

National Inventory Report to the

1990-2009

GREENHOUSE GAS SOURCES
AND SINKS IN CANADA

The Canadian Government's Submission to the UN Framework Convention on Climate Change

Part 2

Library and Archives Canada Cataloguing in Publication

Canada

Main entry under title:

National Inventory Report 1990-2009: Greenhouse Gas Sources and Sinks in Canada

Annual

1990/2009

Issued by the Pollutant Inventories and Reporting Division

Other editions available: Rapport d'inventaire national 1990-2009 : Sources et puits de gaz à effet de serre au Canada

Continues: Canada's Greenhouse Gas Inventory.

This document is available on Environment Canada's web site at http://www.ec.gc.ca/ges-ghg/

ISSN: 1706-3353

Cat. No.: En81-4/2009E-PDF

- 1. Greenhouse gases—Canada—Measurement—Periodicals
- 2. Methane—Environmental aspects—Canada—Periodicals
- 3. Nitrous oxide—Environmental aspects—Canada—Periodicals
- 4. Carbon dioxide—Environmental aspects—Canada—Periodicals
- 5. Pollution—Canada—Measurement—Periodicals
- I. Canada. Environment Canada.
- II. Pollutant Inventories and Reporting Division.

III. Title.

IV. Title: Greenhouse gas sources and sinks in Canada.

List of Acronyms, Abbreviations and Units

AAC Aluminum Association of Canada
AAFC Agriculture and Agri-Food Canada

AC air conditioning

AEUB Alberta Energy and Utilities Board

AGEM Aviation Greenhouse Gas Emission Model

 $\begin{array}{ll} \text{Al} & \text{aluminium} \\ \text{Al}_2\text{O}_3 & \text{alumina} \end{array}$

API American Petroleum Institute

ASH manure ash content ATV all-terrain vehicle

AWMS animal waste management system

BADA Base of Aircraft Data

B₀ maximum methane production potential

B₁₀₀ 100% biodiesel

BOD biochemical oxygen demand

BOF basic oxygen furnace

BOD₅ five-day biochemical oxygen demand

C carbon

CAC Criteria Air Contaminant

CaC₂ calcium carbide

 $CaCO_3$ calcium carbonate; limestone $CaMg(CO_3)_2$ dolomite (also $CaCO_3 \cdot MgCO_3$) CanFI Canada's National Forest Inventory

CANSIM Statistics Canada's key socioeconomic database

CanSIS Canadian Soil Information System
CanWEA Canadian Wind Energy Association
CaO lime; quicklime; calcined limestone

CAPP Canadian Association of Petroleum Producers

CBM Carbon Budget Model

CBM-CFS3 Carbon Budget Model for the Canadian Forest Sector, version 3

CCFM Canadian Council of Forest Ministers
CEA Canadian Electricity Association

CEPA 1999 Canadian Environmental Protection Act, 1999

 CF_4 carbon tetrafluoride C_2F_6 carbon hexafluoride CFC chlorofluorocarbon CFS Canadian Forest Service CGA Canadian Gas Association

 $\begin{array}{lll} \text{CH}_3\text{OH} & \text{methanol} \\ \text{CH}_4 & \text{methane} \\ \text{C}_2\text{H}_6 & \text{ethane} \\ \text{C}_3\text{H}_8 & \text{propane} \\ \text{C}_4\text{H}_{10} & \text{butane} \\ \text{C}_2\text{H}_4 & \text{Ethylene} \\ \text{C}_6\text{H}_6 & \text{Benzene} \end{array}$

CIEEDAC Canadian Industrial Energy End-Use Data Analysis Centre

CKD cement kiln dust
CO carbon monoxide

CO₂ carbon dioxide

CO₂ eq carbon dioxide equivalent COD chemical oxygen demand

CORINAIR The Core Inventory of Air Emissions in Europe
CPPI Canadian Petroleum Products Institute

CRF Common Reporting Format

CSPA Canadian Steel Producers Assocation

CT conventional tillage
CTS crop and tillage system
CVS Canadian Vehicle Survey

DE digestible energy
DM dry matter
DMI dry matter intake

ary matter make

DOC degradable organic carbon

DOCF degradable organic carbon dissimilated

DOM dead organic matter
EAF electric arc furnace
EC Environment Canada
EDC ethylene dichloride
EF emission factor
EFBASE basic emission factor

EMEP European Monitoring and Evaluation Programme
EPA Environmental Protection Agency (United States)

EPGTD Electric Power Generation, Transmission and Distribution

eq equivalent

ERCB Energy Resources Conservation Board

ERT Expert Review Team
EU European Union

FAA Federal Aviation Administration (United States)

FAACS Feasibility Assessment of Afforestation for Carbon Sequestration

FCR fuel consumption ratio
FGD flue gas desulphurization

FLCL forest land converted to cropland
FLSL forest land converted to settlement
FLWL forest land converted to wetland
FOI Swedish Defence Research Agency

FTA fraction of BOD in sludge that degrades anaerobically

FTILL tillage ratio factor

g gram

GCD great-circle distance
GCV gross calorific value
GDP gross domestic product

GE gross energy
Gg gigagram
GHG greenhouse gas

GHGRP Greenhouse gas reporting program

GHV gross heating value

GIS geographic information system

GL gigalitre Gt gigatonne

GTIS Global Trade Information Services

GVWR gross vehicle weight rating GWP global warming potential

 $\begin{array}{lll} H_2 & & \text{hydrogen} \\ H_2O & & \text{water} \\ \text{ha} & & \text{hectare} \end{array}$

HCFC hydrochlorofluorocarbon

HCI hydrochloric acid
HDD heating degree-day
HDDT heavy-duty diesel truck
HDDV heavy-duty diesel vehicle
HDGV heavy-duty gasoline vehicle

HE harvest emissions
HFC hydrofluorocarbon
HHV higher heating value

HM heavy metal HNO₃ nitric acid

HRAI Heating, Refrigeration and Air Conditioning Institute of Canada

HSS horizontal stud Søderberg HWP harvested wood product

HWP-C carbon stored in harvested wood products

IAI International Aluminium Institute
ICAO International Civil Aviation Organization

IE included elsewhere

IEA International Energy Agency
I/M inspection and maintenance

IPCC Intergovernmental Panel on Climate Change

IT intensive tillage

ITL International Transaction LogKAR kilometre accumulation ratek methane generation rate constant

K₂CO₃ potassium carbonate

kg kilogram
kha kilohectare
kPa kilopascal
kt kilotonne
kWh kilowatt-hour

L litre

L₀ methane generation potential

lb. pound

LDDT light-duty diesel truck
LDDV light-duty diesel vehicle
LDGT light-duty gasoline truck
LDGV light-duty gasoline vehicle

LFG landfill gas

LHV lower heating value
LMC land management change
LPG liquefied petroleum gas
LTO landing and takeoff

LULUCF Land Use, Land-use Change and Forestry

 $\begin{array}{ll} m & \text{metre} \\ m^3 & \text{cubic metre} \end{array}$

Canada—National Inventory Report 1990-2009—Part 2

MAI mean annual increment

MARS Monitoring, Accounting and Reporting System

MC motorcycle

MCED Manufacturing, Construction and Energy Division of Statistics Canada

MCF methane conversion factor (Agriculture)
MCF methane correction factor (Waste)
Mg magnesium; also megagram
MgCO₃ magnesite; magnesium carbonate
MGEM Mobile Greenhouse Gas Emission Model
MGEM07 Mobile Greenhouse Gas Emission Model 2007

MgO magnesia; dolomitic lime

Mha megahectare, equivalent to a million hectares

ML megalitre mol mole

MMIC Motorcycle & Moped Industry Council
MODTF Modeling and Database Task Force

mol mole

MS manure system distribution factor

MSW municipal solid waste

Mt megatonne

MTOW maximum takeoff weight

mV millivolt
MW megawatt
N nitrogen
N₂ nitrogen gas

Na₂CO₃ sodium carbonate; soda ash

Na₃AlF₆ cryolite

NA not applicable N/A not available

NAICS North American Industry Classification System

NCV net calorific value
NE not estimated

NEB National Energy Board NGL natural gas liquid

 NH_3 ammonia NH_4+ ammonium

NH₄NO₃ ammonium nitrate

NHTSA National Highway Traffic Safety Administration (United States)

NIR National Inventory Report

NMVOC non-methane volatile organic compound

 N_2O nitrous oxide

NO nitric oxide; also used for not occurring

NO₂ nitrogen dioxide

NO₃ nitrate

NO_x nitrogen oxides

NOC Nitrous Oxide of Canada

NPRI National Pollutant Release Inventory

NRCan Natural Resources Canada
NSCR non-selective catalytic reduction

 $\begin{array}{cc} NT & & \text{no tillage} \\ O_2 & & \text{oxygen} \end{array}$

ODS ozone-depleting substance

OECD Organisation for Economic Co-operation and Development

OEM original equipment manufacturer
OS/HOU oil sands and heavy oil upgrading

PFC perfluorocarbon
PJ petajoule

PKT passenger kilometres travelled POP persistent organic pollutant

ppb part per billion

ppbv part per billion by volume

P/PE precipitation/potential evapotranspiration

ppm part per million
QA quality assurance
QC quality control
RA reference approach

RESD Report on Energy Supply and Demand in Canada

RPP refined petroleum product

RT reduced tillage SA sectoral approach

SAGE System for assessing Aviation's Global Emissions

SAN styrene-acrylonitrile resin SBR styrene-butadiene

SCR selective catalytic reduction

SF₆ sulphur hexafluoride

SIC Standard Industrial Classification

SiC silicon carbide

SLC Soil Landscapes of Canada SMR steam methane reforming

SO₂ sulphur dioxide
 SO_x sulphur oxides
 SOC soil organic carbon
 STC Statistics Canada
 SUV sport utility vehicle

t tonne

TC Transport Canada t-km tonne-kilometre

TKT tonne-kilometres travelled

TJ terajoule
TWh terrawatt-hour
UN United Nations

UNFCCC United Nations Framework Convention on Climate Change

UPCIS Use Patterns and Controls Implementation Section

UOG upstream oil and gas
VCM vinyl chloride monomer
VKT vehicle kilometres travelled
VSS vertical stud Søderberg
VOC volatile organic compound

VS volatile solids

WMO World Meteorological Organization

wt weight

Table of Contents

Annex 1	Key Categories	. 15
A1.1.	Key Categories— Methodology	15
A1.2.	Key Category Tables	19
Annex 2	Methodology and Data for Estimating Emissions from Fossil Fuel Combustion	26
A2.1.	Methodology	26
A2.2.	Activity Data from Statistics Canada	26
A2.3.	Fuel Combustion Emission Factors	28
A2.4.	Methodology for Stationary Combustion and Transport	29
Annex 3	Additional Methodologies	50
A3.1.	Methodology for Fugitive Emissions from Fossil Fuel Production, Processing, Transmission, and D	istribution
		50
A3.2.	Methodology for Industrial Processes	62
A3.3.	Methodology for the Agriculture Sector	70
A3.4.	Methodology for Land Use, Land-use Change and Forestry	98
A3.5.	Methodology for Waste	142
Annex 4	Comparison of Sectoral and Reference Approaches	164
A4.1.	Comparison of Reference Approach with Sectoral Approach	164
A4.2.	Reference-approach Methodology	166
A4.3.	National Energy Balance	168
A4.4.	IPCC Fuel Categorization	170
Annex 5	Assessment of Completeness	176
A5.1.	Energy	176
A5.2.	Industrial Processes	176
A5.3.	Solvent and Other Product Use	177
A5.4.	Agriculture	177
A5.5.	Land Use, Land-Use Change and Forestry	178
A5.6.	Waste	179
Annex 6	Quality Assurance and Quality Control	181
A6.1.	Characteristics of the QA/QC Plan for the National Inventory	181
A6.2.	Annual Inventory Development Process	181
A6.3.	QC Procedures	182
A6.4.	QA Procedures	182
A6.5.	Verification	183
A6.6.	Key QA/QC Achievements in the 2011 Inventory Submission	183
Annex 7	Uncertainty	184
A7.1.	Introduction	184
A7.2.	Uncertainty Assessment on 2008 Greenhouse Gas Emissions and Removals	184
A7.3.	Planned Improvements	185
Annex 8	Emission Factors	191

A8.1.	Fuel Combustion	191
A8.2.	Industrial Processes	198
A8.3.	Solvent and Other Product Use	202
A8.4.	Agriculture	202
A8.5.	Biomass Combustion	203
A8.6.	Waste	205
Annex 9	Rounding Protocol	206
Annex 10	Ozone and Aerosol Precursors	208
Annex 11	Supplementary Information Required under Article 7.1 of the Kyoto Protocol	211
A11.1.	Supplementary Information Required under Articles 3.3 and 3.4	211
A11.2.	Information on Accounting of Kyoto Units	214
A11.3.	Information on Changes to Canada's National System	218
A11.4.	Changes in Canada's National Registry	220
A11.5.	Minimization of Adverse Impacts in Accordance with Article 3.14	220
Reference	S	221

List of Tables

Table A1–1	Key Category Analysis Summary, 2009 Inventory	17
Table A1–2	1990 Key Categories by Level Assessment With and Without LULUCF	20
Table A1–3	2009 Key Categories by Level Assessment With and Without LULUCF	22
Table A1–4	Key Categories by Trend Assessment with and without LULUCF	24
Table A2–1	Estimation Methodology for GHG Emissions from Stationary Combustion	29
Table A2–1	Estimation Methodology for GHG Emissions from Stationary Combustion	30
Table A2–2	General Fuel Type Categories for Stationary Combustion Methodology	39
Table A2–3	Activity Data Model References	39
Table A2–4	Technology Penetration for HDGVs, HDDVs, LDDVs, LDDTs and MCs	46
Table A3–1	Fugitive Emission Factors for Coal Mining	51
Table A3–2	Allocation of UOG Inventory Emissions to CRF Fugitive Categories	52
Table A3–3	Source of Activity Data Required by UOG Model	54
Table A3–4	Activity Data Used to Pro-rate Emission Sectors and Sources	55
Table A3–5	Natural Gas Transmission Emission Factors for 1997–2009	56
Table A3–6	Required Refinery Activity Data and Their Source	57
Table A3–7	Emission Source Categories and Process Areas in the Bitumen Report (CAPP 2006)	59
Table A3–8	Activity Data Required for the Bitumen Model	61
Table A3–9	Derivation of Ammonia Production-based Emission Factor	62
Table A3–10	CO ₂ Emission Factors for Natural Gas Liquids	64
Table A3–11	CO ₂ Emission Factors for Non-Energy Petroleum Products	65
Table A3–12	Animal Categories and Sources of Population Data	70
Table A3–13	Cattle Stage Production Model	72
Table A3–14	Typical Characteristics of Dairy Production in 2001 in Canada ¹	73
Table A3–15	Average Milk Production from 1990 to 2009 at a Provincial Level	73
Table A3–16	Typical Characteristics of Beef Production in Canada in 2001 ¹	74
Table A3–17	Carcass Weights Used as an Indicator of Live Body Weight Change Over Time for Non-dairy Cattle	75
Table A3–18	CH ₄ Emission Factors for Enteric Fermentation for Cattle from 1990 to 2009	77
Table A3–19	Mean Volatile Solids in Manure of Non-cattle Animal Categories and Associated 95% Confidence Interval, Expressed as a Percentage of the Mean	79
Table A3–20	Approximate Digestible Energy (DE) for Selected Livestock Subcategories and Data Sources	80
Table A3–21	Dry Matter Intake for Selected Livestock	80
Table A3–22	Manure Ash Content for Selected Livestock and Data Sources	81
Table A3–23	Percentage of Manure Handled by Animal Waste Management Systems (AWMS) for Canada (Marinier et al. 2004), Presented as National Averages	82
Table A3–24	Emission Factors to Estimate CH_4 Emissions from Manure Management for Cattle Subcategories from 1990 to 2009	82
Table A3–25	CH₄ Emission Factors for Manure Management for Non-Cattle	83
Table A3–26	Time Series of Manure N Excretion Rates for Cattle (kg N/head/year) ¹	85
Table A3–27	Manure N Excretion Rates for Non-cattle	85
Table A3–28	Total N, NH $_3$ -N and NO $_x$ -N Losses Associated with Various Livestock and Manure Management Systems 1	89
Table A3–29	Crop residue burning by province in Canada for 1991, 1996, 2001 and 2006	97
Table A3–30	Burning of crop residues by crop types in 2006	97
Table A3–31	Spatial Analysis Units of Managed Forests	98
Table A3–32	Estimates of Land, Water, Managed Forest and Cropland Areas in 2009	99

Table A3–33	Forest Carbon Pools in IPCC and CBM-CFS3	100
Table A3–34	Main Sources of Information and Data, Managed Forests	103
Table A3–35	GHG Fluxes To and From Managed Forests, 2009	112
Table A3–36	Uncertainty Ranges for Harvested Carbon, by Canadian Province and Territory Source: Metsaranta et al. (2011)	113
Table A3–37	Generalized Values of Parameters for $F_{LM}C(t) = \Delta C_{LMCma} x \times [1 - exp^{(-k \times t)}]$ to Predict Change from Land Management Change (LMC) and Effective Linear Coefficients of SOC Change	121
Table A3–38	Soil Organic C for Forested and Agricultural Land in Eastern and Western Canada from the Canadian Soil Information System Database (0- to 30-cm soil depth)	129
Table A3–39	Parameters and Emission Factors for Estimating CO ₂ -C Emissions from Wetlands (Peatlands)	134
Table A3–40	Multiple Linear Regression Polynomial Coefficients Used in Estimating the Amount of MSW Landfilled for 1991–1997 and 2005	144
Table A3–41	MSW Landfilled for 1990–2009	144
Table A3–42	Wood Waste Generated and Landfilled in Canada for 1990–2009	145
Table A3–43	Mean Annual Precipitation and MSW Landfill k Value Estimates for Provincial Landfill Sites	146
Table A3–44	Provincial and Territorial MSW Landfill k (Yr1) Value Estimates	148
Table A3–45	Solid Waste Disposal Site CH₄ Correction Factors	148
Table A3–46	Provincial and Territorial CH₄ Generation Potential (L₀) Values	149
Table A3–47	Provincial and Territorial CH₄ Generation Potential (L₀) Values	150
Table A3–48	Estimated MSW CH₄ Captured, Flared, and Emitted for 1990–2009	154
Table A3–49	Percentage of Wastewater Treated Anaerobically by Province for the 1990–2009 Time Series	155
Table A3–50	COD Values Used in CH₄ Emission Estimates per Industry Type	157
Table A3–51	Canadian Protein Consumption	157
Table A3–52	Estimated MSW Incinerated by Province for 1990–2009	159
Table A3–53	Estimated MSW Organic Composition	159
Table A3–54	Estimated Sewage Sludge Incinerated for 1990–2009	162
Table A4–1	Comparison of Adjusted Reference Approach and Sectoral Approach for Canada	164
Table A4–2	Reference Approach Energy Conversion and Emission Factors for Canada	167
Table A4–3	Fuel Type Categories for Stationary Combustion Methodology	171
Table A4–4	Energy Industries' CO₂ Implied Emission Factors	172
Table A4–5	Manufacturing Industries and Construction's CO ₂ Implied Emission Factors	173
Table A4–6	Other Sectors – CO ₂ Implied Emission Factors	175
Table A4–7	Examples of Improved Comparability of CO_2 Implied Emission Factors Based on Physical Categorization	175
Table A7–1	Uncertainty Assessment Level and Trend without LULUCF	185
Table A7–2	Uncertainty Assessment with LULUCF	189
Table A8–1	CO ₂ Emission Factors for Natural Gas	191
Table A8–2	CH₄ and N₂O Emission Factors for Natural Gas	192
Table A8–3	Emission Factors for Natural Gas Liquids	192
Table A8–4	Emission Factors for Refined Petroleum Products	193
Table A8–5	CO ₂ Emission Factors for Petroleum Coke and Still Gas	193
Table A8–6	N ₂ O Emission Factors for Petroleum Coke	194
Table A8–7	CO ₂ Emission Factors for Coal	194
Table A8–8	CO ₂ Emission Factors for Coal Products	195
Table A8–9	CH₄ and N₂O Emission Factors for Coals	195
Table A8–10	Emission Factors for Alternative Fuels	195
Table A8–11	Emission Factors for Energy Mobile Combustion Sources	196
Table A8–12	Carbon Dioxide (CO ₂) Emission Factors for Mineral Products	197

Canada—National Inventory Report 1990–2009—Part 2

Table A8–13	Emission Factors for Ammonia and Adipic Acid Production	198
Table A8–14	N₂O Emission Factors for Nitric Acid Production	198
Table A8–15	Emission Factors for Petrochemical Products	198
Table A8–16	Tier 1 Emission Factors for Aluminium Production	199
Table A8–17	CO ₂ Emission Factors for Iron and Steel Industry	199
Table A8–18	Emission Factors for Consumption of HFCs in 1995	199
Table A8–19	Emission Rates for Consumption of HFCs and PFCs	200
Table A8–20	CO ₂ Emission Factors for Non-energy Use of Natural Gas Liquids and Petroleum Products	201
Table A8–21	Emission Factors for Solvent and Other Product Use	201
Table A8–22	Methane Emission Factors for Enteric Fermentation for Non-cattle Animals	201
Table A8–23	Maximum Methane-Producing Potential (B0) by animal category	202
Table A8–24	Methane Conversion Factors (MCFs) by Animal Category and Manure Management System	202
Table A8–25	Emission Factors (EFs) for Manure Nitrogen (N) Lost as N_2O -N by Animal Category and Animal Waste Management Systems (IPCC/OECD/IEA 1997))	203
Table A8–26	Emission Factors for Biomass	204
Table A8–27	Emission Factors for Landfill Gas Combustion	204
Table A9–1	Number of Significant Figures Applied to GHG Summary Tables	207
Table A10–1	Carbon Monoxide, Nitrogen Oxides, Non-Methane Volatile Organic Compounds and Sulphur Oxides 2009 Emissions Summary for Canada	209
Table A11–1	Location of Additional Information Reported on LULUCF Activities Under the Kyoto Protocol	212
Table A11–2	Total Quantities of Kyoto Protocol Units by Account Type at Beginning of 2010.1	215
Table A11–3	Annual Internal Transactions and Retirements	215
Table A11–4	Annual External Transactions and Additional Information	215
Table A11–5	Total Annual Transactions	215
Table A11–6	Expiry, Cancellation and Replacement	216
Table A11–7	Total Quantities of Kyoto Protocol Units by Account Type at End of 2010	216
Table A11–8	Summary Information on Additions and Subtractions	216
Table A11–9	Summary Information on Replacement	217
Table A11–10	Summary Information on Retirement	217
Table A11–11	Memo Item: Corrective Transactions Relating to Additions and Subtractions	217
Table A11–12	Memo Item: Corrective Transactions Relating to to Replacement	217
Table A11–13	Memo Item: Corrective Transactions Relating to Retirement	217
Table A11–14	Information Elements to be Reported on Kyoto Protocol Accounting Units	218
Table A11–15	Location of Supplementary Information Reported on the National System under the Kyoto Protocol	218
Table A11–16	Changes to Information Reported on the National Registry under the Kyoto Protoco	219

List of Figures

Figure A1–1	Contributions of 1990 Key Categories to Level Assessment With and Without LULUCF	2
Figure A1–2	Contributions of 2008 Key Categories to Level Assessment with and without LULUCF	23
Figure A1–3	Contributions of Key Categories to Trend Assessment With and Without LULUCF	25
Figure A2–1	GHG Estimation Process Flow	27
Figure A2–2	Technology Penetration for Light-duty Gasoline Vehicles and Trucks	45
Figure A3–1	Non-dairy Cattle Carcass Weight, Based on Data Collected by CBGA and Published by AAFC	75
Figure A3–2	EF_{CT} as a Function of Long-term Ratio of Precipitation over Potential Evapotranspiration (P/PE) from 1971 to 2000	87
Figure A3–3	Synthetic Nitrogen Fertilizer Sales in Canada from 1990 to 2009	90
Figure A3–4	Determination of the Ecodistrict FRACLEACH Values	95
Figure A3–5	Carbon Pools and Transfers Simulated by the CBM-CFS3	101
Figure A3–6	Disturbance Matrix Simulating the Carbon Transfers Associated with Clearcut Harvesting in Reporting Zone 14 (Montane Cordillera)	102
Figure A3–7	Decision Tree for the Determination of Managed Forest Area	104
Figure A3–8	Lands with Managed and Un-managed Forests in Canada	104
Figure A3–9	Forest Conversion Strata and Areas Sampled for the 2011 Submission	106
Figure A3–10	Sampling Grids Over Satellite Imagery for Forest Conversion Mapping. Background Imagery: Area Near Kelowna, British Columbia, Landsat TM, Summer 2000	106
Figure A3–11	Procedure for Developing a Consistent Time Series of Rates of Forest Conversion	108
Figure A3–12	Annual Rates of Forest Conversion to Cropland (FLCL) and Forest Conversion to Wetland ([FLWL] reservoir flooding)	108
Figure A3–13	Uncertainty Range of Net FLFL CO_2 Flux (Full Thin Lines), the Median Value of the 100 Monte Carlo Runs (Dashed Line), and the Estimates of the 2011 Submission (Full Thick Line) for Each Inventory Year in the 1990–2009 Time Series. Source: Metsaranta et al. (2011)	114
Figure A3–14	Method for Deriving Carbon Factors for Land Management Change of Interest	116
Figure A3–15	Method for Deriving Land Management Input Files to Use with Century Model to Estimate the Carbon Factor for a Land Management Change of Interest	117
Figure A3–16	Soil Organic Carbon (SOC) for a Base Crop Mix, for Perennial (Alfalfa) Substituted for Annual Crops (Wheat), and for No-Till (NT) Substituted for Intensive Till (IT) Based on Century Runs Lethbridge Loam	for a
Figure A3–17	Change in SOC for Simulations with Substitutions Relative to Simulations with Base Crop Mix	119
Figure A3–18	Carbon Factors as a Function of Time	120
Figure A3–19	Method of Using Factors for Land Management Change to Estimate Carbon Change over Large Areas	122
Figure A3–20	Century-simulated SOC Dynamics after Breaking of Grassland to Cropland for the Brown and Dark Brown Chernozemic Soils	127
Figure A3–21	Century-simulated Soil Organic Carbon Following Conversion of Long-term Deciduous Forest to Cropland	129
Figure A3–22	Logarithmic Curve Fit for National Reservoir Emission Factors	136
Figure A3–23	Cumulative Areas in the Lands Converted to Wetlands (Flooded Lands) Category	137
Figure A3–24	Study Areas for the Determination of Above-Ground Biomass in Canada's Arctic and Sub-Arctic Region	139
Figure A3–25	Scholl Canyon Model Representation of Landfill Degradation	142
Figure A4–1	Sample of an Energy Balance Flow Diagram for Canada (RESD)	169
Figure A4–2	Fossil Fuel and Energy Data Input	169

Annex 1

Key Categories

A1.1. Key Categories— Methodology

This annex presents the use of an IPCC Tier 1 key category analysis and results for Canada's inventory submission. Both the IPCC Good Practice Guidance (IPCC 2000) and the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (LULUCF) (IPCC 2003) recommend as good practice the identification of key categories of emissions and removals. The intent is to help inventory agencies prioritize their efforts to improve overall estimates. A key category is defined as "one that is prioritized within the national inventory system because its estimate has a significant influence on a country's total inventory of direct greenhouse gases in terms of the absolute level of emissions, the trend in emissions, or both" (IPCC 2000).

Good practice first requires that inventories be disaggregated into categories from which key sources and sinks may be identified. Source and sink categories are defined according to the following guidelines:

- IPCC categories should be used with emissions expressed in CO₂ equivalent units according to standard global warming potentials (GWPs).
- A category should be identified for each gas emitted or removed, since the methods, emission factors, and related uncertainties differ for each gas.
- Categories that use the same emission factors based on common assumptions should be aggregated before analysis.

The IPCC Tier 1 quantitative approach is used to identify key categories from two perspectives: their contribution to the overall emissions, and to the emission trend. The level assessment analyzes the emission contribution that each category makes to the national total (with and without LULUCF). The trend assessment uses each category's relative contribution to the overall emissions, but assigns greater weights to the categories whose relative trend

departs from the overall one (with and without LULUCF): in this assessment, trends are calculated as the absolute changes between the base and most recent inventory years. The percent contributions to both levels and trends in emissions are calculated and sorted from greatest to least. A cumulative total is calculated for both approaches. A cumulative contribution threshold of 95% for both level and trend assessments is a reasonable approximation of 90% uncertainty for the Tier 1 method of determining key categories (IPCC 2000). This threshold has therefore been used in this analysis to define an upper boundary for key category identification. Hence, when source and/or sink contributions are sorted in decreasing order of importance, those largest ones that together contribute to 95% of the cumulative total are considered quantitatively to be key.

Level contribution of each source is calculated according to Equation A1–1, which follows IPCC (2000), whereas Equation A1–2 is used to calculate the level contribution from both sources and sinks following IPCC (2003):

Equation A1–1:

$$L_{x,t} = \frac{E_{x,t}}{E_{+}}$$

where:

 $\begin{array}{lll} L_{x,t} & = & \text{the level assessment for source } x \text{ in year t} \\ E_{x,t} & = & \text{the emission estimate (CO}_2 \, \text{eq) of source} \\ & & \text{category } x \text{ in year t} \end{array}$

E_t = the total inventory estimate (CO₂ eq) in year t

Equation A1-2:

$$L_{x,t}^* = \frac{E_{x,t}^*}{E_t^*}$$

where:

the level assessment for source or sink x in year t; the asterisk (*) indicates that contributions from all categories (including LULUCF) are entered as absolute values (i.e. negative values are always recorded as the equivalent positive values)

 $E_{x,t}^*$ = $\left|E_{x,t}\right|$ the absolute value of the emission or removal estimate (CO₂ eq) of source or sink category x in year t

 E_t^* = $\sum_{x} |E_{x,t}|$, the sum of the absolute values of all emissions and removals (CO₂ eq) from all source or sink categories x in year t, kt CO₂ eq

Trend contribution of each source is calculated according to Equation Equation A1–3, which follows IPCC (2000), whereas

Equation A1–4 for source and sink category trend assessment:

is used to calculate the trend contribution from both sources and sinks following IPCC (2003):

Equation A1–3: for source category trend assessment:

$$T_{x,t} = L_{x,t} \cdot \left[\left[\frac{\left(E_{x,t} - E_{x,0} \right)}{E_{x,t}} \right] - \left[\frac{\left(E_{t} - E_{0} \right)}{E_{t}} \right] \right]$$

where:

T_{x,t} = the contribution of the source category trend to the overall inventory trend (i.e. the trend assessment); the trend assessment is always recorded as an absolute

 $L_{x,t}$ = the level assessment for source x in year t (derived in Equation A1-1)

 $E_{x,t}$ and $E_{x,0}$ = the emission estimates (CO₂ eq) of source category x in years t and 0, respectively

 E_t and E_0 = the total inventory estimates (CO₂ eq) in years t and 0, respectively

Equation A1–4: for source and sink category trend assessment

$$\mathsf{T}_{\mathsf{x},\mathsf{t}} \ = \frac{\mathsf{E}_{\mathsf{x},\mathsf{t}}^{*}}{\mathsf{E}_{\mathsf{t}}^{*}} \bullet \left[\left[\frac{\left(\mathsf{E}_{\mathsf{x},\mathsf{t}} - \mathsf{E}_{\mathsf{x},\mathsf{0}}\right)}{\mathsf{E}_{\mathsf{x},\mathsf{t}}} \right] - \left[\frac{\left(\mathsf{E}_{\mathsf{t}} - \mathsf{E}_{\mathsf{0}}\right)}{\mathsf{E}_{\mathsf{t}}} \right] \right]$$

where:

T_{x,t} = the contribution of the source or sink category trend to the overall inventory trend (i.e. the trend assessment); the trend assessment is always recorded as an absolute value

 $E_{x,t}^*$ = $E_{x,t}$ the absolute value of the emission or removal estimate (CO₂ eq) of source or sink category x in year t

 E_t^* = $\sum_{x} |E_{x,t}|$ the sum of the absolute values of the emission and removal estimates (CO₂ eq) in year t

 $E_{x,t}$ and $E_{x,0}$ = the emission estimates (CO₂ eq) of source or sink category x in years t and 0, respectively

 E_t and E_0 = $\sum_x E_{x,t} \sum_{and x} E_{x,0}$, the sum of all emissions and removals from source and sink categories x (CO₂ eq) in years t and 0, respectively; E_t differs from E_t * in Equation A1–2 in that the removals are not entered as absolute values

The overall purpose of identifying key categories is the institution of best practices in GHG inventory development. The appropriate aggregation of categories is crucial to reflect not only actual sources and sinks but also identical estimation procedures. Thus, while the UNFCCC common reporting format (CRF) categories provide a basis for identifying sources and sinks, some aggregation of these sources and sinks can occur when using the same emission factors based on common estimation assumptions. In this analysis, major categories such as Fuel Combustion, Fugitive Emissions, Industrial Processes, Agriculture and Waste are in keeping with the CRF. Within these major categories, the aggregation of subcategories occurs when estimates are made based on common assumptions with respect to emission factors and common activity data.

A1.1.1. Summary Assessment

Key categories were assessed for the 2009 inventory year using level and trend criteria and for the base year on the level criterion only.

There were 30 level key categories in 1990, while in 2009 there were 36 with all combined criteria. In this year's key category analysis, all of the categories that were key in 1990 remained so in 2009. Results are shown in Table A1–1.

Table A1–1 Key Category Analysis Summary, 2009 Inventory

Source Table	IPCC Category	Direct GHG	Key Category (1990/2009)	Criteria (1990/2009) L: Level T: Trend
1-A*	Stationary Fuel Combustion - Solid Fuels	CO ₂	Yes/Yes	L/L,T
1-A*	Stationary Fuel Combustion - Solid Fuels	CH ₄	No/No	
1-A*	Stationary Fuel Combustion - Solid Fuels	N ₂ O	No/No	
1-A*	Stationary Fuel Combustion - Liquid Fuels	CO ₂	Yes/Yes	L/L,T
1-A*	Stationary Fuel Combustion - Liquid Fuels	CH ₄	No/No	
1-A*	Stationary Fuel Combustion - Liquid Fuels	N ₂ O	No/No	
1-A*	Stationary Fuel Combustion - Gaseous Fuels	CO ₂	Yes/Yes	L/L,T
1-A*	Stationary Fuel Combustion - Gaseous Fuels	CH ₄	No/No	
1-A*	Stationary Fuel Combustion - Gaseous Fuels	N ₂ O	No/No	
1-A*	Stationary Fuel Combustion - Other Fuels	CO ₂	No/No	
1-A*	Stationary Fuel Combustion - Other Fuels	CH ₄	No/No	
1-A*	Stationary Fuel Combustion - Other Fuels	N ₂ O	No/No	
1-A*	Stationary Fuel Combustion - Biomass	CO_2	No/No	
1-A*	Stationary Fuel Combustion - Biomass	CH ₄	No/No	
1-A*	Stationary Fuel Combustion - Biomass	N ₂ O	No/No	
1-A-3-a	Fuel Combustion - Civil Aviation (Domestic Aviation)	CO ₂	Yes/Yes	L/L,T
1-A-3-a	Fuel Combustion - Civil Aviation (Domestic Aviation)	CH ₄	No/No	
1-A-3-a	Fuel Combustion - Civil Aviation (Domestic Aviation)	N ₂ O	No/No	
1-A-3-b	Fuel Combustion - Road Transportation	CO ₂	Yes/Yes	L/L,T
1-A-3-b	Fuel Combustion - Road Transportation	CH ₄	No/No	
1-A-3-b	Fuel Combustion - Road Transportation	N ₂ O	Yes/No	L
1-A-3-c	Fuel Combustion - Railways	CO ₂	Yes/Yes	L/L,T
1-A-3-c	Fuel Combustion - Railways	CH ₄	No/No	
1-A-3-c	Fuel Combustion - Railways	N ₂ O	No/No	
1-A-3-d	Fuel Combustion - Navigation (Domestic Marine)	CO ₂	Yes/Yes	L/L
1-A-3-d	Fuel Combustion - Navigation (Domestic Marine)	CH ₄	No/No	
1-A-3-d	Fuel Combustion - Navigation (Domestic Marine)	N ₂ O	No/No	
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	CO ₂	Yes/Yes	L/L,T

Table A1-1: Key Category Analysis Summary, 2009 Inventory (cont'd)

Source Table	IPCC Category	Direct GHG	Key Category (1990/2009)	Criteria (1990/2009) L: Level T: Trend
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	CH ₄	No/No	
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	N ₂ O	No/Yes	T
1-A-3-e	Fuel Combustion - Pipeline Transport	CO ₂	Yes/Yes	L/L,T
1-A-3-e	Fuel Combustion - Pipeline Transport	CH ₄	No/No	
1-A-3-e	Fuel Combustion - Pipeline Transport	N ₂ O	No/No	
1-B-1-a	Fugitive Emissions - Coal Mining	CH ₄	No/Yes	Т
1-B-2-(a+c)	Fugitive Emissions - Oil	CO ₂	Yes/Yes	L/L,T
1-B-2-(a+c)	Fugitive Emissions - Oil	CH ₄	Yes/Yes	L/L,T
1-B-2-(a+c)	Fugitive Emissions - Oil	N ₂ O	No/No	
1-B-2- (b+c)	Fugitive Emissions - Natural Gas	CO ₂	Yes/Yes	L/L
1-B-2- (b+c)	Fugitive Emissions - Natural Gas	CH ₄	Yes/Yes	L/L,T
1-B-2- (b+c)	Fugitive Emissions - Natural Gas	N ₂ O	No/No	
2-A-1	Industrial Processes - Cement Production	CO ₂	Yes/Yes	L/L,T
2-A-2	Industrial Processes - Lime Production	CO ₂	No/Yes	T
2-A-3	Industrial Processes - Limestone and Dolomite Use	CO ₂	No/No	
2-A-4	Industrial Processes - Soda Ash Production and Use	CO ₂	No/No	
2-A-7-2	Industrial Processes - Magnesite Use	CO ₂	No/No	
2-B-1	Industrial Processes - Ammonia Production	CO ₂	Yes/Yes	L/L
2-B-2	Industrial Processes - Nitric Acid Production	N_2O	No/No	
2-B-3	Industrial Processes - Adipic Acid Production	N_2O	Yes/Yes	L/T
	Industrial Processes - Petrochemical Production	CH ₄	No/No	
	Industrial Processes - Petrochemical Production	N_2O	No/No	
2-C-1	Industrial Processes - Iron and Steel Production	CO_2	Yes/Yes	L/L,T
2-C-3	Industrial Processes - Aluminium Production	CO_2	No/Yes	Т
2-C-3	Industrial Processes - Aluminium Production	PFCs	Yes/Yes	L/T
2-C-4-1	Industrial Processes - Aluminium Production	SF ₆	No/No	
2-C-4-2	Industrial Processes - Magnesium Production	SF ₆	No/No	
2-C-5	Industrial Processes - Magnesium Casting	SF ₆	No/No	
2-E	Industrial Processes - Production of Halocarbons	HFCs	No/No	
2-E	Industrial Processes - Production of Halocarbons	PFCs	No/No	
2-E	Industrial Processes - Production of SF6	SF ₆	No/No	
2-F	Industrial Processes - Consumption of Halocarbons	HFCs	No/Yes	LT
2-F	Industrial Processes - Consumption of Halocarbons	PFCs	No/No	
2-F-6	Industrial Processes - Consumption of SF6 for Semiconductor Manufacture	SF ₆	No/No	
2-F-7	Industrial Processes - Consumption of SF6 for Electrical Equipment	SF ₆	No/No	
2-G	Industrial Processes - Other (Undifferentiated Processes)	CO ₂	Yes/Yes	L/L
3-D	Solvent and Other Product Use	N ₂ O	No/No	
4-A	Agriculture - Enteric Fermentation	CH ₄	Yes/Yes	L/L,T
4-B	Agriculture - Manure Management	CH ₄	No/No	
4-B	Agriculture - Manure Management	N ₂ O	Yes/Yes	L/L

Table A1-1: Key Category Analysis Summary, 2009 Inventory (cont'd)

Source Table	IPCC Category	Direct GHG	Key Category (1990/2009)	Criteria (1990/2009) L: Level T: Trend
4-D-1	Agriculture - Direct Agricultural Soils	N ₂ O	Yes/Yes	L/L,T
4-D-2	Agriculture - Animal Manure on Pasture, Range and Paddock	N_2O	No/No	
4-D-3	Agriculture - Indirect Agricultural Soils	N ₂ O	Yes/Yes	L/L,T
	Agriculture - Field Burning of Agricultural Soils	CH ₄	No/No	
	Agriculture - Field Burning of Agricultural Soils	N_2O	No/No	
5-A.1	LULUCF - Forest Land remaining Forest Land	CO ₂	Yes/Yes	L/L,T
5-A.1	LULUCF - Forest Land remaining Forest Land	CH ₄	Yes/Yes	L/L,T
5-A.1	LULUCF - Forest Land remaining Forest Land	N ₂ O	No/Yes	Т
5-A.2	LULUCF - Land converted to Forest Land	CO ₂	No/No	
5-B.1	LULUCF - Cropland remaining Cropland	CO ₂	No/Yes	L,T
5-B.2	LULUCF - Land converted to Cropland	CO ₂	Yes/Yes	L/L,T
5-B.2	LULUCF - Land converted to Cropland	CH ₄	No/No	
5-B.2	LULUCF - Land converted to Cropland	N ₂ O	No/No	
5-D.1	LULUCF - Wetlands remaining Wetlands	CO ₂	No/No	
5-D.2	LULUCF - Land converted to Wetlands	CO ₂	Yes/Yes	L/T
5-D.2	LULUCF - Land converted to Wetlands	CH₄	No/No	
5-D.2	LULUCF - Land converted to Wetlands	N ₂ O	No/No	
5-E.2	LULUCF - Settlements remaining Settlements	CO ₂	No/No	
5-E.2	LULUCF - Land converted to Settlements	CO ₂	Yes/Yes	L/L
5-E.2	LULUCF - Land converted to Settlements	CH ₄	No/No	
5-E.2	LULUCF - Land converted to Settlements	N ₂ O	No/No	
6-A	Waste - Solid Waste Disposal on Land	CH ₄	Yes/Yes	L/L,T
6-B	Waste - Wastewater Handling	CH ₄	No/No	
6-B	Waste - Wastewater Handling	N ₂ O	No/No	
6-C	Waste - Waste Incineration	CO ₂	No/No	
6-C	Waste - Waste Incineration	N ₂ 0	No/No	
6-C	Waste - Waste Incineration	CH ₄	No/No	

A1.2. Key Category Tables

A1.2.1. Level Assessment With and Without LULUCF

Table A1–2 shows the 1990 key categories generated from level assessment with and without LULUCF, and Figure A1–1 shows the contribution of each 1990 key category to the level assessment.

Table A1–2 1990 Key Categories by Level Assessment With and Without LULUCF

Source Table	IPCC Source Category	Direct GHG	1990 (kt CO ₂ eq)	2009 (kt CO ₂ eq)	without	sessment with	Cumulati without	with
					LULUCF	LULUCF	LULUCF	LULUCF
1-A*	Stationary Fuel Combustion - Gaseous Fuels	CO ₂	134 634	188 350	0.228	0.186	0.23	0.19
5-A.1	LULUCF - Forest Land remaining Forest Land	CO ₂	-96 859	-24 788	NA	0.134	NA	0.3
1-A-3-b	Fuel Combustion - Road Transportation	CO ₂	93 216	127 541	0.158	0.129	0.39	0.4
1-A*	Stationary Fuel Combustion - Solid Fuels	CO ₂	90 679	94 367	0.154	0.126	0.54	0.5
1-A*	Stationary Fuel Combustion - Liquid Fuels	CO2	47 759	25 223	0.081	0.066	0.62	0.6
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	CO ₂	21 464	30 048	0.036	0.030	0.66	0.6
6-A	Waste - Solid Waste Disposal on Land	CH ₄	17 925	20 345	0.030	0.025	0.69	0.7
4-A	Agriculture - Enteric Fermentation	CH ₄	16 294	19 325	0.028	0.023	0.71	0.7
1-B-2-(b+c)	Fugitive Emissions - Natural Gas	CH ₄	14 619	23 553	0.025	0.020	0.74	0.7
1-B-2-(a+c)	Fugitive Emissions - Oil	CH ₄	14 056	19 656	0.024	0.019	0.76	0.7
4-D-1	Agriculture - Direct Agricultural Soils	N ₂ O	13 775	16 020	0.023	0.019	0.79	0.7
5-B.2	LULUCF - Land converted to Cropland	CO ₂	12 404	5 337	NA	0.017	NA	0.7
2-B-3	Industrial Processes - Adipic Acid Production	N ₂ O	10 718	662	0.018	0.015	0.80	0.8
2-C-1	Industrial Processes - Iron and Steel Production	CO ₂	10 193	7 646	0.017	0.014	0.82	0.8
5-E.2	LULUCF - Land converted to Settlements	CO ₂	9 127	8 841	NA	0.013	NA	0.8
4-D-3	Agriculture - Indirect Agricultural Soils	N_2O	8 736	10 898	0.015	0.012	0.84	0.8
2-G	Industrial Processes - Other (Undifferentiated Processes)	CO ₂	8 030	9 435	0.014	0.011	0.85	0.8
1-A-3-a	Fuel Combustion - Civil Aviation (Domestic Aviation)	CO ₂	7 152	7 081	0.012	0.010	0.86	0.8
1-A-3-e	Fuel Combustion - Pipeline Transport	CO ₂	6 652	6 136	0.011	0.009	0.87	0.8
2-C-3	Industrial Processes - Aluminium Production	PFCs	6 539	2 163	0.011	0.009	0.88	0.89
1-A-3-c	Fuel Combustion - Railways	CO ₂	6 159	6 114	0.010	0.009	0.90	0.9
1-B-2-(b+c)	Fugitive Emissions - Natural Gas	CO ₂	6 002	6 978	0.010	0.008	0.91	0.9
1-B-2-(a+c)	Fugitive Emissions - Oil	CO_2	5 459	9 760	0.009	0.008	0.91	0.9
2-A-1	Industrial Processes - Cement Production	nCO ₂	5 436	5 108	0.009	0.008	0.92	0.9
2-B-1	Industrial Processes - Ammonia Production	CO ₂	4 994	6 212	0.008	0.007	0.93	0.9
1-A-3-d	Fuel Combustion - Navigation (Domestic Marine)	CO ₂	4 693	4 774	0.008	0.007	0.94	0.9
5-D.2	LULUCF - Land converted to Wetlands	CO ₂	3 976	584	NA	0.006	NA	0.94
1-A-3-b	Fuel Combustion - Road Transportation	N ₂ O	3 195	3 734	0.005	0.004	0.95	0.9
4-B	Agriculture - Manure Management	N ₂ O	3 121	3 878	0.005	0.004	0.95	0.9
5-A.1	LULUCF - Forest Land remaining Forest Land	CH ₄	2 954	5 580	NA	0.004	NA	0.9

Note: NA = Not applicable

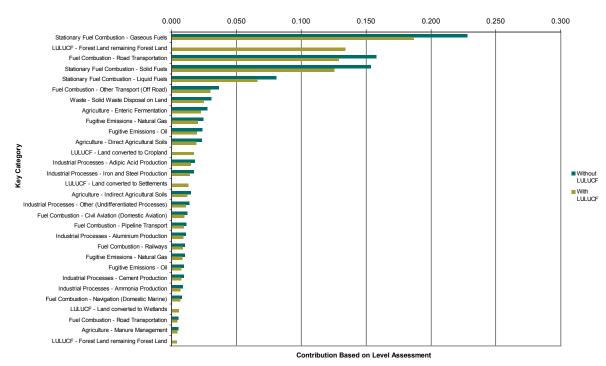


Figure A1–1 Contributions of 1990 Key Categories to Level Assessment With and Without LULUCF

Table A1–3 shows the 2008 key categories generated from level assessment with and without LULUCF, and Figure A1–2 shows the contribution of each 2008 key category to the level assessment.

Table A1–3 2009 Key Categories by Level Assessment With and Without LULUCF

Source Table	IPCC Source Category	Direct	1990	2009		sessment		ive Total
lable		GHG	(kt CO ₂ eq)	(kt CO ₂ eq)	without LULUCF	with LULUCF	without LULUCF	with LULUCF
1-A*	Stationary Fuel Combustion - Gaseous Fuels	CO ₂	134 634	188 350	0.273	0.250	0.27	0.25
1-A-3-b	Fuel Combustion - Road Transportation	CO ₂	93 216	127 541	0.185	0.169	0.46	0.42
1-A*	Stationary Fuel Combustion - Solid Fuels	CO ₂	90 679	94 367	0.137	0.125	0.59	0.54
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	CO ₂	21 464	30 048	0.044	0.040	0.64	0.58
1-A*	Stationary Fuel Combustion - Liquid Fuels	CO ₂	47 759	25 223	0.037	0.033	0.67	0.62
5-A.1	LULUCF - Forest Land remaining Forest Land	CO ₂	-96 859	-24 788	NA	0.033	NA	0.65
1-B-2-(b+c)	Fugitive Emissions - Natural Gas	CH ₄	14 619	23 553	0.034	0.031	0.71	0.68
6-A	Waste - Solid Waste Disposal on Land	CH ₄	17 925	20 345	0.029	0.027	0.74	0.71
1-B-2-(a+c)	Fugitive Emissions - Oil	CH ₄	14 056	19 656	0.028	0.026	0.77	0.73
4-A	Agriculture - Enteric Fermentation	CH ₄	16 294	19 325	0.028	0.026	0.79	0.76
4-D-1	Agriculture - Direct Agricultural Soils	N ₂ O	13 775	16 020	0.023	0.021	0.82	0.78
5-B.1	LULUCF - Cropland remaining Cropland	CO ₂	-1 494	-12 414	NA	0.016	NA	0.80
4-D-3	Agriculture - Indirect Agricultural Soils	N ₂ O	8 736	10 898	0.016	0.014	0.83	0.81
1-B-2-(a+c)	Fugitive Emissions - Oil	CO ₂	5 459	9 760	0.014	0.013	0.85	0.83
2-G	Industrial Processes - Other (Undifferentiated Processes)	CO ₂	8 030	9 435	0.014	0.013	0.86	0.84
5-E.2	LULUCF - Land converted to Settlements	CO ₂	9 127	8 841	NA	0.012	NA	0.85
2-C-1	Industrial Processes - Iron and Steel Production	CO ₂	10 193	7 646	0.011	0.010	0.87	0.86
1-A-3-a	Fuel Combustion - Civil Aviation (Domestic Aviation)	CO ₂	7 152	7 081	0.010	0.009	0.88	0.87
1-B-2-(b+c)	Fugitive Emissions - Natural Gas	CO ₂	6 002	6 978	0.010	0.009	0.89	0.88
2-F	Industrial Processes - Consumption of Halocarbons	HFCs	NA	6 786	0.010	0.009	0.90	0.89
2-B-1	Industrial Processes - Ammonia Production	CO ₂	4 994	6 212	0.009	0.008	0.91	0.90
1-A-3-e	Fuel Combustion - Pipeline Transport	CO ₂	6 652	6 136	0.009	0.008	0.92	0.90
1-A-3-c	Fuel Combustion - Railways	CO ₂	6 159	6 114	0.009	0.008	0.93	0.91
5-A.1	LULUCF - Forest Land remaining Forest Land	CH ₄	2 954	5 580	NA	0.007	NA	0.92
5-B.2	LULUCF - Land converted to Cropland	CO ₂	12 404	5 337	NA	0.007	NA	0.93
2-A-1	Industrial Processes - Cement Production	nCO ₂	5 436	5 108	0.007	0.007	0.94	0.93
2-C-3	Industrial Processes - Aluminium Production	CO ₂	2 715	5 026	0.007	0.007	0.94	0.94
1-A-3-d	Fuel Combustion - Navigation (Domestic Marine)	CO ₂	4 693	4 774	0.007	0.006	0.95	0.95
4-B	Agriculture - Manure Management	N ₂ O	3 121	3 878	NA	0.005	NA	0.95

Note: NA = Not applicable

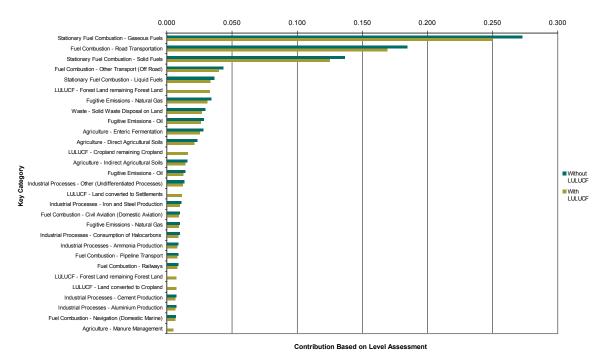
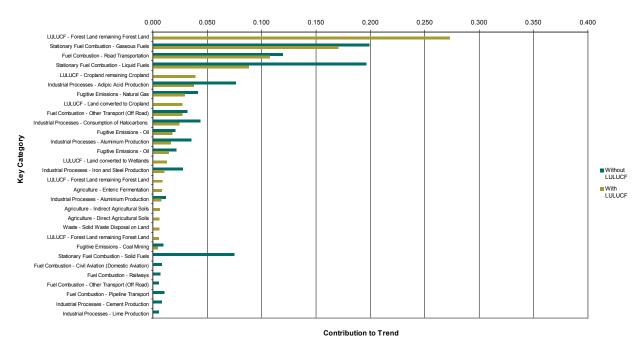


Figure A1-2 Contributions of 2008 Key Categories to Level Assessment with and without LULUCF

A1.2.2. Trend Assessment with and without LULUCF


Table A1–4 shows the key categories indicated from the trend assessment with and without LULUCF, and Figure A1–3 shows the contribution of key categories to the trend assessment.

In the level assessment presented in Section A1.2.1, above, the integration of the LULUCF sector introduces additional key categories without much alteration of the relative categories' contributions. However, the integration of LULUCF to the trend assessment considerably alters the overall trend, which causes a rearrangement in the ranking of key categories. A single LULUCF category, Forest Land Remaining Forest Land, contributes 27% to the overall trend. The trend assessment without LULUCF identifies 20 key categories, while the same analysis with LULUCF results in 23 key categories, including 6 categories from the LULUCF sector. The final list includes all the categories identified as key in either one of the analyses

Table A1–4 Key Categories by Trend Assessment with and without LULUCF

Source Table	IPCC Source Category	Direct		2009	Tren Assessi	nent	Contribu Tre		Cumul Tot	al
lable		GHG	(kt CO ₂ eq)	(kt CO ₂ eq)	without LULUCF L	with ULUCF	without LULUCF	with LULUCF	without LULUCF	
5-A.1	LULUCF - Forest Land remaining Forest Land	CO ₂	-96 859	-24 788	NA	0.097	NA	0.273	0.000	0.27
1-A*	Stationary Fuel Combustion - Gaseous Fuels	CO ₂	134 634	188 350	0.038	0.061	0.199	0.171	0.20	0.44
1-A-3-b	Fuel Combustion - Road Transportation	CO ₂	93 216	127 541	0.023	0.038	0.119	0.108	0.32	0.55
1-A*	Stationary Fuel Combustion - Liquid Fuels	CO ₂	47 759	25 223	0.038	0.031	0.197	0.088	0.52	0.64
5-B.1	LULUCF - Cropland remaining Cropland	CO ₂	-1 494	-12 414	NA	0.014	NA	0.039	0.52	0.68
2-B-3	Industrial Processes - Adipic Acid Production	N ₂ O	10 718	662	0.015	0.013	0.076	0.038	0.59	0.72
1-B-2- (b+c)	Fugitive Emissions - Natural Gas	CH ₄	14 619	23 553	0.008	0.011	0.042	0.030	0.63	0.75
5-B.2	LULUCF - Land converted to Cropland	CO ₂	12 404	5 337	NA	0.010	NA	0.027	0.63	0.77
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	CO ₂	21 464	30 048	0.006	0.010	0.032	0.027	0.66	0.80
2-F	Industrial Processes - Consumption of Halocarbons	HFCs	0	6 786	0.008	0.009	0.044	0.024	0.71	0.82
1-B-2- (a+c)	Fugitive Emissions - Oil	CH ₄	14 056	19 656	0.004	0.006	0.021	0.018	0.73	0.84
2-C-3	Industrial Processes - Aluminium Production	PFCs	6 539	2 163	0.007	0.006	0.035	0.017	0.76	0.86
1-B-2- (a+c)	Fugitive Emissions - Oil	CO ₂	5 459	9 760	0.004	0.005	0.022	0.015	0.79	0.87
5-D.2	LULUCF - Land converted to Wetlands	CO ₂	3 976	584	NA	0.005	NA	0.013	0.79	0.89
2-C-1	Industrial Processes - Iron and Steel Production	CO ₂	10 193	7 646	0.005	0.004	0.027	0.011	0.81	0.90
5-A.1	LULUCF - Forest Land remaining Forest Land	CH ₄	2 954	5 580	NA	0.003	NA	0.009	0.81	0.9
4-A	Agriculture - Enteric Fermentation	CH ₄	16 294	19 325	NA	0.003	NA	0.008	0.81	0.9
2-C-3	Industrial Processes - Aluminium Production	CO ₂	2 715	5 026	0.002	0.003	0.012	0.008	0.83	0.92
4-D-3	Agriculture - Indirect Agricultural Soils	N ₂ O	8 736	10 898	NA	0.002	NA	0.006	0.83	0.93
4-D-1	Agriculture - Direct Agricultural Soils	N ₂ O	13 775	16 020	NA	0.002	NA	0.006	0.83	0.93
6-A	Waste - Solid Waste Disposal on Land	CH ₄	17 925	20 345	NA	0.002	NA	0.006	0.83	0.94
5-A.1	LULUCF - Forest Land remaining Forest Land	N ₂ O	1 825	3 462	NA	0.002	NA	0.006	0.83	0.95
1-B-1-a	Fugitive Emissions - Coal Mining	CH ₄	1 914	709	0.002	0.002	0.010	0.005	0.84	0.9
1-A*	Stationary Fuel Combustion - Solid Fuels	CO ₂	90 679	94 367	0.014	NA	0.075	NA	0.91	N/
1-A-3-a	Fuel Combustion - Civil Aviation (Domestic Aviation)	CO ₂	7 152	7 081	0.002	NA	0.008	NA	0.92	N <i>A</i>
	Fuel Combustion - Railways	CO ₂	6 159	6 114	0.001	NA	0.007	NA	0.92	N/
1-A-3-e	Fuel Combustion - Other Transport (Off Road)	N ₂ O	1 833	2 965	0.001	NA	0.005	NA	0.93	N <i>A</i>
1-A-3-e	Fuel Combustion - Pipeline Transport	CO ₂	6 652	6 136	0.002	NA	0.011	NA	0.94	N/
2-A-1	Industrial Processes - Cement Production	CO ₂	5 436	5 108	0.002	NA	0.008	NA	0.95	N <i>A</i>
2-A-2	Industrial Processes - Lime Production	CO_2	1 759	1 214	0.001	NA	0.005	NA	0.95	N.A

Figure A1–3 Contributions of Key Categories to Trend Assessment With and Without LULUCF

Annex 2

Methodology and Data for Estimating Emissions from Fossil Fuel Combustion

The following presents an overview of the methodology, activity data and emission factors used to estimate CO_2 , CH_4 and N_2O emissions from fuel combustion sources for the Energy Sector. Additional methodological details and refinements to the general approach are presented in Section A2.4.1 for stationary and A2.4.2 for transport sources.

A2.1. Methodology

In general, a top-down method following the Tier 3 and Tier 2 sectoral approach from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC/ OECD/IEA 1997) is used to estimate greenhouse gas (GHG) emissions from fuel combustion based on country-specific emission factors and on the quantity of fuel consumed at the source category level. As illustrated by Equation A2-1, for each source category, the quantity of fuel at the national and/or provincial level of detail is multiplied by a specific emission factor. Further refinements and deviations from the general approach to estimating combustion emissions are discussed in the stationary combustion and transport sections of this annex (sections A2.4.1 and A2.4.2, respectively). The purpose of these refinements is to increase the accuracy and allocation of the emissions associated with each source category when additional details or parameters are available. Specific methodological issues are presented in the Energy chapter (Chapter 3) of this report.

Equation A2–1: for general fuel combustion:

 $\mathsf{E}_{\mathsf{Category}, \mathsf{G}} = \mathsf{FC}_{\mathsf{F}, \mathsf{R}} * \mathsf{EF}_{\mathsf{G}, \mathsf{F}, \mathsf{R}, \mathsf{t}}$

where:

E_{Category,G} = GHG emissions by source category and by gas.

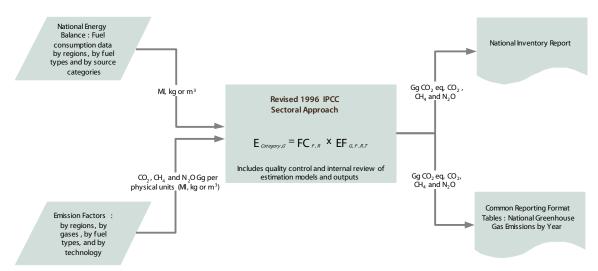
by gas

FC_{F,R} = Quantity of fuel consumed (in physical units, such as kg, L, or m³) by type of fuel (i.e. natural gas, sub-bituminous coal,

kerosene, etc.) and by region.

 $\mathsf{EF}_{\mathsf{G},\mathsf{F},\mathsf{R},\mathsf{T}} = \mathsf{Country-specific emission factor}$ (in physi-

cal units) by GHG, by


fuel type, by region (where available) and by technology (for non-CO₂ factors).

Relational databases are primarily used in stationary and transport models to process activity data and emission factors at national and provincial levels of detail in estimating GHG emissions (Figure A2-1). The national energy balance is prepared by Statistics Canada. The fuel consumption and disposition data on which the national energy balance is based are reported to Statistics Canada by the producing and consuming sectors in physical units rather than energy units, as physical units are considered more accurate. Country-specific emission factors, as applied, are in physical units to minimize the number of additional conversion factors and thus to limit the uncertainty associated with estimates. When higher-resolution emission factors at the regional level are available, then regional information is applied rather than national values to further reduce the uncertainty of these estimates (e.g. coal and natural gas emission factors account for the variation in the carbon content across various regions). Combustion technology differences are addressed by non-CO₂ emission factors.

A2.2. Activity Data from Statistics Canada

The principal source of fossil fuel and energy data used to estimate combustion emissions is the annual *Report on Energy Supply-Demand in Canada* (RESD) (Statistics Canada #57-003). The RESD uses a top-down approach to estimate the supply of, and demand for energy in Canada. The production of fuels in Canada is balanced with the use of fuels in broad categories such as import/export, producer consumption, residential and industry. Industrial energy-

Figure A2-1 GHG Estimation Process Flow

use data are divided into broad sectors based on the Standard Industrial Classification (SIC). Currently, these sectoral industrial energy-use data do not include energy used to generate electricity or steam by industry (autoproducers). This energy is captured in the RESD in two separate lines (one for electricity and one for steam); however, they are summary lines and not divided by sector. In order to allocate this energy, these summary lines are fractionally allocated based on the quantities reported by sector in the *Industrial Consumption of Energy Survey* (ICE).

While the RESD provides fuel-use estimates at a provincial level, in general, the accuracy of these data is not as high as that of the national data. Statistics Canada generally collects the fuel data for the RESD through a number of specific surveys directed at suppliers of energy, provincial energy ministries and some users of energy. The accuracy of the sectoral end-use data is less than that of the total energy supply data. As a result, the total emission estimates for Canada are known with more certainty than the emissions from specific categories. Since 1995, Statistics Canada has been collecting energy-use statistics from end users through the annual Industrial Consumption of Energy Survey (ICE). This bottom-up approach to estimating fuel use by industry (as opposed to the top-down approach used in the RESD) may provide more accurate information at the sectoral level for future inventories. Refer to Annex 4, Section A4.3 – National Energy Balance for additional discussion on the development of the RESD and the ICE data set, including a discussion on Statistics Canada's quality assurance/quality control activities. Sector-specific surveys, like the Electric Power Thermal Generating Station Fuel

Consumption Annual Survey (TGS) are also used to verify sector trends and emission allocation.

The combustion and transport models apply the quantity of fossil fuel consumed in physical units rather than in energy units, since this is how the information is reported to Statistics Canada by reporting facilities under the Statistics Act. The quantities of fossil fuel consumed are also available in gross calorific units; however, this is assumed to be less accurate, since Statistics Canada applies, in most cases, constant energy conversion factors (from 1990 to 1997 and from 1998 onward) to each fuel type. One exception to this approach involves the quantity of still gas reported in the RESD. The physical units are back-calculated from the reported energy values, since the physical volume of still gas consumed by refineries and oil sands upgraders as reported in the RESD is on a liquid basis, while the still gas emission factor is on a gaseous basis. The only other exception involves waste fuels, the data for which are only available in energy units from the Cement Association of Canada.

Additional non-Statistics Canada activity data sources used by the combustion and transport models, such as landfill gas quantities, waste fuel consumption and vehicle fleet information, are included in the specific methodological discussions (sections A2.4.1 and A2.4.2).

A2.3. Fuel Combustion Emission Factors

A description of emission factors employed in estimating the emissions for the current fossil fuel combustion models can be found in Annex 8. The following is generally true:

Natural Gas: The emission factors for CO_2 vary depending on the source of natural gas and whether or not the product is marketable or non-marketable (raw natural gas for on-site consumption by natural gas producers). Therefore, emission factors are assigned for different provinces based upon the origin and quality of the natural gas. The emission factors for CH_4 and N_2O vary with the combustion technology.

Refined Petroleum Products (RPP): The emission factors vary by fuel type and/or combustion technology.

Coal: The emission factors for CO_2 vary with the properties of the coal. Therefore, emission factors are assigned for different provinces based upon the origin of the coal (domestic or foreign). The emission factors for CH_4 and N_2O vary with the combustion technology.

A2.3.1. CO₂ Emission Factors

CO₂ emissions from fuel combustion activities depend upon the amount of fuel consumed, the carbon content of the fuel and the IPCC default oxidation value. The basis of the CO₂ emission factor derivations are discussed in Annex 8, in the Fossil Fuel and Derivative Factors (McCann 2000) study and in previous inventory publications (e.g. Jaques 1992). The methods used to determine fuel properties such as carbon content, density and heating value are based on accepted industrial testing standards, such as the American Society for Testing and Materials (ASTM) and the Canadian General Standards Board (CGSB). Both the hydrocarbons and particulates formed during combustion are accounted for to some extent, but emissions of CO are included in the estimates of CO₂ emissions. It is assumed that CO in the atmosphere undergoes complete oxidation to CO₂ shortly after combustion (within 5 to 20 weeks of its release).

As stated above, the emission factors used in Canada's GHG inventory are based upon the physical quantity of fuel combusted rather than on the energy content of the fuel, with the exception of the emission factor for waste fuels. The waste fuel factor is based on energy content, as

the data reported by the Cement Association of Canada (CAC) are in energy units. The emission factors employed to estimate emissions are subdivided by the type of fuel used and, in the case of N_2O and CH_4 emissions, the combustion technology employed.

A2.3.2. Non-CO₂ Emission Factors

Emission factors for all non-CO₂ GHGs from combustion activities vary to a lesser or greater degree with:

- fuel type;
- technology;
- · operating conditions; and
- maintenance and vintage of technology.

During the combustion of carbon-based fuels, a small portion of the fuel remains unoxidized as CH_4 . Additional research is necessary to better establish CH_4 emission factors for many combustion processes. Overall factors are developed for sectors based on typical technology splits and available emission factors for the sector. In several sectors, CH_4 emission factors are not known.

During combustion, some of the nitrogen in the fuel and air is converted to N_2O . The production of N_2O is dependent upon the combustion temperature and the control technology employed. Additional research is necessary to better establish N_2O emission factors for many combustion processes. Overall factors are developed for sectors based on typical technologies and available emission factors for the sector. In several sectors, N_2O emission factors are not known. Non- CO_2 emission factors in this inventory are listed in Annex 8.

