variables are added to the x-

vector; ,y mR  does not have this property. 

To illustrate with the aid of fairly typical numbers, if 

,0.5; 0.6yF R= =x  and cv 0.4,m =  then / 0.12,A yS∆ =  

implying that CAL EXP/ / 0.12 .yY � Y � S= − ×ɶ ɶ  That is, the 

estimated y-mean CAL
ˆ/Y �ɶ  has become adjusted by 0.12 

standard deviations down from the primitive estimate 

EXP
ˆ/ .Y �ɶ  The adjustment can be large compared to the 

standard deviation of the estimated y-mean, especially when 

the survey sample size is in the thousands. It remains 

unknown whether or not that adjustment has cured most of 

the biasing effect of nonresponse. 

It follows from (5.8) that 0 | | / cvA y mS≤ ∆ ≤  whatever 

the y-variable. A shaper inequality is ,| | / cv ,A y y mS R∆ ≤ ×x  

but it depends on the y-variable. Further, if the correlation 

ratio F stays roughly constant when the x-vector changes, so 

that 0,F F≈  then  0 ,| | / | | cv .A y y mS F R∆ ≈ × ×x  

Although computable for any x-vector and any outcome 

(s, r), A∆  does not reveal the value of the bias ratio. But A∆  

suggests computational tools, called indicators, for com-

paring alternative x-vectors. By (5.8), let 

0 ,/ cv .A y y m mH S R= ∆ = − ×  (5.11) 

As borne out by theory in Section 8 and by the empirical 

work in Section 10, over a long run of outcomes (s, r), the 

average of 0H  tracks the average deviation CALY Y−ɶ  

(which measures the bias of CAL )Yɶ  in a nearly perfect linear 

manner when the x-vector changes. This holds indepen-

dently of the response distribution that generates r from s. 

Since 0H  can have either sign, it is practical to work with 

its absolute value denoted 1;H  in addition we consider two 

other indicators, 2H  and 3,H  inspired by (5.9) to (5.10): 

1 ,

2 , 3

| | / | | cv ;

cv ; cv .

A y y m m

y m m

H S R

H R H

= ∆ = ×

= × =x

 

(5.12)

 

Our main alternatives are 1H  and 3.H  Of these, 1H  is 

motivated by its direct link to ,A∆  which we want to make 

large, for a given y-variable. A strong reason to consider 

3H  is its independence of all y-variables in the survey. The 

indicator 2H  is an ad hoc alternative; although 2H  

contains a familiar concept, the multiple correlation 

coefficient , ,yR x  it is less appropriate than 1H  because the 

correlation coefficient ratio , ,/y m yF R R= − x  may vary 

considerably from one x-vector to another. Both 2H  and 

3H  increase when further x-variables are added to the x-

vector, something which does not hold in general for 1.H  

The use of these indicators is illustrated in the empirical 

Sections 9 and 10. 

 
6. Preference ranking of auxiliary vectors 

 
The methods in this paper are intended for use primarily 

with the large samples that characterize government 

surveys. The sample size is ordinarily much larger than the 

dimension of the x-vector. The variance of estimates is 

ordinarily small, compared to the squared bias. However, 

for categorical auxiliary variables, no group size should be 

allowed to be “too small”. It is recommended that all group 

sizes be at least 30, if not at least 50, in order to avoid 

instability. The crossing of categorical variables (to allow 

interactions) implies a certain risk of small groups. It is 

preferable to calibrate on marginal counts, rather than on 

frequencies for small crossed cells. 

In a number of countries, the many available admi-

nistrative registers provide a rich source of auxiliary 

information, particularly for surveys on individuals and 

households. These registers contain many potential x-

variables from which to choose. Many different x-vectors 

can be composed. The indicators in (5.12) provide compu-

tational tools for obtaining a preference ordering, or a 

ranking, of potential x-vectors, with the objective to reduce 
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as much as possible the bias remaining in the calibration 

estimator.  
Scenario 1: Focus on a specific y-variable. The bias 

remaining in the calibration estimator depends on the y-

variable; some are more bias prone than others. We identify 

one specific y-variable deemed to be highly important in the 

survey, and we seek to identify an x-vector that reduces the 

bias for this variable as much as possible (if more than one 

y-variable needs to be taken into account, a compromise 

must be struck, which suggests Scenario 2 below). For this 

purpose, we use the y-variable dependent indicator 1H =  

,| | / | | cvA y y m mS R∆ = ×  and choose the x-vector so as to 

make 1H  large. An ad hoc alternative is to use the indicator 

2 , cv ,y mH R= ×x  and strive to make it as large as possible.  
Scenario 2: The objective is to identify a general purpose x-

vector, efficient for all or most y-variables in the survey. 

This suggests 3 cvmH =  as a compromise indicator, and to 

choose the x-vector that maximizes 3.H  To that same 

effect, Särndal and Lundström (2005, 2008) used the 

indicator 2 2 2

3 / .mS H P=  They showed that the derived 

variable km  in (2.6) can be seen as a predictor of the inverse 

of the unknown response probability and that choosing the 

x-vector to make 2

mS  large signals a bias reduction in the 

calibration estimator, irrespective of the y-variable.  
For each scenario we can distinguish two procedures:  

All vectors procedure: A list of candidate x-vectors is 

prepared, based on appropriate judgment. We compute the 

chosen indicator for every candidate x-vector, and settle for 

the vector that gives the highest indicator value. The 

resulting x-vector may not be the same for 1H  (which 

targets a specific y-variable) as for 3H  (which seeks a 

compromise for all y-variables in the survey). 
 

Stepwise procedure: There is a pool of available x-variables. 

We build the x-vector by a stepwise forward (or stepwise 

backward) selection from among the available x-variables, 

one variable at a time, using the successive changes (if 

considered large enough) in the value of the chosen 

indicator to signal the inclusion (or exclusion) of a given x-

variable at a given step. The indicators 1 2,H H  and 3H  do 

not in general give the same selection of variables. Consider 

two x-vectors, 1kx  and 2 ,kx  such that 2kx  is made up of 

1kx  and an additional vector :k+x 2 1( , ) .k k k+′ ′ ′=x x x  The 

transition from 1kx  to 2kx  will increase the value of 2H  

and 3.H  In each step of a forward selection procedure we 

select the variable bringing the largest increase in 2H  or 

3.H  But the transition does not guarantee an increased 

value for the most appropriate indicator, 1.H  However, 1H  

may be used in stepwise selection in the manner described 

in Section 9. 

 

7. Derivations 
 

For given y-variable and outcome (s, r), we seek an x-

vector to make the computable numerator A∆ =  

; ;( )r d s d
′− xx x B  in the bias ratio (4.3) large, in absolute 

value. In this section we prove the factorizations /A yS∆ =  

, ,cv cvy m m y mR F R− × = × ×x  in (5.8) and (5.9). We note 

first that 2cvm  is a quadratic form in the vector that contrasts 

the x-mean in the response set r with the x-mean in the 

sample s. Let  

; ; ; .r d s d k k k kr r
d d′= − =∑ ∑D x x Σ x x  (7.1) 

Then, with P given by (2.1),  

2 2 2 1cv .m mP S −′= × = D Σ D  (7.2) 

This expression follows from (5.3) and a consequence of 

(2.3), namely,  

1 1
; ; ; ; 1.r d r d r d s d

− −′ ′= =x Σ x x Σ x  (7.3) 

The vector of covariances with the study variable y is 

( ) ( ); ;( ) ( ) .k k r d k r d kr r
d y y d= − −∑ ∑C x x  (7.4) 

We can then write A∆  as a bilinear form: 

1

A

−′ ′∆ = =xD B D Σ C  (7.5) 

using that 1 1
; ; ; ;( ) 0r d r d s d r d

− −′ ′= − =D Σ x x x Σ x  by (7.3). 

A useful perspective on A∆  is gained from the geometric 

interpretation of C and D in (7.5) as vectors in the space 

whose dimension is that of .kx  We have 

1 1/ 2 1 1/ 2Λ ( ) ( )A

− −′ ′∆ = D Σ D C Σ C  (7.6) 

where 

1

1 1/ 2 1 1/ 2
Λ .

( ) ( )

−

− −

′
=

′ ′
D Σ C

D Σ D C Σ C
 (7.7) 

For a specific y-variable and a specific x-vector, the 

scalar quantities 1 1/ 2( )−′D Σ D  and 1 1/ 2( )−′C Σ C  represent the 

respective vector lengths of D and C (following an 

orthogonal transformation based on the eigenvectors and 

eigenvalues of 1).−
Σ  The scalar quantity Λ  represents the 

cosine of the angle between D (which is independent of y) 

and C (which depends on y); hence 1 Λ 1.− ≤ ≤  

When the auxiliary vector kx  is allowed to expand by 

adding further available x-variables, both vector lengths 
1 1/ 2( )−′D Σ D  and 1 1/ 2( )−′C Σ C  increase. The change in the 

angle Λ  may be in either direction; if | |Λ  stays roughly 

constant, (7.6) shows that | |A∆   will increase. 

A second useful perspective on A∆  follows by decom-

posing the total variability of the study variable y, 
2 2

;( ) ( ) .r rk k r d k yd y y d S∑ ∑− =  Two regression fits need 
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to be examined, the one of y on the auxiliary vector x, and 

the one of y on the derived variable m defined by (2.6). To 

each fit corresponds a decomposition of 2
yS  into explained 

y-variation and residual y-variation. The two explained 

portions have important links to the bias ratio (4.3). Result 

7.1 summarizes the two decompositions.  
Result 7.1. For a given survey outcome (s, r), let ,D Σ  and 

C be given by (7.1) and (7.4). Then the proportion of the y-

variance 2
yS  explained by the regression of y on x is 

2 1 2
, ( ) / .y yR S−′=x C Σ C  (7.8) 

The coefficient of correlation between y and the 

univariate predictor m is 

1 1 1/ 2
, ( ) /[( ) ].y m yR S− −′ ′= − ×D Σ C D Σ D   (7.9) 

Consequently, the proportion of 2
yS  explained by m is 

2 1 2 1 2
, ( ) /[( ) ].y m yR S− −′ ′= ×D Σ C D Σ D  (7.10) 

The proportions 2
,yR x  and 2

,y mR  satisfy 2 2
, , 1.y m yR R≤ ≤x   

Proof. The proof of (7.8) uses the weighted least squares 

regression of y on x fitted over r. The residuals are 

( )ˆ ,k ky y− x  where ( )ˆ k ky ′= xx x B  with xB  given by (2.8). 

The decomposition is 

2 2

; ;

2

( )

( )

ˆ( ) ( )

ˆ( ) .

k k r d k k r dr r

k k kr

d y y d y y

d y y

− = −

+ −

∑ ∑

∑

x

x

 

The mixed term is zero. A development of the term 

“variation explained” gives 2
;( )ˆ( ) ( )r rk k r d kd y y d∑ ∑− =x  

1 .−′C Σ C  Thus the proportion of variance explained is 
2 2 2 1 2
, ;( )ˆ( ) /[( ) ] / ,r ry k k r d k y yR d y y d S S−∑ ∑ ′= − =x x C Σ C  as 

claimed in (7.8). To show (7.9) we note that the covariance 

(5.7) can be written with the aid of (7.5) as 

1Cov( , ) / / .Ay m P P−′= −∆ = −D Σ C  

It then follows from (7.2) that , Cov( , ) /( )y m y mR y m S S=  

has the expression (7.9). The residuals from the regression 

(with intercept) of y on the univariate explanatory variable 

m are ; ;( )ˆ ( )k r d m k r dmy y B m m= + −  with 2Cov( , )/m mB y m S= =  
1 1( ) /( ).P − −′ ′− D Σ D ΣC D  The proportion of variance 

explained is 2 2
;( )ˆ( ) / [( ) ],r rk k r d k ymd y y d S∑ ∑−  which upon 

development gives the expression for 2
,y mR  in (7.10). 

Finally, 2 2
, ,y m yR R≤ x  follows from the Cauchy-Schwarz 

inequality for a bilinear form: 1 2 1( ) ( )− −′ ′≤D Σ C D Σ D  
1( ).−′C Σ C  

The inequality 2 2
, , 1y m yR R≤ ≤x  can also be deduced by 

the fact that, among all predictions ˆk ky ′= x β  that are linear 

in the x-vector, those that maximize the variance explained 

are ( )ˆ ,k ky ′= xx x B  so the predictions ( )ˆ ,kmy  which are 

linear in kx  via ,km  cannot yield a greater variance 

explained than that maximum. 

Now from (7.9), (7.2) and (7.5), 1
, cv /y m mR −′− =D Σ C  

/ ,y A yS S= ∆  as claimed by formula (5.8). Moreover, (7.7), 

(7.8) and (7.9) imply , ,/ ,y m yR R− = Λx  so the correlation 

coefficient ratio F in (5.9) equals the angle Λ  defined by 

(7.7). 

 
8. Comments: Goodness of fit, properties of the 

          bias and a related selection procedure 
 

Three issues are examined in this section: (i) The 

relationship between bias and goodness of fit, (ii) the linear 

relation between the expected value of 1
EXP

ˆ (A � Y−∆ = −ɶ  

CAL )Yɶ  and the bias of CALYɶ  or CAL
ˆ ,Y  and (iii) the alternative 

method for selection of auxiliary variables proposed by 

Schouten (2007).  

For the issue (i), recall that the total deviation in Section 

4 is ,T A R∆ = ∆ + ∆  where A∆  is computable but T∆  and 

R∆  are not. If computable, CAL FUL
ˆ

R� Y Y∆ = −ɶ ɶ  would be 

an estimate of the bias of CALYɶ  (and of that of CAL
ˆ ).Y  A 

small R∆  is desirable. The question arises: Is this achieved 

when k k ky ′= + εβ x  (with a given vector )kx  fits the data 

well? We need to distinguish two aspects: (a) The 

computable fit to the data ( , )k ky x  observed for ;k r∈  and 

(b) The hypothetical fit to the data ( , )k ky x  for ,k s∈  some 

observed, some not. 

A good fit for the respondents, ,k r∈  does not guarantee 

a small :R∆  The weighted LSQ fit using the observed data  

( , )k ky x  for k r∈  gives the residuals | ;k r de = ky −  

| ; ,k r d
′

xx B  computable for ,k r∈  with the property 

| ; 0r k k r dd e∑ =  (here, the detailed notation | ;r dxB  specified 

in (2.8) is preferable to the simplified notation ).xB  For 

| ;, k r dk s r e∈ −  is not computable; it has an unknown non-

zero mean ; | ; / .s r s rs r d k k r d ke d e d− −− ∑ ∑=  We have 

CAL FUL ;
ˆ( ) / (1 ) 0.R s r dY Y � P e −∆ = − = − − ≠ɶ ɶ  (8.1) 

Regardless of whether the fit is good (small residuals 
2

| ; ,;k r d ye R x  near one) or poor (large residuals 2
| ; ,;k r d ye R x  

near zero), the deviation R∆  given by (8.1) may be large, 

and CALYɶ  far from unbiased. Even with a perfect fit for the 

respondents ( | , 0k r de =  for all ,k r∈  and 2
, 1),yR =x  there is 

no guarantee that the bias is small. 

A similar inadequacy affects imputation based on the 

respondent data. If the regression imputations  ˆky =  

| ;k r d
′

xx B  are used to fill in for the values ky  missing for 

,k s r∈ −  the imputed estimator is 

imp
ˆ ˆ .k k k kr s r

Y d y d y
−

= +∑ ∑  

Then imp CAL
ˆ ,Y Y= ɶ  so impŶ  has the same exposure to bias 

as CAL,Yɶ  as is easily understood: When the nonresponse 
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causes a skewed selection of y-values, the imputed values 

computed on that skewed selection will misrepresent the 

unknown y-values that characterize the sample s or the 

population U. 

Consider now the aspect (b) of the fit, that is, the 

hypothetical weighted LSQ regression fit to the data 

( , )k ky x  for .k s∈  The regression coefficient vector would 

be 1
| ; ( ) ,s ss d k k k k k kd d y−∑ ∑′=xB x x x  and the residuals  

| ; | ;k s d k k s de y ′= − xx B   for k s∈  satisfy | ; 0.s k k s dd e∑ =  

Using that ;
ˆ/r k k k s dd m �∑ =x x  and ˆ/r k k kd m y �∑ =  

; | ; ,s d r d
′

xx B  we have  

1
CAL FUL | ;

ˆ ˆ( ) (1/ ) .R k k k s dr
� Y Y � d m e−∆ = − = ∑ɶ ɶ  (8.2) 

Suppose the model is “true for the sample s”, with a 

perfect fit, so that | ; 0k s de =   for all .k s∈  Then, by (8.2) we 

do have 0,R∆ =  so the nonresponse adjusted estimator 

CALYɶ  agrees with the unbiased estimator FUL .Yɶ  A belief that 

the bias is small hinges on an unverifiable assumption.  

Turning to the issue (ii), we now explain the essentially 

linear relation between the bias of CALYɶ  and the expected 

value of the indicator 0 EXP CAL
ˆ/ ( ) / .A y yH S Y Y � S= ∆ = −ɶ ɶ  

For a given outcome ( , ),s r  a fixed y-variable and a fixed 

x-vector we have 

CAL EXP 0
ˆ ˆ( ) / ( ) / .y yY Y � S Y Y � S H− = − −ɶ ɶ  

Let pqE  denote the expectation operator with respect to 

all outcomes ( , ),s r  that is, ( ) ( ( | )),pq p qE E E s= ⋅⋅  where 

( )p s  and ( | )q r s  are, respectively, the known sampling 

design and the unknown response distribution. We denote 

CAL CALbias( ) ( ) ,pqY E Y Y= −ɶ ɶ  EXPbias( )Y =ɶ
EXP( )pqE Y Y−ɶ  

and ˆ( ).pq yC E �S=  Using the usual large sample replace-

ment of the expected value of a ratio by the ratio of the 

expected values, we have CAL
ˆ[( ) / ]pq yE Y Y � S− ≈ɶ  

CAL
ˆ[ ( ) ] / ( )pq pq yE Y Y E � S−ɶ  and analogously for EXP,Yɶ  so 

CAL EXP 0bias( ) bias( ) ( ).Y Y C E H≈ − ×ɶ ɶ  (8.3) 

Here EXPbias( )Yɶ  and C do not depend on the choice of x-

vector, whereas CALbias( )Yɶ  and 0( )E H  do. Therefore, as 

the x-vector changes, CALbias( )Yɶ  and 0( )E H  are essen-

tially linearly related. No particular forms of ( )p s  and 

( | )q r s  need to be specified for (8.3) to hold. As a 

consequence, when two auxiliary vectors, 1kx  and 2 ,kx  are 

compared, the difference in bias is, to close approximation, 

proportional to the change in the expected value of 0 :H  

CAL 1 CAL 2 1 2bias( ( )) bias( ( )) ( )k kY Y C E E− ≈ − −x xɶ ɶ  (8.4) 

where 0( ( ))i pq ikE E H= x  for 1, 2.i =  The properties (8.3) 

and (8.4) are validated by the Monte Carlo study in 

Section 10.  

Note that formula (8.3) does not guarantee that CALYɶ  

based on a certain vector kx  will have zero or near-zero 

bias. It does not state that a comparatively large value of 

| |A∆  guarantees a small bias in CAL .Yɶ  What (8.3) says is that 

CALbias( )Yɶ  is linearly related to the expectation of the 

indicator 0 / .A yH S= ∆  Therefore, to assess available x-

vectors in terms of the indicator 0H  (or the indicator 

1 | | /A yH S= ∆ ) is consistent with the objective of bias 

reduction. 

Turning to the issue (iii), we comment on the alternative 

method for selection of auxiliary variables proposed by 

Schouten (2007). His indicator for the step-by-step selection 

of variables differs from our indicators; it will usually not 

select exactly the same set of variables. In a list of say 30 

available categorical x-variables, the first ten to enter will 

not be the same set of ten as with our indicators 0H  to 3.H  

The order in which variables are selected will not neces-

sarily be the same either. For comparison, we compared, in 

some of our empirical work, with the variable selection 

realized by Schouten’s method. In some cases we noted a 

considerable congruence between the two sets of “first ten” 

picked in the two procedures.  

The differences between the two approaches are best 

appreciated by a comparison of their background and 

derivation. Our indicators 0H  and 1H  originate in the 

notion of separation (or distance), for a given outcome 

( , ),s r  between the adjusted estimator CALYɶ  and the 

primitive one, EXP,Yɶ  and in the idea that this separation will 

ordinarily increase when the x-vector becomes more 

powerful. The probability sampling design is taken into 

consideration; no assumptions are made on the response 

distribution.  

Schouten uses a superpopulation argument; sampling 

weights do not appear to enter into consideration. An 

expression for the model-expected bias of an estimator of 

the population mean is found to be proportional to the 

correlation (at the level of the population) between the y-

variable and the 0-1 indicator for response. It is shown that 

this correlation (and consequently the bias) can be bounded 

inside an interval. In particular, the generalized regression 

estimator is considered and it is shown that its maximum 

absolute bias equals the width of the bias interval. This 

width depends on the true unknown regression vector ββββ  for 

the regression (at the population level) between y and x. 

This unknown ββββ  is replaced by an estimate based on the 

respondents, thus subject to some bias because of the 

nonresponse. Schouten emphasizes that a missing-at-

random assumption is not needed for his method, which is 

in that respect similar to our method. 
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9. Auxiliary variable choice for the Swedish pilot 

      survey on gaming and problem gambling 

 
We identified a real survey data set to illustrate the use of 

the indicators 1 2,H H  and 3H  in building the x-vector. In 

2008, The Swedish National Institute of Public Health 

(Svenska Folkhälsoinstitutet) conducted a pilot survey to 

study the extent of gambling participation and the charac-

teristics of persons with gambling problems. Sampling and 

weight calibration was carried out by Statistics Sweden. We 

illustrate the use of the indicators in this survey, for which a 

stratified simple random sample s of n = 2,000 persons was 

drawn from the Swedish Register of Total Population 

(RTP). The strata were defined by the cross classification of 

region of residence by age group. Each of the six regions 

was defined as a cluster of postal code areas deemed similar 

in regard to variables such as education level, purchasing 

power, type of housing, foreign background. The four age 

groups were defined by the brackets 16-24; 25-34; 35-64 

and 65-84.  

The overall unweighted response rate was 50.8%. The 

nonresponse, more or less pronounced in the different 

domains of interest, interferes with the accuracy objective. 

An extensive pool of potential auxiliary variables was 

available for this survey, including variables in the RTP, in 

the Education Register and a subset of those in another 

extensive Statistics Sweden data base, LISA. For this 

illustration, we prepared a data file consisting of 13 selected 

categorical variables. Twelve of these were designated as x-

variables, and one, the dichotomous variable Employed, 

played the role of the study variable. The values of all 

variables are available for all units .k s∈  Response ( )k r∈  

or not ( )k s r∈ −  to the survey is also indicated in the data 

file.  

Variables that are continuous by nature were used as 

grouped; all 12 x-variables are thus categorical and of the 

kx
�  type, as defined in Section 2 (because most of the 

variables are available for the full population, they are 

potentially of the type ,k

∗
x  but since the effect on bias is of 

little consequence, we used them as kx
� -variables). The 

study variable value, 1ky =  if k is employed and 0ky =  

otherwise, is known for ,k s∈  so the unbiased estimate 

FULYɶ  defined by (3.2) can be computed and used as a 

reference. We also computed EXPYɶ  defined by (3.1), as well 

as CALYɶ  defined by (2.5) for different x-vectors built by 

stepwise selection from the pool of 12 x-variables with the 

aid of the indicators 1 2,H H  and 3H  defined by (5.12). 

We carried out forward selection as follows: The 

auxiliary vector in Step 0 is the trivial 1,k =x  and the 

estimator is EXP .Yɶ  In Step 1, the indicator value is computed 

for every one of 12 presumptive auxiliary variables; the 

variable producing the largest value of the indicator is 

selected. In Step 2, the indicator value is computed for all 11 

vectors of dimension two that contain the variable selected 

in Step 1 and one of the remaining variables. The variable 

that gives the largest value for the indicator is selected in 

Step 2, and so on, in the following steps. A new variable 

always joins already entered variables in the “side-by-side” 

(or “+”) manner. Interactions are thereby relinquished. The 

order of selection is different for each indicator. 

The values of 2H  and 3H  that identify the next variable 

for inclusion are by mathematical necessity increasing in 

every step. This does not hold for 1.H  In a certain step j, we 

used the rule to include the x-variable with the largest of 

computed 1H -values. That value can be smaller than the 

1H -value that identified the variable entering in the 

preceding step, 1.j −  The series of 1H -values for inclusion 

will increase up to a certain step, then begin to decline, as 

Table 9.1 illustrates. 

The unbiased estimate is FUL 4,265;Y =ɶ  the primitive 

estimate is EXP 4,719Y =ɶ  (both in thousands). This suggests 

a large positive bias in EXP,Yɶ  whose relative deviation (in 

%) from FULYɶ  is 2

EXP FUL FULRDF ( ) / 10 10.7.Y Y Y= − × =ɶ ɶ ɶ  

Adding categorical x-variables one by one into the x-vector 

will successively change this deviation, although when a 

few variables have been admitted, the change is not always 

in the direction of a smaller value. In each step we 

computed the indicator, CALYɶ  and CAL FULRDF ( ) /Y Y= −ɶ ɶ  
2

FUL 10 .Y ×ɶ  

Table 9.1 shows the stepwise selection with the indicator 

1H  (the number of categories is given in parenthesis for 

each selected variable). First to enter is the variable Income 

class; this brings a large reduction in RDF from 10.7 to 4.5. 

The next five selections take place with increased 1H -

values, and the value of RDF is reduced, but by successively 

smaller amounts. Step six, where Marital status is selected, 

brings about a turning point, indicated by the double line in 

Table 9.1: The value of 1H  then starts to decline, and CALYɶ  

and RDF start to increase. At step 6, RDF is at its lowest 

value, 0.5, then starts to rise, illustrating that inclusion of all 

available x-variables may not be best. The turning point of 

1H  and the point at which RDF is closest to zero happen to 

agree in this example. This is not generally the case. 

Moreover, in a real survey setting, RDF is unknown, as is 

the step at which RDF is closest to zero. 

Table 9.2 shows the stepwise selection with indicator 

3.H  Its value increases at every step, but at a rate that levels 

off, and successive changes in CALYɶ  become negligible. 

This suggests to stop after six steps, at which point RDF = 

2.8. In none of the 12 steps does RDF come as close to zero 

as the value RDF = 0.5 obtained with 1H  after six steps. In 

this respect 1H  is better than 3 ,H  in this example. With all 

12 x-variables selected, RDF attains in both tables the final 

value 2.6.  
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Table 9.1 

Stepwise forward selection, indicator 1 ,H  dichotomous study 

variable Employed. Successive values of × 3
1 10 ,H  of CAL

ɶY  in 

thousands, and of − 2
CAL FUL FULRDF ( )/ 10 .ɶ ɶ ɶY Y Y= ×= ×= ×= ×  For compar-

ison, = =-3 -3
EXP FUL10 4,719; 10 4,265ɶ ɶY Y× ×× ×× ×× ×   

 

Auxiliary variable entered × 3
1 10H  × -3

CAL 10ɶY  RDF 

Income class (3) 76 4,458 4.5 
Education level (3) 107 4,350 2.0 
Presence of children (2) 114 4,326 1.4 
Urban centre dwelling (2) 118 4,310 1.1 
Sex (2) 123 4,296 0.7 
Marital status (2) 125 4,286 0.5 

Days unemployed (3) 121 4,301 0.9 
Months with sickness benefits (3) 120 4,305 1.0 
Level of debt (3) 115 4,322 1.3 
Cluster of postal codes (6) 109 4,343 1.8 
Country of birth (2) 103 4,363 2.3 
Age class (4) 99 4,377 2.6  
Table 9.2 

Stepwise forward selection, indicator 3 ,H  dichotomous study 
variable Employed. Successive values of × 3

3 10 ,H  of CAL
ɶY  in 

thousands, of − 2
CAL FUL FULRDF ( )/ 10 .ɶ ɶ ɶY Y Y= ×= ×= ×= ×  For comparison, 

= =-3 -3
EXP FUL10 4,719; 10 4,265ɶ ɶY Y× ×× ×× ×× ×  

 

Auxiliary variable entered × 3
3 10H  × 3

CAL 10ɶY  RDF 

Education level (3) 186 4,520 6.0 
Cluster of postcode areas (6) 250 4,505 5.6 
Country of birth (2) 281 4,498 5.5 
Income Class (3) 298 4,369 2.4 
Age class (4) 354 4,399 3.1 
Sex (2) 364 4,384 2.8 
Urban centre dwelling (2) 374 4,378 2.6 
Level of debt (3) 381 4,364 2.3 
Months with sickness benefits (3) 384 4,380 2.7 
Presence of children (2) 387 4,379 2.7 
Marital status (2) 388 4,379 2.7 
Days unemployed (3)  388 4,377 2.6 

 
The set of the first six variables to enter with 3H  has 

three in common with the corresponding set of six with 1.H  

There is no contradiction in the quite different selection 

patterns, because 1H  is geared to the specific y-variable 

Employed, while 3H  is a compromise indicator, indepen-

dent of any y-variable. To save space, the step-by-step 

results for indicator 2H  are not shown. Its selection pattern 

resembles more that of 3H  than that of 1.H  Out of the first 

six variables to enter with 2,H  four are among the first six 

with 3.H  As a general comment, we believe that in many 

practical situations the use of more than six variables is 

unnecessary, and the selection of the first few becomes 

crucially important. 

 
10. Empirical validation by simulation for a 

       constructed population 
 

The theory presented in earlier sections makes no 

assumptions on the response distribution. It is unknown. 

The sampling design is arbitrary; its known inclusion 

probabilities are taken into account. For the experiment in 

this section, we specify several different response distribu-

tions with a specified positive value for the response proba-

bility θk  for every .k U∈  That is, with specified proba-

bility θ ,k  the value ky  gets recorded in the experiment; 

with probability 1 θ ,k−  it goes missing. We find that the 

indicators 0H  (or 1 0| |H H= ) defined in (5.11) ranks the 

different x-vectors in the correct order of preference for all 

participating response distributions, consistent with the 

theoretical results (8.3) and (8.4). We confirm that, over a 

long run of outcomes ( , ),s r  the average of 0H =  

,/ cvA y y m mS R∆ = − ×  tracks the bias of the calibration 

estimator, measured by the average of CAL ,Y Y−ɶ  in an 

essentially perfectly linear manner, when the x-vector 

moves through 16 different formulations. We also examine 

the indicators 2H  and 3H  defined in (5.12), and find in this 

experiment that they also have strong relationship to the bias 

of CAL .Yɶ  

We experimented with several created populations; the 

conclusions were similar. We report here results for one 

constructed population of size 6,000,� =  with created 

values ( , , θ )k k ky x  for 1, 2, , 6,000,k �= =…  for 16 

alternative categorical formulations of ,kx  and four 

different ways to assign the θ .k  

The 16 alternative categorical auxiliary x-vectors were 

obtained by grouping the generated values 1kx  and 2kx  of 

two continuous auxiliary variables, 1x  and 2 .x  The values 

1 2( , , )k k ky x x  for 1, 2, ..., 6,000k =  were created in three 

steps as follows. Step 1 (the variable 1):x  The 6,000 values 

1kx  were obtained as independent outcomes of the gamma 

distributed random variable ( , )a bΓ  with parameter values 

a = 2, b = 5. The mean and variance of the 6,000 realized 

values 1kx  was 10.0 and 49.9, respectively. Step 2 (the 

variable 2x ): For unit k, with value 1kx  fixed by Step 1, a 

value 2kx  is realized as an outcome of the gamma random 

variable with parameters such that the conditional expec-

tation and variance of 2kx  are 1 1( )k kx K h xα + β +  and 
2

1 ,kxσ  respectively, where 
11 1 1( ) ( )k k k xh x x x= − µ  

11( 3 )k xx − µ  with 
1

10.xµ =  We used the values 1,α =  

1, 0.001kβ = =  and 2 25.σ =  The polynomial term 

1( )kK h x  gives a mild non-linear shape to the plot of 

2 1( , ),k kx x  to avoid an exactly linear relationship. The mean 

and variance of the 6,000 realized values 2kx  were 11.0 and 

210.0, respectively. The correlation coefficient between 1x  

and 2,x  computed on the 6,000 couples  1 2( , ),k kx x  was 

0.48. Step 3 (the study variable y): For unit k, with values 

1kx  and 2kx  fixed by Steps 1 and 2, a value ky  is realized 

as an outcome of the gamma random variable with 

parameters such that the conditional expectation and 

variance of ky  are 0 1 1 2 2k kc c x c x+ +  and 2

0 1 1( kc xσ +  

2 2 ),kc x  respectively. We used 0 11, 0.7,c c= = 2 0.3c =  and 
2

0 2.σ =  The mean and the variance of the 6,000 realized 
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values ky  were 11.4 and 86.5, respectively. The correlation 

coefficient between y and 1,x  computed on the 6,000 

couples 1( , ),k ky x  was 0.76; that between y and 2,x  

computed on the 6,000 couples 2( , ),k ky x  was 0.73. 

Each of the two x-variables was then transformed into 

four alternative group modes, denoted 8G, 4G, 2G and 1G, 

yielding 4 × 4 = 16 different auxiliary vectors .kx  The 

6,000 values 1kx  of variable 1x  were size ordered; eight 

equal-sized groups were formed. Group 1 consists of the 

units with the 750 largest values 1 ,kx  group 2 consists of the 

next 750 units in the size ordering, and so on, ending with 

group 8. In this mode 8G of 1,x  unit k is assigned the vector 

value 
1( ;8) ,x kγ  of dimension eight with seven entries “0” and 

a single entry “1” to code the group membership of  k. Next, 

successive group mergers are carried out, so that two 

adjoining groups always define a new group, every time 

doubling the group size. Thus for mode 4G, the merger of 

groups 1 and 2 puts the units with the 1,500 largest 1kx -

values into a first new group; groups 3 and 4 merge to form 

the second new group of 1,500, and so on; the vector value 

associated with unit k is 
1( ;4) .x kγ  In mode 2G, unit k has the 

vector value 
1( ;2) (1,0)x k

′=γ  for the 3,000 largest 1x -value 

units and 
1( ;2) (0,1)x k

′=γ  for the rest. In the ultimate mode, 

1G, all 6,000 units are put together, all 1x -information is 

relinquished, and 
1( ; 1) 1x k =γ  for all k. The 6,000 values 2kx  

were transformed by the same procedure into the group 

modes 8G, 4G, 2G and 1G. Corresponding group member-

ship of unit k is coded by the vectors 
2 2 2( ;8) ( ;4) ( ;2), ,x k x k x kγ γ γ  

and 
2( ;1) 1.x k =γ  The 4 × 4 = 16 different auxiliary vectors 

kx  take into account both kinds of group information; the 

two γ -vectors are placed side by side (as opposed to 

crossed), the result being a calibration on two margins, as 

indicated by the “+” sign. Thus for the case denoted 

8G + 8G, unit k has the auxiliary vector value k =x  

1 2( ;8) ( ;8) ( 1)( , ) ,x k x k −′ ′ ′γ γ  where ( 1)−  indicates that one category 

is excluded in either 
1( ;8)x kγ  or 

2( ;8)x kγ  to avoid a singular 

matrix in the computation, giving kx  the dimension 8 + 8 –

1 = 15. The case 8G + 8G has the highest information 

content. At the other extreme, the case 1G + 1G disregards 

all the x-information and 1k =x  for all k. There are 14 

intermediate cases of information content. For example, 

4G + 2G has 
1 2( ;4) ( ;2) ( 1)( , )k x k x k −′ ′ ′=x γ γ  of dimension 4 + 2 –

1 = 5; 4G + 1G has 
1 1( ;4) ( 1) ( ;4)( ,1)k x k x k−′ ′= =x γ γ  of dimen-

sion 4 (there is non-negligible interaction between 1x  and 

2x  in this experiment, but we restrict the experiment to x-

vectors without interactions, causing no risk of small group 

counts). 

We discuss here the results for four response distri-

butions. Their response probabilities θ ,k 1, 2, ...,k �= =  

6,000, were specified as follows:  
IncExp(10 + 1x + 2x ),  with 1 2(10 )

θ 1 k kc x x

k e
− + += −   

where 0.04599c =  

IncExp(10 + y),  with 
(10 )

θ 1 kc y

k e
− += −   

where 0.06217c =  

DecExp( 1x + 2x ),  with 1 2( )
θ k kc x x

k e
− +=   

where 0.01937c =  

DecExp( y),   with θ kcy

k e
−=   

where 0.03534.c =   
The constant c was adjusted in all four cases to give a 

mean response probability of θ θ / 0.70.UU k �∑= =  In the 

first two, the value 10 (rather than 0) was used to avoid a 

high incidence of small response probabilities θ .k  These 

four options represent contrasting features for the response 

probabilities: increasing as opposed to decreasing, de- 

pendent on x-values only as opposed to dependent on y-

values only. In the second and fourth option, the response is 

directly y-variable dependent, and could hence be called 

“purely non-ignorable”.  

We generated 5,000J =  outcomes ( , ),s r  where s of 

size 1,000n =  is drawn from � = 6,000 by simple random 

sampling and, for every given s, the response set r is 

realized by each of the four response distributions. That is, 

for ,k s∈  a Bernoulli trial was carried out with the 

specified probability kθ  of inclusion in the response set r. 

The Bernoulli trials are independent.  

For each response distribution, for each of the 16 x-

vectors, and for every outcome ( , ),s r  we computed the 

relative deviation CAL
ˆRD ( ) / ,Y Y Y= −  where CALŶ  is given 

by (2.4) and U kY y∑=  is the targeted y-total, known in this 

experimental setting (alternatively, we used CALYɶ  given by 

(2.5) but, as expected, the difference in bias compared with 

CALŶ  is negligible). We also computed the indicators 

, 0,1, 2, 3,iH i =  given by (5.11) and (5.12). Summary 

measures were computed as 

1

1

1
relbias Av(RD) RD ;

1
Av( ) for 0,1,2, 3

J

j

j

J

i ij
j

J

H H i
J

=

=

= =

= =

∑

∑

 

where j indicates the value computed for the thj  outcome, 

1, 2, , 5,000 .j J= =…  For each response distribution, we 

thus obtain the value relbias (which is the Monte Carlo 

measure of the relative bias CAL
ˆ( ( ) ) / )pqE Y Y Y−  and 16 

values of Av( )iH  (which is the Monte Carlo measure of 

( )),pq iE H 0,1, 2, 3,i =  where p stands for simple random 

sampling, and q stands for one of the four response 

distributions. 

Table 10.1 shows, for IncExp(10 + 1x + 2 ),x  relbias in % 

and 3

1Av( ) 10H ×  for the 16 x-vectors. For the cell 1G + 

1G, with vector 1,k =x  all four Av-quantities are zero, and 

relbias is at its highest level, 13.2%. At the opposite 

extreme, the cell 8G + 8G represents the highest level of 
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information; it gives the highest value for 1Av( ),H  and 

relbias is at its lowest value, 0.2%; virtually all bias is 

removed (except for a possible sign difference, 0Av( )H  

and 1Av( )H  were equal for all cells). 

The result (8.4), holding for any response distribution 

and any sampling design, states that the indicator 0H  will 

rank the 4 4 16× =  auxiliary vectors correctly for any 

response distribution (with response probabilities not all 

constant, as noted below). Table 10.1 illustrates (8.4) in 

terms of 1 0| | :H H=  The change, from any one cell to any 

other, in the value of 1Av( )H  (the Monte-Carlo estimate of 

the expected value of 1( )H  is accompanied by a pro-

portional change in the value of relbias. The same 

proportionality was noted for the other three response 

distributions. We could have chosen other response 

distributions to illustrate the same property. 
 
Table 10.1 

Relbias in % and, within parenthesis, the value of 3
1Av( ) 10H ××××  

for 16 auxiliary vectors x .k  Response distribution IncExp (10 +  

1 2 )x + x  
 

Groups 

based on 

1kx  

Groups based on 2kx  

8G 4G 2G 1G 

8G 0.2 (101) 0.5 (99) 1.3 (93) 3.4 (76) 
4G 0.5 (98) 0.9 (96) 1.8 (89) 4.1 (70) 
2G 1.5 (91) 1.9 (88) 3.2 (78) 6.5 (52) 
1G 4.1 (70) 5.0 (64) 7.3 (46) 13.2 (0) 

 

The response distribution with a constant response 

probability kθ  for all k is a special case. The calibration 

estimator CALYɶ  based on any vector kx  then has zero bias 

(very nearly), and this includes the primitive estimator EXPYɶ  

with 1.k =x  Result 8.3 continues to be valid, stating in that 

case that 0 CAL EXP( ) bias( ) bias( ) 0.pqE H Y Y≈ ≈ ≈ɶ ɶ  In the 

context of the simulation in this section, if θ 0.70k =  for all 

k is taken to be an additional response distribution, Table 

10.1 will in all 16 cells show nearly zero values of both 

relbias in % and 3

1Av( ) 10 ,H ×  from the weakest cell 

(1G + 1G) all the way to the cell of the most powerful x-

vector (8G + 8G). There is no bias to be removed by an 

improvement of the x-vector. If in practice the indicator 

1( )H  does not react to an enlargement of the x-vector, there 

is no incentive to seek beyond the simplest vector 

formulation. It could signify one of three possibilities: The 

y-variable in question is not subject to nonresponse bias, or 

that the response probability is almost constant, or that none 

of the available x-vectors is capable of reducing an existing 

bias. 

To save space we do not show the corresponding tables 

for 2Av( )H  and 3Av( ).H  By mathematical necessity, both 

quantities increase in the nested transitions. Not shown 

either are the counterparts of Table 10.1 for the other three 

response distributions. The patterns are similar. 

Table 10.2 for IncExp(10 + 1x + 2 )x  and Table 10.3 for 

IncExp(10 + y) show how 1Av( ),H 2Av( )H  and 3Av( )H  

rank the 16 x-vectors, represented by their value of relbias. 

To measure the success of ranking, we computed the 

Spearman rank correlation coefficient, denoted rancor, 

between relbias and the value of the indicator, based on the 

16 values of each. For 1Av( ),H  the bottom line of the two 

tables shows | | 1,rancor =  for perfect ranking. For these 

data, | |rancor  is near one also for 2Av( )H  and 3Av( )H  

(more generally, the ranking obtained with 2H  and 3H  

may be good, but is data dependent).  

 
Table 10.2 

Value, in ascending order, of relbias in %, and corresponding 
value and rank of 3 3

1 2Av( ) 10 , Av( ) 10H H× ×× ×× ×× ×  and 
3

3Av( ) 10 ,H ××××  for 16 auxiliary vectors. Bottom line: Value of 

Spearman rank correlations, rancor. Response distribution 
IncExp 1 2(10 + )x + x  
 

relbias 3
1Av( ) 10H ××××  3

2Av( ) 10H ××××  3
3Av( ) 10H ××××  

0.2 101 (1) 127 (1) 232 (1) 
0.5 99 (2) 119 (2) 225 (2) 
0.5 98 (3) 118 (3) 224 (3) 
0.8 96 (4) 109 (4) 217 (4) 
1.3 93 (5) 109 (5) 216 (5) 
1.5 91 (6) 105 (6) 213 (6) 
1.8 89 (7) 98 (7) 207 (7) 
1.9 88 (8) 94 (8) 205 (8) 
3.2 78 (9) 80 (11) 192 (9) 
3.4 76 (10) 90 (9) 188 (11) 
4.1 70 (11) 84 (10) 190 (10) 
4.1 70 (12) 77 (12) 175 (13) 
5.0 64 (13) 70 (13) 179 (12) 
6.4 52 (14) 52 (14) 146 (15) 
7.3 46 (15) 46 (15) 156 (14) 
13.2 0 (16) 0 (16) 0 (16) 

Rancor  -1.00  -0.99  -0.99 

 
There is one notable contrast between the results on 

relbias for the two response distributions in Tables 10.2 and 

10.3. The best among the auxiliary vectors leave consid-

erably more bias for the non-ignorable IncExp(10 + y) than 

for IncExp(10 + 1x + 2 ).x  This is not unexpected, and it is 

important to note that considerable bias reduction is 

obtained for the non-ignorable case as well. 

In the simulation, the over-adjustment mentioned in 

Section 4, 0A T∆ > ∆ >  (when EXP( )Yɶ  has positive bias) or 

< < 0A T∆ ∆  (when EXPYɶ  has negative bias), happens for 

some outcomes ( , ).s r  The frequency varies with the 

strength of the auxiliary vector and is different for different 

response distributions. The cell for which this over-

adjustment is most likely to occur is 8G + 8G, the most 

powerful of the 16 auxiliary vectors. For IncExp(10 + 1x  + 

2 ),x  the bias is almost completely removed for cell 

8G + 8G; relbias is only 0.2%. Hence CALYɶ  is close to the 

unbiased FUL , AY ∆ɶ  is near ,T∆  and A T∆ > ∆  happened for 

45.6% of all outcome ( , ).s r  By contrast, for the non-

ignorable case IncExp(10 + y), the incidence of A T∆ > ∆  
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was only 0.1% for the cell 8G + 8G. Although that cell 

brings considerable bias reduction (compared to the 

primitive 1G + 1G), there is bias remaining, and as a 

consequence, A T∆ > ∆  almost never happens. 

We do not show the corresponding tables for 

DecExp( 1x + 2 )x  and DecExp(y). The lowest value of 

rancor was 0.94, recorded for 3Av( )H  in the case of 

DecExp( 1x + 2 ).x  

A question not addressed in Tables 10.2 and 10.3 is: 

How often, over a long series of outcomes ( , ),s r  does a 

given indicator ( )kH x  succeed in pointing correctly to the 

preferred x-vector? To answer this, let 1kx  and 2kx  be two 

vectors selected for comparison. If the absolute value of the 

bias of CAL 2
ˆ ( )kY x  is smaller than that of CAL 1

ˆ ( ),kY x  we 

would like to see that 2 1( ) ( )k kH H≥x x  holds for a vast 

majority of all outcomes ( , ),s r  because then the indicator 

( )H ⋅  delivers with high probability the correct decision to 

prefer 2 .kx  Because ( )kH x  has sampling variability, its 

success rate (the rate of correct indication) depends on the 

sample size, and we expect it to increase with sample size. 

 
Table 10.3 
Value, in ascending order, of relbias in %, and corresponding 

value and rank of 3 3
1 2Av( ) 10 , Av( ) 10H H× ×× ×× ×× ×  and 3Av( )H ××××  

310 ,  for 16 auxiliary vectors. Bottom line: Value of Spearman 
rank correlations, rancor. Response distribution IncExp (10 + )y  
 

relbias 3
1Av( ) 10H ××××  3

2Av( ) 10H ××××  3
3Av( ) 10H ××××  

3.6 74 (1) 91 (1) 165 (1) 
3.9 71 (2) 84 (2) 158 (2) 
4.0 71 (3) 83 (3) 156 (3) 
4.3 68 (4) 76 (5) 149 (5) 
4.4 68 (5) 78 (4) 153 (4) 
4.9 64 (6) 68 (8) 142 (3) 
4.9 63 (7) 72 (6) 146 (6) 
5.3 60 (8) 69 (7) 143 (7) 
5.4 60 (9) 64 (9) 137 (9) 
6.0 55 (10) 59 (10) 132 (10) 
6.2 53 (11) 54 (11) 128 (11) 
7.2 46 (12) 54 (12) 122 (12) 
7.9 41 (13) 41 (14) 111 (13) 
7.9 40 (14) 43 (13) 109 (14) 
9.6 27 (15) 27 (15) 90 (15) 
13.1 0 (16) 0 (16) 0 (16) 

Rancor  -1.00  -0.99  -0.99 

 
We threw some light on this question by extending the 

Monte Carlo experiment: 5,000 outcomes ( , )s r  were 

realized, first with sample size 1,000,n =  then with sample 

size 2,000n =  (the response set r is realized according to 

one of the four response distributions, declaring unit k 

“responding” as a result of a Bernoulli trial with the 

specified probability ).kθ  We computed the success rate as 

the proportion of all outcomes ( , )s r  in which the correct 

indication materializes in a confrontation of two different x-

vectors. Several pairwise comparisons of this kind were 

carried out. Typical results are shown in Table 10.4, for 

IncExp(10 + 1x + 2 ).x  The upper entry in a table cell shows 

the success rate in % for 1,000,n =  the lower entry shows 

that rate for 2,000.n =  Shown in parenthesis is the value of 

relbias for the vectors in question. 

