

Table of Contents

	PRE	FACE	3	3 CONSTRUCTION	15
	ACKNOWLEDGEMENTS			3.1 Development Timing	15
1	INT	RODUCTION	6	3.2 Clearing	15
				3.3 Site Grading	16
2	PLANNING AND DESIGN		7	3.4 Drainage Control	17
	2.1	Permitting	8	4 OPERATIONS AND MAINTENANCE	18
	2.2	Environmental Conditions	10	4.1 Fuel and Hazardous Material	18
		2.2.1 Area	10	4.1.1 Fuel and Hazardous	10
		2.2.2 Durable Surface	10	Material Storage	18
		2.2.3 Slope	11	4.1.2 Fuel and Hazardous	
		2.2.4 Vegetation	11	Material Handling	19
		2.2.5 Permafrost	11	4.1.3 Storage of Empty Drums	20
		2.2.6 Wind Exposure	12	4.2 Waste Management	21
		2.2.7 Wildlife Habitat	12	4.2.1 Solid Waste	21
	2.3	Social and Cultural Values	13	4.2.2 Sewage and Greywater	22
		2.3.1 Substinence and		4.3 Water Supply	24
		Recreational Values	13	4.4 Temporary Closure	24
		2.3.2 Archaelogical Resources	13	4.5 Storage Authorization	24
	2.4	Access	14	5 SPILLS	25
		2.4.1 Roads and Trails	14	5.1 Spill Contingency Plan	25
		2.4.2 Aircraft	14	5.2 Spill Prevention	-5 25
		2.4.3 Docks	14	5.3 Spill Response	25

Preface

6	CLO	SURE AND RECLAMATION	26
	6.1 Reclamation Goals		26
	6.2	Reclamation Activities	26
		6.2.1 Complete Removal	26
		6.2.2 Landscape Reconstruction	27
		6.2.3 Revegetation	28
		6.2.4 Access	28
	6.3	Reclamation Monitoring	28
	BIBI	LIOGRAPHY	29
	GLO	SSARY	30
	APPENDIX A: INAC LOCAL RESOURCE MANAGER CONTACT INFORMATION		
			31

Indian and Northern Affairs Canada (INAC) has revised its popular land use guidelines series. It is designed to guide land use activity on Crown land in the Northwest Territories and Nunavut. Activities on land under private ownership (e.g., First Nations or Inuit-owned land)¹ and land under municipal or territorial control (e.g., Commissioner's land) require direction from the appropriate agency.

Guidelines apply to land use activities on Crown land only.

These guidelines will assist proponents and operators in planning proposed land use activities, assessing related environmental effects and minimizing the impacts of these activities. They should be supplemented by local research, traditional knowledge, engineering or other professional expertise specific to a proposal and advice from the appropriate regulatory agency. Although every attempt has been made during the preparation of these guidelines to use up-to-date information, it remains the operator's responsibility to obtain the most recent information related to northern resource development and to follow current regulatory requirements.

Guidelines do not replace acts, ordinances, regulations and permit terms and conditions.

Aboriginal land refers to First Nations, Inuit, or Métis owned lands

Volumes in this series include:

- Administrative Framework
- Administrative Process
- Applying Sustainable Development
- Permafrost
- Access: Roads and Trails
- Camp and Support Facilities
- Pits and Quarries
- Mineral Exploration
- Hydrocarbon Exploration
- Other Land Uses
- Closure and Reclamation

The series is available electronically from the INAC website: **www.ainc-inac.gc.ca.** Readers are encouraged to visit the site for updates and revisions to the series.

For further information concerning the subject matter contained in this guideline series, please contact:

OTTAWA

Manager, Land Programs, Natural Resources and Environment Branch

Indian and Northern Affairs Canada Les Terrasses de la Chaudière 10 Wellington Street Hull QC K1A 0H4

TEL.: 819-994-7464 FAX: 819-997-9623 EMAIL: NorthernLands@ainc-inac.gc.ca

NORTHWEST TERRITORIES

Land Administration

Indian and Northern Affairs Canada P.O. Box 1500 Yellowknife NT X1A 2R3

TEL.: 867-669-2671 FAX: 867-669-2713 EMAIL: NWTLands@ainc-inac.gc.ca

NUNAVUT

Land Administration

Indian and Northern Affairs Canada P.O. Box 100

Iqaluit NU XOA 0H0

TEL.: 867-975-4275 FAX: 867-975-4286 EMAIL: landsmining@ainc-inac.gc.ca

YUKON

NOTE: Effective April 1, 2003, responsibility for Indian and Northern Affairs Canada's Northern Affairs Program (land and resource management) was transferred to the Government of Yukon. For information on land-use in the Yukon, contact the office below:

Land Use—Lands Branch Department of Energy, Mines And Resources

Government of Yukon Suite 320, Elijah Smith Building 300 Main Street Whitehorse YT Y1A 2B5

TEL.: 867-667-3173 FAX: 867-667-3214

EMAIL: land.use@gov.yk.ca

Acknowledgements

In the 1980s, Indian and Northern Affairs Canada published a series of six land use guidelines in a handbook format, intended to help operators of small to medium-scale projects carry out activities in northern Canada in an environmentally sensitive manner. These handbooks, commonly called "The Blue Books," have been widely distributed and quoted. Their success is a tribute to the efforts of the original authors and contributors, and to the departmental steering committee that guided their preparation.

This new series of northern land use guidelines is, in part, an update of the earlier series. This work was directed by a steering committee made up of Northern Affairs Organization and Northern Regional Office staff. Much of the information and many of the photographs presented in this series were obtained in consultation with land use administrators and resource managers in the Northwest Territories and Nunavut.

Introduction

This volume is written for proponents, operators and regulators of temporary camps in northern Canada. Temporary camps service land use projects of limited duration, such as mineral or hydrocarbon exploration. When the project is completed, the camp is generally dismantled. Camp support facilities include airstrips, roads, and fuel and waste storage areas.

This volume presents environmental issues and mitigation techniques associated with the life cycle of a camp from planning to reclamation. Use of proper mitigation techniques can protect the environment and lead to cost-efficiencies in construction, operation and maintenance of camp and support facilities.

Camp operators should note that these guidelines are subordinate to all relevant acts, regulations and permit requirements. When planning, proponents should also be aware of approved land use plans in their area. The guidelines are general in nature and site-specific conditions may require expert advice. Specifically, the guidelines should be supplemented by local research, traditional knowledge, engineering expertise, guidance from INAC land management staff and other appropriate authorities. It is the proponent's responsibility to be aware of and apply the most current and best available environmental mitigation practices.

FIGURE 1A & 1B. Temporary camps range in size and type of support facilities required.

Planning and Design

This volume describes the four phases of camp development, as outlined in Table 1, and best practices for development at each stage. The entire life cycle of a camp, from construction through operations and reclamation, should be considered before development begins. Proper planning saves time and money as a camp that is well planned prior to construction will minimize project delays and reduce the risk of adverse environmental impacts.