A2.3.3. Biomass

For reporting under the United Nations Framework Convention on Climate Change (UNFCCC), CO₂ emissions from biomass fuels (including landfill gas) are not to be included in the Energy Sector total. CO₂ emissions from biomass fuel combustion are accounted for in the Land Use, Land-Use Change and Forestry (LULUCF) Sector as a loss of biomass (forest) stocks. CO₂ from biomass combustion for energy purposes is reported as a memo item of the UNFCCC's Common Reporting Format (CRF) table for information only. CH₄ and N₂O emissions from biomass fuel combustion are reported in the Energy Sector in the appropriate subsectors and included in inventory totals.

A2.4. Methodology for Stationary Combustion and Transport

A2.4.1. Stationary Combustion

The methodology used to estimate GHG emissions from stationary fuel combustion is consistent with the IPCC Tier 2 sectoral approach, along with country-specific emission factors as outlined in the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/OECD/IEA 1997). The methodology and emissions of SF₆ from the transmission of electricity generation (CRF Category 1.A.1.a) are included in the Industrial Processes Sector.

The emissions are calculated based on nationally reported activity data, except when emission factors are available at the provincial/territorial level. In these instances, the provincial/territorial emissions are aggregated to a national total.

Table A2–1 presents a breakdown by source category of the application of activity data and emission factors. Discussions on assumptions of the estimation methodology for the following subsectors are also provided:

- Public Electricity and Heat Production;
- Fossil Fuel Industries;
- Manufacturing Industries and Construction;
- Other Sectors; and
- Pipelines.

Details on specific source categories are included in the notes section of Table A2–1 The complexity of the stationary combustion model lies in the allocation and distribution of the data presented in the RESD in order to comply with the UNFCCC CRF table. Emission estimates are calculated using Equation A2–1 exclusively and are consistent with the IPCC Tier 2 approach.

Table A2–1 presents the methodology and emission factors according to fuel types as presented in Table A2–2. Fossil fuels have been grouped based on their physical state at the point of consumption (solid, liquid and gaseous fuel, with the exception of biomass). For example, natural gas liquids (NGLs) such as propane, ethane and butane are classified as gaseous fuels, whereas petroleum coke is included under solid fuels. Fuels organized by IPCC groupings are presented in Annex 4, where a comparison is made to the grouping based on physical state at the point of consumption.

Table A2–1 Estimation Methodology for GHG Emissions from Stationary Combustion

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.1.a.i Electricity Generation – Utilities	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 10 – Transformed to Other fuels: Electricity – By utilities	Canada total for CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	"iquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil, motor gasoline, diesel fuel oil, aviation gasoline, aviation turbo fuel	Table D – Refined Petroleum Products Line 10 – Transformed to Other fuels: Electricity – By utilities	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 10 – Transformed to Other fuels: Electricity – By utilities	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for the remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
			Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	Biomass	NA	NA
1.A.1.a.ii Electricity Generation – Industry	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry	Line 11 is allocated to 1.A.1.b, 1.A.1.c and 1.A.2 based on fractions developed from sector data reported in ICE, prior to calculating emissions.

Table A2–1 Estimation Methodology for GHG Emissions from Stationary Combustion

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.1.a.i Electricity Generation – Utilities (cont'd)	"iquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil, motor gasoline, diesel fuel oil, aviation gasoline, aviation turbo fuel	Table D – Refined Petroleum Products Line 10 – Transformed to Other fuels: Electricity – By utilities	Canada totals for CO_2 , CH_4 and N_2O are based on the national total reported in the RESD.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 10 – Transformed to Other fuels: Electricity – By utilities	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for the remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
			Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	Biomass	NA	NA
1.A.1.a.ii Electricity Generation – Industry	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry	Line 11 is allocated to 1.A.1.b, 1.A.1.c and 1.A.2 based on fractions developed from sector data reported in ICE, prior to calculating emissions.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil, motor gasoline, diesel fuel oil, aviation gasoline, aviation turbo fuel	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry	Line 11 is allocated to 1.A.1.b, 1.A.1.c and 1.A.2 based on fractions developed from sector data reported in ICE, prior to calculating emissions.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels:	Line 11 is allocated to 1.A.1.b, 1.A.1.c and 1.A.2 based on fractions developed from sector data reported in ICE, prior to calculating emissions.
	Piomacc	Electricity – By industry NA	NA
1.A.1.a.iii Heat & Steam Generation	Biomass Solid Fuels Coke Petroleum Coke – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details	Canada total for CO2 is the sum of all prov- inces'/territories' emissions due to regional emission factors being used.
	Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Line 14 – Transformed to Other Fuels: Steam Generation	Canada totals for CH4 and N2O are based on the national total reported in the RESD.
			The portion of Line 14 not reallocated to an industrial sector is left in this CRF source category.
	Liquid Fuels	Table D – Refined Petroleum Products	Canada totals for CO ₂ , CH ₄ and N ₂ O are
	Kerosene and stove oil, light fuel oil, heavy fuel oil	Line 14 – Transformed to Other Fuels: Steam Generation	based on the national total reported in the RESD. Motor gasoline, diesel fuel oil, aviation gasoline, aviation turbo fuel are not included in this subsector because there are no data reported in the table.
			The portion of Line 14 not reallocated to an industrial sector is left in this CRF source category.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Line 14 – Transformed to Other Fuels: Steam Generation	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
			Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
			The portion of Line 14 not reallocated to an industrial sector is left in this CRF source category.

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.1.a.iii Heat & Steam Generation (cont'd)	Biomass Landfill gas	Landfill gas utilization provided by the Waste Sector	Canada totals for CO_2 , CH_4 and N_2O are based on the national total provided by the Waste Sector. CO_2 emissions are not included in national totals, but are reported as a memo item in the CRF table.
1.A.1.b. Petroleum Refining (Upstream & Downstream Oil and Gas Industries)	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 25 – Petroleum refining Table 21 – Estimated Additions to Still Gas, Diesel, Petroleum Coke and Crude Oil	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total MINUS that used by crude bitumen upgraders reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil, motor gasoline, diesel fuel oil, aviation gasoline, aviation turbo fuel	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 25 – Petroleum refining	sector data reported in ICE. Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD MI-NUS emissions related to flaring. The activity data reported in the RESD include the amount of fuel used to flare. CO ₂ , CH ₄ and N ₂ O emissions from flaring activity are considered a fugitive source following the IPCC Guidelines; therefore, the fugitive emission and fuel value is subtracted from the estimated emissions and the RESD value. Only flaring emissions from the petroleum refining fugitive model are subtracted. All other flaring emissions are subtracted from Manufacture of Solid Fuels and Other Energy Industries (1.A.1.c). A portion of Lines 11 and 14 is allocated to this source category prior to calculating
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 25 – Petroleum Refining Table 21 – Estimated Additions to Still Gas, Diesel, Petroleum Coke and Crude Oil	emissions, based on fractions developed from sector data reported in ICE. Canada total for natural gas CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO ₂ are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Biomass	NA	NA
1.A.2.a. Iron and Steel	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 22 – Iron and steel	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. CO ₂ emissions from coke are not included here, but are included in Industrial Processes. However, CH ₄ and N ₂ O emissions are counted here. The CO ₂ is considered to be a product of the process (the reduction of iron), while the CH ₄ and N ₂ O are by-products of combustion.

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.2.a. Iron and Steel (cont'd)			A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
(Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD.
	on, neavy raci on	Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other	CO_2 , CH_4 and N_2O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
		Fuels: Steam Generation Line 22 – Iron and steel	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels: Electricity – By industry	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
		Line 14 – Transformed to Other Fuels: Steam Generation Line 22 – Iron and steel	Canada totals for CH $_4$ and N $_2$ O are based on the national total reported in the RESD.
		Eme 22 Homana steel	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Biomass	NA	NA
1.A.2.b. Non-ferrous Metals	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels:	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on
	_	Steam Generation Line 23 – Smelting and refining, non- ferrous	the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 23 – Smelting and refining, non-	Canada totals for CO_2 , CH_4 and $N2O$ are based on the national total reported in the RESD. CO_2 , $CH4$ and N_2O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
		ferrous	A portion of Lines 11 and 14 is are allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane"	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels:	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
		Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 23 – Smelting and refining, non-	Canada totals for CH4 and N_2O are based on the national total reported in the RESD.
		ferrous	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Biomass	NA	NA .

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.2.c. Chemicals	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 26 – Chemicals	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 26 – Chemicals	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD. CO ₂ , CH ₄ and N ₂ O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector. A portion of the Electricity by Industry and Steam Generation lines from the RESD is allocated to this source category prior to calculating emissions.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 26 – Chemicals	Canada total for natural gas CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO ₂ are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Biomass	NA	NA
1.A.2.d. Pulp, Paper and Print	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 21 – Pulp and paper	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 21 – Pulp and paper	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD. CO ₂ , CH ₄ and N ₂ O associated with Transport fuels (i.e., gasoline and diesel) are included in the Transport subsector. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.2.d. Pulp, Paper and Print (cont'd)	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels:	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
		Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 21 – Pulp and paper	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
			A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed fron sector data reported in ICE.
	Biomass Spent pulping liquor, solid wood waste	Table 20 – Solid Wood Waste and Spent Pulping Liquor, Total Consumption	Total biomass is the amount of solid wood waste and spent pulping liquors combusted.
	waste		Canada totals for CO_2 , CH_4 and N_2O are based on the national total reported in the RESD. Biomass CO_2 emissions are not included in the national totals, although CH_4 and N_2O emissions are.
1.A.2.e. Food Process-	Solid Fuels	Included elsewhere	Emissions for this subsector are included in 1.A.2.f.iv. – Other Manufacturing.
ing, Beverages and Tobacco	Liquid Fuels	Included elsewhere	Emissions for this subsector are included in 1.A.2.f.iv. – Other Manufacturing.
	Gaseous Fuels	Included elsewhere	Emissions for this subsector are included in 1.A.2.f.iv. – Other Manufacturing.
	Biomass	Included elsewhere	Emissions for this subsector are included in 1.A.2.f.iv. – Other Manufacturing.
1.A.2.f.i. Cement	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub-	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels:	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke and waste fuel emissions, which are based on the national total.
	bituminous, lignite, anthracite, foreign bituminous Waste Fuel	Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 24 – Cement	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
		Waste fuel data reported by the Cement Association of Canada (CAC) and pub- lished by the Canadian Industrial Energy End-use Data Analysis Centre (CIEEDAC)	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels:	Canada totals for CO_2 , CH_4 and N_2O are based on the national total reported in the RESD.
	oil, heavy fuel oil	Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 24 – Cement	CO_2 , CH_4 and N_2O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
		Ene 21 Centent	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed fron sector data reported in ICE.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels: Electricity – By industry	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
		Line 14 – Transformed to Other Fuels: Steam Generation Line 24 – Cement	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
		Line 24 - Centent	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed fron sector data reported in ICE.

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.2.f.i. Cement (cont'd)	Biomass	NA	NA
1.A.2.f.ii. Mining	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 20 – Total mining & oil & gas extraction	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Mining, according to the RESD, includes fuel consumed for mining and extraction of oil and gas. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 20 – Total mining & oil & gas extraction	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD. CO ₂ , CH ₄ and N ₂ O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 20 – Total mining & oil & gas extraction	Canada total for natural gas CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO ₂ are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD. A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Biomass	NA	NA
1.A.2.f.iii. Construction	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 30 – Construction	Canada total for CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used EXCEPT for petroleum coke emissions, which are based on the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 30 – Construction	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD. CO ₂ , CH ₄ and N ₂ O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 30 – Construction	Canada total for natural gas CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO ₂ are based on the national total reported in the RESD.
			Canada totals for CH ₄ and N ₂ O are based on

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
	Biomass	NA	NA
1.A.2.f.iv. Other Manufacturing	Solid Fuels Coke Petroleum Coke – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details	A weighted emission factor is calculated for CH_4 and N_2O based on fuel consumption and applied on an annual basis.
	Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 27 – Other manufacturing	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed fron sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels: Electricity – By industry	A weighted emission factor is calculated for CH_4 and N_2O based on fuel consumption and applied on an annual basis.
		Line 14 – Transformed to Other Fuels: Steam Generation Line 27 – Other manufacturing	CO_{2r} , CH_4 and N_2O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
			A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids	A weighted emission factor is calculated for CH_4 and N_2O based on fuel consumption and applied on an annual basis.
		Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation	A weighted emission factor is calculated for CH ₄ and N ₂ O and applied on an annual basis.
		Line 27 – Other manufacturing	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed fron sector data reported in ICE.
	Biomass	NA	NA
1.A.3.e. Pipelines (Transport)	Solid Fuels Coke Petroleum Coke – Refineries & Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite,	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 39 – Pipelines	Canada total for CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Canada totals fo CH_4 and N_2O are based on the national total reported in the RESD.
	foreign bituminous	THE 0.5 ID. I	5 1 1 1 5 50 511 1 1 1 0
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil Motor gasoline, diesel fuel oil,	Table D – Refined Petroleum Products Line 39 – Pipelines	Canada totals for CO_2 , CH_4 and N_2O are based on the national total reported in the RESD.
	aviation gasoline, aviation turbo fuel		
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on
		Line 39 – Pipelines	the national total reported in the RESD.
			Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	Biomass	NA	NA
1.A.4.a.i. Commercial and Other	Solid Fuels Coke Petroleum Coke – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details Line 46 – Commercial and institutional	Canada total for CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used.
Institutional	Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Line 40 – Commercial and institutional	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.4.a.i. Commercial and Other Institutional	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 46 – Commercial and institutional	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD. CO ₂ , CH ₄ and N ₂ O associated with Transport
(cont'd)			fuels (i.e. gasoline and diesel) are included in the Transport subsector.
	Gaseous Fuels Natural gas, coke oven gas Still Gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on
		Line 46 – Commercial and institutional	the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on
	Piom acc	NIA	the national total reported in the RESD.
1 A 4 - ::	Biomass	NA	NA
1.A.4.a.ii. Public Administration	Solid Fuels Coke Petroleum Coke – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details	Canada total for CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used.
	Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Line 45 – Public administration	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	Liquid Fuels Kerosene and stove oil, light fuel	Table D – Refined Petroleum Products	Canada totals for CO_2 , CH_4 and N_2O are based on the national total reported in the RESD.
	oil, heavy fuel oil	Line 45 – Public administration	CO ₂ , CH ₄ and N ₂ O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 45 – Public administration	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
			Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD.
	Biomass	NA	NA
1.A.4.b. Residential	Solid Fuels Coke Petroleum Coke – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details	Canada total for CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used.
	Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Line 44 – Residential	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 44 – Residential	Canada totals for CO_2 , CH_4 and N_2O are based on the national total reported in the RESD.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 44 – Residential	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
			Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD.
	Biomass Residential firewood	Firewood consumption estimated using the residential firewood model.	Total biomass is the amount of residential firewood combusted and is based on Environ ment Canada's survey data. CO ₂ emissions are not included in the national totals, but CH ₄ and N ₂ O emissions are.

Table A2-1 Estimation Methodology for GHG Emissions from Stationary Combustion (cont'd)

CRF Source Category ¹	Fuels List	Activity Data Source ²	Notes
1.A.4.c.i. Forestry	Solid Fuels Coke Petroleum Coke – Refineries & Others	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table F – Coal Details	Canada total for CO_2 is the sum of all provinces'/territories emissions due to regional emission factors being used.
	Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Line 11 – Transformed to Other Fuels: Electricity – By industry Line 14 – Transformed to Other Fuels:	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
	•	Steam Generation Line 29 – Forestry	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 11 – Transformed to Other Fuels:	Canada totals for CO $_2$, CH $_4$ and N $_2$ O are based on the national total reported in the RESD.
	on, nearly race on	Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 29 – Forestry	${\rm CO_2}, {\rm CH_4}$ and ${\rm N_2O}$ associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
			A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Gaseous Fuels Natural gas, coke oven gas Still gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids Line 11 – Transformed to Other Fuels:	Canada total for natural gas CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO_2 are based on the national total reported in the RESD.
		Electricity – By industry Line 14 – Transformed to Other Fuels: Steam Generation Line 29 – Forestry	Canada totals for CH_4 and N_2O are based on the national total reported in the RESD.
		, ,	A portion of Lines 11 and 14 is allocated to this source category prior to calculating emissions, based on fractions developed from sector data reported in ICE.
	Biomass	NA	NA
1.A.4.c.ii. Agriculture	Solid Fuels Coke Petroleum Coke – Refineries &	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products	Canada total for CO_2 is the sum of all provinces'/territories' emissions due to regional emission factors being used.
	Others Coal: Canadian bituminous, sub- bituminous, lignite, anthracite, foreign bituminous	Table F – Coal Details Line 43 – Agriculture	Canada totals for CH ₄ and N ₂ O are based on the national total reported in the RESD.
	Liquid Fuels Kerosene and stove oil, light fuel oil, heavy fuel oil	Table D – Refined Petroleum Products Line 43 – Agriculture	Canada totals for CO ₂ , CH ₄ and N ₂ O are based on the national total reported in the RESD.
			CO_2 , CH_4 and N_2O associated with Transport fuels (i.e. gasoline and diesel) are included in the Transport subsector.
	Gaseous Fuels Natural gas, coke oven gas Still Gas – Refineries & Others Propane, Butane, Ethane	Table B – Primary and Secondary Energy Table D – Refined Petroleum Products Table 17 – Details of Natural Gas Liquids	Canada total for natural gas CO ₂ is the sum of all provinces'/territories' emissions due to regional emission factors being used. Totals for remaining gaseous fuel CO ₂ are based on
		Line 43 – Agriculture	the national total reported in the RESD. Canada totals for CH ₄ and N ₂ O are based on
	Biomass	NA	the national total reported in the RESD. NA
1.A.5. Other Information (not included elsewhere)	Included elsewhere	Included elsewhere	Emissions for this subsector are included in 1.A.2.f.iv. – Other Manufacturing.

Notes:
1. The CRF categories listed are the lowest-level subsectors for which emissions are estimated.
2. Activity data refer to the specific location of the data in the annual Report on Energy Supply–Demand in Canada (RESD) (Statistics Canada #57-003). Also refer to Table A2–3 for more RESD data source references.

NA = Not Applicable

Table A2–2 General Fuel Type Categories for Stationary Combustion Methodology

uel Types	Fuels
quid Fuels	Motor gasoline
	Kerosene and stove oil
	Diesel fuel oil
	Light fuel oil
	Heavy fuel oil
	Aviation gasoline
	Aviation turbo fuel
l Fuels	Coke (coal)
	Canadian bituminous
	Sub-bituminous (foreign & domestic)
	Lignite
	Anthracite
	Foreign bituminous
	Petroleum Coke-Refineries & Others
	Petroleum Coke-Upgraders
	Waste fuel
eous Fuels	Natural gas
	Coke oven gas
	Propane
	Butane
	Ethane
	Still Gas-Refineries & Others
	Still Gas-Upgraders
mass	Solid wood waste
	Spent pulping liquor
	Residential firewood
	Landfill gas

Table A2-3 Activity Data Model References

Title

- Statistics Canada - Manufacturing, Construction and Energy Division; annual Report on Energy Supply-Demand in Canada (RESD), #57-003-XPB.

Table B – Primary and Secondary Energy

Table D – Refined Petroleum Products

Table E - Non-energy Refined Petroleum Products

Table F - Coal Details

Table 17 - Details of Natural Gas Liquids

Table 20 - Solid Wood Waste and Spent Pulping Liquor

Table 21 – Estimated Additions to Still Gas, Diesel, Petroleum Coke and Crude Oil

- Waste fuel data CIEEDAC. (2009). A Review of Energy Consumption and Related Data: Canadian Cement Manufacturing Industry 1990 to 2007. Prepared by Nyboer and Jaccard for the Cement Association of Canada. Canadian Industrial Energy End-use Data Analysis Centre.
- Residential fuelwood consumption Based on Environment Canada. (1999). 1995 Criteria Contaminants Emissions Inventory Guidebook, Version 1, Section 2.4. National Emissions Inventory and Projections Task Group, Criteria Air Contaminants Division, Environment Canada, March 1999.
- Landfill Gas Utilization See Annex 3, Additional Methodologies.

Activity data sources are presented in Table A2–3 for reference in the stationary combustion model methodology. The data are made available to Environment Canada in electronic format and may differ slightly when compared with Statistics Canada's rounded, published values.

A2.4.1.1. Public Electricity and Heat Production (CRF Category 1.A.1.a)

The Public Electricity and Heat Production subsector includes the 1.A.1.a.i – Electricity Generation; 1.A.1.a.ii – Combined Heat and Power Generation; and 1.A.1.a.iii – Heat Plants categories. This subsector should include all

emissions from main activity producers (previously known as public utilities) of electricity generation, combined heat and power generation and heat plants. Emissions from autoproducers are allocated to the industrial subsector where they were generated. Currently, emissions associated with the combustion of landfill gas are included under 1.A.1.a.iii – Heat Plants.

 CO_2 , CH_4 and N_2O emissions are estimated by applying Equation A2–1 to activity data and emission factors for specific fuels on a national basis. Coal and natural gas emission factors for these subsectors have been developed on a regional basis. As previously discussed, nationally reported activity data are of a higher quality than provincial/territorial data. In order to obtain higher accuracy in GHG emissions, regional emission factors are applied to provincial/territorial data in this circumstance. For the remaining fuels, the emission factors are applied to the nationally reported data.

A2.4.1.2. Fossil Fuel Industries (CRF Categories 1.A.1.b and 1.A.1.c)

The Fossil Fuel Industries include 1.A.1.b – Petroleum Refining and 1.A.1.c – Manufacture of Solid Fuels and Other Energy Industries. The emissions total for the Fossil Fuel Industries has a higher level of accuracy owing to the resolution of the activity data. To meet CRF reporting category requirements, activity data from the whole industry were reallocated into two separate categories. These categories include combustion emissions that support 1) the refining of crude oil and some upgrading of oil sands bitumen; and 2) the production of coal, natural gas and crude oil.

The methodology for estimating emissions from these sectors involves applying Equation A2–1 on a national basis and subtracting emissions associated with flaring from the total GHG emissions for each category. The fuel-use data reported in the RESD include volumes of flared fuels; however, flaring emissions are calculated and reported separately in the fugitive category. The fuel use, energy content and emission data associated with flaring are subtracted to avoid double counting.

To determine the activity data associated with the Petroleum Refining Sector, some data reported in the RESD must be reallocated. All refined petroleum products (RPPs) that are reported as Producer-consumed are allocated to the Petroleum Refining Sector based on the assumption that they are consumed by the producers. Calculating the emissions associated with the fuels listed below involves summing the activity data reported under Petroleum Refining and Producer-consumed and applying Equation A2–1 to:

- petroleum coke;
- still gas;
- kerosene;
- light fuel oil; and,
- heavy fuel oil.

In addition, activity data, in the form of fuel used by industry (including Petroleum Refining) to generate electricity or steam, are currently reported in summary lines in the RESD (Lines 11 and 14). A portion of each of these lines needs to be reallocated to the Petroleum Refining subsector. This is completed using fractions developed based on the quantities reported by the Petroleum Refining subsector in the ICE survey. For each fuel and each province, the fuel use data reported by industry in ICE for electricity generation are used to develop each industry's fraction of the total fuel use. The fractions are then used with the Electricity -By Industry line from the RESD to determine what portion of that line should be reallocated to a particular industry. This portion is added to the activity data already reported for that industry. The same procedure is completed with the steam generation line in the RESD and the corresponding ICE data for steam generation. Since ICE data are not available prior to 1995, for years between 1990 and 1995, the 1995 fractions were used.

To estimate emissions for the Petroleum Refining subsector from the consumption of the transportation fuels listed below, the activity data reported under Producer-consumed are used in Equation A2–1 and the emissions are included under Petroleum Refining. Due to a lack of resolution in the RESD, the Manufacture of Solid Fuels and Other Energy Industries subsector does not include emissions associated with the list of fuel (as presented below); instead their emissions are accounted for in the Petroleum Refining subsector:

- gasoline;
- diesel fuel oil;
- aviation gasoline; and
- · aviation turbo fuel.

The IPCC default emission factors for N_2O are used to estimate emissions for petroleum coke and motor gasoline, and are based on the calorific value of the fuel. The gross

calorific value (GCV) for petroleum coke is reported in the RESD and can change annually. As such, the emission factor for petroleum coke for both oil sands/crude bitumen production and refineries changes on an annual basis. The conversion between the GCV and the net calorific value (NCV) is based on data reported to and published by the Canadian Industrial Energy End-use Data Analysis Centre (CIEEDAC 2009).

To calculate GHG emissions from the Manufacture of Solid Fuels and Other Energy Industries subsector, activity data for the following fuels reported as Producer-consumed in the RESD are used in Equation A2–1:

- natural gas;
- · coal;
- propane;
- · butane; and
- · ethane.

The following fuels are reported as Producer-consumed in the oil sands/crude bitumen production industry in the RESD. These amounts are subtracted from the Petroleum Refining subsector and included in the Manufacture of Solid Fuels and Other Energy Industries subsector. Consumption of both fuels is reported in a separate table in the RESD and allocated to upgrading facilities:

- petroleum coke; and
- · still gas.

As previously mentioned in Section A2.4.1.1, coal emissions are estimated at a provincial/territorial level and aggregated to a national level.

To avoid double counting, the emissions associated with flaring are subtracted from the total for this Sector and reported in the relevant fugitive tables (1.B.2). Flaring emissions from the fugitive Petroleum Refining model are subtracted from Petroleum Refining (1.A.1.b) while all other flaring emissions from the fugitive model are subtracted from Manufacture of Solid Fuels and Other Energy Industries (1.A.1.c).

A2.4.1.3. Manufacturing Industries and Construction (CRF Category 1.A.2)

The Manufacturing Industries and Construction subsector include a number of industrial categories. Activity data in the RESD are reported for the main economic and fuel-consuming industrial categories; however, this does

not include fuel used to generate electricity or steam by industry. This energy is captured in the RESD in two separate lines (one for electricity and one for steam); however, they are summary lines and not divided by industrial categories. Future improvement to the RESD will allow for further disaggregation of these industrial categories to be consistent with the North American Industrial Classification System (NAICS).

Emissions are calculated for the following categories:

- · Mining;
- Iron and Steel;
- Non-ferrous Metals;
- Chemicals;
- Pulp, Paper and Print;
- · Cement:
- · Construction; and
- Other Manufacturing (includes Food Processing, Beverages and Tobacco).

In order to reallocate the fuel reported in the summary lines for electricity and steam in the RESD (Lines 11 and 14) a fractional allocation method was developed based on the quantities reported by category in the ICE survey. For each fuel and each province, the fuel use data reported by industry in ICE for electricity generation are used to develop each industry's fraction of the total fuel use. The fractions are then used with the Electricty – By Industry line from the RESD to determine what portion of that line should be reallocated to a particular industry. This portion is added to the activity data already reported for that industry. The same procedure is completed with the steam generation line in the RESD and the corresponding ICE data for steam generation. Since ICE data are not available prior to 1995, for years between 1990 and 1995, the 1995 fractions were used.

GHG emissions associated with the Manufacturing Industries and Construction subsector are calculated by applying Equation A2–1 to activity data reported in the RESD and emission factors for specific fuels on a national basis. Coal emissions are handled as described in Section A2.4.1.1 Emissions resulting from fuels used as feed-stocks are reported under the Industrial Processes Sector, whereas emissions generated from the use of transportation fuels (e.g. diesel and gasoline) are reported under the Transport subsector.

 CO_2 emissions associated with the use of metallurgical coke in the iron and steel industry for the reduction of iron ore in blast furnaces have been allocated to the Industrial Processes Sector. CH_4 and N_2O emissions, however, are included, as they are by-products of the combustion process.

CO₂ emissions associated with biomass combustion in the Pulp, Paper and Print subsector are not included in the national totals; however, CH₄ and N₂O emissions are included in the totals. Industrial consumption of biomass and spent pulping liquors is reported in the RESD; however, some of the data are limited. The RESD data for 1990 and 1991 were combined for the Atlantic provinces, as were the data for the Prairie provinces. Individual provincial data were delineated by employing a data comparison with the 1992 RESD data. For 1992, the data for Newfoundland and Nova Scotia were also combined, and there were no comparable data to allow separation of these provinces. Emissions are listed under Nova Scotia. In 2010, Environment Canada conducted a review of available wood waste moisture content data and concluded that for the purposes of the NIR, solid wood waste activity data are reported on a wet weight basis and that the average moisture content is 50%.

CO₂ emissions from the combustion of waste fuels in the cement industry are calculated based on data provided by the Cement Association of Canada and reported by CIEEDAC (2009) on an energy basis. Based on a review of the industry, it is assumed that all the waste fuel consumed comes from tires. Although other waste fuels (waste oil, solvents) are consumed, their contribution to the total is small, and the level of detail required to distinguish the different sources is currently not available.

A2.4.1.4. Other Sectors (CRF Category 1.A.4)

The Other Sectors subsector consists of three categories: Commercial/Institutional, Residential and Agriculture/Forestry/Fisheries. GHG emissions associated with the Other Sectors subsector (with the exception of emissions from the combustion of residential firewood) are calculated by applying Equation A2–1 to activity data reported in the RESD and emission factors for specific fuels on a national basis.

The activity data used in the calculation of GHG emissions from the combustion of residential firewood are based on estimated fuel use. Fuel-use data are based on the criteria air contaminant inventory (Environment Canada 1999). Residential fuel-use data from Statistics Canada and

Natural Resources Canada were not used since they appear to greatly underestimate firewood consumption (as a significant portion of firewood consumed in Canada is not from commercial sources).

Firewood consumption data were collected through a survey of residential wood use for the year 1995 (Canadian Facts 1997). These data were collected by province and grouped into five major appliance-type categories:

- 1. Conventional stoves
 - non-airtight
 - airtight, non-advanced technology
 - masonry heaters
- Stove/fireplace inserts with advanced technology or catalyst control
 - advanced-technology fireplaces
 - · advanced-technology stoves
 - catalytic fireplaces
 - catalytic stoves
- 3. Conventional fireplaces
 - without glass doors
 - with non-airtight glass doors
 - with airtight glass doors
- 4. Furnaces
 - wood-burning furnaces
- Other equipment
 - other wood-burning equipment

The firewood consumption data for the other years were extrapolated based on the number of houses in each province using wood as a principal or supplementary heat source (from Statistics Canada 1995) in relation to 1995. GHG emissions were calculated by multiplying the amount of wood burned in each appliance by the emission factors.

 CO_2 emissions associated with biomass combustion in the Residential category are not included in the national total; however, CH_4 and N_2O emissions are included.

The Agriculture/Forestry/Fisheries category (CRF Category 1.A.4.c) includes emissions from stationary fuel combustion only from the agricultural and forestry industries. Emissions are from on-site machinery operation and from space heating and are estimated based on fuel use data for agriculture and forestry as reported in the RESD. Fishery emissions are reported under either the Transportation or Other Manufacturing (i.e. food processing) category. Mobile emissions associated with this category are not disaggregated and are included as off-road or marine emissions reported under Transport.

A2.4.2. Transport (CRF Category 1.A.3)

GHG emissions from the Transport subsector are divided into five categories:

- Civil Aviation (Domestic Aviation);
- Road Transportation;
- Railways;
- · Navigation (Domestic Marine); and
- Other Transportation (Off-road and Pipelines).

Emission estimates are developed at the provincial/territorial level and aggregated to the national level.

Fuel combustion emissions associated with the Transport subsector are calculated using various adaptations of Equation A2–1.

 CO_2 emissions are predominantly dependent on the type and characteristics of fuel being combusted, whereas N_2O and CH_4 emissions are dependent on both the fuel combusted and emission control technologies present. Annex 8 provides a complete listing of transportation-related emission factors and their specific references.

Owing to the complexity of the Transport subsector, Canada's Mobile Greenhouse Gas Emission Model (MGEM) and the Aviation Greenhouse Gas Emission Model (AGEM) are used to calculate the emissions from Road Transportation, Railways, Navigation, Off-road and Aviation. The combustion emissions associated with pipeline transport are estimated separately.

A2.4.2.1. Road Transportation (CRF Category 1.A.3.b)

The methodology used to estimate Road Transportation GHG emissions follows a detailed IPCC Tier 3 approach.

Step 1:

Activity Data – Vehicle Populations, Technology Penetration, Catalyst Survival Rate, Fuel Consumption Ratios and Kilometre Accumulation Rates

Vehicle Populations

Vehicles are separated into different classes depending on their fuel type, body configuration (car versus truck) and gross vehicle weight rating (GVWR). GVWR is the maximum allowable weight of a fully loaded road vehicle, including the weight of the vehicle, fuel, passengers, cargo and other miscellaneous items, including optional accessories.

Two distinct data sets are used to develop a complete vehicle population profile. Light-duty vehicle and truck populations for 1990–2002 were obtained from the Canadian Vehicles in Operation Census, which is maintained by DesRosiers Automotive Consultants Inc. Light-duty vehicle and truck populations for 2003–2009 were derived from Statistics Canada's Canadian Vehicle Survey (CVS). Heavyduty vehicle populations were obtained from R.L. Polk & Co. for 1994–2002. Heavy-duty vehicle populations for 2003–2009 were derived from Statistics Canada's Canadian Vehicle Survey, while populations for 1990–1993 were estimated based on historical population trends. Light-duty vehicles (cars) and light-duty trucks (pickups, minivans, SUVs, etc.) are those with a GVWR of less than or equal to 3900 kg, whereas heavy-duty classes have a GVWR above 3900 kg.

Motorcycle populations for 1990–2009 were obtained from the Motorcycle & Moped Industry Council (MMIC 2009).

Technology Penetration

To account for the effects that emission control technologies have on emissions of CH_4 and N_2O , estimates of the number of vehicles on the road equipped with catalytic converters and other control technologies were developed. Figure A2–2 illustrates the varying penetration percentages of evolving technologies into new light-duty gasoline vehicles (LDGVs) and light-duty gasoline trucks (LDGTs) in successive model years. Technology penetration for heavy-duty gasoline vehicles (HDGVs), heavy-duty diesel vehicles (HDDVs), light-duty diesel vehicles (LDDVs), light-duty diesel trucks (LDDTs) and motorcycles (MCs) are detailed in Table A2–4 (U.S. EPA 2010).

Catalyst Survival Rate

With use, catalytic converters deteriorate, affecting tail-pipe emission rates. Based on information from industry experts, a technology-specific deterioration rate is applied to LDGVs and LDGTs with catalytic controlled technologies. To model the deterioration effect, the vehicles with deteriorated catalysts are assigned to the non-catalytic controlled technology. For provinces with inspection and maintenance (I/M) programs (Ontario and British Columbia), the catalyst survival rate is not applied to Tier 0, Tier 1,

or Tier 2 technologies, as these emission control technologies are inspected and replaced or repaired as necessary.

Fuel Consumption Ratios

Average provincial fuel consumption ratios (FCRs) by vehicle class and model year (based on provincial vehicle sales) are available for LDGVs, LDGTs, LDDVs and LDDTs (NRCan 2010). FCRs for HDGVs are based on a vehicle class and model year average (IPCC/OECD/IEA 1997). HDDV and motorcycle FCRs are based on a yearly fleet average (NRCan 2010).

Laboratory FCRs are determined by standardized vehicle emission tests. However, research has shown that real-world fuel consumption is consistently higher than laboratory-generated data. Based on studies performed in the United States, on-road vehicle fuel consumption figures in MGEM have been adjusted to 25% above the laboratory FCR ratings (Maples 1993).

Kilometre Accumulation Rates

Kilometre accumulation rates (KARs) are a measure of the average annual kilometres travelled by vehicle class and vehicle age. Light-duty car and truck KARs are estimated from the results of a report examining the differences in vehicle odometer readings recorded during successive inspection and maintenance (I/M) tests from Ontario and British Columbia (Stewart Brown Associates 2010). Due to the absence of I/M programs in other jurisdictions, the Ontario KAR estimates are adopted in all other provinces and territories excluding British Columbia, where the B.C. KAR estimates are directly applied.

Step 2:

On-road Fuel Calculation

On-road gasoline and diesel fuel consumption is estimated using Equation A2–2:

Equation A2-2:

FuelConsumption = Population * KAR * FCR

For the most part, these parameters are different for each province, vehicle class, model year and inventory year.

On-road vehicles are grouped into seven major vehicle

classes, identical to those used by the U.S. Environmental Protection Agency (U.S. EPA) in its MOBILE emissions factor model. The U.S. EPA designations are as follows:

- LDGVs;
- LDGTs;
- HDGVs;
- MCs;
- LDDVs;
- LDDTs; and
- HDDVs.

It is assumed that all natural gas and propane fuel is consumed by light-duty vehicles. No breakdown by vehicle classification is utilized for natural gas and propane vehicles. The methodologies for propane and natural gas vehicles follow an IPCC Tier 1 method.

Step 3:

Normalization

In an effort to improve the allocation of diesel and gasoline between on- and off-road applications, a balancing algorithm has been incorporated into MGEM. This algorithm attempts to reconcile the fuel reportedly consumed by fuel surveys and the fuel consumption calculated by MGEM.

Gasoline

The first on-road gasoline estimate is calculated in step 2 and represents a bottom-up estimate based upon vehicle population FCRs and KARs.

The second estimate is based on the top-down gross and taxed gasoline sales reported by Statistics Canada (CAN-SIM, Table 405-0002). This survey polls individual provinces for their retail and non-retail fuel sales. The value reported as gross gasoline sales (taxed plus non-taxed) is adjusted to equal the total gasoline available for transport as reported in the RESD (Statistics Canada #57-003). That same adjustment is then applied to the taxed gasoline sales and becomes the second, or top-down, on-road gasoline estimate.

At a provincial level, top-down and bottom-up gasoline consumption estimates differ slightly; however, at a national level, there is a high degree of correlation between the two estimates. If the bottom-up estimate is larger than the top-down one, the adjusted taxed sales are taken as the final on-road gasoline estimate. If the top-down estimate exceeds the bottom-up estimate, the average of

the two estimates is taken as the final on-road gasoline estimate.

Diesel Oil

The first on-road diesel estimate is calculated in step 2 (bottom-up).

The second estimate (top-down) is based on taxed diesel sales reported by Statistics Canada (CANSIM, Table 405-0002).

At a provincial level, the two estimates of on-road diesel consumption differ slightly; however, at a national level, there is a high degree of correlation between the two estimates. If the first on-road diesel estimate is larger than the second estimate, the taxed sales are taken as the final on-road diesel estimate. If the second estimate is larger than the first estimate, the average of the two estimates is taken as the final on-road diesel estimate.

Step 4: On-road Emission Calculation

Emission estimates are based on fuel type, the total fuel consumed and the appropriate emission factor.

Emissions are calculated using Equation A2-1.

A2.4.2.2. Off-road (CRF Category 1.A.3.e)

The methodology used to estimate GHG emissions from off-road transportation follows an IPCC Tier 1 approach.

Step 1: Off-road Fuel Calculation

Off-road fuel is calculated using Equation A2-3:

Equation A2-3:

Off - road Fuel Consumption = Fuel Available for Transportation - On Road Fuel Consumption

Step 2: Off-road Emission Calculation

Emission estimates are based on fuel type, the total fuel consumed and an emission factor.

Emissions are calculated using Equation A2–1.

A2.4.2.3. Civil Aviation (Domestic Aviation) (CRF Category 1.A.3.a)

The methodology used to estimate GHG emissions from Civil Aviation employs a modified IPCC Tier 1 approach

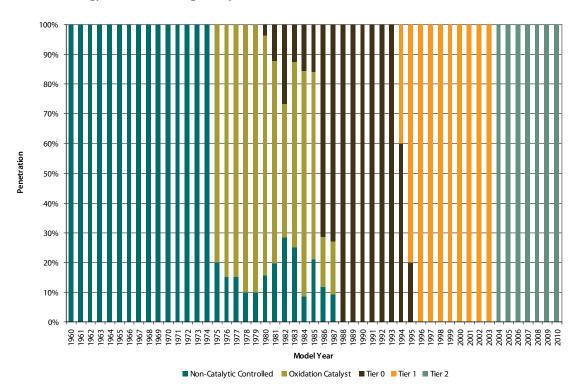


Table A2–4 Technology Penetration for HDGVs, HDDVs, LDDVs, LDDTs and MCs

Control Technology	Model Years	
Heavy-duty Gasoline Vehicles (HDGVs)		
Uncontrolled	1960–1984	
Non-catalytic Controlled	1985–1995	
Three-way Catalyst	1996–2010	
Heavy-duty Diesel Vehicles (HDDVs)		
Uncontrolled	1960–1982	
Moderate Controls	1983–1995	
Advanced Controls	1996–2010	
Light-duty Diesel Vehicles and Trucks (LDI	OVs and LDDTs)	
Uncontrolled	1960–1982	
Moderate Controls	1983–1995	
Advanced Controls	1996–2003	
Tier 2	2004–2010	
Motorcycles (MCs)		
Uncontrolled	1960–1995	
Non-catalytic Controlled	1996–2010	

for aviation gasoline and a modified IPCC Tier 3 approach for aviation turbo fuel. This is the first year that the Tier 3 method results are being used in the Canadian inventory, thereby allowing a much higher (finer) resolution on aircraft activity and fuel consumption patterns. The Aviation model has been named AGEM as an acronym for Aviation Greenhouse Gas Emission Model.

This subsector includes all emissions from domestic air transport (commercial, private, agricultural, etc.). In accordance with the Revised 1996 IPCC Guidelines, and because of the new Tier 3 approach, military air transportation emissions attributed to the consumption of aviation turbo fuel are reported in the Other subsector (CRF Category 1.A.5). However, military emissions generated by the consumption of aviation gasoline remain in this category (1.A.3.a) since the current data source for this type of fuel consolidates military and civil fuel use to facilitate confidentiality. Excluded are emissions from fuel used at airports for ground transport (reported under Other Transportation - Off-road) and fuel used in stationary combustion applications at airports. Emissions from international flights are designated as "bunker" emissions and are not included in national totals but are estimated and reported separately under international bunkers.

Emission estimates for aviation gasoline are calculated using the quantity of aircraft fuel apparently consumed (IPCC/OECD/IEA 1997) and the fuel-specific emission

factor. Aviation fuel sales are reported in the RESD (Statistics Canada #57-003) representing that sold to Canadian airlines, foreign airlines, public administration and commercial/institutional sectors. All aviation gasoline use is designated domestic, other than that reported under foreign airlines.

Tier 3 Methodology

Step 1:

Activity Data: Aircraft Movements, Flight Path Length, Airport Coordinates, Aircraft Fuel Use Characteristics, Representative Aircraft Mappings, Aircraft Emission Performance

Aircraft Movements

The aircraft movement data (AMS 2009) used in AGEM are flight-by-flight tower data collected by NAV Canada starting in November 1996 and Transport Canada before November 1996. Both data streams are processed by Statistics Canada and redistributed to NAV Canada and Transport Canada. Environment Canada receives the information directly from Statistics Canada, including small airport movements that Statistics Canada collects directly and appends to the tower data from NAV Canada.

The data identifies, among other things, the origin, destination and plane type for any given movement occurring in Canada. Statistics Canada's processing of the data

includes adding information based on other raw data fields provided to them as well as validation of airports, plane types, and various data fields that are not crucial to modelling fuel use.

Military emissions are estimated based on the movement data, as they are labelled as military by Statistics Canada.

Flight Path Length

The flight path length is the true distance travelled between two airports. The movement data used for modelling are not radar data and thus do not track the exact path travelled by each individual movement. AGEM estimates the flight path length based on additional information obtained from the Federal Aviation Administration (FAA). The FAA operates an aviation model titled SAGE that is based on true radar data. The FAA provided Environment Canada with an extract from their model for calendar year 2005 involving Canadian airports and included the statistical measures (maximum, minimum, average, standard deviation) for the radar distance travelled between any Canadian origin and final destination for a given plane type (Fleming 2008a). The average distance from these combinations was then used as the distance flown when the same combination appeared in AGEM's movement data (regardless of the calendar year of the movement). There are cases, however, when a combination in AGEM exists without a corresponding average distance. In these cases another method needed to be developed.

An adjusted great circle distance (GCD¹) is used when the average radar distance is unknown. A factor applied to the GCD was developed by comparing GCD to radar distance for a given origin/destination/plane type. Graphing the known radar lengths against their corresponding GCDs leads to an equation that can be used for adjusting all raw GCD distances. Therefore, all GCDs are adjusted by a factor to approximate the flight path length with the factors decreasing in magnitude as the GCD increases.

Airport Coordinates

All possible airport entries within the AGEM movement data were extracted and defined. Information on the airports such as latitude, longitude, name, elevation, etc. were compiled from various sources including Transport Canada (Cadieux 2006), the Canada Flight Supplement (NAV Canada 2009), SAGE (Fleming 2008b), the Modeling

and Database Task Force (MODTF) (Fleming 2008c), the FAA (FAA 2009) and previous departmental work (Manning 2007). The main information required is the geographical coordinates so that a GCD can be calculated and used to determine the flight path length.

Aircraft Fuel Use Characteristics

Once the flight path length is determined, the fuel consumed by the airplane for that movement can be calculated knowing the fuel characteristics of that plane. The fuel characteristics of various representative aircraft are drawn from the Base of Aircraft Data (BADA) (BADA 2009), the International Civil Aviation Organization (ICAO) via their engine emissions databank (ICAO 2009) and the Swedish Defence Research Agency (FOI) via their turbo prop engine emissions databank (Hagstrom 2010). The information in BADA is used for estimating fuel use from just after takeoff to landing. The ICAO information is used for defining the remaining portions of the landing and takeoff cycle (LTO) which are taxi and takeoff (explained in more detail in Step 2). Finally, FOI serves the same purpose as ICAO but covers the smaller turbo prop type aircraft not available in the ICAO data.

Representative Aircraft Mappings

All possible aircraft type entries within the AGEM movement data were extracted and defined. Once defined, each aircraft was mapped to a representative aircraft with known fuel use characteristics so that fuel consumption could be calculated for all aircraft in AGEM. The mapping was done using published mapping guides whenever possible (BADA 2009; IPCC 2006; ICAO 2008; EMEP/CORINAIR 2006) and matching plane characteristics (MTOW,² number of engines, engine type, etc.) when there was no published mapping for a given aircraft.

Aircraft Emission Performance

In an attempt to better estimate CH_4 emissions, aircraft-specific emission factors are used within AGEM for the LTO cycle. The factors are taken from Table 3.6.9 in the 2006 IPCC Guidelines (IPCC 2006), in the form of total emissions per LTO cycle. These factors are then adjusted by a ratio based on the total LTO fuel difference between that published in the table and that calculated in AGEM. It is recognized that a one-to-one adjustment of CH_4 emissions based on fuel ratio differences may not be entirely correct; however, lacking any additional information, this

¹ Great circle distance (GCD) is the shortest distance between two points on a sphere; in the case of aviation it is the shortest possible flight path length between the origin and destination of a flight movement.

modification was made recognizing that the default values from Table 3.6.9 do not truthfully reflect AGEM's methodology. For the cruise portion, CH₄ emissions are assumed to be zero (Wiesen et al. 1994). For ease of use by the general public, the published CH₄ emission factor will be a fleet average across the entire time series and based on total fuel consumed (LTO and cruise).

Table 3.6.9 also has N_2O plane-specific emission factors on a total LTO cycle basis; however, they are calculated using a Tier 1 fuel-based emission factor and therefore the Tier 1 factor is used directly since the amount of fuel consumed during the LTO cycle is calculated by AGEM.

Step 2 Aviation Fuel Calculation

Fuel consumed by each individual movement is estimated using: Equation A2–4.

Equation A2-4:

FuelConsumption FlightTotal = FuelConsumption Cruise

The LTO phase of flight (3000 ft and below) consists of takeoff (accelerating down the runway until liftoff), climb out (from liftoff to 3000 ft), approach (3000 ft to landing) and taxi in/out (manoeuvring from the airport runway to/ from the gate). The takeoff and taxi portions of the LTO cycle are calculated based on standard ICAO time-in-modes (0.7 min for takeoff and 26 min total taxi time) (EMEP/ CORINAIR 2006) multiplied by the fuel consumption rate for that mode, which is either drawn from the ICAO or FOI emissions databank. The climb out and approach portions are calculated based on the BADA fuel use characteristics of the plane.

The cruise phase of flight (above 3000 ft) is calculated based on the BADA fuel use characteristics of the plane and the flight path length of the movement. The cruise phase is broken up into three parts consisting of climb (3000 ft to cruise altitude), steady-state cruise (constant cruise altitude reached after completion of climb) and descent (from cruise altitude to 3000 ft). The distance it takes to reach and descend from the steady-state cruise altitude (including the LTO portions of climb out and approach) is subtracted from the flight path length when determining the distance travelled at the steady-state cruise altitude.

The LTO and cruise phases of flight for any given move-

ment are estimated by first using the representative aircraft mapping information, which relates the aircraft identified in the movement data to a representative aircraft with known performance characteristics. For the fuel rates of the representative aircraft that are distance based, the flight path length for the movement is drawn from either the list of radar movement data provided by the FAA or calculated by quantifying the GCD and multiplying by an adjustment factor as explained above. The fuel rates that are time based in the LTO cycle already have the time-in-mode defined. With the known fuel characteristics of the plane, the time-in-mode and flight path length, the LTO and cruise fuel estimates can be computed.

Step 3: Normalization

All aviation turbo fuel apparently consumed in Canada is reported in the RESD (Statistics Canada #57-003). The fuel consumed, as estimated by the bottom-up approach of AGEM, is adjusted to match that of the RESD at a national level. The adjustment to LTO and cruise fuel estimates takes place at the individual movement level, across all movements.

Step 4: Emission Calculation

Emission estimates are generated at the individual movement level based on the normalized total fuel consumed and the appropriate emission factor as outlined in Equation A2–1 (as mentioned previously, the CH₄ LTO emission estimate at the movement level is not fuel dependent). The individual emission estimates are then summed to generate the national emission estimate.

A2.4.2.4. Navigation (Domestic Marine) (CRF Category 1.A.3.d)

The emission calculation methodology is considered to be an IPCC Tier 1 method. Domestic marine fuel consumption reported in the RESD (Statistics Canada #57-003) is multiplied by fuel-specific emission factors (see Annex 8). Emissions resulting from fuel sold to foreign marine vessels are assumed to be used only for international travel and are reported separately under international bunkers.

Some Canadian vessels are engaged in international marine travel. Comprehensive data that would allow an accurate disaggregation of domestic and international shipping activities by Canadian vessels are currently unavailable.

A2.4.2.5. Railways (CRF Category 1.A.3.c)

The methodology is considered to be an IPCC Tier 1 method. Railway fuel consumption reported in the RESD (Statistics Canada #57-003) is multiplied by fuel-specific emission factors (see Annex 8).

In Canada, locomotives are powered primarily by diesel fuel. Emissions associated with steam trains are assumed to be negligible, whereas electrically driven locomotives are accounted for under electricity production.

A2.4.2.6. Biomass (CRF Category 1.A.3.e)

The methodology used to estimate emissions from the consumption of biogenic Transport fuels (ethanol and biodiesel) follows a modified IPCC Tier 1 method for gasoline and diesel on-road transportation and an IPCC Tier 1 method for off-road transportation, railways and domestic marine. The volume of biofuels apparently consumed for Transportation is proportionally reallocated back into the respective diesel and gasoline emission technology classes based on those classes' initial consumption volumes.

The volumes of biogenic-based fuels used for Transportation purposes for the calendar years 1990–2007 were obtained from a 2008 report examining biofuel production and consumption in Canada (TFIS Inc. 2008). Biofuel consumption was held constant at 2007 levels for the 2008 and 2009 calendar years due to the absence of more current information during the development of this submission. An updated biofuel study should be completed in 2011.

In lieu of reviewed CH_4 and N_2O emission factors for biofuels, the gasoline and diesel emission factors from the equivalent emission technology classes are applied. CO_2 emission factors are developed according to the chemical properties of the fuel.

A2.4.2.7. Pipelines (CRF Category 1.A.3.e)

Pipelines represent fossil fuel combustion engines used to power motive compressors to transport oil and natural gas products. The fuel used is primarily natural gas, but some refined petroleum such as diesel fuel is also used. Oil pipelines tend to use electric motors to operate pumping equipment.

Combustion-related GHG emissions associated with this equipment are calculated by applying Equation A2–1 to activity data and emission factors for specific fuels on a

provincial (for natural gas) and national basis.

Annex 3

Additional Methodologies

A3.1. Methodology for Fugitive Emissions from Fossil Fuel Production, Processing, Transmission, and Distribution

A detailed methodology of fugitive emission sources from solid fuel production and the oil and gas industry is covered in this annex.

As the primary source of fugitive emissions, Canada's large oil and gas industry consists of a mix of production types, including natural gas production and processing; light, medium and heavy crude oil production; oil sands mining and extraction; and synthetic oil production. Refer to Chapter 3 of this report for a detailed description of sources of fugitive emissions.

All GHG emissions from fuel combustion activities associated with fossil fuel exploration, production, processing, transmission and distribution are reported under the Energy Industries (Section 3.2.1) and Transport (Section 3.2.3) sections of Chapter 3, and their respective methodologies can be found in Annex 2 (sections A2.4.1 and A2.4.2).

A3.1.1. Solid Fuels

A3.1.1.1. Coal—Production

Fugitive emission estimates are based on the study Management of Methane Emissions from Coal Mines: Environmental, Engineering, Economic and Institutional Implications of Options, prepared by B. King in 1994 for Neill and

Gunter Ltd (King 1994). In the study, emission factors were calculated for all types of coal and coal mines. There are two types of coal mines in Canada: underground mines and surface mines. The method used by King (1994) to estimate emission rates from coal was based on a modified procedure from the Coal Industry Advisory Board. It consists of a hybrid of IPCC Tier 3- and Tier 2-type methodologies, depending on the availability of mine-specific data. Underground mining activity emissions and surface mining activity emissions are separated, with both including post-mining activity emissions. The methodologies used to estimate the emissions from both types are explained below. For further details, please consult the King (1994) study.

Underground Mines

King (1994) estimated emissions for underground mines on a mine-specific basis by summing emissions from the ventilation system, degasification systems and postmining activities. Emissions from the mine shaft ventilation system were estimated (if measured data were not available) using Equation A3–1:

Equation A3-1:

$$Y = 4.1 + (0.023 \times X)$$

where:

Y = $\frac{\text{emissions of CH}_4 \text{ per tonne of coal}}{\text{mined, m}^3 \text{ CH}_4/\text{t coal}}$

X = depth of mine, m

Emissions from post-mining activities were estimated by assuming that 60% of the remaining coal CH_4 (after removal from the mine) is emitted to the atmosphere before combustion. If the gas content of the mined coal was not known, then it was assumed that the CH_4 content was 1.5 m³/t (the global average for coals). Emissions from post-mining activities are included in the coal production emission factors.

Surface Mines

For surface mines, it was assumed that the average CH_4 content of surface-mined bituminous or sub-bituminous coals was 0.4 m 3 /t (based on U.S. measured data). Of this, it was assumed that 60% is released to the atmosphere before combustion (King 1994). For lignite, gas content values determined previously for Canada were used (Hollingshead 1990).

A significant source of emissions from surface mines is the surrounding unmined strata. An attempt was made to account for this by applying a high-wall adjustment to account for the outgassing of the surrounding unmined strata to a depth of 50 m below the mining surface. It was estimated that base emission factors for surface mining should be increased by 50% (King 1994) to account for this. The emission factors shown in Table A3–1 have been adjusted accordingly.

The emission factors for CH_4 from coal mining determined in the King (1994) study are used to estimate the CH_4 fugitive emissions from coal mines in Canada. The emission factors vary for each region and the type of mine, above or below ground.

To obtain the emissions from coal mining, Equation A3–2 is used:

Equation A3-2:

ProvincialEm issions = $\sum (EF_{i,j,k} \times Coal_{i,j,k})$

where:

the emission factor from the King EF_{i,j,k} = (1994) study for province i, coal type j and mine type k

 $\begin{array}{ccc} & & \text{the gross production data of coal} \\ \text{Coal}_{i,j,k} & = & & \text{mined for province i, coal type j and} \\ & & \text{mine type k} \end{array}$

Emissions are calculated for each province and then summed to determine the emission estimate for Canada.

A3.1.1.2. Activity Data

The activity data required are the gross mine output data for each type of coal mined in each province from Statistics Canada's *Coal and Coke Statistics* publication (#45-002, Table 2). However, the *Coal and Coke Statistics* publication was cancelled in 2002 by Statistics Canada and this information is now provided directly to Environment Canada through a memorandum of understanding. A consistent data set was used to estimate emissions from 1990 to 2001 and from 2004 to 2007. For 2002–2003, an interpolation model was developed to estimate provincial emissions based on publicly available national quantities of coal produced by mines (regions) and by coal types.

A3.1.1.3. Emission Factors

The specific emission factors by mine and coal type that were determined in the King (1994) study are listed in Table A3-1.

A3.1.2. Oil and Natural Gas

A3.1.2.1. Upstream Oil and Natural Gas Production

Fugitive emissions from the upstream oil and gas (UOG) industry are based on the study A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H₂S) Emissions by the Upstream Oil and Gas Industry (CAPP 2005a), as prepared for the Canadian Association of Petroleum Producers (CAPP) by Clearstone Engineering Ltd. A Tier 3 analysis was performed to estimate all GHG emissions from the UOG sector for the year 2000, with the exclusion of oil sands mining, extraction and upgrading. The emissions were then backcast to the years 1990 through to 1999 to develop emission estimates

Table A3–1 Fugitive Emission Factors for Coal Mining

Area	Coal Type	Mine Type	Emission Factor	Units
Nova Scotia	Bituminous	Surface	0.13	t CH ₄ /kt coal mined
Nova Scotia	Bituminous	Underground	13.79	t CH ₄ /kt coal mined
New Brunswick	Bituminous	Surface	0.13	t CH ₄ /kt coal mined
Saskatchewan	Lignite	Surface	0.06	t CH ₄ /kt coal mined
Alberta	Bituminous	Surface	0.45	t CH ₄ /kt coal mined
Alberta	Bituminous	Underground	1.76	t CH ₄ /kt coal mined
Alberta	Sub-bituminous	Surface	0.19	t CH ₄ /kt coal mined
British Columbia	Bituminous	Surface	0.58	t CH ₄ /kt coal mined
British Columbia	Bituminous	Underground	4.1	t CH ₄ /kt coal mined
Source: King (1994).				

for the industry. The UOG fugitive emissions for 1990–2000 were taken directly from the UOG study (CAPP 2005a).

UOG fugitive emissions for 2001 and onwards are projected using the UOG estimation model (CAPP 2005b) (hereafter referred to as the UOG model). The UOG model was also prepared for CAPP by Clearstone Engineering Ltd. (CAPP 2005b) and is based on information from CAPP (2005a). The UOG model is divided into the same sectors and sources as the 1990–2000 UOG inventory.

Table A3–2 lists the sectors and sources that were estimated in the UOG study (CAPP 2005a) and the allocation of these emissions according to the Common Reporting Format (CRF) category.

The methodology, emission factors and activity data used to estimate the 1990–1999 and 2001 to 2009 emissions were developed by Clearstone Engineering Ltd. and are presented in the following subsections. For further details, please consult the UOG study (CAPP 2005a) and the UOG model (CAPP 2005b).

Methodology for the 2000 Estimates

The 2000 UOG emissions estimates were developed using a bottom-up approach, beginning with individual facilities and their equipment. To fulfil this, the study drew on official data from the producing provinces, supplemented by survey information on 1500 facilities provided by oil and

Table A3-2 Allocation of UOG Inventory Emissions to CRF Fugitive Categories

Sector	Source	CRF Fugitive Category
Accidents and Equipment Failures	Surface Casing Vent Flow / Gas Migration	2.B.iii Natural Gas—Other Leakage at Industrial Plants and Power Stations
Accidents and Equipment Failures	Spills / Pipeline Ruptures	2.B.iii Natural Gas—Other Leakage at Industrial Plants and Power Stations
Conventional Oil Production	Glycol Dehydrator Off-gas	2.C.i Venting—Oil
Conventional Oil Production	Flaring	2.C.i Flaring—Oil
Conventional Oil Production	Fugitive Equipment Leaks	2.A.ii Oil—Production
Conventional Oil Production	Loading/Unloading	2.A.ii Oil—Production
Conventional Oil Production	Reported Venting	2.C.i Venting—Oil
Conventional Oil Production	Storage Losses	2.A.ii Oil—Production
Conventional Oil Production	Unreported Venting	2.C.i Venting—Oil
Oil and Gas Well Drilling	Reported Venting	2.C.ii Venting—Combined
Natural Gas Production	Glycol Dehydrator Off-gas	2.C.ii Venting—Natural Gas
Natural Gas Production	Flaring	2.C.ii Flaring—Natural Gas
Natural Gas Production	Fugitive Equipment Leaks	2.B.i Natural Gas—Production/Processing
Natural Gas Production	Reported Venting	2.C.ii Venting—Natural Gas
Natural Gas Production	Storage Losses	2.B.i Natural Gas—Production/Processing
Natural Gas Production	Unreported Venting	2.C.ii Venting—Natural Gas
Natural Gas Processing	Glycol Dehydrator Off-gas	2.C.ii Venting—Natural Gas
Natural Gas Processing	Flaring	2.C.ii Flaring—Natural Gas
Natural Gas Processing	Fugitive Equipment Leaks	2.B.i Natural Gas—Production/Processing
Natural Gas Processing	Loading/Unloading	2.B.i Natural Gas—Production/Processing
Natural Gas Processing	Formation CO2	2.C.ii Venting—Natural Gas
Natural Gas Processing	Storage Losses	2.B.i Natural Gas—Production/Processing
Natural Gas Processing	Unreported Venting	2.C.ii Venting—Natural Gas
Heavy Oil / Cold Bitumen Production	Glycol Dehydrator Off-gas	2.C.i Venting—Oil
Heavy Oil / Cold Bitumen Production	Flaring	2.C.i Flaring—Oil
Heavy Oil / Cold Bitumen Production	Fugitive Equipment Leaks	2.A.ii Oil—Production
Heavy Oil / Cold Bitumen Production	Loading/Unloading	2.A.ii Oil—Production
Heavy Oil / Cold Bitumen Production	Reported Venting	2.C.i Venting—Oil
Heavy Oil / Cold Bitumen Production	Storage Losses	2.A.ii Oil—Production
Heavy Oil / Cold Bitumen Production	Unreported Venting	2.C.i Venting—Oil
Thermal Operations	Flaring	2.C.i Flaring—Oil
Thermal Operations	Fugitive Equipment Leaks	2.A.ii Oil—Production
Thermal Operations	Loading/Unloading	2.A.ii Oil—Production
Thermal Operations	Reported Venting	2.C.i Venting—Oil
Thermal Operations	Storage Losses	2.A.ii Oil—Production
Thermal Operations	Unreported Venting	2.C.i Venting—Oil

Table A3–2 Allocation of UOG Inventory Emissions (cont'd)

Sector	Source	CRF Fugitive Category
Liquid Product Transportation	Flaring	2.C.i Flaring—Oil
Liquid Product Transportation	Fugitive Equipment Leaks	2.A.iii Oil—Transport
Liquid Product Transportation	Storage Losses	2.A.iii Oil—Transport
Liquid Product Transportation	Reported Venting	2.C.i Venting—Oil
Well Testing	Flaring	2.C.iii Flaring—Combined
Well Testing	Reported Venting	2.C.iii Venting—Combined

gas producers. The following fugitive emissions sources were estimated:

- flaring;
- formation CO₂, releases;
- venting; and
- fugitive and other unintentional releases (equipment leaks, storage and handling losses, and accidental releases).

The resulting emissions were then aggregated to determine overall emissions by facility type, activity type and geographic area. The basic methods used to estimate GHG emissions are the following:

- · emission monitoring results;
- · emission source simulation results;
- · emission factors: and
- destruction and removal efficiencies.

The following data were collected from the facilities and used to develop the 2000 inventory:

- measured volumes of natural gas taken from the process;
- · vented and flared waste gas volumes;
- fuel purchases (propane, diesel fuel, etc.);
- · fuel analyses;
- · emission monitoring results;
- process operating conditions that may be used to infer the work being done by combustion devices (gas compositions, temperatures, pressures and flows, etc.); and
- spill and inspection reports.

Other required data included the following:

- types of processes being used;
- · equipment inventories;
- · emission source control features;
- sulphur content of the fuels consumed and waste gas flared; and
- composition of the inlet and outlet streams.

The data were compiled and used to estimate the 2000 UOG fugitive emissions. Refer to the UOG study (CAPP 2005a) for further details.

Methodology for the 1990-1999 estimates

The emissions for 1990–1999 were backcast for the UOG industry at a provincial level based on the 2000 UOG data (CAPP 2005a) and annual production data, with the exception of Nova Scotia. Nova Scotia switched production in 2000 from an oil-only producing province (from 1992 to 1999) to a gas-only from 2000 onwards. Nova Scotia's fugitive emissions were extrapolated based on CAPP's 1995 UOG study data (CAPP 1999).

Refer to the UOG study (CAPP 2005a) for further details.

Methodology for the 2001-2009 estimates

Emissions for 2001 to 2009 were estimated by extrapolating the 2000 UOG emission data using activity data for each emission source in each subsector. There are 12 activity parameters for each province/territory and year; these were used to pro-rate the 2000 estimates from the UOG study for the years 2001–2009:

- · gas production;
- conventional oil (CO);
- · heavy oil (HO);
- crude bitumen (CB);
- fuel gas;
- flared gas;
- wells drilled;
- spills;
- total wells;
- CO + HO + CB;
- + HO + CB; and
- · shrinkage.

Equation A3-3 was used for pro-rating:

Equation A3-3:

 $ER_{i,j}^{k} = ER_{i,j}^{2000} \times \left(\frac{AF_{j}^{k}}{AF_{j}^{2000}}\right)$

where:

ER k source j, and year k, t/year

ER 2000 = base year (2000) emission rate for compound i and source j, t/year

AF = activity factor for source j and year k

AF = base year activity factor for source j

The activity data listed in Table A3–3 are used to calculate the 12 activity parameters given above, which are used in the estimation of the emissions for 2001 to 2009. These

data are input into the model, and the outputs are the UOG fugitive emission estimates for the specified year.

Table A3–4 contains a list of the activity factors used to estimate emissions and the dependent source category.

A3.1.2.2. Natural Gas Transmission

Methodology

Virtually all of the natural gas produced in Canada is transported from the processing plants to the gate of the local distribution systems by high-pressure pipelines. The majority of emissions are from equipment leaks and process vents along these pipelines.

Fugitive emissions for natural gas transmission are based on two documents. The first, CH₄ and VOC Emissions from the Canadian Upstream Oil and Gas Industry (CAPP 1999), was prepared by Clearstone Engineering Ltd. for CAPP in July 1999. The second source is ancillary tables provided by

Table A3–3 Source of Activity Data Required by UOG Model

Publisher	Publication	Activity Data
Statistics Canada	CANSIM Table 131-0001 Supply and disposition of natural gas, monthly (Statistics Canada 2010a)	Less field flared and waste Field disposition and usage Gathering system disposal and use Plant uses Shrinkage
	Energy Statistics Handbook (Statistics Canada 2009b)	Gross new production Heavy crude oil Light and medium crude oil Synthetic crude oil Crude bitumen
Saskatchewan Ministry of Energy and Resources	2009 Monthly Production and Disposition of Crude Oil at the Producer Level (Saskatchewan Energy and Resources 2010a) 2009–2010 Annual Report (Saskatchewan Energy and Resources 2010b)	Light and medium crude oil production Heavy crude oil production Total capable wells (Saskatchewan)
Canadian Association of Petroleum Producers (CAPP)	Statistical Handbook for Canada's Upstream Petroleum Industry (CAPP 2010)	Total wells drilled (including dry and service)
Energy Resources Conservation Board (ERCB)	ST-57 Public Safety / Field Surveillance Provincial Summary 2008 (ERCB 2010a)	Sum of blowouts (drilling, servicing and other), kicks and pipeline ruptures
	ST-59 Alberta Drilling Activity, Monthly Statistics, December 2008 (ERCB 2010b)	December capable oil and gas wells (Alberta)
British Columbia Ministry of Energy, Mines and Petroleum Resources	Oil and Gas Production and Activity in British Columbia 2010 ¹	Sum of producing oil wells and producing gas wells (British Columbia)
Manitoba Innovation, Energy and Mines	Manitoba Petroleum Statistics ²	Wells capable of producing (December) (Manitoba)
Canada–Newfoundland and Labrador Offshore Petroleum Board (CNLOPB)	Development Wells – Hibernia (CNLOPB 2010a) Development Wells – Terra Nova (CNLOPB 2010b) Development Wells – White Rose (CNLOPB 2010c)	Sum of all oil producers and gas injectors Sum of all oil producers and gas injectors Sum of all oil producers and gas injectors

^{1.} Mou C. 2010. Personal Communication (email from Mou C to Smyth S, Project Engineer, Pollutant Inventories and Reporting Division, dated 13 Oct 2010). British Columbia Ministry of Energy, Mines and Petroleum Resources.