“Severe tests” are preferred, that is, confrontations of 

vectors with a small difference in absolute relbias, because 

the correct decision is then harder to obtain. There is a priori 

no reason why one of the indicators should always 

outperform the others in this study. In the five severe tests in 

Table 10.4, 1H  has, on the whole, better success rates than 

2H  and 3.H  The success rate of 1H  improves by doubling 

the sample size, and tends as expected to be greater when 

the relbias values are further apart. The case 4G + 8G vs. 

8G + 8G compares nested x-vectors, so it is known 

beforehand that 2H  and 3H  give perfect success rates. 
 
Table 10.4 
Selected pairwise comparisons of auxiliary vectors; percentage of 
outcomes with correct indication, for the indicators 1 2H , H  and 

.3H  Within parenthesis, relbias in %. Upper entry: n = 1,000 
lower entry: n = 2,000. Response distribution IncExp (10 +  

1 2 )x + x  
 

Cells compared Percent outcomes with correct indication 

1H  2H  3H  

4G + 8G(0.5) vs. 
8G + 8G(0.2) 

90.0 
96.4 

100.0 
100.0 

100.0 
100.0 

4G + 2G(1.8) vs. 
2G + 8G(1.5) 

66.8 
74.2 

86.0 
89.0 

70.7 
67.4 

1G + 8G(4.1) vs. 
8G + 1G(3.4) 

74.3 
82.8 

70.3 
78.0 

45.0 
43.3 

4G + 1G(4.1) vs. 
2G + 2G(3.2) 

90.6 
97.0 

61.4 
68.8 

83.9 
92.3 

1G + 2G(7.3) vs. 
2G + 1G(6.5) 

77.4 
85.9 

77.4 
85.9 

34.5 
28.8 

 
 

11. Concluding remarks 
 

In this article, we address survey situations where many 

alternative auxiliary vectors (x-vectors) can be created and 

considered for use in the calibration estimator CAL .Yɶ  For any 

given x-vector, a certain unknown bias remains in CAL ;Yɶ  we 

wish by an appropriate choice of x-vector to make that bias 

as small as possible. Hence we examine the bias ratio 

defined by (4.2) and (4.3). The component A∆  of the bias 

ratio was expressed, in (5.8) to (5.10), as product of easily 

interpreted statistical measures. This led us to suggest 

several alternative bias indicators, for use in evaluating 

different x-vectors in regard to their capacity to effectively 

reduce the bias. We studied in particular the indicator 1H  

given by (5.12). It functions very well but is geared to a 

particular study variable y. However, a typical government 

survey has many study variables, and for practical reasons it 

is desirable to use the same x-vector in estimating all y-

totals. A compromise becomes necessary. We argued that 
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the indicator 3H  in (5.12) suits this purpose; it depends on 

the kx  but not on any y-data. A topic for further research is 

to develop other indicators (than 3 )H  for the “many y-

variable situation”. Another topic for further work is to 

examine algorithms for stepwise selection of x-variables 

with the indicator 1,H  other than the one used in Section 9. 
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Calibration estimation using exponential tilting in sample surveys 
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Abstract 

We consider the problem of parameter estimation with auxiliary information, where the auxiliary information takes the form 

of known moments. Calibration estimation is a typical example of using the moment conditions in sample surveys. Given 

the parametric form of the original distribution of the sample observations, we use the estimated importance sampling of 

Henmi, Yoshida and Eguchi (2007) to obtain an improved estimator. If we use the normal density to compute the 

importance weights, the resulting estimator takes the form of the one-step exponential tilting estimator. The proposed 

exponential tilting estimator is shown to be asymptotically equivalent to the regression estimator, but it avoids extreme 

weights and has some computational advantages over the empirical likelihood estimator. Variance estimation is also 

discussed and results from a limited simulation study are presented. 
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1. Introduction 
 
Consider the problem of estimating 1

�
i iY y=∑=  for a 

finite population of size .�  Let A  denote the index set of 

the sample obtained by a probability sampling scheme. In 

addition to ,iy  suppose that we also observe a p -

dimensional auxiliary vector ix  in the sample such that 

1
�
i i=∑=X x  is known from an external source. We are 

interested in estimating Y  using the auxiliary information 

.X  

The Horvitz-Thompson (HT) estimator of the form  

ˆ
d i i

i A

Y d y
∈

= ,∑  (1) 

where 1i id = /π  is the design weight and iπ  is the first 
order inclusion probability, is unbiased for .Y  But, it does 

not make use of the information given by .X  According to 

Kott (2006), a calibration estimator can be defined as the 

estimator of the form  

ˆ
w i i

i A

Y w y
∈

=∑  

where the weights iw  satisfy  

i i

i A

w
∈

=∑ x X  (2) 

and ˆwY  is asymptotically design unbiased (ADU). Cali-

bration estimation has become very popular in survey 

sampling because it provides consistency across different 

surveys and often improves the efficiency. (Särndal 2007).  

The regression estimator, using the weights  

1

ˆ( ) j j j
i i d i i

j A

dw d d
− 

 
 ∈ 

′′= + − ,∑ x xX X x  (3) 

obtained by minimizing  

2
( )i i i

i A

w d d
∈

− /∑  

subject to constraint (2), is asymptotically design unbiased. 

Note that if an intercept term is included in the column 

space of X  matrix then (2) implies that the population size 

�  is known. If �  is unknown, one can require that the 

sum of the final weights are equal to the sum of the design 

weights. Thus,  

ˆ
i

i A

w �
∈

= ,∑  (4) 

where  

if is known
ˆ

otherwisei

i A

� �
� d

∈


=  ,

∑  

can be imposed as a constraint in addition to (2), which 

yields the weights 

{ }
1

ˆ ˆ
ˆ

ˆ ˆ

( ) ( ) ( )

i i d

d d

j j d j d
i i d

j A

� �
w d

� �

d d
−

∈

′ 
= + −  

 

′− − − ,∑

X X

x X x X x X  (5)

 

where ˆ ,i Ad i id∈∑=X x ˆ ,i Ad i� d∈∑=  and ˆ ˆ .d d d�= /X X  

We define the regression estimator to be reg
ˆ

i A i iY w y∈∑=  

using the weights (5). The regression estimator can be 

efficient if iy  is linearly related with ix  (Isaki and Fuller 

1982; Fuller 2002), but the weights in the regression 

estimator can take negative or extremely large values. 
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The empirical likelihood (EL) calibration estimator, 

discussed by Chen and Qin (1993), Chen and Sitter (1999), 

Wu and Rao (2006), and Kim (2009), is obtained by maxi-

mizing the pseudo empirical likelihood 

ln ( )i i

i A

d w
∈
∑  

subject to constraints (2) and (4). The solution to the opti-

mization problem can be written as 

0 1

1

ˆ( )
i i

i

w d
�

= ,
′λ + − /λ x X

 (6) 

where 0λ  and 1λ  satisfy constraints (2), (4), and 0iw >  for 

all .i  The EL calibration estimator is asymptotically 

equivalent to the regression estimator using weights (5) and 

avoids negative weights if a solution exists, but can result in 

extremely large weights. 

Because the empirical likelihood method requires solving 

nonlinear equations, the computation can be cumbersome. 

Furthermore, in some extreme cases, 1
1

�
i i� −
=∑=X x  does 

not belong to the convex hull of the sample ix ’s and the 

solution does not exist. In this extreme situation, the con-

straint (2) can be relaxed. 

Rao and Singh (1997) solved a similar problem by 

allowing 

1 2 ...,i ij j j j

i A

w x X X j p
∈

− ≤ δ , = , , ,∑  

for some small tolerance level 0jδ >  where 1 .�
ij ijX x=∑=  

Note that the choice of 0jδ =  leads to the exact calibration 

condition (2). Rao and Singh (1997) chose the tolerance 

level jδ  using a shrinkage factor in the ridge regression but 

their approach does not directly apply to the empirical 

likelihood method and the choice of jδ  is somewhat 

unclear. Chambers (1996) and Beaumont and Bocci (2008) 

also discussed a ridge regression estimation in the context of 

avoiding extreme weights. Breidt, Claeskens and Opsomer 

(2005) used penalized spline approach to obtain the ridge 

calibration. Recently, Park and Fuller (2009) developed a 

method of obtaining the shrinkage factor jδ  using a 

regression superpopulation model with random components. 

Chen, Variyath and Abraham (2008) tackled a similar 

problem in the context of the empirical likelihood method 

and proposed a solution by adding an artificial point such 

that =X 1
1

�
i i� −
=∑ x  would belong to the convex hull of the 

augmented ix ’s. The proposed estimator in Chen et al. 

(2008) only satisfies the calibration property approximately 

in the sense that 

1 2( )i i p

i A

w o n �− /

∈

− = .∑ x X  (7) 

This approximate calibration property is attractive because it 

allows more generality in the choice of weights. In 

particular, when the dimension of the auxiliary variable x  is 

large the calibration constraint (2) can be quite restrictive. 

As can be seen in Section 2, an estimator satisfying the 

asymptotic calibration property (7) enjoys most of the 

desirable properties of the empirical likelihood calibration 

estimator and is computationally efficient. 

In this paper, we consider a class of empirical-likelihood-

type estimators that satisfy the approximate calibration 

property (7). In Section 2, the idea of estimated importance 

sampling of Henmi et al. (2007) is discussed and a new 

estimator using this methodology is proposed. In Section 3, 

a weight trimming technique to avoid extreme calibration 

weights is proposed. In Section 4, variance estimation of the 

proposed estimator is discussed. In Section 5, results from a 

simulation study are presented. Concluding remarks are 

made in Section 6. 

 
2. Proposed method 

 
To introduce the proposed method, we first discuss 

estimated importance sampling introduced by Henmi et al. 

(2007). Suppose that ix  is observed throughout the popu-

lation but iy  is observed only in the sample. We assume a 

superpopulation model for ix  with density ( )f ;x η  known 

up to a parameter .∈Ωη  The superpopulation model char-

acterized by the density ( )f ;x η  is a working model in the 

sense that the model is used to derive a model-assisted 

estimator (Särndal, Swenson and Wretman 1992). 

Let η̂  be the pseudo maximum likelihood estimator of 

η  computed from the sample 

ˆ arg max ln{ ( )}i i

i A

d f
Ω ∈

= ;∑η x η  

and let 
0 �,η  be the maximum likelihood estimator of η  

computed from the population 

0
1

arg max ln{ ( )}
�

i�
i

f, Ω =

= ; .∑ x ηη  

Following Henmi et al. (2007), we can construct the 

following estimated importance weight 

0
( )

ˆ( )

i �
i i

i

f
w d

f

;
= .

;

x η

x η
 (8) 

To discuss the asymptotic properties of the estimator 

using the weights in (8), assume a sequence of the finite 

populations and the samples, as in Isaki and Fuller (1982), 

such that 
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1 2

1

( ) ( ) ( ) ( ) ( )
�

i i i i i i i i i p

i A i

d y y y y O n �− /

∈ =

′ ′ ′ ′ ′ ′, , − , , =∑ ∑x x x x  

for all possible A  and for each .�  The following theorem 

presents some asymptotic properties of the estimator with 

the estimated importance weights in (8).  
Theorem 1. Under the regularity conditions given in Appen-

dix A, the estimator ˆ ,i Aw i iY w y∈∑=  with the iw  defined by 

(8), satisfies 

1 ˆ ˆ( ) (1)w l pn� Y Y o− − = ,  (9) 

where 

1

0
ˆˆ ˆ ˆ ˆ

l d sy ss dY Y −′= − ,Σ Σ S  (10) 

ˆ
dY  is defined in (1), 

1

0 0 0
ˆ ˆ, ,i A i Ad i i sy i i id � d y

−
∈ ∈∑ ∑= =S s Σ s  

and 1 2

0
ˆ .i Ass i i� d− ⊗

∈∑=Σ s  Here, 
0 ,0 ln ( ) η ηs x η η

�i if ==∂ ; /∂ |  

and the notation 2B⊗  denotes .BB′   
The proof of Theorem 1 is presented in Appendix A. 

Because 10 0 ,�
i� i=∑≡ =S s 0  we can write (10) as 

1

0 0
ˆˆ ˆ ˆ ˆ ( )l d sy ss � dY Y −′= + − ,Σ Σ S S  

which is a regression estimator of Y  using 
0

( )i �
s η  as the 

auxiliary variable. Therefore, under regularity conditions, 

the proposed estimator using estimated importance sam-

pling is asymptotically unbiased and has asymptotic vari-

ance no greater than that of the direct estimator ˆ .dY  Note 

that the validity of Theorem 1 does not require that the 

working model ( )f ;x η  be true. 

If the density of ix  is a multivariate normal density, then 

the weights in (8) become 

( )

ˆ( )

i � xx �

i i

i d xx d

w d
,

,

φ ; ,
= ,

φ ; ,

x X Σ

x X Σ
 (11) 

where dX  is defined after (5), 
2

,
ˆ ˆ ,( )i Axx d i di d

d �
⊗

∈∑= /−Σ x X  
2

1, ,( )�
ixx � i �

�
⊗

=∑= /−Σ x X  and ( )φ ; ,x µ Σ  is the density 

of the multivariate normal distribution with mean µ  and 

variance-covariance matrix .Σ  If ,xx �Σ  is unknown and 

only �X  is available, then we can use 

,

,

ˆ( , )

ˆ( , )

i � xx d

i i

i d xx d

w d
φ ;

= .
φ ;

x X Σ

x X Σ
 (12) 

Tillé (1998) derived weights similar to those in (12) in the 

context of conditional inclusion probabilities.  

In general, the parametric model for ix  is unknown. 

Thus, we consider an approximation for the importance 

weights in (8) using the Kullback-Leibler information 

criterion for distance. Let ( )f x  be a given density for x  

and let 0P  be the set of densities that satisfy the calibration 

constraint. That is,  

{ }0 0 0 0( ) ( ) 1 ( ) �P f f d f d= ; = , = .∫ ∫x x x x x x X  

The optimization problem using Kullback-Leibler distance 

can be expressed as  

0 0

0
0

( )
min ( ) ln

( )
f P

f
f d

f
∈

 
. 

 
∫

x
x x

x
 (13) 

The solution to (13) is  

0

ˆexp( )
( ) ( )

ˆ{exp( )}
f f

E

′
=

′

λ x
x x

λ x
 (14) 

where λ̂  satisfies 0 ( ) .�f d∫ =x x x X  Thus, the estimated 

importance weights in (8) using the optimal density in (14) 

can be written  

0
0 1

( ) ˆ ˆexp( )
( )

i
i i i i

i

f
w d d

f
′= = λ +

x
λ x

x
 (15) 

where 0λ̂  and 1λ̂  satisfy constraint (2) and (4). The shift 

from ( )f x  to 0 ( )f x  in (14) is called exponential tilting. 

Thus, an estimator using the weight (15) satisfying the cali-

bration constraints (2) and (4) can be called an exponential 

tilting (ET) calibration estimator. That is, we define the ET 

calibration estimator as  

ET 0 1
ˆ ˆˆ exp( )i i i

i A

Y d y
∈

′= λ + ,∑ λ x  (16) 

where 0λ̂  and 1λ̂  satisfy constraint (2) and (4). Estimators 

based on exponential tilting have been used in various 

contexts. For examples, see Efron (1981), Kitamura and 

Stutzer (1997), and Imbens (2002). When �  is known, 

Folsom (1991) and Deville, Särndal and Sautory (1993) de-

veloped the estimator (16) using a very different approach.  

To compute 0λ  and 1λ  in (16), because of the cali-

bration constraints (2) and (4), we need to solve the follow-

ing estimating equations:  

0 0 1
ˆ ˆ( ) exp( ) 0i i

i A

U d �
∈

′≡ λ + − =∑λ λ x  (17) 

1 0 1
ˆ ( ) exp( )i i i

i A

d
∈

′≡ λ + − = ,∑U λ λ x x X 0  (18) 

where 0 1( ).′ ′= λ ,λ λ  Writing 0 1
ˆ ˆ ˆ( , ),U′ ′=U U  we can use 

the Newton-type algorithm of the form  

1

( 1) ( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ( ) ( )t t t t

−

+

∂ = −  ′∂ 
λ λ U λ U λ

λ
 

and the solution can be written 

{ }
1( 1) 1( )

1
2

( )( ) ( )

ˆ ˆ

( )

t t

i w ti t i t i
i A i A

w w

+

−⊗
 
 
 ∈ ∈ 

=

−+ − ,∑ ∑

λ λ

x X X x  (19) 
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where ( ) 0( ) 1( )
ˆ ˆexp( )i t i t t iw d ′= λ + λ x  and ( ) ( )i Aw t i t iw∈∑= /X x  

( ),i A i tw∈∑  with the initial values 1(0)
ˆ .=λ 0  Once 1( )

ˆ
tλ  is 

computed by (19), 0( )
ˆ

tλ  is computed by  

0( )

1( )

ˆ
ˆexp( )

ˆexp( )
t

i t ii A

�

d
∈

λ = .
′∑ λ x

 (20) 

Note that, (0)
ˆ ˆ

i i dw d � �= /  since 1(0)
ˆ .=λ 0  Because ˆ ( )U λ  

is twice continuously differentiable and convex in ,λ  the 

sequence ( )
ˆ

tλ  always converges if the solution to ˆ ( ) =U λ 0  

exists (Givens and Hoeting 2005). The convergence rate is 

quadratic in the sense that 

1( 1) 1 1( ) 1
ˆ ˆ ˆ ˆ

t tC
2

+| − | ≤ | − |λ λ λ λ  

for some constant ,C  where 1 1( )
ˆ ˆlim .t t→∞=λ λ  

By construction, the t -step exponential tilting (ET) esti-

mator, defined by 

ET( ) 0( ) 1( )
ˆ ˆˆ exp( )t i t t i i

i A

Y d y
∈

′= λ +∑ λ x  (21) 

where 0( )
ˆ

tλ  and 1( )
ˆ

tλ  are computed by (19) and (20), 

satisfies the calibration constraint (2) for sufficiently large 

t . By the recursive form in (19) with 1(0)
ˆ ,=λ 0  we can 

write 
1

1

( )1( ) ( )
0

ˆ ( ) ( )
t

xx w jt � w j
j

−
−

,
=

= − ,∑ Sλ X Xɶ  (22) 

where ˆ
� �= /X Xɶ  and 

2

( ) ( ) ( )
ˆ( ) .i Axx w j i t i w tw �

⊗
∈, ∑= − /S x X  

Thus, the t -step ET estimator (21) can be written as 

( )

ET( )

( )

ˆ ˆ i i t ii A
t

i i ti A

d g y
Y �

d g

∈

∈

= ,
∑
∑

 

where 

1
( )

( )

0 ( ) ( )

t
i � xx w j

i t

j i w j xx w j

g

 −  , 

 
 = , 

φ ; ,
= .

φ ; ,
∏

x X S

x X S

ɶ

 

The following theorem presents some asymptotic 

properties of the exponential tilting estimator.  
Theorem 2. The t -step ET estimator (21) based on 

equations (19) and (20) satisfies 

1

ET( ) reg
ˆ ˆ( ) (1)t pn� Y Y o

− − = ,  (23) 

for each 1 2 ...,t = , ,  where regŶ  is the regression estimator 

using the regression weight in (5).  
The proof of Theorem 2 is presented in Appendix B. 

Theorem 2 presents the asymptotic equivalence between the 

t -step ET estimator and the regression estimator. Unlike the 

regression estimator, the weights of the ET estimator are 

always positive. For sufficiently large ,t  the t -step ET 

estimator satisfies the calibration constraint (2). Deville and 

Särndal (1992) proved the result (23) for the special case of 

.t →∞   
Remark 1. The one-step ET estimator, defined by ET(1)

ˆ ,Y  

has a closed-form tilting parameter  

{ }
1

2

1(1)

ˆˆ ( ) ( )i i d d � d
i A

d �
−⊗

∈

−= − ,∑ x Xλ X Xɶ  (24) 

where ˆ
� �= /X Xɶ  and .i A i Ad i i id d∈ ∈∑ ∑= /X x  By 

Theorem 2, the one-step ET estimator is asymptotically 

equivalent to the regression estimator, but the calibration 

constraint (2) is not necessarily satisfied. Using Theorem 2 

applied to ix  instead of ,iy  the one-step ET estimator can 

be shown to satisfy the approximate calibration constraint 

described in (7).  
Remark 2. The ET estimator can also be derived by finding 

the weights that minimize 

( ) ln i
i

i A i

w
Q w w

d∈

 
=  

 
∑  (25) 

subject to constraints (2) and (4). The objective function 

(25) is often called the minimum discrimination function. 

The minimum value of ( )Q w  is zero if (4) is the only 

calibration constraint and is monotonically increasing if 

additional calibration constraints are imposed. 

 
3. Instrumental-variable calibration 

 
We consider some extension of the proposed method in 

Section 2 to a more general class of ET calibration estimator 

using instrumental-variables. Use of instrumental-variable 

in the calibration estimation has been discussed in Estevao 

and Särndal (2000) and Kott (2003) in some limited 

simulations. Let ( )i i=z z x  be an instrumental-variable 

derived from ,xi  where the function ( )⋅z  is to be 

determined. The instrumental-variable exponential tilting 

(IVET) estimator using the instrumental variable iz  can be 

defined as 

IVET 0 1
ˆ ˆˆ exp( )i i i i i

i A i A

Y w y d y
∈ ∈

′= = λ + ,∑ ∑ λ z  (26) 

where 0λ̂  and 1λ̂  are computed from (2) and (4). Note that 

the IVET estimator (26) is a class of estimators indexed by 

.iz  The instrumental-variable approach defined in (26) 

provides more flexibility in creating the ET estimator. The 

choice of i i=z x  leads to the standard ET estimator in (16) 

but some transformation ( )i i=z z x  can make the resulting 

ET estimator in (26) more attractive in practice. The 

solution to the calibration equations can be obtained 

iteratively by 

{ }
1

( ) ( ) ( )
1( 1) 1( )

( )

( ) ( )ˆ ˆ i t i w t i w t
t t

i A

i t i

i A

w

w

−

+
∈

 
 
 

∈ 

′− −= +

− ,

∑

∑

x X z Zλ λ

X x  (27)

 

where ( ) 0( ) 1( )
ˆ ˆexp( )i t i t t iw d ′= λ + λ z  and ( ) ( )i Aw t i t iw∈∑= /Z z  

( ) ,i A i tw∈∑  with equation (20) unchanged and 1(0)
ˆ .=λ 0  
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The IVET estimator (26) is useful in creating the final 

weights that have less extreme values. Since the final weight 

in (26) is a function of ,iz  we can make i i ig w d= /  

bounded by making iz  bounded. To create bounded ,iz  we 

can use a trimmed version of ,ix  noted by 1( ,i iz=z  

2, ..., ),i ipz z  where 

if

if

if

ij ij j j j

ij j j j ij j j j

j j j ij j j j

x x x C S

z x C S x x C S

x C S x x C S

 | − | ≤


= + > +
 − < − ,

 (28) 

1 ,i Aj i ijx � d x−
∈∑= 2 1 2( ) ,i Aj i ij jS � d x x−

∈∑= −  and jC  is 

a threshold for detecting outliers, for example, jC = 3. Thus, 
the IVET estimator using the instrumental-variable obtained 

by trimming ix  can be used as an alternative approach to 

weight trimming. 

Instead of using the trimmed instrumental variable iz  in 

(28), we can consider the following instrumental variable 

i i i= Φz x  

for some symmetric matrix iΦ  such that iz  is bounded. 

Some suitable choice of iΦ  can also improve the efficiency 

of the resulting IVET estimator. To see this, using the same 

argument from Theorem 2, the instrumental-variable ET 

estimator (26) using equations (20) and (27) is asymptotically 

equivalent to 

IV, reg
ˆ ˆ( )d d zY Y ′= + −X X Bɶ ɶ  (29) 

where 

ˆ
ˆ ˆ( , ) ( , )

ˆd d d d

d

�
Y Y

�

 
′ ′=   

 
X Xɶ ɶ  

and 

{ }
1

( ) ( )ˆ ( )i i d i d
z i i d i

i A
i A

d d y
−

∈ ∈

′− −= − .∑ ∑z Z x XB z Z  (30) 

The estimator (29) takes the form of a regression estimator 

and is called the instrumental-variable regression estimator. 

Thus, under the choice of ,i i i= Φz x  the instrumental-

variable regression estimator can be written as (29) with 

1

ˆ ( ) ( ) ( )z i i d i i d i i d i i

i A i A

d d y

−

∈ ∈

 
′= − Φ − − Φ 

 
∑ ∑B x X x X x X  

and its variance is minimized for 1

i iV −Φ =  where iV  is the 

model-variance of iy  given ix  (Fuller 2009). The model-

variance is the variance under the working superpopulation 

model for the regression of iy  on .ix  Thus, instrumental-

variable can be used to improve the efficiency of the 

resulting calibration estimator, in addition to avoid extreme 

final weights. Furthermore, the optimal instrumental-

variable can be trimmed as in (28) to make the final 

weightsbounded. Further investigation of the optimal choice 

of Φ  is beyond the scope of this paper and will be a topic 
of future research.  

Remark 3. Deville and Särndal (1992) also considered 

range-restricted calibration weights of the form 

ˆ( 1) (1 )exp( )ˆ( )
ˆ( 1) (1 )exp( )

i
i i i i

i

L U U L K
w d g d

U L K

′− + −
= = ,

′− + −

λ x
λ

λ x
 (31) 

where ( ) {(1 )( 1)},K U L L U= − / − −  for some L  and U  

such that 0 1 .L U< < <  If calibration constraints (2) and 

(4) are to be satisfied, then we can use 0 1
ˆ ˆ

i
′λ + λ x  instead of 

ˆ
i

′λ x  in (31). The resulting calibration estimator is 

asymptotically equivalent to the regression estimator using 

the weights in (5) while the IVET estimator is asymptotically 

equivalent to the instrumental-variable regression estimator 

(29). Computation for obtaining λ̂  is somewhat compli-

cated because ( )ig∂ /∂λ λ  is not easy to evaluate in (31). In 

the IVET estimator, the computation, given by (27), is 

straightforward.  
To compare the proposed weight with existing methods, 

we consider an artificial example of a simple random 

sample with size 5n =  where ,kx k= 1, 2, ..., 5.k =  Cal-

culations are for three population means of ;x �X = 3, 

�X = 4.5, and �X = 6. Table 1 presents the resulting 
weights for the regression estimator, the empirical like-

lihood (EL) estimator, the t -step ET estimator (16) with 

1t =  and 10,t =  and the t -step instrumental variable 

exponential tilting (IVET) estimator (26) with 1t =  and 

10.t =  For the IVET estimator, the instrumental variable iz  

is created by 

1.5 if 1 5

if (1.5, 4.5)

4.5 if 4 5

i

i i i

i

x

z x x

x

≤ .


= ∈
 ≥ . .

 

The last column of Table 1 presents the estimated mean of 

X  using the respective calibration weights. All the weights 

are equal to 1 n/ = 0.2 for �X = 3. The regression estimator 
is linearly increasing in ix  but has negative weights for the 

population with �X = 4.5 and �X = 6. For the population 
where �X = 6, the weights could not be computed for the 
EL method because �X  is outside the range of the sample 

ix ’s. In this extreme case of �X = 6, the ET method 
provides nonnegative weights by sacrificing the calibration 

constraint and the EL estimator has more extreme weights 

than the ET estimator or IVET estimator in the sense that 

the weight for k = 5 is the largest among the estimators 
considered. The weight for the one-step ET estimator is 

close to that of the regression estimator for large ix  but it is 

close to that of EL estimator for small .ix  The 10-step ET 

estimators has better calibration properties in the sense of 

smaller value of squared error, 
25

1 ,( )k k k �w x X=∑ −  than the 

one-step ET estimator. The ET estimator and the IVET 

estimator provide almost the same estimates of �X  for both 

,t  but the IVET estimator produces less extreme weights 

than the ET estimator. 
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Table 1 
An example of calibration weights with a sample of size 5n ====  
 

  ix    

Method  �X   1  2  3  4  5  ˆ
�X    

Reg.  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  -0.100  0.050  0.200  0.035  0.500  4.5   
6.0  -0.400  -0.100  0.200  0.500  0.800  6.0   

EL  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.033  0.043  0.063  0.115  0.746  4.5  
6.0  N/A  N/A  N/A  N/A  N/A  N/A   

ET (t = 1)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.027  0.057  0.100  0.255 0.540  4.2   
6.0  0.002  0.009  0.039  0.173  0.777  4.7   

ET (t = 10)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.009  0.027  0.078  0.227 0.659  4.5   
6.0  0.000  0.000  0.000  0.001  0.999  5.0   

IVET (t = 1)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.030  0.047  0.121  0.309  0.493  4.2   
6.0  0.003  0.006  0.041  0.267  0.683  4.6   

IVET (t = 10)  3.0  0.200  0.200  0.200  0.200  0.200  3.0   
4.5  0.007  0.015  0.066  0.294  0.618  4.5   
6.0  0.000  0.000  0.000  0.087  0.913  4.9   

 

Reg., Regression estimator; EL, empirical likelihood; ET, exponential tilting; IVET, instrumental variable exponential tilting; N/A, Not 
applicable. 

 

4. Variance estimation  
We now discuss variance estimation of the ET calibra-

tion estimators of Sections 2 and 3. Because the estimated 

parameter 0 1
ˆ ˆ( , )′λ λ  in the ET calibration estimator (16) has 

some sampling variability, variance estimation method 

should take into account of this sampling variability of these 

estimated parameters. In this case, variance estimation can 

be often obtained by a linearization method or by a 

replication method (Wolter 2007). For the discussion of the 

linearization method, let the variance of the HT estimator 

(1) be consistently estimated by 

ˆ ˆ( )d ij i j
i A j A

V Y y y
∈ ∈

= Ω .∑∑  (32) 

The linearization variance estimator for the ET estimator 

can be obtained by the linearization variance formula for the 

regression estimator, as in Deville and Särndal (1992), using 

the asymptotic equivalence between the ET calibration 

estimator andthe regression estimator, as shown in Theorem 

2. Specifically, if the population size �  is known, a 

linearization variance estimator of the IVET estimator in 

(26) can be written as 

IVET
ˆ ˆ ˆ ˆ( ) ij i j i j

i A j A

V Y g g e e
∈ ∈

= Ω∑∑  (33) 

where ijΩ  are the coefficients of the variance estimator in 

(32), i i ig w d= /  is the weight adjustment factor, and 
ˆˆ ( ) ,i i d i d ze y Y ′= − − −x X B  where ˆ zB  is defined in (30). 

The choice of i i=z x  in (33) gives the linearized variance 

estimator for the ET estimator in (16). Consistency of the 

variance estimator (33) can be found in Kim and Park 

(2010). 

For the one-step ET estimator, a replication method can 

be easily implemented. Let the replication variance esti-

mator be of the form 

( ) 2
rep

1

ˆ ˆ ˆ( ) ,
L

k
k d d

k

V c Y Y
=

= −∑  (34) 

where L  is the number of replication, kc  is the replication 

factor associated with replicate ,k ( ) ( )ˆ ,k k
i Ad i iY d y∈∑=  and 

( )k

id  is the thk  replicate of the design weight .id  For 

example, the replication variance estimator (34) includes the 

jackknife and the bootstrap (see Rust and Rao 1996). 

Assume that the replication variance estimator (34) is a 

consistent estimator for the variance of ˆ .dY  The thk  

replicate of the one-step ET estimator can be computed by 

( ) ( ) ( ) ( )

ET(1) 0(1) 1(1)
ˆ ˆˆ exp( )

k k k k

i i i

i A

Y d y
′

∈

= λ +∑ λ z  (35) 

where 
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1(1)

( )
( ) ( )

( )

( ) ( )

( )

ˆ ˆ ˆ( ) ( ) ( )

ˆif
ˆ

ˆ ˆ ˆif ,

( , )
( )

k k k k k k k

i i d i d d d
i A

k
k k

d i d

i A

k

i i ik k i A
d d k

ii A

d � �

� � �
�

� d � �

d

d

−

∈

∈

∈

∈

 
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The replication variance estimator defined by 
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( ) 2
rep ET ET

1

ˆ ˆ ˆ( )
L

k
k

k

V c Y Y
=

= − ,∑  (36) 

where ( )

ET
ˆ kY  is defined in (35), can be used to estimate the 

variance of the ET calibration estimator in (26). 

 
5. Simulation study  

To study the finite sample performance of the proposed 

estimators, we performed a limited simulation study. In the 

simulation, two finite populations of size � = 10,000 were 
independently generated. In population A, the finite popula-

tion is generated from an infinite population specified by 

exp(1) 1 3 , (0 1)i i i i i i ix y x x e e x �+ ; = + + | , ;∼ ∼  
2( , ) (1) .i i i iz x y y| χ + | |∼  In population B, ( , , )i i ix e z  

are the same as in population A but (5 1 8)iy = − / +  
21 8( 2) .i ix e/ − +  The auxiliary variable, ,ix  is used for 

calibration and iz  is the measure of size used for unequal 

probability sampling. From both of the finite populations 

generated, M = 10,000 Monte Carlo samples of size n  

were independently generated under two sampling schemes 

described below. The parameter of interest is the population 

mean of y  and we assume that the population size �  is 

known. 

The simulation setup can be described as a 2 2 8 2× × ×  

factorial design with four factors. The factors are (a) two 

types of finite populations, (b) Sampling mechanism: simple 

random sampling and probability proportional to size ( )iz  

sampling with replacement, (c) Calibration method: no 

calibration, the regression estimator, the EL method in (6) 

with t = 1 and t = 10, the t -step ET method in (21) with 

t = 1 and t = 10, and the IVET method (26) with t = 1 and 
t = 10, (d) sample size: n = 100 and n = 200. Since �  is 

assumed to be known, the calibration estimators are 

computed to satisfy 1 (1, ) (1, )n
i i i �w x X=∑ =  in both 

populations. For the IVET method (26), the instrumental 

variable iz  is created using the definitions in (28) with 

threshold 3.C =  

Using the Monte Carlo samples generated as above, the 

biases and the mean squared errors of the eight estimators of 

the population mean of ,y  the variable of interest, were 

computed and are presented in Table 2. The calibration 

estimators are biased but the bias is small if the regression 

model holds or the sample size is large. In population A, the 

linear regression model holds and the regression estimator is 

efficient in terms of mean squared errors. However, the 

regression estimator is not efficient in population B because 

the model used for the regression estimator is not a good fit. 

The seven calibration estimators show similar performances 

for the larger sample size. The 10-step IVET estimator 

performs as well as the regression estimator in population 

A, and it shows slightly better performance than the other 

six calibration estimators. In population B, the 10-step IVET 

estimator performs the best among the calibration estimators 

considered. 

In addition to point estimation, variance estimation was 

also considered. We considered only the variance estimation 

for the t -step ET estimators and IVET estimators. The 

linearization variance estimator in (33) and the replication 

variance estimator in (36) were computed for each estimator 

in each sample. In the replication method, the jackknife 

method was used by deleting one element for each 

replication. The relative biases of the variance estimators 

were computed by dividing the Monte Carlo bias of the 

variance estimator by the Monte Carlo variance. The Monte 

Carlo relative biases of the linearization variance estimators 

and the replication variance estimators are presented in 

Table 3. The theoretical relative bias of the variance esti-

mators is of order (1),o  which is consistent with the 

simulation results in Table 3. The linearization variance 

estimator slightly underestimates the true variance because 

it ignores the second order term in the Taylor linearization. 

The replication variance estimator shows slight positive bias 

in the simulation. The biases of the variance estimators are 

generally smaller in absolute values in population A because 

the linear model holds. In population B, variance estimators 

for the IVET estimator are less biased than those for the ET 

estimator because of less extreme weights used by the IVET 

estimator. 

 
6. Concluding remarks  

We have considered the problem of estimating Y  with 

auxiliary information of the form { ( )} 0E U =X  with some 

known function ( ).U ⋅  The class of the linear estimators of 
the form ˆ i A i iY w y∈∑=  with ˆ{1, ( )} ( , 0)i A i iw U �∈∑ =x  

and 0iw >  is considered. If the density ( )f ;x η  of X  is 

known up to ,∈Ωη  then an efficient estimation can be 

implemented using the estimated importance weight 

0
( )

ˆ( )

i �

i i

i

f x
w d

f x

,;
∝ ,

;

η

η
 

where id  are the initial weights and where 
0 �,η  and η̂  are 

the maximum likelihood estimators of η  based on the 

population and the sample, respectively. If the parametric 

form of ( )f ;x η  is unknown, thenthe exponential tilting 

weights of the form 

( ) exp{ ( )}i iw Uλ ′∝ λ x  

can be used, where λ  is determined to satisfy 

( ) ( ) 0i i

i A

w Uλ
∈

= .∑ x  (37) 
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Table 2 
Monte Carlo Biases and Monte Carlo Mean squared errors of the point estimators for the mean of ,y  based on 10,000 Monte 
Carlo samples 
 

Population Sample  
Size 

Estimator SRS PPS 

Bias MSE Bias MSE  

A 100  No Calibration  0.00  0.02398  0.00  0.02023  
Regression estimator  0.00  0.01261  0.00  0.01289  
EL estimator (t = 1)  0.01  0.01369  0.01  0.01353  
EL estimator (t = 10)  0.00  0.01285  0.00  0.01289  
ET estimator (t = 1)  0.01  0.01334  0.01  0.01353  
ET estimator (t = 10)  0.00  0.01269  0.00  0.01289  
IVET estimator (t = 1)  0.01  0.01309  0.01  0.01330  
IVET estimator (t = 10)  0.00  0.01263  0.00  0.01289  

200  No Calibration  0.00  0.01069  0.00  0.00925  
Regression estimator  0.00  0.00595  0.00  0.00568  
EL estimator (t = 1)  0.01  0.00632  0.01  0.00604  
EL estimator (t = 10)  0.00  0.00597  0.00  0.00568  
ET estimator (t = 1)  0.00  0.00616  0.01  0.00578  
ET estimator (t = 10)  0.00  0.00596  0.00  0.00568  
IVET estimator (t = 1)  0.00  0.00605  0.01  0.00574  
IVET estimator (t = 10)  0.00  0.00591  0.00  0.00567  

B 100  No Calibration  0.00  0.02044  0.00  0.01692  
Regression estimator  -0.01  0.01473  0.00  0.01461  
EL estimator (t = 1)  0.01  0.01652  0.01  0.01516  
EL estimator (t = 10)  0.00  0.01490  0.01  0.01472  
ET estimator (t = 1)  0.00  0.01516  0.01  0.01483  
ET estimator (t = 10)  0.00  0.01470  0.00  0.01459  
IVET estimator (t = 1)  0.00  0.01497  0.00  0.01458  
IVET estimator (t = 10)  0.00  0.01472  0.00  0.01453  

200  No Calibration  0.00  0.00888  0.00  0.00823  
Regression estimator  -0.01  0.00705  0.00  0.00735  
EL estimator (t = 1)  0.01  0.00769  0.01  0.00764  
EL estimator (t = 10)  0.00  0.00715  0.01  0.00745  
ET estimator (t = 1)  0.00  0.00723  0.01  0.00749  
ET estimator (t = 10)  0.00  0.00706  0.01  0.00734  
IVET estimator (t = 1)  0.00  0.00704  0.00  0.00728  
IVET estimator (t = 10)  0.00  0.00699  0.00  0.00725  

 

SRS, simple random sampling; PPS, probability proportional to size sampling; MSE, mean squared error; EL, empirical likelihood; ET, 
exponential tilting; IVET, instrumental-variable exponential tilting.  

 
 
Table 3 
Monte Carlo Relative Biases of the variance estimators, based on 10,000 Monte Carlo samples 
 

Population Sample  

size 

Estimator Linearization Replication 

SRS PPS  SRS  PPS   

A 100  ET (t = 1) -7.02  -2.66  10.65  4.11   

 ET (t = 10) -4.91  -0.80  5.60  0.67   

 IVET (t = 1) -5.28  -3.63  7.67  2.25   

 IVET (t = 10) -4.11  -0.87  4.96  0.41   

200  ET (t = 1) -3.97  -0.19  3.65  0.57   

 ET (t = 10) -2.93  0.87  2.23  -0.35   

 IVET (t = 1) -3.35  -0.10  2.34  0.02   

 IVET (t = 10) -2.72  0.78  1.62  -0.53   

B 100  ET (t = 1) -7.64  -3.01  10.72  4.50   

 ET (t = 10) -5.98  -0.98  7.21  0.74   

 IVET (t = 1) -5.77  -2.31  4.53  -0.10   

 IVET (t = 10) -5.44  -1.86  5.17  -0.51   

200  ET (t = 1) -2.41  -1.01  5.76  2.53   

 ET (t = 10) -1.29  0.18  4.30  1.91   

 IVET (t = 1) -1.39  -0.35  2.09  1.04   

 IVET (t = 10) -1.15  -0.06  2.04  0.99   
 

SRS, simple random sampling; PPS, probability proportional to size sampling; ET, exponential tilting; IVET, instrumental-variable 
exponential tilting.  
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If a solution to (37) exists, it can be expressed as the limit of 

the form 

1
1

( ) ( ) ( )

0

ˆ ˆexp{ ( )}
t

i t s aa s i

s

w U U
−

−

=

′∝ − Σ∏ x  (38) 

where ( ) ( )
ˆ ( ),i As i s iU w U∈∑= x ( ) ( )

ˆ { ( )i Aaa t i t iw U∈∑Σ = −x  
2

( ) ( ) ( ) ( )} , ( )xi A i At t i t i i tU U w U w⊗
∈ ∈∑ ∑= /  with the initial weight 

(0)
ˆ ˆ( ).i i dw d � �= /  If the solution to condition (37) does not 

exist, we can still use the weights in (38), but the equality 

must be relaxed. Instead, approximate equality will be 

satisfied in (37) in the sense that ( ) ( )i A i t iw U∈∑ x  converges 

to zero much faster than (0) ( )i A i iw U∈∑ x  for 1.t ≥  

Approximate equality in (37) is called the approximate 

calibration condition.  

The estimators ( ) ( )
ˆ

i At i t iY w y∈∑=  that use the t -step ET 

weights in (38), including the one-step estimator (1)
ˆ ,Y  are 

asymptotically equivalent to the regression estimator of the 

form 

1

reg (0) (0) (0) (0)
ˆ ˆ ˆ ˆ ˆ ,aa ayY Y U

−′= − Σ Σ  

where (0) (0)
ˆ

i A i iY w y∈∑=  and (0) (0)
ˆ { ( )i Aay i iw U∈∑Σ = −x  

(0)} .iU y  Unlike the regression estimator, the weights of the 

proposed method are always nonnegative. Furthermore, 

using the instrumental variable technique in Section 3, the 

weights are bounded above. Suitable choice of the instru-

mental variable also improves the efficiency of the resulting 

calibration estimator. 

The exponential tilting calibration method is asympto-

tically equivalent to the empirical likelihood calibration 

method but it is more attractive computationally in the sense 

that the partial derivatives are not required in the iterative 

computation. Because the computation is simple, the 

variance of the proposed estimator can be easily estimated 

using a replication method, as discussed in Section 4. 

Further investigation in this direction, including interval 

estimation, can be a topic of future research. 
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Appendix  
A. Assumptions and proof of Theorem 1  
We first assume the following regularity conditions:  

[A-1] The density ( )f ;x η  is twice differentiable with 

respect to η  for every x  and satisfy 

2 ( )
( )

i j

f
K

∂ ;
≤

′∂η ∂η

x η
x  

for function ( )K x  such that { ( )} ,E K < ∞x  in a 

neighborhood of 
0
.

�,η  

[A-2] The pseudo maximum likelihood estimator η̂  

satisfies 
0

ˆ( ) (1).p�
n O,− =η η  

[A-3] The matrix 
2

0
( ){ }�E

⊗
,ηs  exists and is nonsingular, 

where 
00

( ) ln ( ) .
�i�

f
,η=η, = ∂ ; /∂ |s x η ηη   

To prove Theorem 1, write 

0
( )

( )
( )

i �

i

i

f
g

f

,;
= ,

;

x η
η

x η
 

and ( ) ( )i i iw d g= .η η  The estimated importance weight in 

(8) can be written ˆ( ).i iw w= η  Taking a Taylor expansion 

of 1 ˆ( ) 0i A i i� d−
∈∑ =s η  around 

0 �,η  leads to  

0

00

0

1
( )

1
ˆ( ) ( )

ˆ( ).

i i �
i A

i i ��
i A
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�

d
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∈

,,
∈
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 ∂
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+ | − |
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0 s η

s η ηη
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Note that the first term on the right side of 

2

2

( )1 1
( )

( )

( )1
.
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i i i

i A i A i

i
i

i A i

f
d d
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∈ ∈
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∈
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∂η ;

 ∂ ; /∂
−  
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∑ ∑
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x η η η
s η

x η

x η η

x η
 (A1)

 

converges to 2
{ }( )f d∫ ′∂ ; / ∂ ∂x η η η x  which equals to zero 

by the dominated convergence theorem with [A1]. The 

second term converges to 
2

0
( ){ }.�E

⊗
,ηs  Thus, by [A-2], 

1 2

0 0

1
( ) ( )d i i p�

i A

d O n
�

− /
,

∈

≡ =∑S s η  (A2) 

and 

1 1 2

00
ˆˆ ( ).ss d p�

o n
− − /− = +η Σ Sη  (A3) 
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Now, taking a Taylor expansion of 1 1ˆ
w� Y �− −=  

ˆ( )i A i iw y∈∑ η  around 
0 �,=η η  leads to  

0 0 0

ˆ ˆ

1
ˆ ˆ( ) ( ) ( )η ηη η η

η

w d

i i p� � �
i A

Y Y

� �

w y o
�

 
 
 , , , 

∈ 

′

=

∂
+ − + | − |

∂
∑

 

(A4)

 

by the uniform continuity of { ( ) }i A i iw y∈∑∂ / ∂η η  around 

0
.

�,η  Now, using 

( )
( ) ( )

( ) ( ) ( ),
( )

i i
i i i

i i

f f
g g s

f f

; ∂ ; / ∂∂
= − × = − ×

∂ ; ;

x η x η η
η η η

η x η x η
 

where ( ) ln ( ) ,i if= ∂ ; / ∂s η x η η  we have 

( ) ( ) ( ) .i i i i i

i A i A

w y w y
∈ ∈

∂
= −

∂
∑ ∑η η s η

η
 

Using 
0

( )i i�
w d, =η  and writing 00

( ) ,i i�, =s sη  we have, 

by (A2), 

00

1 2

1 1
( )

ˆ ( ).

i i i i i�
i A i A

sy p

w y d y
� �

O n

,
∈ ∈

− /

∂
= −

∂

= − +

∑ ∑ sη
η
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Using (A5) and (A3) in (A4), result (9) is obtained. 
 