To minimize new land disturbance, proponents should assess the possibility of having a community-based operation or use an existing camp. Once a location is chosen, existing

environmental, administrative, social and cultural information should be collected (Table 2). Information gaps can then be filled by conducting field investigations. A baseline environmental study will identify sensitive environmental conditions that may require special attention. Undisturbed site conditions can also be recorded for use during closure and reclamation. Baseline information can include soil, permafrost, vegetation, surface water and groundwater quality, and fish and wildlife habitat. All of this information will enable the proponent to provide a complete land use permit application to the appropriate land use regulator.

Table 1. Four phases of camp development.

1 PLANNING 2 CAMP OPERATIONS AND 4 CLOSURE AND AND DESIGN MAINTENANCE RECLAMATION CONSTRUCTION · Gather and analyze Plan construction • Implement maintenance Prepare closure and information reclamation plan programs Carry out construction Select a site Conduct regular Progressive reclamation inspections Conduct closure and · Conduct a baseline Identify and correct reclamation activities study problems Plan operations Closure monitoring Consider reclamation Apply for a land use permit

Permitting

Most temporary camp developments on Crown land require a land use permit from the appropriate land use regulator before activity can proceed. Permitting thresholds applicable to temporary camps include the number of person-days, the amount of fuel storage, building construction and clearing of land. Thresholds are listed in the Mackenzie Valley Land Use Regulations (www.laws.justice.gc.ca/eng/SOR-98-429/index.html) for the Mackenzie Valley and Territorial Land Use Regulations (www.laws.justice. gc.ca/eng/C.R.C.-c.1524/page-3.html) for the Inuvialuit Settlement Region and Nunavut.

Each land use regulator has specific requirements for permit applications. Generally, an application should include environmental background information, a description of the planned camp and the development schedule. The application should also explain how identified environmental impacts will be avoided or minimized during construction and operation of the camp.

Authorization for water use may be required from the appropriate regulatory board. Permitting thresholds for camp water use and deposition of waste are listed in Northwest Territories Waters Regulations (www.laws.justice.gc.ca/eng/SOR-

Table 2. Information used for planning a temporary camp.					
INFORMATION CATEGORY	INFORMATION SUBCATEGORIES	SOURCES			
Environmental	 Topography and drainage Surface vegetation Sensitive landforms (e.g. pingos or eskers) 	 Maps, aerial photos, satellite imagery Territorial Geoscience Office (www.nwtgeoscience.ca and www.nunavutgeoscience.ca) Natural Resources Canada (www.nrcan-rncan.gc.ca) Local INAC office Appropriate resource managers or regulatory boards Local operators and residents 			
	Water management	 Local INAC office INAC Water Resources Division (www.ainc-inac.gc.ca) Appropriate resource managers or regulatory boards 			
	Timber/forestry	 Government of the Northwest Territories, Environment and Natural Resources (www.enr.gov.nt.ca) 			
	Fish and wildlife habitat	 Fisheries and Oceans Canada (www.dfo-mpo.gc.ca) Environment Canada Territorial environment departments 			
Engineering	Construction methodsCamp access: roads or trails	EngineersField investigationsINAC resource management officer			
Archaeological/ cultural	 Location of archaeological sites and heritage resources Traditional-use areas (e.g. berry-picking sites, traplines, cabins) 	 Prince of Wales Northern Heritage Centre - Northwest Territories www.pwnhc.learnnet.nt.ca) Department of Culture, Language, Elders and Youth, Nunavut (www.gov.nu.ca) Inuit Heritage Trust, Nunavut (www.ihti.ca) Field investigations and local residents 			
Reclamation	Reclamation standards	 Local INAC office Appropriate resource managers or regulatory boards Territorial environment departments 			

93-303/index.html). Camp water supply is also addressed in the *Public Health Act* of the Northwest Territories and Nunavut. The local Environmental Health Officer should be contacted to discuss water supply prior to camp development (N.W.T.: www. hlthss.gov.nt.ca; Nun.: www.gov.nu.ca/health).

Other authorizations may be required depending on the scope and nature of camp development. The purpose of and responsible authority for authorizations that are commonly required for camp development are outlined in Table 3. For more information, consult the Administrative Process volume of this series.

Table 3 Authorizations that may be required for camp development.

	Tuble 57 tuthon zutions that may be required for earlip development.					
PERMIT	PURPOSE	RESPONSIBLE AUTHORITIES				
Land Use Permit	Use and occupation of the camp site	 Indian and Northern Affairs Canada (Inuvialuit Settlement Region) Land and Water Boards (Mackenzie Valley - Northwest Territories) Indian and Northern Affairs Canada (Nunavut) 				
Water Licence	Use of water or deposition of waste, for example, treatment of camp sewage	 Northwest Territories Water Board (Inuvialuit Settlement Region) Land and Water Boards (Mackenzie Valley - Northwest Territories) Nunavut Water Board (Nunavut) 				
Fisheries Authorization	Work in fish-bearing waters, activities that may harm fish habitat	Fisheries and Oceans Canada				
Quarrying Permit	Obtain granular materials	Indian and Northern Affairs Canada				
Quarry Lease	Long-term access to granular materials	Indian and Northern Affairs Canada (Nunavut only)				
Timber Permit	Clearing timber prior to camp construction	Government of the Northwest Territories (NWT only)				
Quarry Authorization/ Access Authorization	Access and work on Aboriginal private lands	Aboriginal private landowners				
Land Access Permit	Inuit-Owned Lands	Regional Inuit Associations (Nunavut)				

2.2 Environmental Conditions

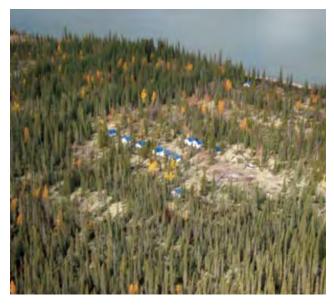
The location of a camp should be selected with care to avoid terrain that could lead to future problems. All camp structures, including fuel caches and greywater sumps, must be located at least 31 m from the high water mark of a water body to reduce the risk of impacting water quality.

2.2.1 Area

Proponents should first consider sites in previously cleared areas and in natural clearings to minimize new land disturbance.

The size of a camp and the area required to support it will be determined by the following:

- purpose of the camp;
- number of occupants and length of their stay;
- seasons during which the camp will operate; and
- type of support facilities (e.g., fuel storage, airstrip, roads).


An increase in project activities may require camp expansion. To simplify future site changes, the chosen site should be large enough to accommodate expansion.

2.2.2 Durable Surface

Camps should be constructed on a durable surface, such as gravel or sand, that is consolidated and can withstand repeated, heavy use. This applies especially to camps operating during the summer, when a poorly located camp can erode and become very muddy. In more sensitive areas, elevated boardwalks can be built between camp facilities to reduce the impact of repeated use. Winter camp operations can be located on built-up snow pads and the site can be watered down to provide a durable base of ice.