^{2.} Legare P. 2010. Personal Communication (email from Legare P to Smyth S, Project Engineer, Pollutant Inventories and Reporting Division, dated 28 Oct 2010). Manitoba Innovation, Energy and Mines.

Table A3–4 Activity Data Used to Pro-rate Emission Sectors and Sources

Emission Sector Category	Emission Source Category	Activity Factors
Accidents / Equipment Failures	Spills, Ruptures, Blowouts	Total number of spills, ruptures and blowout
Accidents / Equipment Failures	Surface Casing Vent Flows,	Total number of capable wells
Accidents / Equipment Failures	Gas Migration	Total number of capable wells
Light/Medium Oil Production	Flaring	Flared gas volume
Light/Medium Oil Production	Fugitive Equipment Leaks	Light/medium oil production
Light/Medium Oil Production	Glycol Dehydrator Off-gas	Light/medium oil production
Light/Medium Oil Production	Loading/Unloading Losses	Light/medium oil production
Light/Medium Oil Production	Reported Venting	Light/medium oil production
Light/Medium Oil Production	Storage Losses	Light/medium oil production
Light/Medium Oil Production	Unreported Venting	Light/medium oil production
Well Drilling	Venting	Wells drilled
Gas Production	Flaring	Flared gas volume
Gas Production	Fugitive Equipment Leaks	Raw gas production
Gas Production	Glycol Dehydrator Off-gas	Raw gas production
Gas Production	Loading/Unloading Losses	Raw gas production
Gas Production	Reported Venting	Raw gas production
Gas Production	Storage Losses	Raw gas production
Gas Production	Unreported Venting	Raw gas production
Gas Processing	Flaring	Flared gas volume
Gas Processing	Fugitive Equipment Leaks	Raw gas production
Gas Processing	Glycol Dehydrator Off-gas	Raw gas production
Gas Processing	Loading/Unloading Losses	Raw gas production
Gas Processing	Formation CO ₂	Shrinkage
Gas Processing	Reported Venting	Raw gas production
Gas Processing	Storage Losses	Raw gas production
Gas Processing	Unreported Venting	Raw gas production
Heavy Oil Cold Production	Flaring	Flared gas volume
Heavy Oil Cold Production	Fugitive Equipment Leaks	Heavy oil production
Heavy Oil Cold Production	Glycol Dehydrator Off-gas	Heavy oil production
Heavy Oil Cold Production	Loading/Unloading Losses	Heavy oil production
Heavy Oil Cold Production	Reported Venting	Heavy oil production
Heavy Oil Cold Production	Storage Losses	Heavy oil production
Heavy Oil Cold Production	Unreported Venting	Heavy oil production
Well Service	Venting	Wells drilled
Well Service	Flaring	Wells drilled
Heavy Oil / Bitumen Thermal Production	Flaring	Flared gas volume
Heavy Oil / Bitumen Thermal Production	Fugitive Equipment Leaks	Heavy oil and crude bitumen production
Heavy Oil / Bitumen Thermal Production	Loading/Unloading Losses	Heavy oil and crude bitumen production
Heavy Oil / Bitumen Thermal Production	Reported Venting	Heavy oil and crude bitumen production
Heavy Oil / Bitumen Thermal Production	Storage Losses	Heavy oil and crude bitumen production
Heavy Oil / Bitumen Thermal Production	Unreported Venting	Heavy oil and crude bitumen production
Product Transportation	Flaring	Fuel gas volume
Product Transportation	Fugitive Equipment Leaks	Light/medium oil, heavy oil, and crude bitu-
•		men production
Product Transportation	Venting	Light/medium oil, heavy oil, and crude bitumen production
Product Transportation	Storage Losses	Light/medium oil, heavy oil, and crude bitumen production
Well Testing	Flaring	Wells drilled
	<i>J</i>	

Brian Ross from Clearstone Engineering Ltd. that describe the CO_2 emissions. There are no N_2O fugitive emissions from natural gas transmission. The CO_2 and CH_4 emissions for 1990–1996 are taken directly from the two sources. The CO_2 and CH_4 emissions for 1997 to 2009 are estimated using specific provincial emission factors.

Equation A3–4: is used to estimate the emissions:

Equation A3-4:

Emissions (kt) = TransmissionPipelineLength(km) \times EmissionFactor(leakageRate, kt/km)

The emissions are calculated per province, as the provinces have unique emission factors, and then summed to get the total CO_2 and CH_4 emissions for Canada. Newfoundland and Labrador, Prince Edward Island, Yukon, and Nunavut do not have natural gas transmission pipelines. However, there are natural gas gathering lines in Yukon, and those fugitive emissions are accounted for in the 1.B.2.b.ii Natural Gas Production/Processing category of the CRF table.

Emission Factors

Provincial emission factors from 1997 onward (Table A3–5) were developed based on the 1996 emissions and lengths of pipeline from CAPP (1999). No fugitive emissions were present up to and including 1998 in Nova Scotia, New Brunswick or the Northwest Territories, since natural gas transmission pipelines were not operating in these regions until 1999.

Table A3–5 Natural Gas Transmission Emission Factors for 1997–2009

Province	Emission Factors (kt/km)		
	CO ₂	CH₄	
Nova Scotia	2.40×10^{-5}	0.0032	
New Brunswick	2.40×10^{-5}	0.0032	
Quebec	7.20×10^{-5}	0.0096	
Ontario	1.60×10^{-5}	0.0022	
Manitoba	2.90×10^{-5}	0.0039	
Saskatchewan	1.50×10^{-5}	0.0021	
Alberta	2.80×10^{-5}	0.0038	
British Columbia	2.90×10^{-5}	0.0039	
Northwest Territories	2.40×10^{-5}	0.0032	

Activity Data

The activity data required to estimate the fugitive emissions for 1997 to 2009 are the length of the natural gas pipeline used for natural gas transmission for each year. These data were published annually in Natural Gas Transportation and Distribution (Statistics Canada #57-205). Statistics Canada has discontinued this publication. Pipeline lengths for 2007 and 2008 were provided by Statistics Canada¹, while pipeline lengths for 2009 were estimated. For the provinces of Quebec, Ontario, Manitoba, Saskatchewan, Alberta and British Columbia, as well as for the Northwest Territories, the 2009 pipeline length was estimated based on the average annual change in length between 1999 and 2008. The 2009 value was assumed to be the same as 2008 for New Brunswick and Nova Scotia since the natural gas transmission pipeline lengths have not changed since 2003 and 2002, respectively. Improvements to the model are being investigated. Refer to Chapter 3 for more details.

A3.1.2.3. Petroleum Refining

The refinery model is based on the study *Economic and Environmental Impacts of Removing Sulphur from Canadian Gasoline and Distillate Production* (CPPI 2004), prepared for the Canadian Petroleum Products Institute (CPPI), Natural Resources Canada (NRCan), Environment Canada and Industry Canada in 2004 by Levelton Consultants Ltd. The study surveyed the refining industry and used these data, along with data collected by the Canadian Industrial Energy End-Use Data and Analysis Centre, to develop GHG emission estimates for 1990 and 1994–2002.

There are three sections in the refinery methodology: fugitive, flare and process venting. The combustion methodology for petroleum refining is discussed in Annex 2 of the National Inventory Report.

Methodology

Fugitive Emissions

The fugitive emissions for 1991–2009 are generated using Equation A3–5:

¹ Statistics Canada. 2010. Personal communication (email from Bristow C, Manufacturing and Energy Division, Statistics Canada to Smyth S, Pollutant Inventories and Reporting Division, Environment Canada, dated 7 Dec 2010).

Equation A3-5:

 $Fugitive GHGE missions(t) = Emission Factor(t/GJ) \times \\ Refinery Annual Energy Consumption (GJ)$

The refinery annual energy consumption (in GJ) is the sum of the energy of all fuels consumed by refineries in the Report on Energy Supply–Demand in Canada (Statistics Canada #57-003-XIB), including fuels listed under producer consumption from the refined petroleum product table. The energy consumption value is the same as that in the stationary combustion model for 1.A.1.b Petroleum Refining of the CRF table.

The CO_2 and CH_4 emission factors were developed by Levelton Consultants Ltd. and presented in the refinery study (CPPI 2004). These emission factors are used to estimate the fugitive emissions for the years not included in the study: 1991–1993 and 2003 to 2009.

The emission factors are:

- CO₂: 2.78 t CO₂/GJ
- CH₄: 11.89 t CH₄/GJ

The refinery study has listed fugitive N_2O emissions for 1990 and 1994–2002 as a constant 0.1 kt N_2O /year; however, there were not enough data to develop an emission factor for them. The N_2O emissions were kept constant at 0.1 kt N_2O /year for the years 1991–1993 and 2003 to 2009. It is assumed that the reported N_2O emissions from the refinery study are a residual from combustion sources and that the majority of N_2O emissions associated with petroleum refining are correctly reported in the stationary combustion section of the inventory.

Process Emissions (Venting)

Process emissions are mainly associated with the venting of CO_2 from the production of hydrogen using natural gas. This hydrogen is used as an input in the production of refined petroleum products (RPPs). Using data provided from the refinery study for the years 1990, 1994–1998 and 2000–2002, CO_2 emissions from the production of hydrogen were correlated to refinery annual RPP production. These results were used to estimate CO_2 emissions for the years 1991–1993, 1999 and 2003 to 2009.

Flaring Emissions

Flaring emissions have been determined for CO_2 , CH_4 and N_2O using the estimates from the refinery study and RPP production by Canadian refineries. The study provided emissions for the years 1990, 1994–1998 and 2000–2002, and these emissions were correlated to refinery annual RPP production. Flaring emissions for the years 1991–1993, 1999 and 2003 to 2009 were estimated based on this correlation and known RPP production data.

Activity Data

The activity data required to estimate the fugitive emissions from refineries are listed in Table A3–6:

A3.1.2.4. Natural Gas Distribution

Methodology

Fugitive emissions from natural gas distribution are based on the Canadian Gas Association (CGA) report, 1995 Air Inventory of the Canadian Natural Gas Industry (CGA 1997) and Vented Emissions from Maintenance at Natural Gas Distribution Stations in Canada (GRI 2000). The GRI (2000) report is an update to the CGA (1997) study with more

Table A3–6 Required Refinery Activity Data and Their Source

Publisher	Publication	Activity Data
Statistics Canada	Report on Energy Supply–Demand in Canada (RESD) (Statistics Canada #57-003-XIB)	Refinery and producer consumption (by refineries annual energy consumption
Canadian Petroleum Products Institute (CPPI)	Economic and Environmental Impacts of Removing Sulphur from Canadian Gasoline and Distillate Production by Levelton Con- sultants Ltd. (CPPI 2004)	- Fugitive Emissions Table 3-2 CPPI Regional GHG Inventory—Detailed (kilotonnes) -Process Emissions Table 3-2 CPPI Regional GHG Inventory—Detailed (kilotonnes) -Flaring Emissions Appendix E— Flare Gas

accurate and better substantiated data for station vents. The emissions are estimated using activity data from Statistics Canada and the leakage rate developed from CGA (1997) and GRI (2000). This is the case for all years from 1990 to 2009. Only fugitive emissions of CH₄ occur in the distribution of natural gas. The relationship between the data and emission factors is as follows:

Equation A3-6:

Emissions (kt) = DistributionPipelineLength(km) × EmissionFactor(leakageRate,kt/km)

The fugitive emissions for natural gas distribution are estimated for each province and then summed to get the overall emissions for Canada. For the years 1990 to 2009, there were no natural gas distribution pipelines in the following provinces and territories: Newfoundland and Labrador, Prince Edward Island, Nunavut, Yukon, and Nunavut.

Emission Factors

General emission factors were developed for the distribution system based on the study data (CGA 1997; GRI 2000) and gas distribution pipeline distances from Statistics Canada. The average CH₄ leakage rate for all regions is 0.00036 kt/km.

Activity Data

The activity data required are the length of natural gas distribution pipeline per province. These data were published annually in *Natural Gas Transportation and Distribution* (Statistics Canada #57-205) but have since been discontinued. Pipeline lengths for 2007 and 2008 were provided by Statistics Canada.² Lengths for 2009 for all provinces were estimated based on the change in length between 2007 and 2008.

For New Brunswick and Nova Scotia, distribution lengths for 2000–2006 were provided by Enbridge Gas New

Brunswick³ and Heritage Gas,⁴ respectively. In the Northwest Territories, the Ikhil Pipeline began providing Inuvik with natural gas in 1999 (Quenneville 2009). Distribution lengths for 1999–2006 were backcasted based on the change in distribution length between 2007 and 2008.

Finally, the 2007 length for British Columbia provided by Statistics Canada was twice as large as the 2006 value. Statistics Canada confirmed that the data for 2006 and previous years were incorrect but were unable to provide corrected distribution lengths in time for publication. It was assumed that the 1999 value was correct and a linear trend was used to fill in 2000 to 2006 data. Improvements to the model are being investigated. Refer to Chapter 3 for more details.

A3.1.2.5. Oil Sands and Heavy Oil Upgrading Industry

The oil sands and heavy oil upgrading (OS/HOU) industry produces synthetic crude oil and other products from bitumen. Bitumen is a naturally occurring viscous mixture consisting of hydrocarbons heavier than pentane and other contaminants (e.g. sulphur compounds), which in its natural state will not flow under reservoir conditions or on the surface. Bitumen occupies the lower end of the range of heavy crude oils and is sometimes referred to as ultra-heavy crude oil. "Oil sands" is a term applied by the Government of Alberta to a particular geographical area of the province of Alberta that contains concentrations of bituminous sands as well as deposits of other heavy crude oil. Bituminous sands are an unconsolidated mixture of sand, clay, water and bitumen.

In this area, bitumen is extracted from open-pit mined oil sands or from *in situ* bitumen operations using thermal extraction techniques. The emissions from *in-situ* bitumen extraction are included in the UOG study (CAPP 2005a). Emissions from the mining, processing and upgrading of bitumen and heavy oil are taken from the report *An Inventory of GHGs, CACs, and H*₂*S Emissions by the Canadian Bitumen Industry: 1990 to 2003* (CAPP 2006), prepared by Clearstone Engineering Ltd. for CAPP.

² Statistics Canada. 2010. Personal communication (email from Bristow C, Manufacturing and Energy Division, Statistics Canada to Smyth S, Pollutant Inventories and Reporting Division, Environment Canada, dated 7 Dec 2010).

³ Enbridge Gas New Brunswick. 2010. Personal communication (email from Nicholson L, Communications Coordinator, Enbridge Gas New Brunswick to Smyth S, Pollutant Inventories and Reporting Division, Environment Canada, dated 7 Dec 2010).

⁴ Heritage Gas. 2010. Personal communication (email from Bracken J, President, Heritage Gas to Smyth S, Pollutant Inventories and Reporting Division, Environment Canada, dated 7 Dec 2010).

The bitumen report (CAPP 2006) is the basis for the 1990–2003 fugitive emissions from oil sands mining and upgrading activities.

From 2004 onwards, the emissions are estimated using the Bitumen-Oil Sands Extrapolation Model – Rev 3, created by Clearstone Engineering Ltd. for Environment Canada in 2007 (Environment Canada 2007) (hereafter referred to as the bitumen model). The bitumen model uses results from the bitumen report (CAPP 2006) as its basis, along with annual production data as reported by the Energy Resources Conservation Board (ERCB) and the National Energy Board (NEB). The methodology, model and data used are briefly discussed below. For more details, please refer to the bitumen report (CAPP 2006).

The major emission sources in the OS/HOU industry are the following:

- process emissions from the steam reforming of natural gas to produce hydrogen for upgraders;
- CH₄ present in the oil sands deposits that is released during mining, mine dewatering and ore handling activities;
- volatilization of hydrocarbons from the exposed oil sands and during transport and handling of the oil sands:
- biogenic gas formation (primarily CH₄) in some tailings ponds;
- volatilization and decomposition of residual bitumen and diluent, which carry through to the tailings ponds;
- fugitive equipment leaks, venting, flaring and storage losses at ore preparation, extraction and upgrader plants and their associated utility and cogeneration plants;

- spills and accidental releases; and
- secondary sources, such as sewage treatment facilities, landfills, onsite construction and fabrication activities, motor vehicle fleets, corporate aircraft, and boats and dredges used on the tailings ponds.

These emissions have been grouped in the source categories and process areas listed in Table A3–7.

Bitumen Report: 1990–2003 Emission Estimates

The bitumen report (CAPP 2006) is a compilation of the individual Tier 3 inventories of the facilities involved in the OS/HOU industry: Syncrude Canada Ltd. (Mildred Lake mining, extraction and upgrading facility and Aurora North mining and extraction facility); Suncor Energy (mining, extraction and upgrading facility); Husky Energy (Lloyd-minster upgrader); Consumers' Co-operative Refineries Limited (Regina upgrader); Albian Sands Energy (Muskeg River mining and extraction facility); and Shell Canada Limited (Scotford upgrader). The facility boundaries were determined to ensure that all target emissions, including those from cogeneration facilities, were included.

Where available, the bitumen report (CAPP 2006) used the emissions from the individual facility reports. These emissions were verified against inventories and data reported to Alberta Environment. When this was not possible, emissions were estimated based on available activity data and emission factor data. There were two methods for estimating emissions. The first method—the emission factor method—uses specific activity data and standard emission factors. If there were no activity data available, the emission factor ratio technique was applied. Refer directly to

Table A3-7 Emission Source Categories and Process Areas in the Bitumen Report (CAPP 2006)

Source Category	Process Area
Flaring	All
Fugitives	American Petroleum Institute (API) Separator
	Equipment Leaks
	Exposed Oil Sands
	Ponds
	Other
	Storage Tanks
Process Venting	Flue Gas Desulphurization (FGD)
	Formation CO ₂ from Acid Gas
	Hydrogen Plant
	Non-Combustion Point Sources

the bitumen report (CAPP 2006) for specific methodological discussions.

The following sources were used to estimate emissions:

- facility operator information;
- energy statistics published by the Energy Resources Conservation Board (ERCB);
- source emission monitoring results reported to Alberta Environment;
- data from company submissions to the Voluntary Challenge Registry;
- Environment Canada's National Pollutant Release Inventory (NPRI);
- environmental impact assessment files as part of recent energy development applications in the OS/HOU industry; and
- · open literature.

Consult the bitumen report (CAPP 2006) for more details.

Bitumen Model: 2004 to 2009

The bitumen model estimates GHG emissions from thermal heavy oil production and oil sands mining, extraction and upgrading in Canada. The model was developed based on the results from the bitumen report (CAPP 2006) along with publicly available activity data and facility-specific emission data to extrapolate emissions for the years 2004 to 2009. It provides the same level of disaggregation of the emissions by source category as is reported in the base inventories.

In year 2006, the Petro-Canada Fort Hills oil sands operations started reporting to the ERCB. It has yet to produce any product. In 2008 the CNRL Horizon mining, extraction and upgrading operation and OPTI-Nexen upgrader came online. Emissions from the CNRL Horizon mining, extraction and upgrading operations were estimated using various emission factors from Suncor, Syncrude and Albian's Muskeg River operations, while emissions from the OPTI-Nexen upgrader were estimated using emission factors from the Shell Scotford upgrader. These approximations are problematic in that each facility has different processes with different emissions, especially when comparing the Nexen and Scotford upgraders. The Nexen upgrader is the only facility to employ gasification technology that transforms waste product (asphaltenes) into syngas used to create steam for in-situ extraction and hydrogen for upgrading (ERCB 2010c). These approximations will be addressed when a new bitumen study is conducted in the future. Refer directly to the report on the bitumen model

(Environment Canada 2007) for specific methodological discussions.

Estimation Methodology

The bitumen model provides emission estimates for the OS/HOU industry for the years 2004 to 2009 by applying facility-specific emission factors and pro-rating factors derived from the facility base inventories (1990–2003) to appropriate publicly available activity data for the specific year. It uses Equation A3–7 to extrapolate

Equation A3–7:

where:

 ER_i

 $ER_i = EF_i \times (A_1 + A_2)$ = emissions of substance i, t/year

EF_i = emission factor for substance i A₁, A₂ = activity values applicable to the emission factor

Emission Factors

For the OS/HOU sector in Alberta and Saskatchewan, source-specific factors were developed for each facility by correlating the most recent three or four years of emission data for the facility, from the bitumen report (CAPP 2006), with available site-specific production accounting data. These emission factors can be found in the bitumen model (Environment Canada 2007)

Activity Data

Two activity data sources are used to extrapolate emissions. Alberta facilities data are extracted from ST-43: *Mineable Alberta Oil Sands, Annual Statistics for 2009* (ERCB 2010d), which is published annually. Data for Saskatchewan are taken from the National Energy Board's (NEB) *2009 Estimated Production of Canadian Crude Oil and Equivalent* (NEB 2010) table. The required data are listed in Table A3–8.

Table A3–8 Activity Data Required for the Bitumen Model

Operator	Site	Required Parameters
	Muskeg River	Bitumen Production
		Oil Sands Mined
Petro-Canada UTS	Fort Hills	Bitumen Production
		Oil Sands Mined
Shell	Scotford Upgrader	Process Gas Flared/Wasted
		Synthetic Crude Production
		Synthetic Crude Deliveries
Suncor	Tar Island	Diluent Naphtha Flared/Wasted
		Diluent Naphtha Further Processed
		Diluent Naphtha Production
		Sulphur Flared/Wasted
		Synthetic Crude Fuel/Used
		Synthetic Crude Production
		Oil Sands Mined
Syncrude	Mildred Lake	Bitumen Production
		Intermediate Hydrocarbon Production
		Oil Sands Mined
		Synthetic Crude Fuel/Used
		Synthetic Crude Production
	Aurora	Bitumen Production
		Oil Sands Mined
		Synthetic Crude Fuel/Used
CNRL	Horizon	Bitumen Production
		Oil Sands Mined
		Synthetic Crude Production
		Diluent Naphtha Further Processed
		Diluent Naphtha Production
		Sulphur Flared/Wasted
OPTI Canada Inc.	OPTI-Nexen Upgrader	Synthetic Crude Production
		Synthetic Crude Deliveries
		Process Gas Flared/Wasted
Williams Energy, Inc.	Tar Island - Williams Energy	Process Gas Flared/Wasted
		Diluent Naphtha Production
Required data from the	e NEB for Saskatchewan emission e	estimates
Crude Type	Crude Subcategory	Province
Heavy Crude	SK CONV	Saskatchewan

A3.2. Methodology for Industrial Processes

The Industrial Processes Sector covers greenhouse gas (GHG) emissions arising from non-energy-related industrial activities. Categories of activities included in this sector are Mineral Products, Chemical Industry, Metal Production, Production and Consumption of Halocarbons, SF $_6$ Use in Electric Utilities and Semiconductors, and Other and Undifferentiated Production. Each of these can be further divided into various subcategories, such as CO_2 emissions from iron and steel production and SF $_6$ emissions from magnesium casting, which have been discussed in Chapter 4. This section of Annex 3 is to describe in detail the methodologies (i.e. specific equations, activity data and emission factors) used to estimate:

- CO₂ from ammonia production;
- CO₂ from other and undifferentiated production; and
- SF₆ from electrical equipment.

A3.2.1. CO₂ Emissions from Ammonia Production

A3.2.1.1. Methodology

To estimate emissions from ammonia production, an emission factor of 1.56 t CO₂/t NH3 produced was used. The emission factor was developed in *Canada's Greenhouse Gas Emissions: Estimates for 1990* (Jaques 1992), based on the natural gas requirement for producing one tonne of

liquefied ammonia. Information on the feedstock requirement for the steam methane reforming (SMR) process was originally obtained from Industrial Chemicals (Lowenheim and Moran 1980). Table A3–9 details the derivation of the ammonia production-based emission factor (1.56 t CO_2/t NH_3).

Since the hydrogen needed for the Haber-Bosch process can be acquired from processes other than SMR, not all ammonia production involves emissions of CO₂. Therefore, it is necessary to multiply only the net CO₂-related ammonia production by the emission factor. Data on CO₂-related production used in the calculation can be either directly collected from ammonia plants or estimated nationally.

Not all of the ammonia manufacturing plants provided their 1990–2009 operational data. In order to estimate the unreported part of the CO₂-emitting ammonia production, the amount of ammonia produced using by-product hydrogen and that using hydrogen from SMR, as reported by plants, are subtracted from the national total ammonia production found in *Industrial Chemicals and Synthetic* Resins (Statistics Canada #46-002) for 1990-2007 and in Statistics Canada (2010) for 2008-2009. The total unreported production is then multiplied by the capacity share of each of the non-reporting plants to give the estimated unreported production by plant. (It should be noted here that plants using by-product hydrogen had all reported their productions and emissions; hence, the unreported part of the emissions related to the CO₂-emitting ammonia plants only.) Multiplying both reported and unreported

Table A3–9 Derivation of Ammonia Production-based Emission Factor

Basis of derivation: 1 t NH₃
Volume of natural gas required to make 1 t NH₃: 812 m³ (A)
Molar volume of natural gas at 15°C: 0.02365 m³/mol (B)

Natural Gas No. of Potential CO₂ Natura

Natural Gas Component	No. of Carbons	Potential CO ₂ Emissions per Mole of Component (g/mol)	Natural Gas Composition (% by volume)	Volume of Each Component in 812 m³ of Natural Gas (m³)	No. of Moles of Each Component in 812 m³ of Natural Gas (mol)	CO ₂ Emissions from Each Component (t)
	C	$\mathbf{D} = C \times 44 \text{ g CO}_2/$ mol	E	$\mathbf{F} = \mathbf{E} \times \mathbf{A}$	G = F / B	$H = G \times D / 1000000$
Methane (CH ₄)	1	44	92	747	31 554	1.39
Ethane (C ₂ H ₆)	2	88	3.6	29	1 235	0.11
Propane (C ₃ H ₈)	3	132	1.0	8	343	0.05
Butane (C ₄ H ₁₀)	4	176	0.3	2	103	0.02
Nitrogen	0	0	3.1	25	1 063	0.00
Resulting Emiss	ion Factor (t CO ₂ /t NH ₃)				1.56

 CO_2 -related ammonia production by the emission factor of 1.56 t CO_2 /t NH3 gives the total amount of CO_2 generated. To estimate by province the amount of CO_2 generated from the SMR process, the plant-specific estimated production and reported production are aggregated by province, based on location. Once the provincial total production is calculated, it is then multiplied by the output-based emission factor. However, for inventory purposes, the provincial CO_2 generation estimates for ammonia production are included in the Other and Undifferentiated Production category.

It should be noted that the quantity of natural gas used to produce the hydrogen that feeds the ammonia production process was also recorded by Statistics Canada with all other non-energy uses of natural gas. Therefore, to avoid double counting at the national level, the CO₂ emissions from ammonia production were subtracted from the total non-energy fossil fuel use CO₂ emissions (as reported under the Other and Undifferentiated Production category).

The estimation technique (emissions = production of ammonia \times emission factor) described in this section is one of the default methods suggested in the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/OECD/IEA 1997). However, it should be noted that the emission factor of 1.56 t CO₂/t NH3 produced is a national average value. Methodological issues for calculating CO₂ emissions from ammonia production are not addressed specifically in the *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories* (IPCC 2000).

A3.2.1.2. Data Sources

Ammonia production data are collected from facilities, whenever possible. Production data for 1990–2004 were collected through or estimated in the 2006 Cheminfo study (Cheminfo Services 2006). For 2005–2009, data are reported by companies to the Greenhouse Gas Division on a voluntary basis. *Industrial Chemicals and Synthetic Resins* (Statistics Canada #46-002) and Statistics Canada (2010) provide data on national total ammonia production.

A3.2.2. CO₂ Emissions from Other and Undifferentiated Production

A3.2.2.1. Methodology

CO₂ emissions from the non-energy use of hydrocarbons that are not reported elsewhere in the inventory are reported under the category of Other and Undifferentiated Production. These emissions primarily relate to petrochemical production activities, although there are a number of other non-energy uses of fuel in the non-ferrous mining and processing, iron and steel, and other chemical industries such as the production of carbon black. Within the petrochemical and carbon black industries, primary and secondary fossil fuels (e.g. natural gas, petroleum products, coal) are used for non-fuel purposes in the production of products. The use of these fossil fuels may involve the combustion of part of the hydrocarbon content of the fuel to produce heat for the process (i.e. via the combustion of by-products fuel gases). Examples of non-energy use of fuels included elsewhere in the inventory are coke used in iron and steel production, and carbon-based anodes used to electrically reduce alumina to aluminium in the aluminium production process. The fossil fuels can be grouped into three types: gaseous, solid and liquid. Estimations of emissions coming from each type of fuel are discussed separately in the following subsections.

Gaseous Fuels

The only gaseous fuel considered in this category is natural gas used for non-energy purposes. Although it can be used in methanol and thermal carbon black production, a big portion of it actually goes to SMR for producing the hydrogen needed in ammonia plants. To estimate CO₂ emissions, non-energy use of natural gas in each province/ territory is multiplied by an emission factor of 1522 g CO₂ emitted/m³ (Cheminfo Services 2005). Summing all the provincial/territorial emissions together gives the national estimate. At the national level, the CO₂ emissions from non-energy use of natural gas are adjusted for the CO₂ emissions associated with ammonia production. (More specifically, CO₂ from ammonia production, at the national level, is subtracted from total CO₂ from non-energy use of natural gas to avoid double counting.) It should also be noted that emissions arising from the non-energy use of natural gas to produce hydrogen in the oil refining and bitumen industries are allocated to the Energy Sector of the inventory.

Solid Fuels

Solid fuels considered in the Other and Undifferentiated Production category are

- Canadian bituminous coal;
- sub-bituminous coal;
- foreign bituminous coal;
- lignite;
- anthracite; and
- metallurgical coke.

To determine, by province, the CO₂ emissions coming from these solid fuels, fuel-, province- and year-specific emission factors (Jaques 1992; McCann 2000), shown in Table A8-7 of Annex 8, are applied to the consumption quantities reported as non-energy use. The national emission estimate for non-energy use of solid fuels is the total of all provincial/territorial emissions.

The emission factors used for estimating releases of CO_2 from the non-energy use of coal and coal products are the same as those for combustion; it is assumed that 99% of the carbon in these products will eventually be oxidized and emitted as CO_2 .

Liquid Fuels

In addition to the emissions coming from the gaseous and solid fuels mentioned above, CO_2 emissions from the non-energy use of liquid fuels, primary natural gas liquids (NGLs), oil refinery petrochemical feedstocks, petroleum coke and lubricants are also included in the category of Other and Undifferentiated Production.

To estimate these emissions at provincial/territorial levels, the quantity of non-energy use of fuel is multiplied by the corresponding emission factor, as shown in Table A8-5 of Annex 8 for petroleum coke, and in Table A3–10 and Table A3–11 for other liquid fuels. The summation of the provincial/territorial estimates gives the national emission estimate.

It should also be noted that, owing to the way in which energy statistics are currently collected in Canada, a portion of non-energy use of liquid fuels has been reported under energy use, which is accounted for in the Energy Sector.

In the case of non-energy use of NGLs, the potential emission factors that occur when all the carbon is oxidized are provided in the McCann (2000) study. The *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/OECD/IEA 1997) show a default value for the fraction of carbon stored in products when propane, butane or ethane are used as feedstock. The McCann (2000) potential emission factors are then multiplied by (1 - IPCC default fraction of carbon stored of 0.8) to give the non-energy use emission factors of the three NGLs as shown in Table A3–10

The non-energy use of petroleum products coming out of the oil refineries (i.e. petrochemical feedstocks, naphthas, lubricants, greases and other petroleum products) also results in CO₂ emissions, and is accounted for in the Other and Undifferentiated Production category. Their carbon factors (mass of carbon emitted per unit of fuel used) come from Jaques (1992). These factors are then multiplied by the molecular weight ratio of CO₂ to carbon, which is 44/12, and by (1 - fraction of carbon stored) to give the CO₂ emission factors used to estimate emissions. The default values of the fraction of carbon stored are also provided in the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC/OECD/IEA 1997). Derivations of the non-energy use emission factors are shown in Table A3–11. To estimate emissions at national and provincial/territorial levels, the volume of non-energy product used is multiplied by its corresponding emission factor.

The gross emission total for the category of Other and Undifferentiated Production is the sum of emission estimates for the non-energy use of gaseous, liquid and solid fuels. To calculate the net emission totals (i.e. the reported emission estimates) at the national level, all emissions from the non-energy use of fuel accounted for in other categories are subtracted from the gross emission totals. For instance,

Table A3–10 CO₂ Emission Factors for Natural Gas Liquids

	Fraction of Carbon Stored in Products	Emission Factors (g CO₂/L)	Sources
Propane	0.8	303	IPCC/OECD/IEA (1997); McCann (2000)
Butane	0.8	349	IPCC/OECD/IEA (1997); McCann (2000)
Ethane	0.8	197	IPCC/OECD/IEA (1997); McCann (2000)

Table A3–11 CO₂ Emission Factors for Non-Energy Petroleum Products

Non-Energy Products	Carbon Factor (g C/L)	Molecular Weight Ratio between CO₂ and Carbon	Fraction of Carbon Stored (IPCC Default)	Resulting CO ₂ Emission Factor (g CO ₂ /L)
	А	В	С	$D = A \times B \times (1 - C)$
Petrochemical Feedstocks	680	44/12	0.8	500
Naphthas	680	44/12	0.75	625
Lubricating Oils and Greases	770	44/12	0.5	1410
Petroleum Used for Other Products	790	44/12	0.5	1450

 ${\rm CO_2}$ emissions from the electrode consumption in aluminium production, from the use of natural gas for ammonia production, and from the consumption of EAF electrodes in iron and steel making are reported in other categories; hence, they are subtracted from the gross national emission of Other and Undifferentiated Production to avoid double counting. However, it should be noted that, to derive a provincial level emission, only ${\rm CO_2}$ emissions from aluminium production and iron and steel making are subtracted.

A3.2.2.2. Data Sources

The Report on Energy Supply–Demand in Canada (RESD; Statistics Canada #57-003) is the activity data source for the Other and Undifferentiated Production category. This report presents data by fuel type and area of application (i.e. energy-use versus non-energy-use applications).

A3.2.3. SF₆ Emissions from Electrical Equipment

A3.2.3.1. Methodology – Derivation of the Country-Specific Quantification Method

To quantify SF6 emissions (for 2006–2009), the Canadian electricity industry uses a method derived from the basic tier 3 IPCC life cycle equation below.

Equation A3–8:

Total Emissions = \sum Equipment Manufacturing Emissions

- $+\sum$ Equipment Installation Emissions
- + **∑** Equipment Use Emissions
- + > Equipment Decommisioning and Failure Emissions
- $+\sum$ Emissions from SF₆ Recycling and Destruction

The sections below explain in detail how the country-specific quantification method is derived from Equation A3–8.

A3.2.3.1.1. Equipment Manufacturing Emissions

Since Canadian electric utilities do not manufacture their transmission and distribution equipment, they are not responsible for the SF₆ released during the manufacturing stage. In fact, according to some utilities, electrical equipment purchased by the Canadian electricity industry is manufactured in the United States, Europe or Asia, and hence, emissions associated with manufacturing would have occurred mainly outside of Canada. As such, emissions from equipment manufacturing (i.e. the first term of Equation A3–8) are assumed to be not applicable to the electricity industry.

A3.2.3.1.2. Equipment Installation Emissions

 SF_6 equipment is delivered to utilities pre-charged with some SF_6 , and it is charged to full capacity at installation. In the Canadian electricity industry, the potential for SF_6 emissions during equipment installation is considered to be extremely rare. A vacuum hold check is typically performed prior to the installation of new equipment to ensure that the equipment is gas tight.

A3.2.3.1.3. Equipment Use Emissions

The primary source of SF_6 releases is associated with the cumulative minute releases that occur during normal equipment operation. Gas releases could potentially occur during gas handling and transfer operations, although such releases would be significantly smaller in magnitude than emissions that occur during normal operations.

Due to the SF₆ leakage that occurs during the above circumstances, utilities are required to "top up" their equipment to keep their equipment properly charged and op-

erational. By topping up equipment with SF₆ gas, utilities are able to replace the amount of gas that has escaped.

A3.2.3.1.4. Equipment Decommissioning and Failure Emissions

During the decommissioning of retired equipment, SF₆ gas must be recovered from the retired equipment prior to disposal. As SF₆ gas releases may occur from the way in which the gas is transferred out of the equipment during gas recovery, decommissioning of retired equipment becomes a potential source of SF₆ releases.

When catastrophic failures of equipment occur, a significant amount of SF_6 is leaked out of the equipment. Hence, equipment damages are a potential source of emissions.

Retired equipment and damaged equipment that cannot be repaired are sent off-site for disposal.

A3.2.3.1.5. Emissions from SF₆ Recycling

When SF_6 gas is recovered from equipment, it is filtered through a gas cart or other filtering equipment to remove moisture and impurities before it is reused. When SF_6 gas has been contaminated with air and impurities, and has a purity of less than a certain level (the acceptable level can vary between 95 and 99%, depending on utility practices), it cannot be reused and is sent for off-site purification in the U.S. There are no facilities in Canada that perform SF_6 gas purification. One of the methods utilized to purify SF_6 gas is the use of a cryogenic process to separate and remove the air/nitrogen from the SF_6 gas. The purification of SF_6 gas does not produce SF_6 emissions. Hence, emissions from SF_6 recycling are eliminated from the calculation of total emissions.

Given the reasoning above, the Canadian electricity industry will use a modified Tier 3 IPCC approach (which is country-specific) to estimate SF₆ releases. Equation A3–8 is simplified to include only emissions from equipment use and decommissioning, as shown in Equation A3–9.

Equation A3-9:

Total Utility SF_6 Emissions = \sum EquipmentUse Emissions

+ > Equipment Decommissioning and Failure Emissions

A3.2.3.2. Methodology – Quantifying Equipment Use Emissions

Emissions that occur during equipment use are a result of leakages during gas transfer and handling operations and during normal operation of the equipment. In order to keep equipment properly charged and operational, utilities must fill their equipment to replace the amount that has escaped. This amount is referred to as a "top-up."

Leakages of SF₆ are also seen during maintenance/repair activities. When equipment needs to be repaired or sent for maintenance, SF₆ gas is recovered from equipment and once equipment is repaired, it is refilled with the SF₆ gas that was recovered. There will be an additional amount needed to refill the equipment, since some gas may have escaped due to normal operations and during the transfer of the recovered gas from the equipment to gas carts (or storage cylinders) and back to the equipment again. It is this additional/incremental amount of SF₆ gas that is referred to as the "top-up."

Hence, an accurate estimate of the amount of SF_6 released is the amount used by utilities to top up their equipment during the equipment use stage, as shown in Equation A3–10.

Equation A3–10:

Equipment Use Emissions = \sum SF₆ used to top up equipment

A3.2.3.2.1. Options for Tracking SF₆ Consumed for Top-Ups

Based on Equation A3–10, utilities are able to estimate SF_6 releases from equipment use by tracking the amount of SF_6 used to top up their equipment. The following is a list of options for Canadian electric utilities to track the amount of SF_6 that is used for top-up purposes in order to quantify emissions of SF_6 from the equipment use phase. These options are listed in order of most accurate to least accurate. The most accurate method involves directly measuring the amount of gas transferred during top-ups, and the less accurate methods involve utilities relying on inventory records or purchase receipts to obtain an estimate. Each utility will have discretion over which method to use.

For all of the tracking options discussed below, it is assumed that the quantities of the SF₆ gas tracked do not

include the gas used to pressurize the new switchgear to its full capacity at time of installation. Quantities of gas used for this pressurization are typically provided by the switchgear vendor at time of installation and hence do not come out of the utility inventory (please see also A3.2.3.1.2– Equipment Installation Emissions).

Option 1: Mass Flow Meters

Mass flow meters provide the most accurate method for measuring the quantity of SF₆ consumed during each equipment top-up operation. The sum of all measured quantities during top-up operations will be used to determine the equipment use emissions.

Option 2: Weigh Scales

Utilities may choose to weigh their SF_6 cylinders to determine the quantity of SF_6 consumed for top-up operations. Weighing of cylinders can be performed every time there is an equipment top-up operation, or it can be performed on an inventory basis. When using this method, utilities should ensure that the accuracy of the weigh scale is compatible with the weight of the cylinders to be weighed. For example, utilities should use a scale accurate to ± 1 kg, instead of ± 5 kg, to weigh a 50-kg cylinder.

Option 2a: Weighing Individual Cylinders Before and After Top-Ups

Under this approach, a utility weighs each individual cylinder before and after it is used to top up or refill equipment. The difference in weight then represents the amount that was used to top up the equipment. This procedure can be represented by Equation A3–11 below.

Equation A3–11:

 SF_6 Used to topup equiment = $\sum_{k=0}^{\infty} \left(\frac{\text{Weight of Individual SF}_6 Cylinders before Top-Up}{\text{Weight of Individual SF}_6 Cylinders after Top-Up} \right)$

Option 2b: Weighing SF₆ Cylinders on an Inventory Basis

With this approach, utilities weigh all SF₆ cylinders that are placed in their maintenance inventory at the beginning of the year and the end of the year. They must also account for any purchases or additions to the inventory, weight of SF₆ cylinders returned to suppliers and the quantity of SF₆ sent off-site for recycling or destruction during the year. This method can be represented by Equation A3–12 below.

Equation A3-12:

SF₆ Used to top up equipment = Weight of SF₆ Cylinders in Maintenance Inventory_{Beginning of Year}

- Weight of SF_6 Cylinder in Maintenance Inventory_{End of Year}
- + Weight of SF₆ Cylinders Purchased/Acquired
- Weight of SF₆ Cylinders Returned to Suppliers
- Weight of SF₆ sentoff site for recycling or destruction

Option 3: Cylinder Count

In the absence of mass flow meters or weigh scales, utilities may choose to rely on information from supplier or inventory records and from purchase receipts to obtain the number and weight of SF_6 cylinders purchased for top-up purposes. The mass of SF_6 consumed can generally be calculated in two ways:

- By obtaining the number of cylinders purchased in a year from purchase records and multiplying this number by the SF_6 weight in a cylinder; or
- By tracking the number of cylinders entering and leaving the maintenance inventory during the reporting year and multiplying this number by the SF_6 weight in a cylinder.

The weight of SF₆ found in different types of cylinders should be known. Therefore, utilities can simply obtain the weight of SF₆ consumed for top-up purposes by performing a cylinder count. If more than one type of cylinder is used, utilities must ensure that the number of cylinders of each type is multiplied by the cylinder weight for that type. The products obtained for all cylinder types are then summed together to give the total SF₆ use. More details on these two options are provided in the following subsections.

Option 3a: Counting Number of Cylinders Purchased in One Year

The amount of SF_6 consumed for top-up purposes under this approach is based on purchase or inventory records of each utility or facility. From purchase records, utilities can extract the number of cylinders purchased. The assumption made is that the amount of SF_6 purchased and placed in inventory will eventually be used to replace releases from existing equipment.

When relying on inventory or purchase records, it is important to take into consideration the amount of residual gas left in the cylinders after it is used for top-ups. According to information supplied by two major SF₆ gas distribu-

tors, approximately 12% of gas is left in cylinders after they are used. This amount should be subtracted from the total amount of SF_6 found in inventory records. Equation A3–13 represents the SF_6 tracking method based on the central purchasing or inventory records.

Equation A3–13:

 $SF_6 \ Used \ to \ top up equiment = \sum \left(\begin{matrix} Weight \ of \ Individual \ SF_6 \ Cylinders \ before \ Top-Up \\ -Weight \ of \ Individual \ SF_6 \ Cylinders \ after \ Top-Up \\ \end{matrix} \right)$ where: $i \qquad = \qquad different \ types \ of \ cylinders$ $y \qquad = \qquad \% \ of \ gas \ left \ in \ cylinders \ when \ returned \ to \ suppliers$ $(Note: \ utilities \ may \ choose \ to \ directly \ weigh \ the \ residual \ gas \ in \ cylinders \ and \ calculate \ the \ residual \ gas \ in \ \% \ as \ y, \ or \ may \ use \ a \ default \ value \ of \ 12\% \ for \ y.)$

Option 3b: Tracking Cylinder Inventory Count Throughout the Year

This approach is similar to the method in Option 2b," Weighing SF₆ Cylinders on an Inventory Basis," except that utilities need only count the number of cylinders purchased and placed in inventory at the beginning of the year and at the end of the year instead of having to directly weigh these cylinders throughout the year. The count of cylinders is then multiplied by the known weight of the SF₆ cylinders.

Since utilities are not weighing their cylinders, an estimate of the amount of residual gas left in the cylinders when returned to suppliers must be estimated. Utilities may choose to weigh this amount or use the suggested 12% explained above. This methodology is represented by Equation A3–14.

Equation A3-14:

 $(C_i \text{ at beginning of year} + C_i \text{ purchased} - C_i \text{ at end of year})$ SF_6 Used for Top - Up = $\sum_{n=0}^{\infty}$ -outflows * SF₆ weight in cylinder i * (1 - y) where: different types of cylinders Ci number of cylinders of type i % of gas left in cylinders when returned to suppliers outflows = (Note: utilities may choose to directly weigh the residual gas in cylinders and calculate the residual gas in % as y, or may use a default value of 12% for y.) amount (in weight units) of SF₆ sent off-site for recycling or destruction

A3.2.3.3. Methodology – Quantifying Equipment Disposal and Failure Emissions

Equipment disposal and failure emissions include emissions from decommissioning of retired equipment and emissions that result from the rare event of catastrophic equipment failures.

In the decommissioning of retired equipment, SF_6 losses occur as gas is being recovered from the retired equipment. Emissions can be estimated by taking the difference between the nameplate capacity of the equipment and the recovered amount of SF_6 .

Equation A3-15:

Equipment decommisioning emissions = Nameplate capacity of retired equipment $- SF_{\!_{6}} \ amount \ recovered \ from \ retired \ equipment$

The value of nameplate capacity (in mass units) can be obtained from equipment specifications provided by the equipment manufacturer or from sound engineering estimates. The amount of recovered SF_6 gas is weighed.

When equipment failures or damages occur to the point where they cannot be repaired, the nameplate capacity of the equipment can provide a reasonable estimate of emissions that have taken place as a result of equipment failures (see Equation A3–16).

Equation A3-16:

Emissions from damaged equipment = Nameplatecapacity of damaged equipment

The information provided in this section (A3.2.3) is extracted from the SF₆ Emission Estimation and Reporting Protocol for Electric Utilities (Environment Canada and Canadian Electricity Association 2008), available upon request at http://www.ec.gc.ca/Publications/default. asp?lang=En&xml=5926D759-36A6-467C-AE05-077C5E-6C12A2. For further details on data uncertainty, data quality control, data verification by third party, transfer of information and data to the GHG Division, documentation and archiving, new information or data updates, and protocol reviews and amendments, please refer to the Protocol.

A3.2.3.4. Data Sources

The SF₆ emission estimates by province for 2006–2009 were provided by the Canadian Electricity Association (CEA)—which represents electricity companies across Canada, except for the province of Quebec—and Hydro Quebec (HQ).

A3.3. Methodology for the Agriculture Sector

This section of Annex 3 describes the estimation methodologies, equations, activity data, emission factors and parameters that are used to derive the GHG estimates in the Agriculture Sector, namely:

- CH₄ emissions from enteric fermentation;
- CH₄ and N₂O emissions from manure management and field burning of agricultural residues; and
- N₂O emissions from agricultural soils (direct emissions, indirect emissions and animal manure emissions on pasture, range and paddock).

The sources of animal population data required to calculate agricultural emissions of CH_4 and N_2O are presented first in Section A3.3.1. Cattle populations are then characterized in Section A3.3.2. The methods used to calculate agricultural GHG emissions are described in sections A3.3.3 to A3.3.6. Note that agricultural soils also emit and sequester CO_2 , but these sources/sinks are reported in the Land Use, Land-use Change and Forestry (LULUCF) Sector (see Annex 3.4).

A3.3.1. Animal Population Data Sources

Annual livestock population data at a provincial level were used to develop emission estimates. Livestock and poultry populations, by animal subcategory, and by province, were obtained from Statistics Canada Table A3–12 Annual populations are derived from the *Census of Agriculture*, which is conducted every five years, combined with semi-annual or quarterly surveys for important animal categories.

Annual animal populations of cattle, sheep, lamb and swine that are reported in both the *Census of Agriculture* and in semi-annual or quarterly surveys are presented as the simple mean of the different surveys. The populations of horses, goats, buffalo,⁵ llamas, alpacas and poultry are monitored every five years by the *Census of Agriculture* exclusively. Annual populations are developed by linear interpolation in order to avoid large changes in census years. Populations since the last census (2006) have been maintained constant and will be recalculated by linear interpolation after the next census. Buffalo populations were

Table A3–12 Animal Categories and Sources of Population Data

Category	Sources/Notes		
Cattle	Statistics Canada. 2010a. "Cattle Statistics, 2010." Vol. 9, no. 2. Statistics Canada Catalogue no. 23-012-XWE. http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/pub/23-012-x/23-012-x2010001-eng.pdf&t=Cattle%20Statistics (accessed Sept. 30, 2010).		
—Dairy Cattle	All cattle used in the production of milk and milk products		
—Non-dairy Cattle	All other cattle		
Buffalo, Goats, Horses, Llamas and Alpacas	Statistics Canada. 2008. Alternative Livestock on Canadian Farms: Census years 1981, 1986, 1991, 1996, 2001 and 2006 (Catalogue # 23-502-X) —linear interpolation between census years, constant since 2006.		
Mules and Asses	—Not raised for commercial purposes in Canada		
Sheep and Lambs	Statistics Canada. 2010b. "Sheep Statistics, 2010." Vol. 9, no. 2. Statistics Canada Catalogue no. 23-011-XWE. http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/pub/23-011-x/23-011-x2010001-eng.pdf&t=Sheep%20Statistics (accessed Sept. 30, 2010).		
Swine	Subcategories: Boars, Sows, Growers under 20 kg, 20 to 60 kg, and over 60 kg.		
	Statistics Canada. 2010c. "Hog Statistics, 2010." Vol. 9, no. 4. Statistics Canada Catalogue no. 23-010-XWE. http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/pub/23-010-x/23-010-x2010004-eng.pdf&t=Hog%20Statistics (accessed Sept. 30, 2010).		
Poultry	Farm data and farm operator data tables (section 6.5 of publication #95-629) (Statistics Canada [2007a])		
	Selected historical data from the Census of Agriculture, Canada and provinces: census years 1976 to 2006 (Table 2.16 and section 4.6 of Statistics Canada catalogue #95-632). (Statistics Canada [2007b]). —linear interpolation between census years, constant since 2006.		

⁵ The IPCC animal category buffalo is used; however, in Canada, it refers to North American bison (Bison bison) that are raised for meat.

not collected in 1986; thus, the buffalo population was set constant for 1990 at the 1991 level.

A3.3.2. Cattle Characterization

For beef and dairy cattle, the IPCC Tier 2 approach (IPCC 2000) was adopted to estimate CH₄ emission factors from enteric fermentation and manure management. The subcategories of provincial cattle populations collected by Statistics Canada were further dissagregated into subannual production stages to isolate and quantify the effect of specific production practices on gross energy intake and as a consequence, GHG emission. Data to describe the production environment and associated performance of classes of animals were collected from a combination of production and management practices published in scientific journals, a survey of dairy and beef production practices conducted and administered to regional and provincial beef and dairy cattle specialists across the country, and consultation with scientists at universities and federal research institutions, as well as from provincial/national associations and provincial/regional performance-recording organizations (Boadi et al. 2004b).

These data were used to create an annual cattle production model that takes into account regional and seasonal variations in production practices. The eight cattle subcategories were broken down into 38 distinct cattle production stages, 29 for non-dairy cattle and 9 for dairy cattle, observed throughout the different provinces of Canada (Table A3–13). The model characterizes cattle by physiological status, diet, age, sex, weight, growth rate, activity level and production environment.

The feeding practices for beef and dairy cattle are detailed in the next section.

A3.3.2.1. Dairy Cattle

Production and Performance

Production practices vary across the country because of differences in land values, climate, forage availability and market access. The predominant management practices for each province are reflected by the province-specific parameters entered into the IPCC Tier 2 equations.

Table A3–14 provides an example of production performance data collected for Canadian dairy cattle and incorporated in the Tier 2 model.

Currently, it is assumed that all production characteristics of the Canadian dairy herd have remained constant over the 1990–2009 time period, including the live weight of dairy cows, as data from Holstein Ontario do not indicate increases in weight over this period. As a result, dairy cows' and dairy heifers' live weights are set constant to the 2001 weight, estimated in Boadi et al. (2004b).

Milk Yield and Fat Data

Milk productivity has increased in all Canadian provinces (Table A3–15), as documented by the CanWest Dairy Herd Improvement (DHI) Services, representing more than two thirds of the Canadian dairy cow population. The trend in increased milk production is reflected in the emission factor for dairy cows.

Duration of Time in a Production Environment

It was assumed that animals that were dry during the summer months were on pasture; animals that were dry during the remainder of the year were in confinement. Replacement heifers were assumed to calve at 24 months.

Percentage of Cows Pregnant

An estimate of the percentage of cows pregnant in the herd at any given time was calculated according to Boadi et al. (2004b) using the following formula:

Percentage of cows pregnant =
$$\left(\frac{\text{gestation length}}{\text{calving interval}} \times 100\right)$$

- percentage of cows culled due to reproductive failure

Ration Digestible Energy

Digestible energy (DE) values determined by Christensen et al. (1977) for forages grown on the Prairies were used to estimate DE for Alberta, Saskatchewan and Manitoba. National Research Council values (NRC 2001) were used to estimate the DE for British Columbia and the eastern provinces. Due to limited information regarding other feed ingredients, total mixed rations for cattle were assumed to be mainly forage and grain. Overall, DE ranged from 60 to 70% depending on rations and feeding regimes. It was also assumed that lactating cows on pasture were supplemented with grain; therefore, DE values were assumed to be similar to those of rations fed in confinement (Boadi et al. 2004b).

Table A3–13 Cattle Stage Production Model

Category	Sources/Notes	Period of Year ¹	Province
Beef cows	Pregnant, confined	Jan-Apr/Oct-Dec	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Beef cows	Lactating, pasture	May-Oct	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Beef cows	Pregnant, confined	Feb-Mar	Man.
Beef cows	Lactating, pasture	Jan/Mar-Dec	Man.
Breeding bulls	Mature, confined	Jan-Apr/Nov-Dec	P.E.I./N.S./Que./Ont./Man./Sask./Alta./B.C.
Breeding bulls	Mature pasture	May-Oct	P.E.I./N.S./Que./Ont./Man./Sask./Alta./B.C.
Breeding bulls	Young confined	Mar-Apr	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Breeding bulls	Young pasture	May-Oct	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Breeding bulls	Young confined	Nov-Dec/Jan-Feb	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Beef calves	Birth to pasture	Mar	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Beef calves	Pasture	Apr-Sep	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Beef calves	Heifer replacement	Oct-Dec/Jan-Mar	P.E.I./N.S./N.B./Ont./Man./Sask./Alta./B.C.
Beef calves	Background heifers	Oct-Dec/Jan-Mar	P.E.I./N.S./N.B./Ont./Man./Sask./Alta./B.C.
Beef calves	Background steers	Oct-Dec/Jan-Mar	N.L./P.E.I./N.S./N.B./Ont./Man./Sask./Alta./B.C.
Beef calves	Finisher heifers	Oct-Dec/Jan-Mar	P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C.
Beef calves	Finisher steers	Oct-Dec/Jan-Mar	P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C.
Heifer replacement	Young, not pregant	Apr-May	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Heifer replacement	Early gestation	Jun-Sep	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Heifer replacement	Late gestation	Oct-Dec/Jan-Mar	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Finisher heifers	Feedlot, short-keeps	Apr-Jun	P.E.I./N.S./N.B./Ont./Man./Sask./Alta./B.C.
Finisher steers	Feedlot, short-keeps	Apr-Jun	P.E.I./N.S./N.B./Ont./Man./Sask./Alta./B.C.
Finisher heifers	Feedlot short keep-long finish	April-Jul	N.S./Ont./Man.
Finisher steers	Feedlot short keep-long finish	April-Jul	N.S./Ont./Man.
Background heifers	Confined	Mar-May	N.L./N.S./Ont./Man./Sask./Alta./B.C.
Background steers	Confined	Mar-May	N.L./N.S./Ont./Man./Sask./Alta./B.C.
Background heifers	Pasture	Jun-Sep	N.L./N.S./Ont./Man./Alta./B.C.
Background steers	Pasture	Jun-Sep	N.L./N.S./Ont./Man./Alta./B.C.
Finisher heifers	Feedlot, long-keeps	Oct-Dec	P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C.
Finisher steers	Feedlot, long-keeps	Oct-Dec	P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C.
Dairy cow	Lactating, confined	var²	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Dairy cow	Lactating, pasture	var	N.L./P.E.I./N.B.
Dairy cow	Lactating, confined (after pasture)	var	P.E.I.
Dairy cow	Dry, low-quality feed	var	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./B.C.
Dairy cow	Dry, high-quality feed	var	Man./Sask./Alta./B.C.
Dairy cow	Dry, pasture	var	N/L./Ont.
Dairy heifer	Confined (243 days year)	Jan-Apr/Oct-Dec	N.L./P.E.I./N.S./N.B./Que./Ont./Man./Sask./Alta./B.C
Dairy heifer	Pasture	May-Oct	N.L./P.E.I./N.B./Ont./Sask.
Dairy heifer	Confined (365 days year)	Jan-Dec	N.B./Ont./Sask.

Notes:
1. Actual period of the year could vary slightly from province to province.
2. Variable dependant on farm, province and animal cycles.

Table A3–14 Typical Characteristics of Dairy Production in 2001 in Canada¹

Animal Category/Parameters	Production Characteristics ²	Data Sources ³
Dairy Cows		
Average weight, kg	634 (51)	Okine and Mathison (1991); Kononoff et al. (2000); Petit et al. (2001)
Mature weight, kg	646 (55)	
Conception rate, %	59.2 (7.3)	
Calves		
Birth weight, kg	41 (3.3)	
Average weight, kg	186 (18.5)	
Mature weight, kg	330.5 (37.6)	
Daily weight gain, kg/day	0.7 (0.3)	
Calf crop ⁴ , %	93 (6)	
Replacement heifers		
Average weight, kg	461.6 (24.7)	
Beginning weight (1 year), kg	327.8 (31.0)	
Mature weight at calving, kg	602.1 (45.9)	
Mature weight, kg	646.1 (54.9)	
Daily weight gain, kg/day	0.77 (0.14)	
Replacement rate, %	32.3 (3.2)	Western Canadian Dairy Herd Improvement Services (2002)
Notes:		

Notes:

- Values represent typical values observed in Canada but not population-weighted averages quantitatively representating Canadian dairy production, as reported in the CRF. 1.
- The numbers in parentheses are the standard deviation.
- Values with no reference were obtained from expert consultations (see Boadi et al. 2004b). "Calf crop" is the percentage of the overwintering cows that produced a live calf. 3.
- 4.

Table A3–15 Average Milk Production from 1990 to 2009 at a Provincial Level

	Average Milk Production (kg/head/day)¹									
Year	N.L.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.
1990	23.6	24.3	24	23.9	23	24.5	25.2	25.5	26.9	26.8
1991	23.9	24.6	24.4	24.2	23.3	24.6	25.6	25.9	27.3	27.2
1992	24.8	25.6	25.3	25.2	24	26	26.6	26.9	28.3	28.2
1993	25.4	26.2	25.9	25.7	23.9	26.2	27.2	27.5	28.9	28.8
1994	26.4	27.2	26.9	26.7	23.7	26.7	28.2	28.5	30.1	30
1995	26	26.8	26.5	26.4	24.2	27	27.6	27.9	29.4	29.5
1996	26.6	27.4	27.2	27	24.6	27.3	28.7	29.2	30.6	30.3
1997	27	27.8	27.5	27.4	25	28.9	29	29.7	30.9	29.9
1998	27.4	28.3	28	27.8	26.2	28.5	29.3	30.6	31.5	30.7
1999	25.5	25.2	26.5	26.4	25.3	26.1	25	25.5	26.8	29.6
2000	28.6	25.9	27.2	27	25.9	27	27.4	27.3	30	32.1
2001	27.4	25.3	26.4	26.5	25.5	26.1	26.6	27.8	29.7	31.1
2002	26.1	25.4	26.5	27	26	26.5	26.3	28.9	30.1	32.1
2003	27.3	25.4	26.5	26.2	25.6	26.4	27.1	28.1	29.8	31.4
2004	25.6	25.6	26.4	26.3	25.6	26.7	26.9	27.9	29.1	31.1
2005	27.2	27.2	27.1	27.1	26.2	27.4	26.2	28.3	29.6	30.8
2006	27.1	27.1	26.4	26.4	26.7	27.8	26.5	29.5	31.3	31.8
2007	25.9	25.9	26	25.9	26.7	27.4	27	29.1	30.9	31.4
2008	26.5	26.5	26.3	25.4	26.6	27.3	26.4	28.8	30.2	30.3
2009	26.5	25.3	26.5	25.7	25.9	26.8	27.7	30.4	31.4	30.5
l. Data sourc	e: CanWest DH	H.								

A3.3.2.2. Non-Dairy Cattle

Production Practices and Performance

Production practices for non-dairy cattle also vary across the country due to climate, land prices and differences in traditional farming practices. The study conducted by Boadi et al. (2004b) characterized the predominant practices in the year 2001, for each province according to animal type, physiological status, age, gender, growth rate, activity level and production environment. The values presented in Table A3–16 represent typical values observed in the provinces.

Table A3–16 Typical Characteristics of Beef Production in Canada in 2001¹

Animal Category	Production Characteristics ²	Data Sources ³
Beef Cows		
Average weight, kg	603 (36)	Kopp et al. (2004)
Mature weight, kg	619 (52)	AAFRD (2001)
Milk, kg/day	7.3 (1.2)	Kopp et al. (2004)
Milk fat, %	3.6 (0.6)	Kopp et al. (2004)
Conception rate, %	93.7 (1.3)	Manitoba Agriculture and Food (2000); AAFRD (2001)
Replacement Heifers		
Average weight, kg	478 (34)	
Mature weight, kg		
Daily weight gain, kg/day	0.64 (0.14)	
Replacement rate, %	14.4 (3.1)	Manitoba Agriculture and Food (2000)
Bulls		
Yearling weight, kg	541 (18)	
Average weight, kg	940 (98)	
Mature weight, kg	951 (112)	
Daily weight gain, kg/day	1.0 (0.17)	
Calves (including Dairy Calves)		
Birth weight, kg	40 (3)	AAFRD (2001)
Wean weight, kg	258.4 (19.1)	Small and McCaughey (1999)
Age at weaning, days	215 (15)	
Daily Weight Gain, kg/day		
- Replacement heifers	0.67 (0.13)	Kopp et al. (2004)
- Backgrounder	0.98 (0.17)	
- Finisher	1.37 (0.12)	
Calf crop, %	95 (2.3)	
Heifer and Steer Stockers		
Average weight, kg	411 (47)	Kopp et al. (2004)
Mature weight, kg	620 (51)	
Daily weight gain, kg/day	0.98 (0.16)	
Proportion to feedlot, %	65 (30)	
Feedlot Animals		
Average weight, kg		
- Direct finish	540 (25)	
- Background finish	562 (64)	
Mature weight, kg	630 (46)	
Finish weight, kg	609 (28)	
Daily weight gain, kg/day	1.37 (0.12)	

Note:

^{1.} Values represent typical values observed in Canada but not population-weighted averages quantitatively representing Canadian beef production, as reported in the CRF.

^{2.} The numbers in parentheses are the standard deviations.

^{3.} Values with no reference were obtained from expert consultations compiled in Boadi et al. (2004b).

Trends in carcass weights are used as an indicator of changes in mature weight from the 2001 benchmark values established by Boadi et al. (2004b) for the specific animal subcategories presented in Table A3–17. Carcass weight data are collected by the Canadian Beef Grading Agency (CBGA) and published by Agriculture and Agri-Food Canada (AAFC 1990–2008). Carcass weights increased from 1990 to 2003 for beef cows, heifers for slaughter, steers and bulls (Figure A3–1). Since 2003 carcass weights have remained more or less stable.

In 2003, the Canadian cattle meat industry was affected by bovine spongiform encephalopathy (BSE) disease, which shut down beef exports to the United States. After 2003 the slaughtered carcass weight of bulls had evidently increased due to the culling of older bulls. To provide an estimate more representative of the on-farm herd, the average live weights of bulls was retained at their 2002

value; however, in 2009, the slaughter weight of bulls was, once again, used in the time series.

Duration of Time in a Production Environment

Replacement heifers over 15 months of age are assumed to be bred or pregnant. All replacement stock (breeding bulls, young and replacement heifers over 12 months of age) are assumed to enter the breeding herd (mature breeding bulls, and beef cows) at 24 months of age. Slaughter heifers and steers at 12 months of age either enter into feedlots or are backgrounded. Animals scheduled for slaughter may be either identified as short- or long-keeps; short-keeps go directly to the feedlot to be slaughtered after 3 to 4 months, as opposed to long-keeps that are typically backgrounded for 6 months before being sent to feedlots where they are finished after 2 to 4 months.

Figure A3-1 Non-dairy Cattle Carcass Weight, Based on Data Collected by CBGA and Published by AAFC

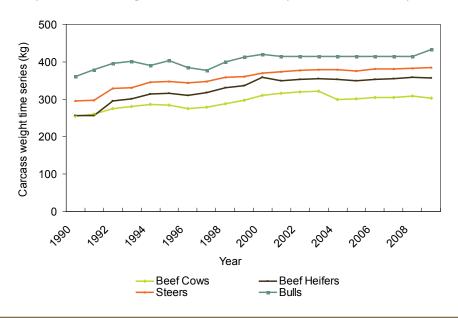


Table A3-17 Carcass Weights Used as an Indicator of Live Body Weight Change Over Time for Non-dairy Cattle

Cattle Subcategory	Trend in Live Weight Applied
Beef cows	Trends in beef cow carcass weight used as an indicator of live weight from 1990 to 2009
Heifers for slaughter	Trends in heifer carcass weight used as an indicator of live weight from 1990 to 2009
Beef heifers	Trends in beef cow carcass weight used as an indicator of live weight from 1990 to 2009
Steers	Trends in steer carcass weight used as an indicator of live weight from 1990 to 2009
Bulls	Trends in bull carcass weight used as an indicator of live weight from 1990 to 2002; 2003 to 2008 live weight are set constant to the 2002 live weight; 2009 uses carcass weight again
Calves	No change
Dairy heifers ¹	No change
Note:	

^{1.} As dairy cows' live weight did not increase over time, it was assumed that dairy heifers did not increase either.

Ration Digestible Energy

Forage DE values determined by Christensen et al. (1977) for forages grown on the Prairies were used to estimate DE for Saskatchewan and Manitoba. Values from Alberta Agriculture and Rural Development and the University of Alberta (2003) were used for Alberta, whereas NRC (2001) values were used to estimate the DE of rations for British Columbia and the eastern provinces. Overall, DE ranged from 60 to 84%, depending on rations and feeding regimes.

Calves were assumed to have a non-functional rumen or to consume very small amounts of dry feed from birth until two or three months of age. Therefore, enteric CH₄ emissions in these first few months are assumed to be zero.

A3.3.3. CH₄ Emissions from Enteric Fermentation

The release of CH_4 from enteric fermentation from all categories of livestock in Canada is calculated using Equation A3–17. CH_4 emissions from enteric fermentation for cattle are estimated using the country-specific emission factors derived from IPCC (2000) Tier 2 equations (Table A3–18). For the other animal categories, the IPCC Tier 1 methodology and default emission factors are applied (see Annex 8).