B. Proof of Theorem 2  
Write 

1

1

1

( )
ˆ ( )

( )

i i ii A

i ii A

d m y

d m

∈

∈

θ = ,
∑
∑

λ
λ

λ
 

where 1 1( ) exp( ).i im ′=λ λ x  Note that ET( ) 1( )
ˆ ˆˆ ˆ ( )t tY �= θ λ  

and 1( )
ˆ

tλ  is defined in (19). By a Taylor expansion of 
1

1( ) ET( )
ˆ ˆ ˆ ˆ( )t t� Y

−θ =λ  around 1 =λ 0  and by the continuity of 

the partial derivatives of 1
ˆ ( ),θ λ  we have 

1( ) 1( ) 1( )
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t p to′θ = θ + θ − + | − | ,λ 0 0 λ 0 λ 0ɺ  (B1) 

where ˆ( ) ( ) .θ = ∂θ / ∂λ λ λɺ  Because 1( )
ˆ

tλ  converges in qua-

dratic order and the one-step estimator satisfies 1(1)λ̂ =  
1 2( ),pO n− /  equation (22) can be written as 
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21 1
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Note that 

1

1 1 1 1
ˆ( ) ( ) ( ){ ( )}i i i i i

i A i A

d m d m y

−

∈ ∈

 
θ = − θ 

 
∑ ∑λ λ λ λɺ ɺ  

where 1 1 1( ) ( ) .i im m= ∂ / ∂λ λ λɺ  Using ( ) 1im =0  and 

( ) ,i im =0 xɺ  we have ˆ ˆ ˆ( ) d dY �θ = /0  and 

1ˆ( ) ( )d i i d i

i A

� d y
−

∈

θ = − .∑0 x Xɺ  (B3) 

Therefore, inserting (B2) and (B3) into (B1), we have 
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1
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which proves (23). 
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Comparison of survey regression techniques in  
the context of small area estimation of poverty 

Stephen J. Haslett, Marissa C. Isidro and Geoffrey Jones 1 

Abstract 

One key to poverty alleviation or eradication in the third world is reliable information on the poor and their location, so that 

interventions and assistance can be effectively targeted to the neediest people. Small area estimation is one statistical 

technique that is used to monitor poverty and to decide on aid allocation in pursuit of the Millennium Development Goals. 

Elbers, Lanjouw and Lanjouw (ELL) (2003) proposed a small area estimation methodology for income-based or 

expenditure-based poverty measures, which is implemented by the World Bank in its poverty mapping projects via the 

involvement of the central statistical agencies in many third world countries, including Cambodia, Lao PDR, the 

Philippines, Thailand and Vietnam, and is incorporated into the World Bank software program PovMap. In this paper, the 

ELL methodology which consists of first modeling survey data and then applying that model to census information is 

presented and discussed with strong emphasis on the first phase, i.e., the fitting of regression models and on the estimated 

standard errors at the second phase. Other regression model fitting procedures such as the General Survey Regression (GSR) 

(as described in Lohr (1999) Chapter 11) and those used in existing small area estimation techniques: Pseudo-Empirical 

Best Linear Unbiased Prediction (Pseudo-EBLUP) approach (You and Rao 2002) and Iterative Weighted Estimating 

Equation (IWEE) method (You, Rao and Kovačević 2003) are presented and compared with the ELL modeling strategy. 

The most significant difference between the ELL method and the other techniques is in the theoretical underpinning of the 

ELL model fitting procedure. An example based on the Philippines Family Income and Expenditure Survey is presented to 

show the differences in both the parameter estimates and their corresponding standard errors, and in the variance 

components generated from the different methods and the discussion is extended to the effect of these on the estimated 

accuracy of the final small area estimates themselves. The need for sound estimation of variance components, as well as 

regression estimates and estimates of their standard errors for small area estimation of poverty is emphasized. 

                                                           
1. Stephen J. Haslett, Marissa C. Isidro and Geoffrey Jones, Institute of Fundamental Sciences: Statistics, College of Sciences, Massey University, Private 

Bag 11-222, Palmerston North, New Zealand. E-mail: S.J.Haslett@massey.ac.nz. 
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1. Introduction 
 

Poverty is a very complex multidimensional concern: 

there is no single definition and method of measurement 

available. In this paper, we adhere to the meaning of poverty 

that is used by most economists, i.e., households are consid-

ered to be in poverty if their income falls below some 

income threshold called the poverty line. Chambers (2006) 

described this as income-poverty, and it is the definition 

adopted by the World Bank in the implementation of their 

small area poverty mapping projects carried out in conjunc-

tion with national statistical agencies and used, for example, 

for monitoring progress towards the Millennium Develop-

ment Goals (UN website). Sometimes expenditure-based 

poverty measures are used instead to assess economic 

poverty. In public health related contexts, different measures 

such as standardized weight for age, height for age and 

weight for height for children (underweight, stunting and 

wasting, respectively) are used, e.g., in Bangladesh (Haslett 

and Jones 2004) and Nepal (Haslett and Jones 2006). 

Surveys conducted in most third world countries usually 

allow an acceptable level of precision for reporting poverty 

statistics at the first and second administrative level or 

geographical area (e.g., for the Philippines - National and 

Region respectively). However, for policy makers to prop-

erly target assistance and interventions to the neediest 

communities and households, more disaggregated finer-

level poverty statistics are needed. However, survey based 

poverty statistics at smaller geographical areas or lower 

administrative level are usually less reliable (have higher 

standard errors) due to smaller sample sizes, and this is 

where small area estimation comes into play.  

The most common small area estimation methodology 

used for poverty measures in third world countries proposed 

by Elbers, Lanjouw and Lanjouw (ELL) (2002, 2003) 

allows generation of more precise estimates for smaller 

geographical areas by combining the survey data with 

information from a recent census. The ELL method consists 

of two phases: fitting a regression model (or models) to 

complex survey data and using that model to predict income 

or expenditure per capita at household level (which is 

transformed and aggregated to estimate poverty statistics at 

small area level).  

In this paper, we focus specifically on the various 

algorithms used to fit the phase 1 regression models, and to 

estimate regression parameter standard errors and variance 

components from survey data. We emphasise consequences 

of survey regression modeling decisions rather than the 
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entire and rather comprehensive system ELL use to form 

small area estimates.  

The preliminary requirement of the ELL methodology 

applied to economic measures is to develop an accurate 

model of per capita income or expenditure of households 

although this is often used to generate non-linear functions 

of income or expenditure (e.g., poverty incidence - percent-

age of households below the poverty line, or poverty gap - 

sum of relative differences in income or expenditure for 

households or individuals below the poverty line). The 

survey-based regression model developed for income or 

expenditure is critical to accurate poverty statistics, but as 

we show below the regression model itself is not always the 

most important element, and other issues such as estimation 

of variance components deserve emphasis.  

Other existing survey-based small area estimation regres-

sion techniques - Pseudo-Empirical Best Linear Unbiased 

Prediction (Pseudo-EBLUP) approach (You and Rao 2002), 

Iterative Weighted Estimating Equation (IWEE) method 

(You et al. 2003) and the General Survey Regression (GSR) 

(Skinner, Holt and Smith 1989) method are considered as 

alternative survey based model-fitting techniques and 

compared with two variations of the ELL method for fitting 

regression models to survey data. Our investigation is based 

on real data from the 2000 Philippine Family Income and 

Expenditure Survey (FIES), rather than simulated data.  

This paper is organized as follows: Section 2 gives 

relevant background on small area models; the model for 

income (or expenditure) as presented by Elbers, Lanjouw 

and Lanjouw is given in Section 3; presented in Section 4 is 

a summary of the ELL methodology, followed by details on 

the alternative fitting methods in Section 5, which includes 

the Pseudo-Empirical Best Linear Unbiased Prediction Ap-

proach (5.1), IWEE Method (5.2), and the General Survey 

Regression Method (5.3). Section 6 discusses differences 

between the techniques, while Section 7 presents their appli-

cation to the Philippine FIES 2000 data. This is followed by 

the conclusion and recommendations (Section 8).  

 
2. Small area models  

 
Ghosh and Rao (1994) classify small area models into 

two broad categories, area level and unit level models. Area 

level models refer to sets of models that can be considered 

when only area-specific auxiliary variables are available. 

Unit level models, on the other hand, refer to models that 

can be considered when there are unit-specific auxiliary 

variables and unit level values of the variable under study 

can be used. All such models are special cases of a general 

linear or generalized linear mixed model, and usually in-

volve both fixed and random effects.  

For area level models, it is assumed that the population 

mean ( )aY  of the tha  small area or some suitable function 

( )a ag Yθ =  is related to the area-specific auxiliary variables 

1( )a a apx … x ′= , ,x  through a linear model  

a a a ac v′θ = +x ββββ  (1) 

where 1 ,a … k= , , 2iid(0 ),a vv , σ∼ ββββ  is a vector of regres-

sion parameters, ac  are known or estimated positive con-

stants to allow for heteroscedasticity, k  is the total number 

of small areas under study and p  is the number of auxiliary 

variables. It is assumed that a direct design-based estimator, 
ˆ ,aY  of the population mean aY  is available whenever the 

area sample size 1,an ≥  and that  

ˆ
a a aeθ = θ +  (2) 

where ˆˆ ( )a ag Yθ =  and the sampling errors ae  are indepen-

dent (0 )a� V,  with known variance .aV  Combining equa-

tion (1) and (2) gives the area level linear mixed model:  

ˆ .a a a a ac v e′θ = + +x ββββ  (3) 

We note that (3) involves both design-based random 

variables ae  and model-based random variables av  (Rao 

1999), where design-based variables are due to the sample 

selection mechanism, and model-based ones to the super-

population structure in which the model is embedded.  

Area level models have various extensions so they can 

for example handle correlated sampling errors, spatial de-

pendence of random small area effects, time series and 

cross-sectional data (see Rao 2003, 1999 and Ghosh and 

Rao 1994).  

The unit level model assumes that the variable of interest 

ahY  for the thh  unit in the tha  small area is related to the 

element-specific auxiliary data 1( )ah ah ahpx … x ′= , ,x  through 

a nested error regression model:  

ah ah a ahY v e′= + +x ββββ  (4) 

where 1 ,a … k= , , 1 ,ah … �= , , 0 1( )p… −= β , βββββ  is 1p×  

vector of regression parameters and a�  is the number of 

population units or households in the tha  small area. It is 

also assumed that the random effects ,av  are iid 2(0 )v� , σ  

and are independent of the unit errors ahe  which are 

assumed to be iid 2(0 ).e� , σ  Extensions that allow errors to 

be heteroscedastic, with known scaling constant(s) are also 

possible.  

The ELL method uses a unit level model, where the units 

are households in the case of income or expenditure data, 

and where the variation is modeled at primary sampling 

unit, i.e., cluster level and household level. Note that ELL 

do not include model variation at small area level, only for 

cluster within small area, and for household within cluster. 

This is the form of the basic model used for comparisons in 

this paper since ELL is the standard small area estimation 
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method for poverty in third world countries. In the real 

datasets we have studied this additional small area variation 

has been very small. Despite this empirical evidence how-

ever, important questions remain about how best to estimate 

the small area variance component in the presence of cluster 

level variation, when there is sample survey weighting, 

especially where many of the small areas contain only one 

sampled cluster.  

The ELL model has a number of other characteristics not 

all of which are standard in a statistical sense (see Haslett 

and Jones 2005, for example). The intention of this paper is 

not to discuss differences in the available methods gener-

ally, but to focus directly on how methods of fitting 

regression models to survey data differ when the ELL first 

phase “base structure” of fitting a survey regression model 

is used. The focus of this paper therefore is on comparison 

of the available methods of fitting regression models to 

survey data on income or expenditure using a specified set 

of regressors, even though ELL can also be (and is) used 

relatively routinely to find small area estimates for non-

linear functions (e.g., poverty incidence, gap or severity) by 

applying fitted regression models to a census.  

The answer to the ‘best regression model fitting’ question 

for survey data on which this paper focuses (as with other 

matters related to the ELL methodology) is particularly 

important because there are billions of dollars of aid funding 

that are (or have the potential to be) allocated based on the 

regression models used as part of small area estimation of 

poverty.  

 
3. Income/consumption model  

 
Modeling per capita income or expenditure of house-

holds instead of poverty measures themselves (such as 

poverty incidence and gap) is one of the distinctive features 

of the ELL method. As mentioned in the previous section, 

the ELL method involves fitting the income or expenditure 

model to the survey data and applying it to the census data 

prior to the generation of the small area estimates of poverty 

measures. The income/expenditure model is as follows:  

bh bh bhY u′= +x ββββ  (5) 

where 1 ,b … M= , , 1 ;bh … �= , , bhY  is the log-transformed 

per capita income or expenditure of the thh  unit or 

household in the thb  cluster, M  is the total number of 

clusters in the population and b�  is the total number of 

households in the thb  cluster in the population. bhx  is a set 

of the auxiliary variables available in both the survey and 

the census, which generally need to be contemporaneous; 

bhu  is the random error term representing that part of bhY  

that cannot be explained by .bhx  Income and expenditure 

data almost invariably have a skewed distribution, hence a 

transformation (usually logarithmic) is applied to make the 

data more symmetrical.  

The households for which data on per capita income or 

expenditure is collected are seldom independent, but have 

natural groupings or clusters, often defined administratively. 

Households that are close to each other or in the same 

cluster, tend to be similar in many respects. In the survey 

data, the clusters are usually also the primary sampling units 

(PSUs) for the sample survey design. To account for the 

clustering of households, the random error term bhu  in the 

regression model is usually assumed to have the following 

specification:  

bh b bhu v e= +  (6) 

where v  and e  are independent of each other and 

uncorrelated with ,bhx bv  is the error term held in common 

by the thb  group or cluster (e.g., barangay for the 

Philippines) and bhe  is the household level error within the 

cluster. The importance of each term is measured by their 

respective variances or variance components, 2
vσ  and 2.eσ  

There are various procedures for estimating these variances. 

This important topic is covered in the sections that follow.  

Model (5) can be written as  

bh bh b bhY v e′= + +x ββββ  (7) 

which is similar in form to the unit level model or nested 

error regression model mentioned in the previous section. 

However while the form of the model is similar, the group 

being referred to is different, e.g., ahY  refers to the thh  

household in the tha  small area, while bhY  refers to the thh  

household in the thb  cluster. Clusters, based on the survey 

design, will typically be much smaller than the areas for 

which small area estimates are sought, and generally (unlike 

almost all the small areas) not all clusters are sampled. For 

example in the Philippines, estimates are sought at the 

municipal level which is composed of barangays or clusters.  

 
4. The ELL methodology  

 
In the ELL methodology, the estimate of the regression 

parameter ββββ  is given, in Elbers et al. (2002, page 11 

footnote 8) and in the POVMAP software Zhao (2006) 

developed for the ELL method, as  

1

1 1

ELL
1 1

ˆ
m m

b b b b b b b b

b b

−

− −

= =

   
′ ′=    

   
∑ ∑X W V X X W V yββββ  (8) 

and the corresponding variance-covariance matrix as  

1

1

ELL
1

ˆ( )
m

b b b b b
b

−

−

=

  
′=   

   
∑V D X W V W X Dββββ  (9) 
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where 2 2( ),
b b bb e n v n n

′= σ + σV I 1 1 2( )υσ  is the cluster level 

variance, while 2( )eσ  is the household level variance, 
bnI  is 

an identity matrix, (1 1)
bn
′ = ...1  is a constant vector, =D  

1 1
1 1( ) , ( ) ;

b

m
b b b b b b b bn…− −
=∑ ′ ′= , ,X W V X X x x 1( ) ;

bb b bny … y ′= , ,y  

bW  is a diagonal matrix of sampling weights; m  is the 

number of clusters in the sample and bn  is the number of 

households in each sampled cluster. Equation (8) assumes 

bV  is known. In practice we need to estimate 2
eσ  and 2

vσ  to 

get the estimator ˆ .bV  We note that the variance expression 

in (9) is derived under a vaguely specified model assumed 

for the sample (see Elbers et al. 2002). Under the ELL 

method, fitting the income/expenditure model (7) involves 

obtaining the initial estimate of ββββ  through weighted least 

squares (WLS) method and using the residuals of the initial 

model to estimate the covariance matrix bV  needed to 

obtain ELL
ˆ .ββββ  The estimate of the cluster level 2( )vσ  and 

household level 2( )eσ  variances, are derived by Elbers et al. 

(2002) as follows:  

2 2

2
( ) (1 )

max 0ˆ
(1 ) (1 )

b b b b bb b
v

b b b bb b

w u u w w

w w w w

. .. − − τ 
= − ; σ  − − 

∑ ∑
∑ ∑

 (10) 

where 2 2( ) ( ( 1)); ,h h b hb bh b b b b bh bhe e n n w w w.∑ ∑ ∑ ∑τ = − / − = /  

is the by-cluster transformed sampling weights which sum 

to one across clusters and bhw  is the re-scaled sampling 

weights which sum to the total sample size. Here bu . =  

h bhu∑  and b h bhu u.. ∑ ∑=  (which is equal to zero) where 

bhu  is as defined in equation (6).  

There are two ways suggested by Elbers et al. (2002) to 

generate the estimate of the household level variance com-

ponent: “direct” computation which is denoted by 2( ˆ )eσ  or 

the heteroscedasticity model-based 2
,( ˆ ).e bhσ  Direct compu-

tation involves using the difference between the estimated 

mean square error from the initial WLS regression and the 

computed estimate of 2,vσ  while the heteroscedasticity 

model-based computation uses a logistic-type link function 

to bound the variance as follows:  

2
exp( )

( )
1 exp( )

bh
e bh bh

bh

A B
A B,

′ + 
σ , , , =  ′+ 

αααα
αααα

αααα

z
z

z
 (11) 

where A and B are the upper and lower bounds respectively, 

estimated with the parameter vector αααα  using a standard 

pseudomaximum likelihood procedure (Elbers et al. 2003), 

and where bhz  are auxiliary variables. Elbers et al. claim 

that imposing a minimum bound of zero and a maximum 

bound of 2(1 05) max{ }bhA e∗ = .  in general yields similar 

estimates of the parameters .αααα  These restrictions allow one 

to estimate the simpler form  

2

2
ln bh

bh bh

bh

e
r

A e∗

 
′= + − 
ααααz  (12) 

where bhr  is an error term and the other variables are as 

defined earlier. In most of the World Bank poverty mapping 

projects, slight modifications are usually made, for example, 

adding a constant δ  to 2
bhe  in model (11).  

By using model (12), and employing the delta method, 
2

ˆ e bh,σ  is computed as:  

2 2
, 3

(1 )1
ˆ ˆ

1 2 (1 )

bh bh bh
e bh r

bh bh

A C A C C

C C

∗ ∗ −   
σ = + σ   + +   

 (13) 

where ˆexp{ },bh bhC ′= ααααz  and 2
ˆ rσ  is the estimated variance 

of the residuals under model (12). If the household level 

variance component is based on a heteroscedastic model, 

then, 2 2( ).
b b bb e bh n v n n, ′= σ + σV I 1 1  Heteroscedasticity model-

ing is conducted on the assumption that variation at the 

household level depends on some covariates.  

As discussed in more detail in the appendix, the way in 

which the weight matrix bW  enters the calculation in equa-

tion (9) above leads to an asymmetric estimated covariance 

matrix. A rather better approach based on ‘pseudomaximum 

likelihood’ is outlined by Pfeffermann, Skinner, Holmes, 

Goldstein and Rasbash (1998) and involves splitting 
1

b b b
−′X V X  into separate sums of squares and cross-product 

terms, and weighting each appropriately - if we write 1
b
− =V  

b b bn n nc d ′+I 1 1  then the appropriate weighting is b b bc ′ +X W X  

.
b bb b n n b bd ′ ′X W 1 1 W X  

Since the ELL version, 1,b b
−W V  is not generally sym-

metric, neither is D  in equation (9). As a consequence the 

supposed covariance matrix of ELL
ˆ ,ββββ ELL

ˆ( ),V ββββ  is also not 

symmetric. The POVMAP software attempts to solve this 

problem by taking the average of their ELL
ˆ( )V ββββ  and its 

transpose, thereby forcing the matrix to be symmetric.  

Note again that under the ELL method, the regression fit 

to the survey data and the estimation of variance compo-

nents is only the first phase. The consequent phase involves 

prediction at household level based on the entire census data 

and aggregation to small area level.  

The survey fitting methods (derivation of the estimate of 

ββββ  and its corresponding variance-covariance matrix) of 

three alternative regression procedures to ELL are presented 

in the following sections.  

 
5. Alternative fitting methods  

5.1 The pseudo-empirical best linear unbiased 

prediction approach   
You and Rao (2002) proposed an estimator of the small 

area mean by deriving an estimator of ββββ  based on the unit 

level model (4). The process of deriving the estimator of ββββ  

starts with the computation of the best linear unbiased 

predictor (BLUP) of av  given the parameters ,ββββ 2
eσ  and 
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2
vσ  from the aggregated (survey-weighted) area level 

model: 

aw aw a awY v e′= + +x ββββ  (14) 

which proceeds as follows: 

2 2ˆ ( ) ( )aw e v aw aw awv y ′, σ , σ = γ − xβ ββ ββ ββ β  (15) 

where 1 1, ,a an n

h haw ah ah aw ah ahw y w y= =∑ ∑= =x x 2 2(aw v vγ = σ / σ +  
2 2 ),e aσ δ 1 ,an

hah ah ahw w w=∑= /ɶ ɶ
2 2

1 ,an

ha ahw=∑δ =  and ahwɶ  are the 

unit level survey weights; then solving for the survey-

weighted estimating equation for :ββββ  

2 2

1 1

[ ˆ ( )] 0
ank

ah ah ah ah aw e v
a h

w y v
= =

′− − , σ , σ =∑∑ x xɶ β ββ ββ ββ β  (16) 

from which the estimator of ββββ  is obtained as  

1

1 1 1 1

ˆ
a an nk k

w ah ah ah ah

a h a h

y

−

= = = =

   
′=    

   
∑∑ ∑∑x z zββββ  (17) 

where ( ).ah ah ah aw ahw= − γz x xɶ  The corresponding 

covariance matrix is then as follows: 

1

2

1 1

1

1 1 1 1

1

2

1 1

1

1 1 1 1 1

.

a

a a

a

a a a

nk

w e ah ah
a h

n nk k

ah ah ah ah
a h a h

nk

ah ahv
a h

n n nk k

ah ah ah ah
a h a a h

−

= =

−

= = = =

−

= =

−

= = = = =

 
′= σ  

 

  
′ ′  

  

 
′+ σ  

 

′′        
  ′     
        

∑∑

∑∑ ∑∑

∑∑

∑ ∑ ∑ ∑∑

x z

z z x z

x z

z z x z

ΦΦΦΦ

 (18)

 

The variance components are estimated using Henderson’s 

Method 3 (Henderson 1953), to generate unbiased estimates 

even in the presence of correlated elements in the model. 

The estimators of the variance components are as follows: 

2 1 2

1 1

ˆˆ ( 1)
ank

eH ah
a h

n k p −

= =

σ = − − + ε∑∑  (19) 

where 2ˆ{ }ahε  are residuals from the OLS regression of 

( )ah ay y−  on 1 .1 .{ }ah a ahp a px x … x x− , , −  and .1( a ay x …, , ,  

. )a px  are the sample means in the tha  group.  

2 1 2 2

1 1

ˆ ˆ ( ) ˆ
ank

vH ah eH

a h

n u n p−
∗

= =

 
σ = − − σ 

 
∑∑  (20) 

where 1 2
1tr[( ) ]k

a a a an n n−
∗ =′ ′= − ΣX X x x  with 1( …= , ,X x  

),kx  and the { ˆ }ahu  are the residuals from the OLS regres-

sion of ahy  on 1{ }.ah ahpx … x, ,  For the model (7), the 

subscript a  is replaced by .b  

However, the Henderson’s estimators above do not 

account for the sampling weights. To address this, an esti-

mation technique has been proposed by You et al. (2003) 

which extends the Pseudo-EBLUP method by incorporating 

the weights in the estimation of the variance components. 

This is described in the next section.  
 
5.2 The iterative weighted estimating equation 

method   
The estimator proposed by You et al. (2003) is similar to 

the Pseudo-EBLUP estimator, except that it incorporates the 

sampling weights in the computation of the variance com-

ponents, and it generates the parameter estimate ββββ  and the 

variance components by using an iterative weighted esti-

mating equation (IWEE) approach. The authors derived the 

estimator of 2
eσ  and 2

vσ  as follows:  

( 1) 2

1 12( )

2

1 1

2( )

ˆ[ ( ) ]
ˆ

(1 )

( )

a

a

k n t
ah ah aw ah awa ht

ew k n

a aha h

t
ew

w y y

w

−
= =

= =

′− − −
σ =

 − δ 

≡ σ

∑ ∑
∑ ∑

x xɶ

ɶ

ɶ

ββββ

ββββ (21)

 

and  
2( 1) 2( )
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The survey weighted estimates of ,ββββ 2,eσ 2
vσ  are obtained 

simultaneously by following iterative updating steps, t  in 

the equation above stands for the tht  iteration. Since the 

variance components 2
vσ  and 2

eσ  are unknown, initial esti-

mates for the iterative steps are generated by Henderson’s 

method. Again, as for Pseudo-EBLUP, for the ELL regres-

sion model formulation (7), the subscript a  is replaced 

by .b  

This approach is similar to the probability-weighted 

iterative generalized least squares (PIWGLS) method 

proposed by Pfeffermann et al. (1998) for fitting multilevel 

models where the estimation process considered the unequal 

selection probabilities at each stage of sampling and in-

volves iterating between the parameter ββββ  and the variance 

components until convergence. A model-based approach is 

also proposed by Pfeffermann, Moura and Silva (2006), 

which involves deriving the hierarchical model for given 

sample data as a function of the population model and the 

selection probabilities, and then fitting the sample model 

using Bayesian approach by use of Markov Chain Monte 

Carlo algorithm.  
 
5.3 General survey regression method   

Another approach to generate the estimator of the 

parameter β  and its variance is the design-based meth-

odology for fitting regression models (Lohr 1999). This 



162 Haslett, Isidro and Jones: Comparison of survey regression techniques in the context of small area estimation 

 

 

Statistics Canada, Catalogue No. 12-001-X 

technique is currently used in the Stata, Sudaan, and 

WesVar package, for example. The estimator of ββββ  given 

below is the sample weighted regression estimator for a 

model with homoscedastic variance structure and un-

correlated observations in the population.  

1ˆ ( ) .S
−′ ′= X WX X Wyββββ  (23) 

This estimator is not derived under the model specified 

by (7) even under the homoscedastic variances for house-

hold errors. The linearized/robust variance estimate for ˆ
Sββββ  

is based on the design-based variance estimator for a total, 

given as, 

1 1 1

ˆˆ ( )
1

b bn nm

S bh bh bh bh
b h h

m
w w

m = = =

 ′    
 =    

−     
∑ ∑ ∑V D d d Dββββ  (24) 

where ˆ ;bh bh bhe=d x b̂he  is the residual from WLS regres-

sion; bhx  is a vector of the independent variables; bhw  is a 

sampling weight; 1( ) ;−′=D X WX  and W  is a diagonal 

matrix of the sampling weights.  

The General Survey Regression method differs from the 

other techniques in the computation of the estimates, and 

generates the estimates without computing the variance 

components, 2
vσ  and 2.eσ  As shown above, the equations 

for the estimator of the parameter ββββ  and its corresponding 

estimated covariance matrix only involve the sampling 

weights matrix .W  The estimated covariance matrix in (24) 

is often referred to as a sandwich estimator.  

 
6. Comparison of the model fitting techniques  

 
The ELL methodology is claimed to be a weighted GLS 

estimation procedure. However, as pointed out earlier, the 

sampling weights are not properly incorporated in the 

estimation process and this leads to non-interpretability of 

the elements in some matrices involved in the estimation, as 

well as asymmetry in the estimated covariance matrix. For 

the ELL method of estimating the variance components, the 

weights are accounted for only at the cluster level. The two 

ways (direct computation and heteroscedasticity model-

based) that ELL use for generating the household level 

variance component do not incorporate the sampling weights. 

For direct computation, the household level variance compo-

nent is determined from the residual of the survey-weighted 

(WLS) regression conducted at the preliminary step and the 

weighted estimate of the cluster level component. The 

heteroscedasticity based computation is based on modeling 

the square of the residuals from the WLS regression.  

While the ELL methodology follows a GLS-like esti-

mation procedure, the pseudo-EBLUP and IWEE method 

follow the Generalized Estimating Equation (GEE) proce-

dure (Liang and Zeger 1986) using an exchangeable working 

correlation matrix, i.e., all the off-diagonal elements of the 

correlation matrix within clusters are equal, and in Pseudo-

EBLUP and IWEE are equal to 2 2 2( ).v v eσ / σ + σ  An ex-

changeable or equicorrelated working correlation matrix is 

one of the common working correlation matrices presented 

in the paper of Horton and Lipsitz (1999) when reviewing 

different software for fitting GEE regression models.  

The two procedures, Pseudo-EBLUP and IWEE, both 

incorporate the sampling weights in the estimation of the 

parameter ββββ  and the corresponding standard error, although 

the Pseudo-EBLUP method uses Henderson’s method in the 

estimation of the variance components. While Henderson’s 

method generates unweighted estimates of the variance 

components, the IWEE method incorporates the sampling 

weights iteratively from estimation of variance components 

for computation of standard error of the estimate of the 

regression parameter.  

There is a very limited published literature on the appli-

cation to real data sets of the Pseudo-EBLUP and IWEE 

methods. Those that there are consider the clusters as the 

small area, and often use the data in Battese, Harter and 

Fuller (1988), whose data set contains information on 

hectares of corn and soybeans per segment for counties in 

North Central Iowa and assumes simple random sampling 

within areas or clusters. An exception is the recent paper by 

Militino, Ugarte, Goicoa and Gonzalez-Audicana (2006), 

which applies Pseudo-EBLUP to estimating the total area 

occupied by olive trees in Navarra, Spain, where (as in 

Battese et al.) the units are self weighting. Generally for 

poverty estimation, Pseudo-EBLUP and IWEE techniques 

must be applied in more complex situations, since sampling 

clusters and small areas are not identical and the sample is 

not self weighting. In the example in the next section, the 

clusters (barangay) are different from the small areas 

(municipalities), the clusters are sub-units of the small area 

and the sampling scheme is not self weighting.  

The GSR method is one of the least complicated esti-

mation procedures as it employs a weighted least squares 

procedure using the sandwich estimator for estimating the 

variance of the estimator of the regression parameter. As 

mentioned earlier, this method differs from the other tech-

niques in that the estimate of the regression parameters and 

their corresponding standard errors are generated without 

computing the variance components.  

Based on the discussion above, for all the techniques 

considered, the survey-based estimation procedure for the 

parameter ββββ  and its corresponding standard error are 

theoretically sound given their assumptions, except for the 

ELL method where there are some inconsistencies in the 

estimation of parameters ββββ  and the covariance of ˆ.ββββ  
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7. Application to real data  
 

In this section, the four different regression techniques 

(one of which contains two variants of ELL) are compared 

using the Philippine 2000 Family Income and Expenditure 

Survey (FIES). The FIES data is a nationwide survey 

undertaken by the Philippines National Statistics Office 

(NSO) every three years. The survey gathers details on 

family income and expenditure as well as information 

affecting income and expenditure. Selected households are 

interviewed in two separate operations, each covering a 

half-year period, in order to allow for seasonal patterns in 

income and expenditure. For FIES 2000 the interviews were 

conducted in July 2000, for the period 01 January to 30 June 

and January 2001 for the period 01 July to 31 December. 

The sample design for FIES used a multi-stage stratified 

random sampling technique. Barangays are the primary 

sampling units (PSUs) and are stratified into urban and rural 

within each province and selected using systematic sam-

pling with probability proportional to size. Large barangays 

are further divided into enumeration areas and subjected to 

further sampling before the final stage in which households 

are systematically sampled from the 1995 Population 

Census List of Households. Interview non-response was 

only 3.4 percent, with 39,615 of the sample households 

being successfully interviewed in both survey visits. 

Deterministic imputation was done to address item non-

response, i.e., entry for a particular missing item is deduced 

from other items in the questionnaire.  

The auxiliary variables used in this paper are adopted 

from the variables included in the model formulated by 

Haslett and Jones (2005) that was fitted without using 

POVMAP for the small area poverty mapping project in the 

Philippines. The auxiliary variables included both house-

hold characteristics and municipal means (in which the 

household data used have the same value for every sampled 

household in a given municipality, i.e., small area). These 

auxiliary variables are not only derived from the FIES data 

but also from the Philippine 2000 Labor Force Survey 

(LFS) and Census of Population and Housing (CPH). The 

LFS collects socioeconomic characteristics of the popu-

lation over 15 years old. It is conducted on a quarterly basis 

by the NSO by personal interview, using previous week as 

reference period. Being part of the Integrated Survey of 

Households (NSCB 2000), the July 2000 and January 2001 

surveys used the same sample of households as the 2000 

FIES. Thus the two data sets can be merged to form a richer 

set of auxiliary variables. Additional auxiliary variables 

were also taken from the 2000 CPH in the form of 

municipal means. Census variables in both the short and 

long form were averaged at municipal level to create new 

data sets that could be merged with the set of auxiliary 

variables from FIES and LFS.  

Presented in Tables 1, 2, and 3 are the computed esti-

mates of the parameter ( )ββββ  and the corresponding standard 

errors as well as the estimates of the variance components at 

the national, regional and provincial levels, respectively. 

Table 2 is one of the regional models of the 16 models fitted 

at the regional level (there are 16 regions in the Philippines 

in the year 2000). Similarly, Table 3 shows one of the 

provincial models of the 20 models formulated for 20 

selected provinces. To standardize comparison, exactly the 

same set of predictor variables are used for all the different 

model fitting techniques. (There are five sets of parameter 

estimates, although there are only four basic methods 

considered, because ELL is used both with and without 

heteroscedasticity.) Note that in practice when ELL is 

applied, the survey data is often subdivided and separate 

models fitted to each subsample, e.g., to each regionally-

based stratum as the 16 regions in the Philippines or even 

provincial level models. This can lead to overfitted models 

and downwardly biased standard errors for small area esti-

mates. For the analysis here, a single model (or the national 

level model) has been fitted. In practice intermediate models 

with some but not all possible regional effects seem to work 

best. See for example Haslett and Jones (2005).  

To assess the differences of the estimates generated from 

the different techniques, an informal comparison of the 

“significance” of the different estimates of β  is conducted 

by subtracting from the estimate by one method the mean of 

the other methods’ estimates, then dividing by the standard 

error of the one method. At the national level (Table 1), 

estimates of the regression coefficients generated from the 

different methods are significantly different from each other 

for a number of the independent variables. GSR tends to 

generate estimates of the regression coefficients for the 

majority of the variables that are significantly different from 

the other methods. As pointed out earlier, the GSR estimator 

is the sample weighted regression estimator for a model 

with homoscedastic variance structure and uncorrelated 

observations in the population and hence this estimator is 

not derived under the model specified by (7). However, it is 

the most conservative as it generates the highest standard 

error for all the household level characteristics. On the other 

hand, the IWEE method has the highest estimated standard 

error for all the municipal means. The ELL_H (ELL with 

heteroscedasticity) method can be considered to be the least 

conservative since it produces the lowest standard errors for 

all the estimated regression coefficients of the household 

level characteristics as well as for the municipal means, 

except for two variables where GSR generated the smallest 

estimates. As to the estimates of the variance components, 

the ELL method generates the smallest estimated cluster 

level variance, which is about 92% of the Pseudo-EBLUP 

method and 86% of the IWEE method. As to the household 

level variance, the IWEE method generates the smallest 

estimate.  
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Table 1 
4ational level estimates of regression parameters with the standard errors and the variance components for the four techniques. 
*Different value for each household (mean = 0.1576633) **Based from the ELL results 
 

Explanatory ELL(no hetero) ELL(w/ hetero) Pseudo-EBLUP IWEE GSR 

Variables  Beta Std. Error Beta Std. Error Beta Std. Error Beta Std. Error Beta Std. Error 

famsize  -0.11867  0.00181  -0.12034  0.00165  -0.11875  0.00183  -0.11888  0.00180  -0.11405  0.00216   

famsizesqc  0.00937  0.00039  0.00981  0.00036  0.00938  0.00039  0.00939  0.00038  0.00898  0.00044   
type_mult  0.03876  0.01697  0.03703  0.01588  0.03699  0.01717  0.03466  0.01692  0.11460  0.02194   

per_kids  -0.20342  0.01476  -0.20818  0.01322  -0.20293  0.01491  -0.20216  0.01467  -0.22864  0.01617   

roof_light  -0.06314  0.01291  -0.05808  0.01056  -0.06263  0.01306  -0.06175  0.01287  -0.09251  0.01413   
per_61up  -0.09402  0.01420  -0.08331  0.01371  -0.09392  0.01435  -0.09389  0.01412  -0.09705  0.01698   

roof_strong  0.05882  0.01135  0.05633  0.00962  0.05944  0.01148  0.06030  0.01132  0.03118  0.01293   

wall_light  -0.05459  0.01182  -0.04979  0.00975  -0.05426  0.01195  -0.05392  0.01178  -0.06286  0.01353   
wall_salvaged  -0.10814  0.02505  -0.11327  0.02058  -0.10748  0.02533  -0.10607  0.02495  -0.15702  0.02925   

wall_strong  0.14248  0.01051  0.12964  0.00910  0.14274  0.01063  0.14319  0.01047  0.12662  0.01284   

fa_xs  -0.17052  0.00941  -0.16756  0.00782  -0.17144  0.00952  -0.17236  0.00939  -0.14213  0.01110   
fa_s  -0.08368  0.00861  -0.08242  0.00725  -0.08403  0.00871  -0.08454  0.00857  -0.06667  0.00964   

fa_l  0.09016  0.00908  0.08478  0.00792  0.09065  0.00918  0.09106  0.00904  0.07848  0.01047   

fa_xl  0.16959  0.01104  0.15404  0.00992  0.17034  0.01117  0.17121  0.01100  0.14300  0.01334   
fa_xxl  0.27072  0.01144  0.24485  0.01094  0.27172  0.01157  0.27274  0.01140  0.23913  0.01457   

fa_xxxl  0.36190  0.01371  0.31369  0.01286  0.36270  0.01387  0.36382  0.01367  0.32123  0.02025   

all_eled  0.19084  0.01535  0.20497  0.01307  0.19031  0.01551  0.18964  0.01527  0.21344  0.01831   
all_hsed  0.42325  0.01250  0.43771  0.01083  0.42192  0.01263  0.42024  0.01244  0.48180  0.01475   

all_coed  1.21591  0.01371  1.29368  0.01379  1.21324  0.01386  1.20935  0.01366  1.35022  0.01827   

dom_help  0.60207  0.01629  0.61218  0.01886  0.60035  0.01645  0.59733  0.01620  0.70307  0.02656   
head_male  -0.05878  0.00988  -0.04581  0.00932  -0.05862  0.00998  -0.05819  0.00982  -0.07410  0.01173   

no_spouse  -0.09367  0.00987  -0.07376  0.00917  -0.09361  0.00997  -0.09351  0.00981  -0.09599  0.01123   

hou_9600  0.28537  0.07654  0.25643  0.07375  0.28871  0.07911  0.28783  0.08066  0.31956  0.07941   
hea_rel_mus  0.09058  0.02645  0.10859  0.02507  0.09753  0.02728  0.09731  0.02782  0.10196  0.02737   

Per_eng  0.17273  0.06529  0.14561  0.06298  0.17782  0.06754  0.17799  0.06887  0.17076  0.06407   

Hou_coelpg  0.37463  0.04348  0.39784  0.04210  0.37934  0.04494  0.37792  0.04581  0.42682  0.03711   
Hou_own_ref  0.17716  0.10497  0.18342  0.10178  0.17189  0.10843  0.17329  0.11055  0.13791  0.09766   

Hou_own_tel  1.39287  0.13356  1.42109  0.12987  1.38551  0.13723  1.38974  0.13989  1.23506  0.13019   

Per_wor_prh  0.46957  0.15484  0.40302  0.14926  0.47517  0.16006  0.47208  0.16317  0.50814  0.15210   
Per_ind_52  -0.76245  0.21708  -0.78120  0.21073  -0.76326  0.22410  -0.76307  0.22849  -0.73294  0.21214   

const  9.54013  0.05525  9.54456  0.05290  9.53566  0.05698  9.53594  0.05791  9.52622  0.05613   

Variance   

Components  HH  Cluster  HH  Cluster  HH  Cluster  HH Cluster  HH**  Cluster** 

Estimate  level  level  level  level  level  level  level level  level  level 

 0.18461  0.04741  NA*  0.04741  0.18820  0.05172  0.18185 0.05498  0.18461  0.04741 

 
Table 2 
Regional level estimates of regression parameters with the standard errors and the variance components for the four techniques. 
*Different value for each household (mean = 0.18930) **Based from the ELL results 
 

Explanatory  ELL(no hetero) ELL(w/ hetero) Pseudo-EBLUP IWEE GSR 

Variables  Beta Std. Error Beta Std. Error Beta Std. Error Beta Std. Error Beta Std. Error 

famsize  -0.12327  0.00760  -0.12934  0.00689  -0.12377  0.00752  -0.12380  0.00749  -0.11786  0.00997   

famsizesqc  0.01096  0.00164  0.01190  0.00147  0.01101  0.00163  0.01102  0.00162  0.01030  0.00195   
dom_help  0.81037  0.08873  0.75624  0.10986  0.80727  0.08784  0.80708  0.08751  0.84490  0.08911   

wall_light  -0.06808  0.04289  -0.06390  0.03743  -0.06020  0.04272  -0.05973  0.04257  -0.14472  0.04226   

wall_strong  0.13761  0.03745  0.15212  0.03469  0.14514  0.03737  0.14560  0.03725  0.06116  0.04249   
fa_xs  -0.22074  0.04910  -0.22368  0.04518  -0.22723  0.04875  -0.22761  0.04858  -0.14856  0.05665   

fa_s  -0.13540  0.03840  -0.12255  0.03344  -0.13775  0.03805  -0.13789  0.03791  -0.11059  0.04538   

fa_l  0.09484  0.03709  0.08894  0.03429  0.09590  0.03676  0.09597  0.03663  0.08529  0.04122   
fa_xl  0.16627  0.04315  0.15519  0.04072  0.16938  0.04284  0.16958  0.04269  0.13698  0.04897   

fa_xxl  0.33706  0.04545  0.31196  0.04829  0.34173  0.04516  0.34201  0.04500  0.29156  0.05148   

fa_xxxl  0.33103  0.06185  0.30377  0.06029  0.33762  0.06134  0.33801  0.06111  0.26052  0.06635   
all_hsed  0.33987  0.05253  0.35591  0.04783  0.33807  0.05209  0.33796  0.05189  0.35776  0.04843   

all_coed  1.21824  0.05734  1.24762  0.05842  1.20787  0.05692  1.20726  0.05671  1.32979  0.06227   

per_kids  -0.24699  0.06440  -0.24047  0.05846  -0.24439  0.06371  -0.24424  0.06347  -0.27423  0.07050   
per_61up  -0.14609  0.06126  -0.15938  0.05787  -0.14703  0.06063  -0.14708  0.06040  -0.13525  0.07124   

hou_9600  1.13985  0.49103  1.27035  0.47888  1.14320  0.52137  1.14357  0.52172  1.07509  0.51937   

Hou_own_ref  1.45233  0.24550  1.51020  0.23864  1.44986  0.26072  1.44985  0.26089  1.44779  0.23585   
const  9.36877  0.20322  9.32363  0.19660  9.36597  0.21502  9.36569  0.21512  9.41385  0.21430   

Variance     

Components  HH  Cluster  HH  Cluster  HH  Cluster  HH  Cluster  HH**  Cluster**  

Estimate  level  level  level  level  level  level  level  level  level  level  

 0.19544  0.03073  NA*  0.03073  0.19052  0.03728  0.18902  0.03748  0.19544  0.03073  
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Table 3 

Provincial level estimates of regression parameters with the standard errors and the variance components for the four techniques. 
*Different value for each household (mean = 0.23749) **Based from the ELL results 
 

Explanatory  ELL(no hetero) ELL(w/ hetero) Pseudo-EBLUP IWEE GSR  

Variables  Beta  Std. Error  Beta  Std. Error  Beta  Std. Error  Beta  Std. Error  Beta  Std. Error  

famsize  -0.1450  0.0175  -0.1489  0.0156  -0.1452  0.0179  -0.1449  0.0171  -0.1413  0.0097   
famsizesqc  0.0090  0.0063  0.0124  0.0067  0.0091  0.0065  0.0090  0.0062  0.0085  0.0055   

fa_xs  -0.4549  0.1126  -0.3816  0.1010  -0.4552  0.1149  -0.4546  0.1095  -0.4479  0.0718   

fa_s  -0.2550  0.0976  -0.2653  0.0794  -0.2545  0.0995  -0.2555  0.0951  -0.2693  0.1198   
wall_light  -0.2055  0.0945  -0.1474  0.0778  -0.2057  0.0965  -0.2058  0.0919  -0.2063  0.1070   

all_hsed  0.4007  0.1643  0.3531  0.1448  0.4015  0.1673  0.4006  0.1601  0.3891  0.1585   

all_coed  1.5411  0.1677  1.8202  0.1769  1.5429  0.1709  1.5429  0.1635  1.5439  0.2326   
Hou_own_tel  3.4373  1.0270  3.2630  1.0582  3.4265  1.0622  3.4274  0.9871  3.4392  0.5733   

Per_wor_prh  -1.1075  1.1933  -1.5801  1.2008  -1.1049  1.2327  -1.1056  1.1483  -1.1150  0.8729   
const  10.0976  0.1480  10.0798  0.1279  10.0988  0.1517  10.0981  0.1435  10.0872  0.1373   

Variance  

Components  HH  Cluster  HH  Cluster  HH  Cluster  HH  Cluster  HH**  Cluster**  

Estimate  level  level  level  level  level  level  level  level  level  level  

 0.25753  0.01871  NA*  0.25753  0.26682  0.02079  0.24498  0.01671  0.25753  0.01871  

 

At the regional level, estimates of the regression coeffi-

cients are generally similar for all the different estimation 

methods, except that the GSR and/or ELL_H methods gen-

erated estimates for a few variables which were significantly 

different from the other methods. Similar to the national 

level estimated standard errors, GSR also tends to be the 

most conservative method for the majority of the regional 

level models - it generated the highest estimated standard 

errors for most of the regression coefficients of the house-

hold characteristics. IWEE has the highest estimated 

standard error for most of the coefficients of the municipal 

means. The ELL_H method produces the lowest standard 

errors for the majority of the regression coefficients of the 

household characteristics and municipal means. The ELL 

method tends to generate the smallest estimated cluster level 

variance with ratios to Pseudo-EBLUP and IWEE ranging 

from around 82% to 100%. The IWEE method still has the 

smallest household level variance.  