2.2.3 Slope

A gently sloping site is preferable for camp construction and operations because surface water will easily drain from the site and vehicles will be able to access the site without rutting the surface. If a more steeply sloping site is chosen, slopes facing south or west may be preferable as they are usually warmer and drier.

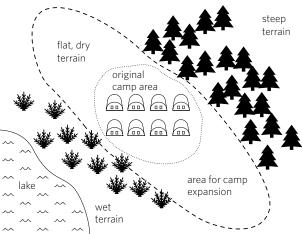


FIGURE 2. (top) Camps should be located in existing clearings to minimize new land disturbance.

FIGURE 3. (middle) Camps should be located where there is room for potential expansion.

FIGURE 4. (bottom) Camps should be constructed on durable surface material.

2.2.4 Vegetation

Vegetation stabilizes the soil with its roots and reduces surface runoff by evapotranspiration through leaves. Removal of vegetation can lead to soil erosion and increased surface water flow. In permafrost terrain, removal or disturbance of vegetation that shades the ground can lead to ground thaw and subsidence.

Boardwalks built between camp buildings can reduce damage to vegetation on high-traffic footpaths. Heavily used footpaths can also be marked using stakes and flagging tape to ensure that impacts to vegetation are confined to a small area.

In the High Arctic, plants grow slowly and are slow to recover from disturbance. In this dry environment, camps should be located in areas with minimal ground cover.

Land use permits may include conditions for saving and stacking merchantable timber in forested areas. For more information on timber management, contact the Department of Environment and Natural Resources, Government of the Northwest Territories.

2.2.5 Permafrost

Permafrost underlies the ground throughout many areas of the Northwest Territories and most of Nunavut. Many areas of perennially frozen ground contain significant amounts of ground ice in the near surface. Disturbance of these areas should be avoided as the ground ice could melt and cause the ground to subside, potentially leading to soil erosion and instability of camp infrastructure. Areas of ground ice are not always identifiable from surface features, so field investigations should be conducted at the campsite to determine the extent and depth of permafrost and near-surface ground ice.

In general, the following areas should be avoided in permafrost terrain due to high near-surface ground ice content:

- patterned ground;
- fine-grained soils, particularly clays; and
- sedge wetlands and peatlands.

FIGURE 5. (top left) Surface disturbance can be reduced by building boardwalks between camp structures.

FIGURE 6. (top right) The pathway is marked and streams are crossed by bridges to reduce impacts to vegetation and water.

FIGURE 7. (bottom left) Avoid locating a camp on patterned ground.

FIGURE 8. (bottom right) Probing for permafrost depths on a raised peatland.

Heat radiating from camp buildings may thaw permafrost, so all heated camp structures should be elevated above the ground surface to allow air circulation. Engineering advice should be obtained when establishing campsites in permafrost terrain. See the Permafrost volume of this series for additional information.

2.2.6 Wind Exposure

Campsites should be planned so that there are no long stretches of recently cleared, fine-grained soils exposed to the wind as these soils are easily eroded. Natural clearings are more resistant to wind because ground cover and root systems are already well developed. Sites that are cleared by hand can be more wind resistant as tree roots may still be intact.

North of the treeline, camps should be located on high ground to avoid accumulation of wind-drifted snow. In the absence of obstacles such as trees, snow is blown into low-lying areas, so a camp located on low ground would require frequent snow removal.

FIGURE 9. On the tundra, camps located on high ground require less snow removal.

2.2.7 Wildlife Habitat

Construction and operation of temporary camps and support facilities have the potential to alter or damage wildlife habitat. Proponents should identify species at risk that could be encountered or affected by the development and consider potential adverse effects of the project on those species and their habitat. If species at risk are encountered, the primary mitigation measure is to avoid disturbing them and their habitat. To discuss issues related to species at risk and for further information, proponents should contact the Canadian Wildlife Service (www.ec.gc.ca/nature/ default.asp?lang=En&n=FB5A4CA8-1). Information on species at risk is also available at the Species at Risk Public Registry (www.sararegistry.gc.ca) and in Species at Risk in the Northwest Territories (www. enr.gov.nt.ca).

Proponents should also be aware of the presence of migratory birds in the development area. If migratory bird nests are present, the preferred mitigation measure is to clear the area during the nesting period. Information on migratory birds can be obtained from the Canadian Wildlife Service.

Social and Cultural Values

Social and cultural values should be considered when planning a camp. Local residents should be contacted to identify values, including the area's traditional and recreational usage and cultural significance.

2.3.1 Subsistence and Recreational Values

Community members, resource users and Aboriginal groups should be contacted early during the planning process to identify sites of particular cultural, subsistence or recreational importance in the area of interest. Existing uses can include traplines, cabins, hunting areas, canoe routes or tourism. Concerns can be addressed by the proponent in the choice of camp location and design. The land use permit may also contain specific conditions to protect and minimize disruption of existing interests.

The presence of a camp may detract from the scenic appeal of a landscape, especially in areas of high tourism or recreational value. Camps should be located and designed to minimize their visual

impact. The preferred mitigation measure is to avoid highly valued areas; however, if avoidance is not possible, a visual barrier should be considered.

2.3.2 Archaeological Resources

Avoid archaeological and cultural sites when choosing a camp location. Information on documented sites can be obtained from the Prince of Wales Northern Heritage Centre in the Northwest Territories and the Department of Culture, Language, Elders and Youth in Nunavut. Aboriginal groups, communities and governments can also provide information on traditional-use areas. Field investigations should be conducted at the proposed location during the summer prior to camp construction to identify potential archaeological or cultural sites.

If an archaeological or cultural site is discovered at any stage of camp development, work in the area must be stopped immediately and the local INAC resource management officer, territorial government and regulatory board must be notified. Artifacts suggesting the presence of an archaeological site include arrowheads, old encampments or buildings.

FIGURE 10. Contact and engage stakeholders early during the planning process.

2.4 Access

Camp accessibility should be considered during the planning stage. Due to the remoteness of most northern camps, access is often by air. Chosen methods of access should be technically, environmentally and economically feasible.

2.4.1 Roads and Trails

Roads or trails can be used to access a camp. Environmental impacts should be minimized during road construction and operation. See the *Access: Roads and Trails* volume of this series for additional information.

2.4.2 Aircraft

Camps that are supported by fixed-wing aircraft can have airstrips located on land or use nearby water bodies. Where an airstrip is required on land, an existing airstrip or topographic feature capable of accommodating a plane should be utilized before constructing a new airstrip.

Camps that rely on helicopter support should be located in an open area that is large enough to build a helipad nearby.

2.4.3 Docks

For camps located near water bodies, a dock may be required for boat and float plane access. When determining the location and design of a dock, refer to the Department of Fisheries and Oceans' Dock and Boathouse Construction Operational Statement (www.dfo-mpo.gc.ca/regions/central/habitat/os-eo/provinces-territories-territoires/nt/os-eo08-eng.htm).

FIGURE 11. (top) During winter, a nearby frozen lake provides air and road access to this camp.