Equation A3–17: $CH_{4EF} = \sum_{T} \left(N_{T} \times EF_{(EF)T} \right)$ where: $CH_{4EF} = CH_{4} \text{ emissions from enteric fermentation for all animal categories}$ $N_{T} = \text{ animal population for the Tth animal category or subcategory in each province}$ $EF_{(EF)T} = \text{ emission factor for the Tth animal category or subcategory (Table A3–18 for cattle; for other animal categories, see Annex 8).}$

A3.3.3.1. Enteric CH₄ Emission Factors for Cattle

Emission factors were derived at the provincial level using IPCC (2000) Tier 2 equations for different subcategories of cattle (dairy cows, dairy heifers, beef cows, beef heifers, bulls, calves, heifer replacement, heifers > 1 year and

steers > 1 year) based on stages of production. Tier 2 enteric fermentation estimates require an approximation of gross energy consumed (GE) calculated according to Equation A3–18.

Equation A3-18:

$$\begin{aligned} \text{GE} = & \left[\frac{\left(\text{NEm} + \text{NEa} + \text{NEI} + \text{NEmob} + \text{NEp} \right)}{\left(\text{NEm/DE} \right)} \right] + \left[\frac{\text{NEg}}{\left(\text{NEg/DE} \right)} \right] \right] / \left[\frac{\text{DE}}{100} \right] \end{aligned}$$
 where:
$$\begin{aligned} \text{GE} &=& \text{gross energy, MJ/day} \\ \text{NEm} &=& \text{net energy required for maintenance, } \\ \text{MJ/day} \end{aligned}$$

$$\begin{aligned} \text{NE}_a &=& \text{net energy required for activity, MJ/day} \\ \text{NE}_i &=& \text{net energy required for lactation, MJ/day} \\ \text{NE}_{\text{mob}} &=& \text{net energy mobilized by weight loss } \\ \text{during lactation, MJ/day} \end{aligned}$$

$$\begin{aligned} \text{NE}_p &=& \text{net energy required for pregnancy, } \\ \text{MJ/day} \end{aligned}$$

$$\begin{aligned} \text{NE}_m / \text{DE} &=& \text{ratio of net energy available in a diet for maintenance to digestible energy} \\ \text{NEg} &=& \text{net energy required for growth, MJ/day} \\ \text{NEg/DE} &=& \text{ratio of net energy available in a diet for growth to digestible energy} \end{aligned}$$

$$\begin{aligned} \text{DE} &=& \text{digestible energy of the ration, \%} \end{aligned}$$

Different stages of production require different consumption patterns to supply the necessary energy for specific animal products and environmental conditions, and therefore have different GE values. For example, dairy cattle emissions were estimated for two production categories: dry cows and lactating cows. Lactating cattle require high consumption rates (GE) for milk production. Dry cattle may also be confined or on pasture, which also modifies their required energy intake.

The total duration of time an animal spends in a production stage can also be variable; a weighted average emission factor was calculated. Criteria used in the weighting included duration of time spent in the production category and relative percentage of the population in each stage of production. Furthermore, some net energy calculations may be modified based on a factor that takes into account the time that the energy is supplied within a production stage. For example, weight loss during lactation in dairy cattle only occurs within the first 70 days of lactation; therefore NE_{mob} is modified by a ratio of the days of weight loss over the total lactation period. For each province an emission factor (EF_(EF)) is calculated according to Equation A3–19. Provincial emission factors were weighted on the basis of the proportion of the provincial animal

population relative to the national population to calculate a national emission factor for each subcategory, for each year in the time series (Table A3–18).

Equation A3-19:

$$EF_{(EF)T} = \sum_{T} GE_{T} \times TP_{T} \times Y_{mT}$$

where:

 $EF_{(EF)}T$ = annual emission factor for defined animal population T, kg/head/year

GE_T = gross energy, MJ/day within the defined population T, kg/day

Y_{mT} = methane conversion rate at which the fraction of gross energy is converted to methane by an animal within defined population T, m³/kg

 TP_T = time (days/year) of a stage of production with defined population T

A3.3.3.2. Verification of Parameter Selection Against Canadian Research

The Enteric Fermentation source category has undergone a Tier 2 quality assurance / quality control (QA/QC) (MacDonald et al. 2011). In this analysis, a review and complilation of Canadian literature related to methane production from enteric fermentation was carried out.

Research measuring enteric fermentation in Canada indicates that the average measured methane conversion rates (Ym), are 6.6% (±1.2) of GE for non-dairy cattle outside of feedlots, 3.2% (±0.85) GE on feedlots and 6.6% (±2.1) for dairy cattle (McCaughey et al. 1997, 1999; Boadi and Wittenberg 2002; Boadi et al. 2002, 2004a; McGinn et al. 2004, 2008, 2009; Beauchemin and McGinn 2005, 2006; Chaves et al. 2006; Kebreab et al. 2006; Ominski et al. 2006; Odongo et al. 2007; Eugène et al. 2008; Van Haarlem et al. 2008; Beauchemin et al. 2009). These values tend to agree with the values published in the 2006 IPCC Guidelines for

Table A3-18 CH₄ Emission Factors for Enteric Fermentation for Cattle from 1990 to 2009

	EF _{(EF)T} - (kg CH₄/head/year)¹							
Year	Dairy Cows	Dairy Heifers ²	Bulls	Beef Cows	Beef Heifers	Heifers for Slaughter	Steers	Calves
1990	115.7	72.2	79.7	81.6	69.2	52.7	48.6	39.8
1991	116.3	72.2	82.5	82.4	69.8	52.9	48.9	39.8
1992	119.2	72.3	84.8	84.6	70.7	55.5	50.9	39.7
1993	120.3	72.2	85.4	85.6	71.1	56.6	50.5	39.7
1994	120.4	72.2	83.9	86.5	71.6	57.2	51.7	39.7
1995	121.0	72.1	86.1	86.1	71.5	57.1	51.2	39.7
1996	123.5	72.1	83.3	84.5	70.5	57.4	51.4	39.6
1997	124.1	72.1	82.2	85.0	71.3	58.3	52.2	39.7
1998	125.6	72.2	85.7	86.6	72.3	59.4	53.4	39.7
1999	120.4	72.2	87.6	87.8	73.1	60.3	54.2	39.6
2000	123.3	72.3	88.4	89.8	74.1	61.7	54.8	39.7
2001	121.9	72.3	87.8	90.4	74.6	61.2	54.7	39.8
2002	123.2	72.4	87.7	90.9	75.2	61.3	54.7	39.7
2003	122.6	72.4	87.6	91.0	75.0	60.8	54.2	39.5
2004	122.6	72.4	87.6	87.4	72.4	60.7	53.5	39.5
2005	124.2	72.4	87.6	87.5	72.1	60.8	53.5	39.5
2006	125.7	72.3	87.5	88.0	72.4	61.0	54.2	39.5
2007	125.2	72.4	87.6	88.1	72.5	61.2	54.4	39.5
2008	124.9	72.4	87.5	88.5	73.0	61.4	54.0	39.5
2009	124.6	72.4	90.0	87.8	72.6	61.2	54.1	39.6

Note:

^{1.} Enteric mission factors are derived from Boadi et al. (2004b), modified to take into account trends in milk production in dairy cattle and carcass weights for several beef cattle categories.

^{2.} Reported as kg/hd/yr; however, emissions are calculated based on time to slaughter.

National Greenhouse Gas Inventories (IPCC 2006). From the same compilation of research, the emission factor for non-dairy cattle is observed to be 57 (± 11) kg/head/year outside of feedlots and 56 kg/head/year in feedlots, and the average measured dairy cattle emission factors are 124 kg/head/year (± 29) .

Caution must be used in interpreting these values, as the large majority of studies focus on yearling heifers and steers, and the average value does not take into account the relative importance of different cattle subcategories on the average emission factor. Nonetheless, the emission factor values do agree, in general, with the emission factors used by Canada: non-dairy emission factors from 60 to 65 kg/head/year and dairy emission factors from 116 to 125 kg/head/year. In the Canadian cattle model, a Ym of 6% GE for non-dairy cattle outside of feedlots and dairy cattle and 4% GE for non-dairy cattle in feedlots is used, taken from the IPCC Good Practice Guidance (IPCC 2000).

As it currently stands, no evident bias could be identified from the review of Canadian literature results. It appears that any bias that is introduced through the use of the Y_m values from the 2000 Good Practice Guidance is compensated for by the estimate of GE for specific animal subcategories. Though no specific bias can be clearly identified in the enteric emission estimate, improvements could be made in the cattle model by developing consistency between the measured Ym values, the estimated GE and measured emission factors.

Researchers from Canada have participated in some extensive reviews and validations of the IPCC Tier 2 enteric fermentation model comparing measured and observed emissions using Canadian data. In general, model analysis indicates that the IPCC Tier 2 model tends to underestimate high-emitting animals and overestimate low-emitting animals (Ellis et al. 2007, 2009, 2010).

This literature analysis indicates that no improvements could be made to Canadian estimates by updates of single parameters. Improving on the current model would require the development and introduction of country-specific Tier 3 calculation methodology.

A3.3.3.3. Enteric CH₄ Emission Factors for Non-cattle

For non-cattle animal categories, IPCC Tier 1 emission factors are used to calculate emissions (see Annex 8).

A3.3.4. CH₄ Emissions from Manure Management

The IPCC Tier 2 methodology is used to estimate CH₄ emission factors from manure management systems (IPCC 2000). Equation A3–20 is used to calculate CH₄ emissions from manure management for all categories of livestock in Canada. Sources of animal population data are the same as those used in the enteric fermentation estimates and are listed in Table A3–12.

Equation A3-20:

$$CH_{4MM} = \sum_{T} (N_{T} \times EF_{(MM)T})$$

where:

CH_{4MM} = emissions for all animal categories
N_T = animal population for the Tth animal cat-

egory or subcategory in each province

EF_(MM)T = emission factor for the Tth animal category or subcategory calculated according to Equation A3–21

To develop Tier 2 CH_4 emission factors from manure management, country-specific inputs were required that take into account climate, livestock rations and the type of manure storage system. The following equation represents an IPCC Tier 2 estimate of CH_4 emission factors from manure management systems:

Equation A3-21:

$$EF_{(MM)T} = VS_T \times 365 \times Bo_T \times 0.67 kg \cdot m^{-3} \times \sum_{ij} MCF_{ij} \times MS_{Tij}$$
 where:

EF_{(MM)T} = annual emission factor for defined animal population T, kg/head-year

VS_T = Daily volatile solids excreted for an animal within the defined population T, kg/day

Bo_T = maximum CH₄ producing potential for manure produced by an animal within defined population T, m³/kg VS

MCF_{ij} CH₄ conversion factor for each manure management system i in climate region j

management system i in climate region j

MS_{Tjj} system distribution factor, defined as the
fraction of animal category T's manure
that is handled using manure system i

in climate region j (IPCC 2000, Equation 4.17, p. 4.34), equivalant to AWMS

The following sections outline the sources of input values for Equation A3–21: VS, DE, ASH, B_0 , MCF and MS.

A3.3.4.1. Volatile Solids (VS)

Cattle (VS)

Volatile solids (VS) are the organic fraction of total solids in manure. The VS of manure was estimated using the IPCC methodology based on the digestible energy (DE) of dietary intake, manure ash content and gross energy (GE) consumed by a given animal category, according to Equation A3–22 (IPCC 2006).

For cattle subcategories, the GE depends on the cattle production model defined for enteric fermentation (Boadi et al. 2004b), as shown in Equation A3–18. Estimates of VS were derived for each cattle subcategory at the provincial level based on regional and seasonal stages of production. Increases in milk production in dairy cattle and carcass weight in beef cattle have increased VS and, as a result, CH₄ emission factors over the time series.

Equation A3-22:

VS = GE
$$\times \left(\frac{1 \text{ kg dm}}{18.45 \text{ MJ}}\right) \times \left(1 - \frac{\text{DE}}{100}\right) \times \left(1 - \frac{\text{ASH}}{100}\right)$$

where:

VS = volatile solids excretion, kg/head/day
GE = gross energy consumed by a given animal, MJ/head/day

DE = digestible energy of the ration, % dm = dry matter, part of conversion factor from

energy to weight where 1 kg of dry matter represents 18.45 MJ of energy.

ASH = ash content of the manure, %

Non-Cattle (VS)

Volatile solids for animal categories other than cattle were calculated by Marinier et al. (2004) using a stochastic approach, taking into account the variability in the values of DMI, DE and ASH derived from expert opinion surveys. The values for DMI, DE and ASH taken from that survey were used to calculate VS for non-cattle livestock categories for each individual province. A Monte Carlo simulation of Equation A3–23 was performed using Crystal Ball® (Decisioneering 2000), resulting in a mean value of VS and a probability distribution based on the variance in expert opinion and scientific literature (Table A3–19).

Equation A3-23:

$$VS = DMI \times \left(1 - \frac{DE}{100}\right) \times \left(1 - \frac{ASH}{100}\right)$$

where:

VS = volatile solids excretion, kg/head/day

DMI = dry matter intake kg/head/day

DE = digestible energy of the ration, %

ash content of the manure, %

Table A3–19 Mean Volatile Solids in Manure of Non-cattle Animal Categories and Associated 95% Confidence Interval, Expressed as a Percentage of the Mean

Animal Category	Mean Volatile Solids (kg/head/day)	95% Confidence Interval (%)		
Sheep and Lambs ¹	0.55	31		
Mature Horses	3.2	16		
Swine	0.23	50		
Goats	0.64	41		
Poultry	0.022	20		

Note:

The following sections outline the data sources for estimating VS developed by Marinier et al. (2004).

Digestible Energy (DE) and Dry Matter Intake (DMI)

The sources of information used for DE for both dairy and non-dairy cattle are detailed in sections A3.3.2.1 and A3.3.2.2 respectively.

Broad regional differences in ration composition were identified for sheep, horses and swine. Regional differences were not considered for goats or poultry, since these data were not available.

Generally, rations for grazing livestock consist of roughage and grains. Diet digestibility will vary, with grains having a higher digestibility than roughage. The distribution of grain-based and roughage-based diets was estimated for sheep and horses in each province. A weighted estimate of DE was calculated using the known approximate DE for grains and roughage for each animal type and the distribution of grain and roughage usage by province (Table A3–20). This method does not, however, account for

Llamas and alpacas are given the same values as sheep and lambs, whereas buffalo are treated as non-dairy cattle.

Table A3–20 Approximate Digestible Energy (DE) for Selected Livestock Subcategories and Data Sources¹

Animal Category	DE (%)	Data Sources ¹
Goat	65	W. Whitmore, Manitoba Agriculture and Food
Laying Hen	80	S. Leeson, University of Guelph; D. Korver, University of Alberta
Chicken	80	S. Leeson, University of Guelph; D. Korver, University of Alberta
Turkey	78	S. Leeson, University of Guelph
Swine	87	C.F. deLange, University of Guelph
Feeding on Grain Diet		
Sheep	74	Weston (2002)
Horse	70	L. Warren, Colorado State University
Feeding on Roughage Diet		
Sheep	65	W. Whitmore, Manitoba Agriculture and Food
Horse	60	L. Warren, Colorado State University

Table A3–21 Dry Matter Intake for Selected Livestock

Animal Category	DMI (kg/head/day)	Data Sources ²
Sheep and Lamb		
Ewes	1.2-2.8	NRC (1985)
Rams	2.1-3.0	W. Whitmore, Manitoba Agriculture and Food
Replacement Lambs	1.2–1.5	NRC (1985)
Market Lambs	1.3–1.6	NRC (1985)
Horses		
Mature Idle Horses	7.4–11	NRC (1989); L. Warren, Colorado State University
Mature Working Horses	7.4–13.7	NRC (1989); L. Warren, Colorado State University
Weanlings	3.6-6.3	NRC (1989)
Swine		
Starters (5–20 kg)	0.55-0.72	C. Wagner-Riddle, University of Guelph
Growers (20–60 kg)	1.4–2.1	J. Patience, Prairie Swine Centre
Finishers (60–110 kg)	2.1–3.3 1	M. Nyachoti, University of Manitoba; C. Pomar, Agriculture and Agri-Food Canada
Sows	2.28	C. Wagner-Riddle, University of Guelph
Boars	2.0-2.5	M. Nyachoti, University of Manitoba; NRC (1998)
Goats		
Does	1.2-2.8	NRC (1981)
Bucks	1.4-2.3	CRAAQ (1999)
Kids	1.4	CRAAQ (1999)
Poultry		
Laying Hens	0.072-0.11	S. Leeson, University of Guelph; D. Korver, University of Alberta
Broilers	0.085-0.088	S. Leeson, University of Guelph; D. Korver, University of Alberta
Turkeys	0.023-0.53	Hybrid (2001)

^{1.} Calculated as 3.5% of body weight.

^{2.} Data sources: Expert consultations (Marinier et al. 2004).

Table A3–22 Manure Ash Content for Selected Livestock and Data Sources

Animal Category	ASH (%)	Data Sources
Cattle	8	IPCC (2000)
Sheep	8	IPCC (2000)
Goat	8	IPCC (2000)
Horse	4	IPCC (2000)
Laying Hen	10	Marinier et al. (2004)
Chicken	7	Marinier et al. (2004)
Turkey	5	Marinier et al. (2004)
Swine	5	Marinier et al. (2004)

additives that may increase or decrease digestibility. The DMI for non-cattle was determined through consultation with experts and published values (Table A3–21).

Manure Ash Content (ASH)

The ash content in the manure is the inorganic portion of the manure. Table A3–22 contains the values used in this inventory for ash content in volatile solid calculations and their sources.

A3.3.4.2. Maximum CH₄ Producing Potential (B₀)

The B₀ is defined as the maximum volume of CH₄ that can be produced from 1 kg of VS loaded into a manure management system and is expressed in m³/kg VS loaded. Because it is a measure of the maximum CH₄ production, B₀ is not affected by the temperature at which manure is stored (Hashimoto et al. 1981). Factors that affect B₀ include diet, age of manure, amount of foreign material and species. The B0 was determined from several studies examining anaerobic digestion (Hashimoto et al. 1981; Safely et al. 1992). Swine manure has the highest CH₄ producing potential, followed by poultry, beef cattle and dairy cattle. The values published in the *2006 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 2006) were used for all animals. For buffalo, non-dairy cattle values were used.

A3.3.4.3. Methane Conversion Factor (MCF)

The MCF describes the proportion of B_0 that is attained, depending on the storage system and climate region. The values published in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories were used for all animals.

A3.3.4.4. Manure System Distribution Factor (MS)

The MS factor is the proportional distribution of AWMS of a livestock category within a given area. There is little reliable information published on the distribution of manure management systems in Canada. A survey of experts in manure management and animal production was conducted in 2003-2004 as part of the Tier 2 study by Marinier et al. (2004); national averages of results are summarized in Table A3-23. Briefly, among the dominant animal production categories across the country, swine manure is mainly handled as liquid manure, while poultry manure is stored as solid manure. On average, dairy cattle manure storage is evenly distributed among solid and liquid forms, with roughly 20% being deposited on pastures; however in certain provinces, the proportion of dairy manure handled as liquid can be as high as 89% (British Columbia), and as low as 20% (Manitoba and Prince Edward Island). Beef cattle manure is equally distributed between solid storage and deposition on pastures, with the exception of British Columbia and Manitoba, where the majority of manure is deposited in pastures.

No specific data were available for covered lagoons and biodigesters; they are assumed to be part of other systems.

A3.3.4.5. Cattle Manure Management CH₄ Emission Factors

Cattle emission factors developed to calculate CH₄ emissions from manure management vary by animal subcategory and over time (Table A3–24). As VS was calculated based on the GE derived from the enteric fermentation cattle production model, an emission factor time series was derived for cattle to reflect i) the increase in milk productivity of dairy cows, and ii) the increase in live weight

of non-dairy cattle as explained in sections A3.3.2.1 and A3.3.2.2, respectively. Emission factors are highest from dairy cattle, reflecting their high rates of confinement, high proportions of liquid manure management systems and high dietary intake for sustained milk production. Beef cattle emission factors are lower, reflecting their lower rates of confinement, lower GE and the fact that the majority of manure is managed in a solid form with a low MCF.

A3.3.4.6. Non-Cattle Manure Management CH₄ Emission Factors

Manure management emission factors for non-cattle animals vary by animal subcategory but are constant over time Table A3–25). For the largest non-cattle animal categories—swine, sheep and poultry—growth stages for animals are taken into account. The emission factor calculations use VS derived from Marinier et al. (2004). However, emission factors were recalculated to incorporate the latest scientific information available on B_o and MCF taken

Table A3–23 Percentage of Manure Handled by Animal Waste Management Systems (AWMS) for Canada (Marinier et al. 2004), Presented as National Averages

Animal Category	Liquid Systems (NL)	Solid Storage and Drylot (NSSD)	Pasture, Range and Paddock (NPRP)	Other Systems (NO)
Non-dairy Cattle	1	48	47	4
Dairy Cattle	39	43	18	0
Poultry	10	89	1	0
Sheep and Lamb	0	32	68	0
Llamas and Alpacas1	0	32	68	0
Swine	96	3	0	1
Goat	0	42	58	0
Horse	0	26	74	0
Buffalo	1	48	47	4

Table A3-24 Emission Factors to Estimate CH₄ Emissions from Manure Management for Cattle Subcategories from 1990 to 2009¹

Year	Dairy Cows	Dairy Heifers¹	Bulls	Beef	Beef Heifers	Heifers for Slaughter	Steers	Calves
1990	24.4	18.2	3.2	3.1	2.6	1.6	1.5	1.5
1991	24.6	18.3	3.3	3.2	2.6	1.6	1.5	1.5
1992	25.3	18.4	3.4	3.2	2.6	1.7	1.5	1.5
1993	25.7	18.4	3.4	3.3	2.7	1.7	1.5	1.5
1994	25.8	18.4	3.3	3.3	2.6	1.7	1.6	1.5
1995	26.0	18.3	3.4	3.3	2.6	1.7	1.5	1.5
1996	26.5	18.3	3.3	3.2	2.6	1.7	1.5	1.5
1997	26.7	18.2	3.2	3.2	2.6	1.7	1.6	1.5
1998	26.8	18.3	3.3	3.3	2.6	1.7	1.6	1.5
1999	25.6	18.6	3.4	3.3	2.6	1.7	1.6	1.5
2000	26.4	18.8	3.4	3.4	2.7	1.8	1.6	1.5
2001	26.2	18.8	3.3	3.4	2.7	1.8	1.6	1.5
2002	26.6	18.8	3.3	3.4	2.7	1.8	1.6	1.5
2003	26.6	18.9	3.3	3.4	2.7	1.8	1.6	1.5
2004	26.6	18.8	3.3	3.3	2.6	1.8	1.6	1.5
2005	26.9	18.7	3.3	3.3	2.5	1.8	1.6	1.5
2006	27.2	18.6	3.3	3.3	2.5	1.8	1.6	1.5
2007	27.0	18.8	3.3	3.3	2.5	1.8	1.6	1.5
2008	27.0	19.0	3.3	3.3	2.6	1.8	1.6	1.5
2009	27.1	19.1	3.4	3.3	2.6	1.8	1.6	1.5
Noto								

Note:

^{1.} For dairy heifers, emission factors were estimated using B₀, MCF and manure management systems for dairy cows.

from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006). The largest emission factors are from swine, varying between 1.8 and 7.9 kg/head/year depending on growth stage, due to the high percentage of manure that is stored in liquid form. Emission factors for other minor categories tend to be low due to the large portion of manure that is either deposited on pasture, range or paddock or in solid form in pens and holding yards. Buffalo manure management emission factors are equal to the non-dairy emission factors for each individual province.

A3.3.4.7. Verification of Parameter Selection Against Canadian Research

The Manure Management source category is also a part of a Tier 2 QA/QC for the Agriculture Sector (MacDonald et al. 2011) including a review and complilation of Canadian literature related to methane production from enteric fermentation.

Table A3–25 CH₄ Emission Factors for Manure Management for Non-Cattle

Non-cattle Animal Categories	Manure Management Emission Factors EF(MM) (kg CH4/head/year)
Pigs	
Boars	6.4
Sows	6.3
Pigs < 20 kg	1.8
Pigs 20–60 kg	5.1
Pigs > 60 kg	7.9
Other Livestock	
Sheep	0.3
Lambs	0.2
Goats	0.3
Horses	2.3
Buffalo	2.3-3.2
Poultry	
Chickens	0.03
Hens	0.03
Turkeys	0.08

There not many studies that have measured emissions from manure storage and quantified the emission characteristics of manure in Canada. Observed values are highly variable, as are measurement techniques. This makes

comparison of specific Tier 2 parameters extremely difficult. When the liquid storage MCF is estimated from *in situ* measurements it varies from greater than 100% to as low as 14% in the case of swine and from 4% to 62% for dairy with no mitigation measures in place (Kaharabata et al. 1998; Massé et al. 2003, 2008; Wagner-Riddle et al., 2006; Laguë et al. 2005; Park et al. 2006, 2010; VanderZaag et al. 2009, 2010). Some studies exist in Canada on emissions from solid manures and other storage methods (composting) (Pattey et al. 2003; Xu et al. 2007; Hao et al. 2001b, 2007, 2008, 2009, 2010a, 2010b). As was the case with liquid manure systems, variability in emissions and methodology make comparisons to IPCC parameters difficult.

A recent article with a small sample from eastern Canadian farms suggested that the B0 values for swine, beef and dairy cattle were consistent with IPCC (2006) values, at 0.47-0.42, 0.21-0.19 and 0.35-0.30, respectively (Godbout et al. 2010). Quantities of volatile solids stored in the manure management systems for different animal categories tend to be consistent with quantities estimated in inventory calculations; therefore the variability observed in studies is likely linked to a combination of differences in measurement methodology, variability in manure characteristics (B₀) and in a number of physical and biochemical factors for each experimental situation that are not taken into account in the IPCC Tier 2 model. These factors include temperature, manure composition, storage dimension, storage duration and storage cleaning procedures—all of which may influence emissions from manure storage (Pattey et al. 2003; Laguë et al. 2005; Park et al. 2006, 2010; Wagner-Riddle et al. 2006; Massé et al. 2008; VanderZaag et al. 2009, 2010). Furthermore, these factors are not controlled in research, making comparisons even more difficult. More standardized factorial research focused on understanding of the relative weight of factors that influence emissions from manure storage is required in order to refine emission estimate methodology.

Based on current research results, no specific bias can be determined in manure management results, as there is no clear standard to evaluate whether IPCC parameters are appropriate for estimating emissions from manure management systems.

A3.3.5. N₂O Emissions from Manure Management

During the storage and handling of animal manure, N_2O emissions can occur. Emissions of N_2O from manure management systems result from mineralization of organic materials, nitrification and denitrification of mineral nitrogen. Three factors are required to estimate N_2O emissions from manure management systems using the IPCC Tier 1 methodology: 1) N excretion rates for various animal types and categories; 2) types of AWMS; and 3) emission factors associated with each manure management system (Equation A3–24).

Equation A3-24:

$$N_2 O_{AWMS} = \sum_{AWMS, T} (N_T \times N_{AWMS} \times N_{EX,T} \times EF_{AWMS}) \times \frac{44}{28}$$

where:

 N_2O_{AWMS} = N_2O emissions for all AWMS and provinces, excluding manure N on pasture, range and paddock, kg N_2O/yr

NT = population for the Tth animal category or subcategory in province i (see Section A3.3)

N_{AWMS} = percentage of N handled by each AWMS in province i, fraction (see Table A3–23)

NEX,T N excretion rate for the Tth animal category or subcategory (see Table A3–27 for non cattle and Table A3–26 for cattle),

kg N/head/year

EFAWMS N₂O emission factors from manure management for each specific AWMS (see

Annex 8), kg N₂O-N/kg N

44/28 coefficient converting N_2O -N to N_2O , kg

 $N_2O/kg N_2O-N$

Table A3–23 summarizes the distribution of manure management systems in Canada by animal category. Emissions of N₂O from manure on pasture, range and paddock systems are not included under Manure Management, as they are reported under the category of Agricultural Soils, Section A3.3.6.2. Animal population data are detailed in Section A3.3.1.

A3.3.5.1. Nitrogen Excretion Rates for Various Domestic Animals

Manure N excretion from cattle varies by animal subcategory, and also over the time series, due to the increase in animal weight. Annual live weights (see Section A3.3.2) were multiplied by the IPCC default N excretion rate (IPCC

2006) to produce a time series of manure N excretion rates (Table A3–26). Annual manure N excretion rates from non-cattle domestic animals, according to IPCC Tier 1 default values, vary by livestock category. Poultry have high excretion rates (Table A3–27), while horses and buffalo have the lowest excretion rates; however, on a per-head basis, buffalo are the largest N excretors in the non-cattle category. In the case of cattle, dairy cows have very high excretion factors due to the protein requirements of sustained milk production.

A3.3.5.2. Emission Factors Associated with AWMS

The type of AWMS has a significant impact on N_2O emissions. Less-aerated systems such as liquid systems generate little N_2O , whereas drylots or manure on pasture and paddock produce more. However, there is little scientific information in Canada specifying amounts of N_2O emissions associated with manure management systems. Therefore, IPCC default emission factors, as listed in Annex 8, were used to estimate emissions.

A3.3.6. N₂O Emissions from Agricultural Soils

Emissions of N_2O from agricultural soils consist of direct and indirect emissions as well as emissions from animal manure on pasture, range and paddock. The emissions of N_2O that result from anthropogenic N inputs occur through direct pathways, i.e., from the soils to which the N is added, and indirect pathways through i) volatilization of synthetic N fertilizers and manure N as NH_3 and NO_x and subsequent deposition; and ii) leaching and runoff of N.

A3.3.6.1. Direct N₂O Emissions from Soils

Direct sources of emissions from agricultural soils include synthetic fertilizers, animal manure applied as fertilizers, crop residue decomposition and soil organic matter decay as affected by tillage practices, summerfallow, irrigation, and cultivation of histosols. The N_2O emission factors for most of the direct emission sources are country-specific, and incorporate the influence of moisture regimes, land-scape position and soil texture on rates of N_2O production and emissions (Rochette et al. 2008).

Table A3–26 Time Series of Manure N Excretion Rates for Cattle (kg N/head/year)¹

Year	Dairy Cows	Beef Cows	Bulls	Heifers	Steers	Calves
1990	102.6	57.2	88.0	47.8	48.4	26.6
1991	102.6	58.3	92.6	48.0	48.7	26.5
1992	102.6	61.6	96.8	50.7	53.9	26.5
1993	102.6	62.9	98.0	51.3	54.1	26.5
1994	102.6	64.1	95.2	52.1	56.5	26.5
1995	102.6	63.7	98.8	52.1	56.9	26.5
1996	102.6	61.7	94.2	51.3	56.2	26.5
1997	102.6	62.3	92.2	52.2	56.8	26.5
1998	102.6	64.7	98.1	54.0	58.7	26.5
1999	102.6	66.4	101.3	54.9	59.1	26.5
2000	102.6	69.4	102.9	57.3	60.4	26.5
2001	102.6	70.5	101.7	57.0	61.0	26.5
2002	102.6	71.4	101.6	57.6	61.6	26.5
2003	102.6	71.7	101.9	57.6	61.9	26.5
2004	102.6	66.9	101.9	56.5	61.7	26.5
2005	102.6	67.2	101.9	56.4	61.2	26.5
2006	102.6	68.0	102.0	57.0	62.2	26.5
2007	102.6	68.2	101.9	57.4	62.3	26.5
2008	102.6	68.8	101.9	57.6	62.4	26.5
2009	102.6	67.8	106.6	57.3	62.5	26.5
Note:						

Table A3–27 Manure N Excretion Rates for Non-cattle

Animal Categories	N Excretion Rate ¹ (kg N/1000 kg/day)	Average Body Weight ² (kg)	Annual Manure N (kg N/head/year)
Swine	0.5	61	11.1
Sheep	0.42	27	4.1
Lambs	0.42	27	4.1
Goats	0.45	64	10.5
Horses	0.3	450	49.3
Llamas and Alpacas	0.42	112	17.2
Buffalo	0.32	510	59.5
Hens	0.83	1.8	0.5
Broilers	1.1	0.9	0.4
Turkeys	0.74	6.8	1.8

The approach involves determining base emission factors "EF_{BASE}" for each of 449 ecodistricts, 6 using long-term precipitation and potential evapotranspiration. The EFBASE is subsequently modified to reflect site-specific practices

and conditions. Data on long-term climate normals and topographic characteristics are used to develop an EF_{BASE} (Equation A3-25).

^{1.} N excretion rate for dairy cattle is 0.44 kg N/1000 kg/day (IPCC 2006 Table 10.10); N excretion rate for other cattle is 0.31 kg N/1000 kg/day (IPCC 2006 Table 10.10). Data source: IPCC (2006), Volume 4, Agriculture, Forestry and Other Land

^{1.} Data source: IPCC (2006).

^{2.} For Buffalo, average live weight was assumed to be the same as Steers and varied from year to year.

^{6 &}quot;Ecodistrict" represents one level within Canada's National Ecological Framework. The country includes 1027 ecodistricts, characterized by a distinctive assemblage of relief, landforms, geology, soil, vegetation, water bodies and fauna.

Equation A3-25:

$$\begin{split} EF_{\text{BASE}} &= EF_{\text{CT,P/PE} = 1} \times F_{\text{TOPO}} + EF_{\text{CT}} \times (1 - F_{\text{TOPO}}) \end{split}$$
 where:
$$\begin{split} EF_{\text{CT}} &= & \text{emission factor, estimated at actual P/} \\ &\text{PE accounting for moisture regime and} \\ &\text{topography in an ecodistrict, kg N}_2O\text{-N/} \end{split}$$

 $EF_{CT,\,P/PE} = \begin{cases} kg\ N \ (see\ Figure\ A3-2) \\ emission\ factor\ of\ 0.017\ estimated\ at\ P/\\ PE = 1,\ kg\ N_2O-N/kg\ N\ applied \end{cases}$

FTOPO = fraction of the ecodistrict area in the lower section of the toposequence
See Rochette et al. (2008)

P = long-term mean growing season

 P = long-term mean growing season precipitation from May to October in an ecodistrict, mm

PE long-term mean potential evapotranspiration from May to October, mm

Base N₂O Emission Factor (EF_{BASE})

Nitrous oxide is mostly produced during denitrification and, therefore, is greatly influenced by soil oxygen status. Accordingly, in moisture-limited conditions, N₂O emission factors have been shown to increase with increased rainfall (Dobbie et al. 1999), and climate-variable emission factors have been used in estimating soil N2O inventory (Flynn et al. 2005). Similarly, this methodology estimates emission factors including winter and spring thaw emissions at the ecodistrict level as a function of the ratio of the long-term normals of precipitation over potential evapotranspiration (P/PE) from May to October (Figure A3-2). The EF_{BASE} factors were determined using the same approach as for the determination of the IPCC Tier 1 emission factor by Bouwman (1996), i.e., EF_{BASE} = slope of the "N₂O emissions versus N fertilizer rate" relationship. The EFBASE was estimated for the three regions where field N₂O measurements are available: Quebec-Ontario; the Brown and Dark Brown soil zones of the Prairies; and the Grey and Black soil zones of the Prairies. The soil N2O emissions versus fertilizer N relationship determined for the Quebec-Ontario region has a similar slope (0.012 kg N₂O-N/kg N) (Gregorich et al. 2005) and fit ($r^2 = 0.43$) as the IPCC Tier 1 default emission factor derived by Bouwman (1996) using global data. In the Prairie region, low and variable N₂O emissions were measured across the range of N fertilizer rates (Brown and Dark Brown soils = $0.0016 \text{ kg N}_2\text{O-N/kg N}$; Grey and Black soils = $0.008 \text{ kg N}_2\text{O-N/kg N}$). These observations suggest that soil N₂O production in the Prairie region is not limited by mineral N availability but rather by the low denitrification activity under well-aerated soil conditions. Despite the uncertainty in the determination of emission factors in the Prairie region, this approach is deemed a valid option to account for the influence of moisture limitations on N_2O emissions in that region.

To account for a topographical effect, an EF_{BASE} of 0.017 kg N_2O -N/kg N applied (EF_{BASE} at P/PE = 1) was used for the lower sections of the landscapes. The fraction of the landscape to which this condition was applied differs among landscape types. Landscape segmentation data were incorporated into the calculation of the national N₂O emission estimates, based upon the observations that N₂O emissions are greater in lower sections of the landscape, where intermittently saturated soil conditions are favourable to denitrification (Corre et al. 1996, 1999; Pennock and Corre 2001; Izaurralde et al. 2004). The fraction of the landscape occupied by such lower sections (F_{TOPO}) was applied to concave portions of the landscape (i.e. lower and depressional landscape positions) where soils are likely to be saturated for significant periods of time on a regular basis and soils are imperfectly and poorly drained with mottles⁷ within 50 cm of the land surface. MacMillan and Pettapiece (2000) used digital elevation models to characterize the areal extent of upper, mid, lower and depressional portions of the landscape and their associated characteristics (slope and length). Their results were used to determine the proportional distribution of different landforms (such as lower sections) in the Soil Landscapes of Canada (SLC), which was the basis for determining the proportion of the landscape to which F_{TOPO} would be applied to derive N₂O emission estimates (Rochette et al. 2008).

N₂O Emissions during Winter and Spring Thaw

Field measurements of N_2O flux using chambers in Eastern Canada are usually made during the snow-free period (Gregorich et al. 2005). Average annual snowfall in eastern Canada varies between 1.0 and 4.5 m (Environment Canada 2002). Snowmelt water in the spring creates wet soil conditions that often stimulate N_2O production (Grant and Pattey 1999;Wagner-Riddle and Thurtel 1998). The intensity of soil freezing was also found to influence spring thaw emissions (Wagner-Riddle et al. 2007). Limiting emission estimates to the snow-free period therefore underestimates total annual N2O emissions in that region. Rochette et al. (2008) reported mean N_2O emissions during

⁷ Mottles are the product of intermittent oxidation/reduction cycles of (generally) iron present in the soil profile. Prevalence, size and colour of mottles are indicative of the soil materials being intermittently saturated for significant periods of time.

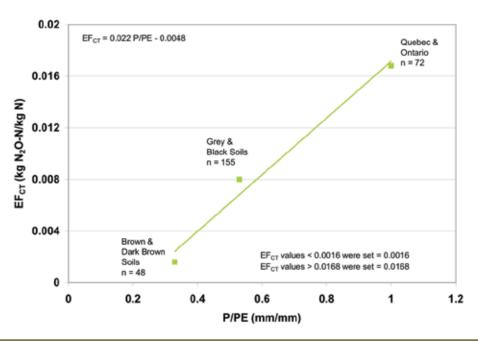


Figure A3–2 EF_{CT} as a Function of Long-term Ratio of Precipitation over Potential Evapotranspiration (P/PE) from 1971 to 2000

the winter and spring thaws in southern Ontario to be 1.2 kg N_2 O-N/ha (Wagner-Riddle et al. 2007; Wagner-Riddle and Thurtell 1998); these emissions were included in the relationship between EF_{CT} and P/PE shown in Figure A3–2.

Emissions of N_2O during spring thaw also occur on the Prairies but are usually lower than in eastern Canada (Lemke et al. 1999). Chamber flux measurements used to estimate EF_{CT} on the Prairies include spring thaw emissions, because low snow accumulation in that region allows chamber deployments during that period. Therefore, no adjustment to the EF_{CT} for the spring thaw emissions is required on the Prairies.

There are 958 weather stations in the AAFC-archived weather database.⁸ These stations (80°00'N–41°55'N, 139°08W–52°40W) across Canada (758 stations) and the United States (200 stations) were used to interpolate monthly precipitation and potential evapotranspiration from May to October from 1971 to 2000 to the ecodistrict centroids. AAFC-archived weather data were provided by the Meteorological Service of Canada, Environment Canada.

Soil Texture and N₂O Emissions

Soil texture does not directly influence N_2O production in soils. However, it correlates with several physical and chemical parameters that control N_2O production and transport in the soil profile (Arrouays et al. 2006; da Sylva and Kay 1997; Minasny et al. 1999). Consequently, soil texture-related variables often correlate with N_2O emissions from agricultural soils (Hénault et al. 1998; Corre et al. 1999; Chadwick et al. 1999; Bouwman et al. 2002; Freibauer 2003).

The impact of soil texture on N_2O emissions from agricultural soils was incorporated in the emission factor using a ratio factor (RF_{TEXTURE}) defined as the ratio of N_2O emissions on soils of a given textural class to the mean emissions from soils of all textures (Equation A3–26). A value of 0.8 was assigned to the RF_{TEXTURE-COARSE} and RF_{TEXTURE-MEDIUM} and 1.2 for RF_{TEXTURE-FINE} (Rochette et al. 2008). RF_{TEXTURE} could not be estimated in regions other than Quebec, Ontario and the Atlantic provinces. Assuming a low influence of soil texture on N_2O emissions (RF_{TEXTURE} =1) is likely justified under dry climates such as in the Prairie region, where low soil water content results in low N_2O emissions, regardless of the soil texture.

⁸ Gameda, S. Personal communication, Agriculture and Agri-Food Canada (2006).

Equation A3-26:

Manure Applied as Fertilizer

Emissions of N₂O from manure N applied as fertilizers include N₂O produced from the application of manure from drylot and solid storage, liquid and other waste management systems on agricultural soils. A country-specific Tier 2 methodology is used for estimating N₂O emissions from manure N applied as fertilizers. The methodology is based on the quantity of manure N produced by domestic animals (see Section A3.3.5) and country-specific EF_{BASE} taking into account moisture regime and topographic conditions at the ecodistrict level. Estimates of N₂O emissions from this source are calculated using Equation A3–27.

Equation A3-27:

$$N_{2}O_{\text{MAN}} = \sum_{i} \left(N_{\text{MAN, CROPS, }i} \times EF_{\text{BASE, }i} \times RF_{\text{TEXTURE, }i} \right) \times \frac{44}{28}$$
 where:
$$N_{2}O_{\text{MAN}} = \text{emissions from manure N applied to cropland as fertilizers, kg N}_{2}O/\text{year}$$

$$N_{\text{MAN,CROPS,}i} = \text{total amount of manure N applied as fertilizers to cropland in ecodistrict i, kg N/\text{year (see Equation A3-28)}}$$

$$EF_{\text{BASE,}i} = \text{a weighted average emission factor for ecodistrict i, taking into account moisture regimes and topographic conditions, kg N}_{2}O-N/\text{kg N-year}$$

$$RF_{\text{TEXTURE,}i} = \text{soil texture N}_{2}O \text{ ratio factor for ecodistrict i}$$

$$44/28 = \text{coefficient converting N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}_{2}O-N \text{ to N}_{2}O, \text{ kg N}_{2}O/N \text{ kg N}$$

Equation A3-28:

$$\begin{array}{ll} N_{_{MAN,\,CROPS,\,i}} = \sum\limits_{_{_{_{_{}}}}} \left(N_{_{_{_{}}}} \times N_{_{EX,\,T}}\right) \times \left(1-N_{_{_{_{_{}}}}RR,\,T}\right) \times \left(1-FRAC_{_{_{_{_{_{}}}}SSMS,T}}\right) \\ \\ where: \\ N_{MAN,CROPS,i} = & animal manure applied as N fertilizers on cropland in ecodistrict i, kg N/year \\ N_{T} = & population for animal category or subcategory T, heads \\ N_{EX,T} = & N excretion rate for animal category or subcategory T, kg N/head/year \\ N_{PRP,T} & fraction of manure N on pasture, range and paddock for each animal category or subcategory T in ecodistrict i (see Table A3-23) \\ FRAC_{(LossMS,T)} & fraction of total losses of manure N for each animal category or subcategory T excluding pasture, range and paddock in ecodistrict i (Table A3-17) \\ \end{array}$$

Animal population data sources and population accounts are detailed in Section A3.3.1 Annual livestock population data from each animal category or subcategory at the provincial level are disaggregated into ecodistricts based on the *Census of Agriculture*. Between two consective census years, livestock population at the ecodistict level is interpolated.

Synthetic Nitrogen Fertilizers

The method for estimating N_2O emissions from synthetic N fertilizer application on agricultural soils takes into account moisture regimes and topographic conditions. Equation A3–29 is used to estimate N_2O emissions by ecodistrict. Emission estimates at the provincial and national scales are obtained by aggregating estimates at the ecodistrict level.

Equation A3-29:

$N_{2}O_{SFN} =$	= <u>Σ</u> ($N_{FERT, i} \times EF_{BASE, i} \times RF_{TEXTURE, i} \times \frac{44}{28}$
where:		
N_2O_{SFN}	=	emissions from synthetic N fertilizers, kg N₂O/year
N _{FERT,i}	=	total synthetic fertilizer consumption in ecodistrict i, kg N/year; N _{FERT} at an ecodistrict level is estimated using Equation A3–33
EF _{BASE,i}	=	a weighted average of emission factors at ecodistrict i, taking into account moisture regimes and topographic conditions, kg N₂O-N/kg N-year
RF _{TEXTURE,i}	=	soil texture N ₂ O ratio factor for ecodistrict i
44/28	=	coefficient converting N_2O -N to N_2O , kg N_2O /kg $N2O$ -N

Table A3–28 Total N, NH₃-N and NO_x-N Losses Associated with Various Livestock and Manure Management Systems¹

Animal Categories	Manure Management Systems	FRAC _(LossMS) (%) ¹	NH ₃ -N and NO _x -N Loss (%) ^{1, 2} (FRAC _{GASM})
Dairy Cow	Liquid	40 (15–45)	40 (15–45)
	Solid Storage	35 (10–55)	25 (10–40)
	Pasture and Range		20 (5–50)
Non-dairy Cattle	Liquid	40 (15–45)	40 (15–45)
	Solid Storage	40 (20–50)	30 (20–50)
	Pasture and Range		20 (5–50)
Swine	Liquid	48 (15–60)	48 (15–60)
	Solid Storage	50 (20–70)	45 (10–65)
Sheep, Lamb, Llamas and Alpacas	Solid Storage	15 (5–20)	12 (5–20)
	Pasture and Range		
Goat and Horse	Solid Storage	15 (5–20)	12 (5–20)
	Pasture and Range		20 (5–50)
Poultry	Liquid	50	50
	Solid Storage	53 (20–80)	48 (10–60)
	Pasture and Range		20 (5–50)

Notes:

Numbers in parentheses indicate a range.
 Data sources: Hutchings et al. (2001); U.S. EPA (2004); Rotz (2004).

Data for synthetic N fertilizer sales are available by province only and were disaggregated to the ecodistrict level. The approach was based on the assumption that the amount of synthetic N fertilizers applied (NAPPLD) is equal to the difference between recommended N rates (N_{RCMD}) and manure N available for application on cropland $(N_{MAN-AV,CROPS}).$

Equation A3-30:

$N_{APPLDP, i} = N_{RCMD, i} - N_{MAN-AV, CROPS, i}$

where:

 $N_{APPLDP,i}$ total N fertilizer potentially applied in

ecodistrict i, kg N/year

recommended fertilizer application in $N_{RCMD,i}$

ecodistrict i, kg N/year

available N from manure applied to $N_{MAN-AV,CROPS,i} =$

crops in ecodistrict i, kg N/year

Based on the work of Yang et al. (2007), NRCMD was estimated as the sum of the products of each crop type and the recommended fertilizer application rate for that crop in that ecodistrict:

Equation A3-31:

$$N_{\text{RCMD, i}} = \sum_{ij} (CROPA_{ij} \times N_{\text{RECRT, i}}) \times \frac{44}{28}$$

where:

CROPA_{ii} area of crop type j in ecodistrict i, ha $N_{RECRTij}$

recommended annual N application rate for crop type j in ecodistrict i,

kg N/ha/year

 $N_{MAN-AV,CROPS}$ was calculated as the sum of all manure N from all farm animals in the ecodistrict as follows:

Equation A3-32:

$$N_{\text{MAN -AV, CROPS, i}} = N_{\text{MAN, CROPS, i}} - UNAV$$

where:

 $N_{\text{MAN,CROPS},i}$ total amount of manure N applied as

fertilizers to cropland in ecodistrict i, kg

N/year

UNAV fraction of manure N that is either in

organic form or unavailable for crops:

0.35 (Yang et al. 2007)

Because the potential amount of fertilizer needs to be reconciled with the total amount sold in the province (N_{SALES}) to estimate the actual amount applied (N_{FERT}), N_{APPLD} is adjusted in each ecodistrict as follows:

Equation A3-33:

where:

N_{FERTI} = total fertilizer N actually applied to all crops in ecodistrict i, kg

 N_{APPLDi} = total fertilizer N potentially applied to

all crops in ecodistrict i, kg

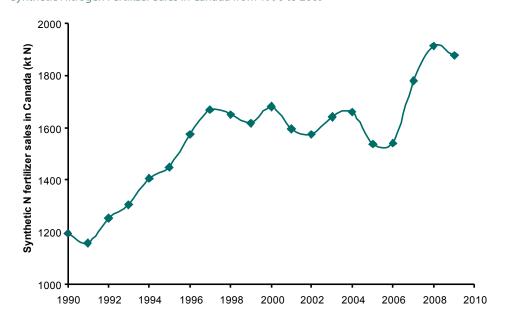
 N_{SALESp} = total amount of fertilizer N sold in

province p, kg

For years between census years (census years are 1991, 1996, 2001 and 2006), N_{RCMD} was linearly interpolated to successively estimate annual values of N_{APPLDi} and N_{FERT} at the ecodistrict level. The consumption of synthetic N fertilizers in Canada has significantly increased, from 1.2 Mt to 1.9 Mt N, since 1990 mainly because of the intensification of cropping systems (Figure A3–3).

From 1990 to 2002, Agriculture and Agri-Food Canada collected annual fertilizer N consumption data at the provincial level and published *Canadian Fertilizer Consumption, Shipments and Trade*. From 2003 to 2006, fertilizer N data were collected and published by the Canadian Fertilizer Institute. Since 2007, Statistics Canada has collected and published fertilizer sales data annually.

9 Available online at http://www.cfi.ca/Publications/Statistical_Documents.asp


Biological Nitrogen Fixation

Biological N fixation by the legume–rhizobium association, a major source of N_2O in the Revised 1996 IPCC Guidelines (IPCC/OECD/IEA 1997), is not included in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006). This decision is supported by the findings of Rochette and Janzen (2005) that there is no evidence that measurable amounts of N_2O are produced in Canadian agricultural soils during the N fixation process itself. Therefore, Canada decided to report this source as "not occurring." However, the contribution of legume N to N_2O emissions is included as a source of N_2O emissions from crop residue decomposition on agricultural soils (N_{RES}).

Crop Residue Decomposition

The transformations (nitrification and denitrification) of the N released during the decomposition of crop residues result in N_2O emissions into the atmosphere. A country-specific Tier 2 methodology similar to that for synthetic N fertilizers and manure applied as fertilizers is used to estimate N_2O emissions from crop residues, based on Equation A3–34, Equation A3–35 and Equation A3–36. The amount of N contained in the above-ground crop residues subjected to field burning is removed from the emission estimate to avoid double counting.

Figure A3–3 Synthetic Nitrogen Fertilizer Sales in Canada from 1990 to 2009

Equation A3-34:

$$\begin{array}{ll} N_{2}O_{_{RES}} = \sum\limits_{i} \left(N_{_{RES,i}} \times EF_{_{BASE,i}} \times RF_{_{TEXTURE,i}}\right) \times \frac{44}{28} \\ \\ \text{where:} \\ N_{2}O_{RES} &= & \text{emissions from crop residue decomposition, kg N}_{2}O/\text{year} \\ EF_{BASE,i} &= & \text{a weighted average of emission factors for ecodistrict i, taking into account moisture regimes and topographic conditions, kg N}_{2}O-N/kg N/\text{year} \\ 44/28 &= & \text{coefficient converting N}_{2}O-N \text{ to N}_{2}O, kg \\ N_{2}O/kg N_{2}O -N \\ \\ N_{RES,i} &= & \text{total amount of crop residue N that is returned to the cropland for ecodistrict i, exluding N losses due to residue burning, kg N/year (see Equation A3-35)} \\ \end{array}$$

trict. i

soil texture N2O ratio factor for ecodis-

Equation A3-35:

RF_{TEXTURE,i}

$N_{_{RES,\;i}}=\sum_{_{T,i}}\left[P_{_{T,i}}\right]$	×FRA	$\Lambda C_{_{RENEW,\ T,1}} \times (R_{_{AG,T}} \times N_{_{AG,T}} + R_{_{BG,T}} \times N_{_{BG,T}})]$
where:		
$FRAC_{RENEW,T,i}$	=	fraction of total area under crop T that is renewed annually in ecodistrict i
$R_{AG,T}$	=	ratio of above-ground residues to harvested yield for crop T, kg dry matter (DM)/kg
$N_{AG,T}$	=	N content of above-ground residues for crop T, kg N/kg DM
$R_{BG,T}$	=	ratio of below-ground residues to harvested yield for crop T, kg DM/kg
$N_{\text{BG,T}}$	=	N content of below-ground residues for crop T, kg N/kg DM
$P_{T,i}$	=	total production of the T th crop type that is renewed annually in ecodistrict i, kg DM/year (Equation A3–36).

Equation A3-36:

	$P_{T, i} = \frac{1}{\sum_{i=1}^{N}}$	$\frac{A_{T,i} \times Y_{T,i}}{(A_{T,i} \times Y_{T,i})} \times P_{T,p} \times (1 - H_2 O_T)$
where:		
$A_{T,i}$	=	area under crop type T in ecodistrict i, ha
$Y_{T,i}$	=	average crop yield for crop type T in ecodistrict i, kg/ha-year
H_2O_T	=	water content of crop T, kg/kg
$P_{T,p}$	=	total crop production for crop type T in province p, kg DM/year

Statistics Canada (2009) (Statistics Canada #22-002) collects and publishes annual field crop production data by province. Crops include wheat, barley, corn/maize, oats, rye, mixed grains, flax seed, canola, buckwheat, mustard

seed, sunflower seed, canary seeds, fodder corn, sugar beets, tame hay, dry peas, soybean, dry white beans, coloured beans, chick peas and lentils. The area seeded and the yield of each crop are reported at the census agricultural region and provincial levels, and yields have been allocated to Soil Landscapes of Canada (SLC) polygons through area overlays by Agriculture and Agri-Food Canada. Specific parameters for each crop type are listed in Janzen et al. (2003).

Cultivation of Organic Soils (Histosols)

Cultivation of organic soil (histosols) for annual crop production produces N_2O . The IPCC Tier 1 methodology is used to estimate N_2O emissions from cultivated organic soils (Equation A3–37).

Equation A3-37:

	$N_{2}O_{H}$	$= \sum_{i} (A_{OS,i} \times EF_{HIST}) \times \frac{44}{28}$
where:		
N_2O_H	=	N ₂ O emissions from cultivated histosols, kg N ₂ O-N/year
Aos,i	=	total area of cultivated organic soils in province i, ha
EF _{HIST}	=	IPCC default emission factor for mid-latitude organic soils, 8.0 kg N₂O-N/ha/year (IPCC 2000)
44/28	=	coefficient converting N_2O -N to N_2O , kg N_2O /kg N_2O -N

Areas of cultivated histosols at a provincial level are not collected as part of the *Census of Agriculture*. Consultations with numerous soil and crop specialists across Canada indicate that the total area of cultivated organic soils from 1990 to 2009 in Canada was 16 kha (Liang et al. 2004).

Change in N₂O Emissions from Adoption of No-Till and Reduced Tillage

This category is specific to Canada and does not derive from additional N inputs such as fertilizer, manure and crop residue, but rather is implemented as modifications to EF_{BASE} due to the switch from conventional to conservation tillage practices – namely no-tillage (NT) and reduced tillage (RT).

Field studies in Quebec and Ontario showed that NT practices increased N_2O emissions, whereas on the Prairies the opposite was observed (Gregorich et al. 2005). To quantify the impact of tillage practices on N_2O , a tillage ratio factor (F_{TILL}) defined as the ratio of mean N_2O fluxes on NT or RT

to mean N_2O fluxes on IT (N_2O_{NT}/N_2O_{IT}), is used as follows (Rochette et al. 2008):

Equation A3-38:

$$\begin{split} N_{_{2}}O_{_{TILL}} &= \sum_{_{i}} \left[\left(N_{_{FERT,\ i}} + N_{_{MAN,\ CROPS,\ i}} + N_{_{RES,\ i}} \right) \right. \\ &\times \left(EF_{_{BASE,\ i}} \times FRAC_{_{NT-RT,\ i}} \times \left(F_{_{TILL}} - 1 \right) \right) \right] \times \frac{44}{28} \end{split}$$

where:

44/28

 N_2O_{TILL} = Change in N_2O emissions resulting from the adoption of NT and RT, kg N_2O /year

 $N_{FERT,i}$ = total synthetic fertilizer N consumption

in ecodistrict i, kg N/year

N_{MAN,CROPS,i} = total amount of manure N applied as fertilizers to cropland in ecodistrict i, kg

N/year

N_{RES,i} = total amount of crop residue N that is returned to the cropland for ecodistrict

i, kg N/year

 $\mathsf{EF}_{\mathsf{BASE},\mathsf{i}} = \mathsf{a}$ weighted average emission factor

for ecodistrict i, taking into account moisture regimes and topographic conditions, kg N₂O-N/kg N-year

 $FRAC_{NT-RT,i}$ = fraction of cropland on NT and RT in

ecodistrict i

 F_{TILL} = a ratio factor adjusting EF_{BASE} due to the adoption of NT and RT: F_{TILL} = 1.1 in eastern Canada; F_{TILL} = 0.8 on the

Prairies (Rochette et al. 2008) coefficient converting N_2O-N to N_2O , kg

 $N_2O/kg N_2O-N$

The fraction of cropland under NT and RT (FRAC_{NT-RT}) for each ecodistrict was derived from the *Census of Agriculture* and is identical to that used in the LULUCF Cropland Remaining Cropland category for NT and RT practices (see Section 3 – Cropland in Annex A3.4). These data are published at the census agricultural region, census division and provincial and national levels. Annual FRAC_{NT-RT} between two consecutive census years is adjusted through interpolation.

N₂O Emissions Resulting from Summerfallow

Summerfallowing is a farming practice typically used in the Prairie region to conserve soil moisture by leaving the soil unseeded for an entire growing season in a crop rotation. During the fallow year, no fertilizer or manure is applied. Several factors may stimulate N_2O emissions relative to a cropped situation, such as higher soil water content, temperature and available carbon and N. Field studies have shown that N_2O emissions in fallow fields are similar to emissions from continuously cropped fields

(Rochette et al. 2008). In order to account for these emissions not captured by the default IPCC input-driven approach, the following country-specific method is used to estimate the effect of summerfallow on N_2O emissions. During a crop year, direct N_2O emissions from a given field are summarized as follows:

Equation A3-39:

$N_2O_{CROP} = N_2O_{BACK} + N_2O_{SFN} + N_2O_{MAN} + N_2O_{RES}$

where:

 N_2O_{CROP} = emissions from a cropped rotation, kg

N₂O/year

 N_2O_{SFN} = emissions from synthetic N fertilizers,

kg N₂O/year

 N_2O_{MAN} = emissions from animal manure applied

as fertilizers, kg N₂O/year

 N_2O_{RES} = emissions from crop residue decompo-

sition, kg N₂O/year

 N_2O_{BACK} = the background soil N2O emissions that are not due to crop residue-N, fertilizer-N or manure-N additions

In the absence of external N inputs, N_2O emissions during the fallow year (N_2O_{FALLOW}) can be seen as consisting of 1) background emissions that would have occurred regardless of fallow (N_2O_{BACK}); and 2) emissions due to the modifications to the soil environment by the practice of summerfallow ($N_2O_{FALLOW-FFFECT}$):

Equation A3-40:

$N_2O_{FALLOW} = N_2O_{BACK} + N_2O_{FALLOW-EFFECT}$

Since N_2O emissions are estimated to be equal during fallow and cropped years ($N_2O_{CROP} = N_2O_{FALLOW}$) and assuming that N_2O_{BACK} is the same in cropped and fallow situations, $N_2O_{FALLOW-EFFECT}$ can be empirically estimated as follows:

Equation A3-41:

$$N_2O_{SFN} + N_2O_{MAN} + N_2O_{RES} = N_2O_{FALLOW-EFFECT}$$

The N_2O emissions due to the practice of summerfallow are therefore calculated for each ecodistrict by applying emissions from N inputs to annual crops (crop residues, fertilizers and manure) to the area of that ecodistrict under summerfallow:

Equation A3-42:

$$\begin{split} N_{_{2}}O_{_{FALLOW}} &= \sum_{_{i}} \left[(N_{_{2}}O_{_{SFN,i}} + N_{_{2}}O_{_{RES,i}} + N_{_{2}}O_{_{MAN,i}}) \times FRAC_{_{FALLOW,\,\,i}} \right] \\ where: \\ N_{_{2}}O_{_{FALLOW}} &= & emissions due to the effect of summer-fallow, kg N_{_{2}}O-N/year \\ N_{_{2}}O_{_{SFN,i}} &= & emissions from synthetic N fertilization in ecodistrict i, kg N_{_{2}}O-N/year \\ N_{_{2}}O_{_{RES,i}} &= & emissions from crop residue decomposition in ecodistrict i, kg N_{_{2}}O-N/year \\ N_{_{2}}O_{_{MAN,i}} &= & emissions from animal manure applied as fertilizers to cropland in ecodistrict i, kg N_{_{2}}O-N/year \\ FRAC_{_{FALLOW,i}} &= & fraction of cropland in ecodistrict i that is under summerfallow \\ \end{split}$$

Estimates of N_2O_{SFN} , N_2O_{RES} and N_2O_{MAN} at an ecodistrict level are those derived from synthetic N fertilizers, manure N applied as fertilizers and crop residue N. The fraction, FRAC_{FALLOW}, is derived from the *Census of Agriculture* for each ecodistrict and is identical to that used in the LULUCF Cropland Remaining Cropland category for the summerfallow practice (see Section 3 – Cropland in Annex A3.4). Annual FRAC_{FALLOW} between two consecutive census years is adjusted through interpolation.

N₂O Emissions from Irrigation

Higher soil water content under irrigation increases N₂O emissions by increasing biological activity and reducing soil aeration (Jambert et al. 1997). Accordingly, the highest N₂O emissions from agricultural soils in the northwestern United States (Liebig et al. 2005) and western Canada (Hao et al. 2001a) were observed on irrigated cropland, followed by non-irrigated cropland and rangeland. Field studies directly comparing N₂O emissions under irrigated and non-irrigated conditions are lacking in Canada. Therefore, an approach was used based on the assumptions that 1) irrigation water stimulates N₂O production in a way similar to rainfall; 2) irrigation is applied to eliminate any moisture deficit such that "precipitation + irrigation water = potential evapotranspiration;" and 3) the effect of irrigation on N₂O emissions is in addition to those of the non-irrigated area within an ecodistrict. Consequently, the effect of irrigation on N₂O emissions from agricultural soils was accounted for using an EFBASE estimated at a P/PE = 1 ($EF_{BASE} = 0.017 N_2O-N/kg N$) for the irrigated areas of an ecodistrict:

Equation A3-43:

$$\begin{array}{lll} N_{2}O_{_{BBN}} = \sum\limits_{i} \left[(N_{_{FERT,\,i}} + N_{_{MAN,\,CROPS,\,i}} + N_{_{RES,\,i}}) \times (0.017 \text{-} EF_{_{BASE,\,i}}) \times FRAC_{_{BRL,\,i}} \right] \times \frac{44}{28} \\ \\ \text{where:} \\ N_{2}O_{IRRI} &=& \text{emissions from irrigation, kg N}_{2}O/\text{year} \\ N_{FERT,i} &=& \text{total synthetic fertilizer N consumption in ecodistrict i, kg N/year} \\ N_{MAN,CROPS,i} &=& \text{total amount of manure N applied as fertilizers to cropland in ecodistrict i, kg N/year} \\ N_{RES,i} &=& \text{total amount of crop residue N that is returned to the cropland for ecodistrict i, kg N/year} \\ EF_{BASE,i} &=& \text{a weighted average emission factor for ecodistrict i, taking into account moisture regimes and topographic conditions, kg N}_{2}O-N/kg N/year for ecodistrict i \\ FRAC_{IRRI,i} &=& \text{fraction of irrigated cropland in ecodistrict i} \\ 44/28 &=& \text{coefficient converting N}_{2}O-N \text{ to N}_{2}O, kg N}_{2}O-N \end{array}$$

The fraction, FRAC_{IRRI}, is derived from the *Census of Agriculture* for each ecodistrict (see Section 3 – Cropland in Annex A3.4). Annual FRAC_{IRRI} between two consecutive census years is adjusted through interpolation.

A3.3.6.2. Manure on Pasture, Range and Paddock from Grazing Animals

The IPCC Tier 1 methodology is used to estimate N_2O emissions from manure on pasture, range and paddock. The IPCC methodology is based on the quantity of manure N produced by domestic animals on pasture, range and paddock. N_2O emissions are calculated using Equation A3–44

Equation A3-44:

$$N_{2}O_{PRP} = \sum_{T} [(N_{T} \times N_{EX,T} \times N_{PRP,T})] \times \frac{44}{28}$$

where:		
N_2O_{PRP}	=	emissions from manure on pasture, range and paddock from grazing ani- mals, kg N₂O/year
N_{T}	=	animal population of category or sub- category T in a province, heads
N _{EX,T}	=	annual N excretion rate for animal category or subcategory T, kg N/head-year (Table A3–26: Time Series of Manure N Excretion Rates for Cattle (kg N/head/year)1 and Table A3–27: Manure N Excretion Rates for Non-cattle)
N _{PRP,} T	=	fraction of manure N excreted on pasture, range and paddock by animal category or subcategory T (Table A3–23 Percentage of Manure Handled by Animal Waste Management Systems (AWMS) for Canada (Marinier et al. 2004), Presented as National Averages).
EF _{PRP,T}	=	emission factor for manure N deposited by animals on pasture, range and pad- dock (IPCC 2006) (Annex 8)
44/28	=	coefficient converting $N_2O\text{-}N$ to N_2O , kg

Animal population data and data sources are detailed in Section A3.3.1.

 $N_2O/kg N_2O-N$

A3.3.6.3. Indirect N₂O Emissions from Soils

Volatilization and Redeposition of Nitrogen

The IPCC Tier 1 methodology is used to estimate indirect N₂O emissions from volatilization and redeposition of fertilizer and manure N applied to agricultural soils. The emission calculation is shown in Equation A3-45:

Equation A3-45:

$$\begin{split} N_{_{2}}O_{_{VD}} &= \sum_{_{i}} \left[\left(N_{_{FRT,\,i}} \times FRAC_{_{GASF}} \right) + \left(N_{_{MAN,\,CROPS,\,i}} + FRAC_{_{GASM}} \right) \right. \\ &+ \left. N_{_{MAN\,-\,VOLAT,\,i}} \right] \times EF_{_{VD}} \times \frac{44}{28} \end{split}$$

where:

 N_2O_{VD} emissions from volatilization and redeposition of N, kg N₂O/year

synthetic N fertilizer consumption in

 $N_{FERT,i}$ ecodistrict i, kg N/year

FRACGASE fraction of synthetic fertilizer N applied to soils that volatilizes as NH3- and

 NO_x -N: 0.1 kg (NH₃-N + NO_x-N)/kg N

(IPCC 2006)

N_{MAN,CROPS,i} total amount of animal manure N

applied as fertilizers to cropland in

ecodistrict i, kg N/year

fraction of volatilized manure N applied **FRAC**_{GASM}

as fertilizers to cropland: 0.2 kg (NH₃-N

+ NO_x-N)/kg N (IPCC 2006)

 EF_VD emission factor due to volatilization

and redeposition: 0.01 kg N₂O-N/kg N

(IPCC/OECD/IEA 1997)

44/28 coefficient converting N2O-N to N2O, kg

 $N_2O/kg N_2O-N$

total manure N lost as NH₃-N and NOx-N_{MAN-VOLAT,i}

N from livestock excretion in ecodistrict

i, kg N (Equation A3-46)

Equation A3-46:

$$N_{MAN-VOLAT, i} = \sum_{mT} \left[(N_T \times N_{EX,T} \times AWMS_{m,T} \times FRAC_{GASMm,T} \right]$$

 N_T animal population for animal category

or subcategory T, head, kg N

 $N_{\text{EX,T}}$ N excretion from animal category or subcategory T, kg N/year (Table A3-26:

Time Series of Manure N Excretion Rates for Cattle (kg N/head/year)1 and Table A3-27: Manure N Excretion Rates

for Non-cattle)

 $AWMS_{m,T}$ fraction of manure N from animal cat-

> egory or subcategory T under manure management system m (Table A3-23: Percentage of Manure Handled by **Animal Waste Management Systems** (AWMS) for Canada (Marinier et al. 2004), Presented as National Averages)

fraction of manure N excreted by $FRAC_{GASMm,T} =$

animal category or subcategory under manure management system m that volatilizes as NH₃-N and NO_x-N (Table A3-28: Total N, NH₃- and NO_x-N Losses Associated with Various Livestock and Manure Management Systems¹)

Data sources for estimating N_{FERT} and $N_{MAN-VOLAT}$ at an ecodistrict level are provided in the previous sections (Section A3.3.6.1 and Equation A3–22).