Similar to the regional level estimates, the regression 

coefficients’ estimates at the provincial level are similar 

except for some discrepancies from the GSR and ELL_H 

estimates. For the estimated standard errors of the regression 

coefficients, the ELL_H still produces the lowest estimates 

for the majority of the coefficients of the household 

characteristics; however, the GSR method (instead of the 

ELL_H method) now produces the lowest estimated 

standard error for the majority of the municipal means. The 

ELL method still tends to generate the smallest estimated 

cluster level variance for most provinces with the smallest 

ratio to Pseudo-EBLUP about 53% and to IWEE about 

48%. For a number of provinces, IWEE tends to generate 

the smallest estimated cluster level variance. For the 

household level variance, IWEE still generated the smallest 

estimate. Generally, estimates of the cluster level variance 

tend to be more variable at the provincial level which is due 

to smaller sample sizes.  

For small area estimates of poverty, after the regression 

model is applied to census data, estimated standard errors in 

the regression are only one part of the small area estimates’ 

standard errors. There is also variation at the cluster level in 

(7) that needs to be considered (to different degrees 

depending on the level of aggregation used to construct the 

small areas) and there is variation at household level too. 

These additional sources of variation can be assessed via the 

estimated variance components. As shown above, regardless 

of the level (national, regional and provincial) at which the 

model is formulated, the IWEE method generates the 

smallest household level variance, while the ELL method 

generates the smallest cluster level variance. Since the 

cluster level variation usually makes a much larger 

contribution to the estimated standard error at the small area 

level, ELL is again the least conservative. We note that the 

household level variance under the ELL method with 

heteroscedasticity model varies from one unit to another, 

hence, the mean value is reported, and that the estimated 
2R  for the heteroscedasticity model is negligible, 2R =  

0.03 even at the national level, so that in terms of regression 

model fit at least it may offer few advantages for this data 

set. In our experience with applying the ELL method we 

have found that heteroscedasticity modeling is unnecessary.  

Returning to the regression (i.e., the estimates generated 

for ββββ  and the estimated standard error for the different 

techniques), IWEE is the method that best incorporates the 

sampling weights from the computation of the variance 

components necessary for the generation of small area 

estimates and their estimated standard errors. In terms of 

implementation, the GSR method would generally be the 

simplest option as it is available for example in packages 

such as Stata, Sudaan or WesVar. The ELL method 

combines sampling weights and covariance structure in a 

way that is non-standard in that it uses an estimate of 
1

b b
−W V  in (8) and (9) to produce an asymmetric estimated 

covariance matrix for the estimates of ββββ  and for estimating 

ββββ  itself. For estimating ββββ  this would be acceptable if the 

asymmetric matrix were a generalized inverse of the correct 

covariance matrix. It is however clearly not acceptable as an 
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estimated covariance matrix, a problem ELL attempt to 

circumvent (e.g., in the World Bank’s POVMAP software) 

by averaging each of the relevant pairs of off-diagonal 

elements to meet the necessary condition that a covariance 

matrix be symmetric.  

Generally in the ELL method of poverty estimation only 

variables matching in terms of average and standard 

deviation in both survey and census plus census averages 

can be used. This is because, after the regression model has 

been fitted to the survey data, in the second phase it is 

applied to the census data as a predictor at household level, 

i.e., the regression equation (however it has been estimated) 

is used to find predicted values of per capita income or 

expenditure for each census household, generated via  

ˆˆ ˆ ˆbh bh b bhY v e′= + +x ββββ  (25) 

using imputed values of bv  and bhe  (based for example on 

bootstrap sampling from their survey estimates). Here bhx  

are auxiliary variables from the census. Poverty indices are 

typically based on non-linear functions of log-income or 

log-expenditure, so the predictions from (25) are trans-

formed appropriately before averaging over each small area. 

Note that in practice bv  can be estimated for the sampled 

clusters, but the sample and census codes usually do not 

match so these cannot be identified in the census, and it is 

the bootstrap (by selecting from the sampled barangays, i.e., 

PSUs) that provides imputed values for all barangays; a 

parallel comment applies to b̂he  for households within 

clusters. The general benefit of using census data in this way 

(as ELL does) is that the predictor variables can be used for 

all census households (of which there are many) not just 

those in the survey, thereby increasing accuracy of the small 

area estimates (conditional on the model being correct). 

Note that the estimates in (25) remain unbiased even if bv  

and bhe  are not included in the prediction itself, but the 

variance estimate for small area a  needs to be computed 

based on equation (25) so that it incorporates the necessary 

additional variation at cluster and household levels.  

In poverty estimation, we are interested in area-level 

summaries of non-linear functions of ˆ ,bhY  for example, 

whether it is below the poverty line (poverty incidence) and 

poverty gap rather than the regression fitting per se. It is 

instructive here to examine the effects of model uncertainty 

on area mean estimates  

ˆ
aay ′= x ββββ  (26) 

where ax  is the population (i.e., census) mean for area a  of 

the covariates including the constant 1, after the regression 

model has been applied to the census data as in phase 2 of 

ELL. By similarly averaging (7) to get the true mean ,aY  

subtracting from (26), and applying the variance operator, 

we get the prediction error variance equation:  

2 2 2

2
1

1 1
( )

m

a a w a b v ea
ba a

V Y �y
� �=

′− = + σ + σ∑X XΦΦΦΦ  (27) 

where a�  is the population size at a particular level of 

aggregation, b�  is the population size in each cluster, wΦΦΦΦ  is 

the variance-covariance matrix of the regression coefficient 

estimates, and 2 2( , )v eσ σ  are the cluster and household level 

variance components, respectively. Note that estimating this 

prediction error variance requires estimates of the variance 

components, but any bias caused by uncertainty in these 

would be a second order effect (see Prasad and Rao 1990).  

Based on (27), the extent of the influence of the survey 

based regression model and other variance components 

(cluster and household level) on the accuracy of the final 

small area estimates can be compared for any fitting 

technique and/or levels of aggregation. Generally, it is either 

the regression model (via the estimate of the regression 

parameters) or the cluster effect that dominates the 

estimated accuracy of the computed small area estimate. 

Using the national level model in Table 1 and the survey 

data (instead of the census) auxiliary variables to estimate 

the first term in (27), shows that the extent to which the 

regression model effect contributes to small area estimate 

variance increases markedly as household data are more 

aggregated - about 0.25% at the municipal level, 20% at the 

provincial level and 70% at the regional level. In other 

words, the more aggregated the data into larger areas, the 

greater the dominance of the regression model parameter 

uncertainty, regardless of the regression fitting method. This 

is as expected because even at high levels of aggregation, 

the contribution to the overall variance from the model 

effect depends on the average covariate values, not on the 

population size. This is the reason that, at the most 

aggregated regional level, small area techniques usually 

offer little improvement over direct estimates. This is also 

why it is important (as this paper has done) to examine in 

detail the regression fitting procedures applied in small area 

estimation of third world poverty.  

The effect of cluster level variation is different: at lower 

levels of aggregation (e.g., municipality) the computed 

variance of the small area estimates are dominated by the 

cluster component of variance or cluster level effect, i.e., for 

small areas (other than regional estimates) the variance 

component, not the regression model, has the greatest 

impact on the value of the standard error of the small area 

estimates. Consequently, the accuracy of estimates of vari-

ance components especially at cluster level can be crucial to 

accurate estimation of standard error of small area estimates 

at the aggregation level at which they are most useful (for 

example at municipal level in the Philippines). Again, this is 

why the method used for phase 1 fitting for variance 

components as discussed in this paper, are critical to small 

area estimation of poverty.  
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Presented in Tables 4-6 are Kruskal-Wallis (KW) tests 

(Siegel 1956) for the various fitting methods conducted on 

the estimated variances at the municipal (Table 4), provin-

cial (Table 5) and regional (Tables 6) levels. In Table 4 

significant differences exist among the variance estimates 

generated by the various small area techniques, as shown by 

the p-values of the Kruskal-Wallis statistics. Multiple 

comparison of mean ranks shows the Pseudo-EBLUP and 

IWEE methods have variance estimates at cluster level that 

are significantly higher than the other methods, but not 

significantly different from each other (although for the 

IWEE method the Z-value for the difference from average 

rank is in general rather higher than all the others).  

The ELL method and the GSR method generate signify-

cantly lower and similar variance component estimates. This 

is principally because we used the ELL variance compo-

nents estimation technique in generating variance compo-

nents for the GSR method (because GSR does not usually 

estimate variance components), although the residuals we 

used were not identical for the two regression fitting 

methods. As expected, at the municipal level for which 

small area estimates were used in practice, the cluster effect 

(rather than regression coefficient uncertainty) is generally 

the dominant part of the small area variance estimates. Since 

the ELL and GSR methods have similar cluster level 

variance, their corresponding variance estimates at small 

area also tend to be similar. Explicitly, observe from Table 4 

that the ranking of the variance estimates generally 

conforms with the ranking of the cluster effects.  

In poverty estimation, estimates at higher levels of aggre-

gation, such as those in Table 5 and 6, are generally carried 

out for comparison with direct survey estimates at these 

more aggregated levels, even though they are not particu-

larly useful for aid allocation. The results do however, 

support those indicated for lower level of aggregation. In 

Table 5 and Table 6, the estimated variances for the poverty 

estimates generated by the different techniques are not 

significantly different from each other at the provincial and 

regional level, an effect that is partially due to the small 

number of provinces and even smaller number of regions. 

The variances and hence the standard errors may not be 

significantly different from each other, but it is worth noting 

that the GSR method tends to generate the smallest esti-

mated standard error for the regression model and in turn 

the smallest variance estimate for poverty at the regional 

level, even though GSR generates higher standard errors for 

the individual regression coefficients (corresponding to the 

diagonal elements only in the estimated covariance matrix 

of ˆ ).ββββ  As expected, at an even higher level of aggregation 

for all methods, the relative effect of the regression compo-

nent is more pronounced.  

The general conclusion is that, whether fitting survey 

data alone or using survey based regression parameter 

estimates in conjunction with census data, it is crucial not 

only to find a suitable model (i.e., set of regressors) based 

on an adequate sample size, but also to get sound estimates 

of the regression parameters and their standard errors under 

this model as well as good estimates of the variance 

components at all relevant levels of aggregation. Usually the 

relevant levels of aggregation are determined via the survey 

design, rather than simply through the level at which small 

area estimates are sought, although the number of levels 

need not be limited to two (e.g., to cluster-level and 

household-level).  

Survey data, whether used for poverty estimation or in 

other context, also introduces problems involving survey 

weights that can be important not only for regression 

parameter estimation (and their estimated standard errors) 

but also for estimating variance components. Incorporating 

survey weights into regression models with correlated data 

introduces problems because it is the population correlation 

as it applies to the weighted survey data that needs to be 

properly modeled, so that weighting correlation matrices 

using matrix multiplication (as ELL do) is not technically 

adequate (see Appendix).  

For the Philippine data and for the specified list of 

regressors, regardless of which of the four methods are used, 

parameter estimates were very similar, which suggests that 

the more important issue is possible underestimation of 

standard errors of parameter estimates and of variance 

components particularly at cluster level. ELL is the least 

conservative in that it gave the lowest estimates of both 

variance measures, and in this respect (as with its use of 

asymmetric estimated covariance matrices) some caution 

may be warranted with the regression and variance compo-

nent aspects of the ELL technique. GSR gave similar esti-

mates of standard errors for the small area estimates to ELL 

when using the same technique for variance components, 

despite having higher standard errors (and using a sound 

covariance matrix) for regression parameters. This is be-

cause when there is less aggregation, the level at which most 

small area estimates are actually used, variance components 

dominate.  

The Pseudo-EBLUP and IWEE methods incorporate 

survey weights correctly (given a suitable choice of pseudo-

likelihood and hence GEE) and gave larger (i.e., more 

conservative) estimates of cluster level variance components. 

This suggests that these two methods and particularly IWEE 

are among the best of the currently available methods, not 

necessarily for estimating regression equations (where avail-

ability of standard software may give GSR an advantage), 

but for estimating the crucial variance components.  
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Table 4 
Kruskal-Wallis test for estimated variances at the municipal level (4 = 1,243) 
 

SAE  Cluster Effect Beta Effect Variance  

Techniques  Median  Mean Rank  Z  Median  Mean Rank  Z  Median  Mean Rank  Z  

ELL(no hetero)  0.002843  2,961.2(a)  -3.22  0.0002311  3,067.3(ab)  -0.89  0.00318  2,963.4(a)  -3.18  
ELL(w/ hetero)  0.002843  2,961.2(a)  -3.22  0.0002128  2,802.0(c)  -6.72  0.00316  2,930.8(a)  -3.89  

Pseudo-EBLUP  0.003094  3,229.4(b)  2.67  0.0002449  3,257.5(ad)  3.28  0.00346  3,241.3(b)  2.93  

IWEE  0.003294  3,426.9(b)  7.01  0.0002529  3,364.5(d)  5.64  0.00366  3,441.3(b)  7.32  
GSR(Stata)  0.002843  2,961.2(a)  -3.22  0.0002311  3,048.7(b)  -1.3  0.00317  2,963.1(a)  -3.18  

Overall  3,108   3,108   3,108  

KW Statistic H = 69.92 (P = 0.000)  H = 72.19 (P = 0.000)  H = 78.06 (P = 0.000)  

 
Table 5 
Kruskal-Wallis test for estimated variances at the provincial level (4 = 83) 
 

SAE  Cluster Effect Beta Effect Variance  

Techniques  Median  Mean Rank  Z  Median  Mean Rank  Z  Median  Mean Rank  Z  

ELL(no hetero)  0.0002518  200.3  -0.65  0.0001162  207.7  -0.03  0.00039  202.3  -0.48   
ELL(w/ hetero)  0.0002518  200.3  -0.65  0.0001095  190.1  -1.52  0.00038  196.3  -0.99   

Pseudo-EBLUP  0.000274  214.9  0.59  0.0001239  224.2  1.37  0.00042  217.1  0.78   

IWEE  0.0002916  224.2  1.38  0.0001287  234.1  2.22  0.00045  227.8  1.68   
GSR (Stata)  0.0002517  200.3  -0.65  0.00010  184  -2.04  0.00037  196.4  -0.98   

Overall  208   208   208  

KW Statistic   H = 2.82   (P = 0.589)    H = 10.61   (P = 0.031)    H = 4.48   (P = 0.344)  

 
Table 6 

Kruskal-Wallis test for estimated variances at the regional level (4 = 16) 
 

SAE  Cluster Effect Beta Effect Variance  

Techniques  Median Mean Rank Z Median Mean Rank Z Median Mean Rank Z  

ELL(no hetero)  0.000050  38.2  -0.45  0.000077  40.9  0.08  0.00013  39.3  -0.23   

ELL(w/ hetero)  0.000050  38.2  -0.45  0.000073  35.1  -1.05  0.00012  37  -0.67   

Pseudo-EBLUP  0.000055  42.6  0.4  0.000082  46.9  1.23  0.00014  44  0.67   
IWEE  0.000058  45.3  0.93  0.000085  50.1  1.85  0.00015  46.6  1.17   

GSR(Stata)  0.000050  38.2  -0.45  0.000070  29.6  -2.1  0.00013  35.6  -0.94   

Overall   40.5    40.5    40.5   

KW Statistic   H = 1.30 (P = 0.861)    H = 8.36 (P = 0.079)  H = 2.58 (P = 0.630)  

 

Of course, such considerations (while central) need to be 

predicated by adequate data cleaning, sound matching of 

possible regressor variables (in terms of mean, variance, and 

meaning) between survey and census where census data is 

also being used. Also needed are the proper, time con-

suming consideration of a wide range of possible regressor 

variables and recognition of the limits placed on subdividing 

survey data by small sample sizes, since all estimated 

standard errors for both regression parameter and small area 

estimates (whatever method is used for fitting the variance 

component estimate) are conditional on the regression 

model being correct.  

 
8. Conclusion and recommendation  

 
There is a great need for sound poverty statistics in order 

to effectively monitor interventions and assistance to 

various impoverished localities. Small area estimation tech-

niques are one methodology that is being used to provide 

such statistics. In this sense the issues raised in this paper 

concerning the accuracy of the small area estimates are not 

simply an academic issue but are central to the Millennium 

Development Goals and to aid allocation in what is a multi-

billion dollar industry.  

In this paper, we have considered four estimation tech-

niques for fitting regression models using survey data and 

related them to small area poverty estimation. We have 

shown that although differences in estimates are insufficient 

to invalidate the published national studies, the most 

frequently implemented survey data fitting technique, ELL 

with heteroscedasticity, recommended by the World Bank, 

has some limitations since (like its homoscedastic version) it 

lacks sound theoretical underpinning. Replacing the survey 

fitting part of the ELL method is recommended. For the 

other methodologies considered (the Pseudo-EBLUP, IWEE, 

and the GSR method), all have valid theoretical basis 

mathematically and the results generated can be clearly 

interpreted once the assumptions have been checked. The 

different methodologies when applied to complex weighted 

survey data from the Philippines indicate that for variance 

component estimation from survey data and hence for small 

area estimation at a fine level, Pseudo-EBLUP and partic-

ularly IWEE are likely to be better than the GSR or the ELL 

methods, although GSR is sound and easy to use because it 

is available in off-the-shelf software.  
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We have also shown that at the level where small area 

estimation is actually used for aid allocation, the variance 

estimate of the small area tends to be dominated by the 

cluster level variance rather than by the accuracy of the 

regression parameter estimates. Hence, it is particularly 

important that the cluster-level component of variance (and, 

if fitted as recommended, any small area level variance 

component) is properly estimated. It is also important that 

the regression model used in the generation of small area 

estimates (including choice of suitable regressors) is ap-

propriate. Essentially, at lower levels of aggregation it is the 

variance components that dominate the standard error of the 

small area estimates, so that the estimation of the variance 

components is critical whatever the choice of aggregation 

level. Sound survey-based regression method, good choice 

of regression variables, and care with sample size 

(especially if separate regression models are fitted to subsets 

of survey data), also remain central to sound small area 

estimation of third world poverty.  
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Appendix  

 
In footnote 8 of the Elbers et al. (2002) World Bank 

working paper and implicitly in Elbers et al. (2003) in 

Econometrica, the covariance of the error process is denoted 

ΩΩΩΩ  and it is stated that 1 T− =W P PΩΩΩΩ  where W  is ‘a 

weighting matrix of expansion factors’. In the notation of 

Section 4 above, W  is block diagonal with or diagonal with 

diagonal blocks ,bW  and ΩΩΩΩ  is block diagonal with 

diagonal blocks .bV  

However, either W  and ΩΩΩΩ  (or 1)−ΩΩΩΩ  are non-

conformable (with weighting factors in W  at cluster level 

and the observations and hence 1−ΩΩΩΩ  at individual level), or 

if conformable 1−WΩΩΩΩ  is generally asymmetric (even if W 

is diagonal) unless W  is a simple multiple of the identity 

matrix, i.e., 2 .= σW I  

Hence, 1−WΩΩΩΩ  does not equal TP P  as has been claimed 

since TP P  is symmetric in general and 1−WΩΩΩΩ  is not. 

Making 1−WΩΩΩΩ  symmetric by adding it to its transpose and 

dividing by two, as is done in the World Bank PovMap 

software, is not a technically adequate solution to this 

problem. (Note that even in the simple case where W  and 
1−ΩΩΩΩ  are conformable, and W  is diagonal but not all 

diagonal elements are equal, 1−WΩΩΩΩ  is not diagonal because 

it has every element of row i of 1−ΩΩΩΩ  multiplied by iw  

(where iw  is the thi  diagonal element of )W  but the thi  

column does not have every element multiplied by an 

identical weight.)  

Putting this issue of symmetry to one side, and using 
TP P  in place of 1,−WΩΩΩΩ  ELL seem to be claiming that 

comparing their ‘sample survey adjusted weighted GLS 

estimator’ to the ‘unadjusted GLS’ estimator implies that 

instead of using 1−ΩΩΩΩ  as the underlying metric (i.e., the 

inverse of the relevant covariance matrix), a weighted 

version namely 1 T−W WΩΩΩΩ  should be used. This creates no 

asymmetry issue in itself (provided TP P  were used in place 

of 1).−WΩΩΩΩ  However, even if W  were diagonal and TP P  

used, the weight matrix W  cannot use even unequal 

diagonal weights corresponding to the sampled units, i.e., 

iw  say, because the thij  element of 1−ΩΩΩΩ  (unlike the thij  

element of )ΩΩΩΩ  does not correspond to the thi  and thj  unit 

in the sample (or in the population), so it is rather unclear 

what W  is or how W  can be sensibly defined as ‘a 

weighting matrix of expansion factors’.  

This argument still applies when bV  is replaced by its 

estimator ˆ
bV  which uses estimates in place of 2

eσ  and 2.vσ  
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Small area estimation of the number of firms’  
recruits by using multivariate models for count data 

Maria Rosaria Ferrante and Carlo Trivisano 1 

Abstract 

The number of people recruited by firms in Local Labour Market Areas provides an important indicator of the 

reorganisation of the local productive processes. In Italy, this parameter can be estimated using the information collected in 

the Excelsior survey, although it does not provide reliable estimates for the domains of interest. In this paper we propose a 

multivariate small area estimation approach for count data based on the Multivariate Poisson-Log Normal distribution. This 

approach will be used to estimate the number of firm recruits both replacing departing employees and filling new positions. 

In the small area estimation framework, it is customary to assume that sampling variances and covariances are known. 

However, both they and the direct point estimates suffer from instability. Due to the rare nature of the phenomenon we are 

analysing, counts in some domains are equal to zero, and this produces estimates of sampling error covariances equal to 

zero. To account for the extra variability due to the estimated sampling covariance matrix, and to deal with the problem of 

unreasonable estimated variances and covariances in some domains, we propose an “integrated” approach where we jointly 

model the parameters of interest and the sampling error covariance matrices. We suggest a solution based again on the 

Poisson-Log Normal distribution to smooth variances and covariances. The results we obtain are encouraging: the proposed 

small area estimation model shows a better fit when compared to the Multivariate Normal-Normal (MNN) small area 

model, and it allows for a non-negligible increase in efficiency. 
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1. Introduction 

 
The number of people recruited by firms for a certain 

period can be taken as a key indicator of ongoing changes in 

the economic system. To highlight the dynamic of the 

demand for local labour, we consider the number of people 

recruited by firms in Local Labour Market Areas (LLMAs), 

these last grouped according to i) productive specialization, 

ii) firms’ size classes and iii) industrial sector. Domains are 

defined by cross-classifying these three variables. In order to 

emphasise the signals of the reorganisation of the productive 

process, we focus on the numbers of “recruits replacing 

employees leaving the firm (substitute recruits – SR)” and 

“recruits filling new positions (new recruits – NR)”. In Italy, 

information about firms’ recruits is collected by the 

Excelsior Survey co-sponsored by the Union of Italian 

Chambers of Commerce (UNIONCAMERE), the Ministry of 

Labour and the European Union. Unfortunately, this survey 

does not provide reliable estimates of firms’ recruits for 

each of these domains due to small domain sample size. As 

a consequence, a small area estimation (SAE) technique has 

to be adopted in order to obtain estimates with an acceptable 

degree of variability. 

In this paper, we propose a SAE approach for the 

estimation of counts. Due to data constraints, we adopt an 

aggregated area-level model.  

Since we aim at estimating SR and NR, we adopt a 

multivariate SAE model that borrows strength not only from 

areas but also from the correlations between the NR and SR 

true values. In order to estimate the median income of 

different sized groups of families, Fay (1987) proposed a 

multivariate regression model in an Empirical Bayes 

context. Multivariate SAE approaches have also been 

developed by Ghosh, Nangia and Kim (1996) and Datta, 

Fay and Ghosh (1991), Datta, Ghosh, Nangia and Natarajan 

(1996) and Datta, Lahiri, Maiti and Lu (1999) for contin-

uous data in the hierarchical cross-section time series model 

framework. Fabrizi, Ferrante and Pacei (2005, 2008) 

adopted multivariate area level models to estimate a vector 

of continuous poverty parameters. As in the univariate Fay-

Herriot model (Fay and Herriot 1979), all of the papers 

mentioned above assume the use of small area normal 

sampling and linking models.  

Since the sampling correlations between SR and NR esti-

mators are mainly negative, we propose a SAE model based 

on the Multivariate Poisson-Log Normal (MPLN) distribu-

tion. Unlike other multivariate distributions for counts 

proposed in the literature, this particular distribution allows 

for unconstrained (that is, both positive and negative) 

correlations (Aitchison and Ho 1989). 

We also deal with the instability of estimators of sam-

pling error variances and covariances. An approximately 

unbiased estimate of the variance of direct estimators is 
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usually available in SAE. However, in area-level models it 

is customary to assume that the sampling variance is known 

and equal to its estimate (Rao 2003; page 76). This 

assumption is commonly stated and largely accepted in the 

case of large samples, whereas both the variance estimator 

and direct point estimators suffer from instability in the case 

of small samples. As a partial solution, sampling variance 

estimates are often smoothed through the generalized 

variance functions (GVF) approach (Wolter 1985). In You, 

Rao and Gambino (2003), sampling variances and covari-

ances were smoothed over areas and times. In order to 

consider the extra variability associated with the estimated 

sampling variances, Arora and Lahiri (1997) proposed an 

integrated Hierarchical Bayes (HB) smoothing approach for 

continuous data. See You and Chapman (2006), Liu, Lahiri 

and Kalton (2007) and You (2008) for different extensions 

of Arora and Lahiri (1997). 

Due to the rarity of recruits in certain domains, a further 

problem arises that is linked to the instability of sampling 

error variances and covariances estimators. When direct 

estimates of SR or NR (or both) are equal to zero, estimated 

sampling error variances and covariances are also equal to 

zero. Note that observing estimated variances equal to zero 

does not necessarily imply that the estimates have a high 

degree of accuracy. This problem was encountered in 

previous small area estimation problems (e.g., Elazar 2004; 

Chattopadhyay, Lahiri, Larsen and Reimnitz 1999). Chen 

(2001) proposed a unit level hierarchical modeling to handle 

the problem. Moreover, some studies (Cohen 2000) use the 

logarithmic transformation of the mean (or total) direct 

estimates of the count data in order to adopt a linear SAE 

model, simply discarding the estimates equal to zero. 

Although this solution overcomes the “zero variance” 

problem, it also leads to biased estimates and neglects a 

portion of the sample.  

In order to deal with the instability of variances and 

covariances estimators as well as the problem of estimated 

sampling variances equal to zero, we suggest an “inte-

grated” approach in the spirit of that proposed by Arora and 

Lahiri (1997), Liu et al. (2007) and You (2008). Within an 

HB framework, we jointly model the parameters of interest 

and the sampling error covariance matrices by adopting a 

smoothing covariance solution based once again on the 

Poisson-Log Normal distribution. 

The layout of this paper is as follows. The data set 

employed is described in section 2, while section 3 presents 

direct domain estimation and its associated sampling error 

variances and covariances. In section 4, we describe the 

multivariate SAE model we propose for estimating counts 

as well as the solution we suggest for overcoming the 

instability of sampling error variances and covariances 

estimators in the presence of zero counts. Section 5 reports 

the results obtained by measuring the performance of the 

adopted SAE model. Details on the Poisson-Log Normal 

distribution are given in the Appendix. 

 
2. The excelsior survey  

The Excelsior Survey is one of the most complete Italian 

statistical sources for labour demand data, providing esti-

mates of the number of people recruited by Italian firms. 

Each year, a stratified simple random sample of about 

100,000 firms with at least one employee is contacted and 

asked about the number of people it plans to hire in the short 

term. The factors used for stratification are the firm’s 

industrial sector and size class. The allocation of the sample 

in the strata satisfies a constraint on the maximum estimated 

standard error corresponding to a 95% significance level 

(Baldi, Bellisai, Fivizzani and Sorrentino 2007). By focus-

ing on local geographical details, the survey is designed to 

produce reliable estimates for the administrative provinces 

(NUTS3, following the “Nomenclature of Units for 

Territorial Statistics” reported in http://europa.eu.int/comm/ 

eurostat/ramon/nuts). This geographical unit, singled out on 

the basis of administrative criteria, does not appear to be the 

best choice when analysing the dynamics of the local labour 

demand. In order to shed some light on the signals of the 

reorganization of the local productive process, a better 

territorial subdivision would be LLMAs (following the 

OECD definition). LLMAs are groups of municipalities 

sharing the same labour market conditions (for the location 

of LLMAs in Italy, see Sforzi 1991). In Italy, following the 

strategy proposed by Sforzi and Lorenzini (2002) and 

adopted by the Italian Statistical Institute (ISTAT), certain 

LLMAs are labelled “industrial districts” (IDs). IDs are 

geographically defined productive systems characterized by 

a dominant specialization. In the 1990s, these were con-

sidered to be the main stimulus for the growth of the Italian 

economic system (Becattini 1992). 

Estimating the number of substitute and new recruits in 

firms operating within/outside of IDs can help us verify 

whether IDs are still a source of dynamism for the Italian 

economy as a whole. In order to refer to types of ID, we 

group them according to their productive specialization. 

Similarly, LLMAs not labelled as IDs can be classified 

according to their economic vocation (LLMAs can be 

characterized by a specific manufacturing activity, tourist 

area, city, etc.). Moreover, the comparison between ID and 

non-ID firms makes economic sense if the industrial sector 

and size of the firms are also taken into account. Finally, as 

already noted, domains of interest are defined by cross-

classifying: i) groups of LLMAs obtained according to their 

productive specialization, ii) firm’s industrial sector and iii) 

firm’s size. 
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This paper focuses on the manufacturing sector charac-

terising the IDs’ economic activity. The analysis is limited 

to two Italian regions containing a large quantity of IDs, 

namely Tuscany and Emilia-Romagna, and to firms with 

fewer than 100 employees (as censuses are taken for the 

other size classes). The target population consists of 54,089 

firms employing a total of 809,059 people.  

 
3. Direct estimates  

Table 1 provides details of the categories defining the 

208 domains of interest. Note that the number of domains is 

less than that expected due to the absence of a number of 

domains within the population. The domains are unplanned 

since they are formed grouping LLMAs contained in the 

same planned stratum. For the sake of simplicity, in the 

following we avoid using the stratum subscription wherever 

possible. 

Let 1iθ  and 2iθ  be the true number of NR and SR for 

domain ( 1, ..., 208),i i =  respectively. We shall first define 

a direct estimator of ( 1, ..., 208; 1, 2).ij i jθ = =  Let ijly  be 

the response of the thl  unit related to the thj  variable in the 
thi  domain ( 1, ..., ,il n=  where in  is the sample size in 

domain ; 1, ..., 208; 1, 2).i i j= =  As design based (direct) 

estimator we use a ratio domain estimator defined as ˆ ijθ =  

1
ˆ/ ( / ) / ,in

l ijl i i i iy n 
 
 
=∑  where i
  and in  are respec-

tively the population size and the sampling size referred to 

domain ,i  and ˆ / ,i i t i t i
 n n 
∋ ∋=  where t i
 ∋  and t in ∋  are 

respectively the population size and the sampling size of the 

stratum t  containing the domain i  (Särndal, Swensson and 

Wretman 1992; page 391). 

Since we are estimating the number of occurrences of 

rare events, in 50 of the 208 domains, direct estimates of NR 

and/or of SR are equal to zero, that is, 1
ˆ 0iθ =  and/or 

2
ˆ 0.iθ =  Zero point estimates imply that 1

ˆˆ ( ) 0iV θ =  and/or 

2
ˆˆ ( ) 0,iV θ =  where 1

ˆˆ( )iV θ  and 2
ˆˆ ( )iV θ  are the standard 

design-based variance estimates of 1
ˆ

iθ  and 2
ˆ ,iθ  respec-

tively. This result gives a false impression of high accuracy, 

whereas the exact opposite is more likely to be true in a 

small area context. Moreover, design based estimates of NR 

and/or of SR equals to zero produce 1 2
ˆ ˆ ˆCOV( , ) 0,i iθ θ =  

where 1 2
ˆ ˆ ˆCOV( , ) 0i iθ θ =  denotes the standard design-based 

estimate of the design-based covariance between 1
ˆ

iθ  and 

2
ˆ .iθ  As a result, covariances also need to be smoothed in a 

multivariate SAE model. 

We hereafter refer to the set of the 50 small areas having 

one or both zero estimated variances and zero covariances 

as the “Zero Count” (ZC) set. The complementary set of 

158 domains, where 1
ˆˆ ( ) 0iV θ >  and 2

ˆˆ ( ) 0,iV θ >  is named 

the “Non Zero Count” (NZC) set.  

Considering the data generating process and the nature of 

the outcome variables, we expect mainly negative correla-

tions between 1iθ  and 2.iθ  Briefly, we need a suitable 

distribution for both smoothing covariance matrices and 

modeling small area parameters that allows for an un-

restricted covariance matrix, that is, for both positive and 

negative correlations. 

 

 

 

 
Table 1 

Variables defining domains of interest 
 

LLMAs grouped by productive specialization Firm size (b) Industrial sector(a) 

Industrial district(a,c)  1-9  1 Food, beverages and tobacco 

Food, beverages and tobacco 10-49  2 Textiles and clothing  

Textiles and clothing  50-99 3 Paper products, printing and publishing 

Paper products, printing and publishing ≥  100 4 Machinery 

Machinery  5 Chemicals and basic metals 
Jewellery, musical instruments, games, etc.  6 Leather and footwear 

Leather and footwear  7 Wood, furniture and household equipment 

Wood, furniture and household equipment  8 Jewellery, musical instruments, games, etc. 

LLMAs not defined as district (c)  9 Builders, contractors 

Non-specialised manufacturing   10 Other manufacturing 

Non-specialized, excluding manufacturing   

Tourist   

Cities   

(a) As defined by the 2-digit ATECO 91-ISIC 3 level classification and by Sforzi (1991). 
(b) Defined according to the number of employees. 
(c) Defined in accordance with Istat (1997). 
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4. An integrated multivariate small  

 area model for count data 
 

Multivariate count data can have a non-trivial correlation 

structure. In general, the modeling of this structure signif-

icantly affects the estimators’ efficiency and the computa-

tion of correct standard errors. A number of multivariate 

models for count data have been proposed in the literature, 

such as the Multivariate Poisson, Multivariate Negative 

Binomial and Multivariate Poisson-Gamma Mixture models 

(for a review of such models, see Winkelmann 2003). Un-

fortunately, these distributions are not suitable for modeling 

our data since they are based on the hypothesis that correla-

tion is the result of an individual factor that does not vary 

across outcomes, thus implying a covariance structure re-

stricted to non-negative correlations. In the bivariate case, a 

more flexible covariance structure is provided by the Latent 

Poisson Normal distribution (van Ophem 1999); however, 

any extensions to higher dimensional multivariate data ap-

pear impractical.  

Aitchison and Ho (1989) proposed a d-variate distri-

bution that allows for an unrestricted covariance structure, 

the Multivariate Poisson-Log Normal distribution (MPLN). 

No closed form exists for this distribution, but it can be 

represented as a simple mixture allowing for parameter 

estimation in an MCMC approach (Chib and Winkelmann 

2001). Details of the MPLN distribution are provided in the 

Appendix. 
 
4.1 Smoothing sampling covariance matrices  

As previously mentioned, the instability of standard 

errors in SAE is usually dealt with using a GVF approach. 

In this section, we present a GVF model with a regression 

function inspired by the MPLN distribution. 

Let 1 2[ , ]il i l i ly y ′=y  be the vector of the two outcome 

variables referring to the thl  unit in the thi  domain. Let 

,il i i| ⊥y λ Σ ,il i i′ |y λ Σ  and 2| , ~ PLN ( , ),il i i i iy λ Σ λ Σ  

,i∀ .l∀  Under these hypotheses, the moments leading up to 

the second order can be expressed as follows: 

,

2

,

1 2 ,

( | , ) exp( /2)

( | , ) [exp( ) 1]

COV( , | , ) [exp( ) 1],

ijl i i ij i jj ij

ijl i i ij ij i jj

ijl ihl i i i i i jh

E y

V y

y y j h

= λ + σ = ζ

= ζ + ζ σ −

= ζ ζ σ − ≠

λ Σ

λ Σ

λ Σ

 

where ,i jhσ  denotes the ( , ), , 1, 2,j h j h =  element of .iΣ  

To deal with the problem of smoothing covariance 

matrices, Otto and Bell (1995), suggested an approach based 

on a Wishart distributional assumption; specifically, they 

used smoothed estimates in a small area Normal-Normal 

model. In the same spirit, we propose a Bayesian approach 

using the following GVF strategy. Under simple random 

sampling, let us assume that the sampling covariance matrix 

in domain ,i iC  follows a Wishart distribution with 1in −  

degrees of freedom: 

2| , ~ ( 1, )i i i i in W n −C Γ Γ  

where ( | , ),i i i iE n=Γ C Γ 1,2,...,158,i=  and elements ( , )j h  

of iC  are defined as 1
1, ( ) ( ),in

ii jh i ijl ij ijh ihC n y y y y−
=∑= − −  

where 1
1 .in

iij i ijly n y−
=∑=  

If ijζ  parameters are known, then ( | , )i i iE nC Γ  only 

depends on elements of the iΣ  matrix. We propose to 

estimate ijζ  using the design based estimator 1ˆ ˆ .ij i ij
 −ζ = θ  

Thus, we can express each element of the iΓ  matrix as a 

function of estimates ˆ ijζ  and of the elements of the iΣ  

matrix: 
2

,11 1 1 ,11

2

,22 2 2 ,22

,12 1 2 ,12

ˆ ˆ (exp( ) 1)

ˆ ˆ (exp( ) 1)

ˆ ˆ (exp( ) 1)

i i i i

i i i i

i i i i

Γ = ζ + ζ σ −

Γ = ζ + ζ σ −

Γ = ζ ζ σ −

 

where ,11 11 ,i i
′σ = σ Z ,22 22 ,i i

′σ = σ Z ,12 12 ,i i
′σ = σ Z  being iZ  

is a 3 1×  vector of dummy variables identifying the firm’s 

size class in the domain i, and 

1,11 1,22 1,12

11 2,11 22 2,22 12 2,12

3,11 3,22 3,12

, ,

     σ σ σ
     

= σ = σ = σ     
     σ σ σ     

σ σ σ  

that is, we assume that parameters iΣ  are equal for domains 

belonging to the same firm size class.  

We estimate 11 22 12, ,σ σ σ  parameters on NZC data. Since 

we are following a Bayesian approach, prior specifications 

for ,k jjσ  and ,12kσ 1, 2, 3k =  are needed. We use the 

following prior specifications: 1 2
,11 ~ ,k U +σ 1 2

,22 ~ ,k U +σ  

~ ( 1,1),k Uρ −  where 1 2
,12 ,11 ,22( )k k k kσ = ρ σ σ  and U +  

denotes a uniform distribution over a subset of R+  with a 

large but finite length. In section 4.3, we show how these 

estimates can be used to integrate the SAE model with a 

model for sampling error covariance matrices.  
 
4.2 A Multivariate 0ormal-Poisson-Log 0ormal 

small area model  
In this section, we propose a multivariate SAE model 

based on the MPLN distribution in order to jointly estimate 

SR and NR using the NZC set. 

Let 1 2( , )T

i i i= θ θθ  be the vector of the two parameters of 

interest for the thi  domain in the set of NZC data 

( 1, ..., 158),i =  and let ˆ iθ  be the corresponding vector of 

direct estimates. The SAE model consists of two separate 

models. The first model is a sampling model: 

2
ˆ ~ ind ( ),     1, ..., 158.i i i i
 i| | =θ θ θ Ψ  (1) 
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As in Lahiri and Rao (1995), we justify the normality 

assumption in (1) using the central limit argument. It is 

standard practice to assume that sampling error covariance 

matrices iΨ  are known, and a GVF method is generally 

used to estimate .iΨ  Here, as a smoothed estimation of iΨ  

we adopt ˆ ( , ) ,i i i i iE n K= |Ψ Γ C  where ( / 1).i i t i t iK 
 
 n∋ ∋= −  

From this point on we will refer to ˆ
iΨ  as Smoothed 

Sampling Error Covariance matrix (SMSEC). 

The second component of the SAE model is a linking 

model that relates iθ  to area specific auxiliary data: 

2~ ind PLN ( , ), 1, ...,158,i i iν =θ η Σ  

where (2) 

i i i ix= + +η α γZ βZ  

iZ  is a 3 1×  vector of dummy variables identifying the 

firm’s size class in the domain i and *log ( ),i ix x=  where 
*

ix  is the number of employees in the domain .i  

At the end, νΣ  is the covariance matrix related to the 

area-specific random effects: 

,11 ,12

,21 ,22

ν ν
ν

ν ν

 σ σ
=   σ σ 

Σ  

and  

12 13 11 12 131

22 23 21 22 232

0
, , .

0

γ γ β β βα     
= = =     γ γ β β βα     

α γ β  

From here on, we refer to this small area model as 

“Multivariate Normal-Poisson-Log Normal” (MNPLN). 

We adopt a fully hierarchical Bayesian approach. In this 

framework, relatively complex (e.g., multivariate) models 

can be implemented easily; in addition, posterior 

distributions can be approximated using MCMC algorithms. 

Computing small area multivariate estimates, and estimates 

of their MSE in particular, can be difficult within a 

frequentist approach. The specification of priors for the 

described model is as follows: 

1

2 2

2

1

2 2

2

1

2 2

2

1

2

1 1

2 2

~ ( , ),

~ ( , ) 2,3,

~ ( , ) 1, 2, 3,

~ ( , ),

,

k

k

k

k

k

k

k k

k k


 a


 g k


 b k

W s

′
′

′

−
ν

′

′

α 
 α 

γ 
′ = γ 

β 
= β 

γ β   
⊥   γ β   

0 I

0 I

0 I

Σ I

 

where s = 3 and , ,k ka g b′  are large compared with the 

scale of the data. This is to reflect the lack of prior 

information about model parameters, thus defining diffuse 

but proper specification of priors. The posterior means 
HBˆ ˆ ˆ( | , )i i i iE=θ θ θ Ψ  are taken as estimators of the area 

parameters, while the posterior variance ˆ ˆ( | , )i i iV θ θ Ψ  is 

used as a measure of uncertainty. 

For the sake of comparison, we take the standard 

Multivariate Normal-Normal (MNN) model as a bench-

mark, where the sampling model is defined as in (1) and the 

linking model is defined as follows:  

* *

2~ ind ( , ),i i
 νθ µ Σ  (3) 

where * * * * *.i i i ix= + +µ α γ Z β Z  Parameters *,α *,γ *β  and 

their prior distributions are defined as ,α γ  and β  in the 

previous model. 
 
4.3 An integrated M0PL0 small area model  

In order to account for the extra variability due to the 

estimated covariance matrices of sampling errors, as well as 

to overcome the zero variances and covariances problem, 

we suggest a solution in the spirit of that proposed by Arora 

and Lahiri (1997), Liu et al. (2007) and You (2008). We 

integrate the model for sampling error covariance matrices 

of section 4.1 into SAE models (1) and (2). Thus, we here 

refer to the whole set of 208 domains. 

In this context, the small area sampling model is 

formulated as usual, that is, *

2
ˆ ~ ind ( , ),i i i i
|θ θ θ Ψ i =  

1, ..., 208.  Under the hypotheses regarding ily  formulated 

in section 4.1, assuming that the iΣ s are known and 

assuming that ,ij i ij
θ = ζ  the elements of the sampling 

error covariance matrix *

iΨ  can be expressed as follows: 

 * 2 2
,

ˆ[ / / (exp( ) 1)]i jj i ij i ij i jj iK 
 
 ′Ψ = θ + θ −σ Z  (4) 

* 2
,12 1 2 12

ˆ[ (exp( ) 1)]i i i i i iK 
 − ′Ψ = θ θ −σ Z  (5) 

where ˆ 1, 2jj j′ =σ  and 12
ˆ ′σ  are posterior means of 

parameters jjσ  and 12,σ  respectively, computed using the 

model of section 4.1. 

Since the sampling error covariance matrices are 

expressed as a function of the iθ  parameters, here they can 

be considered Model Based Sampling Error Covariances 

(MBSEC). The posterior means HBˆ ˆ( | )i i iE=θ θ θ  are taken 

as estimators of s,i
′θ  while the posterior variance ˆ( | )i iV θ θ  

is used as a measure of uncertainty. 

We note that the MNN model cannot be implemented 

following the integrated approach described above. In fact, 

(3) does not ensure the positivity of iθ  nor of the diagonal 

elements of iΨ  as a result. 
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5. Data analysis 
 

In section 5.1, we compare the MNPLN model with the 

benchmark MNN model and their univariate counterparts. 

We assume SMSEC for both models; we thus refer to the 

two strategies as MNPLN-SMSEC and MNN-SMSEC from 

here on. Since these models do not allow us to deal with the 

zero count problem, we refer this analysis to the NZC set. In 

section 5.2, we compare the SAE integrated strategy based 

on the MNPLN model and MBSEC (MNPLN-MBSEC), 

which we presented in Section 4.3, with the strategy based 

on the MNPLN-SMSEC. We limit the analysis to the NZC 

set in order to evaluate the two strategies under the same 

conditions. Finally, in section 5.3 we evaluate the overall 

performance of the proposed SAE model MNPLN-MBSEC 

for the whole data set (NZC+ZC).  

Posterior distributions of parameters were obtained for all 

models, using Monte Carlo integration via the Gibbs sam-

pling algorithm. We used the MCMC software WinBUGS 

(Spiegelhalter, Thomas, Best and Gilks 1995) to run three 

parallel chains (each with 25,000 runs), the starting point 

being drawn from an over-dispersed distribution. WinBUGS 

codes are available at the URL http://www2.stat.unibo.it/ 

trivisano/. The convergence of the Gibbs sampler was 

monitored by visual inspection of the chains’ plots and of 

autocorrelation diagrams, and by means of the potential 

scale reduction factor proposed by Gelman and Rubin 

(1992). Although all models displayed fast convergence, we 

discarded the first 5,000 iterations from each chain. In 

multivariate models, the fairly strong autocorrelation of 

chains is reduced by thinning the chain (1 out of every 3 

values has been considered for posterior summaries). See 

Rao (2003, pages 228-232) for details. 

The performances of the small area models discussed in 

sections 4.2 and 4.3 are compared using various measures. 

In order to choose among competing models, we computed 

the Deviance Information Criterion (DIC). The DIC is a 

model selection criterion according to which a model’s 

performance is evaluated as the sum of a measure of fit (the 

posterior mean of the deviance )D  and a measure of 

complexity obtained as the difference between D  and the 

deviance evaluated at the parameters’ posterior mean. In this 

way, a model is preferred if it displays a lower DIC value 

(Spiegelhalter, Best, Carlin and Van der Linde 2002). 

In order to verify the strength of the multivariate ap-

proach to SAE, we use as a benchmark the univariate 

versions of models discussed in sections 4.2 and 4.3, 

defined as follows. For all models, we set ,12 0νσ =  in ,νΣ  

and we assume ,11 ,22,ν νσ ⊥ σ 1/ 2
, ~ (0, ),jj U U +
νσ 1, 2.j =  

For SMSEC models, we set ˆdiag ( ),i i=Ψ Ψ  while for 

MBSEC models we set 1,12 0σ =  in (5). In addition, a new 

set of estimates for parameters 11σ  and 22σ  is obtained by 

setting 0kρ =  in the model of section 4.1. 

Table 2 reports the DIC results for the whole set of small 

area models. 

 
Table 2 

Model comparison using DIC statistic 
 

Model Data set DIC 

MNN-SMSEC NZC 2,742.2 

(univariate version) NZC 2,745.4 

   

MNPLN-SMSEC NZC 2,656.9 

(univariate version) NZC 2,661.0 

   

MNPLN-MBSEC NZC 2,623.6 

(univariate version) NZC 2,638.1 

   

MNPLN-MBSEC NZC+ZC 3,202.7 

(univariate version) NZC+ZC 3,214.3 

 
All the multivariate models considered perform better in 

terms of DIC than their univariate counterparts (Table 2). In 

addition, for all multivariate models we find that posterior 

credibility intervals of ,12 ,11 ,22/ν ν ν νρ = σ σ σ  do not contain 

zero. We thus focus on multivariate models in the following 

paragraphs. 