FIGURE 12 (BOTTOM) A dock should be located in a sheltered area with a gentle shore and adequate water depth for float planes and boats.

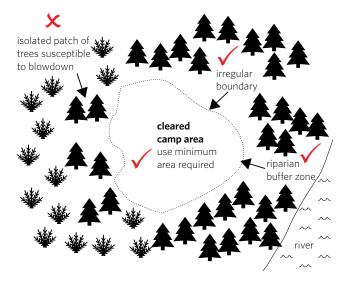
Construction

Best construction practices can save time and money by minimizing future reclamation costs. Construction plans should address site-specific environmental, social and cultural conditions identified during the planning and design phase. Specific construction activities will vary according to the purpose, size and duration of the camp; terrain conditions; local weather conditions; and permit requirements. The proponent is responsible for adhering to all permit and regulatory requirements during and following the construction phase.

Development Timing

A key component of successful camp construction is the proper timing of activities. Winter projects should be scheduled between the average dates of fall freeze-up and spring breakup for the region, allowing adequate time for annual variability.

FIGURE 13. Deep rutting and soil erosion can occur if operations continue too late in the spring.


Sufficient time should be set aside for camp demobilization as serious environmental impacts can occur in late spring as the ground is thawing. Contact the local INAC resource management officer for typical freeze-up and breakup dates.

3.2 Clearing

The objective of clearing is to remove vegetation to allow for camp construction without disturbing the ground surface. For small areas, hand clearing is an effective, low-impact method. Clearing can also be undertaken with a machine, such as a dozer, but care should be taken to avoid uprooting vegetation so that roots are left in place to prevent soil erosion. Dozers can be equipped with mushroom shoes or a smear blade to prevent tearing the surface organic layer. Camp area boundaries should be irregular and follow natural edges to reduce the risk of high winds blowing down isolated patches of trees.

Cleared brush should be disposed of in a manner that minimizes fire hazards and allows for wildlife movement. Acceptable brush disposal methods depend on the amount and type of vegetation cleared, and will be specified in the land use permit. Brush should not be disposed of in or near water bodies, or left leaning against standing timber.

Lopping and scattering is used when vegetation that was pushed down during clearing does not lie flat on the ground. Branches are removed and stems are cut into lengths so that the vegetation lies flat on the ground, enhancing decomposition.

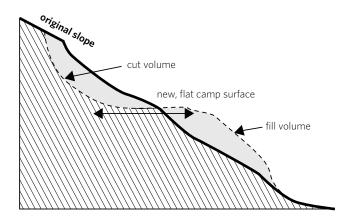


FIGURE 14. (top) Examples of clearing techniques.

FIGURE 15. (middle) Clearing brush with a skidder blade.

FIGURE 16. (bottom) Cut-and-fill technique for grading a sloped campsite.

Windrowing and compaction involves piling cut brush into long rows to the side of the clearing and compacting the piles using heavy equipment to increase decomposition. Windrows should be placed at least five metres away from standing timber to reduce the risk of fire. Breaks of approximately 10-metres width should be left in the windrow at approximately 300-metre intervals to allow wildlife passage.

Brush can also be disposed of by mulching with a wood chipper or a brush cutter. Resulting wood chips can be scattered on the ground, decomposing more rapidly than windrowed brush. This method reduces the risk of fire to a greater degree than windrowing.

Brush can also be completely disposed of by burning. Brush piles should be placed in the middle of the clearing to minimize the risk of fire spreading to surrounding vegetation. Set fires must be monitored at all times. Burning should not be conducted in permafrost terrain with high ground ice content as it could cause ground subsidence.

3.3 Site Grading

When there is no suitable flat terrain, the camp area may require site grading. However, site grading should be avoided in permafrost terrain to prevent ground melting and subsidence. In permafrost terrain, fill from another area may be required to create a flat building site.

Before any site excavation, organic topsoil should be stripped from the surface and stockpiled separately for later reclamation use. Material should be stored well away from water bodies to protect aquatic life. In addition:

- leave a setback of 31 m between the clearing and a water body;
- use sediment- and erosion-control measures during and after construction to prevent entry of sediment into water;
- retain as much riparian vegetation as possible; and
- stabilize stockpiled materials to prevent erosion.

On a slope, a cut-and-fill technique can be used to create a flat site. Materials are excavated from the top of a slope to be used as fill lower on the slope. However, since the excavated materials are highly susceptible to erosion, this technique should only be used if there are no other options, and should

never be used in permafrost terrain to avoid ground thaw and subsidence. Erosion-control measures should be placed on both the cut and fill areas immediately after excavation.

For winter-only camp operations, the preferred site-grading method is to level the camp surface with snow. The site can then be watered down to provide a durable base of ice.

Regular maintenance is required to ensure drainage control structures remain effective. For example, trapped sediment should be regularly removed and properly disposed of to ensure that the structure continues to effectively filter sediment.

Drainage Control

Controlling surface water drainage on the campsite will reduce soil erosion and sedimentation into streams. Drainage control is particularly important at campsites that have been graded because natural drainage patterns have been disturbed.

Drainage control options depend on the size of the site and the amount of surface runoff. The simplest method to control drainage is to construct the camp area on a gradient so that water runs away from the camp and into the surrounding terrain. Structures to slow surface runoff, such as sediment curtains or straw bales, can be used for areas with high surface runoff.

FIGURE 17. Sediment curtains used for drainage control at the edge of a clearing.

Operations and Maintenance

Operating maintenance and monitoring procedures should be developed during the planning phase. The proponent is responsible for ensuring that these procedures meet applicable regulatory requirements. Procedures should be reviewed and, if necessary, revised before the camp is commissioned to reflect changes that may have occurred during construction.

Maintenance should be performed on camp infrastructure on both a routine and an asneeded basis. For example, a weekly schedule to remove water from fuel containment areas can be established to maintain their storage capacity, but in the event of a large precipitation event these areas should be emptied immediately. Camp infrastructure should also be monitored on a regular basis to identify problems at an early stage before there is an environmental impact. For example, daily inspections of heating fuel drums and fittings can prevent a spill.

Problems identified while using, maintaining or inspecting the camp should be promptly addressed. An action plan for correcting problems and monitoring outcomes should be developed and implemented. For example, if solid food wastes that attract wildlife are often found in the greywater sump, filters can be installed on kitchen drains, and a monitoring schedule can be developed to determine the success of the filters in removing the solid wastes.

4.1 Fuel and Hazardous Materials

Fuel and hazardous materials have the potential to cause environmental damage at campsites if spilled. In addition to hydrocarbon-based fuels, common hazardous materials at a campsite include explosives, fertilizer, reagents for chemical analyses and glycol antifreeze. Proper storage and handling techniques reduce the risks associated with having these materials on-site.