Leaching and Runoff

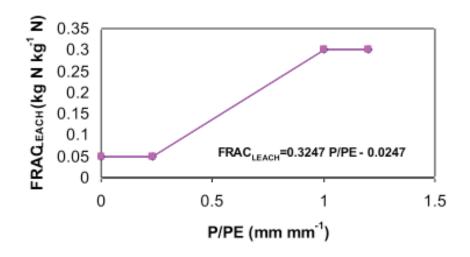
A modified IPCC Tier 1 methodology is used to estimate N_2O emissions from leaching and runoff of fertilizer, manure and crop residue N from agricultural soils:

Equation A3-47:

44/28

$$N_{2}O_{L} = \sum_{i} \left[(N_{\text{FERT},i} + N_{\text{MAN, CROPS},i} + N_{\text{PRP},i} + N_{\text{RES},i}) \right. \\ \times \left. \text{FRAC}_{L\text{EACH},i} \times \text{EF}_{L\text{EACH}} \right] \times \frac{44}{28}$$
 where:
$$N_{2}O_{L} = \text{emissions from leaching and runoff of } \\ N_{i} \times N_{i} \times$$

Determining the Fraction of Nitrogen That is Leached (FRAC_{LEACH}) at the Ecodistrict Level in Canada


In Canada, leaching losses of N vary widely among regions. High N inputs in humid conditions may lead to losses greater than 100 kg N/ha-year in some farming systems of southern British Columbia (Paul and Zebarth 1997; Zebarth et al. 1998). Those farming systems, however, represent only a small fraction of Canadian agroecosystems. In Ontario, Goss and Goorahoo (1995) predicted leaching losses of 0-37 kg N ha⁻¹, representing between 0 and 20% of N inputs. Leaching losses in most of the Prairie region may be smaller due to lower precipitation and lower N inputs on an areal basis. Based on a long-term experiment in central Alberta, Nyborg et al. (1995) suggested that leaching losses were minimal, and Chang and Janzen (1996) found no evidence of N leaching in non-irrigated, heavily manured plots, despite large accumulations of soil nitrate in the soil profile.

The default value for FRAC_{LEACH} in the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/OECD/IEA 1997) was 0.3. The values for FRAC_{LEACH} can be as low as 0.05 in regions where rainfall is much lower than potential evapotranspiration (IPCC 2006), such as in the Prairie region of Canada. Accordingly, it was assumed that FRAC_{LEACH}, depending on the ecodistrict, would vary from 0.05 to 0.3.

Figure A3-4 Determination of the Ecodistrict FRACLEACH Values

 $N_2O/kg N_2O-N$

coefficient converting N₂O-N to N₂O, kg

For ecodistricts with a P/PE value for the growing season (May through October) greater than or equal to 1, the maximum FRAC_{LEACH} value recommended by the Revised 1996 IPCC Guidelines (IPCC/OECD/IEA 1997) of 0.3 was assigned. For ecodistricts with the lowest P/PE value (0.23), a minimum FRAC_{LEACH} value of 0.05 was assigned. For ecodistricts with a P/PE value that ranged between 0.23 and 1, FRAC_{LEACH} was estimated by the linear function that joins the two-end points (P/PE, FRAC_{LEACH}) = (1,0.3; 0.23,0.05)(Figure A3-4).

Data sources for N_{FERT} (Section A3.3.6.1), N_{MAN.CROPS} (Section A3.3.6.1), N_{PRP} (SectionA3.3.6.2) and N_{RES} (Section A3.3.6.1) at an ecodistrict level are provided in the previous sections.

Long-term normals of monthly precipitation and potential evapotranspiration from May to October, 1971-2000 (AAFC-archived database) were used to calculate FRAC_{LEACH} at an ecodistrict level.

A3.3.7. CH₄ and N₂O Emissions from Field Burning of **Agricultural Residues**

Crop residues are sometimes burned in Canada, as a matter of convenience and disease control through residue removals, even though this practice has declined in recent years because of soil quality and environmental issues.

Field burning of agricultural residues emits CH₄ and N₂O. The quantity of crop residue burning in Canada can be estimated as follows:

Equation A3-48:

where: quantity of crop residue burned from QBURN crop T for each province, Mg dry matter/ Production_T= total production of crop T, Mg dry matter/year Moisture T =moisture content of the product from

 $Q_{\text{BURN}} = \sum_{\tau} (Production \times (1 - Moisture_{\tau}) \times RatioAR/P_{\tau} \times PCB_{\tau} \times Ratio_{\text{SCALE}})$

crop T, fraction

 $RatioAR/P_T =$ Ratio of above-ground crop residue to

the crop product for crop T, unitless perent of crop residue that is subject to

PCB_T field burning for crop T, fraction

a scaling factor or an intensity factor **Ratio**_{SCALE}

adjusted for burning in 2006, unitless

Data in 2001 and 2006 by Statistics Canada collected through its Farm Environmental Management Survey (FEMS)¹⁰ related to the methods of crop residue management, include crop residue burning. To establish a complete time series of activity data (Table A3-29), additional information on crop residue burning for 1991 and 1996 has been gathered through expert consultations (Coote et al. 2008). The type of crop and the extent of crop residue burning for each province were only available for 2006; these data were collected in FEMS, and summarized in Table A3-30. Thus, it is assumed that the same crop and its extent of burning for each province were the same for the entire time series as in 2006.

The intensity of the crop residue burning in each province for 1991, 1996 and 2001 was adjusted as a ratio based on the average burning for 2006. Basic characteristics of crops, such as moisture content of crop product and ratio of above-ground crop residue to crop product, are reported by Janzen et al. (2003). Annual production of each crop subject to residue burning is available (Statistics Canada 2009, catalogue no. 22-002). Other parameters such as fraction of residue burned and emission factors required for emission estimates were obtained from the Good Practice Guidance (IPCC 2000).

Emissions of N₂O and CH₄ from crop residue burning are estimated using the following equation:

Equation A3-49:

$$EMISSION_{RIIDM} = \sum_{S} (Q_{BURNI} \times C_F \times G_{EF})/1000$$

14/	h۷	re:	
٧v	יוכ		

•••			
	EMISSION _{BURN} =		emissions of N_2O or CH_4 from the burning of crop residues for Canada (kt N_2O or CH_4)
	Q_{BURNi}	=	quantity of crop residue burnt from province i, Mg, dry matter/year
	C _F	=	fuel efficiency (the default value for agricultural crop residues from the Good Practice Guidance [IPCC 2000] is 0.9), unitless
	G_{EF}	=	emission factor (the default values of N_2O and CH_4 in the Good Practice Guidance [IPCC 2000] are 0.07 g N_2O/kg dry matter burned and 2.7 g CH_4/kg dry matter burned)
	1000	=	converting Mg to kt

¹⁰ Available at http://www.statcan.gc.ca/cgi-bin/imdb/p2SV.pl?Functio n=getSurvey&SDDS=5044&lang=en&db=imdb&adm=8&dis=2#a4

Table A3–29 Crop residue burning by province in Canada for 1991, 1996, 2001 and 2006

	1991	1996	2001	2006
	%	of crop re	sidue burn	ed
Newfoundland and Labrador	0	0	0	0
Prince Edward Island	0.4	0.4	0.4	0.4
Nova Scotia	0.5	0.5	0.5	0.5
New Brunswick	0.5	0.5	0.5	0.5
Quebec	0.4	0.4	0.4	0.3
Ontario	0.7	0.7	0.7	0.3
Manitoba	12.6	10.1	8.9	2.3
Saskatchewan	8.1	5.8	3.9	1.5
Alberta	0.8	0.7	0.2	0.2
British Columbia	0	0	0	0

Data sources: data for 2001 and 2006 were extracted from FEMS 2001 and 2006 collected by Statistics Canada, and for 1991 and 1996 were gathered through consultations by Coote et al. (2008).

Table A3–30 Burning of crop residues by crop types in 2006

	Spring wheat	Winter wheat	Oats	Barley	Mixed grains	Flaxseed	Canola
			% of	crop residue bu	ırned		
Newfoundland and Labrador	0	0	0	0	0	0	0
Prince Edward Island	3	0	0	1	0	0	0
Nova Scotia	33	0	0	0	0	0	0
New Brunswick	0	0	1	0	0	0	0
Quebec	0	0	1	0	0	0	0
Ontario	0	0	0	1	2	0	0
Manitoba	2	3	3	1	0	17	1
Saskatchewan	0	0	0	0	0	15	1
Alberta	0	0	0	0	0	8	0
British Columbia	0	0	0	0	0	0	0

A3.4. Methodology for Land Use, Land-use Change and Forestry

The Land Use, Land-use Change and Forestry (LULUCF)
Sector of the inventory includes the greenhouse gas (GHG)
emissions/removals associated with managed lands and
with the conversion of land from one category to another.

As in Chapter 7, the structure of this annex attempts to maintain the land-based reporting categories, while grouping related data collection and estimate development methodologies. Section A3.4.1 summarizes the spatial framework for estimate development and area reconciliation. The general approach for estimating carbon stock changes, emissions and removals in all forest-related categories, including managed forests, forest conversion to other lands and lands converted to forests, is briefly described in Section A3.4.2; this description is not repeated under the Forest Land converted to the Cropland, Grassland, Wetlands and Settlements categories. The Cropland section specifically describes methods to quantify the effect of management practices on agricultural land. Likewise, the sections on wetlands and settlements focus on category-specific estimation methodologies.

Selected approaches to the estimation of delayed carbon emissions due to long-term carbon storage in harvested wood products are briefly described in Section A3.4.7, along with implications for Canada.

A3.4.1. Spatial Framework for LULUCF Estimate Development and Area Reconciliation

Canada's monitoring system for LULUCF draws on the close collaboration among several scientists and experts in different disciplines. Early on, it was recognized that the approaches, methods, tools and data that are available and most suitable for monitoring human activities in one land category are not always appropriate for another. Important differences exist in the spatial framework specific to each land category, with the risk that activity data and estimates become spatially inconsistent. A hierarchical spatial framework was agreed upon by all partners of the national LULUCF Monitoring, Accounting and Reporting System (MARS), to ensure the highest possible consistency and spatial integrity of the GHG inventory.

At the finest level of spatial resolution are analysis units, which are specific to each estimation system. In managed forests, the analysis units are the management units found in provincial and territorial forest inventories. For the purpose of this assessment, managed forests were classified into some 523 analysis units across 12 provinces and territories (Table A3–31). Analysis units typically result from the intersection of administrative areas used for timber management and ecological boundaries. Changes in the number of spatial analysis units from the previous submission (542 to 523) reflect some refinements in the integration of multiple spatial layers. For example, the modifications of administrative boundaries, timber areas and parks can result in units that do not meet the criteria for separate analysis; these units are therefore regrouped.

Table A3–31 Spatial Analysis Units of Managed Forests

Province/Territory	Number of Analysis Units
Newfoundland and Labrador	24
Nova Scotia	1
Prince Edward Island	1
New Brunswick	1
Quebec	129
Ontario	52
Manitoba	70
Saskatchewan	40
Alberta	70
British Columbia	92
Yukon	13
Northwest Territories	30
Canada	523

The most suitable spatial framework for GHG monitoring of agricultural lands (Cropland category) is the National Soil Database of the Canadian Soil Information System¹¹ and its underlying soil landscapes. The full array of attributes that describe a distinct type of soil and its associated landscapes, such as surface form, slope, typical soil carbon content under native and dominant agricultural land use, and water table depth, is called a soil landscape. Soil landscapes are spatially associated with Soil Landscapes of Canada (SLC) polygons (the analysis units), that may contain one or more distinct soil landscape components. The SLC polygons are in the order of 1000 to 1 000 000

Table A3–32 Estimates of Land, Water, Managed Forest and Cropland Areas in 2009

	orting Zone nber and Name	Total Area (kha)	Total Land Area (kha)	Total Fresh Water Area (kha)	Managed Forest Area (kha)	Cropland Area (kha)
1	Arctic Cordillera	24 278	23 992	286		
2	Northern Arctic	151 023	142 416	8 606		
3	Southern Arctic	84 636	74 609	10 027		
4	Taiga Shield East	74 834	65 669	9 166	1 103	
5	Boreal Shield East	111 057	99 129	11 928	55 652	639
6	Atlantic Maritime	20 939	19 737	1 202	15 455	1 036
7	Mixedwood Plains	16 781	11 015	5 766	2 688	5 246
8	Hudson Plains	37 371	36 394	977	302	
9	Boreal Shield West	83 951	71 112	12 839	28 780	180
10	Boreal Plains	73 612	67 186	6 426	36 087	10 299
11	Subhumid Prairies	22 341	21 599	742	1 844	16 109
12	Semiarid Prairies	23 966	23 494	473	18	12 664
13	Taiga Plains	65 804	58 219	7 585	20 038	2
14	Montane Cordillera	48 471	47 226	1 244	35 420	1 230
15	Pacific Maritime	20 810	20 488	322	13 206	111
16	Boreal Cordillera	46 785	45 842	944	16 618	1
17	Taiga Cordillera	26 530	26 374	157	412	
18	Taiga Shield West	63 168	52 178	10 990	1 829	

hectares (ha) in area and are appropriate for mapping at the scale of 1:1 million.

SLC polygons are also the basic units of Canada's National Ecological Framework, a hierarchical, spatially consistent national context within which ecosystems at various levels of generalization can be described, monitored and reported on (Marshall and Schut 1999). The 12 353 SLC polygons are nested in the next level of generalization (1027 ecodistricts), which are further grouped into 194 ecoregions and 15 ecozones.

Analysis units for estimating the areas of forest converted to other uses are the result of the spatial intersection of forest conversion strata (see Figure A3–8) with ecological and administrative boundaries. Forest conversion strata were developed on the basis of expected conversion rates and characteristics. The sampling approach used to monitor forest conversion requires that analysis units be (i) as consistent as possible with respect to the patterns of forest conversion and (ii) large enough to provide an acceptable sample size given the predetermined sampling rate.

The LULUCF Sector of the GHG inventory reports information in 18 reporting zones (Chapter 7, Figure 7-1). These reporting zones are essentially the same as the ecozones

of the National Ecological Framework, with three exceptions: the Boreal Shield and Taiga Shield ecozones are split into their east and west components to form four reporting zones; and the Prairies ecozone is divided into a semiarid and a subhumid component. These subdivisions do not alter the hierarchical nature of the spatial framework. Table A3–32 provides the land and water areas of each reporting zone, as well as the estimated area of managed forest and cropland for the 2009 inventory year. Methods and data sources used for developing this information are described in McGovern (2008).

The analysis units of different land-use categories often overlap. Furthermore, the exact location of events, stands or activities within a unit is not known. Therefore, the activity data pertaining to different land-use categories cannot be harmonized at the level of analysis units. The spatial harmonization is conducted within 60 reconciliation units, which are derived from the spatial intersection of reporting zones with provincial and territorial boundaries. Quality control and quality assurance procedures are conducted at the levels of analysis units during estimate development and of reconciliation units during estimate compilation.

A3.4.2. Forest Land and Forestrelated Land-use Change

A3.4.2.1. Carbon Modelling

The estimation of carbon stock changes, emissions from and removals by managed forests, forest conversion to other land uses, and land converted to forests was conducted with version 3 of the Carbon Budget Model of the Canadian Forest Sector [CBM-CFS3] (Kurz et al. 2009), the most recent of a family of models whose development goes back to the late 1980s (Kurz et al. 1992). The model integrates forest inventory information (forest age, area and species composition), libraries of merchantable volume over age curves, equations to convert stand merchantable volume into total biomass, data on natural and anthropogenic disturbances, and simulations of carbon transfers between pools and with the atmosphere that are associated with ecosystem processes and various events.

The ecosystem processes (or "annual processes") modelled by the CBM-CFS3 to generate the estimates submitted in this report are growth, litter fall, non-disturbance tree mortality and decomposition. The CBM-CFS3 also models events, such as management activities, forest conversion and natural disturbances. Management activities represented are commercial thinning, clear-cutting, partial cutting, salvage cutting¹² and the burning of harvest residues during site preparation or for fire risk management. Different practices of forest conversion are also simulated, including controlled burning.

The forest carbon pools represented in the CBM-CFS3 can be matched to the Intergovernmental Panel on Climate Change (IPCC) forest carbon pools (Table A3–33). Although not shown here, living biomass pools are further subdivided into two sets, for each of hardwood and softwood tree species.

Annual processes and events trigger arrays of carbon transfers between pools as shown in Figure A3–5.

Annual ecosystem processes comprise growth, litter fall, mortality and decomposition and are simulated as carbon transfers executed at each time step (annually) in every inventory record. During annual processes, carbon is taken up in the biomass pool and some biomass carbon is transferred to dead organic matter (DOM) pools. The decay of DOM carbon results in its transfer to another DOM pool (e.g. stem snags to medium deadwood pool), to a slow soil pool or to the atmosphere. More information on pool structure and decay rates is provided in Kurz et al.

Table A3-33	Forest Carbon	Pools in IPCC	and CBM-CFS3
-------------	---------------	---------------	--------------

IPCC Carbon Pools		Pool Names in CBM-CFS3				
Living Biomass	Above-ground biomass	Merchantable stemwood Other (submerchantable stemwood, tops, branche stumps, non-merchantable trees) Foliage				
	Below-ground biomass	Fine roots Coarse roots				
Dead Organic Matter (DOM)	Dead wood	Above-ground fast Below-ground fast Medium Softwood stem snag Softwood branch snag Hardwood stem snag Hardwood stem snag				
	Litter	Above-ground very fast Above-ground slow				
Soils	Soil organic matter	Below-ground very fast ¹ Below-ground slow Black carbon ² Peat ²				

Notes:

¹² Salvage cutting (or "salvage logging") is the removal of merchantable timber left after a natural disturbance. Whenever possible, salvage logging is distinguished from conventional harvesting operations.

^{1.} Below-ground very fast pool includes dead and decaying fine roots, which in practice cannot be separated from soil.

^{2.} Black carbon and peat are currently not estimated.

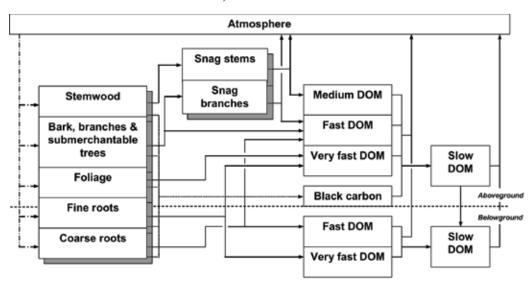


Figure A3–5 Carbon Pools and Transfers Simulated by the CBM-CFS3

(2009). Rates of carbon transfer are defined for each pool, based on pool-specific turnover rates (for biomass pools) or decay rates (DOM and soil pools). Turnover rates can be very high (e.g. 95% for hardwood foliage) or very low (e.g. < 1% for stemwood). Annual decay rates are defined for a reference mean annual temperature of 10°C and exhibit temperature sensitivity according to defined Q10 relationships; the decay rates vary between 50% (very fast DOM pools, such as dead fine roots) and 0.0032% (slow soil pool).

Growth is simulated as an annual process. Every record in the forest inventory used in each of the 523 analysis units is associated with a yield curve that defines the dynamics of merchantable volume over time. Assignment of an inventory record to the appropriate curve is based on a classifier set that includes province, ecological stratum, leading species, site productivity class and several other classifiers that differ among provinces and territories. Curve libraries for each province and territory in Canada are derived from permanent or temporary sample plots or from forest inventory information.

Conversion of merchantable volume curves to aboveground biomass curves is performed with a set of equations developed for Canada's National Forest Inventory (Boudewyn et al. 2007). These equations derive the aboveground biomass of each stand component from merchantable stemwood volume (per ha), for each province/ territory, ecozone, leading species or forest type. Finally, below-ground biomass pools are estimated using regression equations (Li et al. 2003). Mean annual increments are not used in this derivation.

Disturbances trigger different combinations of carbon transfers, based on the disturbance type and severity, the forest ecosystem affected and the ecological region. For modelling purposes, different practices of forest conversion are also implemented as disturbances. The impact of a disturbance is defined in a disturbance matrix, which specifies for one or more disturbance types the proportion of carbon in each ecosystem pool that is transferred to other pools, released to the atmosphere (in different GHGs) or transferred to harvested wood products. Figure A3-6 illustrates one such matrix, simulating clearcut harvesting in the Montane Cordillera, during which the wood is harvested and residues (slash) are burned. In the 2011 submission, the simulation uses a total of 84 disturbance matrices to simulate the impact of disturbances. The number of different disturbance matrices is dependent on the availability of activity data (e.g. the spatial and temporal resolution of data sources used to document disturbances) and on the knowledge required to parameterize the matrices for more distinct regions or intensities of disturbance in place of more generically developed parameter sets.

The proportion of CO₂-C emitted from each pool, docu-

Figure A3–6 Disturbance Matrix Simulating the Carbon Transfers Associated with Clearcut Harvesting in Reporting Zone 14 (Montane Cordillera)

	/s	75	/20	/s ₉	/	/s ₀	/2	\ ₃	·/\$	200
1. Softwood merchantable	(0.15		 	(''	(''	0.85
2. Softwood foliage	1									
3. Softwood others			1							
4. Softwood sub-merch			1							
5. Softwood coarse roots			0.5	0.5						
6. Softwood fine roots	0.5	0.5								
7. Hardwood merch					0.15					0.85
8. Hardwood foliage	1									
9. Hardwood other			1							
10. Hardwood submerch			1							
11. Hardwood coarse roots			0.5	0.5						
12. Hardwood fine roots	0.5	0.5								
13. Above Ground Very Fast soil C	1									
14. Below Ground Very Fast soil C		1								
15. Above Ground Fast soil C			1							
16. Below Ground Fast soil C				1						
17. Medium Soil C					1					
18. Above Ground slow soil C						1				
19. Below Ground Slow soil C							1			
20. Softwood Stem Snag					0.5					0.5
21. Softwood Branch Snag			1							
22. Hardwood Stem Snag					0.5					0.5
23. Hardwood Branch Snag			1							
24. Black C								1		
25. Peat									1	

mented in each disturbance matrix, can be specific to the pool, the types of forest and disturbance intensity, and the ecological zone; there are therefore no CO₂ emission factors applicable to all disturbances of a given type, such as fires. With a few exceptions, the proportion of total carbon emitted in each carbon-containing GHG (CO₂, CO, and CH₄) due to fire is constant: 90% of carbon is emitted as CO₂, 9% as CO and 1% as CH₄ (Cofer et al. 1998; Kasischke and Bruhwiler 2003).

While the CBM-CFS3 can model carbon fluxes at various spatial scales, generating national estimates involved harmonizing, integrating and ingesting vast quantities of data from a great diversity of sources. The next section documents the key data sources used for this submission

A3.4.2.2. Data Sources

Managed Forest Land

The Canadian provincial and territorial governments, whose jurisdiction includes natural resource management, provided essential information—notably detailed forest inventory data and, when available, details on forest management activities and practices, disturbances and

disturbance prevention or control, regional yield tables (volume/age curve) for dominant tree species, and site indices—as well as regional expertise (Table A3-34). The forest inventory data in Canada's National Forest Inventory (CanFI 2001) were used for New Brunswick, Manitoba, Saskatchewan, Alberta, Yukon and the Northwest Territories. More recent and higher-resolution inventory data were provided by Prince Edward Island, Newfoundland and Labrador, Nova Scotia, Quebec, Ontario, and British Columbia. Considerable efforts were necessary to harmonize, format and compile the detailed inventory information into input data for the CBM-CFS3. A series of "methods papers" describe the compilation process for each provincial and territorial forest inventory. Since forest inventory data were not collected in the same years, additional steps were necessary to synchronize the inventory data to the year 1990 (Stinson et al. 2006a).

Conceptually, forests are classified as "managed" or "un-managed" based on the occurrence of management activities for timber or non-timber, and on the level of protection against disturbances (Figure A3–7). The estimation of the managed forest area required the spatial delineation and combination of boundaries of many different forest areas, including all operational forest management

Table A3–34 Main Sources of Information and Data, Managed Forests

Description	Source	Spatial Resolution	Temporal Coverage	Reference
Fire data	Canadian Wildland Fire Information System	Spatially explicit	2004–2009	http://cwfis.cfs.nrcan.gc.ca/
	Canadian Large Fire Data- base	Spatially referenced	1959–2003	http://cwfis.cfs.nrcan.gc.ca/lfd
Forest inventories	Canada's National Forest Inventory (CanFI)	CanFI grid cell	1949–2004	https://nfi.nfis.org/index.php
	Alberta	Analysis units N/A		Yield curves from provincial expert
	British Columbia	Analysis units	1993-2000	Provincial expert
	Newfoundland	Analysis units	2006	Provincial expert
	Nova Scotia	Analysis units	2000	Provincial expert
	Ontario	Analysis units	2000	Provincial expert
	Prince Edward Island	Analysis units	2000	Provincial expert
	Quebec	Analysis units	2000	Provincial expert
Harvest data	National Forestry Database	Provincial boundaries	1990–2009	http://nfdp.ccfm.org/
	Alberta	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	British Columbia	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Newfoundland and Labrador	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Manitoba	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	New Brunswick	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Northwest Territories	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Nova Scotia	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Ontario	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Prince Edward Island	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Quebec	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Saskatchewan	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
	Yukon	Analysis units	1990–2009	National Forestry Database http://nfdp.ccfm.org/
Insect data	Forest Insect and Disease Survey	Spatially explicit	1990–2009	Atlantic Forestry Centre and Pacific Forestry Centre
	Alberta	Spatially explicit	1970–2009	http://www.srd.alberta.ca/Mar agingPrograms/ForestPests/ ForestPestSurveyData.aspx
	British Columbia	Spatially explicit	1990–2009	Provincial expert
	Saskatchewan	Spatially explicit	1990–2009	Provincial expert
Climate data	CFS	Analysis units	1961–1990 normals	McKenney (2005)

Note: N/A = not available

Figure A3–7 Decision Tree for the Determination of Managed Forest Area

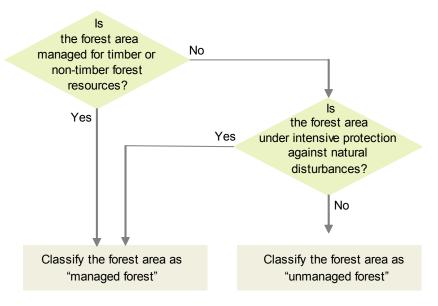
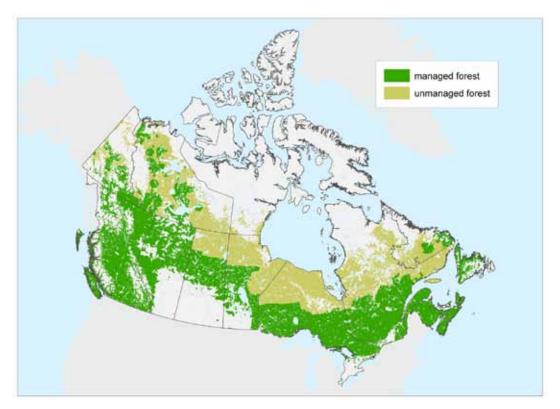



Figure A3–8 Lands with Managed and Un-managed Forests in Canada

units, timber supply areas, tree farm licences, industrial freehold timberland, private woodlots and any other land in the Forest category where there is active management for timber or non-timber resources, as well as forest areas where there is intensive protection against natural disturbances. All these layers are aggregated and intersected with underlying forest inventory data. The procedures are documented in Stinson et al. (2006b). Figure A3-8 illustrates the location of lands with managed and un-managed forests in Canada, for the purpose of GHG estimation and reporting. In 2009, the total area of managed forests was 229 453 kilohectares (kha), of which 68% lie in four reporting zones: Boreal Shield East, Montane Cordillera, Boreal Plains and Boreal Shield West (see Table A3–32). The managed forest area represents 66% of the total forest area in Canada.

Forest management activities are documented in the National Forestry Database;¹³ additional information on specific activities is obtained directly from provincial and territorial forest management agencies.

Historical data on areas disturbed by wildfires were extracted from the Canadian Large Fire Database. These were supplemented by provincial and territorial data for the years 1990 to 2003 and by the Canadian Wildland Fire Information System's National Burn Area Composite (NBAC) product for the years 2004 to 2009 (Table A3.4-4). The NBAC is a composite of low- and medium-resolution remote sensing data and fire mapping data, provided by resource management agencies from across Canada that provides complete mapping of wildfires using the best available data sources. Medium-resolution remote sensing data are used where these are available; data from resource management agencies are given second priority; and low-resolution remote sensing data are only used where no other fire mapping data are available.

Insect disturbances are monitored by aerial surveys (Table A3–34). The gross annual areas are converted into effective impact areas, which represent the area disturbed excluding unaffected forested areas (non-treed areas or treed areas with non-host species). Effective impact areas are assigned to analysis units and, depending on the insect species, are further broken down by three or four levels of impact severity which differ by the amount of mortality and growth reduction (Kurz et al. 2009).

Forest Conversion

In order to account for the long residual effects of forest conversion, conversion rates were estimated starting in 1970. The approach for estimating forest areas converted to other uses is based on three main information sources: systematic or representative sampling of remote sensing imagery, records and expert judgement/opinion. The basic methods have been tested in several pilot projects (Leckie 2006a), and the methodology has now been implemented across the country.

The core method involves remote sensing mapping of deforestation on samples from Landsat images dated circa 1975, 1990, 2000 and 2008. Change enhancements between two dates of imagery are produced to highlight areas of forest cover change and identify possible forest conversion events (i.e. "candidate events"). The imagery is then interpreted to determine if the land cover of the candidate event was forest initially (at Time 1) and is a land cover change or land-use change at Time 2 (Leckie et al. 2002, 2010a). This deforestation interpretation process is strongly supported by other remote sensing data, including digitized aerial photographs; snow-covered, leaf-off, winter Landsat imagery; secondary Landsat images from other dates and years; ancillary data, such as maps of road networks, settlements, wetlands, woodland coverage and mine and gravel pit locations; and specialized databases giving locations of oil and gas pipelines and well pads (Leckie et al. 2006). When readily available, detailed forest inventory information is also used.

Change imagery is interpreted and analyzed; each forest conversion event larger than 1 ha is manually delineated. The broad forest type prior to deforestation is interpreted, 14 and the post-deforestation land use recorded ("post-class"). Confidence ratings on the land use at the initial time and a later time period are used in subsequent quality control and field validation procedures.

Monitoring of forest conversion activity covers all forest areas of Canada, and is not limited to the managed forest. The entire forested area of Canada is broadly stratified into regions of expected forest conversion level and dominant cause, which dictate the target sampling intensity. Depending on the expected spatial patterns and rates of forest conversion, sampling approaches ranged from complete mapping, to systematic sampling over the entire analysis unit of interest, to a representative selec-

¹³ National Forestry Database, available online at http://nfdp.ccfm.org/about_us_e.php

¹⁴ See Chapter 7 for the definitional parameters of "forest".

Figure A3–9 Forest Conversion Strata and Areas Sampled for the 2011 Submission

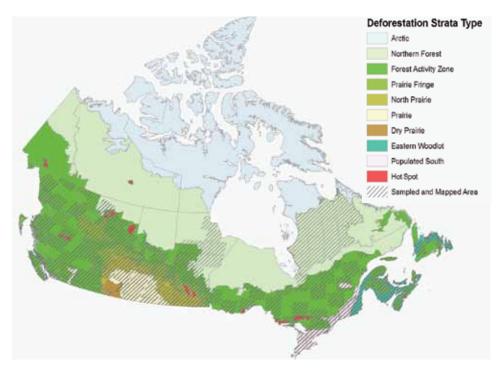
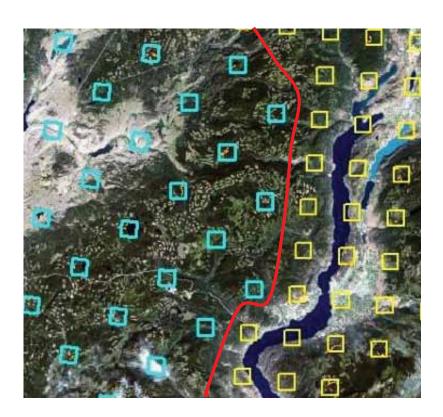



Figure A3–10 Sampling Grids Over Satellite Imagery for Forest Conversion Mapping. Background Imagery: Area Near Kelowna, British Columbia, Landsat TM, Summer 2000

tion of sample cells within a systematic grid. For example, in populated areas of southern Quebec and in the Prairie fringe, a 12% sampling rate was generally achieved, with 3.5×3.5 -km sample cells at the nodes of a 10-km grid (Figure A3-10). In practice, resource constraints limit the size of the remote sensing sample; wherever possible, a target sampling rate of 12% or 6% was achieved. It is also important to note that different sampling rates may be applied for each time period, in an effort to track differing activity rates between time periods. The total areas, either fully mapped or sampled, cover approximately 346 million hectares (Mha), of which over 16 Mha were mapped for 1975-1990, 40 Mha were mapped for 1990-2000, and 21 Mha were mapped for 2000–2008. Figure A3–9 provides an overview of sampling and mapping for the forest conversion stratification.

Representative samples are used in areas of moderate expected rates of forest conversion (e.g. eastern woodlots in the Maritimes, the Eastern Townships in Quebec, the Lower Mainland of British Columbia, and the south agricultural zone of the Prairies). The forest activity region comprises a large area of Canada with a low population density; the main economic activities consist of forestry and other resource extraction. Again, a representative sampling approach is used, augmented with additional samples (e.g. pilot studies) in Quebec, Ontario and British Columbia. Special cases of known, localized and large forest conversion activities were also identified, such as hydroelectric reservoirs and oil sands development in Alberta. In such cases, the entire areas are handled as single events ("Hot Spot" in Figure A3–9), with spatially complete mapping.

Records were gathered when available. They consist mostly of information on forest roads, power lines, oil and gas infrastructure, and hydroelectric reservoirs (Leckie et al. 2006). The temporal coverage, availability and applicability of these records are assessed to determine the most appropriate information sources (records or imagery). Records data are often used to aid in the validation of estimates made through image interpretation. In particular for British Columbia, records data are used to provide estimates of conversion activity for power lines and oil and gas activity. In northern Quebec, a mix of remote-sensing image interpretation and records data are used to assess the areas of forest converted as a result of hydroelectric development. If the extent of forests affected by land submersion cannot be determined through official records or image interpretation, it is estimated by multiplying the area of land flooded by the proportion of forest cover in

the region surrounding the reservoir, as determined by a Landsat image classification forest cover map (Wulder et al. 2004).

Work with high-resolution imagery has revealed that, although records information may indicate that pipeline right-of-ways are less than 20 metres (m) wide, they are often adjacent to co-disturbance events such as access roads. The resulting total disturbance width is greater than 20m. As a result of this analysis, pipeline records are used in combination with high-resolution sampling to determine the actual impact of pipelines.

Expert opinion is only called upon when remote sensing sampling is insufficient and records data are unavailable or of poor quality. Expert judgement is also used to reconcile differences between records and remote sensing information and to resolve large discrepancies in the 1975–1990, 1990–2000 and 2000–2008 area estimates. In such cases, available expert opinion and data sources are brought together, remote sensing and records data are reviewed, and decisions are made (Leckie 2006b, Leckie et al. 2010b). For most estimates, certainly those where the land-use change categories had the largest impacts, estimates are derived directly from remote sensing samples.

The activity data are compiled and summarized initially by analysis unit. All conversion events are assembled into a database. A compilation is made that summarizes events for detailed post-conversion classes for each reconciliation unit. This compilation process also involves insertion of records data and expert judgement. In the course of these procedures, each event is compiled to yield a local deforestation rate (ha/year) based on the time interval between the images. Since the available imagery was not necessarily dated 1975, 1990, 2000 or 2008, the rates cover different time periods. At the data compilation phase, forest conversion events are assigned to one of three time periods (1975–1990, 1990–2000, 2000–2008), and the corresponding rate of forest conversion is assigned to that period. For example, a 7.0-ha event encountered on imagery from the period 1975–1989 would yield a 0.5 ha/ year rate (7.0 ha/14 years) and then would be assigned to the period 1975–1990. The total area interpreted in an analysis unit for that time period is then used to determine a relative rate of forest conversion ((ha/year)/km2 interpreted) for all events of the same type. Relative rates are scaled up for each analysis unit. Data are finally grouped by end-use (e.g. the change rate for agricultural crop or rural residential) and in turn, are summarized by broader

Figure A3–11 Procedure for Developing a Consistent Time Series of Rates of Forest Conversion

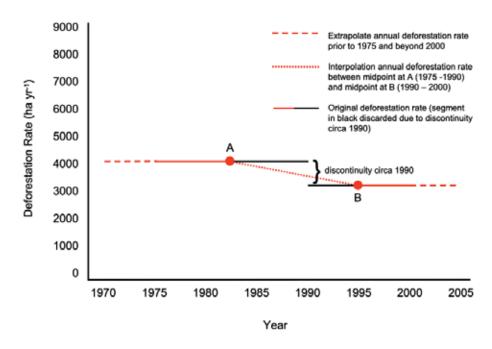
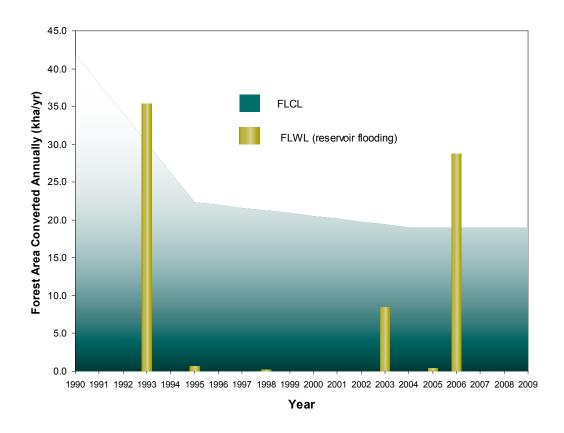



Figure A3–12 Annual Rates of Forest Conversion to Cropland (FLCL) and Forest Conversion to Wetland ([FLWL] reservoir flooding)

categories when recompiled by reconciliation unit.

The remote sensing data are derived using the imagery from circa 1975, 1990, 2000 and 2008, whereas records data are annual or summarized over time periods. As explained above, the remote sensing core method provides three distinct forest conversion rates—for 1975–1990, 1990-2000 and 2000-2008—but no annual estimates of these rates. The preparation of annual forest conversion rates for 1970–2009 requires the simultaneous application of two procedures: 1) extrapolation of annual rates prior to 1975 and beyond 2008; and 2) interpolation between the 1975-1990, 1990-2000 and 2000-2008 data. In the absence of documented and tested procedures, the simplest approach is to assign the 1975–1990 rate to each year from 1970 to 1983, the 1990–2000 rate to each year from 1983 to 1995, and the 2000–2008 rate to each year from 1995 to 2004. A constant deforestation rate is assumed for the post-2004 period. Information for an additional period will be used to update the process.

A linear interpolation is applied between the three temporal anchor points (1983, 1995 and 2004), which results in an estimate of the annual rate of forest conversion for each intervening year. The procedure is illustrated in Figure A3–11. Noted exceptions to this procedure do occur, and reflect individual large events for which actual disturbance information is known either from records information or detailed mapping activity. One example of this would be the case of hydroelectric reservoirs.

Figure A3–12 displays the annual rates of forest conversion by selected end uses: forest land to cropland (FLCL) and forest land to wetlands (FLWL). The figure helps illustrate the different approaches implemented in developing annual estimates. The conversion to cropland estimate is based on the approach illustrated in Figure A3–11. The estimate of forest conversion to wetlands reflects the use of records and detailed mapping information to account for large unique events. Note that these figures differ from the ones reported in the common reporting format (CRF) tables, which are cumulative areas in the "Land converted to" categories.

OA/OC of Forest Conversion Data

Great care was taken in understanding the records data, their suitability and their limitations. Documentation of the records data was examined, personnel involved in managing and implementing the data collection and storage were interviewed and, where available, numbers were

checked against independent data sources, sampling of high-resolution imagery and the knowledge of experts.

The remote sensing interpretation follows defined procedures (Leckie et al. 2010a), although it is conducted by a variety of organizations, including provincial government forestry or geomatics groups, remote sensing or mapping companies, research and development organizations and in-house government staff. The basic image analysis quality control (QC) process includes internal checks within the mapping agency or company by a senior person; real-time quality assurance (QA) by Canadian Forest Service specialists during interpretation, with feedback provided within days of interpretation of an area; and a final QA or vetting of the interpretation by the Canadian Forest Service. Field validation is conducted on an ongoing basis as resources permit. Each QC point and revision is documented within the Geographic Information System (GIS) database of conversion events (Dyk et al. 2011).

Records of decision as to data used and expert judgement applied, as well as decisions on the resolution of contradictory data, are documented within the overall processing database (Leckie 2006b) and updated for the 2011 submission (Leckie et al. 2010b). Data sources and limitations are recorded, and remote sensing data and interpretations archived.

Uncertainty of Forest Conversion Data

The development of an uncertainty estimate for forest conversion is a complex and difficult task, because of its spatial and temporal variability. Compared to early ones, current estimates benefit from several years of experience and knowledge gained through the development of previous estimates (Dyk et al. 2010; Leckie 2011). Specific improvements include:

- 1. Expanded data sets with additional earth observation data, Landsat (MSSS/TM/ETM/Winter), SPOT-5, aerial photography, and high-resolution satellite imagery.
- Expansion of the sampled area for targeted and other areas.
- 3. Analysis and validation of records data with high-resolution imagery (for example, co-disturbance of pipelines and access roads).
- 4. Extending the temporal coverage to the 2000–2008 period, which provides a longer time period to confirm the nature of historical events. This results in

- greater confidence and the reduction of commission and omission ¹⁵ errors.
- 5. Greater knowledge resulting from increased experience and expertise gained through QC review and validation activity.

These improvements result in enhanced detection, delineation and determination of event size and cause, as well as a more accurate estimate of timing of conversion events.

Two approaches were considered to estimate uncertainties: an empirical approach and an analytical approach. The resulting estimate is based on consideration of these approaches and provides an estimate of uncertainty associated with activity area estimates. The additional sources of uncertainty related to forest type being removed, post-conversion land category and event timing are not considered.

The empirical approach is an attempt to estimate an overall uncertainty in the forest conversion area estimate. This approach provides an overall estimate that considers all of its varied components and their potential interactions.

The empirical estimate was developed by making estimates of extreme low, low, high and extreme high of forest conversion rates for each reconciliation unit and end-use class. These estimates were based on expert knowledge of activity and practices at a regional scale. All of these estimates were then compiled on a national basis. Comparisons between extreme and non-extreme estimates provided some insight into the possible range for which conversion activity could occur. Based on this exercise, an estimate for overall uncertainty for forest conversion was determined to be in the range of \pm 20% to \pm 30%.

The analytical approach breaks the uncertainty down into subcomponents and then combines these through simple error propagation. The components considered are omission and commission, sampling, and boundary delineation errors.

Omission and commission errors are influenced by a number of factors, but in particular are dependent on the date and quality of pre- and post-imagery. Throughout the time series there is a tendency for omitted events to be smaller in size, whereas commission errors are usually from a misinterpretation rather than an oversight, and thus are

Uncertainty associated with boundary delineation errors considers the errors resulting from the displacement of the event boundary from the actual or true boundary of the event. Both underestimation and overestimation of area can result. This source of uncertainty is greatly influenced by the quality and resolution of imagery used in the delineation process; improvements made in resolution and image quality reduce this source of uncertainty.

Estimates of sampling uncertainty take into account the uncertainty associated with the sampling process and the scaling of estimates to large regions (strata/reconciliation units). The sampling process is a mixture of wall-to-wall mapping, and regionally focused and systematic sampling. In some areas, the sample coverage and design differed between 1975–1990, 1990–2000 and 2000–2008. The sample error depends on the amount of activity in each region within each time period sampled. In addition, it is dependent on the conversion event size and spatial distribution (Paradine et al. 2004). Uncertainty due to sampling and scaling activity is therefore regionally variable, and, because conversion activity causes may vary by region, the uncertainty is variable.

The results of this analytical approach are consistent with those made based on an empirical approach. Based on these efforts, a conservative estimate is taken, which sets the uncertainty at the higher range of \pm 30%. Further work will help improve the current understanding of the various sources of uncertainty, their interaction, and approaches used to combine these components.

This \pm 30% uncertainty about the estimate of the total forest area converted annually in Canada places, with 95% confidence, the true value of this area for 2009 as being between 31 and 57 kha. This is an overall estimate considering all time periods, regions and deforestation types. Caution should also be exercised in applying the 30% range to the cumulative area of Forest Land converted to another category over the last 20 years (land areas reported in the CRF tables).

less size-dependent. Commission and omission errors tend to offset each other. For the 2000–2008 time period, commission errors are likely to be greater than omission errors, particularly because of insufficient time lapse to enable post-disturbance conditions to be confirmed.

¹⁵ Omission errors are the result of missing true conversion events, and commission errors are the result of including non-conversion disturbances (e.g. forest harvest, burns, beaver flooding).

Planned Improvements in Forest Conversion

Planned improvements will be incremental, with an emphasis on reducing uncertainties and improving specific estimates. Improvement strategies combine a greater sample coverage, expanded records compilation, improved information processing and system documentation, and additional field verification. Initial image collection and compilation as well as record gathering are underway, to enable extending of estimates for the post-2008 period.

Land Converted to Forest Land

Records of land conversion to forest land in Canada were available for 1990-2002 from the Feasibility of Afforestation for Carbon Sequestration (FAACS)¹⁶ initiative (White and Kurz 2005). Conversion activities for 1970-1989 and 2003-2008 were estimated based on activity rates observed in the FAACS data. Additional information from the Forest 2020 Plantation Demonstration Assessment¹⁷ was included for 2004 and 2005, and an environmental scan was performed to identify additional sources of information on afforestation rates during 2000-2008. Each event, regardless of date, source, type or location, was converted to an inventory record for the purposes of carbon modelling. All events were compiled in a single data set of afforestation activity in Canada from 1970 to 2008. No new afforestation activity data were identified for the 2009 inventory year. Renewed efforts are underway to obtain additional data on recent afforestation activities in Canada.

For 1990–2008, the area planted was stratified by ecozone, province and species. Total area planted by province and ecozone, in conjunction with the proportion of species planted for each province, was used to calculate area planted by species, resulting in estimates of the area converted to forest, by species, for each reconciliation unit.

Yield curves are not always available for some plantation species or growing conditions (stocking level or site history); those used to estimate growth increments were taken from a variety of sources, most often directly from provincial experts. Where species do not have their own yield curve, they are given the yield curve of another species with similar growth characteristics or the species most likely to have been present in that area. Changes in soil carbon stocks are highly uncertain because of difficulties

A3.4.2.3. Estimation of Carbon Stock Changes, Emissions and Removals

At the beginning of each annual time step, the CBM-CFS3 first assigns land-use change activities to inventory records and redistributes these records to ensure that the impacts of land-use change (conversion to forests and conversion of forests) are reported in the new land category. Forest disturbances are simulated only after the land-use conversions have been completed. The selection of forest stands affected by land-use change and non–land-use change disturbances is based on eligibility rules (Kurz et al. 2009).

Once the model has computed the immediate effect of disturbances on all forest stands, it applies the sets of carbon transfers associated with annual processes to all records (managed forest, land converted to forest and land converted from forest), including both stocked and non-stocked stands. As explained above, annual processes combine growth, turnover and decay processes, applied to the entire area of managed forests. The outputs consist of the net GHG balance of managed forests, including growth; immediate emissions due to disturbances (carbon stock changes, carbon losses to the atmosphere and to forest products); and decay of both DOM and soil organic matter, including on stands affected by disturbances. During this stage, inventory records that have been in a "Land converted to" category for 20 years are converted into the "Land remaining" category and the simulation of C dynamics—usually decay—continues in this new category.

The same data output is available on converted forest lands (except tree growth), but is reported in the new land category—e.g. the Land converted to cropland (CRF Table 5.B Row 2), Land converted to wetlands (CRF Table 5.D Row 2), and Land converted to settlements (CRF Table 5.E Row 2) categories. Exceptions consist of estimates of soil organic matter emissions on forest land converted to cropland and peatlands, which are developed separately; methods are described in Sections A3.4.3.3 and A3.4.5.1. Likewise, estimation methods for emissions (as opposed to carbon stock changes) from forest land converted to flooded lands

in locating data about the carbon stocks prior to plantation. It was assumed that the ecosystem would generally accumulate soil carbon at a slow rate; the limited time frame of this analysis and the scale of the activity relative to other land-use and land-use change activities suggest that the impact of this uncertainty, if any, is minimal.

 $^{16 \}quad http://cfs.nrcan.gc.ca/subsite/afforestation/feasibility afforestation\\$

¹⁷ http://cfs.nrcan.gc.ca/subsite/afforestation/forest2020pda/forest2020pda

Table A3–35 GHG Fluxes To and From Managed Forests, 2009

Process/Event		(GHG Balance (Gg	CO ₂ eq) ¹	
	Biomass	DOM	Soil	N ₂ O ³	Ecosystem Net Balance
Annual processes	-2 935 937	2 110 868	614 158	0	-210 910
Harvesting	105 687	15 929	0	345	121 961
Wildfires	13 652	56 423	0	3 117	73 192
Insects ²	12	0	0	0	12
Total	-2 816 587	2 183 220	614 158	3 462	-15 746

Notes

- 1. On a C pool basis, exchanges of GHGs with the atmosphere are not equal to C stock changes.
- 2. "0" emissions indicate that events do not cause emissions to, or removals from, the atmosphere. Rather, they kill biomass that is transferred to DOM.
- 3. Carbon in CH₄ and CO emissions is included in each pool's assessment, but N₂O emissions are computed separately from total CO₂ emissions (see Annex 8).

are described in Section A3.3.5.2.

Note that the immediate effect of disturbances is identifiable in the output data sets for the year of the disturbance. In subsequent years, post-disturbance emissions and removals are simulated as annual processes. The CBM-CFS3 does not distinguish post-disturbance processes from other processes affecting ecosystem C; hence, the long-term impact of disturbances in the managed forests cannot be fully identified.

Table A3–35 gives 2009 estimates of the broad components of the GHG emissions and removals in managed forests generated by the CBM-CFS3. The largest fluxes are carbon uptake by biomass and its release by DOM decay (from heterotrophic respiration). The first is largely influenced by the age-class distribution of the managed forests; organic matter decay is controlled by input from litter fall, mortality and post-disturbance decay. Insect disturbances cause very limited immediate emissions; however, depending on the severity of infestations and insect damage, they may result in 1) reductions in C uptake through growth reductions, 2) large carbon transfers from biomass to DOM and 3) alterations in the long-term trend of organic matter decay (Kurz et al. 2008a).

A3.4.2.4. Uncertainties

Good practice recommends the use of numerical methods for assessing uncertainties within complex modelling frameworks with multiple interactions between data and parameters. These methods are data-intensive; computational requirements can quickly become a limiting factor. Not all model parameters or input data have equal influence on model outputs; careful consideration must there-

fore be given to balance available computing capacity and the inclusion in the uncertainty assessment of input data, parameters and other functions with a large influence on model outputs.

Compared to the previous submission, the uncertainty analysis reported here has been enhanced by allowing more parameters to vary, and adding randomization steps to determine confidence intervals. The general approach to uncertainty assessment remains the same, emphasizing model inputs and parameters as the main sources of uncertainty. The two main uncertainty sources already discussed in previous submissions are forest inventory data and key model parameters. In this assessment, a third one was added: the initialization of soil and dead organic matter C stocks prior to model runs. Additional randomization steps were also fed into the development of confidence intervals, by randomly selecting 10 000 bootstrap samples of the Monte Carlo run outputs. The following paragraphs provide details on the characterization of uncertainty sources.

The forest inventory data used in model simulations are developed for planning and operational purposes. Methods, standards, definitions and quality differ by jurisdiction, depending on their objectives. Although documentation on the different inventory techniques and procedures used across the country is usually available, it seldom contains any quantitative assessment of uncertainty. While it is currently impossible to quantify uncertainties about, for example, managed forest areas, the influence of this uncertainty source can be indirectly built into the uncertainty about the biomass increment simulated by the model. For the purpose of this assessment, a 50% uncertainty about

biomass increment was assumed; in addition to managed forest areas, it incorporated uncertainties about the ageclass distribution, yield curves and allometric equations that enter the estimation.

The areas of managed forests affected annually by both natural and anthropogenic disturbances have a large influence on the forest carbon dynamics as a whole. Disturbances affect emissions and removals of C in the short term, and in the long term through residual decay and age-class distribution. Uncertainties of 10% and 25% were assumed on the areas of managed forests subject annually to wildfires and insect infestations respectively.

The uncertainty about the carbon removed in harvested material was spatially refined; it also incorporated error ranges in harvested volume (\pm 1%), and standard deviations about roundwood specific gravity and bark adjustment factor (Table A3–36). No error was assumed for the carbon proportion of biomass. The annual coefficient of variation was multiplied by 2 to approximate a normal distribution with a triangular one.

Table A3–36 Uncertainty Ranges for Harvested Carbon, by Canadian Province and Territory Source: Metsaranta et al. (2011)

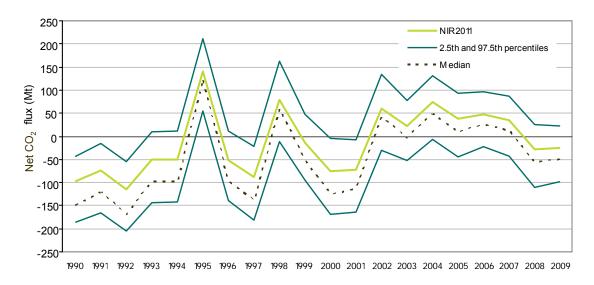
Province/Territory	Minimum Multiplier	Maximum Multiplier
Alberta	0.9	1.1
British Columbia	0.92	1.08
Newfoundland	0.96	1.04
Manitoba	0.86	1.14
New Brunswick	0.92	1.08
Northwest Territories	0.74	1.26
Nova Scotia	0.88	1.12
Ontario	0.92	1.08
Prince Edward Island	0.88	1.12
Quebec	0.86	1.14
Saskatchewan	0.92	1.08
Yukon	0.84	1.16

As the assessment also provided uncertainties about emissions due to forest conversion, a 30% uncertainty about areas converted annually was used. The "Forest Conversion" section of this annex describes the derivation of this value.

Soil and other slow-decaying DOM pools contain a considerable amount of carbon. Previous work had shown that the initial DOM C stocks, at the beginning of a complete

run, are sensitive to historical disturbance rates. In this assessment, initial C stocks in the soil and DOM pools were allowed to vary by modifying the historical (pre-1990) fire return intervals. Even though the rates of soil organic matter decay modelled by the annual processes are very low, they do, by virtue of the pool size and forest areas, strongly influence emissions from annual processes. A sensitivity analysis of carbon emissions from the dead organic matter and soil pools revealed that the most influential model parameters included decay rates for soil organic matter, and the decay and release to the atmosphere of carbon from very-fast cycling pools, such as dead fine roots and litter (White et al. 2008).

For the purpose of this analysis, 28 model parameters were allowed to vary in the Monte Carlo runs:


- Base decay rates for DOM pools (11 parameters)
- Proportion of decayed material that is oxidized, versus that which is transferred to another DOM pool (5 parameters)
- Turnover rates for biomass pools (12 parameters)

In the absence of evidence to support more complex functions, all input probability distribution functions for biomass increments, activity data on human and natural disturbances and decay parameters were triangular. A gamma probability distribution function was used for fire intervals (Metsaranta et al. 2011).

Significant uncertainty in the modelling framework results from the random selection of forest stands subject to disturbances (Kurz et al. 2008b), which interacts with the uncertainty about forest inventory data. The random effect of stand selection algorithms was included in the analysis, by allowing different seed values to initiate the random selection algorithms.

It is important to note the interactions between input data and parameters. For example, the uncertainty about the age of a forest stand (or age-class structure of a forest landscape) may affect the simulated stand (or landscape) productivity, depending on the yield curves and the particular locations of a given age category along those curves. Emissions due to disturbances—including the conversion of forests to other land categories—are driven not only by the areas affected, but also the pre-conversion standing carbon stocks, the parameters of the disturbance matrices that re-allocate carbon among pools or "release" it to the atmosphere, and the post-conversion decay rates. Hence, uncertainties about estimates cannot be obtained from a

Figure A3–13 Uncertainty Range of Net FLFL CO₂ Flux (Full Thin Lines), the Median Value of the 100 Monte Carlo Runs (Dashed Line), and the Estimates of the 2011 Submission (Full Thick Line) for Each Inventory Year in the 1990–2009 Time Series. Source: Metsaranta et al. (2011)

simple combination of "activity data" and "emission factor" uncertainties.

This is the second uncertainty assessment about the net GHG flux estimates for managed forests in Canada. Resulting uncertainty ranges were provided in Chapter 7, and are illustrated below for net CO_2 fluxes in Forest Land remaining Forest Land (Figure A3–13). These ranges are generally wider than in the previous submission, because more factors were randomized and error ranges were revised, and because of the additional randomization step due to the re-sampling of run outputs. In some instances, notably forest conversion, the uncertainty about GHG estimates increased even though error ranges about areas were reduced from 38% to 30%.

Not all uncertainty sources have been captured: importantly, the analysis did not consider the impact of processes that are currently not simulated. Hence, the results should not be used to assess potential bias (or accuracy) of estimates. Additional considerations may be warranted to identify the direct human-induced effects, and their uncertainties, on forest carbon dynamics. Improvements are expected to occur over coming years, due to better knowledge, refined procedures and access to more computing capacity.

A3.4.3. Cropland

The methodologies described in this section apply to carbon stock changes in mineral soils subject to cropland management and to the conversion of land in the Forest and Grassland categories to the Cropland category; CO₂ emissions from liming; CO₂ emissions from the cultivation of histosols; changes in the biomass of woody perennial crops; and N₂O emissions from soil disturbance upon conversion to cropland. The estimation methodologies for carbon stock changes and GHG emissions from the biomass and DOM pools upon conversion of forest land to cropland are provided in Section A3.4.2.3.

A3.4.3.1. Cropland Remaining Cropland

A detailed description of the methodologies used for this category can be found in McConkey et al. (2007a).

Change in Carbon Stocks in Mineral Soils

Changing Management Practices

The amount of organic carbon retained in soil represents the balance between the rates of input from crop residues and losses through soil organic carbon (SOC) decomposition. How the soil is managed determines whether the amount of SOC stored in a soil is increasing or decreasing. The IPCC (2003) approach, which guided the development of the CO_2 estimate methodology, is based on the

premise that, on long-existing cropland, changes in soil C stocks over time occur following changes in soil management that influence the rates of either C additions to, or C losses from, the soil. If no change in management practices occurs, the C stocks are assumed to be at equilibrium, and hence the change in C stocks is deemed zero.

A number of management practices are generally known to increase SOC in cultivated cropland, such as reduction in tillage intensity, intensification of cropping systems, adoption of yield-promoting practices and re-establishment of perennial vegetation (Janzen et al. 1997; Bruce et al. 1999). Adoption of reduced tillage (RT) or no-till (NT) can result in significant accumulation of SOC compared with intensive tillage (IT) (Campbell et al. 1995, 1996a, 1996b; Janzen et al. 1998; McConkey et al. 2003). Many cropping systems can be intensified by increasing the duration of photosynthetic activity through a reduction of summerfallow (Campbell et al. 2000, 2005; McConkey et al. 2003) and greater use of perennial forage (Biederbeck et al. 1984; Bremer et al. 1994; Campbell et al. 1998). Intensification of cropping systems not only increases the amount of C entering the soil, but may also reduce decomposition rates by cooling the soil through shading and by drying the soil. Conversely, switching from conservative to conventional tillage or from intensive to extensive cropping systems will generally reduce C input and increase organic matter decomposition, thereby reducing SOC.

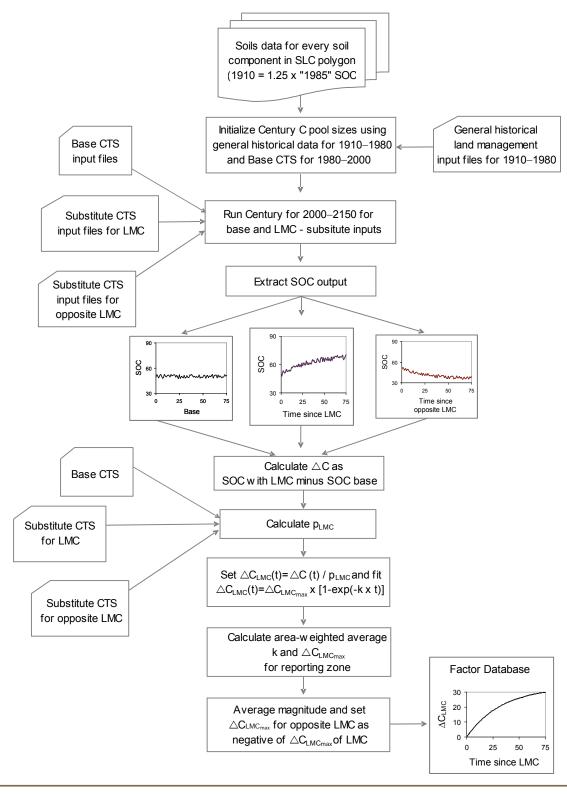
VandenBygaart et al. (2003) compiled published data from long-term studies in Canada to assess the effect of agricultural management practices on SOC. This compendium, as well as the availability of activity data from the *Census of Agriculture*, provided the basis for identifying key management practices and management changes used to estimate changes in soil C stocks. Emissions and removals of CO₂ from mineral soils are estimated for the following land management changes (LMCs):

- 1. Change in mixture of crop type
 - a) Increase in perennial crops
 - b) Increase in annual crops
- 2. Change in tillage practices
 - a) IT to RT
 - b) IT to NT
 - c) RT to IT
 - d) RT to NT
 - e) NT to IT
 - f) NT to RT

- 3. Change in area of summerfallow
 - a) Increase in area of summerfallow
 - b) Decrease in area of summerfallow

Where nutrients are greatly limiting, proper fertilization can increase SOC; in such conditions, however, fertilizer or other nutrient-enhancing practices are generally applied. Irrigation in semi-arid areas can affect SOC, but the impact is unclear, and the area of irrigated land has been relatively constant in Canada. Therefore, it is assumed that the selected LMCs represent the most important and consistent influences on SOC in mineral soils.

Carbon Stock Change Factor


To estimate C emissions or removals, an SOC stock change factor specific to each combination of Soil Landscapes of Canada (SLC) polygon (the analysis unit) and management change is multiplied by the area of change. The factor is the average rate of SOC change per year and per unit of area of LMC.

Equation A3-50:

		$\Delta C = F \times A$
where:		
ΔC	=	change in SOC stock for inventory year, Mg C $$
F	=	average annual change in SOC subject to LMC, Mg C/ha/year
Α	=	LMC area, ha

Areas of LMC such as changes in tillage, crop type and fallow are obtained from the Census of Agriculture. Census data provide information on the net change in area over five-year census periods. In practice, land probably both enters and leaves a land management practice, and combinations of management changes occur. However, because only net change data are available, two assumptions are made: additivity and reversibility of SOC factors. Reversibility assumes that the factor associated with an LMC from A to B is the opposite of that associated with the LMC from B to A. Additivity assumes that the C changes from each individual LMC occurring on the same piece of land are independent and therefore additive. This assumption is supported by the findings of McConkey et al. (2003), who reported that the impact of tillage and crop rotations on SOC is generally additive.

Figure A3–14 Method for Deriving Carbon Factors for Land Management Change of Interest

There is a relatively large set of Canadian observations of long-term changes in SOC for LMCs such as adoption of NT and reduced frequency of summerfallow (VandenBygaart et al. 2003; Campbell et al. 2005). However, even this large

data set does not cover the whole geographical extent of Canadian agriculture. In addition, there are difficulties in comparing measurements among research sites, in determining the duration of an effect, in estimating full

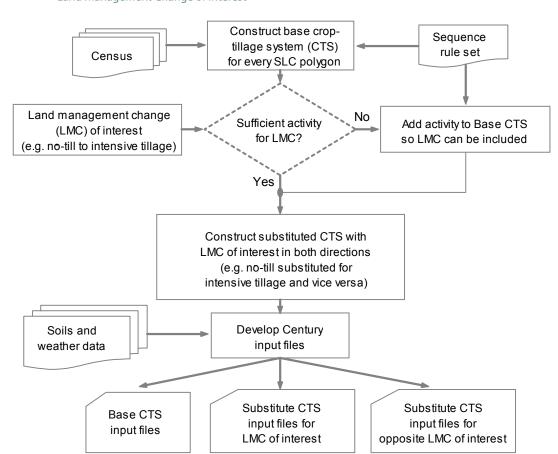


Figure A3–15 Method for Deriving Land Management Input Files to Use with Century Model to Estimate the Carbon Factor for a Land Management Change of Interest

uncertainty from a range of initial soil conditions, and in determining the variability of soil C stocks without management change.

Because of these limitations, a well-calibrated and validated model of SOC dynamics, the Century model (Parton et al. 1987, 1988), is used to derive individual SOC factors for changes between NT and IT, RT and IT, RT and NT, annual and perennial crops, and area of summerfallow. The Century model has been widely used to simulate SOC change for Canadian conditions (Voroney and Angers 1995; Liang et al. 1996; Monreal et al. 1997; Campbell et al. 2000, 2005; Pennock and Frick 2001; Carter et al. 2003; Bolinder 2004).

Smith et al. (1997, 2000, 2001) developed an approach using the Century model to estimate SOC change on agricultural land in Canada. To estimate C change, it was necessary to develop a generalized description of land use and management from 1910 onwards on cropland for a sample of soil types and climates across Canada. These scenarios

were generated from a mixture of expert knowledge and agricultural statistics of land management, including crop types, fallow and fertilizer application (Smith et al. 1997, 2000). These have been used for the first comprehensive assessments of SOC change on agricultural land within a broader assessment of soil health (McCrae et al. 2000).

The general method for developing factors is outlined in Figure A3–14 and Figure A3–15. The starting points were the SOC values in the SLC polygon attribute database (Can-SIS). These database SOC values were derived from measurements made for soil surveys and land resource studies (Tarnocai 1997) and were assumed to represent average SOC on cropland in 1985. Initial SOC in 1910 was estimated as 1.25 times the SOC in the SLC polygon. Changes in SOC factors were estimated using the difference in SOC stocks over time between simulation of a generalized land use and management scenario with and without the LMC of interest (Smith et al. 2001).

A 10-year crop-and-tillage system (CTS) was developed for each analysis unit and census year, using data from

the *Census of Agriculture*. The CTS focused on seven crops or crop types (grain, oilseeds, pulses, alfalfa, root crops, perennial crops and summerfallow) and three tillage practices (IT, RT and NT). Essentially, each CTS represents a mix of crops and tillage practices in space as a mix of crops and tillage practices in time. Under this scheme, a polygon with 20% of cropland area in grain and 20% of cropland area in NT, for example, has 2 of 10 years in grain and 2 of 10 years in NT. Temporal sequences of crop and tillage practices are developed from expert-defined rule-sets, such as "summerfallow never follows summerfallow" and "corn typically follows soybeans." The construction allows a base CTS and substitutions of LMCs in the CTS to be readily input to the Century model.

The SOC change factor is determined as Factor = (C for CTS with LMC – C for base CTS) / [(fraction of CTS substituted with the LMC) \times (duration considered)]. If a land management system is defined as a particular mix of crops and tillage practices on a specified land area, a change in SOC due to an LMC (ΔC_{LMC}) can be estimated as the difference in SOC stock between two land management systems divided by the proportion of the land area subject to an LMC.