We checked the adequacy of the specified multivariate 

models using posterior predictive checks. Simulated values 

of a suitable discrepancy measure are generated from the 

posterior predictive distribution and are then compared with 

the values of the same measure computed from observed 

data. Let obsθ̂  and newθ̂  denote the observed and generated 

data, respectively. The posterior predictive p-value is de-

fined as new obs obs
ˆ ˆ ˆ{ ( , ) ( , ) }.p P d d= > |θ θ θ θ θ  We consider 

a discrepancy measure proposed in Datta et al. (1999), 

which is defined as 

1

1

ˆ ˆ ˆ( , ) ( ) ( ).



i i i i

i

d −

=

′= − −∑θ θ θ θ Ψ θ θ  (6) 

Computing the p-value is straightforward using the 

MCMC output. Extreme values of the probability p indicate 

a given model’s lack of fit. Following Rao (2003, page 245-

246) and You and Rao (2002), we computed two statistics 

that are useful in order to assess model fit at the individual 

domain level. The first statistic, *
, new , obs obs

ˆ ˆ ˆ( ),ij ij ijp P= θ <θ |θ  

provides information about the degree of consistent over-

estimation or underestimation of , obs
ˆ .ijθ  

The second statistics is defined as 

*

obs , obs obs
ˆ ˆ ˆ ˆ ˆ[ ( ) ] ( ),ij ij ij ijd E V= θ | − θ θ |θ θ  
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where expectation and variance are under the posterior 

predictive distribution. Table 3 summarizes results relative 

to p, *
ijp  and *.ijd  

To further check the consistency of the data, we cal-

culated direct and model-based estimates of ,A sj sθ =  
1, ..., 10,  that is, the total number of NR and SR for the ten 

domains identified by classifying firms only according to 

the industrial sector. Let 1isw =  if the number of recruits in 

the domain i  refers to the industrial sector s  and 0;isw =  

otherwise, then  

.A sj ij is

i

wθ = θ∑  (7) 

At this level of aggregation, direct estimates can be 

considered accurate. Consequently, given two sets of 

model-based estimates referring to these large domains, we 

prefer the one that agrees with the direct estimates. Domains 

identified by industrial sectors are planned in the Excelsior 

Survey; each industrial sector is stratified according to firm 

size. Therefore, direct estimates ˆ
A sjθ  for each industrial 

sector are calculated using the standard Horwitz-Thompson 

estimator. Aggregated model-based estimates are computed 

based on the MCMC output. For models referring to NZC 

data, we aggregated following (7) at each MCMC step 

, 1, ..., ,t t T=  with samples *t
ijθ  and **t

ijθ  generated respect-

tively from the posterior distribution of ijθ  for domains 

belonging to the NZC set and from the predictive distri-

bution of ijθ  for domains belonging to the ZC set. The HB 

estimator is defined as HB 1 *
1

ˆ ( tT
t i 
ZCA sj ij isT w−
= ∈∑ ∑θ = θ +  

** ).t
i ZC ij isw∈∑ θ  Otherwise, for the model on NZC+ZC data, 

we aggregated following (7) MCMC samples from the 

posterior distributions of  .ijθ  In this case, the HB estimator 

is defined as HB 1 *
1

ˆ ( ).tT
t i 
ZCA sj ij isT w−
= ∈∑ ∑θ = θ  Table 4 reports 

summaries  of  ˆ
A sjθ   and  HBˆ .A sjθ  

For all the multivariate models, we examined the follow-

ing variants of the prior distributions: independent non-

informative flat prior distributions were used for the 

elements of vectors * * * 1 2
,, , , , , and ; ~ ,jj U +
νσα β γ α β γ j =  

1, 2, ~ ( 1,1),Uνρ − 1 2
,12 ,12 ,12( ) .ν ν ν νσ = ρ σ σ  We do the 

same for the elements of matrix *
Σ  in the MNN model. We 

did not find any relevant changes in the posterior distribu-

tions of parameters of interest. 

 
5.1 Comparing the M0PL0-SMSEC and M00-

SMSEC models on the 0ZC set 
 

We find that the MNPLN-SMSEC model largely out-

performs the MNN-SMSEC one in terms of DIC (Table 2). 

This last model shows a lack of fit as it displays a p-value 

equal to 0.034 (Table 3), whereas a value of 0.65 suggests 

the adequacy of the MNPLN-SMSEC model. This finding 

is confirmed when *
ijp  and *

ijd  measures (Table 3) for the 

two models are compared. For the MNN-SMSEC model, 
*
ijp  ranges over domains from 0.000 to 0.995 for NR 

( 1)j =  and from 0.003 to 0.993 for SR ( 2),j =  respec-

tively, indicating overestimation and underestimation in 

some domains. In addition, summaries of the standardized 

residuals *
ijd  indicate that there are predicted values outside 

two standard deviations of the corresponding observed 

values. The same measures for the MNPLN-SMSEC model 

indicate an adequate fit. 

We also find that the MNPLN-SMSEC model out-

performs the MNN-SMSEC models when performances are 

evaluated with reference to estimates for large domains 

(Table 4). In fact, credibility intervals for the MNN-SMSEC 

only cover 2 aggregated direct estimates for NR and 4 for 

SR, while credibility intervals under the MNPLN-SMSEC 

cover 6 aggregated direct estimates for NR and 6 for SR. 

 

 

 
Table 3 
Posterior predictive checks; summaries of 

*
ijp  and 

*
ijd  calculated with respect to i 

 

Model Data set p   
*
1ip  

*
2ip  

*
1id  

*
2id  

   min 0.000 0.003 -3.764 -2.867 
MNN-SMSEC NZC 0.034 median 0.591 0.616 0.257 0.295 
   max 0.995 0.993 2.656 -2.515 

           min 0.154 0.129 -0.965 -1.165 
MNPLN-SMSEC NZC 0.65 median 0.535 0.561 0.124 0.149 
   max 0.891 0.912 1.216 1.286 

           min 0.090 0.134 -1.085 -0.983 
MNPLN-MBSEC NZC 0.78 median 0.515 0.519 -0.084 -0.085 
   max 0.916 0.914 1.401 1.787 

           min 0.072 0.111 -1.164 -0.945 
MNPLN-MBSEC NZC+ZC 0.79 median 0.506 0.523 -0.076 -0.094 
      max 0.903 0.913 1.301 1.778 
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Table 4 
Direct and HB estimates for industrial sectors; in italic HB estimates whose credibility intervals cover direct estimates 
 

 Direct estimates HB estimates 

   

M00-SMSEC  

(0ZC) 

M0PL0-SMSEC  

(0ZC) 

M0PL0-MBSEC  

(0ZC) 

M0PL0-MBSEC 

(0ZC+ZC) 

s 
1

ˆ
A sθ  1

ˆse( )A sθ  
HB
1

ˆ
A sθ  

95%  

cred int. 

HB
1

ˆ
A sθ  

95%  

cred int. 
 

HB
1

ˆ
A sθ  

95%  

cred int. 

HB
1

ˆ
A sθ  

95%  

cred int. 

1 1,702.0 41.3 1,077.0 964.3 1,201.0 1,266.0 1,055.0 1,509.0 1,649.0 1,434.0 1,906.0 1,630.0 1,406.0 1,899.0 

2 1,758.8 41.9 1,936.0 1,793.0 2,091.0 1,720.0 1,441.0 2,011.0 1,975.0 1,665.0 2,347.0 1,908.0 1,598.0 2,291.0 

3 725.0 26.9 557.8 460.6 662.7 534.6 435.8 642.3 696.6 573.3 842.3 682.8 575.5 811.8 

4 373.9 19.3 202.7 123.0 294.8 192.1 129.1 277.0 370.0 291.1 471.4 319.8 252.1 408.3 

5 142.4 11.9 158.2 66.5 258.2 146.0 98.4 205.7 235.6 164.3 326.9 149.7 108.3 205.0 

6 5,624.1 75.0 4,134.0 3,800.0 4,484.0 5,235.0 4,814.0 5,670.0 5,537.0 5,136.0 5,963.0 5,594.0 5,187.0 6,029.0 

7 887.7 29.8 659.9 549.1 783.7 629.6 526.4 743.4 872.7 761.7 1,003.0 844.6 732.3 980.3 

8 223.9 15.0 263.3 188.2 340.6 260.6 182.8 351.3 362.0 262.8 494.1 288.7 203.1 410.8 

9 661.5 25.7 893.7 790.3 999.4 777.6 624.7 948.7 931.0 754.8 1,150.0 803.3 638.7 1,017.0 

10 1,792.6 42.3 1,460.0 1,334.0 1,598.0 1,579.0 1,381.0 1,798.0 1,847.0 1,650.0 2,074.0 1,813.0 1,610.0 2,053.0 

 2
ˆ

A sθ  2
ˆse( )A sθ   

HB
2

ˆ
A sθ  

95%  

cred int. 

HB
2

ˆ
A sθ  

95%  

cred int. 

HB
2

ˆ
A sθ  

95%  

cred int. 

HB
2

ˆ
A sθ  

95%  

cred int. 

1 942.7 300.2 482.0 428.5 531.3 503.7 413.3 600.4 832.6 706.4 987.6 817.8 686.0 980.0 

2 920.0 135.7 883.9 798.7 967.4 849.8 694.8 1,022.0 949.8 778.9 1,161.0 922.3 747.6 1,167.0 

3 253.2 35.6 249.2 209.2 292.1 254.1 202.1 309.9 338.8 269.2 423.1 284.7 226.2 354.5 

4 150.5 36.0 84.4 53.3 120.4 84.7 56.8 119.2 160.6 116.7 218.0 131.5 97.0 179.6 

5 39.8 16.6 66.7 31.2 104.2 62.0 37.3 89.3 116.3 74.3 173.0 60.9 38.4 90.5 

6 2,304.0 131.5 1,869.0 1,692.0 2,054.0 2,070.0 1,856.0 2,282.0 2,273.0 2,060.0 2,508.0 2,297.0 2,079.0 2,542.0 

7 532.7 105.8 293.0 247.7 345.6 299.0 245.9 357.2 471.5 402.8 553.2 443.3 377.2 538.3 

8 80.8 32.3 115.7 85.7 143.5 100.5 67.7 140.3 139.5 76.7 210.4 98.0 58.5 156.9 

9 362.7 66.3 407.0 358.6 453.0 361.0 285.8 438.8 432.1 335.4 552.9 360.4 274.7 476.2 

10 856.3 70.7 661.1 598.1 722.6 714.4 614.0 824.7 855.4 740.5 984.6 832.7 719.8 964.5 

 

 

 

 

 

5.2 Comparing the M0PL0-SMSEC and M0PL0-

MBSEC models on the 0ZC set 
 

Values of p, *
ijp  and *

ijd  are approximately comparable 

for the MNPLN-SMSEC and MNPLN-MBSEC models 

(Table 3). Likewise, model-based estimates produced by 

MNPLN-SMSEC assume values very close to those 

obtained using MNPLN-MBSEC; in fact, the correlation 

between the posterior means of 1iθ  under the two models is 

equal to 0.98, while the same measure referring to 2iθ  is 

equal to 0.94. The same results arise for the correlation 

between posterior standard errors, which are 0.92 and 0.94, 

respectively. Performances of the MNPLN-MBSEC model 

in terms of agreement with direct estimates of large domains 

(Table 4) are slightly better than those of the MNPLN-

SMSEC model: respectively, 7 direct estimates of 
R and 8 

of SR are covered by the credibility interval calculated 

under this model. 

Given these results, we conclude that the fit of the 

MNPLN-MBSEC model is adequate.  
 

5.3 Evaluating the performances of M0PL0-

MBSEC models on the 0ZC+ZC set  
We observe that the performances of the MNPLN-

MBSEC model on the whole dataset in terms of *, ijp p  and 
*
ijd  measures are satisfactory and comparable with those of 

the same model on the NZC data set (Table 3). Obviously, 

DIC values for the two models cannot be compared as the 

two models are estimated on different data sets. 

As can be seen in Table 4, all the credibility intervals 

calculated using this model cover direct estimates referring 

to large domains; in other words, the agreement of HB 

estimates with direct estimates is very satisfactory. This 

result can be explained by noting that zero counts are more 

probable in small domains, which are characterized by a 

small number of employees (the covariate in all models). 

Therefore, estimating models on NZC data can lead to 

biased estimates of parameter .β  We conclude that inte-

grating a sampling covariance model into the MNPLN small 

area model leads to an appreciable increase in the reliability 
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of small area estimates. To describe the efficiency gain of 

the HB estimates, we computed on the NZC set the average 

percent CV reduction (You 2008), defined as the average of 

the difference of the direct CV and HB CV (the ratio of the 

square root of the posterior variance and the posterior mean) 

relative to direct CV. The average CV reduction is 23.1% 

for NR and 29.1% for SR. 
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Appendix 

 
The Multivariate Poisson-Log 0ormal distribution  

Let 1 2( , , ..., , ..., )j dy y y y=y  be a d-dimensional vector 

of counts, and suppose that ~ Po( ),j j jy | τ τ  with 

( ).j j j jy y j j′ ′ ′|τ ⊥ | τ ≠  Let the vector of parameters 

1 2( , , ..., ,..., )j d= τ τ τ ττ  follow a multivariate Log 

Normal, that is, | , ~ LN ( , ),dτ λ Σ λ Σ  where (log )E=λ τ  

and COV(log ).=Σ τ  Then the marginal distribution of y  

is a Multivariate Poisson-Log Normal (MPLN) distribution, 

which is a log normal mixture of d independent Po( ),jτ  

that is, | , ~ PLN ( , ).dy λ Σ λ Σ  By denoting the 

( , ), , 1, 2, ...,j h j h d=  element of Σ  as ,jhσ  marginal 

moments can be obtained easily through conditional 

expectation results and the standard properties of the 

Poisson and Log Normal distributions: 

2

( | , ) exp( / 2)

( | , ) exp( ) 1

COV( , | , ) [exp( ) 1], .

j j jj j

j j j jj

j h j h jh

E y

V y

y y j h

= λ +σ = ζ

 = ζ + ζ σ − 

= ζ ζ σ − ≠

λ Σ

λ Σ

λ Σ

 

Note that the MPLN model allows for overdispersion 

provided that 0,jjσ >  thus leading to ( | , )jV y >λ Σ  

( | , ).jE y λ Σ  Moreover, the correlation structure of counts 

is unrestricted, since COV( , | , )j hy y λ Σ  can be either 

positive or negative depending on the sign of .jhσ  Aitchison 

and Ho (1989), as well as Good and Pirog-Good (1989), 

studied a bivariate MPLN distribution, albeit exclusively in 

cases without covariates. However, the same model can 

easily be extended to take covariates into consideration 

(Chib and Winkelmann 2001). 

 

References  
Aitchison, J., and Ho, C.H. (1989). The multivariate Poisson-log 

normal distribution. Biometrika, 76, 643-653. 
 
Arora, V., and Lahiri, P. (1997). On the superiority of the Bayesian 

method over the BLUP in small area estimation problems. 
Statistica Sinica, 7, 1053-1063. 

 
Baldi, C., Bellisai, D., Fivizzani, S. and Sorrentino, M. (2007). 

Production of job vacancy statistics: Coverage. Contributi Istat, 
Istituto Nazionale di Statistica. 

 
Becattini, G. (1992). The Marshallian industrial district as a socio-

economic notion. In Industrial Districts and International Co-
operation in Italy, (Eds., F. Pyke, G. Becattini and 
W. Sengenberger). Internation Labor Office, Geneva. 

 

Chattopadhyay, M., Lahiri, P., Larsen, M. and Reimnitz, J. (1999). 
Composite estimation of drug prevalence for sub-state areas. 
Survey Methodology, 25, 81-86. 

 
Chen, S. (2001). Empirical best prediction and hierarchical Bayes 

methods in small area estimation. Ph.D. Dissertation, Department 
of Mathematics and Statistics, University of Nebraska, Lincoln. 

 
Chib, S., and Winkelmann, R. (2001). Markov chain Monte Carlo 

analysis of correlated count data. Journal of Business & Economic 
Statistics, 19, 428-435. 

 
Cohen, M.L. (2000). Evaluation of Census Bureau’s small-area 

poverty estimates. Proceedings of the Survey Research Methods 
Section, American Statistical Association, 62-68. 

 
Datta, G.S., Fay, R.E. and Ghosh, M. (1991). Hierarchical and 

empirical Bayes multivariate analysis in small area estimation. 
Proceedings of Bureau of the Census 1991 Annual Research 
Conference, U. S. Bureau of the Census, Washington, DC, 63-79. 

 
Datta, G.S., Ghosh, M., Nangia, N. and Natarajan, K. (1996). 

Estimation of median income of four-person families: A Bayesian 
approach. In Bayesian Analysis in Statistics and Econometrics, 
(Eds., D.A. Berry, K.M. Chaloner and J.M. Geweke). New York: 
John Wiley & Sons, Inc., 129-140. 

 
Datta, G.S., Lahiri, P., Maiti, T. and Lu, K.L. (1999). Hierarchical 

Bayes estimation of unemployment rates for the states of the U.S. 
Journal of the American Statistical Association, 94, 488, 1074-
1082. 

 
Elazar, D. (2004). Small area estimation of disability in Australia. 

Statistics in Transition, 6, 5, 667-684. 
 
Fabrizi, E., Ferrante, M.R. and Pacei, S. (2005). Estimation of poverty 

indicators at sub-national level using multivariate small area 
models. Statistics in Transition, 7, 3, 587-608. 

 
Fabrizi, E., Ferrante, M.R. and Pacei, S. (2008). Measuring sub-

national income poverty by using a small area multivariate 
approach. Review of Income and Wealth, 54, 4, 597-615. 

 

Fay, R.E. (1987). Application of multivariate regression to small 
domain estimation. In Small Area Statistics, (Eds., R. Platek, 
J.N.K. Rao, C.-E. Särndal and M.P. Singh). New York: John 
Wiley & Sons, Inc., 91-102. 

 



180 Ferrante and Trivisano: Small area estimation of the number of firms’ recruits by using multivariate models 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Fay, R.E., and Herriot, R.A. (1979). Estimates of income for small 
places: An application of James-Stein procedures to census data. 
Journal of the American Statistical Association, 74, 269-277. 

 
Gelman, A., and Rubin, D.B. (1992). Inference from iterative 

simulation using multiple sequences. Statistical Science, 7, 457-
511. 

 
Ghosh, M., Nangia, N. and Kim, D. (1996). Estimation of median 

income of four-person families: A Bayesian time series approach. 
Journal of the American Statistical Association, 91, 1423-1431. 

 
Good, D.H., and Pirog-Good, M.A. (1989). Models for bivariate 

count data with an application to teenage delinquency and 
paternity. Sociological Methods and Research, 17, 4, 409-431. 

 
Istat (1997). I sistemi locali del lavoro 1991. Argomenti, Roma 1997, 

10. 
 
Lahiri, P., and Rao, J.N.K. (1995). Robust estimation of mean square 

error of small area estimators. Journal of the American Statistical 
Association, 90, 758-766. 

 
Liu, B., Lahiri, P. and Kalton, G. (2007). Hierarchical Bayes 

modeling of survey weighted small area proportions. Proceedings 
of the Survey Research Methods Section, American Statistical 
Association, 3181-3186. 

 
Otto, M.C., and Bell, W.R. (1995). Sampling error modelling of 

poverty and income statistics for states. Proceedings of the Section 
on Government Statistics, American Statistical Association, 160-
165. 

 
Rao, J.N.K. (2003). Small Area Estimation. New Jersey: John Wiley 

& Sons, Inc. 
 
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model-Assisted 

Survey Sampling. New York: Springer-Verlag. 
 
Sforzi, F. (1991). I distretti industriali marshalliani nell’economia 

italiana. In Distretti industriali e cooperazione fra imprese in 
Italia, (Eds., F. Pyke, G. Becattini and W. Sengenberger). 
Quaderni di Studi e Informazioni, 34. 

 

Sforzi, F., and Lorenzini, F. (2002). I distretti industriali. In Ministero 
delle Attività Produttive-IPI, L’esperienza italiana dei distretti 
industriali, Roma, IPI. 

 
Spiegelhalter, D.J., Best, N., Carlin, B.P. and Van der Linde, A. 

(2002). Bayesian measures of model complexity and fit (with 
discussion). Journal of the Royal Statistical Society, Series B, 64, 
583-639. 

 
Spiegelhalter, D.J., Thomas, A., Best, N.G. and Gilks, W.R. (1995). 

BUGS: Bayesian Inference Using Gibbs Sampling. Version 0.50, 
Medical Research Council Biostatistics Unit, Cambridge. 

 
Van Ophem, H. (1999). A general method to estimate correlated 

discrete random variables. Econometric Theory, 15, 228-237. 
 
Winkelmann, R. (2003). Econometric Analysis of Count Data. 

Springer, Berlin.  
 
Wolter, K.M. (1985). Introduction to Variance Estimation. New 

York: Springer-Verlag. 
 
You, Y. (2008). An integrated modeling approach to unemployment 

rate estimation for sub-provincial areas of Canada. Survey 
Methodology, 34, 1, 19-27. 

 
You, Y., and Chapman, B. (2006). Small area estimation using area 

level models and estimated sampling variances. Survey 
Methodology, 32, 97-103. 

 
You, Y., and Rao, J.N.K. (2002). Small area estimation using 

unmatched sampling and linking models. Canadian Journal of 
Statistics, 30, 3-15. 

 
You, Y., Rao, J.N.K. and Gambino, J. (2003). Model-based 

unemployment rate estimation for the Canadian Labour Force 
Survey: A hierarchical Bayes approach. Survey Methodology, 29, 
25-32. 

 
 
 
 

 



Survey Methodology, December 2010  181 
Vol. 36, No. 2, pp. 181-192 
Statistics Canada, Catalogue No. 12-001-X 

 

Linearization variance estimation for  
generalized raking estimators in the presence of nonresponse 

Julia D’Arrigo and Chris Skinner 1 

Abstract 

Alternative forms of linearization variance estimators for generalized raking estimators are defined via different choices of 

the weights applied (a) to residuals and (b) to the estimated regression coefficients used in calculating the residuals. Some 

theory is presented for three forms of generalized raking estimator, the classical raking ratio estimator, the ‘maximum 

likelihood’ raking estimator and the generalized regression estimator, and for associated linearization variance estimators. A 

simulation study is undertaken, based upon a labour force survey and an income and expenditure survey. Properties of the 

estimators are assessed with respect to both sampling and nonresponse. The study displays little difference between the 

properties of the alternative raking estimators for a given sampling scheme and nonresponse model. Amongst the variance 

estimators, the approach which weights residuals by the design weight can be severely biased in the presence of 

nonresponse. The approach which weights residuals by the calibrated weight tends to display much less bias. Varying the 

choice of the weights used to construct the regression coefficients has little impact. 
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1. Introduction 
 

Survey weighting is widely used to adjust for non-

response bias. Generalized raking estimation (Deville, 

Särndal and Sautory 1993) provides a class of weighting 

methods which may be used when population totals of 

auxiliary variables are available. These methods can, in 

principle, remove (large-sample) nonresponse bias when the 

probability of nonresponse is related to the values of the 

auxiliary variables via a generalized linear model.  

This paper presents some theory for linearization variance 

estimation for such methods in the presence of nonresponse. 

It also reports a simulation study of the properties of alter-

native raking estimators and associated variance estimators 

in settings designed to mimic two European surveys con-

ducted by national statistical institutes. We consider three 

forms of raking estimator: the classical raking ratio estimator, 

the ‘maximum likelihood’ raking estimator (Brackstone and 

Rao 1979; Fuller 2002) and the generalized regression 

estimator (GREG). The first estimator has been used in 

practice in the British Labour Force Survey (LFS), the first 

survey upon which our simulation study is based. A version 

of the second estimator has been used in practice in the 

German Survey of Income and Expenditure (SIE), the 

second survey upon which our simulation study is based. 

The GREG estimator is widely used in many surveys, in 

particular in the context of nonresponse (Särndal and 

Lundström 2005).  

A number of weighting methods, which do not fall into 

the class of generalized raking methods considered here, 

have also been proposed. See Särndal and Lundström 

(2005) for a historical account and Kott (2006) and Chang 

and Kott (2008) for some recent developments where the 

auxiliary variables for which population-level information is 

available may differ from those variables which are used as 

covariates in the generalized linear model for the probability 

of nonresponse.  

The primary focus of this paper is on variance estimation 

and specifically on linearization methods, for which there 

exist a number of slightly different forms of variance 

estimator in the literature. In our simulation study we shall 

compare the properties of alternative raking estimators and 

associated variance estimators with respect to the effects of 

both sampling and nonresponse. A previous simulation 

study by Stukel, Hidiroglou and Särndal (1996) found little 

difference between two forms of linearization estimator with 

respect to sampling. However, there are reasons why non-

response may lead to greater differences. Conditions for 

unbiasedness of raking estimation methods under non-

response models vary between estimation methods (e.g., 

Kalton and Maligalig 1991; Kalton and Flores-Cervantes 

2003) and the choice of variance estimator may be more 

important in the presence of nonresponse (e.g., Fuller 2002, 

Section 8). 

The paper is structured as follows. The generalized 

raking estimators are defined in section 2 and, after intro-

ducing an asymptotic framework, the bias of these esti-

mators is considered in section 3. Linearization variance 

estimators are defined in section 4. The simulation study is 

presented in section 5, the results are discussed in section 6 

and some concluding remarks are given in section 7. 

 
2. Generalized raking estimation  

We consider the class of weighted estimators of a 

population total ,Uy iT y∑=  which may be expressed as 
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ˆ ,sy i iT w y∑=  where iy  is the value of a survey variable for 

a unit i  in a sample s  from a population U  and iw  is the 

survey weight which may depend on the sample but not on 

the choice of survey variable. We suppose here that the 

sample s  consists of the set of respondents remaining after 

sampling and possible unit nonresponse. Generalized raking 

is a form of weighted estimation which may be employed 

when auxiliary population information is available in the 

form of a vector Ux iT x∑=  of population totals of values 

ix  of a vector of auxiliary variables, where xi is known for 

all units in .s  Following Deville and Särndal (1992), the 

weights iw  are said to be calibrated if they satisfy the 

calibration equations .s i i xw x T∑ =  The vector xT  is 

referred to as the vector of calibration totals. The class of 

generalized raking weights iw  is obtained by minimising 

the objective function: 

( / ),i i i

s

d G w d∑  (2.1) 

subject to the weights iw  being calibrated, where (.)G  is a 

specified objective function which meets certain criteria (see 

Deville et al. 1993) and id  is an initial weight. We shall 

take this to be the design weight, i.e., 1,i id −= π  where iπ  is 

the probability that unit i  is sampled. Deville and Särndal 

(1992) show that (subject to (.)G  obeying certain condi-

tions), the solution of the above constrained optimisation 

problem may be expressed as:  

ˆ( ),i i iw d F x′= λ  (2.2) 

where 1( ) ( )F u g u−=  denotes the inverse function of 

( ) ( ) /g u dG u du=  and λ̂  is the Lagrange multiplier which 

solves the calibration equations: 

ˆ( ) .i i i x

s

d F x x T′ λ =∑  (2.3) 

Deville and Särndal (1992) discuss various choices of the 

(.)G  function and associated (.)F  function. We consider 

the following three choices:  
linear: 

2( ) (1 / 2)( 1) , ( ) 1 ;L LG u u F u u= − = +  

 

multiplicative (raking ratio): 

( ) log ( ) 1, ( ) exp( );M MG u u u u F u u= − + =  

 

maximum likelihood raking: 

1( ) 1 log ( ), ( ) (1 ) .ML MLG u u u F u u −= − − = −  

See also Deville et al. (1993) and Fuller (2009, section 2.9) 

regarding the above terminology for these functions. With 

the linear choice of (.),G  the optimisation problem has a 

closed form solution and the generalized raking estimator 

becomes ˆ ˆ ˆ ˆ( ) ,y yd x xd sT T T T B′= + −  the generalised regres-

sion estimator (GREG), where ˆ ,syd i iT d y∑= ˆ
sxd i iT d x∑=  

and 

( ) 1

ˆ .i i i
s i i i

s
s

d x xB d x y
−

′= ∑ ∑  (2.4) 

With the multiplicative choice of (.),G  the calibrated 

estimator of yT  is the classical raking ratio estimator 

(Brackstone and Rao 1979) when xT  contains the popu-

lation counts in the categories of two or more categorical 

auxiliary variables. For example, in the context of the 

Britain Labour Force Survey, ix  denotes the vector of 

indicator variables of three categorical auxiliary variables: 

1.. .. .1. . . ..1 ..( , ..., , , ..., , , ..., ) ,i i A i i B i i Cix ′= δ δ δ δ δ δ  where .. 1a iδ =  

if unit i  is in category a  of the first auxiliary variable and 0 

otherwise, . . 1b iδ =  if unit i  is in category b  of the second 

auxiliary variable and 0 otherwise and so on. The population 

total xT  of this vector thus contains the population counts in 

each of the (marginal) categories of each of the three 

auxiliary variables. The construction of the weights for 

classical raking ratio estimation has traditionally involved 

the use of iterative proportional fitting (Brackstone and Rao 

1979). Ireland and Kullback (1968) demonstrate that this 

method converges to a solution of the above optimisation 

problem.  

The function ( )MLG u  leads to an alternative ‘maximum 

likelihood’ version of raking adjustment, when ix  takes the 

same form, denoting indicator variables of categorical 

auxiliary variables. In this case, the objective function in 

(2.1) may be interpreted as a quantity which is proportional 

to minus a log likelihood in the case of simple random 

sampling with replacement (Brackstone and Rao 1979; 

Fuller 2002).  

 
3. Asymptotic framework and nonresponse bias 
 

We now consider the asymptotic properties of ˆ
yT  with 

respect to both the sampling design and the nonresponse 

mechanism. We assume that the latter is such that each unit 

in the population responds, if sampled, with probability ,iq  

where this probability is not dependent on the choice of the 

sample and different units respond independently. We con-

sider an asymptotic framework defined in terms of se-

quences of finite populations and associated probability 

sampling designs and response mechanisms (Fuller 2009, 

section 1.3), with orders of magnitude terms expressed in 

terms of ,U i in q∑= π  the expected number of responding 

units, and ,$  the population size. We assume there exist 

positive constants 1 2,K K  and 3K  such that 1

1 iK n$ d−< <  

2K  and 3 iK q<  for all .i  

We shall suppose that Horvitz-Thompson estimators of 

means are consistent for the corresponding finite population 
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means and that central limit theorems hold (as expressed 

formally in the conditions of Theorem 1.3.9 of Fuller 2009). 

In particular, we assume that the sequences and the function 

(.)F  are such that there is a unique solution λ  of 

( ) ,i i i x

U

q F x x T′ λ =∑  (3.1) 

with 
0.5ˆ ( ),pO n−λ = λ +  (3.2) 

and that  
0.5ˆ ( ) ( ).y i i i p

U

T q F x y O $n−′= λ +∑  (3.3) 

Deville and Särndal (1992) show that λ = 0  under certain 

assumptions (their Result 2). However, their assumptions 

apply just to the distribution induced by the sampling design 

and include the requirement that 1 ˆ( ) 0xd x$ T T− − →  in 

probability. In the case of nonreponse, however, this require-

ment will often be implausible (c.f. Fuller 2002, page 15) and 

we do not require that λ  be the zero vector.  

A key assumption which we shall make is: 

Condition C: there exists a vector α  such that 1( ) = .i iF x q−′α  

If condition C holds then α  solves (3.1) and so .λ = α  It 

follows from (3.3) that ˆ
yT  is consistent for yT  for any 

choice of variable y  if this condition holds. Thus, we may 

view condition C as a sufficient condition for the absence of 

(asymptotic) nonresponse bias. This property of Condition 

C has been discussed by Fuller, Loughlin and Baker (1994), 

Fuller (2009, page 284) and Särndal and Lundström (2005, 

Proposition 9.2) for the case when F  is linear. Fuller (2002, 

page 15), Kott (2006) and Chang and Kott (2008) also 

consider estimating response probabilities using general 

models of the form 1 ( ).i iq F x− ′= α  

To illustrate what might happen if condition C does not 

hold, suppose that ix  is just a scalar with 1.ix ≡  Then the 

unique solution of (3.1) is ( / )U ig $ q∑λ =  and ˆlim( )yp T =  

( ) /( ).U Ui i i$ q y q∑ ∑  Hence, the asymptotic nonresponse 

bias will only disappear for those survey variables which are 

‘uncorrelated’ with the response probabilities .iq  

 
4. Linearization variance estimation  

 
We now proceed to consider the asymptotic variance of 

ˆ
yT  and its estimation. As in the previous section, the 

variance is defined with respect to the joint distribution 

induced by both sampling and nonresponse. 

Note first that in general (and in particular for (.)MG  and 

(.)),MLG  iteration is needed to solve the calibration equa-

tions. There does exist a literature (see Deville et al. 1993) 

which seeks to estimate the variance of ˆ
yT  after a finite 

number of iterations. We follow instead the approach of 

Deville et al. (1993) and, for example, Binder and Théberge 

(1988) by approximating the variance of ˆ
yT  by the variance 

of the ‘converged’ estimator, i.e., the hypothetical estimator 

arising from an infinite number of iterations, represented by 

var( ),s i iw y∑  where the iw  are the ‘converged’ weights 

which solve the constrained optimisation problem in 

section 2.  

A linearization variance estimator is obtained by 

approximating var( )s i iw y∑  by var( )s i id z∑  for a 

‘linearized variable’ iz  (Deville 1999). We now seek to 

construct this variable using a large sample argument. We 

first obtain an expression for ˆ.λ  A Taylor expansion of the 

left side of the calibration equations in (2.3) gives 

*

ˆ( ' )

ˆ( ' ) '( ),

i i i i i i
s s

i i i i
s

d F x x d F x

d f x x x

λ =

+ λ λ − λ

∑ ∑

∑
 

where ( ),i iF F x′= λ *λ  is between λ̂  and λ  and ( )f u =  

( ) /dF u du  is assumed to exist. Assuming also continuity of 

(.),f  the existence of 1lim U$ i i i i$ q f x x−
→∞ ∑ ′  and using 

(3.2), we have  

1

1 1 0.5

ˆ( )

ˆ( ) ( ),

i i i
s

i i i i i i i p
s s

$ d F x x

$ d F x $ d f x x o n

−

− − −

′ λ =

′+ λ − λ +

∑

∑ ∑  (4.1)

 

where ( ).i if f x′= λ  Then, assuming 1lim U$ i i i i$ q f x x−
→∞ ∑ ′  

is non-singular and using (2.3), we obtain 

1
, 0.5ˆ ( ).i i i i x i i i p

s s

d f x x T d F x o n
− − λ − λ =  −  +

      
∑ ∑  (4.2) 

See Fuller (2009, proof of Theorem 1.3.9) for formal details 

of how (4.1) and (4.2) may be derived and the underlying 

regularity conditions. Note that to ensure 1lim U$ i$ q−
→∞ ∑  

i i if x x′  is non-singular may require dropping redundant 

variables from ix  and possibly (as in Deville and Särndal 

1992) modifying the estimator for samples with small 

probability that result in singularity of this matrix. 

A similar argument involving the Taylor expansion of 

iw  in (2.2) about λ  gives: 

1.5ˆ[ ( )] ( ).i i i i i pw d F f x o $n−′= + λ − λ +  (4.3) 

Then, assuming the existence of necessary population 

moments so that the remainder term in (4.3) holds uniformly 

across i  (Fuller 2009, Corollary 2.7.1.1.), we have 

0.5

ˆ

ˆ( ) ( )

y i i
s

i i i i i p

s

T w y

d F f x y o $n
−

≡

 ′= + λ − λ + 

∑

∑  (4.4)
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and hence from (4.2) and (4.4):  

0.5ˆ ( ),y i i i x i i i p

s s

T d F y B T d F x o $n−= +  −  +
  

∑ ∑  (4.5) 

where 

1
.i i i i i i i i

s s

B d f y x d f x x
−

′ ′=    
      
∑ ∑  (4.6) 

Note that 1i iF f= =  under the assumptions of Deville and 

Särndal (1992) (since in this case 0λ =  and it follows from 

the assumptions about (.)G  that (0) (0) 1).F f= =  Hence, 

under these assumptions, expression (4.5) corresponds to 

Result 5 of Deville and Särndal (1992), i.e., the generalized 

raking estimator is asymptotically equivalent to the GREG 

estimator. Therefore, the asymptotic variance of ˆ
yT  is the 

same as that of ,s i id z∑  where iz  is the linearized variable: 

( ),i i i iz F y x= −β  (4.7) 

and it is assumed that B  converges to a finite limit matrix 

.β  An alternative derivation of this expression is given by 

Demnati and Rao (2004, section 3.4). 

For the purpose of linearization variance estimation, ˆ
yT  

is treated as the linear estimator ,ˆs i id z∑  where  

ˆ ˆ( )ˆi i i iz F y B x= −  (4.8) 

is treated as a fixed variable. 

A number of choices of ˆ
iF  and B̂  have been discussed 

in the literature. Starting with ˆ ,iF  the natural choice implied 

by the above argument is ˆˆ ( ).i iF F x′= λ  A simpler choice, 

however, would be to take ˆ 1.iF =  Deville and Särndal 

(1992) note that, in their classical theory with 0,λ =  these 

choices are asymptotically equivalent but they express a 

preference for the choice ˆˆ ( ).i iF F x′= λ  In our setting with 

nonresponse and with 0λ =  not necessarily holding, the 

second choice seems preferable and this is emphasized by 

Fuller (2002, page 15). Note that these two choices imply 

that ˆs i id z∑  either takes the form ˆ( )i i iw y B x∑ −  when 
ˆˆ ( )i iF F x′= λ  or ˆ( )i i id y B x∑ −  when ˆ 1.iF =  We shall 

therefore refer to these choices as either iw -weighted 

residuals or id - weighted residuals. 

Regarding ˆ,B  it follows from our argument on the 

choices of ˆ
iF  that if  in (4.2) should be replaced by ˆ

if =  
ˆ( ),if x′ λ  giving:   

(i) 
1ˆ ˆˆ [ ] [ ] ,s si i i i i i i iB d f y x d f x x −∑ ∑′ ′=  as also proposed 

by Demnati and Rao (2004). 

 

Other choices are  
(ii) ˆ ˆ ,sB = B  as in (2.4), as proposed by Deville et al. 

(1993). 

(iii) 1ˆ [ ] [ ] ,s si i i i i iB w y x w x x −∑ ∑′ ′=  as proposed by 

Deville and Särndal (1992, equation 3.4), which 

might be more practical to compute than ˆ
sB  for 

users of survey data files which include the iw  

weights but not the id  weights.  
The extent to which these choices differ depends on the 

choice of (.)G  function. For the linear case ( ) 1f u =  so 

that the estimators in (i) and (ii) are identical. In the case of 

classical raking adjustment, ( ) ( ) exp( )f u F u u= =  so that 
ˆ ˆ
i if F=  and ˆ

i i id f w=  and the estimators (i) and (iii) are 

identical. For the ‘maximum likelihood’ raking estimator we 

have 1( ) (1 )F u u −= −  and 2( ) (1 )f u u −= −  so that ˆ
i id f =  

2

i iw /d  and the three variance estimators are all distinct.  

Having determined the form of ˆiz  in (4.8), the lin-

earization variance estimator for ˆ
yT  is obtained by esti-

mating the variance of the linear estimator ,ˆs i id z∑  treating 

id  and ˆiz  as fixed. In the case of a stratified multistage 

sampling design, assuming “with replacement” sampling of 

primary sampling units (PSUs) within strata, a standard 

estimator of the variance (e.g., Stukel et al. 1996) is: 

2

1 1

ˆ ˆ( ) ( )
1

hnH
h

y hj h
h jh

n
V T z z

n= =

= −
−

∑ ∑  (4.9) 

where ,ˆkhj hjk hjkz d z∑= /jh hj hz z n∑=  and ˆhjkz  is the value 

of the variable defined in (4.8) for the thk  individual within 

the thj  selected PSU in stratum .h  This estimator remains 

appropriate in the presence of nonresponse if individual 

response in each PSU is independent of response in all other 

PSUs and if at least one individual is observed in each 

selected PSU (Fuller et al. 1994, page 78). 

 
5. Simulation studies  

In order to compare the performance of the weighted 

estimators and their corresponding variance estimators, two 

simulation studies were undertaken by constructing artificial 

populations using data from the British Labour Force 

Survey (LFS) and the German Sample Survey of Income 

and Expenditure (SIE). In each case, R = 1,000 samples 

were generated from these populations by first sampling, in 

a way designed to mimic the real sampling scheme after 

some simplification, and then removing nonresponding 

cases according to two nonresponse models. The first 

assumes multiplicative nonresponse which, from Condition 

C in section 3, might be expected to lead to least bias for the 

raking ratio method. The second model assumed additive 

nonresponse, which might be expected to lead to least bias 

for the GREG estimator. 

For each of the R  samples, point estimates of parameters 

were calculated using the different generalized raking 

methods presented in section 2 and variance estimates were 

calculated using the different linearization methods 

presented in section 4. The properties of the estimators were 

then summarised.  
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5.1 Study based on the British Labour Force Survey   
The first study was based upon data from the March-May 

1998 quarter of the British LFS, a survey of persons living 

in private households in Britain, designed to provide 

information on the British labour market and carried out by 

the Office for National Statistics (ONS). The sample of 

approximately 58,000 households was treated as an artificial 

population. Repeated samples were drawn from this 

population in a way intended to mimic the design used for 

the LFS (ONS 1998, Section 3). Each sample consisted of 

1,211 households selected by stratified simple random 

sampling with proportional allocation across 19 strata, 

defined by region of residence. These regions were designed 

to mimic interviewer areas which defined strata in the LFS. 

In the LFS all individuals in a sampled household are 

interviewed if possible. In this simulation study, all the 

respondents in a sample household were retained, except 

those aged under 16, who are not relevant for the estimates 

of interest. 

The following two nonresponse models, based upon 

results of a study of Foster (1998), were used to determine 

whether sampled individuals responded. 
 
Multiplicative $onresponse Model: 

1

iq− = 1.15 × 1.17 (if London)  

  × 1.13 (if aged under 35) 

  × 1.1 (if female) 

 
Additive $onresponse Model: 

1

iq− = 1.15 + 0.20 (if London)  

  + 0.15 (if aged under 35) 

  + 0.10 (if female) 

 
where iq  is the response probability defined at the begin-

ning of section 3 and the form of the model is chosen to 

satisfy Condition C. 

Three parameters of interest are defined for the artificial 

population: the total number of persons unemployed, em-

ployed or inactive in the workforce. Weights were con-

structed for responding individuals, with calibration totals 

consisting of population counts in the categories of three 

categorical auxiliary variables and with Horvitz-Thompson 

initial weights ,id  as in section 2. The choice of auxiliary 

variables was designed to mimic those used in the LFS. 

However, because of the reduced scale of our artificial 

population and the consequent smaller numbers of indi-

viduals within strata, we simplified the LFS calibration 

variables to the following three categorical factors, defining 

83 control totals:  
• area of residence with 23 categories; 

• a cross-classification of sex by 10 age groups (consisting 

of single years for those between 16 and 24 and a 

separate age group for 25 or older) with 20 categories; 

• a cross-classification of region (Northern England; 

London and South East; Midlands and East Anglia; 

Scotland) by sex by age in 15-year age groups (16-29, 

30-44, 45-59, 60-75 and 75 or older) with 40 categories.  
5.2 Study based on the German sample Survey of 

Income and Expenditure   
Our second study is based on the 1998 German Survey of 

Income and Expenditure (SIE), a national household survey 

conducted every 5 years by the Federal Statistical Office, to 

provide information about the economic and social situation 

of households, especially regarding the distribution of 

income and expenditure (Muennich and Schulrle 2003). We 

used data from a synthetic population of 64,326 households, 

created to represent 20% of all households from the Bremen 

region, excluding those with a monthly household net 

income of DM 35,000 or above (DM denotes the currency of 

German marks). A quota sampling design was employed for 

this survey and we have not attempted to mimic this design. 

Instead, our simulation study employs simple random 

sampling together with nonresponse. Repeated simple 

random samples of 1,340 households were drawn from the 

artificial population, representing a sampling fraction of 

about 1/48. Nonresponse models were constructed using the 

results of studies of similar surveys in Great Britain: the 

Family Expenditure Survey and the National Food Survey 

(Foster 1998). For each selected sample, the subset of 

responding households was determined by the following 

nonresponse models:  
 
Multiplicative Model: 

1

iq− = 1.44 × 1.09 (if self-employed)  

  × 1.03 (if unemployed) 

  × 0.97 (if employed) 

  × 1.16 (if no children in the household). 

Additive Model: 

1

iq− = 1.44 + 0.13 (if self-employed)  

  + 0.04 (if unemployed) 

  – 0.04 (if employed) 
  + 0.23 (if no children in the household). 

The parameters of interest are the total household net 

income per quarter and the total household expenditure per 

quarter, computed from the finite artificial population.  

As for the LFS study, each sampled household was as-

signed a weight. In the actual SIE the weights are constructed 

using essentially the maximum likelihood raking method by 

adjusting the sample data simultaneously to the marginal 
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distributions of several characteristics, such as household 

type, social economic status of the reference person, house-

hold net income class and region (land). We try to mimic this 

adjustment, as far as possible, in our study. However, as for 

the LFS, because of the problem of strata with small numbers 

of households we simplify the SIE calibration variables to the 

following three categorical factors:  
• household type with 7 categories  

− mother/father alone + 1child,  

− mother/father alone + 2 or more children,  

− couple with 1 child – spouse employed,  

− couple with 1 child – spouse unemployed,  

− couple with 2 or more children – spouse employed,  

− couple with 2 or more children – spouse unemployed, 

− other.  
• social status of the reference person with 5 categories  

− self-employed, 

− civil servant or military, 

− employee,  

− worker, 

− unemployed, pensioner, student or other.  
• household net income per quarter with 3 categories 

− 0-5,000 DM, 

− 5-7,000 DM, 

− 7-35,000 DM.   
6. Results 

 
6.1 Properties of point estimators   

Table 6.1 presents the properties of the point estimators 

of total unemployed in the LFS study for different 

calibration methods and alternative assumptions about 

nonresponse. The properties are assessed following usual 

practice in simulation studies. For example, the bias in 

Table 6.1 is obtained from ˆ ˆ ˆ ˆ( ) ( ) ,y y yB T E T T= −  where 

1
ˆ ˆ ˆ( ) 1/ ,

r

R
ry yE T R T=∑= ˆ

ryT  is the value of ˆ
yT  for sample r  

and R  is the number of simulated samples. We observe 

from this table that the standard error remains virtually 

constant across alternative raking methods for a given 

nonresponse model. Nonresponse leads to an increase in the 

standard error across all estimators as expected (since the 

sample size is reduced). The table does show evidence of 

nonresponse bias, which is of a similar order for each of the 

raking methods. We do not find that this bias is least when 

the estimator matches the nonresponse model (i.e., the 

GREG estimator for additive response and the raking esti-

mator for multiplicative response) as we might have 

expected. Perhaps this is because the covariates used in the 

nonresponse models (e.g., the aged 35+ variable) are not all 

included in the calibrating variables. Nevertheless, the 

nonresponse bias is small in the sense that the root mean 

square error is very similar to the standard error in each 

case. Under nonresponse, the GREG calibration method 

generates some negative weights whereas this is avoided by 

the two raking methods, as expected. A greater number of 

very large weights are observed, however, for the ‘maxi-

mum likelihood’ raking estimator. 