4.1.1 Fuel and Hazardous Material Storage

On federal Crown land, storage of petroleum products in tanks with a capacity greater than 230 L and associated piping and equipment is regulated by Environment Canada's Storage Tank Systems for Petroleum Products and Allied Petroleum Products Regulations (www.laws.justice.gc.ca/eng/SOR-2008-197/index.html). The purpose of these regulations is to reduce the risk of contaminating soil and groundwater due to spills and leaks of petroleum products from storage tank systems. Land use permit and water licence conditions also address fuel storage location and handling.

Location

Fuel and hazardous materials must be stored on land at least 100 m above the high-water mark to reduce the risk of fuel spills into water unless expressly authorized in the land use permit or in writing by the INAC resource management officer. Fuel caches should be located on flat, stable terrain, or in a natural depression, away from slopes

FIGURE 18. Secondary containment structures can also be used for fuel drum storage.

leading to water bodies. During camp construction, temporary storage of mobile fuel facilities on frozen water bodies may be allowed by the appropriate land use regulator.

The location and content of all fuel caches must be reported in writing to the land use regulator as soon as they are established. This also includes small fuel caches of more than 410 L (two barrels of fuel) but less than 4000 L, which do not require a land use permit. The notification should include the cache location, a description of the fuel, when the fuel will be used and when the empty barrels will be removed.

Some materials are incompatible for storage with others. Operators should maintain a current inventory of the types and quantities of fuels and hazardous materials on-site, and understand how these materials may interact. Incompatible materials should be stored in separate areas (e.g., acids and bases, or flammable and oxidizing materials). Explosives should be stored separately from all other materials. To promote employee awareness of fuel and hazardous materials, a map should be posted within the camp depicting storage locations and their contents.

Secondary Containment

Secondary containment refers to any impermeable storage structure surrounding fuel containers that has the capacity to contain the fuel in the event of a spill. Secondary containment is required for stationary fuel containers with a capacity greater than 230 L. The capacity of the secondary

containment structure should be 10 percent greater than the capacity of the largest fuel container within it. Double-walled fuel tanks provide secondary containment. Engineered bermed structures are another method of containment. Berms should be of sufficient height or depth to contain the wave resulting from a major breach of a large container. Large secondary containment areas may require an oil/water separator. If possible, tanks in fuel storage areas should be elevated so that leaks can easily be spotted.

To reduce the chance of spillage, tanks with fill and dispense pipes located on the top of the tank are preferable. Valves and fittings for fuel storage tanks are often sources of leaks and should also be located within a containment area. For small fuel containers, such as drums, secondary containment is a relatively low-cost option to reduce the risk of a spill. Fuel drums used for heating camp tents should be elevated on stands and drip trays should be placed under the fittings and valves.

4.1.2 Fuel and Hazardous Material Handling

All fuel and hazardous material containers, full or empty, should be handled with care to avoid spills.

Fuel transfer areas should be stocked with adequate spill-response supplies. An impermeable liner can be placed under the fuel transfer area to confine contamination in the event of a spill. A common cause of spills is a lack of attention during fuel transfer. The transfer of fuel should always be closely supervised by trained personnel. Larger

operations can designate an employee to conduct refuelling and oversee care of the fuel transfer area. When not in use, fuel nozzles should be placed in containers to prevent drips.

Fuel drums should be kept sealed to prevent fuel from leaking. Caches with multiple fuel drums should be spaced in rows to allow for leak inspections. Fuel drums should be stored on their side with bungs at the 9 and 3 o'clock positions to prevent leakage. Drums should be raised above the ground surface to prevent rust if they are to be stored for longer than six months. All drums must be clearly marked with the operator's name so that they are easy to identify.

Fuel and hazardous material storage areas and fuel lines should be clearly marked with signs or flagging to avoid accidental breaks and punctures. These areas should be kept clear of debris and snow to facilitate routine inspections for leaks. Valves should be clearly marked so that it is apparent which valve opens which fuel tank or fuel line.

Monitoring is a critical aspect of handling and storing fuel and hazardous materials. Camp

personnel should be designated to monitor storage and use of hazardous materials and to routinely inspect storage containers, containment areas, drip trays, valves and conveyance lines for leaks and punctures. Inspection records should note the occurrence of and response to leaks or spills.

Snow and water should be regularly removed from secondary containment areas and drip trays to ensure that capacity is maintained. Accumulated snow or water should first be checked for fuel contamination and contaminated material should be appropriately disposed of.

4.1.3 Storage of Empty Drums

All unused fuel and empty fuel and hazardous material containers must be removed from the campsite and properly disposed of when the operation is complete. Empty fuel drums can be collected on-site until there are enough to backhaul. Caps should be replaced on the empty drums in case there is remnant fuel within them. Costs for container removal can be reduced by progressively back-hauling drums on return trips of supply trucks or aircraft.

FIGURE 19. This fuel storage area is well marked with pylons, and drums are stored on their side and well spaced to allow for leak inspection, but snow should be cleared to facilitate leak inspection.

Waste Management

Appropriate waste storage and disposal can lower environmental risk, minimize wildlife attractants and reduce reclamation costs through progressive removal of wastes from the site. Failure to properly dispose of waste is a common reason why land use permits remain open after site demobilization, requiring a subsequent trip by the operator to clean up the site.

Waste management practices vary depending upon waste characteristics and available facilities. Proponents should develop a waste management plan based on the following hierarchy of preferred waste management methods:

- 1. Source reduction
- 2. Reuse or recycle
- 3. Disposal

Source reduction involves eliminating or reducing the volume of waste generated by a camp through the use of alternative products, methods or processes. Proponents should always consider source reduction first, when planning camp operations, to reduce the amount of waste generated at the site. The following sections outline waste disposal options.

4.2.1 Solid Waste

Solid waste disposal will be specified in the land use permit. Solid waste management options include:

- incineration;
- temporary storage and removal to an appropriate facility; and
- burial on-site (only if approved by the land use regulator, in an area that is not underlain by permafrost).

Solid waste management streams for combustible and non-combustible wastes are shown in Table 4. Combustible wastes primarily include kitchen wastes and packaging that are suitable for disposal by burning. To prevent wildlife attractants and health hazards, food wastes should be stored in odour-proof containers and incinerated on a daily basis. Non-combustible wastes include materials that can negatively affect air quality if burned, such as plastics, and materials that cannot be disposed of by burning, such as metals. These wastes should be separated, organized and stored on-site for eventual removal and disposal off-site.

Table 4. Solid waste management streams.

SOLID WASTE MANAGEMENT STREAMS

 Separate combustible and non-combustible solid wastes Note that plastics, styrofoam, and rubber should not be burned to protect air quality

COMBUSTIBLE WASTES

Store combustible solid wastes in odour proof secure containers

> Wastes should be stored to avoid attracting wildlife

Incinerate combustible wastes daily

Incinerator residue should be removed from site or disposed of at an approved area on-site

NON COMBUSTIBLE WASTES

Separate non-combustible solid wastes and store on-site

Wastes should be organized in containers with secure lids

Progressively remove non-combustible solid wastes from site throughout operations Make use of empty trucks or aircraft to back-haul wastes

All wastes should be removed from the site at closure Collect and remove wastes from the entire camp area

FIGURE 20. A fuel-fired incinerator with a bin nearby to store noncombustible wastes

FIGURE 21. Temporarily stored wastes sorted into secure, labelled containers

Incineration

To promote complete combustion of wastes, a proper incinerator should be used following Environment Canada's Technical Document for Batch Waste Incineration (www.ec.gc.ca/gdd-mw/default.asp?lang=En&n=F53EDE13-1). This document guides owners and operators of batch waste incinerators regarding proper system selection, operation, maintenance and record keeping to assist them in meeting Canada-wide standards for dioxins, furans and mercury, and reducing releases of other toxic substances.