Equation A3-51:

$$\Delta C_{LMC}$$
 (t) = $\frac{\Delta C}{p_{LMC}}$

where:

 $\Delta C_{LMC}(t)$ = the difference in SOC between land management systems from year to

year (Mg SOC/ha)

p_{LMC} = the proportion of the land area under a given land management system

subject to the LMC

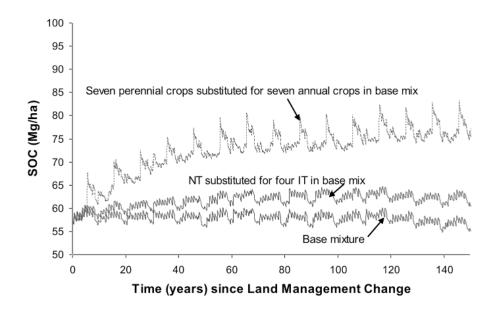
This proportion (p_{LMC}) can be derived as the proportion of the particular LM in the base system less the amount of the LM in the new system after the LMC. That is,

Equation A3-52:

 $p_{LMC} = p_{LMbase} - p_{Lmnew}$

where:

p_{LMbase} = the proportion of the base land man-


agement system

 p_{LMnew} = the proportion of the new land man-

agement system

The following provides an example of Century runs for a Lethbridge loam (Orthic Dark Brown Chernozem) in the Semi-arid Prairies reporting zone. A base model run was

Figure A3–16 Soil Organic Carbon (SOC) for a Base Crop Mix, for Perennial (Alfalfa) Substituted for Annual Crops (Wheat), and for No-Till (NT) Substituted for Intensive Till (IT) Based on Century Runs for a Lethbridge Loam

40 $\Delta C(t) = 27.2 * [1- exp(-0.0290*t)]$ 35 ΔC (annual to perennial) 30 25 20 ΔC (Mg ha⁻¹) exp(-0.223*t)] ΔC (IT to NT) 10 40 60 80 100 120 140

Figure A3–17 Change in SOC for Simulations with Substitutions Relative to Simulations with Base Crop Mix

Year (t) since Land Management Change

made using a 10-year base mix of crops based on the *1996 Census of Agriculture* and weather data covering the years 1951–2001. Century simulations of SOC were made by substituting perennial crops for the seven annual crops out of ten in the base mixture. As a separate exercise, NT was substituted for IT four years out of ten in the base mixture (Figure A3–16). The next step was to calculate the $\Delta C_{LMC}(t)$ function by subtracting the simulated SOC values for the base mix values from those imposed by the LMC of interest (Equation A3–51). Finally, the $\Delta CLMC(t)$ was calculated as the proportion of area of farming system divided by the pLMC (Equation A3–52); Figure A3–17 illustrates the time series of ΔC_{LMC} . In this particular case the respective values of pLMC for the IT to NT reduction and for the addition of perennial crops were 4/10 and 7/10.

-10

SOC dynamics are believed to be governed by first-order kinetics, and thus C change can be expressed as

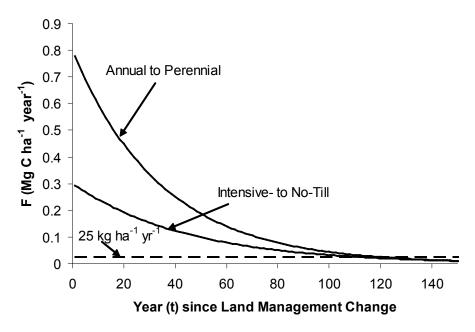
Equation A3-53:

$$\Delta C_{LMC}(t) = \Delta C_{LMCmax} \times [1 - exp^{(-k \times t)}]$$

where:		
ΔC_{LMCmax}	=	the maximum SOC change induced by the LMC
K	=	the rate constant
t	=	year

In practice, the exponential equations are fit statistically using standard statistical analysis software by methods of least squares. The slope of the exponential equation has units of Mg C/ha per year and is the instantaneous factor value. Since the estimation is based on annual changes, the equation used for estimating the factor for annual change from the previous year (i.e. from year t–1 to year t) is

Equation A3-54:


$$\textbf{F}_{LMC}(t) = \Delta \textbf{C}_{LMCmax} \times [\texttt{exp}^{(-k \times [t-1]}) - \texttt{exp}^{(-k \times t)}]$$

Since perfect steady-state conditions are never reached, the exponential equation should theoretically apply forever. In practice, however, the exponential equation was truncated when the $F_{LMC}(t)$ dropped to 25 kg C/ha per year. This rate was below a practical measurement limit (Figure A3–18).

Estimating Mean k and ΔC_{LMCmax} for Practical Factor Calculations

The ΔC_{LMCmax} and k parameters were determined for all 11 602 soil components of the CanSIS database and three LMCs (changes in tillage practices, summerfallow and annual-perennial crop mix). These soil components repre-

Figure A3–18 Carbon Factors as a Function of Time

sented a wide range of initial SOC states and combinations of base crop mixtures and amounts of substitutions. The parameter values were estimated for each reporting zone as the mean across these soil components, weighted by area of agriculture on each component (Table A3–37). The geometric mean was used for k, since its distribution was positively skewed. These means were calculated by three general soil texture classes (sandy, loamy and clayey) and applied to each soil component based on its textural class. Occasionally, k values less than 0 or greater than 0.15 resulted from the fit to ΔC_{LMC} ; the k and ΔC_{LMCmax} from these fits were excluded from the reporting zone means.

The dynamics of SOC change in summerfallow have been well studied in Canada. Therefore, rather than using the value for ΔC_{LMCmax} from the Century simulations, the ΔC_{LMCmax} value was set so that F was 0.15 Mg C/ha per year (Campbell et al. 2005) at 20 years based on a p_{LMC} of 0.5 (for example a change from 50% fallow to no use of fallow). The k value was derived from the Century simulations as described above.

Generally, rates of SOC losses may be expected to be greater upon an LMC than rates of SOC gain upon the reverse LMC. However, this effect depends greatly on the relative SOC amount at the time of the LMC. Documenting SOC at the time of all LMCs is currently impossible; hence for transparency and simplicity the reversibility assumption was imposed, which requires that the SOC effect of an LMC

in one direction is exactly the negative of the SOC effect of the practice change in the opposite direction.

Soil Carbon Factor Validation

SOC change factors for LMCs used in the inventory were compared with empirical coefficients in VandenBygaart et al. (2008). They showed that empirical data comparing SOC change between IT and NT were highly variable, particularly for eastern Canada. Nonetheless, the modelled factors were still within the range derived from the empirical data. The mean IT-NT factor for experiments in the Subhumid Prairies reporting zone was over four times that of the Semi-arid Prairies reporting zone. The mean Century model—derived factor for the Semi-arid Prairies reporting zone was similar to the factor derived from the field experiments. However, the Century-derived IT-NT factor for the Subhumid Prairies reporting zone was about 30% lower than the factor derived from the field experiments.

When considering the switch from annual to perennial cropping, the mean empirical factor was 0.59 Mg C/ha per year, and this compared favourably with the range of 0.46–0.56 Mg SOC/ha per year in the modelled factors in the Parkland, Semi-arid Prairies and West reporting zones (Table A3–37). In eastern Canada, only two empirical change factors were available in the East Central reporting zone, but they appeared to be in line with the modelled values (0.60–1.07 Mg SOC/ha per year empirical versus

Table A3–37 Generalized Values of Parameters for $F_{LM}C(t) = \Delta C_{LMCma} x \times [1 - exp^{(-k \times t)}]$ to Predict Change from Land Management Change (LMC) and Effective Linear Coefficients of SOC Change

Zone ¹	LMC ²	k/year	Δ _{CLMCmax} (Mg/ha)	Final Year of Effect after LMC ³	Mean Annual Linear Coefficient over Duration of Effect of LMC (Mg/ha per year)	Mean Annual Linear Coefficient over First 20 years after LMC (Mg/ha per year)
East	IT to NT	0.0216	3.5	52	0.05	0.06
Atlantic	IT to RT	0.0210	2.4	36	0.04	0.05
	RT to NT	0.0231	1.1	1	0.03	0.03
	Decrease fallow	0.0233	13.1	91	0.03	0.3
		0.0303	43.4	167	0.14	0.77
F+	Increase perennial					
East Central	IT to NT	0.025	5	65	0.06	0.1
central	IT to RT	0.0261	1.9	25	0.04	0.04
	RT to NT	0.0255	3.2	46	0.05	0.06
	Decrease fallow	0.0305	13.1	91	0.14	0.3
	Increase perennial	0.0247	38.2	147	0.25	0.74
Parkland	IT to NT	0.0286	6.5	70	0.08	0.14
	IT to RT	0.0242	2.8	41	0.04	0.05
	RT to NT	0.0263	3.7	51	0.05	0.07
	Decrease fallow	0.0305	13.1	91	0.14	0.3
	Increase perennial	0.0233	29.4	142	0.2	0.55
Semi-arid	IT to NT	0.0261	4.9	63	0.06	0.1
Prairies	IT to RT	0.0188	2.3	30	0.03	0.04
	RT to NT	0.0222	2.5	37	0.04	0.05
	Decrease fallow	0.0305	13.1	91	0.14	0.3
	Increase perennial	0.0281	26.1	120	0.21	0.56
West	IT to NT	0.0122	4.8	69	0.04	0.05
	IT to RT	0.0116	0.8	0	0	0
	RT to NT	0.0119	3.9	53	0.03	0.04
	Decrease fallow	0.0305	13.1	91	0.14	0.3
	Increase perennial	0.0155	34.4	198	0.17	0.46

Notes:

0.74–0.77 Mg C/ha per year modelled).

For conversion of crop fallow to continuous cropping, the rate of C storage was more than double the average rate of 0.15 ± 0.06 Mg/ha per year derived from two independent assessments of the literature. This difference led to the decision to use empirically based factors for changes in summerfallow in the inventory.

Estimates of Change in Soil Carbon Stocks

SOC changes as a result of LMC were reported for 1990–2009. Because the effect of LMCs declines over

time, a vintage or time when change was deemed to have occurred is maintained for each LMC. The C change factor was multiplied by the area of LMC and summed across soil components to produce an estimate of SOC change for the SLC polygon. This is the smallest georeferenced unit of SOC stocks and SOC stock changes, with accounting using an IPCC Tier 2 approach as follows:

^{1.} Area-weighted summary: East Atlantic is the Atlantic Maritime reporting zone plus the Boreal Shield reporting zone in Newfoundland and Labrador; East Central is the Mixedwood Plains reporting zone plus the Boreal Shield East reporting zone in Ontario and Quebec; Parkland is the Subhumid Prairies, Boreal Shield West and Boreal Plains reporting zones plus those parts of the Montane Cordillera reporting zone with agricultural activity contiguous to agricultural activity within the rest of the Parkland zone; and West is the Pacific Maritime reporting zone plus the Montane Cordillera reporting zone excepting that portion of the latter that is included in the Parkland zone as described above.

^{2.} For LMCs in the opposite direction to that listed, the F_{LMCmax} will be the negative of the value listed.

^{3.} No further C change once the absolute value of the rate of change is less than 25 kg C/ha per year.

Equation A3-55:

$$\Delta C_{\text{LMC}} = \sum_{1951-2009} \sum_{\text{ALL SLC}} (\Delta C_{\text{TILL}} + \Delta C_{\text{SF}} + \Delta C_{\text{CROPPING}})$$

where:

ΔC_{LMC} = change in SOC stocks due to LMC for a specific year since 1951

 ΔC_{TILL} = change in SOC stocks due to change in tillage practices from each SLC, since each

particular tillage change

 ΔC_{SF} = change in SOC stocks due to the change in

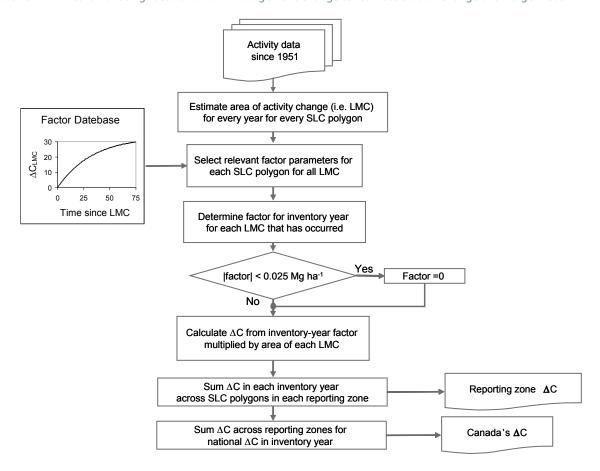
summerfallow in each SLC

 $\Delta C_{CROPPING} = {}$ change in soil C stocks due to the change in annual and perennial crops in each SLC

Figure A3–19 provides a schematic of the method for C accounting.

Data Sources

Carbon stock change estimates rely on C factors and a time series of land management data in the *Census of Agricul*-


ture. There are two types of data used for either deriving C factors (modelling) or computing the actual estimates of C stock change. The data mainly used for modelling C factors include SLC, crop-tillage systems derived from the *Census of Agriculture*, and crop yields, climate data and activity data from other surveys and databases. The land management practices from the Census of Agriculture are mainly used for estimating annual C stock changes.

Land Information and Activity

The SLC is a national-scale spatial database describing the types of soils associated with landforms, displayed as polygons at an intended scale of representation of 1:1 million. The SLC Version 3.0 was chosen for the LULUCF inventory because all SLC polygons are "nested" within the 1995 National Ecological Framework, making it possible to scale up or scale down data and estimates, as required.

18 Available online at http://sis.agr.gc.ca/cansis/nsdb/slc/v1/intro.html

Figure A3–19 Method of Using Factors for Land Management Change to Estimate Carbon Change over Large Areas

In all provinces within the agricultural region of Canada, detailed soil survey information with map scales greater than 1:1 million was used to delineate the SLC polygons and compile the associated database files. The SLC Component Soil Names Files and Soil Layer Files provided specific input data including soil C content, soil texture, pH, bulk density and soil hydraulic properties for modelling C factors with Century. The SLC polygon provides the spatial basis for allocating land management practices such as tillage practices and cropping systems from the *Census of Agriculture* and Cropland converted from Forest and Grassland to modelled C factors.

Analysis Units

There are 3264 SLC polygons that have agricultural activities. Since the SLC polygons have several soil landscape components, the finest spatial resolution for analysis of agricultural activities is 11 602 unique combinations of soil components within SLC polygons. These unique combinations represent the basic analysis units. The location of land management and soil components is not spatially explicit but rather spatially referenced to SLC polygons.

A procedure was developed to assign agricultural activities to the SLC based on the suitability of each component of a soil polygon. The soil components have different inherent properties that make them more or less likely to have different types of agricultural activities. Each soil component within the SLC attribute file has a suitability rating of high, moderate or low in terms of its likelihood of being under annual crop production. Annual crop production is linked to those components with a high rating. If there was insufficient area with high likelihood of being under annual cropland for area of annual crops, the remaining annual crop production was linked to components with moderate likelihood of being under annual crop production and, if required, to low-ranked components. After linking the annual crop production area, perennial forages and seeded pasture area were linked to the remaining components in the same manner, starting with components with the highest likelihood of being in annual crops and ending with components with the lowest likelihood of being cropped.

Crop Yields

Crop yields at an ecodistrict level were developed from Statistics Canada surveys. Statistics Canada conducts annual surveys of up to 31 000 farmers, stratified by region, to compile estimates of the area, yield, production and stocks of the principal field crops grown in Canada. Eight publications are released at strategic points in the crop year; the first area report contains the planting intentions of producers, whereas the June estimates are made after most of the seeding has been completed. Yields and levels of production by province are estimated twice, based on expectations to the end of harvest, whereas the November estimate is released after the harvest. The data are released at the Census Agricultural Region level, providing crop yields for approximately 70 spatial units in the country. Census Agricultural Region boundaries were overlaid on SLC boundaries in a GIS, and a yield value for each crop in each soil polygon was assigned based on majority proportion. Data used for accounting included 1975–2004 yield data for wheat, barley, oats, corn, soybeans, potatoes and canola. These yields were used to calibrate the Century crop growth submodel.

Climatic Data

There are 958 weather stations in the weather database archived by Agriculture and Agri-Food Canada (AAFC). Long-term normals of monthly maximum and minimum temperatures (°C) and precipitation (mm) from 1951 to 2001 for all ecodistricts were used for modelling C factors. AAFC-archived weather data were provided by the Meteorological Service of Canada, Environment Canada.

Census of Agriculture

Activity data for accounting in cropland remaining cropland rely mainly on data from the *Census of Agriculture*. ¹⁹ The smallest area for which Statistics Canada will release data externally for confidentiality reasons is the Dissemination/Enumeration Area level (approximately 52 000 in Canada). Agriculture and Agri-Food Canada has reconfigured Census data for 1981, 1986, 1991, 1996, 2001 and 2006 from Dissemination Area units to SLC polygons and higher-level ecostratification units using a procedure involving geographic overlays of the relevant boundary files.

Data on tillage practices were taken from the census according to the following categories: 1) IT—tillage that incorporates most of the crop residue into the soil, 2) RT—tillage that retains most of the crop residue on the surface, and 3) NT—no-till seeding or zero-till seeding. For summerfallow, the following tillage categories were used: 1)

¹⁹ Statistics Canada collects and publishes the Census of Agriculture every five years; the latest in 2006 (2006 Census of Agriculture, Catalogue No. 95-629). Available online at http://www.statcan.ca/english/agcensus2006/index.htm

NT—the area on which chemicals only were used for weed control, 2) IT—the area on which tillage only was used, and 3) RT—the area on which a combination of tillage and chemicals was used. There are two limitations of the census data pertaining to tillage practices that resulted in uncertainties: 1) Statistics Canada and expert opinion indicate that the conservation tillage tends to be underestimated, and 2) tillage distributions as reported for a region must be applied equally to all crops within that region.

Uncertainty

The derivation of uncertainties about estimates of CO₂ emissions or removals requires estimates of uncertainties for LMC areas and C factors of management changes for fallow, tillage and annual/perennial crops (McConkey et al. 2007b).

The uncertainty of area of change was determined for ecodistricts (one level of spatial aggregation above SLC). The average area of agricultural land within an ecodistrict is about 140 kha, i.e., sufficiently large that the areas of different management practice were considered independent of those in others, including adjacent ecodistricts. Errors in the areas of management practices in each ecodistrict were assumed to represent inherent uncertainty that was unaffected by the uncertainty of those in other ecodistricts. Further, the ecodistrict area is sufficiently large that a null report of an activity can be assumed to mean that activity is not occurring within the ecodistrict. Therefore, area uncertainty can be more reliable considered in relative terms for an ecodistrict than for an SLC polygon.

The uncertainty of the area in a management practice at any time for an average ecodistrict was based on the relative proportion of the area of that management practice in that ecodistrict. The relative uncertainty of the area of management practice expressed as standard deviation of an assumed normal population decreased from 10% of the area to 1.25% of the area as the relative area of that practice increased.²⁰

The uncertainties associated with C change factors for fallow, tillage and annual/perennial crops were assumed to arise from two main influences: 1) process uncertainty in C change due to inaccuracies in predicting C change even if the situation of the management practice were to be defined perfectly, and 2) situational uncertainty in C

change due to variation in the situation of the management practice.

Process uncertainty includes the effect of uncertainty in the model. This includes the uncertainty in the model predictions from uncertain model parameters and from inaccurate and/or incomplete representation of all relevant processes by the model. Where empirical data are used, process uncertainty includes inadequacies in measurement techniques, analysis error, poor representativeness of measurements, and/or components of C change not measured. To estimate the process error, the variation from measured C change for controlled experiments was used. It was assumed that this represents the inherent uncertainty even when the situation is accurately described. Process uncertainty scaling coefficients for tillage and fallow were derived for Canada from VandenBygaart et al. (2003).

Situational uncertainty derives from the inability to accurately describe each situation. This includes the effect of interactions with past or concurrent changes to land use or land management, variability in the weather or soil properties, variability in crop management, and/or continuity of LMCs. The situational uncertainty scaling coefficients for fallow change, tillage change and annual-perennial crop change were estimated from the observed variability of Century-simulated C change for all the soil componentmanagement-climate combinations within the reconciliation unit. There were many combinations of management within which C change was calculated. There was also a range of historical ecodistrict weather that was included in the Century simulations. The situational uncertainty also includes the additional variability of the regional factors introduced by the imposition of reversibility of C change. Average situational uncertainty scaling coefficients were derived for Canada (McConkey et al. 2007b).

Although process and situational uncertainty are expected to interact, given the complexity of the large number of possible interactions between deviations due to process uncertainty and those due to situation uncertainty, it is infeasible to describe their relationship. Hence, it was assumed that the total deviation in total C change was the sum of the deviation from process and situational uncertainty. Details of uncertainty estimate development are provided in McConkey et al. (2007b). Results are provided in Chapter 7.

²⁰ Huffman T. (Agriculture and Agri-Food Canada). 2006. Personal communication to B.G. McConkey (Agriculture and Agri-Food Canada).

CO₂ Emissions from Agricultural Lime Application

Limestone (C_aCO_3) and dolomite ($C_aMg(CO_3)_2$) are often used to neutralize acidic soils; increase the availability of soil nutrients, in particular phosphorus; reduce the toxicity of heavy metals such as aluminium; and improve the crop growth environment. During this neutralization process, CO_2 is released in bicarbonate equilibrium reactions that take place in the soil.

The rate of release varies with soil conditions and the types of compounds applied. In most cases lime is applied repeatedly. Thus, for the purposes of the inventory, it is assumed that the annual rate of lime is in near equilibrium with the consumption of lime in previous years. Emissions associated with lime application are calculated from the amount and composition of the lime applied annually.

The amount of C released as a result of limestone application is calculated using the default IPCC Tier 1 approach:

Equation A3-56:

 $C = \sum (Ai \times 12/100)$

where:

Ai

annual limestone consumption in province i, Mg/year

province i, Mg/ year

12/100

ratio of molecular weight of C to molecular weight of limestone

Similarly, the amount of C released as a result of dolomite application is calculated as

Equation A3-57:

 $C = \sum (Ai \times 24/184.3)$

where:

Ai

 annual consumption of dolomitic lime in province i, Mg/year

24/184.3

 ratio of molecular weight of 2C to molecular weight of dolomite

There is no single source of data for lime application on agricultural soils. The quantity of lime used for agricultural purposes is not collected by Statistics Canada. Lime usage data were retrieved from Western Canada, Atlantic, Ontario and Ouebec Fertilizer Associations.

Uncertainty

The 95% confidence limits associated with annual lime consumption data were estimated to be $\pm 50\%$. This uncertainty was assumed to include the uncertainty of lime sales, uncertainty in proportion of dolomite to calcite, uncertainty of when lime sold is actually applied, and uncertainty in the timing of emissions from applied lime. The uncertainty in the emission factor was not considered because the chemical conversion is deemed complete, and the maximum value of the emission factor was used.

CO₂ Emissions and Removals from Woody Biomass

Vineyards, fruit orchards and Christmas tree farms are intensively managed for sustained yields. Vineyards are pruned each year, leaving only the trunk and one-year-old stems. Similarly, fruit trees are pruned annually to maintain the desired canopy shape and size. Old plants are replaced on a rotating basis for disease prevention, stock improvement or introduction of new varieties. Typically, Christmas trees are harvested at about 10 years of age. For all three crops, it was assumed that, because of these rotating practices and the requirements for sustained yield, a uniform age-class distribution is generally found on production farms. Hence, there would be no net increase or decrease in biomass C within existing farms, as C lost from harvest or replacement would be balanced by gains due to new plant growth. The approach was therefore limited to detecting changes in areas under vineyards, fruit orchards and Christmas tree plantations and estimating the corresponding C stock changes in total biomass.

There are no Canadian studies on the above-ground or below-ground C dynamics of vineyards or fruit trees. However, results from other studies are considered valid inasmuch as varieties, field production techniques and even root stocks are often the same. Canadian literature on Christmas tree plantations is used whenever suitable.

On average, vines are replaced at 28 years of age; the average vine is therefore 14 years old (Mailvaganam 2002). Because of intensive pruning, the biomass of shoots and leaves is set at the constant value of 4 Mg/ha, whereas linear rates of above-ground and below-ground biomass accumulation in trunks and roots were 0.4 and 0.3 Mg/ha per year, respectively (Nendel and Kersebaum 2004). These were converted to C values using a 50% C content in bio-

²¹ McConkey BG. (Agriculture and Agri-Food Canada). 2007. Personal communication to Chang Liang (Environment Canada).

mass. Upon a decrease in vineyard areas, an instantaneous loss of 6.9 Mg C/ha is assumed, equal to the average standing biomass for 14-year-old vines (McConkey et al. 2007a).

Because of different standard planting densities, the average biomass of a mature tree ranged between 18 kg for an apple tree and 72 kg for a peach tree. However, the range of standing biomass per area was narrower, between 36 and 40 Mg/ha (McConkey et al. 2007a). This similarity is expected since, regardless of tree size and planting density, the tree shapes and canopies are manipulated to maximize net photosynthesis per area. An annual rate of C sequestration was calculated over a 12-year growth period at 1.6 Mg C/ha per year. The same rate, multiplied by a root: shoot ratio of 0.40 (Bartelink 1998), was used to estimate C sequestration in below-ground biomass. It was assumed that, on new orchard areas, trees accumulate biomass at a linear rate for 10 years (the average tree age on a plantation). Instantaneous C loss upon a decrease of orchards was equal to 50% of the total biomass of a 10-year-old tree (22.4 Mg C/ha).

Christmas trees are marketed at about 10 years of age (McConkey et al. 2007a). Wood accounts for approximately 70% of Christmas tree biomass, and fresh wood has a moisture content of 60-80%. With typical spacing and an expected market mass of 10 kg, a plantation of marketable trees is estimated to have an above-ground biomass density of 17.1 Mg/ha. With a root: shoot ratio of 0.3 (Bartelink 1998; Litton et al. 2003; Xiao and Ceulemans 2004), the total C biomass of a marketable tree plantation is estimated at 11.1 Mg C/ha. Carbon sequestration in biomass of new Christmas tree plantations is calculated for five years at rates of 0.85 and 0.26 Mg C/ha for above-ground and below-ground biomass, respectively. A decrease of plantation area would result in the immediate loss of 5.6 Mg C/ha.

Uncertainty

Poorly growing plants are regularly removed and replaced. Frequently, fruit trees and vineyards are irrigated to maintain desired growth during dry periods. Consequently, the variability in C stock changes should be less than that for other agricultural activities.

For loss of area, all C in woody biomass is assumed to be immediately released. There are no Canadian-specific data on this uncertainty. Therefore, the default uncertainty of $\pm 75\%$ for woody biomass on Cropland from the IPCC Good Practice Guidance for Land Use, Land-Use Change and

Forestry (IPCC 2003) was used. If the loss in area of fruit trees, vineyards or Christmas trees is estimated to have gone to annual crops, there is also a deemed perennial to annual crop conversion with associated C change uncertainty that contributes to C change uncertainty for a reporting zone.

Cultivation of Organic Soils

Cultivation of histosols for annual crop production usually involves drainage, tillage and fertilization. All these practices increase decomposition of SOC and, thus, release of CO_2 to the atmosphere.

Methodology

The IPCC Tier 1 methodology is based on the rate of C released per unit land area:

Equation A3-58:

$$C = \sum (Ai \times EF)$$
where:

Ai = area of organic soils that is cultivated for annual crop production in province i, ha

EF = C emission factor, Mg C loss/ha per year. The default EF of 5.0 Mg C/ha per year was used (IPCC 2006).

Data Sources

Areas of cultivated histosols at a provincial level are not included in the *Census of Agriculture*. In the absence of these data, consultations with numerous soil and crop specialists across Canada were undertaken. Based on these consultations, the total area of cultivated organic soils in Canada was estimated at 16 kha (Liang et al. 2004).

Uncertainty

The uncertainty associated with emissions from this source is due to the uncertainties associated with the area estimates for the cultivated histosols and of the emission factor. The 95% confidence limits associated with the area estimate of cultivated histosols are assessed to be $\pm 50\%$ (Hutchinson et al. 2007). The 95% confidence limits of the emission factor provided in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006) is $\pm 90\%$.

A3.4.3.2. Grassland Converted to Cropland

Conversion of native grassland to cropland generally results in losses of SOC and soil organic nitrogen (SON) and in turn leads to emissions of CO_2 and N_2O to the atmosphere.

A number of studies on changes of SOC and SON in grassland converted to cropland have been carried out on the Brown, Dark Brown and Black soil zones of the Canadian Prairies, and these results are summarized by McConkey et al. (2007a).

Losses of Soil Organic Carbon

The average loss of SOC based on field observations was 22% (McConkey et al. 2007a). Many of the studies involved comparisons within 30 years of breaking, whereas others were 70 or more years from breaking. Since many of these studies did not specify the period since breaking, it is assumed that the 22% SOC loss would refer to about 50–60 years after breaking.

The SOC dynamics from breaking of grassland to cropland for the Brown and Dark Brown Chernozemic soils (Figure A3–20) can be estimated with the Century model (Version 4.0). Shortly after breaking, there is an increase

in soil organic matter, as below-ground biomass of the grass becomes part of SOC. After a few years, SOC declines below the amount of SOC that existed under grassland. The rate of SOC decline gradually decreases with time. Neglecting the initial SOC increase due to C added from roots, simulated SOC dynamics can be described by the following equation:

Equation A3-59:

$$\Delta C(t) = \Delta C_{\text{\tiny Bmax}} \times [1 - \exp^{(-k \times [t - t_{\text{\tiny lag}}])}]$$

where:

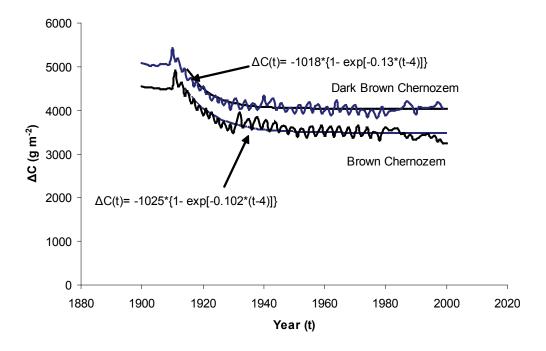
 $\Delta C(t)$ = change in SOC for the tth year after

conversion, Mg C/ha

 ΔC_{Bmax} = maximum ultimate change in SOC from grassland to cropland, Mg C/ha

k = rate constant for describing the de-

composition


t = time since breaking of grassland, years

tlag = time lag before ΔC becomes negative,

years

Assuming that the 22% loss at about 50–60 years after

Figure A3–20 Century-simulated SOC Dynamics after Breaking of Grassland to Cropland for the Brown and Dark Brown Chernozemic Soils

initial breaking represents the total loss, the ΔSOC_{Bmax} is 0.22/(1–0.22) = 28% of the stabilized SOC under agriculture. Given the uncertainty of actual dynamics, it was assumed that there was no time lag in SOC loss from breaking grassland, so that SOC starts to decline immediately upon breaking. With these assumptions, the general equation for predicting SOC loss from breaking grassland becomes

Equation A3-60:

$$\Delta C(t) = 0.28 \times SOC_{agric} \times \left[1 - exp^{(-0.12 \times t)}\right]$$
 where:
$$\Delta C(t) = \text{change in SOC for the tth year after conversion, Mg C/ha}$$

$$t = \text{time since breaking, years}$$

$$SOCagric = 0 - to 30 - cm SOC from the National Soil Database within CanSIS for the soil profile under an agricultural land use (Cropland category), Mg C/ha$$

Thus, the total losses of SOC in grassland converted to cropland were calculated using an IPCC Tier 2 approach:

Equation A3–61:

$$\begin{array}{lll} \Delta C_{\text{GL - CL}} &= \sum\limits_{1951-2009} \sum\limits_{\text{ALL SLC}} \sum\limits_{t} \left(\Delta C_{t} \times \text{AREA} \right) & \text{GL - CL} \right) \\ \text{where:} \\ \Delta C_{\text{GL-CL}} &= \text{losses of SOC in 2009 due to conversion of grassland to cropland since } \\ 1951, \, \text{Mg C} \\ \text{ALL SLC} &= \text{all soil polygons that contain grassland } \\ t &= \text{time after grassland conversion, years} \\ \Delta C_{t} &= \text{change in SOC for the t^{th} year after conversion, \, Mg C/ha} \\ \text{AREA}_{\text{GL-CL}} &= \text{area of grassland converted to cropland annually since 1951, ha} \\ \end{array}$$

Losses of Soil Organic N and N₂O Emissions

Change in SON is estimated as a fixed proportion of C losses. Where changes in both SON and SOC were determined, the average change in SON was 0.06 kg N lost/kg C lost (McConkey et al. 2007a). Thus, the emissions of N_2O in grassland converted to cropland were calculated using an IPCC Tier 2 approach:

Equation A3-62:

$$\begin{array}{lll} N_2O_{\text{GL-CL}} = \sum\limits_{1951-2009}\sum\limits_{ALL~SLC}\sum\limits_{t} \left(\Delta C_t \times AREA_{\text{GL-CL}} \times 0.06 \times EF_{\text{BASE}}\right) \times \frac{44}{28} \\ \\ \text{where:} \\ N_2O_{\text{GL-CL}} &= & \text{emissions of N}_2O \text{ in 2009 due to the conversion of grassland to cropland since 1951, kt} \\ \\ \text{ALL SLC} &= & \text{all soil polygons that contain grassland t} \\ \text{t} &= & \text{time after grassland conversion, years} \\ \\ \Delta Ct &= & \text{change in SOC for the t}^{\text{th}} \text{ year after conversion, Mg C/ha} \\ \\ \text{AREA}_{\text{GL-CL}} &= & \text{area of grassland converted to cropland annually since 1951, ha} \\ \\ \text{EF}_{\text{BASE}} &= & \text{base emission factor, defined as a function of long-term climate normals (monthly precipitation divided by potential evapotranspiration from May to October; P/PE) at an ecodistrict level (See Section A3.3.6)} \\ \\ \text{0.06} &= & \text{ratio of ON to OC losses} \\ \\ \text{44/28} &= & \text{coefficient converting N}_2O\text{-N to N}_2O \\ \\ \end{array}$$

Data Sources

For the census years of 1981, 1986, 1991, 1996, 2001 and 2006, unimproved pasture areas at the SLC level were obtained by "reconfiguring" the *Census of Agriculture* data to SLC polygons. For 1951, 1961 and 1971, provincial totals for unimproved pasture were disaggregated to SLCs based on the distribution in 1981. Within an SLC, unimproved pasture was allocated to soil components identified as "low" for "likelihood of being cropped." Once allocated to SLC polygons, area totals for unimproved pasture were aggregated to an ecodistrict or reconciliation unit level as required in each year from 1990. Areas of grassland conversion were allocated to the polygons that showed an increase in cropland area for the corresponding time period, while ensuring consistency with the total loss of grassland area within the reconciliation unit.

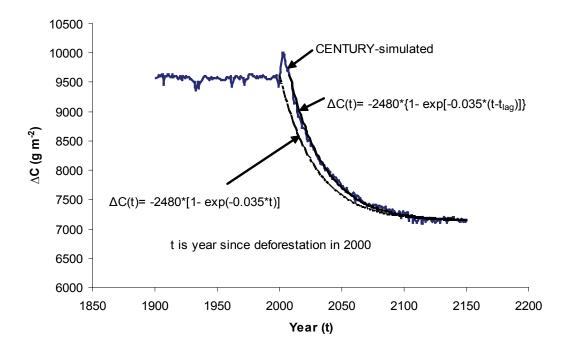
Uncertainty

The conversion from the agricultural Grassland category to the Cropland category is allowed, but the conversion in the other direction is not allowed. The uncertainty of the area of this conversion in a given ecodistrict cannot be larger than the uncertainty of the final area of Cropland or the initial area of Grassland. Therefore, the uncertainty of the area of conversion was set to the lower of the uncertainty of the area of land in the Cropland or Grassland cat-

Table A3–38 Soil Organic C for Forested and Agricultural Land in Eastern and Western Canada from the Canadian Soil Information System Database (0- to 30-cm soil depth)

Soil Texture	Soil Organic Carbon (Mg C/ha)		Difference (%)
	Forested Land ¹	Cropland ¹	
Eastern Canada			
Coarse	85 (26)	68 (42)	-20
Medium	99 (38)	77 (35)	-22
Fine	99 (58)	78 (36)	-21
Western Canada			
Coarse	73 (39)	74 (38)	0
Medium	66 (30)	73 (30)	4
Fine	74 (38)	77 (25)	1

Note:


egory. The factor scaling coefficient was assumed to be the same as for annual–perennial crop conversions (McConkey et al. 2007b).

A3.4.3.3. Forest Converted to Cropland

CO₂ and N₂O Emissions from Soils

Clearing forest to increase agricultural land is a declining but still significant practice in Canada. This section describes the methodology for estimating CO_2 and N_2O emissions associated with the soil disturbance. The method for estimating emissions from biomass upon conversion is presented in Section A3.4.2.3 For SOC change, there is a need to differentiate between the eastern and the western parts of the country.

Figure A3–21 Century-simulated Soil Organic Carbon Following Conversion of Long-term Deciduous Forest to Cropland

^{1.} Standard deviation in parentheses.

Eastern Canada

There are many observations that compare SOC for land under forest with adjacent land under agriculture in eastern Canada. The mean loss of C was 20.3% for a depth of approximately 30 cm (McConkey et al. 2007a). This value is comparable with the soil database in CanSIS (Table A3–38), indicating that, on average, SOC for the uppermost 30 cm of soil under agriculture was 20.5% less than under forest.

Although the SOC for forested land in Table A3–38 accounts for C in the litter layer above mineral soil, in practice there is always uncertainty in quantifying the litter layer C and C within soil debris (Paul et al. 2002). Soil erosion, which is generally assumed to increase under agriculture, also reduces measured SOC on agricultural land.

The Century model (Version 4.0) was used to estimate the SOC dynamics from forest conversion, and Figure A3–21 shows an example of such dynamics. In the first years after the conversion, there is an increase in soil organic matter, as litter and above-ground and below-ground DOM become part of SOC. After a few years, SOC declines below the amount of SOC that existed before forest conversion. The rate of SOC decline gradually decreases with time.

The following equation was fit to the Century results in Equation A3–63, neglecting the initial SOC increase:

Equation A3-63:

$$\Delta C(t) = \Delta C_{\text{\tiny Dmax}} \times \left[1 - \exp^{(-k \times [t - t_{\text{\tiny lag}}])}\right]$$

where:		
ΔC(t)	=	change in SOC for the t th year after conversion, Mg C/ha
ΔC_{Dmax}	=	ultimate change in SOC from forest conversion to agriculture, Mg C/ha
k	=	rate constant for describing the decomposition /year
t	=	time since land conversion, years
t _{lag}	=	time lag before ΔC becomes negative years

For the example shown in Figure A3–21, 25% of C losses occur within 20 years of forest conversion and 90% within 100 years. Given the uncertainty of actual dynamics, it was assumed that there is no time lag in SOC loss from forest conversion, so that SOC starts to decline immediately upon forest conversion: i.e., the fitted SOC loss (Equation A3–63) is used to estimate SOC loss with time lag set to 0 after

fitting. Fitting Equation A3–63 to the simulations shown in Figure A3–21 produces a mean k of 0.0262/year. Using this value, 92.7% of SOC loss would occur by 100 years after forest conversion.

The mean loss of 20.5% of SOC resulting from forest conversion to cropland for eastern Canada, based on CanSIS information, was assumed to correspond to about 100 years after forest conversion; the ΔC_{Dmax} is therefore 1/0.927 times this value, or 22.1% of SOC under long-term forest. As the CanSIS soil database has more data on SOC for conditions under long-term cropland than on SOC under long-term forest in areas where cropland exists, the maximal SOC losses were calculated relative to stabilized cropland SOC (i.e. loss = 0.221/(1–0.221) \times SOC or loss = 0.284 \times SOC under agriculture). Therefore, the final equation for estimating SOC loss for forest conversion to cropland in eastern Canada is:

Equation A3-64:

$$\Delta C(t) = 0.284 \times SOC_{agric} \times [1 - exp^{(-0.0262 \times t)}]$$

where:		
ΔC(t)	=	change in SOC for the t th year after conversion, Mg C/ha
SOC_{agric}	=	0- to 30-cm SOC from CanSIS for a cropland soil profile, Mg C/ha
-0.0262	=	rate constant for describing the decomposition /year
t	=	time since conversion, years

Thus, the total amount of SOC lost from forest land converted to cropland is estimated using the following equation:

Equation A3-65:

$$\Delta C_{FL-CL} = \sum_{1970-2009} \sum_{ALL\ SLC} \sum_{t} (\Delta C_t \times AREA_{FL-CL})$$

where:			
ΔC_F	L-CL	=	total SOC loss in 2009 from the conversion of forest land to cropland since 1970, Mg C/ha
t		=	time after the conversion, year
ALL	SLC	=	all soil polygons that contain forest land converted to cropland
ΔCt		=	change in SOC for the tth year after conversion, Mg C/ha (See Equation A3–64)
ARE	A _{FL-CL,t}	=	area of forest land converted to crop- land annually since 1970, ha

Note that the SOC loss predicted by Equation A3–65 is in addition to C stock changes in tree biomass and woody DOM that existed in the forest at the time of forest conversion.

Based on the field observations, average N change in eastern Canada was -5.2%, representing 0.4 Mg N/ha (McConkey et al. 2007a). For those comparisons where both N and C losses were determined, the corresponding C loss was 19.9 Mg C/ha, and carbon loss was 50 times N loss. For simplicity, it was assumed that N loss was a constant 2% of C loss. Thus, N_2O emissions from forest land converted to cropland are estimated using the following equation:

Equation A3-66:

$N_2O_{FL-CL} = \sum_{1970-200}$	∑ 09 ALL SLC	$\sum_{\tau} (\Delta C_{\tau} \times AREA_{FL-CL} \times 0.02 \times EF_{BASE}) \times \frac{44}{28}$
where:		
$N_2O_{FL\text{-}CL}$	=	emissions of N_2O subject to conversion of forest to cropland since 1970, kt
ALL SLC	=	all soil polygons that contain forest land conversion
ΔC_{t}	=	change in SOC for the t th year after conversion, Mg C/ha per year
$AREA_{FL-CL}$	=	area of forest land converted to cropland annually since 1970, ha
0.02	=	conversion of C to N
EF _{BASE}	=	base emission factor, defined as a function of long-term climate normals (monthly precipitation divided by potential evapotranspiration from May to October; P/PE) at an ecodistrict level (See Section A3.3.6)
44/28	=	coefficient converting N ₂ O-N to N ₂ O

Western Canada

Much of the current agricultural soil in western Canada was grassland prior to cultivation. Hence, forest conversion has been primarily of forest that adjoins grassland areas. There is also limited conversion of secondary forest that has grown on former grassland since the suppression of wildfires with agricultural development. Historically, forest conversion has been less important in western Canada than in eastern Canada, and fewer comparisons of SOC under forest and agriculture are available in the literature. Ellert and Bettany (1995) reported that there was no difference in SOC between native aspen forest and long-term pasture that remained uncultivated since clearing for an Orthic Gray Luvisol near Star City, Saskatchewan.

The CanSIS data provide the most numerous comparisons of SOC under forest with that under cropland (Table A3–38). On average, these data indicate that there is no loss of SOC from forest conversion. This suggests that, in the long term, the balance between C input and SOC mineralization remains similar under agriculture to what it was under forest. It is important to recognize that the northern fringe of western Canadian agricultural areas, where most forest conversion is now occurring, is marginal for annual crops, and pasture and forage crops are the primary agricultural uses after clearing. In general, loss of C from forest to agriculture is least where agricultural land contains forages and pastures.

For western Canada, no loss of SOC over the long term was assumed from forest conversion to pasture and forage crops. Therefore, the C loss from land conversion in western Canada would be from losses of C in above- and below-ground tree biomass and coarse woody DOM that existed in the forest at the time of conversion. Similarly, average organic nitrogen change in western Canada for sites at least 50 years from breaking was +52% (McConkey et al. 2007a), reflecting substantial added N in agricultural systems compared with forests. However, recognizing the uncertainty about actual soil C–N dynamics upon conversion, forest land converted to cropland was assumed not to be a source of N₂O from the soil pool. N₂O emissions are reported wherever biomass burning occurs during conversion (see Section A3.4.2.1).

Data Sources

The approach used to estimate the area of forest land converted to cropland is described in Section A3.4.2.2. The annual forest conversion by reconciliation unit was disaggregated to SLC polygons on the basis of concurrent changes in the area of cropland within SLC polygons. Only polygons that showed an increase in cropland area for the appropriate time period were allocated to forest conversion, and the amount allocated was equivalent to that polygon's proportion of the total cropland increase within the reconciliation unit.

Uncertainty

The uncertainty of C change in each reporting zone was estimated differently for eastern and western Canada because of differences in C change estimation methods (McConkey et al. 2007b). For western Canada, an uncertainty of C change was estimated, although the mean value of SOC change factor was 0. The assumption was that the

uncertainty of SOC change after forest land to cropland conversion in western Canada would follow a similar pattern as that for eastern Canada.

A3.4.4. Grassland

Land in the agricultural Grassland category is defined as "unimproved pasture" used for grazing domestic livestock in geographical areas where grassland would not naturally grow into forest if abandoned: southern Saskatchewan and Alberta and a small area of southern British Columbia. These grasslands developed under millennia of grazing by large animals such as bison and periodic burning. Essentially, "agricultural Grassland" as defined is extensively managed native range.

The primary direct human activities on agricultural grassland in Canada are fire suppression, seeding new plant species into the grassland, and adjusting the amount, duration and timing of grazing by domestic livestock.

A3.4.4.1. General Approach and Methods

State of Grassland

The Prairie Farm Rehabilitation Administration (2000) conducted an assessment of range in the Prairies ecozone from public land agencies and expert opinion of rangeland professionals and reported that about half of the range in Canada was in poor condition. Range conditions are defined by a range's productivity in terms of grazing and improved biodiversity. They also noted that range management systems had improved over the past several decades. The major challenge is to improve range in poor to good condition as opposed to preventing further decline of range condition. The invasion of grassland by tame grass species is an important problem for Canadian grassland because of negative effects on biodiversity (Bai et al. 2001). However, there is no clear relationship between range condition, invasion of grassland by tame grass species and SOC (McConkey et al. 2007a).

According to the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (IPCC 2003), degraded land in the Grassland category in temperate/boreal regions has 95% of the SOC of non-degraded land, indicating an opportunity to increase SOC by improving conditions of the grassland. However, the IPCC definition of grassland conditions on the basis of SOC differs from the definition used by rangeland professionals and experts in Canada, which is based on productivity. This creates some problems in

applying the IPCC Tier-1 method for estimating soil C stock change in the Canadian grassland.

Effect of Grassland Management on SOC

There are three methods in the scientific literature to improve grassland conditions: 1) grazing management, 2) fire management, and 3) soil amendments. Much of the potential SOC gain from grazing management on rangeland has been from increasing grazing on grassland that has previously been ungrazed or lightly grazed (Conant et al. 2001; Schuman et al. 2002; Liebig et al. 2005), but that opportunity is relatively small in Canada, as its agricultural grassland is already grazed (Lynch et al. 2005).

There are a number of studies of the effects of grazing versus no grazing on SOC. Although the productivity of heavily grazed pasture is lower, which may lead to a decline in range conditions, this was not related to declines in SOC (Biondini and Manske 1996). The effect of grazing regime is complex, because of the effects of grazing on plant community and effects on C input to soil from both above- and below-ground plant growth (Schuman et al. 2002; Liebig et al. 2005). An additional influence of grazing regime is the increased return of C in fecal matter as stocking rate increases (Baron et al. 2002). Bruce et al. (1999) estimated that there was no opportunity to increase SOC from grazing management improvements on extensively managed rangeland in North America.

Prior to agricultural development, the grassland burned regularly, but burning is now aggressively suppressed. Burning of range increased SOC in Canada (Anderson and Bailey 1980). This effect has been widely observed globally through the production of relatively stable black C (Gonzalez-Perez et al. 2004). However, because of the stability of such black C, which is responsible for net SOC increases from periodic burning, current suppression of fire may be preventing further increases in SOC. Nevertheless, there is no evidence to the effect that fire suppression reduces SOC significantly. Annual CO₂ fluxes indicate that grazed grassland with no burning does not appear to be either a source or sink of CO₂ in the long term (Frank 2002).

The addition of organic amendments and inorganic fertilizer will increase the productivity of native grassland (Smoliak 1965), suggesting that these practices could increase SOC through greater C inputs. However, such practices are basically of academic interest, as the only economically practical management options for semi-arid grasslands

are altering grazing regime, burning and introducing new plant species (Liebig et al. 2005).

There are no detailed comprehensive activity data over time on management change for Canadian agricultural grassland. However, even if there were such data, there is no indication that this grassland is or will be losing or gaining SOC in response to direct human activity. Therefore, C change on agricultural grassland for Canada remains not estimated.

A3.4.5. Wetlands

A3.4.5.1. Peatlands

Approximately 12 kha of peatlands are currently managed in Canada for the production of horticultural peat. The cumulative area of peatlands ever managed for this purpose amounts to 23 kha, the difference being peatlands that are no longer under production. The production consists of horticultural peat only; Canada does not produce peat for use as a fuel.

Virtually all peat extraction in Canada relies on the vacuum harvest technology. However, many abandoned peat extraction fields were once exploited with the cut-block method; this influences the post-abandonment dynamics of vegetation regrowth.

Owing to the extraction technology and desired properties of sphagnum peat, at the time of site selection, preference is given, among other factors, to peatlands with thin woody vegetation, which nevertheless meets the definition of "forest" for the purpose of GHG reporting (Canadian Sphagnum Peat Moss Association).²²

General Approach and Methods

Only CO_2 emissions from land converted to wetlands (peatlands) and peatlands remaining peatlands were estimated. The estimation included the following sources: vegetation clearing and subsequent decomposition, decay of soil organic matter on sites drained during the inventory year and from fields under production, peat stockpiles, abandoned peat fields, and restored peatlands. In any inventory year, emissions from land converted for peat extraction are expressed by Equation A3–67:

Equation A3-67:

$$CO_2 - C_{\text{L-Peat}} = CO_2 - C_{\text{BIOMASS}} + CO_2 - C_{\text{DOM residual}} + CO_2 - C_{\text{SOILS drained}} + CO_2 - C_{\text{SOILS extraction}} + CO_2 - C_{\text{SOILS extraction}} + CO_2 - C_{\text{SOILS extraction}}$$

where:

 CO_2 - C_{L_Peat} = total carbon emissions as CO_2 from land converted to wetlands (for peat

extraction)

CO₂-C_{BIOMASS} = carbon emissions as CO₂ from the loss

of carbon to forest products upon for-

est clearing

CO₂-C_{DOM residual} = carbon emissions as CO₂ from the decay of vegetation cleared no more than 20 years prior to the inventory

year

CO₂-C_{SOILS drained} = carbon emissions as CO₂ from the oxidation of soil organic matter on

peatland drained during the inventory

year

 CO_2 - $C_{SOILS\ extraction} = carbon\ emissions\ as\ <math>CO_2$ from the

oxidation of soil organic matter on productive peatlands converted for no

more than 20 years

 CO_2 - $C_{SOILS \ stockpiles} = carbon \ emissions \ as <math>CO_2$ from the oxi-

dation of stockpiled peat on productive peatlands converted for no more

than 20 years

Preconversion biomass (or biomass cleared) is estimated at an average 20 t C/ha, corresponding to the average biomass C density of low-productivity forests. Upon clearing, all biomass carbon is transferred to forest products (estimated at 63% of biomass, which is considered emitted to the atmosphere as CO_2 in the year of harvest) or DOM; the latter begins to decay in the same year, following an exponential decay curve as expressed in Equation A3–68.

Equation A3–68:

$$C_{DOM(t)} = C_{DOM(0)} e^{-kt}$$

where:

 $C_{DOM(t)}$ = amount of C in DOM for the t^{th} year

after conversion, Mg C/ha

C_{DOM(0)} = initial amount of C in DOM from forest conversion to peat extraction, Mg C/ha

k = rate constant for describing the de-

composition, year⁻¹

t = time since land conversion, years

On wetlands remaining wetlands (peatlands), emissions are expressed as in Equation A3-20:

Equation A3-69:

$$\begin{aligned} \text{CO}_2\text{-}\text{C}_{\text{Peat}} &= \text{CO}_2\text{-}\text{C}_{\text{DOMresidual}} + \text{CO}_2\text{-}\text{C}_{\text{SOILS extraction}} + \text{CO}_2\text{-}\text{C}_{\text{SOILS stockpiles}} \\ &+ \text{CO}_2\text{-}\text{C}_{\text{SOILS abandoned}} + \text{CO}_2\text{-}\text{C}_{\text{SOILS restored}} \end{aligned}$$
 where:
$$\begin{aligned} \text{CO}_2\text{-}\text{C}_{\text{Peat}} &= \text{total carbon emissions as CO}_2 \text{ from wetlands remaining wetlands (peat-$$

CO₂-C_{DOM residual} = carbon emissions as CO₂ from the decay of biomass cleared more than 20 years ago

 $CO_2\text{-}C_{SOILS\,extraction} = \begin{array}{ll} \text{carbon emissions as } CO_2\,\text{from the} \\ \text{oxidation of soil organic matter on} \\ \text{peatlands converted for more than 20} \\ \text{years} \end{array}$

CO₂-C_{SOILS stockpiles} = carbon emissions as CO₂ from the oxidation of stockpiled peat on peatlands converted for more than 20 years

CO₂-C_{SOILS abandoned} = carbon emissions/removals as CO₂ resulting from the net ecosystem production on abandoned peatlands

CO₂-C_{SOILS restored} = carbon emissions/removals as CO₂ resulting from the net ecosystem production on restored peatlands

Soil emissions from a productive peat field, " CO_2 - $C_{SOILS\, extraction}$," are estimated with a single emission factor reflecting peat oxidation rates. Emissions from peat stockpiles are calculated as an exponential decay for half a year.

Abandoned peat fields remain a persistent source of atmospheric CO₂ (Waddington and McNeil 2002) until carbon uptake by regrowing vegetation exceeds soil and residual

DOM decay. In the current model, the emission factor on abandoned fields is reduced by a fixed annual amount to reflect the effect of gradual vegetation establishment and the slow decrease of emissions over several decades.

Current restoration practices consist of blocking drainage ditches, sowing the field with fresh moss spores and spreading a layer of straw on abandoned peat fields (to prevent desiccation). In the initial years of restoration, straw decomposition may further increase CO_2 emissions until vegetation re-establishes. Net carbon sequestration on restored peat fields is assumed to occur after five years, and its rate is subsequently maintained constant.

It is assumed that the non-growing season is six months long. In that period, emissions represent 15% of the annual total ecosystem CO_2 respiration, and gross primary production is zero. Table A3–39 lists the main parameter values applied in estimate development. Uncertainty estimates were obtained from expert judgement.

Data Sources

Little information on the area of peat production in Canada is available. The Canadian Sphagnum Peat Moss Association confirmed that 14 kha were under production in 2004 (derived from Cleary 2003), having increased by approximately 76% since 1990.²³ Areas under production in the intervening years were estimated with simple linear regressions fitted to the general trends in total domestic peat production (NRCan 2008). The annual area drained for peat extraction was assumed to be equal to the difference

Table A3–39 Parameters and Emission Factors for Estimating CO₂-C Emissions from Wetlands (Peatlands)

Emission Factor/Parameter	Unit	Value	Uncertainty (%)
Biomass cleared	t C/ha	20	100
Exponential decay constant, DOM		0.05	75
Emission factor on newly drained fields	g CO ₂ -C/m ² per year	351	75
Emission factor on productive fields	g CO ₂ -C/m ² per year	1019	75
Exponential decay constant, stockpiles		0.05	75
Annual decrease in emission factor, abandoned fiel	lds		
Vacuum-harvested	g CO ₂ -C/m ² per year	15	75
Block-cut	g CO ₂ -C/m ² per year	35	75
Emission factor, restored peatlands			
First year	g CO ₂ -C/m ² per year	1753	75
>Five years	g CO ₂ -C/m ² per year	-8.00E+01	75

²³ Hood G, president Canadian Sphagnum Peat Association. 2006. Personal communication dated December 15, 2006, to Dominique Blain, Environment Canada.

in total production areas between successive years, minus abandoned and restored peatlands. With the vacuum harvest technology, the average lifetime of a productive peat field is approximately 35 years (Cleary 2003). By default, land converted for more than 20 years is reported in the category Wetlands remaining wetlands.

Uncertainties

Emission factors were derived from flux measurements made mostly over abandoned peatlands, which introduces significant uncertainty when applied to actively managed peatlands, and peat stockpiles. All measurements were conducted in eastern Canada, adding uncertainties to estimates in western Canada.

A3.4.5.2. Flooded Lands

General Approach and Methods

Following the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (IPCC 2003), emissions from land converted to wetlands (creation of flooded lands, namely reservoirs) are estimated for all known reservoirs flooded for 10 years or less. Only CO₂ emissions are reported. An IPCC Tier 2 method was used, whereby country-specific CO₂ emission factors were developed based on measurements, as described below. Details can be found in Blain et al. (2007). It is believed that the default approach, assuming that all biomass carbon would be emitted upon flooding, would overestimate immediate deforestation emissions from reservoir creation, because the majority of submerged forest biomass does not decay for an extended period of time.

Two complementary estimation methodologies are used to account for GHG fluxes from flooded lands, depending on land conversion practices. When there is evidence of forest clearing and/or burning prior to flooding, immediate and residual emissions from all carbon pools are estimated as in all forest conversion events since 1970, with the CBM-CFS3 (see A3.4.2.1). Note that emissions from forest clearing for infrastructure development are reported under the category Forest converted to settlements.

In the absence of such evidence, it was assumed that all vegetation was simply flooded, leading to the emission—as CO₂—of a fraction of the submerged carbon from the surface of the reservoir. The proportion of the area flooded that was previously forested was used to attribute these emissions to either the Forest land converted to wetlands

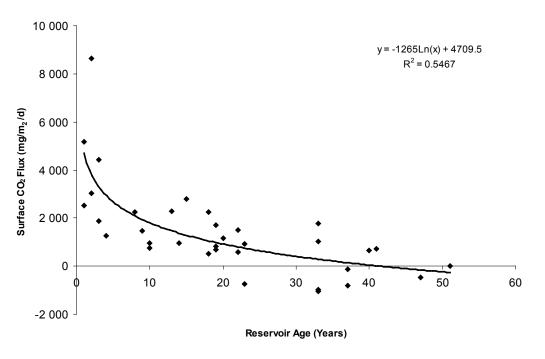
category or the Other land converted to wetlands category.

Since 1993, measurements of CO₂ fluxes have been made above some 57 hydroelectric reservoirs in four different provinces: Quebec, Manitoba, British Columbia, and Newfoundland and Labrador (Duchemin 2006). In most studies, the reservoirs were located in watersheds little affected by human activities, with the notable exception of Manitoba. In almost all cases, only diffusive fluxes of CO₂, CH₄ or N₂O (in order of frequency) were measured. Studies on ebullition, degassing emissions and winter emissions are rare and insufficient to support the development of domestic emission factors. Measurements of diffusive fluxes above the surface of reservoirs were compiled for the entire country. Out of these measured reservoirs, a subset of 25 was selected to develop a national emission curve for the 50-year period following impoundment. These measurements were selected based on the availability of documentation on measurement procedures and measurement comparability. The emission curve was developed from 25 reservoirs and a total of 33 measurements (Figure A3–22). It is important to note that each of these measurements (data points in Figure A3-22) represents, on average, the integration of between 8 and 28 flux samples per reservoir.

Non-linear regression analysis was used to parameterize the emission curve of the form.

Equation A3-70:

$$CO_{2 \text{ rateL reservoir}} = b0 + b1 \times ln(t)$$


where:

 $CO_{2 \, rate \, L_reservoir} = rate \, of \, CO_{2} \, emissions \, from \, land \, converted \, to \, wetlands \, (reservoirs), \, mg/m^{2} \, per \, day$

b0, b1 = curve parameters, unitless
T = time since flooding, years

Total CO_2 emissions from the surface of reservoirs were estimated as the sum of all emissions from reservoirs flooded for 10 years or less:

Figure A3–22 Logarithmic Curve Fit for National Reservoir Emission Factors

Equation A3-71:

 $\begin{aligned} &\text{CO}_{2\,\text{L_reservoirs}} = \sum \left(\text{CO}_{2\,\text{rateL_reservoir}} \times \text{A}_{\text{reservoir}} \times \text{Days}_{\text{ice free}} \times 10^{\text{-}8} \right) \\ &\text{where:} \\ &\text{CO}_{2\,\text{L_reservoirs}} = &\text{emissions from lands converted to} \\ &\text{flooded lands (reservoirs), Gg CO}_{2}/\text{year} \\ &\text{CO}_{2\,\text{rate}\,\text{L_reservoir}} = &\text{rate of CO}_{2\,\text{emissions for each reservoir, mg/m}^2\text{ per day} \\ &\text{A}_{\text{reservoir}} = &\text{reservoir area, ha} \\ &\text{Days}_{\text{ice free}} = &\text{number of days without ice, days} \end{aligned}$

A_{reservoir} was used as the best available estimate of the area converted to managed wetlands (reservoirs), although in reality reservoirs may contain islands, i.e., emergent land areas. "Ice-free period" was defined as the average number of days between the observed freeze date and the breakup date of ice cover on a body of water (Magnuson et al. 2000). In the case of hydroelectric reservoirs, locations were mapped and estimates of the ice-free period were generated from the lakes–ice-free period isoline map of Canada (Natural Resources Canada 1974).

Emissions were calculated starting on the year of flooding completion. Reservoirs take a minimum of one year to fill following dam completion, unless otherwise confirmed.

Data Sources

The three main data sources used to develop area estimates were 1) information on forest conversion due to reservoir impoundment in reporting zones 4, 5 and 8 (see Section A3.4.2.2, Forest Conversion); 2) the Canadian Reservoir Database (Duchemin 2002); and 3) official industry numbers, derived from industry correspondence (Eichel 2006; Tremblay²⁴).

The Canadian Reservoir Database contains 421 records of hydro reservoirs dating back to 1876. Of these reservoirs, 110 have a known surface area totalling 3 452 786 ha. The average reservoir size is 31 kha. The distribution of reservoir area is skewed, with 25% of the largest reservoirs representing over 95% of all reservoir area in the database. Information from provincial and private hydroelectric utilities was accessed to update the database and cross-check the date of reservoir construction and the total reservoir area for all these reservoirs. In some instances, the database reported as new facilities some small, refurbished hydroelectric generation sites in the province of Quebec that entered into production under new ownership. As a result, a separate category was added to the database to document both the original construction and commission-

²⁴ Tremblay A, Hydro-Québec. 2010. Personal communication dated 2010 Nov 19, 2010, to Dominique Blain, Environment Canada.

ing of a dam and the date when a hydroelectric facility was refurbished but no changes occurred to the reservoir area.

As CO₂ emissions from the surface of reservoirs are reported only for the 10 years following impoundment, all flooding events since 1980 were used. The trend in area flooded is characterized by two distinct periods (Figure A3–23). The first, prior to 1994, was marked by large-scale flooding, which occurred in the early 1980s and still appeared under the Land converted to wetlands category in the 1990–1993 inventory years. After 10 years, these reservoirs were removed from the accounting, and there was a corresponding decrease in the area to a low in 1994. Emissions were reported from La Forge 3 and La Grande 1 between 1993 and 2002. Three reservoirs (Toulnustouc, Peribonka and Eastmain-1) have been recently created; flooding for Toulnustouc and Eastmain-1 reservoirs was completed in 2005 and 2006, respectively. Accounting of reservoir emissions for Peribonka started in 2008; the 2011 submission includes emissions from both the forest clearing and associated flooding for these three sites.

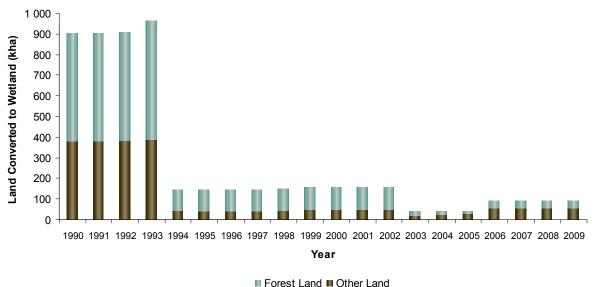
It is important to note that fluctuations in the area of land converted to wetlands (reservoirs) reported in the CRF tables are not indicative of changes in current conversion rates, but reflect the difference between land areas recently (< 10 years ago) converted to reservoirs and older reservoirs (> 10 years), whose areas are thus transferred out of the accounting. The reporting system does not encompass all the reservoir areas in Canada, which are

monitored separately in the Canadian Reservoir Database.

Uncertainty

A temporal curve better reflects the decreasing trends of emission rates after impoundment than a unique emission factor. Hence, the domestic approach is believed to reduce the uncertainty in estimation factors. However, there are still important remaining sources of uncertainty:

Seasonal variability. Some reservoirs display marked seasonal variability in CO_2 fluxes, which are not taken into account in estimate development. Anecdotal evidence suggests that algal bloom in the spring could be associated with this variability, especially in reservoirs subjected to anthropogenic nutrient inputs.


Reservoir area. There are variations in reservoir area due to water-level fluctuations during the year.

Emission pathways. The omission of potentially important CO₂ emission pathways (e.g. degassing).

Planned Improvements

Planned improvements include developing improved estimates of the preconversion standing biomass, better understanding of conversion practices for both peat extraction and reservoir flooding, and integrating new emission measurements to the curve as they become available.

A3.4.6. Settlements

Emissions and removals in this category comprise urban tree growth (settlements remaining settlements) and emissions from land conversion to settlements. This submission reports emissions from the conversion of forest land to settlements and of tundra to settlements.

To estimate the very small sink from urban tree growth, a Tier 1 methodology was used. An average growth of 0.05 t biomass/ha per year every year over 1990–2009 was computed and applied to non-built-up urban surface areas (from Statistics Canada 1997).

Approaches, methods and data sources for estimating emissions from the conversion of forest land to settlements are covered in A3.4.2.2. This section describes estimate development for the conversion of non-forest land to settlements in the Canadian Arctic and sub-Arctic.

A3.4.6.1. General Approach and Methods

The Canadian northern regions (Arctic and sub-Arctic) cover nearly half of Canada's land mass and include five land categories (IPCC 2003), except Cropland. This assessment covered an area of about 359 million ha and included reporting zones 2, 3, 10, 13, 17 and 18, as well as reporting zones 13 and 18 north of 60°N latitude. The challenge was to capture land-use change and estimate associated emissions in this vast and remote landscape. An approach was developed specifically for this task and included the following components:

- Map non-forest land-use change in Canada's Arctic/ sub-Arctic prior to and including 1990 and between 1990 and 2000.
- Estimate annual GHG emissions (above-ground biomass only) from non-forest land-use change in Canada's Arctic/sub-Arctic for the 1990–2000 period.

A comprehensive, wall-to-wall analysis over this area was clearly impractical, as this would require on the order of 100 Landsat satellite scenes for each date. Similarly, random sampling would likely not capture enough land-use change events to allow a reliable assessment. Instead, GIS data sets denoting the occurrence of cultural, mining and other human development were used to reduce and optimize the domain of investigation, by flagging areas with high probability of occurrence of land-use change. These areas of concentrated land-use change potential were targeted for change detection analysis (change vector analysis – Johnson and Kasischke 1998) using 23 Worldwide

Reference System Landsat frames from circa 1985, 1990 and 2000. The scenes cover more than 8.7 million ha, 56% of the potential land-use change area identified using the GIS data sets, or 70% of potential land-use change area if seismic survey lines are not included.²⁵ All 23 frames were located in the western Arctic and sub-Arctic regions.

The Land Use Change Mapping System for Canada's North (Butson and Fraser 2005), can be described as a hybrid change detection method based on two separate techniques: change vector analysis for identifying changed areas and constrained signature extension for labelling those changes (Olthof et al. 2005). A detailed description of how the Land Use Change Mapping System for Canada's North was used for the purpose of capturing non-forest land-use change in Canada's north is available in Fraser et al. (2005). The average rate of land-use change between 1985 and 2000 over the assessed area was 666 ha/year, and 70% of land-use change areas occurred in reporting zone 13. Lack of available imagery prevented the implementation of the system beyond 2000; therefore, the same annual rate of land-use change was applied for the years 2001–2009.