Corresponding results for the SIE data are presented in 

Table 6.2. The pattern of results is broadly similar, although 

there is now no evidence of significant nonresponse bias 

(i.e., the observed bias could be explained by simulation 

variation). The standard errors and root mean square errors 

also remain virtually constant across weighting methods for 

a given nonresponse model. 
 
 
Table 6.1 

Simulation properties of point estimators of total unemployed using data from LFS with R = 1,000 
 

3onresponse Model/Point Estimator Bias (simulation 

standard error) 

Standard 

Error 

Root Mean 

Square Error 

3umber of 

3egative Weights1 

3umber of Very 

Large Weights1, 2 

Complete Response:      

GREG 7.6 (14.3) 452.8 452.8 0 0 

Classical Raking 8.3 (14.3) 452.8 452.9 0 0 

‘ML’ Raking 9.0 (14.3) 453.3 453.4 0 1 

Multiplicative nonresponse:      

GREG -45.6 (15.8) 498.3 500.3 4 1 

Classical Raking -42.1 (15.8) 498.8 500.6 0 2 

‘ML’ Raking -39.7 (15.8) 499.4 501.0 0 7 

Additive nonresponse:      

GREG -37.3 (15.7) 497.4 498.8 5 1 

Classical Raking -34.7 (15.7) 497.5 498.7 0 3 

‘ML’ Raking -32.4 (15.8) 498.1 499.1 0 7 
1 the number of such weights across all sample units and all 1000 samples. 
2 the number of weights more than 10 times the corresponding design weight. 
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Table 6.2 

Simulation properties of point estimators of total income using data from SIE with R = 1,000 
 

3onresponse Model/Point Estimator Bias (simulation 

standard error) 

Standard 

Error 

Root Mean 

Square Error 

3umber of 

3egatives Weights 

3umber of Very 

Large Weights 

Complete Response:      

GREG -172.2 (331.3) 10,477.3 10,478.7 0 0 

Classical Raking -170.6 (331.5) 10,484.1 10,485.8 0 0 

‘ML’ Raking -169.8 (331.8) 10,491.5 10,492.9 0 0 

Multiplicative nonresponse:      

GREG -495.7 (429.7) 13,586.8 13,595.8 0 0 

Classical Raking -493.8 (429.6) 13,584.6 13,593.5 0 0 

‘ML’ Raking -463.5 (429.5) 13,582.8 13,590.7 0 0 

Additive nonresponse:      

GREG -473.2 (430.5) 13,614.8 13,623.0 0 0 

Classical Raking -469.4 (430.5) 13,612.9 13,621.0 0 0 

‘ML’ Raking -439.5 (430.5) 13,613.5 13,620.6 0 0 

 

 

 

 

 

6.2 Properties of variance estimators   
The properties of the different estimators of the variances 

of the point estimators of the total unemployed from the 

LFS are shown in the Table 6.3 (the ‘standard error 

estimate’ in the table refers to the square root of the variance 

estimate). We make a number of observations:  
• weighting the residuals by iw  rather than by id  

reduces the bias and root mean squared error of the 

standard error estimator. The bias arising from the use 

of id  weighted residuals in the case of nonresponse is 

particularly important (as noted by Fuller 2002) but 

there are also non-negligible reductions of bias even in 

the complete response case. 

• The choice of weight used in B̂  for the calculation of 

residuals seems to have little impact. 

• For a given nonresponse setting and choice of 

weighting the residuals, there is little difference in the 

results for the different choices of point estimator. 

 

The results in Table 6.3 are extended in Table 6.4 to 

consider relative bias of the standard error estimators, rather 

than their absolute bias, and to consider two additional 

parameters: total numbers employed and inactive. We see 

again that the relative bias arising from using id  weighted 

residuals can be substantial in the presence of nonresponse, 

over 20% in several cases, and that this is reduced using the 

iw  weighted residuals. Again, little change is observed in 

the percent relative bias of the standard error estimators 

when different choices of weights are used in the calculation 

of B̂  for the residuals.  

Corresponding results for the SIE data when estimating 

total income are shown in Table 6.5. Again, the pattern of 

results is broadly similar to that for the LFS data in Table 

6.3. For the complete response case, the use of iw  weighted 

residuals rather than id  weighted residuals leads to modest 

improvement in bias and RMSE of the standard error 

estimators. For the nonresponse cases the improvements are 

considerable. Little change in the standard error estimators 

is observed when modifying the choice of weight used to 

compute the estimated regression coefficients. The results in 

Table 6.5 are extended in Table 6.6 to consider relative bias 

of the standard error estimators, rather than their absolute 

bias, and to consider one additional parameter: total 

expenditure per quarter. We see again that the relative bias 

arising from using id  weighted residuals can be substantial 

in the presence of nonresponse, over 35% in all cases, and 

that this is reduced using the iw  weighted residuals, for 

which the relative bias never exceeds about 3%. 
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Table 6.3 
Properties of variance estimators when estimating total unemployed from the LFS (R = 1,000) 
 

Weighting Method w- or d-

weighted 

residuals1 

weight used  

for B̂  in 

residual1 

Mean of Standard 

Error Estimator 

Bias of SE  

Estimator  

(simulation s.e.) 

RMSE of 

SE 

Estimator 

Coverage2 of 

Confidence 

Interval (%) 

Complete Response:     
     
 GREG d  

d  

w  

w  

d  

w  

d  

w  

433.9 

434.3 

442.8 

441.9 

-18.8 (0.9) 

-18.5 (0.9) 

-10.0 (1.0) 

-10.8 (1.0) 

33.4 

33.3 

31.9 

32.0 

93.5 

93.5 

93.8 

93.7 
       
 Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

433.9 

434.2 

443.0 

442.0 

-18.8 (0.9) 

-18.5 (0.9) 

-9.8 (1.0) 

-10.7 (1.0) 

33.4 

33.3 

32.0 

32.0 

93.5 

93.5 

93.8 

93.8 
       
 ‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

433.9 

434.3 

435.4 

443.7 

442.3 

441.6 

-19.4 (0.9) 

-19.1 (0.9) 

-17.9 (0.9) 

-9.6 (1.0) 

-11.1 (1.0) 

-11.8 (1.0) 

33.7 

33.6 

33.0 

32.5 

32.4 

32.3 

93.5 

93.5 

93.5 

93.7 

93.7 

93.7 
       

Multiplicative nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

385.7 

386.1 

489.5 

487.8 

-112.6 (0.9) 

 -112.1 (0.9) 

-8.8 (1.2) 

 -10.4 (1.2) 

116.0 

115.5 

39.2 

39.2 

85.8 

85.8 

94.2 

94.2 
       
Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

385.7 

386.1 

490.3 

488.4 

-113.1 (0.9) 

-112.7 (0.9) 

-8.5 (1.2) 

-10.4 (1.2) 

116.5 

116.1 

39.6 

39.5 

85.7 

85.7 

94.3 

94.1 
       
‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

385.7 

386.2 

387.8 

491.9 

488.9 

487.5 

-113.7 (0.9) 

-113.2 (0.9) 

-111.6 (0.9) 

-7.5 (1.3) 

-10.5 (1.2) 

-11.9 (1.2) 

117.1 

116.6 

115.0 

40.4 

39.9 

39.8 

85.4 

85.6 

85.8 

94.2 

94.0 

94.0 
       

Additive nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

386.5 

387.0 

489.3 

487.6 

-110.9 (0.9) 

-110.5 (0.9) 

-8.2 (1.2) 

-9.8 (1.2) 

114.4 

113.9 

39.0 

39.0 

86.0 

86.0 

94.6 

94.6 
       
Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

386.5 

387.0 

490.1 

488.1 

-111.0 (0.9) 

-110.6 (0.9) 

-7.4 (1.2) 

-9.4 (1.2) 

114.4 

114.0 

39.2 

39.1 

85.8 

85.8 

94.7 

94.6 
       
‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

386.5 

387.0 

388.6 

491.6 

488.6 

487.3 

-111.6 (0.9) 

-111.1 (0.9) 

-109.5 (0.9) 

-6.5 (1.3) 

-9.5 (1.2) 

-10.8 (1.2) 

115.0 

114.6 

113.0 

40.0 

39.5 

39.4 

85.6 

85.6 

85.9 

94.7 

94.6 

94.6 
       

1 see text following equation (4.8), where choices ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively.  
2 percentage of 95% normal-theory confidence intervals containing true value. 
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Table 6.4 

Relative bias (%) of standard error estimators of unemployed, employed and inactive totals from LFS (R = 1,000) 
 

Weighting Method w- or d-weighted 

residuals1 

weight used for B̂ in 

residual1 

Relative Bias of Standard Error Estimator 

Unemployed Employed Inactive 

Complete Response:    
    

GREG d  

d  

w  

w  

d  

w  

d  

w  

-4.2 

-4.1 

-2.2 

-2.4 

-3.4 

-3.3 

-2.2 

-2.3 

0.5 

0.6 

1.9 

1.7 
      

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

-4.2 

-4.1 

-2.2 

-2.4 

-3.3 

-3.2 

-2.1 

-2.2 

0.7 

0.8 

2.1 

1.9 
      

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-4.3 

-4.2 

-4.0 

-2.1 

-2.4 

-2.6 

-3.3 

-3.3 

-3.1 

-2.0 

-2.2 

-2.3 

0.7 

0.8 

1.1 

2.3 

1.9 

1.8 
      

Multiplicative nonresponse:    
    

GREG d  

d  

w  

w  

d  

w  

d  

w  

-22.6 

-22.5 

-1.8 

-2.1 

-22.3 

-22.2 

-3.3 

-3.5 

-18.2 

-18.1 

1.8 

1.5 
      

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-22.7 

-22.6 

-1.7 

-2.1 

-30.6 

-30.5 

-13.5 

-13.7 

-18.4 

-18.3 

1.7 

1.3 
      

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-22.8 

-22.7 

-22.3 

-1.5 

-2.1 

-2.4 

-22.0 

-21.9 

-21.7 

-2.7 

-3.1 

-3.3 

-18.4 

-18.3 

-17.9 

1.9 

1.3 

1.1 
      

Additive nonresponse:    
    

GREG d  

d  

w  

w  

d  

w  

d  

w  

-22.3 

-22.2 

-1.6 

-2.0 

-21.8 

-21.7 

-2.9 

-3.1 

-18.5 

-18.4 

1.1 

0.8 
      

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-22.3 

-22.2 

-1.5 

-1.9 

-30.2 

-30.1 

-13.3 

-13.5 

-18.0 

-17.9 

1.8 

1.4 
      

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-22.4 

-22.3 

-22.0 

-1.3 

-1.9 

-2.2 

-21.6 

-21.5 

-21.3 

-2.4 

-2.8 

-3.0 

-18.0 

-17.9 

-17.6 

2.0 

1.5 

1.3 
      

1 see text following equation (4.8), where ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively.  
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Table 6.5 
Properties of variance estimators when estimating total income from the SIE (R = 1,000) 
 

Weighting Method w- or d- 

weighted 

residuals1 

weight used for B̂ in 

 residual1 

Mean of 

Standard Error 

Estimator 

Bias of  

SE Estimator  

(s.e.) 

RMSE of  

SE Estimator 

Coverage2 of 

Confidence 

Interval (%) 

Complete Response:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

10,338.8 

10,339.2 

10,377.9 

10,376.8 

-138.5 (6.9) 

-138.2 (6.9) 

-99.5 (6.9) 

-100.5 (6.9) 

259.0 

258.8 

240.0 

240.3 

93.8 

93.8 

94.1 

94.1 
       

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

10,338.8 

10,339.2 

10,370.0 

10,376.9 

-145.3 (6.9) 

-144.9 (6.9) 

-106.1 (6.9) 

-107.2 (6.9) 

262.7 

262.5 

243.1 

243.5 

93.8 

93.8 

94.0 

94.0 
       

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

10,338.8 

10,339.2 

10,340.3 

10,378.3 

10,377.1 

10,376.7 

-152.7 (6.9) 

-152.4 (6.9) 

-151.3 (6.9) 

-113.2 (6.9) 

-114.4 (6.9) 

-114.8 (6.9) 

266.9 

266.7 

266.1 

246.5 

247.0 

247.2 

93.9 

93.9 

94.0 

94.0 

94.0 

94.0 
       

Multiplicative nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

8,104.7 

8,105.5 

13,214.5 

13,210.9 

-5,482.1 (7.4) 

-5,481.3 (7.4) 

-372.3 (12.8) 

-375.9 (12.8) 

5,487.1 

5,486.3 

549.7 

551.7 

75.8 

75.8 

94.5 

94.5 
       

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

8,104.7 

8,105.5 

13,214.1 

13,210.4 

-5,479.8 (7.4) 

-5,479.1 (7.4) 

-370.4 (12.8) 

-374.2 (12.8) 

5,484.9 

5,484.1 

549.4 

551.5 

75.8 

75.8 

94.5 

94.5 
       

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

8,104.7 

8,105.5 

8,108.1 

13,215.2 

13,210.6 

13,208.9 

-5,478.1 (7.4) 

-5,477.3 (7.4) 

-5,474.7 (7.4) 

-367.6 (12.9) 

-372.2 (12.9) 

-373.9 (12.9) 

5,483.1 

5,482.3 

5,479.7 

549.4 

551.6 

552.3 

75.8 

75.8 

75.9 

94.5 

94.5 

94.5 
       

Additive nonresponse:     
     

GREG d  

d  

w  

w  

d  

w  

d  

w  

8,106.3 

8,107.1 

13,207.9 

13,204.3 

-5,508.5 (7.4) 

-5,507.7 (7.4) 

-407.0 (12.8) 

-410.5 (12.8) 

5,513.5 

5,512.7 

573.8 

575.9 

75.6 

75.6 

94.3 

94.3 
       

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

8,106.3 

8,107.1 

13,207.7 

13,203.9 

-5,506.6 (7.4) 

-5,505.9 (7.4) 

-405.3 (12.8) 

-409.0 (12.8) 

5,511.6 

5,510.9 

573.6 

575.8 

75.7 

75.7 

94.1 

94.1 
       

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

8,106.3 

8,107.1 

8,109.7 

13,208.9 

13,204.2 

13,202.5 

-5,507.2 (7.4) 

-5,506.4 (7.4) 

-5,503.8 (7.4) 

-404.6 (12.9) 

-409.2 (12.9) 

-411.0 (12.9) 

5,512.2 

5,511.4 

5,508.8 

574.8 

577.3 

578.1 

75.9 

75.9 

75.9 

94.1 

94.1 

94.1 
       

1see text following equation (4.8), where choices ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively. 
2 percentage of 95% normal-theory confidence intervals containing true value. 
 



Survey Methodology, December 2010 191 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Table 6.6 

Relative bias (%) of variance estimators of expenditure and income totals from SIE (R = 1,000) 
 

Weighting Method w- or d-weighted 

residuals1 

weight used for 

B̂  in residual1 

Relative Bias of Standard Error Estimator 

Expenditure Income 

Complete Response:   
   

GREG d  

d  

w  

w  

d  

w  

d  

w  

0.7 

0.7 

1.3 

1.3 

-1.3 

-1.3 

-1.0 

-1.0 
     

Classical Raking  d  

d  

w  

w  

d  

w  

d  

w  

0.7 

0.7 

1.2 

1.2 

-1.4 

-1.4 

-1.0 

-1.0 
     

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

0.6 

0.6 

0.6 

1.2 

1.2 

1.2 

-1.5 

-1.5 

-1.4 

-1.1 

-1.1 

-1.1 
     

Multiplicative nonresponse:   
   

GREG d  

d  

w  

w  

d  

w  

d  

w  

-38.2 

-38.2 

-0.3 

-0.3 

-40.4 

-40.3 

-2.7 

-2.8 
     

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-38.2 

-38.2 

-0.3 

-0.3 

-40.3 

-40.3 

-2.7 

-2.8 
     

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-38.2 

-38.2 

-38.2 

-0.3 

-0.3 

-0.4 

-40.3 

-40.3 

-40.3 

-2.7 

-2.7 

-2.8 
     

Additive nonresponse:   
   

GREG d  

d  

w  

w  

d  

w  

d  

w  

-38.1 

-38.1 

-0.2 

-0.2 

-40.5 

-40.5 

-3.0 

-3.0 
     

Classical Raking d  

d  

w  

w  

d  

w  

d  

w  

-38.1 

-38.1 

-0.2 

-0.2 

-40.5 

-40.5 

-3.0 

-3.0 
     

‘ML’ Raking d  

d  

d  

 w  

w  

w  

d  

w  

df  

d  

w  

df  

-38.2 

-38.2 

-38.1 

-0.2 

-0.3 

-0.3 

-40.5 

-40.5 

-40.4 

-3.0 

-3.0 

-3.0 
     

1 see text following equation (4.8), where ,df d  and w  correspond to B̂  in (i), (ii) and (iii) respectively. 
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7. Conclusions 
 

The simulation study showed little difference between 

the bias or variance properties of the three calibration 

estimators considered: the GREG estimator, the classical 

raking estimator and the maximum likelihood raking 

estimator. Some small differences in the distribution of 

extreme weights were observed: the maximum likelihood 

raking estimator had the most very large weights and the 

GREG estimator was the only one with a few negative 

weights.  

Amongst the variance estimators, the main finding was 

the contrast between the approach which weights residuals 

by the design weight and that which weights them by the 

calibrated weight. It was found that the latter variance 

estimator always had smaller bias and that this effect was 

very marked in the presence of nonresponse, when the 

former estimator could be severely biased. The bias of the 

latter estimator was generally small and the coverage level 

of the associated confidence intervals was generally close to 

the nominal coverage. 

Alternative ways of weighting the observations in 

constructing the regression coefficients, when calculating 

the residuals in the linearization variance estimator, were 

considered but little effect was observed and there was no 

evidence that this choice is important in practice.  

In general, the findings for the categorical variables in the 

British Labour Force Survey were remarkably similar to the 

findings for the continuous variables in the German Income 

and Expenditure survey. 
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Linearization variance estimators  
for model parameters from complex survey data 

Abdellatif Demnati and J.�.K. Rao 1 

Abstract 

Taylor linearization methods are often used to obtain variance estimators for calibration estimators of totals and nonlinear 

finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be expressed as 

smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead to multiple 

variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the variance 

estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the estimator under 

an assumed model, and (ii) validity under a conditional repeated sampling framework. Demnati and Rao (2004) proposed a 

unified approach to deriving Taylor linearization variance estimators that leads directly to a unique variance estimator that 

satisfies the above considerations for general designs. When analyzing survey data, finite populations are often assumed to 

be generated from super-population models, and analytical inferences on model parameters are of interest. If the sampling 

fractions are small, then the sampling variance captures almost the entire variation generated by the design and model 

random processes. However, when the sampling fractions are not negligible, the model variance should be taken into 

account in order to construct valid inferences on model parameters under the combined process of generating the finite 

population from the assumed super-population model and the selection of the sample according to the specified sampling 

design. In this paper, we obtain an estimator of the total variance, using the Demnati-Rao approach, when the characteristics 

of interest are assumed to be random variables generated from a super-population model.  We illustrate the method using 

ratio estimators and estimators defined as solutions to calibration weighted estimating equations. Simulation results on the 

performance of the proposed variance estimator for model parameters are also presented. 
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1. Introduction 

 
In survey sampling, estimation of a finite population total 

1 ( )�

k kY y Y y== ∑ ≡  is often of interest, where �  is the size 

of the finite population. For a general sampling design with 

positive inclusion probabilities ,kπ  a custumary design 

unbiased estimator of the total Y  is given by Ŷ =  

1/ ( ) ,�

i s i i k k ky d s y∈ =∑ π ≡ ∑  where s  is a sample, ( )kd s =  

( ) /k ka s π  are the design weights with ( ) 1ka s =  if k s∈  

and ( ) 0ka s =  otherwise. We use operator notation and 

write 1
ˆ( ) ( )�

k k kY z d s z== ∑  so that ˆ ˆ( ).Y Y y=  Henceforth, 

all the sums are considered on the whole population and 

hence write 1

�

k k ky y=∑ = ∑  and ˆ( ) ( ) ,k kY z d s z= ∑  to 

simplify the notation. Again, using the operator notation, we 

denote an unbiased estimator of the variance of ˆ( )Y z  as a 

quadratic function, ( ),zϑ  in the kz ’s. 

More complex estimators of a total Y  based on known 

population auxiliary information, such as ratio and 

regression estimators, and estimators of more complex 

parameters obtained as solutions to sample weighted 

estimating equations, such as estimators of “census” 

logistic regression coefficients, are also often used in 

practice. Estimators that can be expressed as a general 

functional ˆ( )T M  have also been studied, where M̂  

denotes a measure that allocates the weight ( )kd s  to ;ky  

for example, ˆ ˆ( ) ( )T M xdM x= ∫ = ( )k kd s y∑  if the popu-

lation parameter is the total ( ) ( ) ,T M xdM x Y= ∫ =  where 

the measure M  allocates a unit mass to each ky  (Deville 

1999). Large-sample estimation of the variance of such 

complex estimators, θ̂  say, has received considerable 

attention in the literature. In particular, Taylor linearization 

methods of estimating the variance of θ̂  are generally 

applicable to any sampling design that permits an unbiased 

variance estimator ( )zϑ  of ˆ( ).Y z  Binder (1983) studied 

estimators θ̂  that are solutions to weighted estimating 

equations and applied Taylor linearization to obtain a 

variance estimator that can be expressed as ( ),zϑ ɶ  where the 

linearized variable kzɶ  depends on unknown parameters, and 

kzɶ  is replaced by an estimator kz  that may be based on the 

substitution method. Deville (1999) derived a Taylor 

linearization variance estimator of the functional ˆ( )T M  as 

( ),zϑ ɶ  where kz =ɶ  ( ; )T kI M y  denotes the influence 

function of T  at ,ky  and then replaced kzɶ  by the sample 

estimator 1
ˆ( ; ).k T kz I M y=  For example, when θ̂  is the 

ratio estimator ˆ ˆ ˆ( / )Y X X RX=  of the total ,Y  where 
ˆ ˆ( )X Y x=  and ( )X Y x=  is the known total of an auxiliary 

variable ,x  we get kz =ɶ  k ky Rx−  and 1
ˆ .k k kz y Rx= −  

However, ˆ( / )kz X X=  ˆ( )k ky Rx−  is also a candidate to 

estimate kzɶ  and the resulting ( )zϑ  is often preferred over 

1( );zϑ  see Demnati and Rao (2004). Thus the choice of an 
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estimator of kzɶ  is somewhat arbitrary under Deville’s 

approach. 

Demnati and Rao (2004) studied general estimators that 

can be expressed as smooth functions of the weights 

1( ) { ( ), ..., ( )} ,T

�s d s d s=d  say ˆ ( ( )),f sθ = d  and obtained 

a Taylor linearization variance estimator directly as ( )zϑ  

with known linearized variables ( )( ) / |k k sz f b b == ∂ ∂ b d  

without estimating kzɶ  first and then replacing it by an 

estimator. For example, in the case of the ratio estimator 

their method automatically leads to kz  given above. This 

method can be applied to a variety of estimators including 

estimators of “census” logistic regression parameters based 

on calibration weights (Demnati and Rao 2004). Previous 

work on direct variance estimation includes Binder (1996). 

When analyzing survey data, the population values ,ky  

1, ..., ,k �=  are often assumed to be generated from a 

super-population model, and the user is often interested in 

making inferences on the model parameters. Let �θ  be a 

“census” parameter, i.e., an estimator of a model parameter 

θ  when the population ky -values are all known, and let θ̂  

be a design-unbiased estimator of ,�θ  the “census” 

parameter. Suppose that θ̂  is design-model unbiased for ,θ  

i.e., ˆ( ) ,m pE E θ = θ  where mE  and pE  respectively denote 

the expectations with respect to the design and the model. 

Then the total variance of θ̂  is 2ˆ ˆ( ) ( )m pV E Eθ = θ − θ  which 

can be decomposed as 

ˆ ˆ( ) ( ) ( ),m p m �V E V Vθ = θ + θ  (1.1) 

where 2ˆ ˆ( ) ( )p p �V Eθ = θ − θ  is the design variance of θ̂  and 

( )m �V θ  is the model variance of .�θ  It follows from (1.1) 

that the total variance may be estimated using a design-

based estimator of ˆ( )pV θ  if the last term ( )m �V θ  is 

negligible relative to ˆ( ).m pE V θ  In that case, the distinction 

between �θ  and θ  can be ignored (Skinner, Holt and 

Smith 1989, page 14). On the other hand, it is necessary to 

estimate the total variance ˆ( )V θ  when the model variance 

( )m �V θ  is not negligable relative to ˆ( ).m pE V θ  This 

requires consideration of the joint design and model random 

processes. Molina, Smith and Sugden (2001) argued that the 

combined process of generation of the finite population and 

selection of the sample should be the basis for analytical 

inferences on model parameters. Rubin-Bleuer and Şchiopu-

Kratina (2005) have provided a mathematical framework for 

joint model and design-based inference. However, a broadly 

applicable method is needed for the estimation of total 

variance. The main purpose of this paper is to provide such 

a method, by extending the Demnati-Rao approach for finite 

population parameters.  

In Section 2, we consider the case of a scalar parameter 

θ  and present linearization variance estimators by 

expanding the Demnati and Rao (2004) approach. The 

method is illustrated for the special case of a ratio estimator 

of a super-population mean .θ  Results of Section 2 are 

extended in Section 3 to estimators of a vector parameter θ  

obtained as solutions to weighted estimating equations, and 

the method is illustrated for the special case of parameters of 

a logistic regression model. Simulation results are also 

presented. 

 
2. Scalar model parameter 

 
2.1 Point estimators  

Consider a finite population U  of �  elements, and let 

( ) ( ) /k k kd s a s= π  be the design weights attached to the 

population element ,k  where ( ) 1ka s =  if element k  is in 

the sample s  and ( ) 0ka s =  otherwise, and kπ  is the 

inclusion probability associated with .k  We consider 

estimators θ̂  of a scalar parameter θ  that can be expressed 

as functions of random variables under the design and the 

assumed model. In particular, ˆ ( ),dfθ = A  where dA  is a 

( 1)p �+ ×  matrix with columns 1 2( , , ...,k k k k kd h d h=d  

( 1) 1 ( 1)) ( , ..., )T T
k p k k p kd h d d+ +≡  where ( )k kd d s=  is ran-

dom under the design, 1 1,kh =  and ikh ( 2, ..., 1)i p= +  are 

random under the model. 

For example, consider the ratio model with fixed 

covariates :kx  

2
( ) , ( ) , Cov ( , ) 0,

, , 1, ..., ,

m k k m k k m k tE y x V y x y y

k t k t �

= β = σ =

≠ =  (2.1)
 

where , ,m mE V  and Covm  denote model expectation, model 

variance, and model covariance respectively and 2 0.>σ  

Suppose that we are interested in estimating the super-

population mean 1( ) ( )m m kE Y � E y X−θ = = ∑ = β  where 

Y  is the finite population mean of .y  In this case, a ratio 

estimator of θ  is given by 

ˆ ˆ ˆ ˆ( / ) ,X Y X XRθ = ≡  (2.2) 

where ˆ ( )k kY d s y= ∑  and ˆ ( )k kX d s x= ∑  are the design-

unbised estimators of the totals Y and ,X  and X  is the 

know population mean of .x  We can write the ratio 

estimator (2.2) in the form 2 1
ˆ ( ) / ,k k kX d d xθ = ∑ ∑  where 

1 ( )k kd d s=  and 2 ( ) .k k kd d s y=  This is a special case of 

( )df A  with 1p =  and 2 .k kh y=  

Let pE  be the design expectation and m pE E E=  be the 

total expectation. Then, we have 1 1( ) (1) 1k m kE d E= = ≡ µ  

and ( ) ( ) ,ik m ik ikE d E g= ≡ µ 2, ..., 1,i p= +  noting that 

( ( )) 1.p kE d s =  We assume that ( ) ,f µ = θA  where µA  is a 

( 1)p �+ ×  matrix with columns 1 2( , , ...,k k k= µ µµ  

( 1) ) .T
p k+µ  Hence, θ̂  is asymptotically pm -unbised for .θ  

In the special case of the ratio estimator, we have 

( ) ,f Xµ = β = θA  noting that 1 1kµ =  and 2 .k kxµ = β  
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2.2 Linearization variance estimator  
We first derive an estimator of the total variance of a 

linear estimator ˆ ,T

k kU = ∑u d  where ku  is a vector of 

constants. The total variance of Û  may be decomposed as 

ˆ ˆ ˆ( ) ( ) ( ) ,m p m pV U E V U V E U I II= + ≡ +  (2.3) 

where pV  and mV  denote design variance and model 

variance respectively. A design-unbiased estimator of the 

component I  of the total variance (2.3) is obtained by 

estimating the design variance ˆ( )pV U  for fixed 

1 ( 1)( , ..., ) .T
k k p kh h +=h  Now, noting that ˆ ( )k kU b d s= ∑  is 

the standard Narain-Horvitz-Thompson (NHT) estimator of 

the total kU b= ∑  when T

k k kb = u h  are fixed conditionally, 

we can use either the Sen-Yates-Grandy (SYG) variance 

estimator for fixed sample size designs or the Horvitz-

Thompson (HT) variance estimator for arbitrary designs. 

The SYG estimator is given by 

SYG

2

ˆest( ) ( )

( )
( ) ( ) ,k t kt

kt k tk t
k t

I U

d s b b
<

= ϑ

π π − π
= −

π π
∑∑

 
(2.4)

 

where ( ) { ( ) ( )}/kt k t ktd s a s a s= π  and ktπ  is the inclusion 

probability for units k  and t ( ).k t≠  The HT variance 

estimator is given by 

HT

( )ˆest( ) ( ) ( ) ,kt k t
kt k t

k t

I U d s b b
π − π π

= ϑ =
π π

∑∑  (2.5) 

where ( ) ( ).kk kd s d s=  For the special case of stratified 

random sampling (2.4) and (2.5) are identical. 

Turning to the component II  of the total variance (2.3), 

we have ˆ( ) ( ) Cov ( , )T T
m p m k k k m k t tV E U V= ∑ = ∑∑u h u h h u  

and a pm -unbiased estimator is therefore given by 

est( ) ( ) cov ( , ) ,T

kt k m k t tII d s=∑∑ u h h u  (2.6) 

after replacing Cov ( , )m k th h  by an estimator cov ( , ).m k th h  

The estimator of total variance (2.3) is now given by 

est( ) est( ).I II+  We denote it, in operator notation, as 

( ).ϑ u  

We now turn to the estimation of total variance of ˆ.θ  

Following Demnati and Rao (2004), a Taylor expansion of 

θ̂ − θ  may be written as 

ˆ ( )T

k k kθ − θ ≈ −∑ ɶz d µ  (2.7) 

where ( ) / |
bk b kf

µ== ∂ ∂ɶ A Az A b  and bA  is a ( 1)p �+ ×  

matrix with thk  column ,kb  a vector of arbitrary real 

numbers. The approximation (2.7) is valid for any θ̂  that 

can be expressed as a smooth function of estimated totals. 

Following Demnati and Rao (2004), a linearization 

estimator of the total variance is now given by 

DR
ˆ( ) ( ),ϑ θ = ϑ z  (2.8) 

which is obtained from ( )ϑ u  by replacing ku  by the 

“linearized variable” ( ) / | .
b dk b kf == ∂ ∂ A Az A b  A rigorous 

theoretical justification of (2.8) follows along the lines of 

Deville (1999). 
 
2.3 Special case of ratio estimator  

For the ratio estimator ˆ ˆX Rθ =  of the model parameter 

,Xθ = β kz  reduces to 

1 2
ˆ ˆ( / ) ( ,1) ( , ) .T T

k k k kX X R x z z= − =z  (2.9) 

Further, kb  in (2.4) or (2.5) is replaced by 

1 2

ˆ ˆ ˆ( / ) ( ) ( / ) ,

T

k k k k k

k k k

z z y

X X y R x X X e

= +

= − ≡

z h
 

using (2.9). Also, replacing ku  by kz  in (2.6) we get 

2 2cov ( , ) cov ( , ).T

k m k t t k t m k tz z y y=z h h z  

Under the ratio model (2.1) with unspecified model variance 
2( ) ,m k kV y = σ 1, ..., ,k �=  we can estimate 2

kσ =  
2( )m k kE y x− β  by 2ˆ( )k ky Rx−  and letting cov ( , )m k ty y =  

0, for .k t≠  

We now study the special case of simple random 

sampling without replacement. In this case, both (2.4) and 

(2.5) reduce to 

2

21
est( ) 1 ,e

X n
I s

x n �

   = −  
  

 (2.10) 

where 2 2( ) /( 1),e k ks a s e n= ∑ −  and (2.6) reduces to  

2

2( 1)
est( ) .e

X n
II s

x n�

− 
=  
 

 (2.11) 

Hence, using (2.10) and (2.11), the variance estimator (2.8) 

reduces to 

DR

2

2

ˆ( ) est( ) est( )

1 1
.e

I II

X �
s

x n �

ϑ θ = +

− 
=  
 

 (2.12)
 

It is interesting to note that the “g-weight” /X x  appears 

automatically in DR
ˆ( ),ϑ θ  given by (2.12), and that the finite 

population correction 1 /n �−  is absent in DR
ˆ( )ϑ θ  unlike 

in ( )est I  given by (2.10).  

In the customary approach to the estimation of total 

variance (see e.g., Korn and Graubard 1998) ˆ( )V θ  is first 

written as 
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2 2

ˆ ˆ ˆ( ) ( ) ( )

ˆ( ) ( )

ˆ( ) ( ) ,

m p m p

m p m

m p m k k

V E V V E

E V V Y

E V � E y x−

θ = θ + θ

≈ θ +

= θ + −β∑
 

(2.13)

 

under the ratio model with unspecified 2,kσ 1, ..., .k �=  The 

first term ˆ( )m pE V θ  in (2.13) is then estimated by a design-

consistent estimator of ˆ( ),pV θ  typically by (2.10) without 

the g-factor 2( / ) .X x  The second term is estimated by 
2 2 1 2ˆ( ) ( ) ( ) ( 1) .k k k e� d s y R x n� n s− −∑ − = −  The sum of 

the two estimated terms then equals (2.12) without the 

g-factor. We denote this customary variance estimator by 

cus
ˆ( ).ϑ θ  On the other hand, if (2.10) with the g-factor is 

used to estimate ˆ( ),pV θ  the sum of this estimated term and 

the previous estimator of the second term leads to a 

“hybrid” variance estimator  

1 2

mix
ˆ( ) est( ) ( ) ( 1) ,eI n� n s−ϑ θ = + −  

where the g-term is absent in the last term. It is clear from 

the above results that the choice of estimator of total 

variance under the customary approach is not unique, unlike 

under the proposed approach. 

If the parameter of interest is / Xβ = θ  instead of ,θ  

then ˆ ˆ ˆ/ X Rβ = θ =  and DR
ˆ( )ϑ β  under simple random 

sampling is give by 

2 2 2

DR DR

1 1ˆ ˆ( ) ( ) .e

�
X x s

n �

− − −
ϑ β = ϑ θ =  (2.14) 

The customary approach leads to the same variance 

estimator, (2.14). 

 

2.4 Simulation study  
We conducted a small simulation study to examine the 

performances of different variance estimators, both un-

conditionally and conditionally on ˆ .X  We first generated 

R = 2,000 finite populations 1{ , ..., }�y y  each of size � =  

393, from the ratio model 

1/ 22 ,k k k ky x x= + ε  (2.15) 

with independent values kε  generated from (0,1),�  where 

the fixed kx  are the “number of beds” for the Hospitals 

population studied in Valliant, Dorfman and Royall (2000, 

page 424-427). One simple random sample of specified size 

n  is drawn from each generated population. Our parameter 

of interest is ,Xθ = β  where 2.β =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Averages of variance estimates for selected sample sizes compared to estimated 

MSE of the ratio estimator. 
DR

ϑϑϑϑ = DR var. est., 
s

ϑϑϑϑ = Sampling component: ratio 
model 
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Simulated total MSE of the ratio estimator ˆ ( / )X y xθ =  

is calculated as 1 2,000 2

1
ˆ ˆ( ) ( ) ,r rM R−

=θ = ∑ θ − θ  where ˆ
rθ  is 

the value of θ̂  for the thr  simulated sample and ( , )y x  are 

the sample means. We calculated the total variance estimate 

DR
ˆ( ),ϑ θ  and its components est( )s Iϑ =  and est( )m IIϑ =  

from each simulated sample r  and their averages DR ,ϑ ,sϑ  

and mϑ  over .r  Figure 1 gives a plot of the average of 

variance estimates, DRϑ  and ,sϑ  and the simulated total 

MSE for 20, 40, ..., 380, 393.n =  In the case of ,n �=  

0.sϑ =  It is seen from Figure 1, that DRϑ  is approxiamatly 

unbiased, whereas sϑ  leads to severe underestimation as the 

sample size, ,n  increases.  

We also examined the conditional performance of the 

variance estimators under simple random sampling given 

,x  by conducting another simulation study for inference on 

,θ  using model (2.15). The study is similar to the study of 

Royall and Cumberland (1981) for inference on the finite 

population mean � Yθ =  from a fixed population 

1{ , ..., }.�y y  We generated R = 20,000 finite populations 

1{ , ..., },�y y  each of size � = 393 from (2.15) using the 

number of beds as ,kx  and from each population we then 

selected one simple random sample of size n = 100. We 

arranged the 20,000 samples in ascending order of 

x -values and then grouped them into 20 groups each of 

size 1,000 such that the first group, 1,G  contained 1,000 

samples with the smallest x -values, the next group, 2,G  

contained the next 1,000 smallest x -values, and so on to get 

1 20, ..., .G G  For each of the 20 groups so formed, we 

calculated the average values of the ratio estimates 
ˆ ( / )X y xθ =  and the mean estimates ,y  and the resulting 

conditional relative bias (CRB) in estimating 2 ;Xθ =  see 

Figure 2. It is clear from Figure 2 that y  is conditionally 

biased unlike ˆ :θ  negative CRB (-14%) for 1G  increasing to 

positive CRB (+14%) for 20.G  Note that both y  and θ̂  are 

unconditionally unbiased for .θ  The conditional bias of θ̂  

and y  in estimating the model parameter θ  is similar to the 

conditional bias in estimating the “census” parameter 

,� Yθ =  as observed by Royall and Cumberland (1981). 

We also calculated the conditional MSE of θ̂  and the 

associated CRB of the variance estimators DR ,ϑ cusϑ  and 

mixϑ  based on the average values of DR ,ϑ cusϑ  and mixϑ  in 

each group; see Figure 3. It is evident from Figure 3 that 

CRB of cusϑ  ranges from -28% to 20% across the groups 

whereas DRϑ  exhibits no such trend and its CRB is less 

than 5% in absolute value except for 6G  and 20.G  Also, the 

CRB of mixϑ  is largely negative and below that of DRϑ  for 

the first half of the groups and above for the second half, but 

mixϑ  exhibits no visible trends unlike cus.ϑ  

Figure 4 reports the conditional coverage rates (CCR) of 

normal theory confidence intervals based on DR ,ϑ cus,ϑ  

mixϑ  and sϑ  (ignoring the component )mϑ  for nominal 

level of 95%. As expected, the use of sϑ  leads to severe 

undercoverage because the sampling fraction, 100/393, is 

significant. On the other hand, CCR associated with DRϑ  is 

closer to nominal level across groups, while cusϑ  exhibits a 

trend across groups with CCR ranging from 91% to 97%. 

Further, CCR associated with mixϑ  is slightly below that of 

DRϑ  for the first half of the groups but mixϑ  and DRϑ  

perform similarly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Conditional relative bias of the expansion and ratio estimators: ratio model 
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Figure 3 Conditional relative bias of variance estimators 
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Figure 4 Conditional coverage rates of normal theory confidence intervals based on 

DR
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ϑϑϑϑ  for nominal level of 95%: ratio model 
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3. Calibration weighted estimating equations 
 
3.1 Estimators of model parameters 
 

Suppose that the super-population model on the 

responses ky  is specified by a generalized linear model 

(McCullagh and Nelder 1989) with mean ( )m kE y =  

( ) ( ),T

k khµ =θ θx  where kx  is a 1p ×  vector of explanatory 

variables, θ  is the p -vector of model parameters and (.)h  

is a “link” function. For example, ( )h a a=  gives a linear 

regression model and ( ) /(1 )a ah a e e= +  gives a logistic 

regression model for binary responses .ky  

We define census estimating equations (CEE) , based on 

estimating functions ( ),k θl  as ( ) ( )k= ∑ =θ θ 0l l  with 

( ) ,m kE =θ 0l  and the solution to CEE gives the census 

parameter vector .�θ  For example, ( ) ( ( ))k k k ky= −θ µ θl x  

for linear and logistic regression models. We use 

generalized regression (GREG) weights ( )kw s =  

( ) ( ( )),k kd s g sd  where the “g-weights” are given by 

-1
ˆ( ( )) 1 ( ) ( ) ,T T

k k k k k k kg s d s c c = + −  ∑d T T t t t  

for specified ,kc  where ˆ ( )k kd s= ∑T t  is the HT estimator 

of the known total T  of a 1q ×  vector of calibration 

variables kt  and ( )sd  is the 1� ×  vector of the weights 

( ).kd s  The GREG weights, ( ),kw s  have the calibration 

property ( )k kw s∑ =t T  and lead to efficient estimators 

( )k kY w s y= ∑ɶ  of totals ,kY y= ∑  when ky  and kt  are 

linearly related (Särndal, Swensson and Wretman 1989, 

chapter 6). 

We use the calibration weights, ( ),kw s  to estimate the 

CEE. The calibration weighted estimating equations are 

given by 

( ) ( ) ( ) ( ) ( ( )) ( ) .k k k k kw s d s g s= = =∑ ∑θ θ θ 0ɶl l d l  (3.1) 

The solution to (3.1), obtained by the Newton-Raphson-

type iterative method, gives the calibration-weighted 

estimator θɶ  of ,θ  and θɶ  is approximately design-model 

unbiased for ,θ  i.e., ( ) .E ≈θ θɶ  It follows from (3.1) that θɶ  

is of the form ( )df A  with ( ( ), ( ) ( )) ,T T

k k k kd s d s= θd l  

where ( )df A is a 1p ×  vector and dA  is a ( 1)p �+ ×  

matrix with thk  column .kd  Here we have 1 1kh =  and 

2 ( 1)( , ..., ) ( ).k p k kh h + = θl  
 
3.2 Linearized variance estimators  

We first extend the result on variance estimation for the 

scalar case ˆ T

k kU = ∑b d  (Section 2.2) to the vector case 
ˆ ( ),T

k k k kd s= ∑ = ∑U U d b  where k k k=b U h  is a p-vector 

and kU  is a ( 1)p p× +  matrix with rows ,T
jku 1, ..., .j p=  

In this case, the SYG variance estimator (2.4) is changed to 

 

SYG
ˆ( ) ( )

( )
( ) ( ) ( ) .Tk t kt

kt k t k tk t
k t

I U

d s
<

= ϑ

π π − π
= − −

π π
∑∑

est

b b b b
 

(3.2)
 

Similarly, the H-T variance estimator (2.5) is changed to 

HT

( )ˆ( ) ( ) ( ) .
Tkt k t

kt k t

k t

I U d s
π − π π

= ϑ =
π π

∑∑est b b  (3.3) 

Turning to the component II  of the total variance of ˆ,U  

(2.6) is changed to 

( ) ( ) cov ( , ) .T

kt k m k t tII d s=∑∑est U h h U  (3.4) 

The total variance of Û  is estimated by the sum of (3.2) 

and (3.4) for fixed sample size designs or by the sum of 

(3.3) and (3.4) for arbitrary designs. 

A linearization variance estimator of the total variance of 

θɶ  is obtained from the estimated total variance estimator of 

Û  by replacing kU  by the linearized variable k =Z  

( ) / | .
b db k =∂ ∂ A Af A b  Following the implicit differentiation 

method of Demnati and Rao (2004), kZ  reduces to 

-1 ˆ[ ( )] ( ( )) ( , ),T
k k l k pg s= −θɶɶZ J d B t I  

with 
-1

ˆ ( ) ( ) ( ),T T
l k k k k k k k kd s c d s c =  ∑ ∑ θɶB t t t l  

( ) ( ) ( ( )) ( ( ) / ),T

k k kd s g s= − ∂ ∂∑θ θ θɶJ d l  

and pI  is the p p×  identity matrix.  

After some simplification, the first component ( )Iest  is 

given by (3.2) or (3.3) with kb  changed to 

-1[ ( )] ( ) ( ( )),k k k ke g s= θ θɶ ɶɶZ h J d  (3.5) 

where 

ˆ( ) ( ) .T

k k l k= −θ θɶ ɶe l B t  

Similarly, the second component ( )IIest  simplifies to  

-1 2 -1

( )

[ ( )] ( ) ( ( )) ( ) ( )[ ( )] ,T

k k k k

II

d s g s

=

∑

est

θ θ θ θɶ ɶ ɶ ɶɶ ɶJ d l l J
 

(3.6)

 

if Cov [ ( ) ( )]T

m k t =θ θ 0ɶ ɶl l  for .k t≠  

The total variance estimator of θɶ  is now estimated by  

DR ( ) ( ) ( ).I IIϑ = +θ est estɶ  (3.7) 

This variance estimator of θɶ  automatically takes account of 

the g-weights as in Section 2. 

A customary variance estimator of ,θɶ cus ( ),ϑ θɶ  is 

obtained from (3.7) by ignoring the g-weights in (3.5) and 

(3.6). Similarly, a hybrid variance estimator, mix ( ),ϑ θɶ  is 
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obtained from (3.7) by retaining the g-weights in ( )Iest  

and ignoring them in ( ).IIest  
 
3.3 Simulation study  

We conducted a simulation study to compare the relative 

performances of the three variance estimators DR ,ϑ cus,ϑ  

and mix,ϑ  for the special case of a logistic regression model: 

     ( ) ( ) exp( ) /{1 exp( )}T T

m k k k kE y = µ = +θ θ θx x  (3.8) 

( ) ( ) (1 ( )), Cov ( , ) 0, .m k k k m k tV y y y k t= µ − µ = ≠θ θ  

In this case, we have ( ) ( ( )),k k k ky= − µθ θl x  and 

( ) ( ) ( ( )) ( )(1 ( )).T

k k k k k kd s g s= µ − µ∑θ θ θɶJ d x x  

For the simulation study, we set (1, ) ,T

k kx=x  where 

the kx  denote the number of beds for the Hospitals 

population of size � = 393 studied in Section 2.2. We 

implemented post-stratification by dividing the population 

into two classes with 1 171� =  hospitals k  having 

350kx <  in class 1 and 2 122� =  hospitals k  with 

350kx ≥  in class 2. Here, ˆ( ( )) / ,k h hg s � �=d 1, 2,h =  if 

k  belongs to class ,h  where ˆ ( )h k hk� d s t= ∑  is the 

design-weight estimator of ,h�  and 1 2( , )T

k k kt t=t  is the 

vector of class indicator variables .hkt  

We generated R = 40,000 finite populations 1{ , ..., },�y y  

each of size � = 393, assuming the logistic regression 

model (3.8) with 0 1( , ) ( 1, 0.005) .T T= θ θ = −θ  The para-

meter of interest is 1θ = 0.005. From each generated 

population, we selected one simple random sample of size 

n = 150, and then obtained the calibration-weighted esti-

mated 1θɶ  and associated variance estimators est( )I =  

1( ),sϑ θɶ DR 1( ),ϑ θɶ cus 1( )ϑ θɶ  and mix 1( )ϑ θɶ  from each sample 

.r  We obtained the averages of the estimates and the 

variance estimates as 1
ˆav( )θ ≈ 0.00514, DRav( )ϑ ≈  0.0989, 

cusav( )ϑ ≈ 0.0987, mixav( )ϑ ≈ 0.0988, and av( )sϑ ≈ 0.0613. 