Incinerator residue, such as ash, remaining after burning is complete should be regularly removed and properly disposed of off-site.

Open-pit burning is prohibited, except in the Northwest Territories where it may be used to dispose of inert cardboard and wood waste.

Temporary Storage and Removal

All wastes that are not incinerated must be removed from the campsite. Wastes that are temporarily stored on-site should be kept in secure containers at least 31 m away from a water body. Some non-combustible materials can be crushed to reduce their volume.

Stored wastes should be back-hauled on the return leg of supply trips for reuse, recycling or disposal at an approved facility.

Burial

In special cases on-site burial of non-combustible material, such as scrap metal, may be approved by the land use regulator. Burial is not an option in permafrost terrain due to the difficulty of excavation, likelihood of subsidence if ground ice is present and probability of frost-jacking heaving wastes back to the surface. Expert advice should be obtained if an on-site waste disposal facility is planned.

4.2.2 Sewage and Greywater

Sewage refers to toilet wastes, and greywater refers to water from washing and kitchen facilities. Sewage is more likely to contain pathogens, but all waste water should be stored and treated well away from the water supply.

Small Mobile Camps

In the Northwest Territories, small mobile camps that remain at a site for no more than a few days may be permitted to disperse sewage and greywater over land. Overland dispersal is permitted in permafrost terrain because there is a greater environmental risk from excavating sumps than from spreading small volumes of waste water over land.

Small Stationary Camps

Camps that stay in the same place for more than a few days require waste-water treatment or storage. Sewage may be treated and disposed of on-site, placed in a pit privy or stored in a holding tank for future removal from the site by pump truck. Greywater can be stored and treated in a sump, or stored in a tank for future removal from the site by truck.

In small camps, chemical, incinerating or composting toilets can be used for sewage treatment as they can render the sewage pathogenfree, and reduce the volume of waste. However, once treated, the remaining waste, such as ash, must be removed from camp.

Pit privies can be used to dispose of sewage and provide slow treatment. In permafrost terrain, excavation of pit privies may cause the surrounding ground to thaw and subside. To prevent health problems, privies should be located downslope and downwind from the camp in deep, stable, finegrained soil. They should also be downstream of the water intake, and at least 31 m away from a water body. Privies should be large enough to hold all of the sewage from the camp and should be covered for health reasons. The shape of the privy depends on the camp layout. For example, in a trailer camp

the pit could be long and narrow to service several trailers. To control sewage pathogens, pits can be periodically treated with lime. When full, pits should be covered with at least 30 cm of compacted soil.

Greywater should not be discharged directly next to or into a water body. Instead, greywater can be stored in an excavated sump that will allow for slow infiltration into the soil. The sump should be located at least 31 m away from a water body. Coarse gravel can be placed in the bottom of the sump to provide filtration, and supports can be built on the sides to prevent slumping. The sump should have adequate capacity to store expected greywater volumes, and should be located in mineral soil. Operators should inspect the greywater sump regularly and remove food particles that may attract wildlife. When full, greywater sumps should be covered with enough material to allow for future ground settlement.

Large Stationary Camps

In larger camps with greater volumes of waste water, a portable sewage treatment system or an engineered sewage lagoon can be used to treat sewage and greywater. Proponents should seek expert engineering advice before siting or installing these systems, as an approval by the appropriate licensing board.

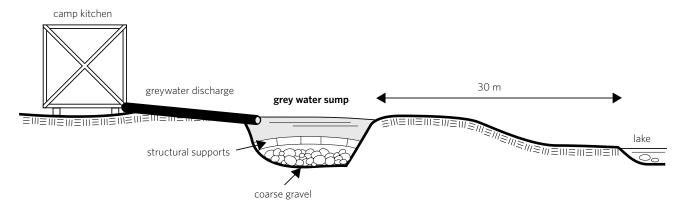


FIGURE 22. A properly excavated greywater sump.

4.3 Water Supply

Camps require a freshwater intake for domestic water use. The amount of water drawn should not be harmful to fish or fish habitat. Water intakes should be screened to prevent fish from being drawn in. For further information, consult the Department of Fisheries and Oceans' Freshwater Intake End-of-Pipe Fish Screen Guideline (www.dfo-mpo.gc.ca/library/223669.pdf). To avoid excessive drawdown during the winter, consult the Department of Fisheries and Oceans Protocol for Winter Water Withdrawal from Ice-covered Waterbodies in the Northwest Territories and Nunavut.

A water pump is often located next to the water source. Fuel should not be stored near water pumps to reduce the risk of a fuel spill into the water. Drip trays should be used underneath the pump to catch fuel drips.

4.4 Temporary Closure

Some camps are seasonal in nature. Equipment may be left on-site for the next season if properly stored and approved in the land use permit. Equipment should be protected from weather damage, vandalism and wildlife by storing it in a secure, inaccessible location. An on-site, weather-tight building, such as a grain bin, is recommended for storage at seasonal camps.

All wastes should be removed when the camp is temporarily closed. Tents and other structures should be taken down and stored, but tent frames can remain standing. Perishable food should be removed from the site and non-perishable items can be stored in a weather-tight, wildlife-proof building. Fuel drums should be resealed and stored in the fuel storage area. Fittings on heating fuel drums should be removed, the bungs resealed and drums angled so that water does not collect against the bungs.

4.5 Storage Authorization

In some cases, storage authorization may be obtained from the appropriate land use regulator to retain materials such as buildings, equipment and fuel drums at the campsite after the operating land use permit has expired. Such authorization is typically issued if the operator requires the equipment for a future land use operation in the area.

FIGURE 23. A large stationary camp with a sewage lagoon for waste-water treatment.

FIGURE 24. At this seasonal camp, tents will be removed and stored in the weather-tight grain bin.

Spills

Spills can involve fuel or other hazardous materials. Spills of reportable quantities must be reported immediately to the 24-hour spill line (867-920-8130). A list of immediately reportable spill quantities is available in INAC's Guidelines for Spill Contingency Planning (www.ainc-inac.gc.ca/ai/scr/ nt/ntr/pubs/SCP-eng.asp).

Spill Contingency Plan

A spill contingency plan should be in place during all phases of camp construction and operation, and must be submitted with the land use permit application. Unexpected spill events do occur and a plan will help camp employees respond to them quickly and effectively. The spill contingency plan should be implemented immediately after a spill event. The plan outlines a logical order of how personnel should respond to a spill, resources available on-site for spill response, and agencies and individuals that must be notified. All personnel working on the site should be aware of and understand the plan so that they can respond effectively to a spill. A spill contingency plan template is provided in INAC's Guidelines for Spill Contingency Planning.