A series of above-ground biomass maps in 2000 were developed for the main land-use change areas, using relationships between above-ground biomass and remote sensing data constructed from and calibrated with ground measurements (Figure A3–24). These maps were used to determine CO_2 emissions from the clearing of aboveground biomass.

The dominant land cover types in the two study areas are rock, lichen, low to high shrub, grass and sparse woodland.

Multiple regressions were conducted between In (above-ground biomass) and a combination of image signals for all vegetation covers combined (grass, shrub, sparse woodland). The best least-square approximation had an $r^2 = 0.72-0.78$, dependent on approaches used, a relative mean square error of 75–80%, and a median value of the absolute percentage error of 33–53%. Biomass regressions were applied to the preconversion imagery for all land-use change areas to yield an estimate of the biomass cleared. All land-use change activities involved conversion of tundra vegetation to settlements, and all preconversion biomass carbon was deemed emitted upon clearing.

²⁵ Recent, low-impact seismic lines have a narrow swath of approximately 2 m in width, as opposed to conventional ones, which were much larger (~8 m). Low-impact seismic lines were widely adopted over the past decade and considerably reduce the environmental impact of seismic exploration.

Figure A3–24 Study Areas for the Determination of Above-Ground Biomass in Canada's Arctic and Sub-Arctic Region

Since the 2007 submission, additional imagery was analyzed with the change detection method used for deforestation area estimation. Reporting zone 4 and part of reporting zone 8 were fully mapped for both forest and non-forest conversion to settlements, adding 55 Mha to the area already mapped. The above-ground biomass of non-forest vegetation was derived from a literature search and estimated at 6 kt/ha (or 3 t C/ha). For this region, there was an average rate of non-forest land-use change of 115 ha/year for the 1990–2006 period.

When only the above-ground biomass component is considered, land-use change activities for the non-forested regions of Canada's north released on average an estimated 153 kt CO₂ eq per year in the 1990–2009 period.

A3.4.6.2. Uncertainty

The uncertainty in land-use change area covered by the 23 Landsat scenes is estimated to be within 20% (Fraser et al. 2005). The biomass equations developed from field measurements in the Dawson City study area were validated on the other study areas of Yellowknife and the Lupin mine. The median values of the absolute percentage error in above-ground biomass estimation for both study areas are 33–53%.

A Monte Carlo simulation method was used to quantify the overall error in carbon emissions caused by uncertainties in land-use change area and biomass estimation. At the 95% confidence level, the percentage error varies from 218% if there is only one land-use change site within a reporting zone to 15% if a reporting zone has 75 or more land-use change sites. The error in the total above-ground biomass carbon stock change estimate, if considered as one reporting area, is about 15%. A full discussion of uncertainty can be found in Chen et al. (2005, 2009).

A3.4.6.3. Planned Improvements

Planned improvements will include efforts to reduce uncertainty associated with the estimates of preconversion biomass in Canada's Arctic and sub-Arctic. Work will be undertaken to update the land-use-change activity estimates for the post-2000 period. For estimates of removals related to urban trees, efforts will be made to improve and update the current estimates of urban area, tree stocks and management practices, which is intended to improve the current estimate approach and the data on which it is based.

A3.4.7. Estimation of Delayed CO₂ Emissions from Harvested Wood Products (HWPs)

In addition to the default method, four alternative approaches for carbon accounting in HWPs have been proposed: stock change, production, atmospheric flow and simple decay. Box A3-1 provides a brief description of each approach. Although these approaches would yield the same net carbon exchange with the atmosphere if applied globally, they differ on a national level in the way in which they account for the time and place of emissions.

As a basis for comparison, the annual emissions of carbon in harvested wood are estimated using the default and three alternative approaches. When warranted, the delayed emissions from domestic wood consumption (stock change and atmospheric flow) or domestic production (production and decay) since 1960 are included. These harvest emissions (HE) are calculated as follows:

IPCC Default:

 $HE_{Default} = RW + Firewood$

Stock Change:

HE_{Stock Change} = RW + Firewood - Domestic Long-lived

Commodity + Inherited Emissions from Long-lived Commodity Consumption

Production:

HE_{Production} = RW + Firewood – Long-lived Commodity
Production + Inherited Emissions from
Long-lived Commodity Production

Atmospheric Flow

HE_{Atm. Flow} = Firewood + Processing Wastes + Inherited Emissions from Long-lived Commodity Consumption

where:

HE = carbon emitted outside managed

forests during the inventory year from material harvested and/or consumed in

previous and current years

RW = carbon in industrial roundwood and

fuelwood harvested in the current

inventory year

Firewood = carbon in residential firewood con-

sumed in the current inventory year

Consumption = production + imports – exports

Production = domestic production

Processing Wastes = total industrial wood biomass con-

sumption - commodity production

For Canada, CO_2 emissions outside of managed forests in 2009, resulting from either domestically consumed or domestically produced HWPs, varied from 126 Mt for the default IPCC approach (IPCC 2003) to 72 Mt (atmospheric flow), 99 Mt (production) or 113 Mt (stock change), depending on the approach selected.

Note that delay in carbon emissions due to storage in HWPs is taken into account only for long-lived (> 5 years) commodities. The carbon stored in short-lived commodities, including fuelwood and firewood, is assumed to be emitted upon harvest. To date, the calculations have included only semi-processed commodities (e.g. sawnwood, pulpwood, wood-based panels, paper and paperboard, and other industrial roundwood). It is not feasible at present to develop a system that would monitor the paths of carbon stored in HWPs (HWP-C) from harvest to consumer products.

Further elaboration of these approaches is planned, based on the IPCC *Good Practice Guidance for Land Use, Land-Use Change and Forestry* (IPCC 2003) and the *2006 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 2006). Work has been initiated in 2007 to update the Forest Product Sector module of the Carbon Budget Model.

Overview of Approaches to Account for Carbon Storage in Harvested Wood Products

In the IPCC default approach, only the net change in forest carbon stocks is accounted for. Emissions from harvests are treated as though they are 100% released as CO_2 to the atmosphere in the year and country of harvest. Carbon storage in wood products is not considered.

The **atmospheric flow** approach tracks carbon emissions and removals associated with the harvest, manufacturing and consumption of wood products within national boundaries. Its intent is similar to the general methodology for estimating fossil fuel emissions, and it provides a more accurate reflection of when and where harvest emissions actually occur.

The **stock change** approach accounts only for the net carbon stock change in the domestic wood product reservoir, e.g., HWP-C in all long-lived commodities within the national territory, after imports and exports. The difference between the stock change and atmospheric flow accounting lies in the treatment of exported products (which are significant in Canada). In the stock change approach, carbon in all exported wood products and commodities exits the domestic stock and hence is considered an emission to the atmosphere.

The **production** approach accounts for the changes in carbon stocks of domestically harvested wood and commodities derived from this domestic wood, regardless of their actual location. The accounting boundaries hence encompass the entire export market; emissions occur both within and outside the producing country (mostly outside in Canada's case).

The **simple decay** approach also accounts for the delayed emissions from all HWP-C from domestically harvested wood, but in a simplified way, by applying decay curves standardized by product categories. This approach uses the same system boundaries as the production one. Equation 12.1 of IPCC (2006) illustrates one implementation of the simple decay approach.

A3.5. Methodology for Waste

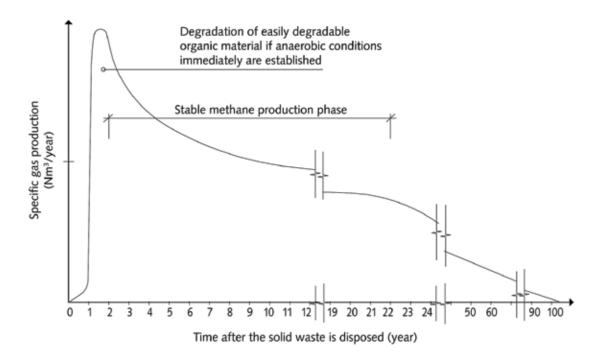
The Waste Sector consists of three sources of emissions: solid waste disposal on land (landfills), wastewater treatment, and waste incineration. This section of Annex 3 details the accounting methodologies that are used to describe the greenhouse gas (GHG) emission estimates for the following categories from the Waste Sector:

- CH₄ emissions from solid waste disposal on land;
- CH₄ and N₂O emissions from wastewater treatment; and
- CO₂, CH₄, and N₂O emissions from waste incineration.

A3.5.1. CH₄ Emissions from Solid Waste Disposal on Land

A3.5.1.1. Methodology

Emissions are estimated from two types of landfills in Canada:


- · municipal solid waste (MSW) landfills; and
- · wood waste landfills.

The Scholl Canyon model is used to estimate CH₄ generation from landfills using the following first-order decay equation (IPCC/OECD/IEA 1997):

Equation A3-72:

	$Q_{T, x} = kM_x L_0 e^{-k(T-x)}$	
where:		
$Q_{T,x}$	 the amount of CH₄ generated in the current year (T) by the waste Mx, kt CH₄/year 	
Χ	= the year of waste input	
M_{x}	 the amount of waste disposed of in year x, Mt 	
K	= CH ₄ generation rate constant, yr ¹	
L_0	 CH₄ generation potential, kg CH₄/t waste 	
T	= current year	

Figure A3–25 Scholl Canyon Model Representation of Landfill Degradation

Note:

Figure is from Jensen and Pipatti (2003) and is shown as published without modification.

Equation A3-73:

$$Q_T = \sum_{x} Q_{T, x}$$

where:

 Q_T

 The amount of CH₄ generated in the current year (T), kt CH₄/year

The Scholl Canyon model assumes that CH_4 production is highest in the early phase, followed by a slow steady decline in annual production rates, as shown in Figure A3–25. The Canadian model assumes that the initial lag time where anaerobic conditions are established is negligible, as shown in Figure A3–25.

In order to estimate CH_4 emissions from landfills, information on several of the factors described above is needed. To calculate the net emissions for a specific year, the sum of QT,x for every section of waste landfilled in past years is taken, the captured gas quantities subtracted, and the CH4 emitted from the incomplete combustion of the flared portion of captured gas is added. A computerized model has been developed to estimate aggregate emissions on a regional basis in Canada.

Waste Disposed of Each Year (Mx)

MSW Landfills

Two primary sources are used in obtaining landfill data for the GHG inventory. The amount of MSW landfilled in the years 1941 through 1990 was estimated by Levelton (1991). For the years 1998, 2000, 2002, 2004 and 2006, MSW disposal data are obtained from the Waste Management Industry Survey, which is conducted by Statistics Canada on a biennial basis (Statistics Canada, 2000, 2003, 2004, 2007a, 2008a). MSW disposal values for the subsequent odd years (1999, 2001, 2003 and 2005) are obtained by taking an average of the adjacent even years. Disposal, with respect to the Statistics Canada data, refers to the combination of waste incinerated and waste landfilled. Therefore, in order to obtain the amount of waste landfilled, incinerated waste is subtracted from the Statistics Canada disposal values for 1998, 2000, 2002, 2004 and 2006. As well, exported waste is subtracted from the 2000, 2002, 2004 and 2006 Statistics Canada disposal data, since the amount of waste exported is included in the waste disposal values for the Statistics Canada 2000 survey year

and subsequent years.26,27

Over the period 1991–1997 and 2005, with the exception of Prince Edward Island, the Northwest Territories, Nunavut and Yukon, MSW landfill values are estimated by fitting a polynomial to the Levelton (1991) and Statistics Canada (2000, 2003, 2004, 2007a, 2008a) MSW landfill values. The 2007, 2008 and 2009 data were trended from earlier waste quantity values. Data from the 2010 Waste Management Industry Survey would have been used to update the 2007 and 2008 waste landfilled quantities, but this publication was not issued in time for the present NIR submission. This information will be revised for the subsequent NIR submission in 2012. To estimate the coefficients in the polynomial, a multiple linear regression application (Microsoft Excel LINEST statistical tool for an array) is used. The choice of how many coefficients to use for the polynomial function depended on how well the data fit the lower-order polynomials. Generally, the polynomial fit was improved with increasing number of coefficients. A polynomial of the order 13 is used in the inventory MSW estimates. This multiple linear regression method of estimation is consistent with the Intergovernmental Panel on Climate Change (IPCC) interpolation method (IPCC 2000). Table A3-40 shows the polynomial coefficients generated by the multiple linear regression method for each of the provinces.

The amounts of MSW landfilled for the years 1991–1997 and 2005 are calculated according to Equation A3–74:

Equation A3-74:

$$\begin{array}{ll} M_X = & (C_{13} \times X^{13}) + (C_{12} \times X^{12}) + (C_{11} \times X^{11}) + (C_{10} \times X^{10}) + (C_{9} \times X^{9}) + (C_{8} \times X^{8}) + (C_{7} \times X^{7}) \\ & + (C_{6} \times X^{6}) + (C_{5} \times X^{5}) + (C_{4} \times X^{4}) + (C_{3} \times X^{3}) + (C_{2} \times X^{2}) + (C_{1} \times X) + C \\ \\ \text{where:} \\ M_X & = & \text{MSW landfilled in year X, t} \\ C_i & = & \text{coefficient of the ith order (see Table A3-40)} \\ & \times & = & \text{year of interest} \\ \end{array}$$

²⁶ Marshall J. 2006. Personal communication (February 2006). Manager of the Waste Management Industry Survey: Business and Government Sectors, 2002 Report. Statistics Canada.

²⁷ Marshall J. 2007. Personal communication (email dated February 21, 2006). Manager of the Waste Management Industry Survey: Business and Government Sectors, 2004 Report. Statistics Canada.

Table A3-40 Multiple Linear Regression Polynomial Coefficients Used in Estimating the Amount of MSW Landfilled for 1991-1997 and 2005

	N.L.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.
C	6.87E+09	8.60E+09	-1.87E+10	2.18E+11	-2.91E+10	-8.47E+09	3.96E+10	-4.35E+11	1.70E+12
C1	-1.97E+06	-3.22E+06	4.22E+06	-4.70E+08	-2.37E+07	3.28E+06	6.20E+06	4.13E+08	-1.17E+09
C2	3.14E+03	-1.02E+04	-7.88E+02	8.18E+05	2.49E+04	5.10E+03	-1.39E+04	-4.96E+04	2.53E+04
C3	1.62E+00	2.65E+00	2.26E+00	-3.18E+02	1.50E+01	-5.77E-01	-1.75E+01	-3.04E+01	-1.65E+02
C4	8.20E-06	-1.59E-03	1.30E-03	-2.15E-01	-5.96E-03	-1.51E-03	3.28E-03	-4.42E-03	8.23E-02
C5	-9.81E-08	2.46E-06	-5.70E-07	4.76E-05	-1.68E-06	-2.78E-07	3.72E-06	2.21E-05	1.52E-06
C6	-1.63E-10	8.20E-10	3.21E-10	4.16E-08	1.13E-09	1.51E-10	7.74E-10	-1.55E-08	3.39E-08
C7	-8.88E-14	-2.11E-13	-2.43E-14	5.93E-12	-3.00E-14	2.72E-13	-4.58E-13	-1.02E-12	-5.11E-12
C8	-6.34E-17	-1.50E-16	-1.09E-16	6.56E-15	-8.94E-16	-7.69E-17	8.21E-17	4.03E-15	-2.76E-15
C9	5.40E-20	-2.03E-19	-2.03E-20	-5.89E-18	-2.33E-19	-5.56E-20	7.12E-20	-1.61E-18	-2.24E-19
C10	-1.48E-24	3.34E-24	-1.30E-23	-1.91E-21	2.36E-22	1.74E-23	-1.54E-22	4.04E-22	3.44E-22
C11	-6.62E-28	2.48E-26	9.41E-27	1.61E-25	1.08E-25	8.89E-27	6.66E-26	8.76E-26	-9.63E-25
C12	3.03E-30	2.21E-29	2.63E-30	5.53E-28	-2.26E-29	-3.09E-30	-2.86E-29	-9.54E-29	3.59E-28
C13	-1.32E-33	−7.77E−33	-3.92E-34	-1.00E-31	-1.03E-32	-6.66E-35	7.64E-33	1.57E-32	-6.11E-33

Notes:

Coefficients have been rounded and may not result in the correct totals for MSW landfilled.

Table A3-41 MSW Landfilled for 1990-20094

Year	N.L.	P.E.I.	N.S.	N.B.	Que.	Ont. ³	Man.	Sask.	Alta.	B.C.	Yk.	N.W.T. & Nvt.
1990¹	366 004	51 293	493 010	462 391	3 699 833	5 957 104	696 174	638 942	1 577 585	1 760 621	16 608	34 493
1991	400 159	68 758	540 341	489 539	4 073 027	6 287 557	741 706	720 035	1 790 701	1 990 162	18 826	37 068
1992	402 670	74 800	533 426	488 826	4 152 266	6 390 940	755 034	729 362	1 837 539	2 012 191	17 200	35 300
1993	403 918	72 326	523 456	485 805	4 230 976	6 479 872	767 869	736 993	1 881 860	2 028 235	20 392	39 083
1994	403 775	74 801	510 179	480 262	4 309 123	6 552 824	780 167	742 752	1 923 350	2 037 746	19 677	40 378
1995	402 110	76 727	493 335	471 972	4 386 673	6 608 214	791 881	746 453	1 961 687	2 040 161	20 487	41 527
1996	398 783	79 338	472 655	460 706	4 463 598	6 644 405	802 966	747 906	1 996 538	2 034 895	21 500	42 343
1997	393 651	80 034	447 861	446 225	4 539 872	6 659 708	813 373	746 914	2 027 558	2 021 350	21 940	42 427
1998²	366 280	104 825	407 095	425 626	4 568 910	5 963 525	855 666	780 700	1 874 276	1 789 252	24 104	49 469
1999	369 650	80 397	357 703	387 656	4 799 511	6 202 392	875 695	741 743	2 006 801	1 843 849	20 845	42 392
2000²	373 020	92 586	308 311	349 685	5 030 113	6 441 259	895 724	702 786	2 139 327	1 898 445	21 290	43 694
2001	364 808	81 111	306 549	354 002	5 057 953	6 375 459	857 145	711 293	2 193 015	1 882 820	20 175	43 612
2002²	356 595	82 280	304 787	358 318	5 085 793	6 309 660	818 566	719 801	2 246 704	1 867 196	18 920	38 830
2003	367 700	82 195	310 242	366 047	5 429 638	6 021 626	839 020	716 748	2 346 984	1 962 272	21 046	45 971
2004²	378 804	90 075	315 698	373 776	5 773 482	5 733 593	859 475	713 696	2 447 264	2 057 347	20 712	42 509
2005	382 441	83 815	315 785	377 185	5 937 451	5 790 051	903 996	731 122	2 742 529	2 120 093	22 062	47 471
2006²	386 077	83 553	315 872	380 593	6 101 419	5 846 509	948 518	748 549	3 037 794	2 182 838	22 464	47 691
2007	382 710	84 021	272 933	350 787	6 236 765	5 784 974	866 338	698 631	2 836 066	2 160 704	22 781	48 357
2008	384 910	86 711	262 871	346 560	6 423 385	5 726 843	866 915	693 430	2 942 694	2 203 076	23 371	48 745
2009	387 110	89 726	252 810	342 333	6 610 004	5 668 712	867 493	688 229	3 049 322	2 245 448	23 950	49 210

1. 1990 data obtained from Levelton (1991).

 ^{1998, 2000, 2002, 2004} and 2006 data obtained from Statistics Canada disposal data (Statistics Canada 2000, 2003, 2004, 2007a, 2008a).
 Exported MSW subtracted from the Statistics Canada disposal data (Bruce Pope, Waste Management Analyst, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Engineer, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Engineer, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Engineer, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Engineer, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Engineer, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Engineer, Waste Management Policy Branch, Ontario Ministry of Environment, personal communication, February 2006, January 2007; Jim Hiraishi, Senior Environment, Personal Communication, February 2006, January 2007; Jim Hiraishi, Senior Environment, Personal Communication, Personal Communication,

ment, personal communication, November 30, 2007).

4. The data represented above were chosen from selected years. MSW landfill data from 1941 to 1990 (Levelton 1991) were used in the multiple linear regression method for estimation of MSW landfilled for 1991–2006.

Statistics Canada MSW disposal data are unavailable for Prince Edward Island, the Northwest Territories, Nunavut and Yukon. Thus, MSW landfill values for this province and these territories for the period 1991–2009 are obtained by trending historical landfill data with the provincial populations for 1971-2009 (Statistics Canada 2006). Three sources of landfill data are used to estimate the MSW landfill amounts for 1991-2009. The first set of data was provided by Levelton (1991) for 1971-1990. The second set of landfill data was provided by the Hazardous Waste Branch of Environment Canada for 1992 (Environment Canada 1996b). The third set of landfill data involves multiplying the 1992 percentage of waste landfilled for Prince Edward Island, the Northwest Territories, Nunavut and Yukon (Environment Canada 1996b) by the surplus of waste landfilled provided by Statistics Canada for 1998, 2000, 2002, 2004 and 2006 (Statistics Canada 2000, 2003, 2004, 2007a, 2008a). The surplus of waste landfilled for 1998, 2000, 2002, 2004 and 2006 is calculated by subtracting the sum of the provided provincial landfill values from the total Canadian landfill value. Table A3-41 shows the amount of MSW landfilled for the period 1990-2009.

Wood Waste Landfills

The amount of wood waste landfilled in the years 1970 through 1992 is estimated at a national level based on the National Wood Residue Data Base (NRCan 1997). Data for the years 1998 and 2004 are provided in subsequent publications (NRCan 1999, 2005). A linear regression trend analysis is conducted to interpolate the amount of wood residue landfilled in the years 1993–1997, 1999–2003 and 2005–2009. This interpolation method has been selected because it is most suitable for the data distribution.

The breakdown in the amount of wood residue disposed of (defined as residue that is not further used in a product, used as a source of fuel, or converted into a chemical) for the solid wood operations and the pulp and paper industries is estimated based on information from a study of pulp and paper mill waste (MWA Consultants Paprican 1998). The proportion of wood waste disposal is estimated at 80% for solid wood operations and 20% for pulp and paper mills.

The breakdown of the portion of the wood residue directed to landfills from the solid wood and pulp and paper industry operations is estimated based on the National

Table A3–42 Wood Waste Generated and Landfilled in Canada for 1990–2009

Year		te Disposed of Iry tonnes)		Wood Waste Landfilled (bone dry tonnes)	
	Pulp & Paper	Solid Wood Industry	Pulp & Paper	Solid Wood Industry	Total
1990	1 811 062	7 244 248	1 557 513	1 086 637	2 644 151
1991	1 811 062	7 244 248	1 557 513	1 086 637	2 644 151
1992	1 811 062	7 244 248	1 557 513	1 086 637	2 644 151
1993	1 537 557	6 150 226	1 322 299	922 534	2 244 833
1994	1 447 245	5 788 981	1 244 631	868 347	2 112 978
1995	1 356 934	5 427 736	1 166 963	814 160	1 981 124
1996	1 266 623	5 066 491	1 089 296	759 974	1 849 269
1997	1 176 311	4 705 246	1 011 628	705 787	1 717 415
1998	1 080 000	4 320 000	928 800	648 000	1 576 800
1999	995 689	3 982 755	856 292	597 413	1 453 706
2000	905 378	3 621 510	778 625	543 227	1 321 851
2001	815 066	3 260 265	700 957	489 040	1 189 997
2002	724 755	2 899 020	623 289	434 853	1 058 142
2003	634 444	2 537 775	545 622	380 666	926 288
2004	547 561	2 190 244	470 902	328 537	799 439
2005	453 821	1 815 284	390 286	272 293	662 579
2006	363 510	1 454 039	312 618	218 106	530 724
2007	273 198	1 092 794	234 951	163 919	398 870
2008	182 887	731 549	157 283	109 732	267 015
2009	92 576	370 303	79 615	55 546	135 161

Wood Residue Data Base (NRCan 1997). The allocation of wood waste landfilled in private landfills is estimated at 15% for solid wood operations and 86% for pulp and paper mills. To avoid double counting, since emissions from public landfills are already accounted for in the emissions from MSW landfills, the ratio of wood waste landfilled in private versus public landfills, obtained from NRCan (1997) is used to isolate the quantity landfilled in dedicated private wood waste landfills. This portion is assumed to be also true for the years 1970–2009. Table A3–42 shows the amount of wood waste disposed of and landfilled for the period 1990–2009.

CH₄ Generation Rate Constant (k)

The CH₄ generation rate constant k represents the first-order rate at which CH₄ is generated after waste has been landfilled. The value of k is affected by four factors: moisture content, availability of nutrients, pH and temperature. In calculating provincial decay rates, however, the ambient temperature should not be considered, as the landfill temperature is independent of the ambient temperature at depths exceeding 2 m. The moisture content should be the sole parameter considered (Maurice and Lagerkvist 2003; Thompson and Tanapat 2005).

MSW Landfills

The k values used to estimate emissions from MSW land-fills were obtained from a study conducted by Environment Canada's Greenhouse Gas Division that employed provincial precipitation data from 1941 to 2007 (Environment Canada, 1941–2007). The provincial locations at which the average annual precipitations calculated were those indicated in the Levelton study where major land-fills were located over the 1941 to 1990 period (Levelton

1991), with additional data for British Columbia from a study performed by Golder Associates Ltd. (2008). From these precipitation values, k values were determined using a relationship prepared by the Research Triangle Institute (RTI) for the U.S. Environmental Protection Agency (RTI 2004). RTI assigns default decay values of less than 0.02/ year, 0.038/year and 0.057 /year to areas with an annual precipitation of less than 20 inch/year (< 500 mm), between 20 and 40 inch/year (500 to 1000 (average 750) mm) and greater than 40 inch/year (> 1000 mm), respectively. The plot of these decay values and precipitation data showed a linear relationship: $k (yr^{-1}) = 7 \times 10^{-5} x$ precipitation (mm)-0.0172. Using this relationship and Environment Canada's average provincial precipitation data for 1941–1975, 1976–1989 and 1990–2007, average provincial landfill decay rates were calculated (Environment Canada 1941–2007). The U.S. k values are related to precipitation, assuming that the moisture content of a landfill is a direct function of the annual precipitation. Based on both the U.S. k values and precipitation data and the average annual precipitation at Canadian landfills surveyed by Levelton (1991), k values were assigned to each of the provinces for the three respective time series: 1941–1975, 1976–1989 and 1990-2007. These three time intervals were selected to match those used to derive the provincial L_o values in order to better represent the changing conditions over the 1941–2009 time series. It is assumed that the conditions for which the 1990-2007 k values were derived were also valid for 2008 and 2009.

Table A3–43 shows the mean annual precipitation and decay values assigned for each of the provincial landfill sites selected by Levelton (1991) and Golder Associates Ltd. (2008).

Table A3-43 Mean Annual Precipitation and MSW Landfill k Value Estimates for Provincial Landfill Sites

Region		al Precipitation (mm Canada's Historical	Rate constant k (yr-1)			
	1941-1975	1976-1989	1990-2007	1941-1975	1976-1989	1990-2007
British Columbia						
Campbell River	1 521.4	1 370.2	1 507.0	0.089	0.079	0.088
Chilliwack	1 674.4	1 736.9	1 678.0	0.100	0.104	0.100
Courtney	1 465.7	1 387.9	1 441.3	0.085	0.080	0.084
Kamloops	270.1	273.9	296.5	0.002	0.002	0.004
Matsqui	1 537.1	1 480.1	1 571.6	0.090	0.086	0.093
Port Alberni	1 954.2	1 870.8	2 050.1	0.120	0.114	0.126
Prince Rupert	2 636.2	3 082.7	2 538.7	0.167	0.199	0.161
Vancouver	1 846.0	1 599.8	1 564.5	0.112	0.095	0.092
Vernon	393.2	415.3	429.7	0.010	0.012	0.013
Victoria	864.6	978.6	1 197.7	0.043	0.051	0.067
Average	1 416.3	1 419.6	1 427.5	0.082	0.082	0.083
Alberta						
Calgary	429.9	406.8	426.5	0.013	0.011	0.013
Edmonton	451.9	480.2	446.8	0.014	0.016	0.014
Fort McMurray	441.1	445.8	417.9	0.014	0.014	0.012
Lethbridge	427.5	396.4	385.8	0.013	0.011	0.010
Medicine Hat	344.1	332.5	338.9	0.007	0.006	0.007
Red Deer	450.9	463.5	487.4	0.014	0.015	0.017
Average	424.2	420.9	417.2	0.012	0.012	0.012

Table A3-43 Mean Annual Precipitation and MSW Landfill k Value Estimates for Provincial Landfill Sites (cont'd)

Region	Annu Environment	al Precipitation (mm Canada's Historical) from Climate Data	Rate constant k (yr-1)			
	1941–1975	1976-1989	1990-2007	1941-1975	1976-1989	1990-200	
Saskatchewan							
Moose Jaw	388.9	329.7	468.4	0.010	0.006	0.016	
Prince Albert	333.2	425.9	458.7	0.006	0.013	0.01	
Regina	390.2	359.9	404.2	0.010	0.008	0.01	
Saskatoon	360.0	332.9	356.3	0.008	0.006	0.008	
Swift Current	385.1	359.8	409.1	0.010	0.008	0.01	
/orkton	440.7	440.1	435.1	0.014	0.014	0.013	
Average	383.0	374.7	422.0	0.010	0.009	0.012	
Manitoba							
Brandon	464.8	434.7	480.8	0.015	0.013	0.016	
Portage la Prairie	540.4	533.8	562.4	0.021	0.020	0.022	
hompson	566.8	517.5	500.7	0.022	0.019	0.01	
Vinnipeg	534.1	487.7	540.9	0.020	0.017	0.02	
Average	526.5	493.4	521.2	0.020	0.017	0.019	
Ontario			<u> </u>				
Barrie	894.6	952.3	927.6	0.045	0.049	0.04	
Belleville	868.3	898.7	920.6	0.044	0.046	0.04	
rantford	741.3	815.8	857.1	0.035	0.040	0.04	
rockville	961.2	977.2	1 013.0	0.050	0.051	0.05	
Cornwall	934.7	969.0	1 044.9	0.048	0.051	0.05	
uelph	839.6	915.3	900.5	0.042	0.047	0.04	
lamilton	750.2	945.3	889.1	0.035	0.049	0.04	
lingston	810.3	975.2	964.2	0.040	0.051	0.05	
litchener	885.9	985.5	844.0	0.045	0.052	0.04	
ondon	921.5	997.8	993.3	0.047	0.053	0.05	
North Bay	979.2	1 015.2	1 050.3	0.051	0.054	0.05	
Oshawa	843.5	941.3	866.4	0.042	0.049	0.04	
Ottawa-Hull	868.4	939.2	937.7	0.044	0.049	0.04	
eterborough	749.4	862.8	856.5	0.035	0.043	0.04	
reterborougn St. Catharines	806.7	862.8	856.5 866.5	0.035	0.043	0.04	
arnia	752.4	842.6	972.8	0.035	0.042	0.05	
udbury	760.6	907.7	911.6	0.036	0.046	0.04	
hunder Bay	734.8	696.1	578.4	0.034	0.032	0.02	
immins	780.4	864.6	809.7	0.037	0.043	0.03	
oronto	794.4	843.2	808.1	0.038	0.042	0.03	
Vindsor	839.8	921.8	927.0	0.042	0.047	0.04	
Average	834.2	910.8	901.9	0.041	0.047	0.04	
Quebec							
Montréal	952.8	935.2	1 018.8	0.049	0.048	0.05	
Québec	1 137.9	1 174.9	1 148.6	0.062	0.065	0.06	
Rimouski	773.0	955.7	961.3	0.037	0.050	0.05	
aint-Étienne	1 021.0	994.2	981.4	0.054	0.052	0.05	
aint-Etternie aint-Tite-des-Caps	1 009.7	1 102.4	1 178.3	0.053	0.060	0.06	
te-Cécile	1 113.5	1 218.6	1 245.1	0.061	0.068	0.07	
te-Sophie	1 047.3	1 031.2	1 063.4	0.056	0.055	0.05	
Average	1 007.9	1 058.9	1 085.3	0.053	0.057	0.05	
lew Brunswick							
lathurst	958.1	1 067.5	1 123.4	0.050	0.058	0.06	
Campbellton	1 002.6	1 002.6	1 002.6	0.053	0.053	0.05	
dmundston	1 078.3	1 053.3	992.1	0.058	0.057	0.05	
redericton	1 077.4	1 182.5	995.7	0.058	0.066	0.05	
Moncton	1 159.4	1 116.7	1 172.1	0.064	0.061	0.06	
aint John	1 339.3	1 477.4	1 245.5	0.077	0.086	0.07	
Average	1 102.5	1 150.0	1 088.6	0.060	0.063	0.05	
Prince Edward Island				0.000	0.000	2.03	
Charlottetown	1 116.0	1 218.3	1 096.2	0.061	0.068	0.06	
ummerside	987.6	1 052.7	1 149.1	0.052	0.056	0.06	
Average	1 051.8	1 135.5	1 122.6	0.056	0.062	0.06	
lova Scotia	1 100 0	1 440 5	1 2 4 2 6	2 2 2 2	2 224		
Partmouth	1 492.8	1 449.5	1 349.6	0.087	0.084	0.07	
lalifax	1 492.8	1 449.5	1 349.6	0.087	0.084	0.07	
unenburg	1 456.2	1 475.2	1 559.5	0.085	0.086	0.09	
lew Glasgow	1 076.8	1 120.5	1 106.7	0.058	0.061	0.06	
ydney	1 359.1	1 514.9	1 413.0	0.078	0.089	0.08	
ruro	1 087.7	1 226.1	1 110.8	0.059	0.069	0.06	
Average	1 327.6	1 372.6	1 314.9	0.076	0.079	0.07	
lewfoundland							
Carbonear	N/A	N/A	N/A	N/A	N/A	N/A	
Corner Brook	1 127.1	1 255.9	1 196.1	0.062	0.071	0.06	
t. John's	1 502.4	1 525.2	1 515.3	0.088	0.090	0.08	
Average	1 314.8	1 390.5	1 355.7	0.075	0.080	0.07	
/ukon	2515	24: -	27: 2	0.000	0.000	***	
Vhitehorse	264.2	261.7	271.8	0.001	0.001	0.00	
Average	264.2	261.7	271.8	0.001	0.001	0.00	
lorthwest Territories							
'ellowknife	261.2	273.0	287.0	0.001	0.002	0.00	
Average	261.2	273.0	287.0	0.001	0.002	0.00	
lunavut							
galuit	420.1	448.9	372.1	0.012	0.014	0.00	
Average	420.1	448.9	372.1	0.012	0.014	0.00	
verage (N.W.T. and Nvt.)	340.6	360.9	329.5	0.007	0.008	0.00	

Table A3–44 Provincial and Territorial MSW Landfill k (Yr⁻¹)Value Estimates

					Prov	inces an	d Territo	ries				
Year	N.L.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	Yk.	N.W.T. & Nvt.
1941–1975	0.075	0.056	0.076	0.06	0.053	0.041	0.020	0.01	0.012	0.082	0.001	0.001
1976–1989	0.080	0.062	0.079	0.063	0.057	0.047	0.017	0.009	0.012	0.082	0.001	0.002
1990-2007	0.078	0.061	0.075	0.059	0.059	0.046	0.019	0.012	0.012	0.083	0.002	0.003

The k values used to estimate emissions from MSW landfills at a provincial level are derived from taking the average of k value estimates for each province for each of the three time series. These values are provided in Table A3–44.

Wood Waste Landfills

Based upon the default value for estimating wood products industry landfill CH4 emissions recommended by the National Council for Air and Stream Improvement Inc., a k value of 0.03/year was assumed to represent the CH4 generation rate constant for all of the wood waste landfills in Canada (NCASI 2003).

CH₄ Generation Potential (L₀)

MSW Landfills

The CH₄ generation potential (L₀) represents the amount of CH₄ that could be theoretically produced per tonne of waste landfilled. As presented in the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Equation A3–75, is used to calculate the CH₄ generation potential for MSW landfills (IPCC/OECD/IEA 1997):

Equation A3-75:

$$L_{0} = \text{MCF} \times \text{DOC} \times \text{DOC}_{F} \times \text{F} \times \frac{16}{12} \times 1000 \frac{\text{kgCH}_{4}}{\text{tCH}_{4}}$$
 where:
$$L_{0} = \text{CH}_{4} \text{ generation potential, kg CH}_{4}/\text{t}$$
 waste
$$MCF = \text{CH}_{4} \text{ correction factor, fraction}$$

$$DOC = \text{degradable organic carbon, t C/t waste}$$

$$DOC_{F} = \text{fraction of DOC dissimilated}$$

$$F = \text{fraction of CH}_{4} \text{ in landfill gas}$$

$$16/12 = \text{stoichiometric factor to convert CH}_{4} \text{ to carbon}$$

The methane conversion factor (MCF) accounts for the proportion of managed to un-managed solid waste disposal

sites. Un-managed solid waste disposal sites produce less CH₄, since a larger fraction of waste decomposes aerobically in the top layers of the site. The IPCC default value for MCF for managed landfill sites is chosen to represent the MCF for MSW landfills, since it is assumed that all landfills covered by the data collected are engineered landfills. The IPCC default values for MCF are shown in Table A3–45 (IPCC/OECD/IEA 1997).

Table A3–45 Solid Waste Disposal Site CH₄ Correction Factors

Type of Site	MCF Default Values
Managed	1.0
Unmanaged: deep (≥ 5 m waste)	0.8
Unmanaged: shallow (< 5 m waste)	0.4
Default value: uncategorized solid waste disposal sites	0.6

The IPCC default value for the fraction of CH_4 in landfill gas (F) ranges between 0.4 and 0.6. It can vary based on certain factors, including waste age and composition and potential air dilution effects that can lower the actual concentration of CH_4 in the landfill gas. The average value 0.5 is chosen for the fraction of CH_4 in landfill gas.

DOC_F represents the amount of organic carbon that is ultimately degraded and released from the solid waste disposal site. It accounts for the fact that some of the organic carbon does not degrade or degrades very slowly. A value of 0.6 was selected from the IPCC DOC_F default range, for waste that includes lignin, of 0.5 to 0.6 (IPCC 2000). This value, taken from the upper end of this range, i.e., more easily degraded, best represents the Canadian situation where the majority of the wood wastes, that by definition have high lignin concentrations, from saw mills and pulp

and paper industries, are disposed of in dedicated private landfills.

DOC represents the amount of organic carbon that is accessible to biochemical decomposition and is based on the composition of the waste. Waste composition percentages from across Canada are used to calculate the provincial DOC values according to Equation A3–76 (IPCC/OECD/IEA 1997).

Equation A3-76:

% DOC (by wet weight) = (0.4 × A) + (0.17 × B) + (0.15 × C) + (0.3 × D)

where:

A = % of MSW that is paper and textiles

B = % of MSW that is garden or park waste

C = % of MSW that is food waste

D = % of MSW that is wood or straw

The provincial and territorial DOCs were calculated from waste disposal composition values for three distinct time periods: 1941–1975, 1976–1989 and 1990–2006. Using waste composition data obtained from a Natural Resources Canada (NRCan) study, which were based on the 2002 data year (NRCan 2006), DOC values were derived and assumed to be constant over the period 1990 to 2009. Since

the waste diversion programs were not significant prior to 1990, a second set of DOCs was developed to represent the waste composition at disposal from 1976 to 1989 by adding the NRCan landfill data to the 2004 Statistics Canada recycled waste composition data (Statistics Canada 2007a). A third set of DOCs was developed from a 1967 national study to cover the period from 1941 to 1975 (CRC Press 1973). Provincial and territorial DOC and L_0 values are summarized in Table A3–46.

From the NRCan 2006 document, the quantities for each standard category of waste from residential and ICI origins were added together to reflect the true composition at disposal at the MSW landfill sites. Therefore, by this methodology, the ICI biodegradability as well as that of the residential waste are accounted for in the MSW waste composition. The NRCan report uses a consistent methodology to estimate the MSW waste composition at disposal for all provinces and territories.

Since significant results from waste diversion projects only began to be made manifest in the early 1990s in Canada, as supported by this document and expert opinion in the field, these provincial/territorial DOCs are used in the estimation of L₀ values and ultimately in the provincial/territorial specific methane emission generation for the period 1990–2009, inclusively.

Table A3–46 Provincial and Territorial CH₄ Generation Potential (L₀) Values

	2002 Organic	194	11 to 1975	197	6 to 1989	1990	to Present
Province/Territory	Waste Diversion¹(%)	DOC	L₀ (kg CH₄/t waste)	DOC	L₀ (kg CH₄/t waste)	DOC	L₀ (kg CH₄/t waste)
Newfoundland	N/A	0.28	112.62	0.18	73.28	0.18	73.35
Prince Edward Island	N/A	0.27	108.74	0.17	67.19	0.16	64.63
Nova Scotia	29.7	0.25	100.89	0.16	62.35	0.16	64.1
New Brunswick	19.8	0.23	93.91	0.16	65.91	0.16	63.22
Quebec	13.7	0.36	144.45	0.21	82.52	0.2	81.23
Ontario	16.4	0.36	143.74	0.21	82.75	0.21	83
Manitoba	4.9	0.33	131.37	0.19	76.82	0.19	76.59
Saskatchewan	4.3	0.36	143.92	0.22	86.39	0.22	86.75
Alberta	16.7	0.39	157.63	0.26	104.46	0.18	71.87
British Columbia	23.3	0.28	111.86	0.17	69.89	0.16	63.71
Territories (Yk., N.W.T. & Nvt.)	N/A	0.22	87.59	0.15	58.54	0.16	65.13

Notes

Sources: Derived from data obtained from NRCan (2006), Statistics Canada (2007a) and CRC Press (1973).

N/A = Not available.

^{1.} Thompson et al. (2006).

For the period 1976–1989, DOC values were calculated based on the assumption that the waste composition at disposal could be represented by the generation waste composition for the year 2002. This was accomplished by summing the MSW (residential and ICI) waste quantities (NRCan 2006) at disposal for each waste category with the recycled quantities for the corresponding category for each province and territory. The latter data were obtained from Statistics Canada report *Waste Management Industry Survey: Business and Government Sectors 2004* (Statistics Canada 2007a). Where gaps were identified in the Statistics Canada report, due to confidentiality issues, regional factors (western, central and maritime provinces and northern territories) were used to populate the missing data.

The years 1941 to 1975 are covered by an L_0 developed by a third set of DOC values, based on national waste compositions provided in Table 1.1-9 of CRC Press (1973) The data from this table are derived from the article "World Survey Finds Less Organic Matter" (Anon. 1967a). Waste audit data for the time series 1976 to 1998 were obtained from Table 1: Waste Composition Data for Ontario, of the report *Residential Waste Composition Study*, Ontario Waste composition Study – Vol. 1 (Ontario Ministry of the Environment 1991). The waste audit studies were conducted in 1976, 1978 and 1980 and gave paper, wood, food wastes, textile and yard waste average percentages of 40%, 2.6%, 22%,

3.4% and 13%, respectively. These are comparable to those from the 2002 generated estimates used for the 1976 to 1989 period. The 1967 article data (Anon. 1967a) gave paper and organic matter compositions of 70% and 10%, respectively. Therefore, 1975–1976 was judged to be an appropriate transition point to use to allow for a realistic change between the significantly different 1967 data set and the data derived from the 2002 waste composition without waste diversion employed to represent the waste composition for the late 1970s and 1980s. The breakdown of organic matter percentage (10%), obtained from Table 1.1-9: Summary of international Refuse Composition, into food and yard waste was based upon the waste composition (10.2% and 8.6%, respectively) given for Montréal, Quebec, from the same CRC Press (1973) text, Table 1.1-10: Composition of Household Garbage, where the data were obtained from a separate 1967 article (Anon. 1967b). The information on percentage of wood (2.4%) came from an article by the American Public Works Association (1964), and was presented in Table 1.1-2.8: Composition and Analysis of Average Municipal Refuse (CRC Press 1973).

A provincial profile was developed from the 1967 national average by pro-rating each of its DOC waste categories to match the same provincial profile as for the 1976 to 1989 period. Table A3–47 presents the landfilled waste composition by the categories defined in the Revised IPCC 1996

Table A3–47 Provincial and Territorial CH₄ Generation Potential (L₀) Values

British Columbia		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	64.2	29.7	34.2
	В	4.8	15.7	7.9
	C	4.7	15.1	7.6
	D	0.0	0.0	0.0
	DOC	0.28	0.175	0.159
	Lo	111.9	69.9	63.7
		DOC Parameters	DOC Parameters	DOC Parameters
Alberta		1941–1975	1976–1989	1990–2009
Alberta				
Alberta	A	1941–1975	1976–1989	1990–2009
Alberta	A B	1941–1975 %	1976–1989 %	1990–2009 %
Alberta		1941–1975 % 87.4	1976–1989 % 40.4	1990–2009 % 27
Alberta	В	1941–1975 % 87.4 7.5	1976–1989 % 40.4 24.6	1990–2009 % 27 17
Alberta	В	1941–1975 % 87.4 7.5 9.3	1976–1989 % 40.4 24.6 30	1990–2009 % 27 17 20.7

Table A3-48 Provincial and Territorial CH₄ Generation Potential (L₀) Values

Manitoba		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	76.7	35.5	32.7
	В	3.8	12.6	15.1
	C	4.8	15.4	18.4
	D	2.7	1.9	2.4
	DOC	0.328	0.192	0.191
	Lo	131.4	76.8	76.6
Ontario		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	83.2	38.5	37.2
	В	4.2	13.9	14.8
	C	4.1	13.4	14.2
	D	4.4	3.1	4.1
	DOC	0.359	0.207	0.207
	Lo	143.7	82.7	83
Quebec		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	84.7	39.2	35
	В	4.2	13.8	17.2
	C	4.1	13.2	16.6
	D	3	2.1	3
	DOC	0.361	0.206	0.203
	Lo	144.4	82.5	81.2
New Brunswick		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	53.2	24.6	26.4
	В	6.3	20.7	16
	C	6.2	19.8	15.4
	D	0.7	0.5	0.7
	DOC	0.235	0.165	0.158
	L ₀	93.9	65.9	63.2
Nova Scotia		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	59.6	27.5	32.3
	В	4.4	14.6	9.9
	С	4.3	14	9.5
	D	0	0	0
	DOC	0.252	0.156	0.16

Table A3-48 Provincial and Territorial CH₄ Generation Potential (L₀) Values

Prince Edward Island		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	64.2	29.7	34.2
	В	4.8	15.7	7.9
	С	4.7	15.1	7.6
	D	0	0	0
	DOC	0.272	0.168	0.162
	Lo	108.7	67.2	64.6
Newfoundland and Labrador		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	64.7	29.9	30.9
	В	5.9	19.3	18
	С	5.7	18.5	17.3
	D	1.4	1	1.1
	DOC	0.282	0.183	0.183
	Lo	112.6	73.3	73.4
Yukon, Nunavut and Northwest Territories		DOC Parameters 1941–1975	DOC Parameters 1976–1989	DOC Parameters 1990–2009
		%	%	%
	Α	50.7	23.5	26.1
	В	5.1	16.7	18.6
	С	5	16.1	17.9
	D	0	0	0
	DOC	0.219	0.146	0.163
	Lo	87.6	58.5	65.1

Guidelines for National Greenhouse Gas Inventories for the provinces and territories as derived from the data sources.

Wood Waste Landfills

Equation A3–75 as presented in the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*, is used to calculate the CH₄ generation potential for wood waste landfills (IPCC/OECD/IEA 1997). The IPCC default value for MCF for unmanaged deep landfill sites (0.8) is chosen to represent the MCF, as it best represents industry practices.

The value 0.5 is chosen for the fraction of CH_4 in landfill gas (F) from the IPCC default range of 0.4 to 0.6.

DOC_F represents the amount of organic carbon that is ultimately degraded and released from the solid waste

disposal sites. It accounts for the fact that some of the organic carbon does not degrade or degrades very slowly. The *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories* (IPCC 2000) provides default values in the order of 0.5–0.6 for waste sites that include lignin. The lower end of this range, 0.5, is used in the calculation for the CH₄ generation potential to better represent the high lignin content in wood waste (IPCC/OECD/IEA 1997).

DOC represents the amount of organic carbon that is accessible to biochemical decomposition. Equation A3–75 is used to calculate the national wood waste DOC value, assuming a 100% wood composition (IPCC/OECD/IEA 1997).

Based on these considerations, a L_0 of 80 kg CH4/t of wood waste is calculated from Equation A3–75.

Captured Landfill Gas

At many large MSW landfill facilities, landfill gas is captured to be flared or utilized, or both. Owing to the relatively high concentration of CH₄ in the landfill gas, the gas can be combusted for electricity or heat generation. To a lesser extent, in recent years, the captured gas is simply collected and vented. If not utilized, the captured landfill gas is flared. For the purposes of the inventory, captured gas includes only the gas that is flared or utilized. In order to calculate the net CH₄ emissions from landfills, the amount of captured CH₄ is subtracted from the CH₄ generated as estimated by the Scholl Canyon model, and then this value is added to the portion of CH₄ emitted from the flaring operation. GHG emissions affiliated with the use of landfill gas for energy recovery are accounted for in the Energy Sector. The calculation of net CH₄ emissions is shown in the following equation:

Equation A3-77:

$$CH_{4(NET)} = CH_{4(generated)} - CH_{4(captured)} + CH_{4(emitted-F)}$$
 where:

 $CH_{4(NET)}$ = net CH_4 emissions from MSW landfills, t $CH_{4(generated)}$ = CH_4 emissions generated from MSW

landfills, t

 $CH_{4(captured)}$ = CH_4 emissions captured from MSW landfills, t

CH_{4(emitted-F)} = CH₄ emissions emitted from flaring of captured MSW landfill gas, t

A flaring emission control efficiency of 99.7% is used to determine the amount of CH_4 emitted. This value is obtained from Table 2.4-3 of Chapter 2.4 of EPA AP 42 (US EPA 1995). The amount of CH_4 emitted from flaring of landfill gas is calculated as follows:

Equation A3-78:

$$CH_{4 \text{ (emitted-F)}} = CH_{4 \text{ (flared)}} \times (1 - Eff_{\text{ (flare-contro)}})$$

where:

 $\mathsf{CH}_{4(emitted-F)} \quad = \quad \mathsf{CH}_4 \text{ emissions emitted from flaring of}$

MSW CH₄ gas, t/year

 $CH_{4(flared)}$ = CH_4 gas flared, t/year

 $Eff_{(flare-control)}$ = flare emission control efficiency,

fraction

The quantities of CH₄ gas collected from 1983 to 1996 were obtained from ad hoc surveys conducted by

Environment Canada²⁸ and for the years 1997–2003 were collected directly from individual landfill operators biennially by Environment Canada's National Office of Pollution Prevention (Environment Canada 2003a). CH₄ gas capture data for 2005 were obtained through a study prepared for Environment Canada (Environment Canada 2007). CH₄ gas capture and utilization data for 2006 and 2007 as well as 2008 and 2009 were obtained through survey studies conducted by the Greenhouse Gas Division of Environment Canada in 2008 and 2010 (Environment Canada 2009, 2011). Prior to the 2008 data collection survey, the landfill gas capture data were collected every odd year, and therefore, for the purposes of the national GHG inventory, the landfill gas capture data for the subsequent even years were averaged from the odd years starting from 1997. However, the subsequent biennial surveys collected data for two data years from the facilities; these data were employed for the 2011 NIR submission estimates. Table A3–48 shows the amount of CH₄ captured and flared from 1990 to 2009.29

3.5.1.2. Data Sources

Waste disposal data are collected from a Statistics Canada biennial waste survey (Statistics Canada 2000, 2003, 2004, 2007a, 2008a). The Statistics Canada data for 1998, 2000, 2002, 2004 and 2006 waste disposal are used in developing its MSW estimates for the national GHG inventory.

Landfill gas capture and flare data for 1997–2003 were collected directly from individual landfill operators biennially by Environment Canada's National Office of Pollution Prevention (Environment Canada 2003a). CH₄ gas capture data for 2005 were obtained through the study entitled "An Inventory of Landfill Gas Recovery and Utilization in Canada," prepared for Environment Canada (Environment Canada 2007). CH₄ gas capture data for 2006 and 2007 as well as for 2008 and 2009 were collected through the subsequent study conducted by the Greenhouse Gas Division (Environment Canada 2009, 2011).

²⁸ Perkin. Personal communication (letter dated July 1998). National Office of Pollution Prevention, Environment Canada

²⁹ Where data were not made available from the landfill gas capture facilities, data from previous surveys were employed.

Table A3–48 Estimated MSW CH₄ Captured, Flared, and Emitted for 1990–2009

Year	CH₄ Generated (kt)	CH₄ Captured (kt)	CH₄ Flared (kt)	CH₄ Emitted from Flare (kt)	CH₄ Emitted (kt)
1990	925.72	192.66	23.61	0.07	733.13
1991	942.04	195.64	27.18	0.08	746.48
1992	958.53	204.78	35.29	0.11	753.85
1993	975.02	209.39	44.46	0.13	765.77
1994	991.41	223.36	56.73	0.17	768.22
1995	1 007.55	243.44	69.36	0.21	764.32
1996	1 023.30	264.55	78.67	0.24	758.99
1997	1 038.51	267.80	81.00	0.24	770.95
1998	1 048.90	271.82	90.80	0.27	777.36
1999	1 060.81	275.83	100.59	0.30	785.28
2000	1 074.29	294.29	117.90	0.35	780.36
2001	1 086.89	312.74	135.21	0.41	774.55
2002	1 098.70	312.56	137.06	0.41	786.55
2003	1 111.28	312.38	139.34	0.42	799.32
2004	1 124.58	312.95	146.92	0.44	812.07
2005	1 138.92	313.52	154.49	0.46	825.86
2006	1 154.26	304.70	130.80	0.39	849.95
2007	1 168.47	329.96	164.90	0.49	839.01
2008	1 182.93	347.87	213.40	0.64	835.71
2009	1 197.62	349.24	217.13	0.65	849.04

Note: 2008 values were assumed to be constant from 2007.

A3.5.2. CH₄ Emissions from Wastewater Treatment

A3.5.2.1. Methodology

Municipal Wastewater Treatment

The IPCC default method for calculating CH₄ emissions from domestic wastewater handling is not used, because the required data (i.e. volumes of wastewater treated) are not available. Instead, a method similar to the IPCC methodology, developed for Environment Canada (AECOM Canada 2010a), is used to calculate an emission factor. A new maximum methane-producing capacity (Bo) was derived. In past submissions, a methane emission factor developed by ORTECH (1994), 0.22 kg CH₄/kg five-day biological oxygen demand (BOD5), was used. Following the 2009 centralized review, this value was questioned, because the default 2000 IPCC greenhouse gas emission factor (GHG EF) is given as 0.6 kg CH₄/kg BOD5. Further to the expert review team (ERT) report, and having identified a problem with the derivation of the IPCC default Bo value, AECOM

was commissioned to review the current data and confirm the EF to be used. The Bo recommended by AECOM is 0.36 kg CH₄ per kg BOD5. It was also recommended that the methane conversion factor (MCF) be changed from a percent of population served by anaerobic treatment to the product of a combined MCF (septic systems, facultative lagoons, anaerobic lagoons and direct discharge) and the provincial population served by these systems, i.e., not served by a centralized treatment system. An MCF of 0.3 was recommended, as it best reflected the reality of the distribution of the Canadian municipal wastewater treatment units for the best data available.

Therefore, an emission factor of 0.108 was derived from the product of a Bo of 0.36 kg CH4 per kg BOD5 and an MCF of 0.3. To provide the EF in units of kg CH₄/capita/yr., the following relation was used, given an organic loading rate of 0.050 kg BOD5/person/day:

Equation A3-79:

$$\begin{split} \text{EF}_{\text{CH}_4} & \left(\text{kg CH}_4 \, / \, \text{capita per year} \right) \! = \! \left(\text{per capita BOD}_5 \, \text{loading rate} \right) \! \times \! \left(\text{CH}_4 \, \text{generation rate} \right) \\ &= \! \left(0.05 \frac{\text{kg BOD}_5}{\text{capitax day}} \right) \! \times \! \left(365 \frac{\text{days}}{\text{year}} \right) \! \times \! \left(0.108 \frac{\text{kg CH}_4}{\text{kg BOD}_5} \right) \\ &= \! \left(1.971 \frac{\text{kg CH}_4}{\text{capitax year}} \right) \end{split}$$

The percentage of wastewater that is treated aerobically for each province is derived from the product of the percentage of rural population, obtained from an appendix to the AECOM report (AECOM 2010b) and the population of the province or territory. It is assumed that anaerobic primary and secondary wastewater treatment, septic tanks and out-falls where the effluent is discharged without treatment, where CH₄ emissions are not captured, are present in rural areas. Canadian urban municipalities can be assumed to be serviced by aerobic treatment systems and/ or anaerobic systems that have full capture of the biogases where they are utilized or flared with near-complete combustion. Using the Statistics Canada definition of an urban area³⁰ and the 2006 census data, which give the provincial populations, the percentage of rural population is obtained.

Emissions are calculated by multiplying the emission factor by the population of the respective province (Statistics Canada 2006, 2010) and the fraction of wastewater that is anaerobically treated.

Table A3–49 shows the percentage of wastewater treated anaerobically, including untreated wastewater for 1990–2009. The remaining percentage of wastewater is treated aerobically (primary and secondary wastewater treatment).

Industrial Wastewater Treatment - CH₄ & N₂O

In past submissions, the emissions from this subcategory, although identified, were not estimated. In order to correct this incompleteness, data were collected through an in-house survey of industrial facilities that were suspected or known to employ anaerobic units to treat their effluent on-site. The information gained allowed for the estimation of emissions for each site.

Emissions from industrial wastewater handling at a plantsite level are typically difficult to quantify, due to confidentiality issues and the variety of biological treatment units available that focus on biodegradable organics or nitrogen removal, or that can serve both functions.

Based on the responses to inquiries submitted to industrial associations and provincial ministries of the environment, which indicated that anaerobic industrial wastewater units were relatively rare in Canada, it was decided to implement a Tier 3 approach to collect information from the individual facilities directly. To use the default data and methodology—without knowledge about those industry sectors using anaerobic treatment, the existence of

30 Statistics Canada definition of urban area: "An urban area has a minimum population concentration of 1000 persons and a population density of at least 400 persons per square kilometre, based on the current census population count. All territory outside urban areas is classified as rural. Taken together, urban and rural areas cover all of Canada."

Table A3-49 Percentage of Wastewater Treated Anaerobically by Province for the 1990-2009 Time Series

				Wastewa	ter Treatm	ent (% An	aerobic)				
N.L.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	N.W.T. & Nvt.	Yk.
1.600	0.400	2.900	2.300	23.400	38.900	3.700	3.000	10.500	13.000	0.100	0.100

Equation A3-80:

biogas recovery systems, and the quantities actually recovered—would invite an unacceptable overestimation of methane emissions.

As recommended by the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2000), the Decision Tree for CH₄ Emissions from Industrial Wastewater Handling was followed as a framework for the Tier 3 approach. Using the information gathered for previous National Inventory Reports (NIRs), detailed in Annex 3.5 of Canada's original 2010 submission, for industries with large volumes of wastewater produced, industry sectors were prioritized for the plant-specific data, to be collected through surveys, in order of importance as: pulp and paper, chemicals and chemical products, food, beverages, petroleum and coal products, rubber products, plastic products, and total textiles.

The following industrial sectors were ruled out based on confirmations from industry representatives that anaerobic treatment was not taking place at facilities in their sectors: chemicals and chemical products,³¹ beverages,³² petroleum and coal products,³³ rubber products,³⁴ plastic products,³⁵,³⁶ and total textiles.³⁷ Requests were submitted to the Canadian Chemical Producers' Association (CCPA), Canadian Soft Drink Association (CSDA), Canadian Association of Petroleum Producers (CAPP) and Rubber Association of Canada (RAC) to obtain a confirmation for recent years, but at the time of the re-submission, not all their members had replied—though none of the members who had replied had confirmed use of an anaerobic system. Nineteen facilities were identified to have anaerobic sys-

tems: two in the pulp and paper sector, fifteen in the food industry and two in the beverage industry. Lecture notes from a seminar in 2004 show the existence of 13 sites (Crolla A et al. 2004), so it may be assumed that the coverage for this sector is complete. Of all the subject industry sectors, the two pulp and paper facilities treat by far the largest portion of process water.

From Internet searches and direct communications with the facilities, we identified only two pulp and paper facilities in Canada using anaerobic treatment. This was confirmed by the industry sector association, i.e., the Forest Products Association of Canada (FPAC).³⁸ These facilities directly provided the methane production in volumetric units. These quantities were converted to mass units using the density of methane at 25°C and 1 atm. Fugitive losses from the digesters and the piping system were estimated to be 0.5%, which was an average of the 0.6% for losses in pipelines and leakage at the end user for processing, transmission and distribution of natural gas, and 0.4% for leakage from residential and commercial sectors as given in the IPCC Reference Manual, Table 1.6, page 1.29 (IPCC/OECD/IEA 1997). However, a representative from the engineering design firm for one of the systems confirmed that there should not be any leaks, because the system was under negative pressure and oxygen sensors were provided in the system to alert the operators of a breach. Therefore, these emissions should be non-existent if the other facility used a similar system. Methane emissions from the inefficiencies of the flare and utilization devices were also accounted for. These methane-destruction efficiencies were 0.995 for an enclosed flare and 0.98 for a boiler (Climate Action Reserve 2009). Therefore, the total emissions were the sum of the piping losses and the quantities of methane circumventing combustion in the flare and boiler.

Similarly, the emissions for the food industry were calculated. However, where no production data were made available (i.e. from a cheese manufacturer, potato processor and candy bar manufacturer), design parameters (process wastewater volumes, chemical oxygen demand [COD]) were used from the engineering firm that supplied the units to these facilities in conjunction with the default IPCC EF (IPCC/OECD/IEA 1997), to generate gas quantities. As it is known that the gas is collected, it was assumed that

³¹ CCPA. Personal communication (email dated December 4, 2006). Bruce Caswell, Canadian Chemical Producers' Association, to Paula Critchley, Waste Sector, Greenhouse Gas Division.

³² CSDA. Personal communication (telephone conversation dated December 2006). Canadian Soft Drink Association and Paula Critchley, Waste Sector, Greenhouse Gas Division.

³³ CAPP. Personal communication (email dated October 24, 2006). Sonia Simard, Canadian Association of Petroleum Producers, to Paula Critchley, Waste Sector, Greenhouse Gas Division.

³⁴ RAC. Personal communication (telephone conversation dated December 2006). Rubber Assocation of Canada and Paula Critchley, Waste Sector, Greenhouse Gas Division.

³⁵ CPIA. Personal communication (email dated December 4, 2006). Ray Kelsey, Canadian Plastics Industry Association, to Paula Critchley, Waste Sector, Greenhouse Gas Division.

³⁶ CPIA. Personal communication (email dated October 6, 2010). Fred Edgecombe, Canadian Plastics Industry Association, to Shanta Chakrovortty, Waste Sector, Greenhouse Gas Division.

³⁷ Lincoln Fabrics. Personal communication (email dated October 4, 2010). Steve Thistle, Plant Manager of Lincoln Fabrics Ltd., to Shanta Chakrovortty, Waste Sector, Greenhouse Gas Division.

³⁸ FPAC. Personal communication (email dated October 4, 2010). Roger Cook, Forest Products Association of Canada, to Shanta Chakrovortty, Waste Sector, Greenhouse Gas Division.

Table A3–50 COD Values Used in CH₄ Emission Estimates per Industry Type

Industry Group	IPCC Industry Type	IPCC Degradable Organic Component—COD (g/L)
Food	Vegetables, Fruits & Juices	5
Beverages	Soft Drinks	2
Rubber Products	Organic Chemicals	3
Plastic Products	Plastics and Resins	3.7
Primary Textiles & Textile Products	Textiles (Natural)	0.9
Wood Products	N/A	N/A
Paper & Allied Products	Pulp & Paper (Combined)	9
Primary Metals	N/A	N/A
Fabricated Metals	N/A	N/A
Transportation Equipment	N/A	N/A
Non-Metallic Mineral Products	N/A	N/A
Petroleum & Coal Products	Petroleum Refineries	1
Chemicals & Chemical Products	Organic Chemicals	3

Notes:

Sources: IPCC (2000), except for Industry Group, which is from Environment Canada (1986, 1991, 1996a).

N/A = not available.

the losses, i.e., emissions, would consist of piping losses and utilization by a boiler.

Table A3–50 shows the industry sectors included within the Environment Canada surveys (Environment Canada 1986, 1991, 1996a) and the corresponding IPCC default COD values that are chosen to represent the industry sectors (IPCC 2000).

A3.5.2.2. Data Sources

Volumes of biogas collected, the fraction of CH₄ in the biogas, and information on the combustion of the collected biogas (utilization and/or flaring) were provided directly from the industrial facility. Where the information was not available, design specifications obtained from the engineering firms that designed the specific systems or that were made available from the facility were used to derive the emissions, which would be conservative estimations.

A3.5.3. N₂O Emissions from Wastewater Treatment

A3.5.3.1. Methodology

The N_2O emissions from municipal wastewater treatment facilities are calculated using the IPCC default method (IPCC/OECD/IEA 1997). This method estimates emissions based on the amount of nitrogen in sewage and the

Table A3–51 Canadian Protein Consumption

Year	Protein Consumption (g/capita per day)
1990	65.26
1991¹	66.19
1992	66.55
1993	67.2
1994	67.86
1995	68.52
1996¹	68.59
1997	69.87
1998	70.56
1999	71.25
2000	71.95
2001 ¹	72.97
2002	72.79
2003 ¹	71.76
2004 ¹	72.18
2005 ²	71.12
2006 ²	71.03
2007 ²	71.79
2008 ²	70.25
2009 ²	69.85
Sources	

Sources

- Statistics Canada (2008b), Food Statistics, Catalogue No. 21-020-X: the data have been adjusted for retail, household cooking and plate loss.
- Statistics Canada (2010b), Food Statistics, Catalogue No. 21-020-X: the data have been adjusted for retail, household cooking and plate loss.

assumption that 0.01 kg N_2O -N/kg sewage nitrogen will be generated.

To estimate the amount of nitrogen in sewage, it is assumed that protein is 16% nitrogen (IPCC/OECD/IEA 1997). The Canadian protein consumption is obtained from the annual food statistics publication (Statistics Canada 2007b, 2008b, 2010b), as shown in Table A3–51. Data are provided for the years 1991, 1996 and 2001–2009. Protein consumption data for missing years are estimated by applying a multiple linear regression application to the Statistics Canada data.

The N₂O emission factor is calculated as follows:

Equation A3-81:

EF _N	₂ O = P0	$C \times EF_{N_2O-N} \times Frac_{NPR} \times \frac{44}{28}$
where:		
EF _{N2O}	=	emission factor: kg N_2O /capita per year
PC	=	annual per capita protein consumption, kg/capita per year (Statistics Canada 2007b, 2008b, 2010b)
EF _{N2O-N}	=	emission factor: default 0.01 (0.002–0.12) kg N ₂ O-N/kg sewage nitrogen produced
Frac _{NPR}	=	fraction of nitrogen in protein: default = 0.16 kg N/kg protein
44/28	=	stoichimetric factor to convert nitrogen to $\ensuremath{N}_2\ensuremath{O}$

Emissions are calculated by multiplying the emission factor by the population of the respective provinces (Statistics Canada 2006, 2010a):

Equation A3-82:

	N ₂ C	$O_s = EF_{N_2O} \times NR_{PEOPLE}$
where:		
N_2O_s	=	N_2O emissions from human sewage, kg N_2O /year
EF _{N2O}	=	emission factor: kg N_2O /capita per year (Equation A3–81).
NR_{PEOPLE}	=	number of people in country

3.5.3.2. Data Sources

The Canadian protein consumption data are obtained from the annual food statistics publication (Statistics Canada 2008b, 2010). The provincial populations are obtained from Statistics Canada (Statistics Canada 2006b, 2010a).

A3.5.4. CO₂ Emissions from Municipal Waste Incineration

A3.5.4.1. Methodology

The IPCC decision tree in Figure 5.5 of IPCC (2000) for CO2 emissions from waste incineration defines good practice in adapting the methods in the *Revised 1996 IPCC Guidelines* for National Greenhouse Gas Inventories (IPCC/OECD/IEA 1997). Country-specific carbon contents are not available; thus, Box 2 of the decision tree in Figure 5.5 (IPCC 2000) is the chosen methodology for calculation of CO2 emissions.