Also, the estimated total MSE of 1θ̂  is equal to 0.0998. 

Hence, unconditionally the estimator 1θɶ  is approximately 

unbiased for 1,θ  and the bias of the three variance 

estimators DR ,ϑ cusϑ  and mixϑ  is negligible. On the other 

hand ignoring the second component and using only the 

first component, 1est( ) ( ),sI = ϑ θɶ  leads to severe 

underestimation, as expected. 

We also examined the conditional performances of the 

three variance estimators along the line of Section 2.2. We 

arranged the 40,000 samples in ascending order of the 

sample size, 1,n  in class 1, and then grouped the samples 

into twenty groups, each of size 2,000, such that the first 

group, 1,G  contained the 2,000 samples with the smallest 

1n -values, the second group, 2,G  contained the 2,000 

samples with the next smallest 1n -values, and so on to get 

twenty groups, 1 20, ..., .G G  

We calculated the conditional MSE of 1θɶ  and the 

associated conditional relative bias (CRB) of the variance 

estimators DR ,ϑ cusϑ  and mixϑ  based on the average values 

of DR ,ϑ cusϑ  and mixϑ  in each group; see Figure 5. We can 

see from Figure 5 that CRB of cusϑ  ranges from 20% to 

-20% across the groups, whereas DRϑ  exibits no such trend 

and its CRB is less than 5% in absulate value except for two 

groups. Also, the CRB of mixϑ  exhibits a trend but less 

prononced than cus.ϑ  Figure 6 reports the conditional 

coverage rates (CCR) of normal theory intervals based on  

DR ,ϑ cusϑ  and mixϑ  for nominal level of 95%. We can see 

from Figure 6 that cusϑ  exhibits a trend across groups with 

CCR ranging from 97% to 92%, whereas CCR associated 

with DRϑ  is close to the nominal level across groups. 

Further, CCR associated with mixϑ  is slighthy above that of 

DRϑ  for the first half of the groups and slighty below for the 

remaing groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Conditional relative bias of variance estimators: logistic regression 
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Figure 6 Conditional coverage rates of normal theory confidence intervals for nominal level of 95%: logistic regression 

 

 

Concluding remarks 
 

We have studied the estimation of total variance of 

estimators of model parameters under an assumed super-

population model. Our approach leads directly to a 

linearization variance estimator which is shown to perform 

well under a conditional framework when calibration 

weights are used for estimation. We are currently inves-

tigating extensions of our method to estimation of total 

variance under imputation for item nonresponse and 

integration of two independent surveys. 
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Statistical foundations of cell-phone surveys 

Kirk M. Wolter, Phil Smith and Stephen J. Blumberg 1 

Abstract 

The size of the cell-phone-only population in the USA has increased rapidly in recent years and, correspondingly, 

researchers have begun to experiment with sampling and interviewing of cell-phone subscribers. We discuss statistical 

issues involved in the sampling design and estimation phases of cell-phone studies. This work is presented primarily in the 

context of a nonoverlapping dual-frame survey in which one frame and sample are employed for the landline population and 

a second frame and sample are employed for the cell-phone-only population. Additional considerations necessary for 

overlapping dual-frame surveys (where the cell-phone frame and sample include some of the landline population) are also 

discussed. We illustrate the methods using the design of the National Immunization Survey (NIS), which monitors the 

vaccination rates of children age 19-35 months and teens age 13-17 years. The NIS is a nationwide telephone survey, 

followed by a provider record check, conducted by the Centers for Disease Control and Prevention. 
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1. Introduction 

 
The number of persons with cell phones in the USA has 

increased rapidly in recent years, and the percent of adults 

living in households with cell phones is expected to soon 

exceed the percent living in households with landlines 

(CTIA 2008; Blumberg and Luke 2008; Arthur 2007; Ehlen 

and Ehlen 2007). Correspondingly, survey researchers have 

begun to experiment with the sampling and interviewing of 

cell-phone subscribers (Lavrakas, Shuttles, Steeh and 

Fienberg 2007). This article is about the issues of statistical 

design and estimation that arise in cell-phone surveys. It 

emphasizes theoretically rigorous but practical solutions to 

the emergent problems survey researchers are facing in cell-

phone surveys today. 

Standard telephone surveys driven by random-digit-

dialing (RDD) sampling only cover the population of 

households that have at least one working landline 

telephone actually used for voice communications. In an 

RDD survey, one assumes that the landline telephone is a 

household appliance and that all persons in the population 

are attached to one and only one household. Thus, one can 

sample people indirectly by sampling their telephone 

numbers and proceed from there to use reasonably standard 

and well-known methods of estimation.  

The cell-phone survey brings a paradigm shift and new 

challenges. Most people think of the cell phone as a 

personal appliance, not a household device. Some people do 

share a cell phone, including 10-20 percent of cell-phone-

only adults (Carley-Baxter, Peytchev and Lynberg 2008), 

but many do not, and thus it cannot be assumed that all 

residents of a household can be reached through the same 

cell-phone line. Some residents of a household can be 

reached through more than one cell-phone line. Some 

residents can be reached only by a cell-phone line while 

others can be reached through both cell and landline 

telephones. Thus, in the cell-phone survey, the household 

may no longer provide the same unifying organization that it 

does in standard telephone surveys. 

To address the growing risk of bias (due to under-

coverage) in telephone surveys, one can consider dual-frame 

telephone survey designs that include both an RDD sample 

of landline telephones and a sample of cell-phone lines. The 

telephone numbers on the two sampling frames are non-

overlapping, but the corresponding people and households 

that may be the objects of the survey are partially 

overlapping.  

A rigorous theory of estimation for such telephone 

survey designs has been lacking, although some initial 

descriptions of weighting have been advanced by Brick, 

Dipko, Presser, Tucker and Yuan (2006), Brick, Edwards 

and Lee (2007), and Frankel, Battaglia, Link and Mokdad 

(2007). In this article, we provide a general theory of 

unbiased estimation for population totals in the context of 

dual-frame telephone survey designs and derive the 

corresponding survey weights. We show what information 

must be collected in the survey itself to enable the 

calculation of the sampling weights. 

To introduce ideas, we let A signify the portion of the 

overall population of interest accessible through the landline 

sampling frame, let B denote the portion accessible through 

the cell-phone sampling frame, and let C denote the portion 

not accessible through either frame (the phoneless 

population and other relatively small components of the 
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total population). We let a be the subpopulation in A not 

accessible through cell-phone lines (the landline-only 

population), let b be the subpopulation in B not accessible 

through landlines (the cell-phone-only population), and let 

ab be the subpopulation accessible through both landlines 

and cell-phone lines (the mixed population). We will 

sharpen this notation in succeeding sections. 

Whether or not a unit in the population of interest is 

accessible through landlines or cell-phone lines is itself a 

complex matter. Throughout this article, when we say that a 

unit is accessible through landlines, we shall mean that there 

is both physical access to one or more landlines (usually 

residential landlines only) and a respondent would actually 

answer the landline if it rang for voice communications. 

Many adults today maintain a landline telephone strictly for 

computer communications and utilize a cell phone for all 

voice communications. By our definition, such adults are 

not considered to have landline access and instead are 

considered to be in the cell-phone-only population. Simi-

larly, when we say that a unit is accessible through cell-

phone lines, we shall mean that there is both physical access 

to a cell phone and intent to answer the cell phone if it rang. 

All other units in the population of interest that are not 

accessible through either landlines or cell-phone lines are 

considered phoneless. Current evidence suggests, although 

no one knows for sure, that about 20 to 30 percent of adults 

are domain b, 5 to 10 percent are in domain C, and the 

balance are spread across domains a and ab. 

What we know so far from the cell-phone surveys we 

and others have conducted is that the data collection is 

relatively expensive, with average-interviewer-hours-per-

completed case running around three times the average for 

standard RDD surveys. The higher cost is brought, in part, 

by the legal requirement (in the US, the Telephone 

Consumer Protection Act) of manually dialing the selected 

cell-phones. Response rates are somewhat lower than those 

achieved in RDD surveys. Interview length may be 

problematic, with some respondents less willing to submit 

to a lengthy interview by cell phone than by landline phone. 

Privacy issues may constrain the cell-phone interview, if the 

respondent is not in a private place at the time of the 

interview. The cell-phone user’s propensity to respond may 

vary monotonically with his or her level of use of the cell 

phone, with the heavy user more willing to answer the 

phone than the lighter or occasional user. Most breakoffs 

occur during the opening seconds of the interview attempt. 

Because cell-phone surveys are relatively new, people are 

not used to being called and the interviewer has mere 

seconds to sell the survey. On the other hand, we find many 

cell-phone respondents to be quite cooperative once their 

attention has been held through the survey’s introductory 

script. 

Due to all of these circumstances in the environment, we 

currently view the cell-phone sample as a relatively small 

supplementary sample, with the main sample continuing to 

be a larger RDD sample of landlines. The cell-phone sample 

is intended to round out the coverage of the population of 

interest. In the future, as the environment matures and if 

costs come down, it may be possible to shift towards a more 

balanced approach with similarly sized landline and cell-

phone samples, or even to a state where the cell-phone 

sample begins to dominate and the landline sample is used 

as a supplement to round out coverage.  

In Section 2, we introduce the topic of networks of 

sampling units, reporting units, and estimation units and 

show how cell-phone surveys equate to a sampling of 

networks. Section 3 introduces various key concepts that 

will be needed as we discuss survey estimation, among 

them being the idea of a link (or edge) between the nodes 

(or vertices) in the network. Section 4 describes the duality 

that exists between the populations corresponding to the 

different types of nodes. Our approach will remind some 

readers of Lavallée’s (2007) methods for indirect sampling. 

The heart of the paper is Section 5, which sets forth 

unbiased estimators of population totals for cell-phone 

surveys and for corresponding dual-frame telephone survey 

designs. Section 6 gives an example, illustrating implica-

tions of the new methods of estimation for an existing 

telephone survey regarding the vaccination coverage of 

young children and teenagers. We close in Section 7 with a 

brief summary. 

Throughout the article, we emphasize the development of 

rigorous but practical design and estimation procedures for 

population B. The methods of RDD surveys, i.e., the 

methods for population A, are well known and, to a degree, 

have been used for decades; for a recent review of these 

methods see Wolter, Chowdhury and Kelly (2008).   
2. $etworks of units and the response protocol  
In general, at least three types of units arise in the context 

of a cell-phone survey, as follows:  
 

• Sampling units (SU) 

• Reporting units (RU) 

• Estimation units (EU).  
The SU is the unit of sampling in the survey. In actual 

practice, telephone numbers may be sampled directly from 

cell-phone frames, or they may be sampled in stages, with 

perhaps exchanges or banks of numbers serving as the 

primary sampling units and numbers themselves being 

selected in one or more stages of subsampling within the 

primary units. To keep the discussion simple, in this article 

we will present the telephone number itself as the SU. 
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The actual target of the survey interview and the unit of 

analysis is what we shall call the EU. Some surveys focus 

on the collection and analysis of data on households or 

families, in which case the household or family is the EU. 

Other surveys focus on person level data, where the eligible 

persons may be children under age 18, adults age 18+, or 

some demographic segment of the population, such as 

Hispanic females aged 0-34. Still other surveys focus on 

both household- and person-level data, in which case the 

survey involves at least two types of EUs and two levels of 

analysis. 

The adult is the respondent or RU in telephone surveys. 

The EU may or may not have the capacity to respond 

directly for itself, and instead an RU responds on its behalf. 

If the EU is an adult, then the same adult or even a different 

adult may serve as the corresponding RU. If the EU is a 

household, family, consumer unit, or child, then one or 

more adults may serve as the corresponding RU. The 

response protocol, specified by the survey methodologist, 

actually determines which RUs are permitted to respond for 

which EUs. In a typical survey, one respondent adult (or 

RU) would be contacted by telephone and interviewed for 

each SU selected into the sample. 

SUs, RUs, and EUs may bear different relationships to 

one another in a cell-phone survey. Figure 1 gives nine 

networks that illustrate some of the types of relationships 

that are possible. In the first network, one SU is linked to 

one RU, which in turn responds for one EU. This 

arrangement could occur if one adult uses one telephone 

line, and the adult in turn reports for the household or for 

him or herself or for one child. In the second network, one 

SU is linked to two RUs, each of which can respond for the 

EU. This arrangement would occur, for example, if two 

adults shared the same telephone line and each was 

permitted by survey protocol to respond for the household. 

The fifth network could occur if two adults each had their 

own telephone line not shared with the other adult, while 

each adult in the pair is allowed by survey protocol to 

respond for each of two children.  

More complicated networks are possible and surely must 

exist in the world. For example, the eighth network shows 

an arrangement of three adults sharing two telephone lines. 

The first of the lines is shared by all three adults, while the 

second line is only used by the third adult. The first of the 

adults is permitted by survey protocol to respond for two 

EUs, such as the adult’s biological children; the second 

adult is not permitted to respond for any EUs; and the third 

adult is permitted to respond only for a third EU that is not 

reportable by the first two adults. 

 

 

 

Sampling Units 
(SU) – Telephone 

Lines 

Reporting Units 
(RU) - Adults 

Estimation Units 
(EU) – Households, 
Adults, or Children 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1 Examples of networks in a cell-phone survey 

 
3. Links between units in the network 

 
A link is a salient relationship between two nodes in the 

network. In the context of Figure 1, the links are represented 

by the line segments that join the different nodes. To 

provide a foundation for survey estimation, we need to 

explore links between (i) RUs and SUs, (ii) EUs and RUs, 

(iii) and EUs and SUs. 
 
3.1 Link of RU and SU   

Two concepts are central to creating a link between an 

RU and an SU, namely, the concepts of (a) an Active 

Personal Cell �umber (APC�) and (b) usual access to the 

cell-phone line.  

An APCN is a telephone line that is in service at the time 

of the cell-phone survey and can ring through to an eligible 

adult who uses the cell phone, at least partially, for personal 

matters. In other words, an APCN meets three tests:  
• It is in service 

• It connects to an eligible adult respondent 

• It is not used exclusively for business purposes. 
 

We say that a given adult has usual access to a given 

APCN if and only if the individual has   
• Regular, 

• Substantial, and  

• Ongoing use of the cell-phone line.  
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Each APCN has one or more regular adult users, and 

each individual user has usual access to one or more cell 

phones. In many cases, there is a unique one-to-one 

relationship between the cell-phone line and the adult user. 

In some cases, there is a one-to-many relationship between 

the cell-phone line and its users. 

We treat a given SU and a given RU as linked if and only 

if the SU is an APCN and the RU has usual access to the 

SU. A cell-phone survey must work with and recognize the 

links that exist between the population of SUs and the 

population of RUs. 
 
3.2 Link of EU and RU  

A given EU is linked to one or more RUs via natural 

relationships that exist in the world, such as those created by 

family or place of residence. For example, an adult 

respondent may respond to the survey interview on behalf 

of his or her household, family, or consumer unit. He or she 

may respond for him or herself, for a dependent child under 

age 18, or for his or her own parent or sibling.  

All surveys require a response protocol that defines 

which adult respondents are to respond for which EUs. The 

protocol is selected by the survey methodologist in light of 

feasibility, cost, and accuracy-of-reporting concerns. It is 

this protocol that establishes the links between EUs and 

RUs.  
3.3 Link of EU and SU  

The foregoing links between RUs and SUs and between 

EUs and RUs determine the links between EUs and SUs. 

We say a given EU is linked to a given SU if and only if the 

EU is linked to at least one RU that in turn is linked to the 

SU. 

Some notation will become useful in our work in the 

following sections. Let j denote a given EU in the 

population of interest and let i be a given SU in the 

population. Then define the indicator or link variables 

th th1, if the  EU is linked to the  SU

0, otherwise.

ij j i=

=

ℓ
 

 
4. Duality between the populations  

       of SUs and EUs 
 

To begin the process of determining an unbiased esti-

mation procedure for cell-phone surveys, we establish that a 

duality exists between the population of SUs or cell phones 

(henceforth denoted by SB )U  and the population of EUs 

that are linked to cell phones (denoted by EB ).U  The goal of 

a cell-phone survey is to make inferences concerning EB,U  

but we will soon see that this goal is equivalent to making 

certain inferences concerning SBU  (in this notation, the first 

superscript designates the type of unit while the superscript 

B refers to the cell-phone sampling frame. Later we will use 

the superscript A to signify the landline sampling frame). 

In the EU domain, a population total of interest is given 

by  

EB

EB ,j
j U

Y Y
∈

= ∑  

where the Y-variable on the right-hand side is a 

questionnaire item or other recoded or derived variable 

attached to the units in the population EB.U  Similarly, in the 

SU domain, a population total is defined by  

SB

SB ,i
i U

X X
∈

= ∑  

where the X-variable on the right-hand side is any fixed 

characteristic attached to the units in the population SB.U  

While the interest of the survey analyst centers on the 

total from the population of EUs (and on other parameters 

of this population), one can obtain a corresponding 

parameter in the SU domain by writing 

EB EB SB SB

SB

EB SB,
j ij

j i

j U j U i U i Ui j

i U

Y
Y Y X X

′∈ ∈ ∈ ∈
′∈

= = = =∑ ∑ ∑ ∑∑
ℓ

ℓ
 (1) 

where the X-variable is now defined specifically by  

EB

SB

.
j ij

i

j U i j

i U

Y
X

′∈
′∈

= ∑ ∑
ℓ

ℓ
 (2) 

From (1), one can see the correspondence between 

estimation in the SU domain and estimation in the EU 

domain. The total SB,X  with iX  defined as in (2), is 

equivalent to the total of interest EB,Y  and thus the problem 

of estimation of EBY  is equivalent to the problem of 

estimation of SB.X  

We note that (2) arises in substantially the same form in 

the theory of indirect sampling. See Lavallée (2007), 

Theorem 4.1. In indirect sampling, SUs are linked to 

naturally defined clusters of EUs; if a given SU is selected 

into the sample, the survey data are collected for all EUs in 

the linked clusters. The analogy here is that the clusters are 

defined by the RUs that respond to the cell-phone interview 

attempt, and survey data are collected from the respondent 

for all EUs to which he or she is linked. The current 

situation is such that the cluster is defined by the SU-RU 

pair. An identifiability problem arises in this regard that 

does not occur in general in indirect sampling, and we 

elaborate on this matter in Section 5.5. 

In (2), we effectively allocate an equal share of jY  to 

each SU i to which it is linked. We could, alternatively, 

achieve the same ends by allocating jY  to its linked SUs in 

proportion to some other known measure of the intensity of 
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the relationship between j and i. Although one could 

conceive of an optimal allocation of jY  to its linked SUs, as 

in Deville and Lavallée (2006), such an allocation may be 

difficult to execute or may not be of great import in large 

scale practical settings. 

 
5. Estimation 

 
As mentioned in the introduction, some EUs will be 

linked exclusively to cell phones, some will be linked 

exclusively to landlines, and some will be linked to both 

landlines and cell phones. Phoneless EUs, if any, will not be 

linked to cell phones or to landlines. To provide notation for 

this environment, let EU  be the overall population of EUs 

of interest, and let SU  be the overall population of SUs. Let 
EAU  be the elements of EU  that are linked to landlines, let 
EBU  be the elements that are linked to cell-phone lines, let 
EaU  be the elements that are linked only to landlines, let 
EbU  be the elements that are linked only to cell-phone lines, 

let EabU  be the elements that are linked to both landlines 

and cell-phone lines, and let ECU  be the elements that are 

phoneless. Note that E EA EB EC,U U U U= ∪ ∪ EAU =  
Ea Eab,U U∪  and EB Eab Eb,U U U= ∪  where Ea,U Eab,U  

and EbU  are disjoint sets. Also, let SAU  be the population 

of landlines, such that S SA SB.U U U= ∪  Landlines and 

cell-phone lines reflect disjoint subsets of the overall 

population of SUs.  

In the following Sections 5.1 and 5.2, we discuss 

unbiased estimation for the subpopulation, say ETU =  
EA EB,U U∪  that is linked to at least one telephone of any 

kind. We use the super-script T to designate this telephone 

subpopulation. Subsequently, in Section 5.4, we briefly 

discuss coverage of the phoneless population.  

For EUs in E,U  define the indicator variables 

1, if none of the RUs linked to  have access

to landline service, while at least one of 

these RUs has usual access to cell-phone

service 

0, otherwise

j jδ =

=

 

1, if none of the RUs linked to   have usual

access to cell-telephone service, while at

least one of these RUs has access 

to landline service

0, otherwise.

j jφ =

=

 

The δ -variable is an indicator of cell-phone-only status 

and the φ -variable is an indicator of landline-only status. 

Then the population total of interest may be decomposed 

as  

ET EA Eb,Y Y Y= +  (3) 

where  

ET

Eb

j j

j U

Y Y
∈

= δ∑  

is the total of the cell-phone-only domain, and  

ET

EA (1 )j j

j U

Y Y
∈

= − δ∑  

is the total of the complement of this domain, including EUs 

that are linked exclusively to landlines and mixed EUs that 

are linked to both landlines and cell phones. The total of 

EUs may also be written as  

ET Ea Eab Eb,Y Y Y Y= + +  (4) 

where 

ET

Ea

j j

j U

Y Y
∈

= φ∑  

is the total of the landline-only population, and  

ET

Eab (1 ) (1 )j j j

j U

Y Y
∈

= − δ − φ∑  

is the total of the mixed population that has a combination 

of landline and cell-phone access. Finally, the population 

total may be written as 

ET Ea EB,Y Y Y= +  (5) 

where  

ET

EB (1 )j j

j U

Y Y
∈

= − φ∑  

is the total of the complement (in the telephone population) 

of the landline-only population. 

We view (3) and, to some extent, (4) as the decompo-

sitions of current practical interest and importance in 

telephone surveys in the USA and, in what follows, we 

present methods of estimation for each. Because of the 

current high relative cost of cell-phone interviews, surveys 

based on decomposition (5) would not be cost effective. It 

would almost always be better to represent the domain EabU  

using a sample of landlines than using a sample of cell 

phones. If the relative cost of cell-phone interviewing shifts 

downward in the future, decomposition (5) could become 

economically viable. It may also be viable for surveys in 

other countries where the cost structure is more favorable to 

cell-phone interviews. 
 
5.1 Case of nonoverlapping domains  

In this section, we will use a sample of cell-phone lines 

for purposes of estimation for the cell-phone-only 

population EbU  and a sample of landlines for estimation for 

the entire landline population EA.U  We observe that it is not 
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possible to directly select a sample of cell-phone-only lines, 

because cell-phone-only status is not available on the 

sampling frame but rather is determined in the survey 

screening interview. To operationalize this design, one 

would screen-out cell-phone respondents who classify 

themselves in the mixed domain and terminate the inter-

view, continuing the interview only for cell-phone-only 

respondents.  

Let SBs  denote a probability sample of SUs (cell-phone 

lines) selected from the population SB,U  and let SB{ }iW  

denote the set of base sampling weights such that  

SB

SB SBˆ
i i

i s

X W X
∈

= ∑  

is an unbiased estimator of the population total SB,X  where 

iX  is a characteristic of the thi  unit in the population. 

Assuming simple random sampling without replacement 

within strata, the base weights are of the form  

SB / ,i h hW � n=  (6) 

where h signifies the sampling stratum in which the thi  SU 

is selected, h�  is the number of SUs on the sampling frame 

in stratum h, and hn  is the sample size in stratum h. 

Typically, the cell-phone sampling frame would include all 

telephone numbers within the exchanges assigned by the 

telephone system to cell phones. Simple random sampling 

would be the most common method of sample selection 

from such exchanges. There is little information available 

on the cell-phone sampling frame to enable stratification of 

the sample, except for the coarse geographic information 

embodied within the area code.  

Let EBs  be the corresponding sample of EUs, i.e., 
EB EB SB{ |  is linked to at least one SU  in }.s j U j i s= ∈  We 

will use this sample to estimate the domain total of EUs that 

are linked only to a cell phone, Eb.Y  From (1) and (2), we 

can readily see that the unbiased estimator of the domain 

total is given by  

{ }SB EB SB

EB

Eb SB

EB

ˆ

,

i j j ij i j

i s j U i U

j j j

j s

Y W Y

Y W

′
′∈ ∈ ∈

∈

= δ

= δ

∑ ∑ ∑

∑

ℓ ℓ

 (7)

 

where the EU level sampling weights are defined by  

 
SB SB

EB SB
j i ij i j

i s i U

W W ′
′∈ ∈

= ∑ ∑ℓ ℓ  for EB.j s∈  (8) 

Again, see Lavallée (2007) for expression of these 

weights in the context of indirect sampling. 

Before leaving domain b, we observe in passing that it is 

possible to subsample the EUs and collect the survey 

information only for the subsample instead of enumerating 

all EUs linked to the sample RUs. If the statistician would 

choose some form of subsampling, perhaps to control 

sample size or cost, then an additional weighting factor 

would appear in the weights in (8). Such subsampling is 

referred to as two-stage indirect sampling in Lavallée (2007, 

Section 5.1). 

Turning to domain A, let SAs  denote a standard RDD 

sample of landline telephones, let EAs  be the implied 

sample of EUs, i.e., EA EA{ |  is linked to at leasts j U j= ∈  
SAone SU  in },i s  and let  

EA

EA EAˆ
j j

j s

Y W Y
∈

= ∑  (9) 

be the standard unbiased estimator of the population total. 

For brevity, we shall not derive the standard sampling 

weights here; for more information about these weights, see 

Wolter et al. (2008). 

From (7) and (9), the unbiased estimator of the 

population total of the EUs is given by  

ET EA Ebˆ ˆ ˆY Y Y= +  (10) 

and the weights needed to support this estimator are EA{ }jW  

and EB{ }.jW  

 
5.2 Case of overlapping domains  

We now proceed with estimation starting from the 

decomposition (4). This means that in the cell-phone sample 

we will interview not only the cell-phone-only population, 

but also the mixed population (i.e., those that use both 

landline and cell telephones). The estimator of the popu-

lation total of interest is now of the form 

ET Ea Eab Ebˆ ˆ ˆ ˆ ,Y Y Y Y= + +  (11) 

where  

EA

Ea EAˆ
j j j

j s

Y W Y
∈

= φ∑  

is the estimator for the landline-only domain derived from 

the landline sample, EbŶ  is defined in (7) and is the esti-

mator for the cell-phone-only domain derived from the cell-

phone sample, and EabŶ  is an estimator of the mixed 

domain obtained from both samples. The estimator of the 

mixed domain is 

EA

EB

Eab EA

EB

ˆ (1 )

(1 ) (1 ) .

j j j

j s

j j j

j s

Y W Y

W Y

∈

∈

= λ − φ

+ − λ − δ

∑

∑  (12)

 

The weights need to support estimator (11) are EA{ }jW  

and EB{ }.jW  

See Hartley (1962) for discussion of the mixing para-

meter λ  in a dual-frame survey, focusing on considerations 
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of sampling variability. Turning to considerations of bias, 

Brick et al. (2006) report that the propensity to respond to a 

cell-phone survey may be positively related to the frequency 

of use of the cell phone. Thus, the two pieces on the right 

side of (12) may be subject to a differential nonresponse 

bias not removed by the standard weighting-class methods. 

In the mixed population, infrequent users of the cell phone 

may be less likely to respond if surveyed in the cell-phone 

sample than if surveyed in the landline sample. If these 

adults would be substantially different from other adults in 

the mixed population with respect to the key characteristics 

under study in the survey, then (12) and also (11) could be 

subject to a nonreponse bias. 

 
5.3 Variance estimation  

To make inferences from the sample to the overall 

population, we require an estimator of the variance of the 

estimated total. First, consider the case of nonoverlapping 

domains. By working in the SU population, we can employ 

methods of variance estimation appropriate to the survey 

design. From (7), the estimated total for the cell-phone only 

domain may be written by  

SB

Eb SBˆ ,i i

i s

Y W X
∈

= ∑  

where  

EB SB

.i j j ij i j

j U i U

X Y ′
′∈ ∈

= δ∑ ∑ℓ ℓ  (13) 

Assuming simple random sampling, the unbiased esti-

mator of the variance of the estimated total is given by  

Eb 2 2

1

1ˆ( ) 1 ,
L

h
h xh

h h h

n
v Y � s

� n=

 
= − 

 
∑  

where 

SB SB

2

2 1 1
.

1
h h

xh i i

i s i sh h

s X X
n n

′
′∈ ∈

 = − −  
∑ ∑  

If we would ignore the finite population correction factor, 

which would be possible in almost any real telephone 

survey, the variance estimator becomes 

SB SB

2

Eb SB SB

1

1ˆ( ) .
1

h h

L
h

i i i i

h i s i sh h

n
v Y W X W X

n n
′ ′

= ′∈ ∈

 = − −  
∑ ∑ ∑  (14) 

Now let EAˆ( )v Y  be an estimator of the variance of EAŶ  

for the RDD sample of landlines. Such estimators are well 

known and we do not review them here; see for example, 

Wolter et al. (2008). Because sampling is independent in the 

landline and cell-phone sampling frames, the unbiased 

estimator of the variance of the estimated total for the entire 

telephone population becomes 

ET EA Ebˆ ˆ ˆ( ) ( ) ( ).v Y v Y v Y= +  (15) 

To facilitate the following developments, we let EBˆ [ ]V Yδ  

be another symbol to represent the estimator of variance in 

(14). This notation will emphasize the fact that the estimator 

of variance is based on the iX  variable in (13) defined in 

terms of the characteristic ,j jYδ  which is the characteristic of 

interest for cell-phone-only EUs. Also, let the symbol 
EAˆ [ ]V Y  be the estimator EAˆ( )v Y  defined in terms of the 

characteristic .jY  With this notation, (15) becomes ETˆ( )v Y =  
EA EBˆ ˆ[ ] [ ].V Y V Y+ δ  

Second, consider variance estimation for the case of 

overlapping domains. The estimator of the total of the 

telephone population is now ETŶ  in (11). For fixed ,λ  the 

unbiased estimator of variance is clearly seen from the work 

done in (14) and (15). It is  

ET EA

EB

ˆ ˆ( ) [ (1 ) ]

ˆ [ (1 ) (1 ) ].

v Y V Y Y

V Y Y

= φ + λ − φ

+ δ + − λ − δ  (16)

 

The first term on the right side of (16) is the variance 

estimator for the RDD sample of landlines applied to the 

composite characteristic (1 ) ,j j j jY Yφ + λ − φ  which is the 

characteristic for landline-only EUs plus a λ -portion of the 

characteristic for mixed EUs. The second term on the right 

side of (16) is the variance estimator for the cell-phone 

sample applied to the composite characteristic j jYδ +  

(1 ) (1 ) ,j jY− λ − δ  which is the characteristic for cell-phone-

only EUs plus a (1 )− λ -portion of the characteristic for 

mixed EUs. 

Estimators of covariance matrices can be built up from 

expressions like (15) and (16), facilitating statistical infer-

ence concerning other population parameters of interest.  
5.4 Adjustments of the sampling weights  

The sampling weights may be adjusted because of non-

response or a planned calibration to known control totals.  

Thus far, we have not addressed the various types of 

missing data that may occur in a cell-phone survey. We will 

focus on deriving adjustments for missing data that arise 

during the cell-phone interviews, assuming that standard 

adjustments for missingness in the landline sample have 

already been incorporated in the EA{ }jW  weights. 

Missing data can arise due to three factors: (i) non-

resolution of the SU; (ii) an incomplete screening interview 

of the RU; and (iii) an incomplete main interview of the RU. 

In this article, we adopt the convention that the resolution 

step refers to the classification of the SU as an ACPN or 

something else, such as a disconnected line or a dedicated 

business line; nonresolved SUs and SUs resolved as 
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non-ACPNs do not continue with the interview. The 

screening step refers to a brief preliminary interview 

intended to ascertain telephone status and to determine any 

demographic or other eligibility characteristics of any EUs 

linked to the RU; RUs for which the screening interview is 

incomplete or for which the screening interview is complete 

but no eligible EUs are linked to the RU do not continue 

with the interview. If the survey protocol calls for including 

only cell-phone-only EUs, as in Section 5.1, then the 

interview would terminate at this point for any mixed EUs. 

On the other hand, if the survey protocol calls for including 

both cell-phone-only and mixed EUs, as in Section 5.2, then 

the interview would continue for all such EUs. The 

interview step refers to the collection of the main survey 

items that form the substance of the survey for each of the 

eligible EUs linked to the RU. The survey methodologist 

must institute a definition of what constitutes a completed 

interview. In particular, the methodologist must decide 

whether breakoffs (an interview attempt that is completed 

for some but not all of the eligible EUs linked to the RU) are 

to be treated as a completed interview or not. Some other 

authors may organize the steps in the survey response 

process somewhat differently than the convention adopted 

here. 

Adjustments to the sampling weights can be made for 

nonresolution and screener nonresponse, assuming a 

missing-at-random model for the response mechanism. 

These two adjustments must be made at the SU level. Let 
SB{ }sα  be a partition of the cell-phone sample into user-

specified weighting cells ,α  and let the base sampling 

weights from (6) now be denoted by SB

1 ,iW  where the 

subscript 1 has been added simply to signify the first step in 

a multi-step adjustment process. Telephone area codes, rate 

centers, and census environmental variables at the county or 

area code level can be used to form the weighting cells; 

otherwise, little covariate information is available 

concerning cell-phone numbers. The cell-specific resolution 

completion rates are defined by  

SB

SB

SB
1 1

1 SB
1

,

i i

i s

i

i s

r W

R
W

α

α

′ ′
′∈

α
′

′∈

=
∑

∑
 

where 1ir  is a resolution indicator variable (= 1, if resolved, 

= 0, if not resolved), and the nonresolution adjusted weights 

are SB SB

2 1 1 1/i i iW r W R α=  for SB.i sα∈  

Let 1ie  be an indicator of whether i is a resolved APCN 

(= 1, if resolved APCN, = 0, otherwise), and let SB
1{ }Bsβ β=  be 

a partition of the cell-phone sample into user-specified 

weighting cells, which could be the same as or different than 

the foregoing partition. Then, the cell-specific screener 

completion rates are  

SB

SB

SB

2 1 2

2 SB

1 2

,

i i i

i s

i i

i s

r e W

R
e W

β

β

′ ′ ′
′∈

β
′ ′

′∈

=

∑

∑
 

where 2ir  is a screener indicator variable (= 1, if screener 

completed, = 0, if screener not completed), and the screener-

nonresponse adjusted weights are SB SB
3 2 1 2 2/i i i iW r e W R β=  

for SB.i sβ∈  Note that the appropriate sum of the weights is 

preserved at each step of the adjustment process. 

Next, an adjustment to the sampling weights must be 

made for interview nonresponse. Depending on how break-

offs are classified by the survey methodologist, there may 

be two cases to consider: (i) the RU completes or fails to 

complete the interview for all of its linked and eligible EUs 

en masse, or (ii) the RU selectively completes or fails to 

complete the interview on an EU by EU basis. If breakoffs 

would be classified as incomplete interviews, then only 

Case i would apply. Let 2ie  be an indicator of whether the 

RU is screened and is linked to at least one EU that is 

eligible for the interview (= 1, if screened and eligible, = 0, 

otherwise), and let 3ir  be the interview indicator variable 

(= 1, if the interview is complete, = 0, otherwise). 

For Case i, the weight adjustment can be made at the SU 

level and is given by SB SB
4 3 2 3 3/i i i iW r e W R γ=  for SB,i sγ∈  

where 3R γ  is the weighted interview completion rate 

computed within user-specified weighting cells .γ  Again, 

options for constructing weighting cells are limited in a cell-

phone survey; they may be specified in terms of the 

information available at the previous weighting steps or any 

information collected in the screening interview. The 

weighted interview completion rate is 

SB

SB

SB

3 2 3

3 SB

2 3

.

i i i

i s

i i

i s

r e W

R
e W

γ

γ

′ ′ ′
′∈

γ
′ ′

′∈
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∑

∑
 

The estimated total for the cell-phone-only domain may 

now be expressed by  

EB

Eb EB

4
ˆ ,j j j

j s

Y Y W
∈

= δ∑  (17) 

where 

SB SB

EB SB

4 4j i ij i j

i s i U

W W ′
′∈ ∈

= ∑ ∑ℓ ℓ  

and EBs  is the set of eligible EUs reported in the screening 

interviews. The weight is zero for any eligible EUs in EBs  

for which the RU failed to complete the main interview. The 

estimated total for the mixed domain, if called for by the 

survey protocol, is defined similarly by 
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EA EB

Eab EA EB

4
ˆ (1 ) (1 ) (1 ) .j j j j j j

j s j s

Y W Y W Y
∈ ∈

= λ − ϕ + − λ − δ∑ ∑  

For Case ii, the noninterview adjustment must be made at 

the EU level. The EUs are treated as spawned cases and a 

decision is made for each one as to whether it has a 

completed interview or not. The estimated total for the cell-

phone-only domain is (17), where the weight is now defined 

by  

EB EB EB
4 3 2 3 3/ for ,j j j jW r e W R j sγ= ∈  

SB SB
3

EB SB

3 3 / ,j i ij i j

i s i U

W W ′
′∈ ∈

= ∑ ∑ℓ ℓ  
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EB
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3 3
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.

j j

j s

j

j s

r W
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γ

γ

′ ′
′∈
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′

′∈

=

∑

∑
 

Here, the weighting cells, ,γ  are defined in terms of 

characteristics of the EUs as determined from the screening 

interview and other sources. 

For either Case i or ii, to facilitate computations, take 
EA

4 jW  to be defined and equal to zero for EUs in the cell-

phone sample, and take EB
4 jW  to be equal to zero for EUs in 

the landline sample. If the survey protocol is as in Section 

5.1, then we conclude that the survey weights for estimating 

the population total of interest are defined by 

EA EB
4 4j j j jW W W= + δ  (18) 

for ET,j s∈  where ET EA EB.s s s∈ ∪  Otherwise, if the 

survey protocol is as in Section 5.2, then we conclude that 

the survey weights are defined by  

EA

4

EB

4

{ (1 )}

{ (1 ) (1 )}

j j j j

j j j

W W

W

= φ + λ − φ

+ δ + − λ − δ  (19)

 

for ET.j s∈  

The nonresponse-adjusted weights from (18) or (19) may 

be calibrated (Deville and Särndal 1992) to external control 

totals within socio-economic or geographic cells for the 

population of EUs, using poststratification, raking, or GREG 

(generalized regression estimation) techniques. If accurate 

sources are available, control totals may be established and 

calibration may be conducted separately for domains A and 

b or for domains a, ab, and b. If control totals are not 

available by telephone status, then calibration must use 

control totals for the entire population regardless of 

telephone status.  

To illustrate these ideas, we briefly examine the GREG 

estimator. Let us suppose that we have available a 1 p×  

auxiliary variable jZ  for the observed, eligible EUs for 

which the control totals ET
ET

j U j∈∑=Z Z  are known. For 

example, the z-variable may arise from a fully saturated 

model in terms of explanatory variables age, race, and sex. 

Let ET

4s  be the set of EUs with a completed main interview 

and let ET ET

4 4#( )n s=  be the number of eligible EUs 

reported in the completed interviews obtained within the 

consolidated telephone sample. Stack the y-values, z-values, 

and weights into the matrices ET
4

1 1( , ..., ) , ( , ...,
n

Y Y ′ ′= =Y Z Z  

ET
4

) ,
n
′ ′Z  and ET

4
1diag ( , ..., ) .

n
W W ′=W  Then the GREG esti-

mator (Cassel, Särndal, and Wretman 1976) of the total of 

the telephone population of interest takes the familiar form  

ET
4

ET ET ET ET ˆˆ ˆ( ) ,j j j

j s

Y Y W g Y
∈

= + − β = ∑Z Zɶ  

where the estimated coefficients are given by β̂ =  
1( ) ,−′ ′Z WZ Z WY  ET

4

ETˆ ,j s j jY W Y∈∑=  ET
4

ETˆ ,j s j jW∈∑=Z Z  

and ET ETˆ1 ( ) .j jg ′= + −Z Z Z  Lavallée (2007, Chapter 7) 

derives the Taylor series estimator of the variance of the 

GREG estimator in an indirect sampling context. Also see 

Wolter (2007, Chapter 6) for estimation of the variance of 

the GREG estimator.  

Before leaving the topic of calibration, we note that we 

have largely left aside the small phoneless population, 

which fundamentally is impossible to sample in a telephone 

survey. Yet, in all likelihood, the overall population total 
E ET ECY Y Y= +  will be the parameter of interest, not the 

total of the telephone population ET,Y  and the known 

control totals used in calibration may be totals for the 

overall population E ET EC,= +Z Z Z  not totals for the 

telephone population ET.Z  To include the phoneless 

population, we may consider use of a revised GREG 

estimator with E ETˆ1 ( ) .j jg ′= + −Z Z Z  This revision takes 

the same model for the phoneless population as for the 

telephone population. See Keeter (1995) and Chowdhury, 

Montgomery and Smith (2008) for other considerations in 

the calibration of weights for the phoneless population. 
 
5.5 Identifiability assumptions  

The foregoing theory assumes fundamentally that if SU i 

is selected into the sample of cell-phone lines, then iX  

defined in (2) is observable in the cell-phone interview. Yet 

the 9
th
 network (and also the 8

th
) in Figure 1 illustrates a 

potential problem for the theory. For this network, two RUs 

are linked to one SU, and in turn each RU is linked to only 

one EU. To continue this illustration, we suppose that these 

two EUs are not linked to any other RUs in the population. 

At the time of the survey interview, only one of the RUs 

will typically be reached and interviewed (unless the survey 

protocol would specifically mandate that an interview be 
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attempted with each RU linked to the selected SU). The 

respondent RU will report for its linked EU, but by the very 

nature of this network, the respondent cannot report for the 

EU that is linked to the companion RU who shares the 

sample cell-phone line. Thus, there is at least one EU that is 

linked to the SU that cannot be observed, i.e., data cannot be 

collected in the cell-phone interview. Thus, we say iX  is 

not identifiable. The situation regarding the reportability of 

the two EUs would be reversed if the cell-phone interview 

attempt would have rung through to the companion RU. 

To maintain the unbiasedness of the estimator of the 

population total, the iX  must be identifiable for every 

respondent SU selected into the sample of cell-phone lines. 

We need to make one of two assumptions. First, we could 

assume the problem away by acting as if networks like 

numbers 8 and 9 either do not exist or are trivial in number. 

Secondly, the more realistic case would be to assume an 

extra randomization step, namely, that the interview call 

attempt to the given SU has reached a randomly selected 

RU linked to the SU. This randomization could be viewed 

as conceptual (that is, occurring naturally and not directed 

by the survey methodologist). To be formal and rigorous, 

one would need to collect information on the number of 

RUs linked to the SU and the probability that the cell-phone 

call attempt would ring through to the respondent RU. The 

probability would be approximated by the respondent’s self-

report of his or her share of use of the cell phone. If only one 

RU is linked to the SU, then this probability is 1.0 and 

clearly this simple value would not need to be collected in 

the interview once it is reported that there is only one RU. If 

two or more RUs are linked to the SU, then the probability 

or share to be collected is denoted by ikτ  for RUs indexed 

by k, where RB 1
ik U ik∈∑ τ =  and RB

iU  is the set of RUs that 

are linked to the thi  SU. With this additional information in 

hand, an unbiased estimator of  

EB

SB

j j ij

i

j U i j

i U

Y
X

′∈
′∈

δ
= ∑ ∑

ℓ

ℓ
 

is given by 

EB RB

SB RB

1ˆ ,

i

i

j j ij ikj

i ik

j U k Ui j ik ik j

i U k U

Y
X

′ ′∈ ∈
′ ′∈ ∈

δ
= α

τ
∑ ∑∑ ∑

ℓ ℓ

ℓ ℓ
 (20) 

where ikα  is an indicator variable signifying whether the 
thk  RU was the realized respondent or not for the thi  SU in 
SBs  and  

1, if SU  is linked to RU  which 

in turn is linked to EU 

0, otherwise.

ikj i k

j

=

=

ℓ

 

The data are now identified and one can plug (20) into 

(7), giving the revised estimator 

        
EB

Eb EB

0
ˆ

j j j

j s

Y Y W
∈

= δ∑  (21) 

with revised weights 

SB RB

SB RB

EB SB

0

1
.

i

i

ij ikj

j i ik

i s k Ui j ik ik j

i U k U

W W
′ ′∈ ∈

′ ′∈ ∈

= α
τ

∑ ∑∑ ∑
ℓ ℓ

ℓ ℓ
 (22) 

As an approximation, one could take the RUs to be equal 

users of the cell phone, in which case ikτ  would simply be 

the reciprocal of the number of RUs linked to the SU i for 

all RUs k. Adjustments for nonresponse and calibration to 

control totals would proceed as before. 

Alternatively, the survey methodologist could call for a 

real randomization step, which would require that the 

interviewer make a roster of the RUs linked to the SU and 

select one at random, or a pseudo randomization step using 

the last birthday method. Such methods are probably not 

feasible at this time, due to the difficulty of gaining cooper-

ation in cell-phone interviews. 
 
5.6 Implications for data collection  

Certain information must be collected in the survey 

interview in order to support the calculation of the esti-

mators discussed here. 

To support the use of ,jδ  the cell-phone survey must 

collect information to establish whether any of the RUs 

linked to the EU have access to a landline telephone. The 

respondent RU must report this information both for himself 

or herself and for other RUs that may be linked to the EU. 

To support the use of ,jφ  the landline survey must 

collect information to establish whether any of the RUs 

linked to the EU have regular access to a cell phone. The 

respondent RU must report this information both for himself 

or herself and for other RUs that may be linked to the EU. 

This report may be quite straightforward in the event that 

the response protocol only links EUs to RUs within the 

same household. For more complicated response protocols, 

the report could be difficult to obtain. 

To support the use of SBi U i j′∈ ′∑ ℓ  in calculating the 

survey weights, the survey must collect information to 

establish how many SUs in the population are linked to the 

reported EU  j. The respondent RU must be able to report 

the number of cell phones, including their own, that ring to 

an RU who is linked to the given EU. 

If the estimator given in (21) and (22) would be used in 

order to identify all of the EUs, then additional information 

must be collected in the interview. The respondent RU must 

know and report the number of RUs, including themselves, 

that are linked to both the selected SU and the reported EU. 
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The respondent RU must also know and report their share of 

use of the cell phone on which the interview is completed or 

be able to say that use is approximately equal. 

 
6. Example: The $ational Immunization  

       Survey ($IS) 
 

We illustrate the information that must be collected in the 

survey interview using the NIS, a survey of parents of 

children age 19-35 months and of teens age 13-17 years 

sponsored by the Centers for Disease Control and Preven-

tion (CDC) for the purpose of monitoring vaccination 

coverage rates (i.e., the proportion of children who are up-

to-date with respect to the recommended vaccination 

schedule) in the USA. Data collection in the NIS occurs in 

two phases: an RDD telephone survey of households with 

landline telephones that have children or teens in the eligible 

age range, followed by a survey mailed to the vaccination 

providers of the age-eligible children. The sampling frame 

for the telephone survey phase of the NIS consists of all 

landline telephone numbers in 1+ banks in the USA. 