Spill Prevention

Hydrocarbon spills from equipment are a major source of environmental damage and are often preventable. Equipment should be properly maintained and in good working condition to minimize potential leaks from hydraulic hoses and other working components. Drip trays can be placed under equipment when it is not in use to contain hydrocarbon leaks.

5.3 Spill Response

Spill response includes stopping, containing and reporting a spill event. A spill-response kit should be available on-site and be well stocked with materials that can be used to contain a spill. Once a spill has been contained and reported, photographs should be taken of the spill area, the extent of the spill should be delineated and a cleanup strategy should be developed. Ensure that there is never an ignition source in the vicinity of spilled flammable products.

FIGURE 25. A spill-response kit should include absorbent booms to contain spills on water.

CHAPTER O 6

Closure and Reclamation

When a camp is no longer required, it must be closed and reclaimed according to the closure and reclamation plan approved by the land use regulator or as directed in the land use permit. Operators should allocate sufficient time and resources to reclamation activities while equipment and personnel are still on-site during regular operations. Returning to the site to address problems after demobilization is complete can be costly and time consuming. Progressive cleanup during camp operation is the most efficient approach to reclamation.

Land use permits require a final land use plan within 60 days after completion of the land use operation or expiration of the land use permit. The final land use plan should describe the land used, any deviations from conditions specified in the initial land use permit application, details of any fuel or chemical spills and a description of the spill cleanup measures employed.

A closure and reclamation plan is also a common land use permit requirement and at a minimum should include:

- site conditions prior to development;
- environmentally sensitive areas;
- reclamation goal(s);
- equipment and methods to be used;
- · reclamation waste management practices;
- monitoring activities to assess the success of reclamation measures; and
- contingencies if reclamation measures are unsuccessful.

6.1 Reclamation Goals

Reclamation goals provide direction for the closure and reclamation plan, and help in determining the methods and equipment needed to achieve final closure. Specific reclamation requirements may be outlined in the land use permit. Common reclamation goals include:

- Returning the site to a condition comparable to that which existed before camp development.
 Baseline information collected during the planning phase can be used to determine predevelopment conditions.
- Reclaiming the site to a state suitable for some other land use (e.g., wildlife habitat, airstrip or equipment storage area).

Reclamation goals are a key component of the closure and reclamation plan and will require approval of the appropriate regulators. They should be discussed with all stakeholders, including community members and Aboriginal groups.

6.2 Reclamation Activities

6.2.1 Complete Removal

Camp closure requires removal of all material that was brought on-site, including structures and equipment. In addition, all garbage must be removed. Final cleanup should be conducted during the summer when surface debris is visible.

Areas contaminated by fuel or chemical spills must be completely cleaned up and contaminated soils properly disposed of.

6.2.2 Landscape Reconstruction

At sites where the topography has been changed to develop the camp area, it may be necessary to re-establish the original contours, especially if slopes have been excavated and drainage control structures have been used to control surface runoff. The goal of landscape reconstruction is to create a stable, maintenance-free site. This can be accomplished by recontouring the site to restore natural drainage patterns. If recontouring is not feasible, a stable drainage control system can be constructed to prevent surface water from eroding the site. Water collection and diversion structures, such as ditches, water bars and check dams, can be used.

Natural revegetation of the site should be encouraged to control soil erosion. This can be accomplished by spreading organic topsoil, stored during site construction, over the surface. The topsoil will provide a natural seed bank and a growth medium. A rough surface is preferable to a smooth surface to catch seeds and provide sites for growth. In non-permafrost areas, a simple way to create a rough surface is to run over the site with a tracked vehicle such as a dozer.

To assist erosion control as vegetation naturally re-establishes, mulched vegetation can be spread over the site, or a soil binder can be sprayed on the surface. Windrowed brush from the initial site clearing can also be spread over the site and compacted with a dozer to control erosion.

FIGURE 26. (top) A properly reclaimed campsite with all materials removed. Core sample boxes may remain in place.

FIGURE 27. (middle) Reclaimed sites should be stable and maintenance free. This site will require better drainage control structures to avoid further erosion.

FIGURE 28. (bottom) Water diversion ditches can be used to control surface runoff across a site.

FIGURE 29. Spreading and compacting brush over the site can control erosion and catch seeds.

6.2.3 Revegetation

Assisted revegetation may be required in erosion-prone areas, such as steep slopes, where recontouring and natural revegetation cannot control erosion in the short term. Revegetation can include seeding of grass or legume species, planting trees or shrubs, and using fertilizer.

Where seeding is required, native seed mixes are preferred to reduce the risk of introducing invasive species. Prior to using any seed mixes or fertilizers, or for more information on appropriate seed mixes and fertilizers, contact the local INAC resource management officer and obtain advice from revegetation specialists.

If seeding is carried out during the winter and the site is located on level terrain, seeds and fertilizer can be distributed directly onto the snow cover and in most cases will successfully germinate. In other cases, it may be necessary to return to the area during the spring for seeding.

High Arctic and high altitude sites are very difficult to revegetate. Minimizing the extent of disturbance is the best mitigation approach.

6.2.4 Access

Airstrips should be reclaimed unless otherwise directed in the land use permit. All materials, including portable beacons and fuel barrels, must be removed.

FIGURE 30. Willow plugs can be planted to control erosion in sensitive areas such as riparian zones.

Requirements for reclamation of roads are outlined in the land use permit. Primary reclamation activities include removing all materials, establishing erosion control and restricting access. See the Access: Roads and Trails volume of this series for more information.

Docks should be removed from the site at closure. Ease of removal should be considered when a dock is constructed as docks that are well anchored may be difficult to remove.

6.3 Reclamation Monitoring

Monitoring may be required for several years after reclamation activities have been completed to assess whether reclamation objectives have been met. Reclamation monitoring should answer the following questions:

- Have erosion-control measures been successful?
- Is water being successfully controlled on the site?
- Has vegetation been re-established to predicted levels?

If monitoring demonstrates that some reclamation techniques have been unsuccessful, additional reclamation work may be required. When the INAC resource management officer is satisfied that the site is stable and reclamation objectives have been met, the land use permit will be recommended to the local land use regulator for closure.