Cellular telephone numbers in dedicated cellular banks are 

currently not included in the NIS sampling frame. When a 

household with an age-eligible child is identified in the 

telephone survey, the interview is conducted with the adult 

in the household who is identified as the most knowledge-

able about the vaccination status of the child (nearly always 

the mother or father). During the telephone interview, data 

are collected for each age-eligible child in the household, 

including the demographic characteristics of the child, 

demographic characteristics of the child’s mother, and 

socio-economic characteristics of the child’s household. At 

the end of the telephone interview, consent is asked to 

contact the child’s vaccination providers. If consent is given, 

all vaccination providers named by the telephone interview 

respondent are contacted by mail to obtain the child’s 

provider-reported vaccination history, which is used in 

statistical analysis to evaluate vaccination status. Smith, 

Hoaglin, Battaglia, Khare and Barker (2005)
 
provide a 

detailed description of the statistical methods used by the 

NIS. 

Because of the growth of the cell-phone-only population, 

the proportion of the NIS target population that is covered 

by the landline sampling frame has decreased in recent 

years. Using data from the National Health Interview 

Survey, Khare, Singleton, Wouhib and Jain (2008) estimate 

that about 18 percent of eligible children and 10 percent of 

eligible teens may be missing from the NIS sampling frame. 

To address the increase in cell-phone-only households in the 

NIS target population, cell-phone interviews could be added 

to the NIS. 

For the NIS, the telephone number is the SU, the 

knowledgeable mother or father is the RU, and the age-

eligible child is the EU. For the landline RDD or A sample, 

the parent is a resident of the household to which the sample 

landline number is assigned, while for the cell-phone or B 

sample, the parent has regular access to the cell phone to 

which the sample telephone number is assigned. Children 

are not subsampled in the NIS, but rather the knowledgeable 

parent reports for all of their age-eligible children who live 

in their home (but not for any children who may live 

elsewhere). These elements of the survey protocol establish 

the links between RUs and SUs and between EUs and RUs. 

One comprehensive NIS design is to conduct estimation 

by way of nonoverlapping domains and decomposition (3). 

That is, the A sample is used to represent all children linked 

to a landline household and the B sample is used to 

represent all children linked to a cell-phone-only parent. We 

considered and rejected decompositions (4) and (5) due to 

considerations of cost and the potential for differential 

nonresponse bias in estimation for the mixed population.  

To implement the estimator in (10), we determine 

whether the A-sample child is landline-only through use of 

the following three questionnaire items:  
A1. Next I have some questions about cell phones in 

your household. In total, how many working cell 

phones do you and your household members have 

available for personal use? Please don’t count cell 

phones that are used exclusively for business 

purposes. 

A2. How many [of these] cell phones do [LIST ALL 

ELIGIBLE CHILDREN]’s parents and guardians 

usually use? 

A3. Of all the telephone calls that you and your family 

receive, are nearly all received on cell phones, 

nearly all received on regular phones, or some 

received on cell phones and some received on 

regular phones? (IF ASKED ABOUT INCLUDING 

BUSINESS CALLS: Please do not include any 

business-related calls in your answer). 
 

For the cell-phone or B sample, we establish whether the 

child is cell-phone-only using the following two questions.  
B1. Do you have a landline in your household? 

(INTERVIEWER PROBE IF YES: Please do not 

include modem only lines, fax only lines, lines used 

just for a home security system, beepers, pagers, or 

the cell phone). 

B2. Thinking just about the landline home phone, not 

your cell phone, if that telephone rang and someone 

was home, under normal circumstances how likely 

is it that it would be answered? Would you say 
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extremely likely, somewhat likely, somewhat un-

likely, or not at all likely? 
 

We would use Question B2, due to Cantor, Brownlee, 

Zukin and Boyle (2008), to determine whether the landline 

is actually used for voice communications and thus whether 

the respondent is in the  ab or b domain. 

Also for the B sample, to determine the number of cell 

phones in the population that are linked to a given age-

eligible child, we would use the following two questions:  
B3. Next, I have some questions about cell phones in 

your household. In total, how many working cell 

phones do you and your household members have 

available for personal use? Please do not count cell 

phones that are used exclusively for business 

purposes, and please include the number we called. 

B4. How many of these cell phones do [LIST 

CHILDREN]’s parents and guardians usually use? 

Please include the number we called. 
 

Responses to questions A1-A3 and B1-B4 permit the 

calculation of survey weights and implementation of the 

unbiased estimator of the population total given in (10). 

 
7. Summary 

 
In this article, we used some theory of indirect sampling 

and network sampling to demonstrate a statistical frame-

work for the design and analysis of cell-phone surveys. We 

exhibited an unbiased estimator of the population total with 

respect to estimation units linked to sampling units. By 

implication, this theory gives a means of constructing 

estimators of other population parameters that can be 

expressed as functions of totals. We illustrated the issues 

using the NIS, a telephone survey about young children and 

teens. 

Information from the survey interviews is needed to 

classify estimation units into the cell-phone-only domain, 

the landline-only domain, or the mixed domain. Reporting 

error could result in misclassifications and undermine the 

unbiasedness of the estimator, as could survey nonresponse 

in the cell-phone and landline interviews.  
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Abstract 

Data collection for poverty assessments in Africa is time consuming, expensive and can be subject to numerous constraints. 

In this paper we present a procedure to collect data from poor households involved in small-scale inland fisheries as well as 

agricultural activities. A sampling scheme has been developed that captures the heterogeneity in ecological conditions and 

the seasonality of livelihood options. Sampling includes a three point panel survey of 300 households. The respondents 

belong to four different ethnic groups randomly chosen from three strata, each representing a different ecological zone. In 

the first part of the paper some background information is given on the objectives of the research, the study site and survey 

design, which were guiding the data collection process. The second part of the paper discusses the typical constraints that 

are hampering empirical work in Sub-Saharan Africa, and shows how different challenges have been resolved. These 

lessons could guide researchers in designing appropriate socio-economic surveys in comparable settings. 
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1. Introduction 

 
To collect economic data in small-scale fisheries in Sub-

Saharan Africa (SSA) is challenging, as patterns and 

constraints of resource use vary considerably, i.e., spatially, 

seasonally and over time. This requires careful planning of 

the collection of data that is needed for meaningful poverty 

and vulnerability assessment. Although small-scale fisheries 

(SSF) can generate significant profits and make consid-

erable contributions to poverty alleviation and food security, 

little information exists about their actual contribution to 

livelihoods and household economics in Sub-Saharan Africa 

(FAO 2005, 2006). The key constraints for empirical studies 

in this field are difficulties associated with data collection, 

such as remoteness and inaccessibility especially during the 

rainy season. High variability of natural resource conditions, 

and thus production, cause additional requirements for 

survey design. For preparation and implementation of a 

survey in SSA, researchers can draw upon similar studies in 

other parts of the world concerning survey methodology, 

questionnaire design, and interview procedure, e.g., the 

World Bank’s Living Standard Measurement Survey 

(LSMS) questionnaire. However, many peculiarities of rural 

communities in SSA require an adapted and elaborated 

approach.  

Some of these peculiarities are of an ecological nature, 

such as seasonal changes in access to resources and markets, 

which are directly affecting patterns and constraints of 

resource use. Others pertain to the economic side of 

household behavior, since income-generating activities of 

rural households in SSA compose complex portfolios. 

Particularly households in fishery-dependent communities 

have adopted a flexible and strongly seasonal matrix of 

diversified activities (Béné, Neiland, Jolley, Ovie, Sule, 

Ladu, Mindjimba, Belal, Tiotsop, Baba, Dara, Zakara and 

Quensiere 2003a; Béné, Neiland, Jolley, Ladu, Ovie, Sule, 

Baba, Belal, Mindjimba, Tiotsop, Dara, Zakara and 

Quensiere 2003b; Béné, Mindjimba, Belal, Jolley and 

Neiland 2003c; Neiland, Jaffry and Kudasi 2000, Neiland, 

Madaka and Béné 2005; Sarch 1997). The local populations 

are alternatively or simultaneously fishers, herders, and 

farmers, and each piece of land is potentially a fishing 

ground, a grazing area and a cultivated field, depending on 

the flood cycle (Béné et al. 2003a, page 20). Due to high 

vulnerability of the ecological and economic system to 

shocks, such as flood, drought and pest outbreaks which 

result in year to year variation in fish stocks and in high crop 

losses, households have diversified their activities portfolio, 

thus spreading the risk of income losses. Capturing the 

dynamic interplay of the different livelihood elements is a 

special challenge in conducting socio-economic household 

surveys. Other constraints for data collection are culturally 

determined, for example tensions between different ethnic 

groups, the existence of a multitude of languages and patois 

spoken in the study region, or some peculiarities of the 

Muslim-African culture. 

The data required for poverty and vulnerability assess-

ment demand an appropriate survey methodology, for data 

quality to meet the requirements of a robust econometric 

analysis. Data needs for economic poverty assessment and 

the evaluation of SSF’s contribution to poverty and vulner-

ability alleviation are substantial. Detailed information on 
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household income, including different income sources such 

as agricultural production, fishing, livestock rearing, off-

farm work etc., is necessary. Also, data on the stock and 

value of productive and convertible assets, as well as on the 

distribution of consumption expenditures need to be elicited. 

In addition, information on control variables, such as 

ecological, economic or social shocks that have occurred in 

the past, subjective risk assessments, debts and liabilities, 

household composition, and others, is required. 

This paper presents the collection procedure of quanti-

tative household data from poor households in the Logone 

floodplain, a major inland fisheries region in Northern 

Cameroon. The objective of collecting household level 

panel data in 2007-2008 was to assess the role of small-

scale fisheries (SSF) in mitigating risk through portfolio 

diversification, thus contributing to reducing vulnerability to 

poverty. In this paper, we emphasize the requirements of the 

general methodological approach for sampling and survey 

design. Due to the complex nature of the SSF sector 

outlined above, a procedure for sampling and data collection 

is required that allows the assessment of poverty and 

vulnerability of SSF households. Particularly, the survey 

design needs to account for the high variation in income 

generating activities over time as a result of the high 

variability of access to natural resources and resulting 

adjustments in a household’s food security situation, con-

sumption, income and assets. 

 
2. Study site and sampling procedure  

The study site is the Logone floodplain in the Far-North 

province of Cameroon. The floodplain covers about 8,000 

km
2
 and is part of the bigger Logone-Chari subsystem in the 

Lake Chad Basin, which supplies 95% of Lake Chad's total 

riverine inputs and has a basin area of approximately 

650,000 km
2
 (UNEP 2004). Within this vast area a repre-

sentative region was defined in collaboration with national 

experts and other key informants, while considering the 

accessibility and logistic feasibility of the study. The study 

area covers about 2,400 km
2
, spreading from the Maga Lake 

in the south to Ivyé village in the north, where the Logomatya 

joins the Logone River. This area is relatively densely 

populated and is characterized by rich fish stocks and 

intensive fishing, fish processing and fish trading.  

The livelihoods of the rural population in this area are 

particularly exposed to harsh climatic conditions, such as 

limited and erratic rainfall, which result in a large variation 

of production outcomes from year to year (In this respect, 

the study area is representative for many similar rural 

settings, particularly in the Sudano-Sahelian zone of Sub-

Saharan Africa.) and thus considerable income risk. 

However, the impact is different between the sub-regions of 

the study area. Based on Neyman (1938), as cited in Rao 

(2005), a stratified random sampling procedure was there-

fore considered most effective. To draw a representative 

sample of households in the study area while accounting for 

different production conditions (such as access to fish 

resources), a stratification of the study site into different 

agroecological zones was undertaken. It was assumed that 

under different ecological and production conditions the role 

of fisheries in terms of income generation would differ. This 

procedure allowed capturing the whole continuum of fishing 

intensity (from specialized/full-time fishermen to purely 

agriculture/livestock rearing oriented households).  

In a second step, a complete list of villages in the study 

area (
 = 88) was compiled. These villages served as the 

primary sampling unit. Following the recommendations of 

local fisheries experts, 14 villages were selected propor-

tional to the total number of villages per zone. The average 

village size in the floodplain (study area) is about 45 

households, with a range of 15 to 100 households. Within 

villages every second household was chosen randomly from 

household lists established by the village headman. Hence, a 

sample size of 300 households was chosen proportional to 

the size of the village populations, which equates to a 

sampling ratio of 7% of the total population (estimated at 

20,000 by the Ministry of Livestock, Fisheries and Animal 

Industries, MINEPIA).  

All selected villages were visited before commencing the 

household level survey with the aim to establish contacts 

between the researcher and the village headmen and 

conduct focus group discussions (FGDs) with the village 

leaders. The objective of the FGDs was twofold. First, some 

general information was collected such as the village size, 

infrastructure, and access to fish resources and markets. 

Second, complete household lists for every selected village 

were compiled, since no official statistical information 

existed. For this study, a household was defined as an 

economically independent unit consisting of the household 

head, one or more spouse(s), children and other directly 

dependent members, living in the household or having 

migrated to other locations. Household size varies from two 

(i.e., normally husband and spouse) to more than 15. Large 

households are common for Northern Cameroon, since due 

to widespread polygamy household heads often live 

together with up to four wives. Mostly, households do not 

live separately from other kin households, but usually form 

a clan, living together in a larger compound. However, 

within the compound, households are independent from 

each other. During the visits, special attention was paid to 

list the names of individual household heads and not only 

those of the compound/clan leaders. The additional informa-

tion collected during the FGDs was necessary to get a first 

understanding of the livelihood options and constraints in 
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the study area, which proved to be helpful for the devel-

opment of the household questionnaire. In the last step, the 

compiled household lists were used for a weighted random 

sampling of the 300 sample households. 

 
3. Survey design 

 
Seasonality is an important characteristic of the live-

lihood conditions in the Logone floodplain. Therefore, in 

order to capture seasonal variation, the survey was designed 

to yield a two-period panel data set (2006 – 2007), with an 

additional third survey six months after conducting the 

baseline survey (see Figure 1). The baseline survey was 

accomplished right at the end of the dry season, when 

income-generating activities are extremely limited, and the 

financial resources, generated during the rainy season in 

2006, are being used up. The period covered in the baseline 

survey was May 2006 to April 2007, constituting a stock 

check of average income flows, consumption expenditures, 

and an asset inventory. The first follow-up survey captured 

the busy time of the year, where expenditures rise due to 

investments (e.g., purchase of new fishing nets and other 

productive assets), and variable production costs in agri-

culture and fishing. Finally, the second follow-up survey 

covered the second half of the year, giving account of the 

economic household activities in this period. This approach 

was chosen to improve the accuracy of data on livelihood 

activities by reducing the recall period, and to make sure to 

capture seasonal variation in income and consumption.  

 

 

 

 

 

 

 

 
 

 

 

Source: own illustration  

 
Figure 1 Livelihood  options  in  the  study  area  and  design  of  

the  survey 

 

Before the start of each survey, enumerator training 

workshops of 3 to 4 days were conducted, including pre-

testing of the questionnaire in order to detect weaknesses 

and the necessity to eliminate, rephrase or add additional 

questions. The baseline pre-test was carried out in two 

villages of zone 1 and 2, in order to test the suitability of the 

questionnaire for different livelihood conditions. The 

baseline study was completed within 3 weeks in May 2007 

by four enumerators, working in a team, and accompanied 

and directly supervised by the first author. This procedure 

gave the opportunity for immediate cross-checking for 

missing information, and also enabled the researcher to 

observe and reinforce interview techniques and immediately 

discuss problems or questions.  

Due to the relative remoteness of the villages and 

difficulties of access, careful logistical planning was neces-

sary. The field trips often covered several days, and it was 

inevitable to spend the nights in the villages. Hence, the 

survey procedure adopted was as follows: the whole team 

arrived in a village, presenting itself to the village chief, who 

had been previously informed about the arrival date of the 

team during the FGD visit. The chief then called the heads 

of the selected households to a central meeting place, 

usually under a tree in front of the chief’s house. After the 

interview, which normally took about one hour, the 

respondent was given a small present as a compensation for 

his time (a package of sugar and a bag of tea), and the next 

household head was called to sit down. Working in a group 

enabled the team to finish a village in about one or two days 

and proceed to the next one. That course of action strongly 

motivated and encouraged the enumerators for security and 

psychological reasons. The interview time, and hence the 

time planned to be spent per village, was held flexible, so 

that careful cross-checking for consistency and plausibility 

of responses was ensured. Hence, during the enumerator 

training workshops and throughout the data collection 

process, special emphasis was placed on the ultimate 

primacy of data quality. 

 
4. Data collection challenges and lessons learnt  
This section describes some challenges and constraints in 

data collection, which have been encountered during this 

study, but which are not limited to the study region. Similar 

settings are found in many wetlands and floodplains in SSA, 

and the lessons learnt in this study may prove helpful for 

comparable data collection endeavors. 
 
Seasonality  

When collecting data in rural fisheries-dependent com-

munities in SSA, the seasonal nature of the livelihood 

systems and the ecological constraints need to be taken into 

consideration. Very often, villages are spatially margin-

alized and access is extremely difficult during certain 

periods of the year. For example, in the Logone floodplain 

in North Cameroon, access to the villages is very restricted 

during several weeks twice a year due to the annual flood 

cycle. At the beginning of the flooding season, and during 

the deflooding period, access is not possible, neither by 

vehicle, nor by boat. Hence, the placing of the survey 

periods need to be adapted to these conditions. For example, 
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although it would have been more reasonable to place a 

follow-up survey at the end of the production cycle in 

January, thus better capturing agricultural production and 

fishing harvests, this procedure proved to be unfeasible. 

From mid December to end of February access to the 

sampled villages was not possible at all. The research team 

decided for a compromise, collecting data in December, 

even if this falls in the midst of the harvesting season. The 

missed data on yields and income was then recollected 

during the second follow-up. Similar problems arise in other 

major inland fisheries such as the Hadejia-Nguru Wetlands 

in Nigeria or the Lower Shire river basin in Malawi.  
Defining time periods  

For recall surveys and particularly for panel surveys (i.e., 

the research team is repeatedly revisiting the same house-

holds) it is important to assure a common understanding of 

the time period that is considered in the questionnaire. 

Different notions of the time span may result in biased 

information concerning income or consumption flows and 

can flaw the results and conclusions drawn from the study. 

In order to assure a common understanding of the requested 

time period, the respective cultural understanding of time 

needs to be taken into account. We found that in the Logone 

floodplain, people do not think in time units such as weeks 

or months. Hence, questions, such as: “How much did you 

spend on food items in the last 6 months?” were not 

appropriate. In this case, it proved instrumental to refer to 

certain region-wide acknowledged social events or cele-

brations. For example, the survey in November coincided 

with the Tabaski festivities, so that it was easy for the 

respondents to delimit the time period considered in the 

second follow-up survey.  
 
Selection of enumerators and their cultural competence  

Perhaps the most important factor in empirical work is 

the choice of the enumerators. To achieve good data quality, 

enumerators must not only provide the needed skills and 

knowledge, but also dispose over additional soft skills, such 

as mastering of languages, social competence, and the will 

to work under severe conditions.  

The lack of sufficiently educated interviewer personnel 

in the Far-North Province in Cameroon presented a serious 

constraint. For this study, a team of five MINEPIA staff, 

who work as government officials in the survey area, was 

recruited as enumerators. While respondents can have 

reservations to provide information to government officers, 

the more important factor was that the survey team 

represented the two ethnic groups of the study area. Also, 

enumerators spoke the languages of the region, they were 

familiar with the local peculiarities, and used to the 

conditions in the field. In addition, respondents’ willingness 

to provide information was actually encouraged in expec-

tations of a follow-up governmental support.  

Another advantage of the selected enumerators was 

awareness and sensitivity towards ethnic tensions. Enumer-

ators were careful not to take sides with either one of the 

involved parties, and avoided offensive statements. This was 

especially important with regard to multiple visits of 

villages and respondents during the follow-up surveys. Any 

disaccord between respondents and enumerators would have 

resulted in significant attrition and the need to drop entire 

villages from the sample.  

Certain cultural or religious norms also demanded 

tactfulness and respect. For example, in a number of villages 

only men could be interviewed since women in that 

African-Muslim culture are not allowed to meet or talk to 

men other than direct family members. In cases where the 

household head was not present at the time of the visit, it 

was not possible to interview the spouse (or any other 

woman in the household) instead. An adult male household 

member had to be chosen to provide the required infor-

mation. For the same reason, interviews could not take place 

in the house of the respondents. For the sake of compliance 

to these cultural norms, the interview procedure had to be 

adapted. Instead of visiting the chosen households one by 

one, all sampled household representatives in each village 

were called to a central meeting place by the village chief 

(usually in front of the chief’s house). If the household head 

was not present, another adult member of the household 

(usually male) was interviewed. The enumerators then 

seated themselves at a distance of about three to five meters 

from each other, calling the respective respondent to be 

interviewed in private, while the others were waiting for 

their turn.  
 
Sample attrition  

A particular challenge of panel surveys in general is to 

maintain the size of the sample over time (Jäckle and Lynn 

2008, Laaksonen 2007). Attrition can be high due to several 

reasons. For example, in some cases the household head has 

died, the whole household has moved away, or the 

respondents lose interest to participate especially if no or not 

enough incentives are provided. The loss of willingness to 

participate in a follow-up survey caused a problem during 

the second visit. Due to budget constraints the survey team 

decided not to compensate the participants for their time at 

the second visit. For the baseline survey, each respondent 

had received a box of sugar and a package of tea which 

turned out to be a strong extrinsic incentive. When 

households learned that no remuneration had been foreseen 

at the second visit, 69 households (23% of the total sample) 

announced that they were “too busy” to participate. Consid-

ering this reaction, compensation was again offered at the 
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third survey, so that most of the lost households could be 

regained. They were even willing to respond to both 

questionnaires (1
st
 and 2

nd
 follow-up). Thus the missing data 

could be completed during the last survey round albeit at the 

cost of lower reliability due to memory bias. Such 

respondent behavior is consistent with findings by Jäckle 

and Lynn (2008), who report significant positive effects of 

continued incentive payments on attrition, bias and item 

non-response. At the end of the survey period, 14 house-

holds (4.7%) have been lost due to permanent migration or 

other reasons, and hence were removed from the sample. 

 
5. Summary and conclusions 

 
Data collection for poverty analysis in SSA is a chal-

lenging endeavor. Often, cultural, ecological and economic 

constraints push researchers to put up with a compromise 

between data quality and feasibility of the study. On the 

other hand, collection of such data is important because little 

is known about poverty and vulnerability of marginalized 

groups such as fisheries communities in remote areas of 

SSA. In this paper, we present the approach that has been 

taken in the course of a study on poverty and vulnerability 

in the Logone floodplain, which is a major fishing area in 

Northern Cameroon. We identify typical constraints that are 

often hampering empirical work in SSA, and show how 

different challenges can be overcome by an adequate survey 

design, sampling and careful application of the survey 

instrument. Major constraints encountered were the diffi-

culties to access the target population, limitations in finding 

qualified enumerators and high demand for cultural sensi-

tivity of the research team. 

Of eminent importance is a close collaboration with local 

authorities and experts in the respective field of research, as 

well as a good understanding of and compliance with local 

cultural norms and values. Learning from the local popu-

lation and empathizing with it’s peculiar ways of living 

before starting the survey per se has been found to be a key 

success factor for working in that region. Summing up, it 

can be concluded that despite a number of difficulties, 

quantitative data collection in rural Sub-Saharan Africa is a 

task that can be completed with satisfying results. An 

appropriate survey design and interview procedure devel-

oped in collaboration with local staff and experts can assure 

adequate data quality for economic poverty and vulner-

ability analysis. 
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Respondent differences and length of data collection  
in the Behavioral Risk Factor Surveillance System 

Mohamed G. Qayad, Pranesh Chowdhury, Shaohua Hu and Lina Balluz 1 

Abstract 

The current economic downturn in the US could challenge costly strategies in survey operations. In the Behavioral Risk 
Factor Surveillance System (BRFSS), ending the monthly data collection at 31 days could be a less costly alternative. 
However, this could potentially exclude a portion of interviews completed after 31 days (late responders) whose respondent 
characteristics could be different in many respects from those who completed the survey within 31 days (early responders). 
We examined whether there are differences between the early and late responders in demographics, health-care coverage, 
general health status, health risk behaviors, and chronic disease conditions or illnesses. We used 2007 BRFSS data, where a 
representative sample of the noninstitutionalized adult U.S. population was selected using a random digit dialing method. 
Late responders were significantly more likely to be male; to report race/ethnicity as Hispanic; to have annual income higher 
than $50,000; to be younger than 45 years of age; to have less than high school education; to have health-care coverage; to 
be significantly more likely to report good health; and to be significantly less likely to report hypertension, diabetes, or 
being obese. The observed differences between early and late responders on survey estimates may hardly influence national 
and state-level estimates. As the proportion of late responders may increase in the future, its impact on surveillance 
estimates should be examined before excluding from the analysis. Analysis on late responders only should combine several 
years of data to produce reliable estimates. 
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1. Introduction 

 
The Behavioral Risk Factor Surveillance System 

(BRFSS) is a state-based household telephone survey in the 

United States (U.S.) and its territories which monitors health 

risk behaviors and chronic disease conditions for the adult 

noninstitutionalized population (Centers for Disease Control 

and Prevention [CDC] 2009a, BRFSS Turning Information 

into Public Health, http://www.cdc.gov/brfss/about.htm). It 

is the largest telephone survey in the world and is 

implemented by the 50 states, the District of Columbia, and 

U.S. territories, in collaboration with the CDC. The survey 

is conducted continuously throughout the year. 

CDC dispenses the samples (phone numbers) to states 

quarterly. At the state level, the samples are divided into 12 

monthly lists for operational purposes. Trained interviewers 

call each sampled telephone number. After each call to a 

sampled telephone number, a disposition code is assigned. 

States and their contractors are required to give final 

dispositions to their monthly released samples within that 

month. Over 90% of the monthly samples and completed 

interviews receive final dispositions within 31 days. States 

continue to complete their remaining samples afterwards 

(Qayad, Balluz and Garvin 2009).  

Because of economic downturns, states and survey 

organizations may face budget cuts that could adversely 

affect their survey operations. Such unforeseen circumstances 

warrant searching for alternative operational strategies. A 

cost-effective alternative could be to end data collection at 

the end of each month. However, ending data collection 

within one month excludes interviews completed after 31 

days. Such exclusion could influence the variability of the 

respondents, surveillance estimates and the size of com-

pleted interviews, which could affect other operational 

decisions. Currently, the size of late responders is small and 

may not influence surveillance estimates. However, the 

current trend in survey responses heralds a continuous 

decline in survey responders, which could prolong the 

duration to reach respondent and the eventual increase in the 

proportion of late responders. Such circumstances require 

thorough examination of the influence of late responders on 

surveillance estimates in the future. This study examines 

whether respondents who completed the interviews within 

31 days and those who completed after 31 days are different 

in demographics, risk behaviours, and chronic disease 

conditions.  
 

2. Methods  
We used the 2007 BRFSS data, which is an ongoing 

state-based random digit dialing (RDD) telephone survey 

among the non-institutionalized civilian population in the 

US. We divided the duration of the interview into two 

periods, 0-31 days and >31 days. Respondents who 

completed the interviews within 31 days (referred as early 

responders) and those completed after 31 days (referred as 

late responders). 
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Demographic factors included were - gender, race, 

income and age. Race had four groups - white non-

Hispanic, Black non-Hispanic, Hispanic and other race. 

Education had three levels: not a high school graduate, high 

school graduate, and more than high school education. 

Income categories were < $15,000, $15,000 - $34,999, 

$35,000 - $49,999 and $50,000 or more. Age had the 

following categories: 18 - 24 years, 25 - 44 years, 45 - 64 

years, and 65 or more years. Respondents <65 years old 

who did not have any health plan (including health 

insurance, prepaid plans such as HMOs, or government 

plans such as Medicare) were considered not to have health 

plan. General health was dichotomized into good health 

(excellent, very good, or good health) and fair or poor 

health. 

Health risk behaviors included were - binge drinking, 

current smoking, (lack of) physical activity, and (insuffisant) 

fruit and vegetable consumption. Binge drinking was 

defined as having five or more drinks for men and four or 

more drinks for women on at least one occasion during the 

preceding month. Respondents who smoked ≥100 cigarettes 

in their lifetime and smoked every day or some days were 

classified as current smokers. Physical activity had 

following categories - meet recommendations for physical 

activity, insufficient physical activity, and do not participate 

in physical activity. Respondents who consumed 5 or more 

servings of fruits and vegetables everyday were classified as 

meet recommendation for fruit and vegetable consumption. 

Chronic conditions or illness included were Cerebro-

cardio-vascular disease, hypertension, had high cholesterol, 

diabetes, asthma, and overweight or obesity. Respondents 

were considered to have myocardial infarction, or angina, or 

stroke or high blood pressure if they had ever been told by a 

doctor, nurse, or other health professional to have 

myocardial infraction or stroke or high blood pressure 

respectively. Respondents were classified as having high 

blood cholesterol if they had checked their blood cholesterol 

and was told by a health professional that their blood 

cholesterol was high. Respondents were classified as having 

diabetes if they had ever been told by a doctor that they had 

diabetes. Asthma was self reported and physician or health 

care professional diagnosed; it had three categories - current 

asthma, former asthma, and never asthma. Self-reported 

weight and height were used to calculate Body Mass Index 

(BMI) (BMI = weight[kg]/(height[m])*). Participants were 

classified as overweight if their BMI was ≥25 kg/m
2 

and 

were classified as obese if their BMI was ≥30 kg/m
2
. 

We estimated the percent differences between early and 

late responders by demographics, health behaviors and 

chronic health conditions or illness. We used SUDAAN and 

SAS for the analysis (SAS Institute Inc., Cary, NC, USA 

2004). 

 
3. Results 

 
In the 2007 BRFSS survey, there were 430,912 

interviews completed in the U.S. We excluded 14,189 

records from two states (Michigan and Louisiana) and 49 

cases with missing information. We analyzed the remaining 

416,674 respondents of which 394,427 (95%) were early 

responders, and 22,247 (5%) were late responders. We 

estimated weighted and unweighted percent differences 

between early and late responders. The absolute differences 

between the weighted and unweighted percentages in the 

variables examined ranged between 0.06% and 2.6%, 

except white non-Hispanics where the absolute difference 

was 7%. We presented the unweighted analysis for the 

purpose of this study.  

Significant differences were observed between early and 

late responders in demographics, access to health-care cover-

age, and general health status variables (Table 1). Compared 

to early responders, late responders were significantly more 

likely to be male, to report race/ethnicity as Hispanic, to have 

annual income of >$50,000, to be younger than 45 years of 

age, to have less than high school education, to have access 

to health-care coverage, and to report good health. The 

absolute value of these significant differences in the variables 

above ranged from 1.3% to 7.6%. The percentage of 

Unknowns in the health-care coverage variable was 21% for 

late responders and 30% for early responders. The difference 

between early and late responders remained significant, even 

when we assumed the Unknowns to have a similar 

percentage of access to health-care coverage to those with 

known status in each respondent group.  

A significant difference between early and late re-

sponders was also observed in health risk behaviors (Table 

2). Compared to early responders, late responders were 

significantly less likely to meet the recommended guidelines 

for physical activity and daily consumption of fruits and 

vegetables. The absolute value of these significant differ-

ences ranged from 1.7 % to 3.1%. The differences between 

early and late responders remained significant even when 

the Unknowns were assumed to have a similar percentage to 

those of known status for both variables.  

Table 3 shows the differences between early and late 

responders in chronic disease conditions or illnesses. Com-

pared to early responders, late responders were significantly 

more likely to report high cholesterol, significantly less 

likely to report hypertension and diabetes, and were 

significantly less likely to be obese. The absolute value of 

these significant differences ranged from 1.8% to 5.8%. 
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Table 1 

Percent differences between early responders and late responders by demographics, health-care coverage and general health, BRFSS 2007 
 

 Length of data collection   

 Early reponders* 

(1 = 394,427) 

Late responders** 

(1 = 22,247) 

Difference 

(Early-late) 

 

Demographics % % % P-Value 

Gender     

Female 62.8 60.2 2.5 0.000 

Male 37.3 39.8 -2.5  

Race     

White non-Hispanic 79.1 71.5 7.6 0.000 

Black non-Hispanic 7.3 8.2 -0.9 0.168 

Hispanic 7.1 13.5 -6.4 0.000 

Others 5.5 5.8 -0.3 0.635 

Unknown 1.0 1.0 0.0 0.977 

Income     

<15,000 9.7 8.7 1.0 0.146 

15-34,999 26.1 24.3 1.8 0.004 

35-49,999 14.1 13.4 0.8 0.252 

50,000+ 36.6 39.7 -3.1 0.000 

Unknown 13.5 14.0 -0.4 0.496 

Age     

18-24 3.6 4.9 -1.3 0.025 

25-44 25.7 33.3 -7.6 0.000 

45-64 40.9 40.6 0.3 0.612 

65+ 29.0 20.2 8.8 0.000 

Unknown 0.8 1.0 -0.1 0.827 

Education Level     

<High School 10.3 12.3 -2.0 0.001 

High School Graduate 30.6 28.7 1.9 0.001 

> High School 58.8 58.2 0.6 0.177 

Unknown 0.3 0.8 -0.5 0.264 

Health care coverage (<65 years)     

Yes 59.3 65.4 -6.2 0.000 

No 10.8 13.2 -2.5  

Unknown 30.0 21.4 8.6  

Health Status     

Good health 80.1 81.8 -1.7 0.000 

Fair or poor health 19.4 17.6 1.8  

Unknown 0.5 0.6 -0.1  

*Completed the survey within 31 days. 
**Completed the survey after 31 days. 

 

 
Table 2 

Percent differences between early responders and late responders by health risk behaviors, BRFSS 2007 
 

 Length of data collection   

 Early reponders* 

(1 = 394,427) 

Late responders** 

(1 = 22,247) 

Difference 

(Early-late) 

 

Risk factors % % % P-Value 

Binge drinking     

Yes 11.1 11.8 -0.7 0.261 

No 86.9 82.8 4.1  

Unknown 1.9 5.4 -3.4  

Smoking cigarettes     

Current smokers 18.3 17.5 0.9 0.182 

Not a smoker 81.3 82.1 -0.8  

Unknown 0.4 0.5 0.0  

Physical activity recommendations     

Met recommended moderate/vigorous activity 43.4 41.8 1.7 0.000 

Insufficinet physical activity 35.4 31.8 3.6  

No physical activity 14.3 11.3 3.0  

Unknown 6.9 15.2 -8.3  

Fruit & vegetable consumption     

Consumed ≥  5 times/day 25.0 21.9 3.1 0.000 

Consumed < 5 times/day 73.0 69.7 3.3  

Unknown 2.0 8.5 -6.4  

*Completed the survey within 31 days. 
**Completed the survey after 31 days. 
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Table 3 
Percent differences between early responders and late responders by chronic conditions and illnesses, BRFSS 2007 
 

 Length of data collection   

 Early reponders* 

(1 = 394,427) 

Late responders** 

(1 = 22,247) 

Difference 

(Early-late) 

 

Diseases/chronic conditions % % % P-Value 

Cerebral and CVD:     

Myocardial Infarction     

Yes 5.9 4.9 1.0 0.177 

No 93.6 94.7 -1.1  

Unknown 0.5 0.4 0.1  

Angina     

Yes 6.0 4.5 1.5 0.053 

No 93.1 94.7 -1.6  

Unknown 0.9 0.8 0.1  

Stroke     

Yes 3.8 2.8 1.0 0.183 

No 95.9 97.0 -1.1  

Unknown 0.3 0.2 0.1  

Other illnesses/conditions:     

High cholesterol     

Yes 57.0 60.8 -3.8 0.000 

No 42.3 38.4 3.8  

Unknown 0.8 0.8 0.0  

Hypertension     

Yes 35.8 30.1 5.8 0.000 

No 64.0 69.8 -5.8  

Unknown 0.2 0.2 0.0  

Diabetes     

Yes 11.2 9.4 1.8 0.010 

Yes-Pregnancy 0.9 1.2 -0.2  

No 86.4 88.2 -1.9  

Borderline 1.4 1.2 0.2  

Unknown 0.1 0.1 0.0  

Asthma     

Current 8.7 7.7 1.0 0.158 

Former 3.8 4.0 -0.2  

Never 86.9 87.8 -0.8  

Unknown 0.6 0.6 0.1  

Overweight or Obese     

Normal weight 34.5 35.5 -1.1  

Over weight 35.0 34.7 0.4  

Obese 26.0 23.6 2.4 0.000 

Unknown 4.5 6.2 -1.7  

*Completed the survey within 31 days. 
**Completed the survey after 31 days. 

 

 

 

4. Discussion 

 
Our study found significant differences between early 

and late responders in demographic factors, and in some of 

the health risk behaviors and chronic disease conditions or 

illnesses. This shows that the composition of the two groups 

of responders is different with respect to these attributes. 

The differences observed could be due to difficulty in 

reaching persons working long hours and being away from 

their residences.  

The greater likelihood of earning high income, being 

Hispanic, being young (18-44 years), having health-care 

coverage, having less than high school education, and 

reporting good general health among late responders fits the 

described characteristics of working people and healthy 

workers (Li and Sung 1999), (O’Neil 1979). This descrip-

tion is supported by their significantly lower likelihood of 

reporting hypertension, diabetes and obesity. But certain 

risk behaviors show a different profile among late re-

sponders. Late responders are less likely to meet recom-

mended guidelines for moderate or vigorous physical 

activity and for daily consumption of fruits and vegetables, 

which may be related to late responders having long 

working hours and poor access to healthy foods.  

The high income earners, who are mostly white non-

Hispanics, and low income earners, who are mostly 

Hispanics and black non-Hispanics, may spend long hours 

in their working environments and less likely to be in their 

homes to receive survey calls (Voigt, Koepsell and Daling 

2003). In addition, BRFSS data indicate that interviewers 
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make more calls on late responders, on average almost 3 

times more than on early responders, which bears out the 

difficulty of reaching them during the 31-day survey period. 

The reasons for working long hours could be different in the 

two income groups. Hispanics, black non-Hispanics, and 

young age groups may have low-paying jobs and need to 

work long hours to make a living, while the high-income 

individuals may have jobs requiring them to remain at work 

after regular working hours.  

Surveillance and epidemiological estimates based only 

on early or late responders should be scrutinized for possible 

biases prior to making any generalizations. The percentage 

of interviews completed after 31 days is currently small 

(5%) and excluding them from the analysis may have no 

influence on national and state level estimates. However, as 

the proportions of late responders are expected to increase in 

the future, the influence of late responders on these 

estimates could not be ignored (Diehr, Cain, Connell and 

Volinn 1990). In addition, states should examine the 

consequences of ending data collection at 31 days on their 

operations, performance indicators, data quality measures, 

cost-savings and other contractual agreements with their 

data collection contractors.  

Our study has a few limitations. BRFSS uses RDD 

methodology to select telephone numbers, which is subject 

to coverage bias (Rao, Link, Battaglia, Frankel, Giambo, 

and Mokdad 2005; Frankel, Srinath, Hoaglin, Battaglia, 

Smith, Wright and Khare 2003). Information collected is 

self-reported and may be subject to recall bias in some risk 

behaviors and disease estimations (Troiano, Berrigan, Dodd, 

Masse, Tilert and McDowell 2008; CDC 2004). In addition, 

we excluded two states from our analysis (Michigan and 

Louisiana), and extrapolation of the findings to these states 

should be done cautiously. 

Despite these limitations, this study shows that late 

responders are significantly different in many respects from 

early responders. As the proportion of late responders may 

increase in the future, the influence of late responders on 

surveillance estimates should be examined carefully. 
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An interesting property of the entropy of some sampling designs 
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Abstract 

In this short note, we show that simple random sampling without replacement and Bernoulli sampling have approximately 

the same entropy when the population size is large. An empirical example is given as an illustration. 
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1. Introduction 
 

Consider a finite population of size �  and let U =  

{1 }… k … �, , , ,  be the set of labels of this population. A 

sample s  is a subset of U  and a sampling design is a prob-

ability law ( )p .  on the subsets of U  such that ( ) 0p s ≥  for 

all ,s U⊂  and  

( ) 1
s U

p s
⊂

= .∑  

Let ( )k P k sπ = ∈  be the first-order inclusion probability 

of unit k  in the sample:  

( )k
s U
s k

p s
⊂
∋

π = .∑  

Similarly, let ( and )k P k s sπ = ∈ ∈
ℓ

ℓ  be the second-

order inclusion probability of unit k  and ℓ  in the sample:  

,

( )k
s U
s k

p s
⊂
∋

π = .∑ℓ

ℓ

 

The entropy of a sampling design ( ),p .  denoted by 

( ),I p  is defined as  

( ) ( ) log ( )
s Q

I p p s p s
∈

= − ,∑  (1) 

where { ( ) 0}Q s p s= | >  is the support of the sampling 

design ( )p . .  A sampling design has high entropy when 

there is a high amount of uncertainty or high amount of 

surprise in the sample which will be selected. In other 

words, when a sampling design has high entropy, it is very 

difficult to predict the type of sample we would obtain. 

Many sampling designs used in practice are high entropy 

designs. One notable exception is systematic sampling that 

has a very low entropy. The concept of entropy is useful in 

the context of variance estimation. When a sampling design 

has a high entropy, it is possible to obtain approximation of 

the second-order inclusion probabilities, ,kπ ℓ  in terms of the 

first-order inclusion probabilities, which simplifies 

considerably the problem of variance estimation in the 

context of unequal probability sampling; e.g., Brewer and 

Donadio (2003), Matei and Tillé (2005), Henderson (2006) 

and Haziza, Mecatti and Rao (2008). 

It is well known that the sampling design with maximum 

entropy is Poisson sampling:  

poiss ( ) (1 )k k

k s k U\s

p s
 
 
 
 ∈ ∈ 

 
= π − π 

 
∏ ∏  (2) 

for all ;s Q∈  e.g., Tillé (2006). A special case of Poisson 

sampling is Bernoulli sampling, which is obtained from (2) 

by setting (0, 1),kπ = π∈  which leads to  

bern ( ) (1 ) for alls sn � n
p s s U

−= π − π , ⊂ ,  

where sn  is the random size of .s  Using (1) and noting that 

( ) ,s Q sn p s �∈∑ = π  the entropy of Bernoulli sampling is 

given by  

bern( ) (1 ) log(1 ) logI p � �= − − π − π − π π,  (3) 

which is maximum when 1 2.π = /  In this case, we have 

bern( ) log 2I p �= .   
If we restrict to the class of fixed size sampling designs 

with first-order inclusion probabilities ,k k Uπ , ∈  the maxi-

mum entropy design is the so-called Conditional Poisson 

Sampling (CPS); (see Chen, Dempster and Liu 1994; Deville 

2000; Tillé 2006). The CPS design can be implemented by 

repeatedly selecting samples according to Poisson sampling 

until the desired sample size, n  (say), has been obtained. 

When k n �π = /  for all ,k U∈  the CPS design reduces to 

simple random sampling without replacement:  

1

srs ( )
�

p s
n

−
 

=  
 

 

for all .s Q∈  From (1), it follows that the entropy of simple 

random sampling is given by  

srs( ) log log log( )I p � n � n= !− !− − !.  (4) 

In other words, simple random sampling without replace-

ment is the maximum entropy design in the class of equal 

probability fixed size sampling designs.  
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Not all sampling designs possess a high entropy. For 

example, the 1-in-G  systematic sampling design has a very 

low entropy. Here, the number of samples, ,G � n= /  is 

assumed to be an integer value. Since syst ( ) 1p s G= /  for all 

s Q∈ ,  the entropy of systematic sampling is given by  

syst( ) log logI p � n= − ,  

which is much smaller than (4), especially for large values 

of .�  

 
2. Main result 

 
In this section, we compare the entropy of Bernoulli 

sampling with that of simple random sampling without 

replacement. Since the support of the Bernoulli sampling 

designs is much larger than that of simple random sampling 

without replacement, we expected the entropy of Bernoulli 

sampling to be much larger than that of simple random 

sampling without replacement. Table 1 shows the entropy 

for simple random sampling and Bernoulli sampling for 

different values of �  and .π  Surprisingly, we found the 

entropy of both sampling designs for the same inclusion 

probabilities and the same sample size to be approximately 

equal. From Table 1, it is clear that both sampling designs 

have similar entropies, even for moderate population sizes 

(e.g., 100),� =  independently of the value of .π  This 

result is somehow curious considering the strong reduction 

of possible samples by fixing the sample size. Indeed, recall 

that the size of the support is �
n
( )  for simple random 

sampling without replacement, whereas it is 2�  for 

Bernoulli sampling. For example, for 100� =  and 20,n =  

the size of the support for simple random sampling without 

replacement is equal to 20100
20

5 36 10 ,≈ . ×( )  whereas it is 

equal to 100 302 1 26 10≈ . ×  for Bernoulli sampling. In other 

words, the size of the support of Bernoulli sampling is 

approximately 92 36 10. ×  larger than that of simple random 

sampling without replacement. 

Result 1. Let bern( )I p  and srs( )I p  be the entropy for 

Bernoulli sampling and simple random sampling without 

replacement, respectively given by (3) and (4). Then,  

srs

bern

( )
lim 1

( )�

I p

I p→∞
= .  

 
Proof. By considering Stirling’s formula (see Abramowitz 

and Stegun 1964, page 257) 

log
lim 1

logn

n n n

n→∞

−
= ,

!
 

we get  

log log ( ) log( )
lim 1

log
�
n

� n

� � n n � n � n

�

n

 →∞
 →∞
 − →∞
 
 

− − − −
= ,  

from which we obtain  

log

lim 1
(1 ) log(1 ) log�

�

�

� �

 
 
 
 
 

→∞

π
= = .
− − π − π − π π

 

 
3. Conclusion 

 
In this note, we showed that Bernoulli sampling and 

simple random sampling without replacement have very 

similar entropies, even for moderate population sizes. We 

conjecture that the same should be observed when com-

paring the Poisson sampling design and the CPS design for 

a given set on first-order inclusion probabilities. However, 

the proof of this result seems to be considerably more 

complex.  

 

 
 
Table 1 
Entropy of (Bernoulli sampling, simple random sampling) designs 
 

� π =π =π =π = 0.1 π =π =π =π = 0.2 π =π =π =π = 0.3 π =π =π =π = 0.4 π =π =π =π = 0.5 

10 (3.3,  2.3) (5,  3.8) (6.1,  4.8) (6.7,  5.3) (6.9,  5.5) 

100 (32.5,  30.5) (50,  47.7) (61.1,  58.6) (67.3,  64.8) (69.3,  66.8) 

1,000 (325.1,  321.9) (500.4,  496.9) (610.9,  607.3) (673,  669.4) (693.1,  689.5) 

10,000 (3,250.8,  3,246.5) (5,004,  4,999.4) (6,108.6,  6,103.9) (6,730.1,  6,725.3) (6,931.5,  6,926.6) 

100,000 (32,508.3,  32,502.8) (50,040.2,  50,034.5) (61,086.4,  61,080.5) (67,301.2,  67,295.2) (69,314.7,  69,308.7) 

1,000,000 (325,083,  325,076) (500,402,  500,396) (610,864,  610,857) (673,012,  673,005) (693,147,  693,140) 
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