Bibliography

- Department of Fisheries and Oceans. Department of Fisheries and Oceans Protocol for Winter Water Withdrawal from Ice-covered Waterbodies in the Northwest Territories and Nunavut, Yellowknife. Northwest Territories, 3 pp. 2010.
- Hardy Associates (1978) Ltd. Land Use Guidelines: Access Roads and Trails. Prepared by Hardy Associates (1978) Ltd. for Land Resources, Northern Affairs Program, Ottawa: Indian Affairs and Northern Development, 1984.
- Hardy Associates (1978) Ltd. Land Use Guidelines: Mineral Exploration Yukon and N.W.T. Prepared by Hardy Associates (1978) Ltd. for Land Resources, Northern Affairs Program, Ottawa: Indian Affairs and Northern Development, 1994.
- Hardy BBT Limited. Reclamation Guidelines for Northern Canada. Prepared by Hardy BBT Limited for Indian Affairs and Northern Development, 1987.
- Hardy BBT Limited. Environmental Guidelines: Access Roads and Trails. Prepared by Hardy BBT Limited for Indian Affairs and Northern Development, 1990.
- Indian and Northern Affairs Canada. Northern Land Use Guidelines: Overview. Ottawa: Minister of Public Works and Government Services Canada, 2003.
- Indian and Northern Affairs Canada. Northern Land Use Guidelines: Administrative Framework. Ottawa: Minister of Public Works and Government Services Canada, 2008.
- Indian and Northern Affairs Canada. Northern Land Use Guidelines: Administrative Process. Ottawa: Minister of Public Works and Government Services Canada, 2008
- Indian and Northern Affairs Canada, Recommended Best Practices for the Storage and Handling of Petroleum and Allied Petroleum Products on Federal Crown Lands in Nunavut (draft). Nunavut Regional Office, 2009.

- Indian and Northern Affairs Canada, Northern Land Use Guidelines: Pits and Quarries. Ottawa: Minister of Public Works and Government Services Canada, 2009.
- Indian and Northern Affairs Canada. Northern Land Use Guidelines: Access: Roads and Trails. Ottawa: Minister of Public Works and Government Services Canada, 2010.
- LaBerge Environmental Services. Mining Land Use Guidelines (preliminary draft). Prepared by LaBerge Environmental Services for the Yukon Mining Advisory Committee, 1995.
- Mackenzie Valley Land and Water Board. Guidelines for Waste Management (draft). 2010.
- MacLaren Plansearch. Environmental Guidelines: Pits and Quarries. Prepared by MacLaren Plansearch for Land Resources, Northern Affairs Program, Ottawa: Indian Affairs and Northern Development, 1982.
- O'Neill, J. "Remote Camps," in Smith, W.D., technical editor, Cold Regions Utilities Monograph, 3rd ed. American Society of Civil Engineers, New York, NY, pp. 13-1-13-29, 1996.
- Spencer Environmental Management Services Ltd. Environmental Operating Guidelines: Hydrocarbon Wellsites in Northern Canada. Prepared by Spencer Environmental Management Services Ltd. for Indian Affairs and Northern Development, 1986.

Glossary

Berm

Low earth mound constructed in the path of flowing water to divert its direction.

Binder

Substance that encourages the adherence of soil particles, such as a chemical mat.

Cut and fill

Construction practice in which earth materials are excavated from part of an area and used as fill in adjacent areas.

Drip tray

A containment structure designed to catch fuel drips beneath fittings, valves or fuel transfer nozzles.

Evapotranspiration

Water lost from the soil by direct evaporation and transpiration from the surfaces of plants.

Greywater

Waste water originating from kitchen or washing facilities.

Ground ice

Ice present in ground materials. It dominates the geotechnical properties of the material and can cause terrain instability if it melts.

High-water mark

A mark or line indicating the highest level reached by a body of water.

Peatland

Poorly drained organic terrain characterized by a high water table and the presence of permafrost.

Permafrost

Ground frozen for at least two consecutive years.

Continuous permafrost is defined as an area where at least 90 percent of the land area is underlain by permafrost.

Discontinuous permafrost is defined as an area where 10 to 90 percent of the land area is underlain by permafrost.

Pit privy

An excavated pit designed for storage and slow release of sewage.

Riparian

Area of land adjacent to a stream, river, lake or wetland containing vegetation that, due to the presence of water, is distinctly different from the vegetation of adjacent upland areas.

Secondary containment

A structure designed to contain hazardous materials if the primary containment, such as a fuel tank, fails.

Sewage

Toilet wastes.

Sewage lagoon

A body of water designed to contain and treat sewage.

Source reduction

Reduction or elimination of the volume of waste generated by using alternative methods or processes.

Subsidence

Ground surface settlement.

Sump

An excavated pit designed to contain waste.

Treeline

The zone above which trees do not grow. Occurs at high latitudes and high altitudes.

Appendix A: INAC Local Resource **Manager Contact Information**

NORTHWEST TERRITORIES

Land Administration

Indian and Northern Affairs Canada P.O. Box 1500 Yellowknife NT X1A 2R3

TEL.: 867-669-2671 FAX: 867-669-2713 EMAIL: NWTLands@ainc-inac.gc.ca

DISTRICT OFFICES

South Mackenzie District

Yellowknife, Fort Smith, Hay River, Fort Simpson District Manager, South Mackenzie District Indian and Northern Affairs Canada 16 Yellowknife Airport Yellowknife NT X1A 3T2

TEL.: 867-669-2760 FAX: 867-669-2720

North Mackenzie District

Inuvik, Norman Wells District Manager, North Mackenzie District Indian and Northern Affairs Canada P.O. Box 2100 Inuvik NT XOE OTO

TEL.: 867-777-8901 FAX: 867-777-2090

NUNAVUT

Land Administration

Indian and Northern Affairs Canada P.O. Box 100 Igaluit NU XOA 0H0

TEL.: 867-975-4275 FAX: 867-975-4286 EMAIL: landsmining@ainc-inac.gc.ca

DISTRICT OFFICES

Kivalliq

P.O. Box 268 Rankin Inlet NU XOC OGO

TEL.: 867-645-2831 FAX: 867-645-2592

Kitikmeot

P.O. Box 278 Kugluktuk NU X0E 0E0

TEL.: 867-982-4306 FAX: 867-982-4307

Qikiqtani

P.O. Box 100 Igaluit NU X0E 0H0

TEL.: (867) 975-4500 FAX: (867) 975-4560

Indian and Northern Affairs Canada Affaires indiennes et du Nord Canada

or product may be reproduced, in part or in whole, and by any means, for persona or public non-commercial purposes, without charge or further permission, unless otherwise specified.

You are asked to:

- Exercise due diligence in ensuring the accuracy of the materials reproduced:
- Indicate both the complete title of the materials reproduced, as well as the author organization; and
- Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with, or with the endorsement of the Government of Canada

Commercial reproduction and distribution is prohibited except with written permission from the Government of Canada's copyright administrator, Public Works and Government Services of Canada (PWGSC). For more information, please contact PWGSC at: 613-996-6886 or at: droitdauteur.copyright@towgs-pwgsc.gc.ca.

www.ainc-inac.gc.ca 1-800-567-9604 TTV oply 1 866-553-0554

QS-8622-082-EE-A1 Catalogue: R2-226/6-2011E-PDF ISBN: 978-1-100-18250-6

© Minister of the Department of Indiar and Northern Development, 2011

Cette publication est aussi disponible er français sous le titre: Lignes Directrices Sur L'utilisation des Terres du Nord: Campement et installations de soutien