The following steps detail the methodology for the estimation of CO₂ emissions from waste incineration:

Calculating the Amount of Waste Incinerated: The amount of waste incinerated each year is based on two primary sources. The amount of MSW incinerated in the year 1992 was estimated based on a study performed by the Hazardous Waste Branch of Environment Canada (Environment Canada 1996b). The amount of MSW incinerated for the years 1999, 2000, and 2001 was estimated based on the study "Municipal Solid Waste Incineration in Canada: An Update on Operations 1999–2001, performed by A.J. Chandler & Associates Ltd. for Environment Canada (Environment Canada 2003b). A polynomial curve-fitting equation is employed to estimate the amount of MSW incinerated over the period 1991–1998 based on the values provided by A.J. Chandler & Associates Ltd. and Environment Canada. To estimate the coefficients in the polynomial, a multiple linear regression application (Microsoft Excel LINEST statistical tool for an array) is used. A polynomial of the order 13 provides the best fit. This multiple linear regression method of estimation is consistent with the IPCC interpolation method (IPCC 2000). To estimate the amount of MSW incinerated for 2002–2009, a trend extrapolation was performed with the A.J. Chandler & Associates Ltd. and Environment Canada MSW incineration values for all relevant provinces except Quebec and Ontario, for which only the former MSW incineration values were used. In the province of Ontario, one of the incineration plants closed at the end of 2001. Therefore, the amount of waste incinerated in Ontario for the period 2002–2009 is estimated by trending the A.J. Chandler & Associates Ltd. incineration values for 1999–2001 with population (Statistics Canada

Table A3–52 Estimated MSW Incinerated by Province for 1990–2009

Year			MSW Incine	erated (t)		
	N.L.	P.E.I.	N.S.	Que.	Ont.	B.C.
1990	0	32 000	76 500	619 522	258 700	239 752
1991	0	32 000	53 458	564 219	266 361	252 214
1992	35 500	29 800	56 700	541 100	277 000	257 500
1993	0	32 000	57 953	530 107	255 272	262 964
1994	0	32 000	57 564	508 308	251 779	265 179
1995	0	32 000	55 924	483 314	249 873	265 668
1996	0	32 000	53 421	455 098	249 719	264 723
1997	0	32 000	50 443	423 631	251 484	262 637
1998	0	32 000	47 385	388 882	255 337	259 705
1999	0	32 212	45 000	298 904	258 429	254 800
2000	0	33 000	42 000	303 887	270 811	256 400
2001	0	32 224	42 000	303 910	281 671	246 700
2002	0	32 662	41 487	307 715	165 060	251 949
2003	0	32 824	39 079	310 700	178 747	251 718
2004	0	33 036	37 246	314 041	192 169	251 406
2005	0	33 214	38 641	317 108	204 647	251 009
2006	0	33 151	38 574	320 418	217 032	250 563
2007	0	33 264	40 730	324 145	228 578	249 933
2008		33 913	39 812	328 407	241 189	249 225
2009		34 640	37 491	333 544	253 189	248 497

Note: Ontario incineration plant closed as of 2001 year end.

2006, 2010), assuming that the Ontario incineration plant was closed for this period.

MSW incineration estimates for the period 1990–2009 are shown in Table A3–52.

Developing Emission Factors: Provincial CO_2 emission factors are developed based on a study performed by the Hazardous Waste Branch of Environment Canada (Environment Canada 1996b). The CO_2 emission factors are founded on the assumption that carbon contained in waste undergoes complete oxidation to CO_2 .

The provincial breakdown in the type of waste incinerated for 1992 was estimated by the Hazardous Waste Branch of Environment Canada (Environment Canada 1996b). The quantity of waste incinerated was divided into three categories: paper, plastics and organics. Consistent with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC/OECD/IEA 1997), only CO₂ emissions resulting from the incineration of carbon in waste of fossil origin (e.g. plastics, certain textiles, rubber, liquid solvents and waste oil) are included in emission estimates (IPCC

2000). Therefore, it is necessary to estimate the fossil origin portion of the waste in order to develop an emission factor that excludes emissions due to the incineration of biomass. The breakdown in organic composition is estimated by averaging waste composition data from three published documents (Environment Canada 1994a, 1995a, 1995b). Table A3–53 shows the averaged breakdown in organic composition.

The amount of fossil fuel-based carbon available in the

Table A3–53 Estimated MSW Organic Composition

Component	% Composition of Total Organics
Yard/Garden Waste	41
Food Waste	31
Wood Waste	16
Textiles	10
Rubber	2
Other	0
Total Organics	100

waste incinerated is determined using typical percent weight carbon content values. Carbon and moisture content values were provided by Tchobanoglous et al. (1993) and Peavy et al. (1985). The amount of carbon per tonne of waste is estimated by subtracting the moisture content from the mass of fossil origin waste and multiplying by the carbon content value of the waste type. The fossil origin portion of the organic waste is determined by multiplying the organic waste by the percent fossil origin composition as follows:

Equation A3-83:

$$WasteType_{Fossil-Origin} = M_{Total} \times \left(1 - \% \text{ Organic}_{Comp}\right)$$
 where:
$$WasteTypeF_{ossil-Origin} = \text{ amount of fossil fuel-based waste incinerated, t}$$

$$M_{Total} = \text{ amount of waste incinerated, t}$$

$$(1992 \text{ data provided by Environment Canada [1996b]})$$

$$\% Organic_{Comp} = \text{ $\%$ organic composition per waste type (Environment Canada}$$

1994a, 1995a, 1995b)

The amount of fossil fuel-based carbon is converted to tonnes of CO_2 per tonne of waste by multiplying by the ratio of the molecular mass of CO_2 to that of carbon. The derivation of the CO_2 emission factor is shown in the following equations:

Equation A3-84:

$C_{Avail(y)} = (WasteType_{Fossil})$	_{-Origin})×(1 - % Moisture)×% C _{Waste Type}
where:	
$C_{Avail(y)} =$	available carbon per waste type for province y, t
$WasteType_{Fossil-Origin} =$	amount of fossil fuel-based waste incinerated, t (1992 data provided by Environment Canada [1996b])
% Moisture =	% moisture content per waste type (Tchobanoglous et al. 1993)
% C _{WasteType} =	% carbon content per waste type (dry basis) (Tchobanoglous et al. 1993)

Equation A3-85:

$$\mathsf{EF_{CO_2-1992}}_{(y)} = \left(\frac{\sum \mathsf{C}_{\mathsf{Avail}}(y)}{\mathsf{M}_{\mathsf{Inc}}(y)}\right) \times \frac{44}{12}$$

where:

 $\label{eq:energy} \mathsf{EF}_{\mathsf{CO2-1992(y)}} \quad = \quad \mathsf{1992} \; \mathsf{CO_2} \; \mathsf{emission} \; \mathsf{factor} \; \mathsf{for} \; \mathsf{incineration} \; \mathsf{for} \; \mathsf{province} \; \mathsf{y}, \mathsf{t} \; \mathsf{CO_2/t} \; \mathsf{waste}$

incinerated

C_{Avail(y)} = available carbon per waste type for province y, t (See Equation A3–84)

 $M_{lnc (y)}$ = total mass waste incinerated in 1992

for province y, t

44/12 = stoichimetric factor to convert carbon

to CO₂

Calculating CO₂ Emissions: Emissions were calculated on a provincial level by multiplying the amount of waste incinerated by the appropriate emission factors.

Equation A3-86:

$$CO_{2(x)} = EF_{CO_2-1992} \times (M_{Inc(x)/province})$$

where:

 $CO_2(x)$ = CO_2 emissions from waste incineration

in year x, t/province per year

 $EF_{CO2-1992}$ = 1992 provincial CO_2 emission factor for

incineration, t CO₂/t incinerated

 $M_{Inc(x)/province}$ = mass waste incinerated per province in

year x, t/year

A3.5.4.2. Data Sources

The amount of MSW incinerated in the year 1992 was estimated by the Hazardous Waste Branch of Environment Canada (Environment Canada 1996b). The amount of MSW incinerated for the years 1999, 2000, and 2001 was estimated by A.J. Chandler & Associates Ltd. for Environment Canada (Environment Canada 2003b).

The amount of fossil fuel-based carbon available in the waste incinerated is determined using typical percent weight carbon constants. Carbon constants and moisture contents were provided by Tchobanoglous et al. (1993) and Peavy et al. (1985).

N₂O Emissions from A3.5.5. **Waste Incineration**

A3.5.5.1. Methodology

Municipal Solid Waste Incineration

Emissions of N₂O from MSW incineration are estimated using the assumption that the IPCC five-stoker facility factors are most representative. The average N₂O emission factor over the range given as IPCC default values for MSW five-stoker facilities is 0.148 kg/t waste incinerated (IPCC/ OECD/IEA 1997). To estimate emissions, the calculated factor is multiplied by the amount of waste incinerated by each province. The national emission values are then determined as the summation of these emissions for all provinces.

Equation A3-87:

where:

 M_{MSW}

EF_{N2O-MSW}

 $N_2O_{MSW} = M_{MSW} \times EF_{N_2O-MSW}$ N_2O_{MSW} N₂O emissions from municipal solid waste incineration, t/year mass of municipal solid waste incinerated, t/year

MSW N₂O emission factor (0.148 kg

N₂O/t MSW incinerated / 1000 kg/t)

Sewage Sludge Incineration

Emissions of N₂O from sewage sludge incineration are estimated using the IPCC default emission factor for fluidized beds, 0.8 kg/t of dried sewage sludge incinerated (IPCC 2000). To estimate emissions, the calculated factor is multiplied by the amount of waste incinerated by each province. The national emission values are then determined as the summation of these emissions for all provinces.

Equation A3-88:

	$N_2O_{SS} = M_{SS} \times EF_{N_2O-SS}$	
where:		
N_2O_{SS}	 N₂O emissions from sewage sludge incineration, t/year 	
M_{SS}	 mass of dried sewage sludge inciner- ated, t/year 	
EF _{N2O-SS}	 sewage sludge N₂O emission factor (0.8 kg N₂O/t dried sludge incinerated / 1000 kg/t) 	

A3.5.5.2. **Data Sources**

Data sources for MSW incineration are described in Section A3.5.4.2.

Estimates of the amount of dried solids in the sewage sludge incinerated in the years 1990–1992 are based on a study completed in 1994. Data for the years 1993-1996 were acquired through telephone surveys of facilities that incinerate sewage sludge (Environment Canada 1997). Data for the years 1997 and 1998 are based on a study prepared by Compass Environmental Inc. for Environment Canada (Environment Canada 1999). Activity data for the years 1999, 2000 and 2001 are taken from a study prepared by A.J. Chandler & Associates Ltd. for Environment Canada (Environment Canada 2003b).

A3.5.6. CH₄ Emissions from **Waste Incineration**

A3.5.6.1. Methodology

CH₄ emissions from the incineration of MSW are assumed to be negligible. However, waste incineration of the biosolids resulting from municipal wastewater treatment does produce CH₄ emissions. The IPCC does not provide a methodology for CH₄ emissions from waste incineration, but recommends that national experts use existing published methods (IPCC 2000).

Emissions of CH₄ are estimated based on emission factors obtained from the U.S. Environmental Protection Agency (US EPA 1995). The emission factors are 1.6 t/kt of total dried solids for fluidized bed sewage incinerators and 3.2 t/kt of dried solids for multiple hearth incinerators, both equipped with venturi scrubbers. It is assumed that all incinerators are of the fluidized bed type.

CH₄ emissions from sewage sludge incineration are dependent on the amount of dried solids incinerated. To calculate the CH₄ emissions, the amount of dried solids incinerated is multiplied by an appropriate emission factor. Estimates of the amount of dried solids in the sewage sludge incinerated in the years 1990–1992 are based on a study completed in 1994 (Environment Canada 1994b). Data for the years 1993–1996 were acquired through telephone surveys of facilities that incinerate sewage sludge (Environment Canada 1997). Data for the years 1997 and 1998 are based on a study prepared by Compass Environmental Inc. for Environment Canada (Environment Canada 1999). Activity data for the years 1999, 2000, and 2001 are

Table A3–54 Estimated Sewage Sludge Incinerated for 1990–2009

		Sewage S	ludge Incinerated ((t, dry basis)	
Year	Que.	Ont.	Sask.	Alta.	National Total
1990	49 200	222 795	1 840	0	273 835
1991	59 400	222 795	1 840	0	284 035
1992	79 800	222 795	1 840	0	304 435
1993	64 833	129 125	71	0	194 029
1994	100 181	93 072	59	0	193 311
1995	101 356	113 985	152	0	215 493
1996	93 276	112 697 1	70	0	206 043
1997	15 424	0	0	4 885	20 310
1998	18 341	0	0	4 951	23 292
1999	22 032	0	0	0	22 032
2000	24 651	0	0	0	24 651
2001	27 960	0	0	0	27 960
2002	31 096	0	0	0	31 096
2003	34 234	0	0	0	34 234
2004	37 373	0	0	0	37 373
2005	40 511	0	0	0	40 511
2006	43 649	0	0	0	43 649
2007	46 787	0	0	0	46 787
2008	49 925	0	0	0	49 925
2009	53 064	0	0	0	53 064

Note:

A large step change is observed in the quantities of sewage sludge incinerated in Ontario for the period 1996–1997. This is as a result of two pilot projects that were approved in the mid-1990s for the non-incineration waste disposal of sewage sludge. The first project involved the spreading of treated sewage sludge on farmers' fields outside of Toronto, and the second project involved the transportation of sewage sludge to be spread on mine tailings. Both projects proved to have difficulties, owing to odour problems and the large quantities of waste that were to be spread on farmers' fields. From 1996 to 2000, Toronto sludge was stored during periods when excess quantities of waste were unable to be applied on land. In 2001, a new contract commenced that involved the spread of biosolids on Ontario farmers' fields, with excess biosolids being shipped to U.S. landfill sites.

taken from a study prepared by A.J. Chandler & Associates Ltd. for Environment Canada (Environment Canada 2003b). To estimate the amount of sewage sludge incinerated in the years 2002–2009, a linear regression analysis is completed using the A.J. Chandler & Associates Ltd. and Compass Environmental Inc. MSW incineration values.

In view of the relatively small number of facilities that incinerate sewage sludge in Canada, we believe that all relevant facilities were contacted, and we expect that the activity data collected from all three sources of information are complete. As such, our approach in estimating the amount of sewage sludge incinerated over the time series years is consistent.

Sewage sludge incineration estimates for the period 1990–2009 are shown in Table A3–54.

CH₄ emissions are calculated as follows:

Equation A3-89:

A3.5.6.2. Data Sources

Estimates of the amount of dried solids in the sewage sludge incinerated in the years 1990–1992 are based on a study completed in 1994. Data for the years 1993–1996 were acquired through telephone surveys of facilities that incinerate sewage sludge (Environment Canada 1997). Data for the years 1997 and 1998 are based on a study prepared by Compass Environmental Inc. for Environment Canada (Environment Canada 1999). Activity data for the years 1999, 2000 and 2001 are taken from a study prepared by A.J. Chandler & Associates Ltd. for Environment Canada (Environment Canada 2003b).

Annex 4

Comparison of Sectoral and Reference Approaches

This annex covers the energy and the CO_2 emission results from the reference approach (RA), a comparison of the results from the RA with those estimated by the sectoral approach (SA), and a summary of the national energy balance, which is the main energy data source for both the RA and the SA.

A4.1. Comparison of Reference Approach with Sectoral Approach

Results from the RA were compared with the SA as a check of energy consumed and CO_2 emissions from the combus-

tion of fossil fuels. The check was performed for all years from 1990 to 2009 and is an integral part of reporting to the United Nations Framework Convention on Climate Change (UNFCCC).

Direct comparisons of the results of the RA and SA show significant discrepancies, since the SA total for combustion does not include the energy and the fossil fuel-derived CO_2 from the non-energy use of fossil fuels and feedstocks, as presented in Table A4–1. Direct comparison of the RA and SA shows a 10.5 to 13.6% variation in energy and a 5.5 to 8.7% variation in emissions.

In Canada, large amounts of fossil fuels are used as a feed-stock in various industrial processes, such as aluminium production, ammonia production, ethylene production, and iron and steel production. Since the RA's net carbon values are calculated based on a top-down approach of production, export, import, stock change data and carbon stored, this will result in the inclusion of carbon emitted from feedstock and non-energy use. This is corrected by excluding the non-combustion energy and emissions of feedstocks to ensure that the RA and the SA are comparing similar sources for Canada.

When the RA energy amounts include adjustments for non-energy use of fossil fuels, the difference between the SA and adjusted RA varies from 0.9 to 4.1%, while the emissions difference varies between -1.52 and 0.9%. Table A4–1 shows a comparison of the adjusted RA and SA.

Table A4–1 Comparison of Adjusted Reference Approach and Sectoral Approach for Canada

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
								Overa	II Energy	Compari	son									
Reference Approach (PJ)	7 150	7 000	7 196	7 240	7 474	7 640	7 902	8 077	8 156	8 443	8 759	8 716	8 811	9 117	9 236	9 142	8 995	9 430	9 240	8 811
Sectoral Approach (PJ)	6 399	6 240	6 478	6 487	6 713	6 870	7 063	7 193	7 281	7 565	7 916	7 829	7 977	8 248	8 223	8 085	7 916	8 452	8 191	7 847
Percentage Difference without Adjustment (%)	11.7	12.2	11.1	11.6	11.3	11.2	11.9	12.3	12.0	11.6	10.7	11.3	10.5	10.5	12.3	13.1	13.6	11.6	12.8	12.3
Non-Energy Use of Fossil Fuels and Feedstocks																				
Non-Energy Use of Liquid Fuels (PJ)	328	308	319	324	328	353	382	406	397	404	392	381	399	409	460	424	458	454	457	401
Non-Energy Use of Solid Fuels (PJ)	157	171	170	165	165	164	165	161	163	171	177	170	168	171	176	182	187	184	170	132
Non-Energy Use of Gaseous Fuels (PJ)	157	176	167	187	194	193	197	209	202	205	190	160	149	156	165	158	157	156	145	109
Reference Approach with Non-Energy Use of Fossil Fuels and Feedstock Adjustment (PJ)	6 508	6 345	6 540	6 563	6 787	6 931	7 157	7 302	7 395	7 663	8 000	8 005	8 096	8 381	8 435	8 379	8 193	8 635	8 468	8 169
Percentage Difference with Adjustment - 100% x (RA-SA)/SA	1.70	1.68	0.95	1.17	1.10	0.88	1.33	1.51	1.57	1.30	1.06	2.25	1.49	1.61	2.58	3.64	3.50	2.17	3.38	4.09

Table A4-1 Comparison of Adjusted Reference Approach and Sectoral Approach for Canada

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	1990	1991	1992	1993	1994	1995	1990		l Emissio			2001	2002	2003	2004	2005	2006	2007	2006	2009
Reference Approach (Gg CO ₂)	447 146	437 485	446 416	445 663	457 908	468 649	483 002	497 792	501 304	518 193	540 323	534 945	536 029	557 076	557 490	554 589	539 135	565 544	555 550	527 280
Sectoral Approach (Gg CO ₂)	412 541	402 533	416 246	413 667	426 343	437 361	448 720	459 719	466 461	482 803	505 603	501 596	508 060	526 033	523 322	514 360	502 392	533 745	518 214	490 057
Percentage Difference without Adjustment (%)	8.39	8.68	7.25	7.73	7.40	7.15	7.64	8.28	7.47	7.33	6.87	6.65	5.51	5.90	6.53	7.82	7.31	5.96	7.20	7.60
Carbon dioxide emissions from non-energy use of fossil fuel and feedstocks																				
Liquid (Gg CO₂)	14 288	13 257	13 499	13 614	14 109	14 368	15 433	16 905	16 723	16 878	16 314	16 130	16 625	17 189	18 680	18 484	19 181	18 591	18 842	18 166
Solid (Gg CO₂)	12 216	13 467	13 488	13 171	13 006	13 100	13 099	12 694	12 766	13 378	13 893	13 281	13 100	13 391	13 728	14 193	14 662	14 467	13 559	10 465
Gaseous (Gg CO ₂)	6 339	7 062	6 713	7 498	7 668	7 714	7 889	8 334	8 035	8 202	7 616	6 381	5 947	6 199	6 569	6 282	6 260	6 208	5 765	4 335
Reference Approach with Non-Energy Use of Fossil Fuels and Feedstock Adjustment (PJ)	414 303	403 700	412 716	411 381	423 125	433 467	446 580	459 859	463 780	479 736	502 501	499 153	500 357	520 297	518 514	515 631	499 031	526 278	517 384	494 313
Percentage Difference with Adjustment - 100% x (RA-SA)/SA	0.43	0.29	-0.85	-0.55	-0.75	-0.89	-0.48	0.03	-0.57	-0.64	-0.61	-0.49	-1.52	-1.09	-0.92	0.25	-0.67	-1.40	-0.16	0.87
Liquid Fuels				Specifi	c details	on carb	on dioxi	de emiss	ions fro	n non-e	nergy us	e of foss	il fuel an	d feedsto	ocks					
Reference Approach (Gg CO ₂)	194 093	182 099	178 257	180 900	185 086	185 830	192 537	203 363	202 790	205 850	209 929	212 700	205 267	219 552	225 486	227 458	216 292	221 089	221 661	217 246
Carbon dioxide emissions from non- energy use of fossil fuel and feedstocks	-																			
Non-Energy Consumption of	167	176	160	126	98	73	79	96	74	72	132	83	66	66	60	44	42	36	34	27
Naphtha Non-Energy Consumption of	10 393	9 460	9 625	9 360	9 734	9 535	9 865	10 965	11 272	11 503	10 868	10 760	10 985	11 060	11 394	11 574	11 708	11 054	11 210	11 283
Bitumen Non-Energy Consumption of	1 318	1 223	1 215	1 272	1 400	1 427	1 425	1 554	1 495	1 507	1 549	1 451	1 693	1 734	1 684	1 735	1 592	1 615	1 549	1 438
Lubricants Non-Energy Consumption of Petrochemical Feedstock	1 898	1 768	1 933	1 916	1 827	2 186	2 301	2 275	2 293	2 436	2 278	2 122	2 310	2 218	2 574	1 929	2 327	2 384	2 338	1 500
Non-Energy Use of Other Products	512	630	565	940	1 050	1 148	1 763	2 015	1 589	1 360	1 487	1 714	1 572	2 110	2 967	3 201	3 512	3 502	3 710	3 918
Reference Approach with Non-Energy Use of Fossil Fuels and Feedstock Ad- justment (Gg CO ₂)		168 842	164 758	167 286	170 978	171 461	177 104	186 458	186 067	188 972	193 615	196 570	188 641	202 363	206 806	208 974	197 110	202 498	202 819	199 079
Sectoral Approach (Gg CO ₂)	178 311	167 354	168 093	168 978	173 259	174 579	178 714	185 233	189 550	191 505	194 668	195 551	193 820	206 796	211 520	209 375	201 775	209 262	206 266	200 078
Percentage Difference with Adjustment - 100% x (RA-SA)/SA	0.84	0.89	-1.98	-1.00	-1.32	-1.79	-0.90	0.66	-1.84	-1.32	-0.54	0.52	-2.67	-2.14	-2.23	-0.19	-2.31	-3.23	-1.67	-0.50
Solid Fuels Reference Approach (Gq CO ₂)	100 616	104 211	107 474	100 021	103 573	106 027	107 245	112 544	118 707	120 173	128 788	128 415	126 946	130 140	124 566	123 678	121 257	124 296	124 312	104 510
Carbon dioxide emissions from non- energy use of fossil fuel and feedstocks	-																			
Coke Oven Gas	1 490	1 463	1 404	1 267	1 429	1 254	1 328	1 339	1 266	1 316	1 314	1 346	1 319	1 312	1 367	1 341	1 354	1 344	1 014	900
Non-Energy Use of Anthracite	173	132	172	198	197	232	278	278	274	257	273	187	149	163	158	153	155	112	110	99
Non-Energy Use of Canadian Bituminous	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	464	210	258	570	318
Non-Energy Use of Coke (iron and steel & other)	8 056	9 273	9 219	8 882	8 194	8 522	8 308	8 119	8 328	8 523	8 531	7 936	7 782	7 705	7 877	7 694	8 409	8 420	8 227	5 968
Non-Energy Use of Foreign Bituminous	467	418	372	399	438	486	472	487	503	458	521	419	504	572	612	513	583	500	3	3
Non-Energy Use of Lignite	123	127	123	196	151	167	186	189	154	119	197	204	200	215	238	267	267	230	201	201
Non-Energy Use of Petroleum coke	1 907	2 053	2 199	2 229	2 596	2 439	2 527	2 281	2 241	2 704	3 057	3 188	3 146	3 425	3 475	3 761	3 684	3 603	3 434	2 975

Table A4-1 Comparison of Adjusted Reference Approach and Sectoral Approach for Canada

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			Sp	ecific de	tails on	carbon d	ioxide e	missions	from no	n-energ	y use of	fossil fu	el and fe	edstocks	(cont'd)					
Solid Fuels (cont'd)			•																	
Reference Approach with Non-Energy Use of Fossil Fuels and Feedstock Ad- justment (Gg CO ₂)	88 400	90 744	93 986	86 851	90 567	92 927	94 146	99 849	105 941	106 796	114 896	115 135	113 847	116 748	110 839	109 485	106 595	109 828	110 753	94 045
Sectoral Approach (Gg CO ₂)	90 679	93 141	96 625	89 939	94 203	96 565	98 013	104 119	109 974	110 705	119 743	119 795	118 380	121 246	115 863	113 643	110 496	115 369	111 925	94 367
Percentage Difference with Adjustment - 100% x (RA-SA)/SA	-2.51	-2.57	-2.73	-3.43	-3.86	-3.77	-3.94	-4.10	-3.67	-3.53	-4.05	-3.89	-3.83	-3.71	-4.34	-3.66	-3.53	-4.80	-1.05	-0.34
Gaseous Fuels																				
Reference Approach (Gg CO ₂)	152 306	151 026	160 517	164 556	168 871	176 485	182 905	181 733	179 574	191 942	201 338	193 573	203 425	207 011	207 023	203 152	201 266	219 739	209 147	205 094
Carbon dioxide emissions from non-energy use of fossil fuel and feedstocks																				
Non-Energy Consumption of Natural Gas	6 339	7 062	6 713	7 498	7 668	7 714	7 889	8 334	8 035	8 202	7 616	6 381	5 947	6 199	6 569	6 282	6 260	6 208	5 765	4 335
Reference Approach with Non-Energy Use of Fossil Fuels and Feedstock Ad- justment (Gg CO ₂)	145 967	143 964	153 805	157 059	161 203	168 771	175 016	173 399	171 538	183 740	193 722	187 192	197 478	200 812	200 454	196 870	195 006	213 531	203 382	200 759
Sectoral Approach (Gg CO ₂)	143 418	141 888	151 360	154 564	158 504	165 909	171 679	170 214	166 703	180 364	190 923	185 993	195 469	197 617	195 524	191 040	189 804	208 699	199 599	195 188
Percentage Difference with Adjustment - 100% x (RA-SA)/SA	1.78	1.46	1.61	1.61	1.70	1.73	1.94	1.87	2.90	1.87	1.47	0.64	1.03	1.62	2.52	3.05	2.74	2.32	1.90	2.85

A4.2. Reference-approach Methodology

The RA for the most part follows the Intergovernmental Panel on Climate Change (IPCC) designated method with the use of country-specific energy conversion factors (in higher heating value [HHV]/gross calorific value [GCV]) and emission factors. In Canada, as in the United States, HHV is used to record the energy content of fuels. Fuel quantities from the Report on Energy Supply-Demand in Canada (RESD; Statistics Canada catalogue no. 57-003-XIB) and the Energy Statistics Handbook (Statistics Canada 2010) are entered in their physical units, with the exception of international bunkers. A discussion of the data for international bunkers is presented in the following sections: 3.4.1, International Bunker Fuels; A2.4.2.3, Civil Aviation; and A2.4.2.4, Navigation. For primary fuels (crude oil, coal and natural gas), the stock change data have been adjusted to account for inter-product transfers, stock variation and other adjustments, and are then transformed to other fuels to determine the apparent consumption values. The stock change data for secondary fuels take into consideration imports, exports, international bunkers, stock variations and other adjustments.

Once the apparent consumption is determined, country-specific energy conversion factors and carbon emission factors are used to calculate the carbon content and emissions. These factors are taken from the following sources: Statistics Canada's annual Report on Energy Supply–Demand in Canada (RESD #57-003); Canada's Greenhouse Gas Emissions: Estimates for 1990 (Jaques 1992); the 1998 Fossil Fuel and Derivative Factors (McCann 2000); and Measurement Canada, an Industry Canada agency. For the majority of fossil fuels, the applied emission factors and oxidation factors are from McCann (2000), Jaques (1992) and from IPCC/OECD/IEA (1997).

Table A4–2 presents the applied emission factor, energy conversion factor and oxidation value in the RA. Energy conversion factors are taken directly from the RESD, with the exception of crude oil, natural gas, petroleum coke and still gas, where weighted factors have been developed to account for the quantity and variation of energy content at the point of consumption such as commercial usage or self-generated usage. For example, for provinces with natural gas production, there are two emission factors for natural gas: marketable natural gas, which is sold to consumers, and non-marketable natural gas, which is consumed directly by the producers of natural gas.

Table A4–2 Reference Approach Energy Conversion and Emission Factors for Canada

Fuel Ty	pes		Energy	Conve tor, G	rsion Fac- CV	Facto	n Emission or, (t C/TJ GCV)	Oxidation Factors (IPCC Default)	Comments
			2009 Value	Unit	Reference	2009 Value	Reference	Delault)	
Liquid Fossil	Primary Fuels	Crude Oil	39.79	TJ/ML	Refer to Comments	19.25	Refer to Comments	0.99	1) Energy values associated with LPG (for butane and propane), with refinery still gas and with petroleum coke have been allocated to the Gaseous and Soli Fossil fuel category. 2) Weighted energy conversion and emission factor are based on country-specific data.
	_	Orimulsion	NA	_	-	NA	-	0.99	
_		Natural Gas Liquids	17.22	TJ/ML	4	15.61	2	0.99	1) Report use of ethane from natural galiquid. 2) Use of butane and propane have been allocated to the Gaseous Fosil fuel category.
	Secondary	Gasoline	35	TJ/ML	4	17.84	2	0.99	
	Fuels	Jet Kerosene	37.4	TJ/ML	4	18.67	2	0.99	Use of aviation turbo fuel.
	_	Other Kerosene	37.68	TJ/ML	4	18.53	2	0.99	
	_	Shale Oil	NA	_	-	NA	-	_	
	_	Gas/Diesel Oil	38.3	TJ/ML	4	18.86	2	0.99	Use of diesel fuel oil.
	_	Residual Fuel Oil	42.5	TJ/ML	4	20.07	2	0.99	Use of heavy fuel oil.
		LPG	IE	-	-	ΙΕ	-	_	Propane and butane from refineries have been allocated to Gaseous Fossil fuel category.
	_	Ethane	17.22	TJ/ML	4	15.61	2	0.995	 Use of ethane from NGL. Total available ethane is consumed a a feedstock in industrial processes.
	_	Naphtha	35.17	TJ/ML	4	19.33	3	0.99	
	_	Bitumen	44.46	TJ/ML	4	21.11	3	0.99	Use of asphalt.
	_	Lubricants	39.16	TJ/ML	4	19.66	3	0.99	
	-	Petroleum Coke	IE	-	-	IE	_	-	Allocated to the Solid Fossil fuel category.
	-	Refinery Feedstocks	35.17	TJ/ML	4	19.33	3		Use of petrochemical feedstock in industrial processes
		Other Oil	38.8	TJ/ML	4	19.15	2		Use of light fuel oil.
	Other Liquid Fuels	Aviation Gasoline	33.52	TJ/ML	4	19.25	3	0.99	
		Other Product Feedstocks	39.82	TJ/ML	4	19.84	3	0.99	
Solid Fossil	Primary Fuels	Anthracite	27.7	TJ/kt		23.74	3	0.99	
1 03311	-	Other Bituminous Coal	28.83	TJ/kt TJ/kt		23.69	5	0.99 0.99	Use of Canadian bituminous coal
	-	Sub- bituminous Coal	19.15	TJ/kt	4	24.69	5	0.99	
		Lignite	15	TJ/kt	4	25.99	5	0.99	
		Oil Shale	NA	_	-	NA	-	-	
-		Peat	NA	_	-	NA	-	-	
	Secondary Fuels	BKB & Patent Fuel	NA	-	-	NA	-	-	
		Coke Oven Gas	IE	_	-	IE	-	-	Allocated to the Gaseous Fossil fuel category.
	Other Solid Fuels	Petroleum Coke – Refinery and Upgrader	44.6	TJ/ML	4	22.74	-	0.99	Country-specific weighted emission fa- tors based on available emission factor for refining and upgrading (of oil sands to synthetic crude oil).

Table A4-2 Reference Approach Energy Conversion and Emission Factors for Canada (cont'd)

Fuel Types		Energy Conversion Factor, GCV			Carbon Emission Factor, (t C/TJ GCV)		Oxidation Factors (IPCC Default)	Comments	
			2009 Value	Unit	Reference	2009 Value	Reference	Doluuni	
Solid Fossil (cont'd)	Other Solid Fuels (cont'd)	Foreign Bituminous Coal	29.82	TJ/kt	4	22.82	5	0.99	
Gaseous Fossil		Natural Gas	38.26	TJ/GL	4	14.12	2	0.995	Country specific weighted emission factor based on proportion o marketable and non-marketable natural gas.
	Other Gaseous	Propane	25.31	TJ/ML	4	16.35	2	0.995	Includes consumption of NGL-propane.
	Fuels	Coke Oven Gas	19.14	TJ/ML	4	12.52	2	0.99	
		Butane	28.44	TJ/ML	4	16.67	2	0.995	Includes consumption of NGL-butane.
		Still Gas – Refinery and Upgrader Fuel Gas	39.24	TJ/ML	4	13.25	-	0.99	Country-specific weighted emission factor based on factors from refinery and from upgrading (of crude from oil sands to synthetic crude oil) activities.
Biomass		Solid Biomass	18	TJ/kt	4	28.41	-	0.99	1) Consists of industrial and residential biomass consumption. 2) Assumed 99% oxidation.
		Liquid Biomass	14.86	TJ/kt	4	18.91	3	0.952	1) Consists of spent pulping liquor, ethanol and biodiesel. 2) Weighted oxidation factor approximately 95%.
		Gas Biomass	35.9	TJ/1000m³	1	14.97	1	0.99	1) Consists of landfill gas. 2) Assumed a 99% oxidation factor.

References: (1) IPCC/OECD/IEA (1997); (2) McCann (2000); (3) Jaques (1992); (4) Statistics Canada, #57-003 (2003 data); (5) EC Coal Study. NA = Not applicable; BKB = Charcoal briquettes; NGL = natural gas liquids; LPG = liquified petroleum gas; IE = included elsewhere.

To adjust the RA for comparison with the SA, non-energy use of fossil fuels and feedstocks and the corresponding carbon dioxide emitted must be calculated using the storage and emission factors for industrial processes presented in Annex 8 of the NIR.

A4.3. National Energy Balance

Statistics Canada provides Environment Canada with a large portion of the underlying activity data to estimate GHG emissions for the Energy Sector and the Industrial Processes Sector. Statistics Canada's Manufacturing and Energy Division (MED) is responsible for the collection, compilation and dissemination of the energy balance in the RESD (#57-003). The objective of MED is to ensure that the information as collected under the authority of the *Statistics Act* and used in the development of the energy balance meets the following quality criteria: completeness, consistency, coherency and accuracy. The quality management system for the energy balance also includes an inter-

nal and external review process. MED's quality assurance framework and methodological reports are documented and made available through Statistics Canada's Integrated Meta Database.

The energy balance is an accounting of all available energy forms in Canada from import and export activities through production and domestic consumption (refer to Figure A4-1 for a sample of an energy flow diagram). Energy and fossil fuel data are collected by various methods, such as a mix of annual or monthly surveys and some censuses from industry, federal agencies (such as the National Energy Board [NEB], the Energy Resources Conservation Board [ERCB] and the Alberta Utilities Commissions [AUC]), provincial energy departments, and from the Canadian Industrial Energy End-Use Data and Analysis Centre (CIEEDAC). Refer to Figure A4–2 for a sample of the energy and fossil fuel data input to MED and what information is provided by each of the data sources or respondents. Oil and gas information as provided by the ERCB is highly accurate, since it is tied to oil and gas exploitation permits and to federal and provincial royalty schemes.

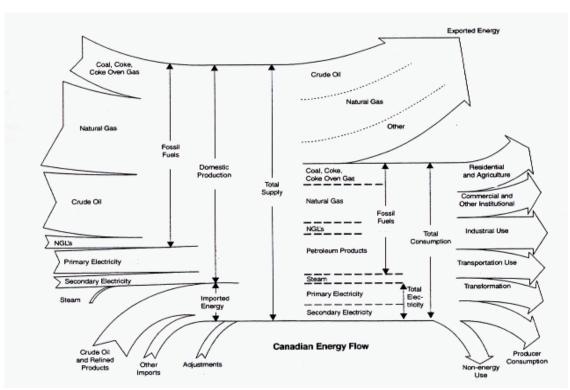
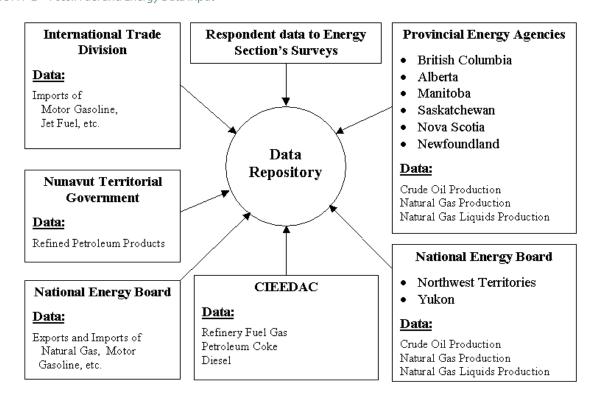



Figure A4–1 Sample of an Energy Balance Flow Diagram for Canada (RESD)

Figure A4–2 Fossil Fuel and Energy Data Input

There are also other internal data quality checks of the information collected through provincial energy departments and from various supply, disposition and consumption surveys. For example, the quantity of crude oil shipped as reported by the producer is verified against report receipts from pipeline companies, and the information as reported by pipelines is verified against refinery receipts. MED also applies both a top-down approach through the supply and disposition surveys and a bottom-up approach through the Industrial Consumption of Energy survey to verify the quality of the data for manufacturing industries, including the petroleum refining industry. In addition, technical information on energy characteristics is collected to verify reported fuels in physical and energy units.

The energy balance consists of information on crude oil, natural gas, coal, refined petroleum product (RPPs), electricity, steam, non-energy use of fossil fuels, feedstock and other secondary energy forms for all Canadian industrial sectors and other energy use, such as the transportation, residential and commercial sectors.

Both the Industrial Consumption of Energy product and the energy balance are used by various federal departments for energy efficiency programs, policy development, reporting to the International Energy Agency, energy and emission forecasting, and reporting to the UNFCCC. As such, MED has established partnerships with various federal government departments, provincial energy ministries, industrial associations and centres of excellence to assist with their quality assurance process.

For example, a "work-in-progress" review has been established with Environment Canada and Natural Resources Canada (NRCan) to review the industrial consumption of energy estimates and the energy balance prior to their official release. Canadian industrial members also participate in the review of industrial data through the Canadian Industrial Program for Energy Conservation group. The Canadian Industrial Energy End-Use Data and Analysis Centre also participates in the review of refinery data and the industrial energy statistics.

Owing to the complexity of energy data, a working group on energy statistics was established to provide advice, direction and recommendations. The working group consists of members from Statistics Canada, Environment Canada, Industry Canada, Transport Canada, Foreign Affairs Canada and Natural Resources Canada. Its mandate is to identify and address issues related to the collection of a comprehensive set of energy data for various sectors of the economy and to improve existing energy statistics.

A4.4. IPCC Fuel Categorization

In its Common Reporting Format (CRF) data tables, Canada characterizes fuels according to their physical state at time of use, which does not in all cases match IPCC fuel categorizations. To ensure that information submitted to the UNFCCC is transparent, complete, consistent and comparable, CO₂ implied emission factors (IEF) from combustion activities are presented following physical state and IPCC fuel groupings (refer to Table A4–4 to Table A4–6 for specific details).

Presented in Table A4–3 are the fuel types that are consumed in Canada, grouped according to their physical state and the IPCC categorization.

The allocation of fuels based on their physical state at point of usage with similar carbon content, heating value and density helps to ensure that aggregated implied emission factors are comparable. This approach also reduces the impact of highly variable fuels (such as internally generated, non-commercial fuels produced by oil sands upgraders and refineries) that may skew the resultant IEFs when compared to Annex I Parties that consume mostly commercial-grade fuels, such as diesel (with less variability in fuel properties). As an example, the CO₂ IEF of solid fuels for petroleum refining following IPCC categorization of Annex I Parties ranged from a low of 40.85 t/TJ to a high of 257.18 t/TJ due to the variability of the carbon content and the quantity of each type of coal, coke oven gas and solid waste fuel that is consumed. This makes it difficult to compare and to assess the accuracy of reported emissions and IEFs, especially for large fossil-fuel-producing Parties with a mix of conventional and unconventional sources of fossil fuels.

It is important to note that for Canada, the impact on the CO_2 IEF based on the allocation of fuels by physical states as compared to the IPCC categorization is minimal for stationary combustion sources such as Public Electricity and Heat Production; Non-ferrous Metals; Chemicals; Pulp, Paper and Print; Mining; Commercial/Institutional; and the Residential subcategory as presented in Table A4–4 for the Energy Industries, Table A4–5 for the

Table A4–3 Fuel Type Categories for Stationary Combustion Methodology

Fuel Types	Physical Categorization	IPCC Categorization
Liquid Fuels	Motor gasoline Kerosene and stove oil Diesel fuel oil Light fuel oil Heavy fuel oil Aviation gasoline Aviation turbo fuel	Motor gasoline Kerosene and stove oil Diesel fuel oil Light fuel oil Heavy fuel oil Aviation gasoline Aviation turbo fuel Ethane Propane Butane Petroleum Coke – Refineries, Upgraders & Others Still Gas – Refinery fuel gas, Upgraders fuel gas & Others
Solid Fuels	Coke (coal) Canadian bituminous Sub-bituminous (foreign & domestic) Lignite Anthracite Foreign bituminous Petroleum Coke–Refineries, Upgraders & Others Waste fuel - tires	Coke (coal) Canadian bituminous Sub-bituminous (foreign & domestic) Lignite Anthracite Foreign bituminous Waste fuel – tires Coke oven gas
Gaseous Fuels	Natural Gas Coke oven gas Propane Butane Ethane Still Gas–Refineries, Upgraders & Others	Natural Gas

Manufacturing Industries and Construction and in Table A4–6 for the Other Sectors.

In other cases, the allocation of fuels by physical characteristics results in a closer alignment of Canada's CO2 IEF when compared to the overall average value of all Parties (based on 2009 submissions). For example, the 2008 iron and steel's CO2 IEF for solid fuels is about 46.65 t/TJ following IPCC categorization (as shown in Table A4-7) which is at the low end of the range. But it is 84.01 t/TJ when allocated based on physical state, which is much closer to the overall average IEF value of 111.87 t/TJ for Annex I Parties.

Table A4–4 Energy Industries' CO₂ Implied Emission Factors

	1990	1995	2000	2005	2008	2009
				t/TJ		
1.A.1. Energy Industries						
a. Public Electricity and Heat Production						
Liquid Fuels						
Physical categorization	74.4	74.3	73.3	73.3	73.1	73.1
IPCC categorization	74.7	74.8	71.6	73.2	73.7	73.7
Solid Fuels						
Physical categorization	88.3	90.0	87.8	89.0	89.2	89.1
IPCC categorization	88.3	90.0	87.8	89.1	89.4	89.4
Gaseous Fuels						
Physical categorization	50.5	49.8	49.8	49.4	49.5	49.4
IPCC categorization	50.5	49.8	49.8	49.4	49.5	49.4
b. Petroleum Refining						
Liquid Fuels						
Physical categorization	73.8	73.3	73.3	72.8	71.9	71.6
IPCC categorization	56.8	59.4	59.3	60.8	60.2	60.1
Solid Fuels						
Physical categorization	84.7	85.1	80.1	82.3	82.4	82.3
IPCC categorization	NO	NO	NO	NO	NO	NO
Gaseous Fuels						
Physical categorization	45.1	47.3	46.4	46.9	46.9	47.2
IPCC categorization	45.3	48.7	45.9	44.4	45.9	45.3
d. Manufacture of Solid Fuels and Other Energy Industries						
Liquid Fuels	NA	NA	NA	NA	NA	NA
Solid Fuels						
Physical categorization	87.8	87.7	85.7	86.0	86.0	86.0
IPCC categorization	72.0	71.9	84.2	84.2	84.2	84.4
Gaseous Fuels						
Physical categorization	61.3	59.3	60.5	59.3	59.3	58.2
IPCC categorization	62.5	61.9	62.3	61.5	61.5	61.2

Note: NO = not occurring; NA = not applicable

Table A4–5 Manufacturing Industries and Construction's CO₂ Implied Emission Factors

	1990	1995	2000	2005	2008	2009
				t/TJ		
1.A.2 Manufacturing Industries and Construction						
a. Iron and Steel						
Liquid Fuels						
Physical categorization	74.86	74.86	73.51	73.51	73.51	73.50
IPCC categorization	74.87	75.38	73.56	73.51	73.61	73.65
Solid Fuels						
Physical categorization	87.54	85.55	85.44	IE	84.01	84.69
IPCC categorization	47.62	47.66	46.58	45.92	46.65	47.08
Gaseous Fuels						
Physical categorization	48.8	48.8	48.6	48.2	48.2	48.2
IPCC categorization	49.8	49.3	49.4	49.1	49.1	49.1
b. Non-ferrous Metals						
Liquid Fuels						
Physical categorization	74.7	74.1	73.4	73.4	73.4	73.4
IPCC categorization	76.3	76.1	74.2	74.5	75.5	75.5
Solid Fuels						
Physical categorization	82.9	83.9	85.3	85.3	84.8	85.0
IPCC categorization	82.7	83.7	85.8	85.8	85.2	85.8
Gaseous Fuels						
Physical categorization	49.9	49.5	49.6	49.3	49.4	49.5
IPCC categorization	49.9	49.5	49.6	49.3	49.4	49.5
c. Chemicals						
Liquid Fuels						
Physical categorization	74.9	74.9	73.5	73.5	73.5	73.5
IPCC categorization	75.8	76.0	74.5	75.0	75.5	75.9
Solid Fuels						
Physical categorization	84.7	85.1	80.1	82.4	82.4	82.4
IPCC categorization	NO	NO	NO	79.6	79.6	79.6
Gaseous Fuels						
Physical categorization	50.4	50.0	50.2	49.9	49.9	50.0
IPCC categorization	50.4	50.0	50.2	49.9	49.9	50.0
d. Pulp, Paper and Print						
Liquid Fuels						
Physical categorization	74.8	74.8	73.5	73.5	73.4	73.4
IPCC categorization	74.8	74.8	73.5	73.5	73.4	73.4
Solid Fuels						
Physical categorization	86.8	87.3	87.6	89.4	89.3	91.8
IPCC categorization	86.8	87.3	87.6	89.4	89.3	91.8
Gaseous Fuels						
Physical categorization	50.0	49.7	49.8	49.5	49.5	49.5
IPCC categorization	50.0	49.7	49.8	49.5	49.5	49.5
e. Food Processing, Beverages and Tobacco	IE	IE	IE	IE	IE	IE
f. Other						
1.AA.2.F.i Cement						
Liquid Fuels						
Physical categorization	74.9	74.9	73.5	73.5	73.5	73.5
IPCC categorization	82.4	83.4	78.7	81.2	81.7	81.4
Solid Fuels						
Physical categorization	83.8	83.2	82.4	83.9	84.1	84.3
IPCC categorization	83.3	82.2	82.8	84.4	84.8	84.6
Gaseous Fuels						
Physical categorization	50.4	50.1	50.3	49.4	49.4	49.4
IPCC categorization	50.4	50.1	50.3	49.4	49.4	49.4

Table A4-5 Manufacturing Industries and Construction's CO₂ Implied Emission Factors (cont'd)

	1990	1995	2000	2005	2008	2009
				t/TJ		
f. Other (cont'd)						
1.AA.2.F.ii Mining						
Liquid Fuels						
Physical categorization	73.4	73.4	72.4	71.7	72.2	71.8
IPCC categorization	72.9	69.6	63.7	61.7	61.3	60.9
Solid Fuels						
Physical categorization	86.9	87.2	86.0	86.5	83.7	83.9
IPCC categorization	86.0	86.0	86.0	86.7	83.4	83.5
Gaseous Fuels						
Physical categorization	50.9	51.2	51.1	50.8	50.7	50.5
IPCC categorization	50.3	49.7	49.9	49.8	49.9	49.8
1.AA.2.F.iii Construction						
Liquid Fuels						
Physical categorization	71.2	70.8	70.6	71.4	70.4	71.3
IPCC categorization	64.8	65.4	65.5	66.7	64.1	65.4
Gaseous Fuels						
Physical categorization	52.5	51.9	51.2	50.5	50.7	50.9
IPCC categorization	50.0	49.6	49.6	49.3	49.2	49.1
1.AA.2.F.iv Other Manufacturing						
Liquid Fuels						
Physical categorization	74.4	73.2	72.4	72.4	72.1	72.2
IPCC categorization	71.3	72.1	71.0	68.0	67.2	67.0
Solid Fuels						
Physical categorization	85.0	84.9	83.4	84.4	84.4	84.6
IPCC categorization	85.1	84.8	85.3	85.6	85.8	85.9
Gaseous Fuels						
Physical categorization	50.3	49.8	50.0	49.8	49.9	49.9
IPCC categorization	50.0	49.7	49.8	49.4	49.4	49.4

Note: NO = not occurring; <u>IE = included elsewhere.</u>

Table A4–6 Other Sectors – CO₂ Implied Emission Factors

	1990	1995	2000	2005	2008	2009
				t/TJ		
1.A.4 Other Sectors						
a. Commercial/Institutional						
Liquid Fuels						
Physical categorization	70.9	70.7	70.8	71.4	71.4	71.5
IPCC categorization	68.8	66.4	67.4	69.5	68.8	69.2
Solid Fuels						
Physical categorization	81.4	71.8	84.2	NO	NO	86.1
IPCC categorization	81.4	71.8	84.2	NO	NO	86.1
Gaseous Fuels						
Physical categorization	50.4	50.5	50.4	49.9	50.0	49.9
IPCC categorization	50.0	49.7	49.7	49.4	49.4	49.4
b. Residential						
Liquid Fuels						
Physical categorization	70.2	70.2	70.0	70.1	70.1	70.2
IPCC categorization	69.1	69.2	69.2	68.9	68.3	68.3
Solid Fuels						
Physical categorization	87.9	85.3	88.4	89.5	91.8	91.4
IPCC categorization	87.9	85.3	88.4	89.5	91.8	91.4
Gaseous Fuels						
Physical categorization	50.3	49.9	49.9	49.6	49.6	49.6
IPCC categorization	50.0	49.6	49.7	49.4	49.4	49.4
c. Agriculture/Forestry/Fisheries						
Liquid Fuels						
Physical categorization	70.5	70.3	70.5	71.8	72.0	71.2
IPCC categorization	67.4	66.8	67.1	66.1	65.8	63.8
Gaseous Fuels						
Physical categorization	51.5	51.7	51.2	51.8	51.8	51.
IPCC categorization	49.9	49.3	49.6	49.0	49.1	49.0

Table A4–7 Examples of Improved Comparability of CO₂ Implied Emission Factors Based on Physical Categorization

		1990	2008
		t/TJ	
1.A.1. Energy Industries			
c. Manufacture of Solid Fuels and Othe	er Energy Industries		
Solid Fuels			
Physical categorization		87.8	86.0
IPCC categorization		72.0	84.2
CRF Locator - Outliers	Low	40.8	31.9
	Average	92.1	86.3
	High	163.2	158.8
Gaseous Fuels			
Physical categorization		61.3	59.3
IPCC categorization		62.5	61.5
CRF Locator	Low	26.8	49.8
	Average	56.8	61.2
	High	81.6	185.1
1.A.2 Manufacturing Industries and Co	onstruction		
a. Iron and Steel			
Solid Fuels			
Physical categorization		87.5	84.0
IPCC categorization		47.6	46.7
CRF Locator	Low	20.4	20.5
	Average	113.7	111.9
	High	248.0	221.3

Annex 5

Assessment of Completeness

Although this inventory report serves as a comprehensive assessment of anthropogenic greenhouse gas (GHG) emissions and removals in Canada, some categories have not been included or have been included with other categories for reasons explained in the common reporting format (CRF) tables and in this annex.

A5.1. Energy

Overall, the Energy Sector of the national inventory provides a full estimate of all significant sources. CH_4 and N_2O emissions from the combustion of waste fuels are not currently estimated, but this does not affect the completeness of the inventory owing to its relatively small contribution.

A5.1.1. Emissions from Combustion of Waste Fuels

Although carbon dioxide emissions from waste fuels are included in the inventory, emissions of CH_4 and N_2O have not been included, due to a lack of emission factors or measured data on such emissions from these fuels.

A5.2. Industrial Processes

Overall, the Industrial Processes Sector of the national inventory provides a comprehensive estimate of all significant sources. Discussed in the following subsections are sources that are not currently estimated and that may represent a source in their particular subsector. However, their magnitudes are assumed to be small and to not affect the overall completeness of the GHG inventory.

A5.2.1. Mineral Products

CO₂ emissions from asphalt roofing and road paving with

asphalt are not estimated. There is currently no country-specific information on this. However, based on Chapter 5, Volume 3 of the 2006 IPCC Guidelines (IPCC 2006), CO_2 emissions from this category are thought to be negligible.

Only CO_2 emissions from glass production coming from the use of limestone, dolomite and soda ash are currently estimated. These emissions are reported under 2.A.3 Limestone and Dolomite Use, and 2.A.4 Soda Ash Production and Use. Emissions other than those coming from these minerals are not estimated and are considered to be minor based on Chapter 2, Volume 3 of the 2006 IPCC Guidelines (IPCC 2006).

Soda ash was produced in Canada until 2001. The Solvay process in which soda ash was produced results in some CO_2 emissions. However, as CO_2 is also a necessary component in the process reactions, it is most commonly recovered for reuse. Hence, the quantity of recovered CO_2 is estimated in the inventory for the years 1990–2001, but the net amount of non-recovered (i.e. emitted) CO_2 coming from soda ash production is not estimated and is considered to be minimal.

A5.2.2. Chemical Production

 N_2O emissions associated with the production of chemicals other than nitric acid, adipic acid and ethylene are reported as "Not Estimated." However, according to a recent study (Cheminfo Services 2010), production of chemicals, such as ammonia, ethylene and methanol, is not a large source of N_2O emissions (i.e. not more than 10 kt CO_2 eq/year). Complete results on N_2O emission estimation found in this study will be included in the next inventory.

CH₄ emissions from production of carbide, carbon black, ethylene, methanol, ethylene dichloride and styrene are now included in the inventory.

Process-related CO_2 emissions from adipic acid production are not inventoried (i.e. not estimated) and are considered negligible in comparison with the amount of CO_2 emitted from fuel combustion.¹

A5.2.3. Metal Production

Process CH₄ emissions associated with the production of metals are currently reported as "Not Estimated." However,

¹ Lauridsen S. 2005. Personal communication (email dated November 3, 2005). Invista Canada.

a recent study (Cheminfo Services 2010) has determined that the contribution of estimated CH₄ and N₂O emissions to the total process GHGs is approximately 1%. Complete results of the study will be included in the next inventory.

A5.2.4. Production and Consumption of Halocarbons and SF₆

Since data on perfluorocarbons (PFCs) used in aerosols are currently unavailable, the associated emissions are not inventoried (i.e. not estimated). Hydrofluorocarbon (HFC) emissions from electronic industries are reported under the category 2.F.5 Solvents, not 2.F.9 Other (Contained and Emissive Emissions from Electronic Industries), in the CRF reporter, since it is not possible for this submission to separate HFC consumption as solvent in electronic industries from other types of solvent use. There are also some PFCs emitted from the electronic industry, and these emissions are reported under 2.F.9 Other (Contained and Emissive Emissions from Electronic Industries). HFC emissions coming from electrical equipment are reported as "Not Estimated" because there is no known use of HFCs for electrical insulation and arc quenching in equipment used in the electricity industry. According to the electricity industry, CF₄ has been used in some outdoor electrical equipment. Specifically, it is found in gas mixtures with SF₆, since SF₆ alone cannot function properly as an insulating gas in low temperatures. There are ongoing discussions with the industry, so that CF₄ use and emission data can be collected and reported by Environment Canada in future inventories.

Potential emissions of SF_6 , which should be derived from the information on imports and exports of SF_6 (in bulk and in product), and SF_6 destruction are reported as "Not Estimated" since there is currently no comprehensive information on SF_6 exports in products. Based on information provided by major SF_6 gas distributors, there is no bulk SF_6 exported from Canada. The electricity industry has also indicated that destruction or recycling of SF_6 found in electrical equipment is done in the United States.

A5.2.5. Other and Undifferentiated Production

 CO_2 emissions from the non-energy use of hydrocarbons are estimated using two types of emission factors. The first type was developed by simply converting the national

carbon contents for non-energy fuel types to GHG emission factors, while the second type was derived based on both national carbon contents and IPCC default fractions of carbon stored. The IPCC default fractions of carbon stored take into account the release of carbon from the use or destruction of the manufactured products over a short term only. CO_2 emissions from the combustion of waste fuels (made from non-energy use of hydrocarbons) need to be researched further. This, to understand to what extent the IPCC default fraction of carbon stored represents the release of carbon from use or destruction of the product in the short term (versus the long term). Please see comments in A5.1 on this as well.

A5.3. Solvent and Other Product Use

In this sector, only N_2O emissions associated with the use of anaesthetics and propellants are estimated. Emissions from use of solvents in dry cleaning, printing, metal degreasing, and a variety of industrial applications as well as household use are not estimated because, according to the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC/OECD/IEA 1997), GHGs are not emitted in significant amounts from these types of uses. Also, according to a recent study (Cheminfo Services 2010), there has been no N_2O used in fire extinguishers because the decomposition of N_2O provides a source of oxygen for flammable materials that would sustain, not suppress, any fire. As such, N_2O from fire extinguishers (category 3.D.2 in the CRF) is reported as "not occurring."

A5.4. Agriculture

Overall, the Agriculture Sector of the national inventory provides a complete estimate of the significant sources. The following list includes sources that are not currently estimated. These are considered to be minor sources.

A5.4.1. Enteric Fermentation and Manure Management

Some minor animal categories, such as ranched deer, wild boar, elk, rabbit, ostrich and ducks, have not yet been included. Complete IPCC default emission factors and parameters are unavailable for these categories, and they have relatively low populations. Mules, asses and camels are reported as not occurring because there is no known commercial production of these animals. At this time, in-

formation on animal waste manure systems using anaerobic lagoons, daily spread and dry lot, by livestock category, is not available. These manure management systems are considered minor by Canadian experts when compared with liquid/slurry and solid and dry lot storage. Information on animal waste management systems, including distributions for anaerobic lagoons, daily spread and dry lot, will be collected and, in the mid term or long term, will be reported from these sources.

A5.4.2. Prescribed Burning of Savanna

Prescribed Burning of Savanna is not a relevant reporting category for Canada.

A5.4.3. Rice Production

CH₄ emissions from rice production are not currently inventoried, as rice production is not occurring in Canada.

A5.5. Land Use, Land-Use Change and Forestry

With the major methodological improvements implemented in the 2006 submission, the completeness of the LULUCF inventory has considerably improved through increased coverage of carbon pools and improvement in the resolution of activity data. Uncertainty ranges are provided for estimates in the Forest Land and Cropland categories, and for the area of forest conversion to other land categories. They are under preparation for all other land categories.

A5.5.1. Forest Land

Forest land estimates are provided for both forest land remaining forest land and land converted to forest land. These estimates include carbon stock changes and emissions from all pools (biomass, dissolved organic matter (DOM) and soil) in managed forests resulting from growth and mortality, fire and insect disturbances, and management activities. Emissions of CO_2 , CH_4 , CO and N_2O are estimated. Emissions of NO_x are not estimated. CO emissions occur during biomass burning only; they are reported as CO_2 emissions in the CRF Biomass Burning tables. Carbon stock changes and emissions reported from forest soils are assumed to include both mineral and organic soils, as specific data on organic soils are not readily available.

A5.5.2. Cropland

Estimates of cropland remaining cropland include soil and partial biomass estimates. Estimates for mineral soils capture the major land management changes (crop mixture, tillage practices, and summerfallow). Other practices, such as irrigation, manure application and fertilization, which are also known to have some positive impacts on soil organic carbon (SOC), are not represented. The current estimate in the land converted to cropland category includes CO_2 emissions from all pools and N_2O emissions due to forest and grassland conversion to cropland. Non- CO_2 emissions (CH₄, CO, N_2O) from biomass burning during land conversion are also reported; NO_x estimates have not been estimated. GHG emissions and removals from the conversion of wetlands and settlements to cropland have not been estimated.

A5.5.3. Grassland

Emissions and removals from grassland remaining grassland are not estimated. In Canada's definitional framework of land use, land-use change and forestry (LULUCF) land categories (refer to Chapter 7), grasslands exclude improved pastures, which are captured under the Cropland category. The challenge resides in that there are no detailed and comprehensive activity data on change in management practices on unimproved pastures that would allow the implementation of the IPCC methodology. Moreover, there is no scientific evidence that these lands have been losing or gaining soil organic carbon as a result of human activity. Note also that, according to the land category definitions, the conversion of forest land to grassland cannot occur. Cropland conversion to grassland is not occurring. Emissions from the conversion of wetlands to grassland have not been estimated.

A5.5.4. Wetlands

GHG emissions in land converted to flooded land, land converted to (managed) peatland, and (managed) wetlands remaining wetlands have been prepared but cannot be reported separately in the CRF tables. CO_2 estimates were developed in all categories; non- CO_2 (CH₄, CO, and N₂O) estimates associated with biomass burning are reported in forest land converted to flooded land. Emissions of NO_x have not been estimated. Cropland and grassland converted to wetlands were not estimated; however, emissions from land converted to flooded land would include

those arising from the flooding of unmanaged wetlands and grassland (tundra), which are reported in the category "Other Land converted to Wetlands".

A5.5.5. Settlements

The current estimates in the land converted to settlements category include forest loss to settlements and the conversion of tundra to settlements in the Canadian north. Non-CO₂ emissions (CH₄, CO, and N₂O) are reported only when biomass burning has occurred in the course of conversion activities. Emissions of NO_x have not been estimated. Emissions and removals from the conversion of cropland, agricultural grassland, wetlands, and other land to settlements have not been estimated. CO₂ estimates in settlements remaining settlements include only net carbon sequestration in the above-ground biomass of urban trees.

A5.6. Waste

This category is for the most part complete, with the exception of the following.

A5.6.1. Unmanaged Solid Waste Disposal

For the purpose of complying with the completeness principle, emissions from unmanaged landfills are given the "Not Estimated" notation. Current data on unmanaged landfills are neither readily available nor reliable, and in addition, the needed historical data are non-existent.

The majority of the larger landfills are managed engineered landfills. Typically, even small communities are served by a managed landfill, as provincial regulations require some form of management. It is assumed that the unmanaged landfills are shallow, i.e., aerobic biodegradation prevails, with relatively insignificant waste placement quantities. Thus, the emission contribution would be negligible in comparison with the managed landfills. The present estimation method results in a conservative estimate, as it is assumed that all wastes landfilled are placed in managed landfills.

The disposed waste quantities are obtained from Statistics Canada's Waste Management Industry Survey, a biennial publication (Statistics Canada 2000, 2003, 2004, 2007, 2008). Disposal facilities are surveyed directly and, for those small rural areas not covered by the survey, an estimate is derived from the product of the provincial per

capita disposal rate and the known population for those under-covered municipalities. Therefore, the present activity data are complete and the CH₄ emission estimates are conservative for the reasons provided above. However, a study is underway to attempt to isolate the waste quantities placed in unmanaged landfills. These estimates will be reported in the next NIR submission on condition that the accuracy of the present estimates can be improved upon, while still ensuring that correct allocation (managed versus unmanaged landfills—deep to shallow) is supportable and double counting can be avoided.

A5.6.2. Domestic and Commercial Wastewater

The notation for N_2O emissions from the Wastewater subsector is NE ("Not Estimated"), to be consistent with the domestic and commercial wastewater without the human sewage–sludge subcategory. No methodology is provided for the estimation of N_2O emissions from domestic and commercial wastewater without human sewage in the Revised 1996 IPCC Guidelines or the IPCC Good Practice Guidance documents. Recovery of CH_4 from these wastewater treatment operations has not been confirmed, but is not expected to occur. CH_4 emissions from the sludge subcategory are reported as NE, because the data required to evaluate the quantities captured from specific sites are not available at this time.

A5.6.3. Industrial Wastewater

The notation "Not Estimated" (NE) is used for N₂O emissions from industrial wastewater, as this information is not readily available from facilities and no methodology to estimate these emissions is provided in the Revised 1996 IPCC Guidelines or the IPCC Good Practice Guidance. CH₄ emissions from this subsector were noted in previous submissions as NE, but now are given estimated emission values from a facility-level survey that was conducted in 2010. CH₄ emissions from industrial wastewater sludge are noted as not occurring. The majority of pulp and paper sludges are disposed of in landfills, and food processing sludges are either landfilled or land-applied to degrade aerobically. N₂O emissions from industrial wastewater sludge treatment is noted as NE, since this information is not readily available from facilities and no methodology is provided in the Revised 1996 IPCC Guidelines or the IPCC Good Practice Guidance to estimate these emissions.

A5.6.4. Waste Incineration

CH₄ emissions from municipal solid waste (MSW) incineration are considered to be negligible and have not been estimated. Approximately less than 5% of all MSW is incinerated in Canada. Therefore, CH₄ emissions from this source are not expected to contribute significantly to the national inventory and are reported as "Not Estimated." A study is underway to assess CH₄ emissions from this source. This study will quantify the emissions or at least to confirm that the quantities are in the trace range for the next NIR submission.

Quality Assurance and **Quality Control**

Quality assurance and quality control (QA/QC) procedures are an integral part of the inventory development and submission processes. These procedures ensure that Canada is able to meet the United Nations Framework Convention on Climate Change (UNFCCC) requirements of transparency, consistency, comparability, completeness and accuracy. The Government of Canada is committed to improving data and methods in collaboration with industry, provinces and territories, academia and the international community to ensure that a credible and defensible inventory is developed, and that Canada meets its international obligations.

A6.1. Characteristics of the QA/QC Plan for the National Inventory

Canada has developed a quality assurance / quality control (QA/QC) plan that uses an integrated approach to managing the inventory quality and works towards achieving continuously improved emission and removal estimates. It is designed so that QA/QC procedures are implemented throughout the entire inventory development process, from initial data collection through development of emission and removal estimates to publication.

The plan, originally developed in 2006, incorporates a system of continuous improvement that includes, but is not limited to, procedures to capture lessons learned as part of the inventory cycle; the use of QA/QC and other tools as a means to identify and prioritize improvements; and processes to ensure that improvements identified are incorporated into the operating procedures.

The plan also includes a schedule for multi-year implementation such that, in every submission year, all key categories (and categories where a significant methodological change has occurred) will be subject to Tier 1 QC. Over a

three-year cycle, all categories will undergo a Tier 1 QC. Some Tier 2 QC, QA and verification activities will be performed every year based on a multi-year schedule with the objective of providing more comprehensive quality assessments of the entire inventory over a seven-year timeframe. The implementation of the multi-year cycle has started and is expected to ramp up over the next few years. Until this final objective can be met, annual interim targets are set each year by a Prioritization and Planning Committee. In addition, the committee is responsible for approving the implementation of methodological changes, ensuring adequate resources, and applying due diligence and guidance for overall project management of the inventory.

Documentation of QA/QC procedures is at the core of the system. Standard checklists are used for the consistent, systematic documentation of all QA/QC activities in the annual inventory preparation and submission. QC checks are completed during each annual inventory preparation and archived along with other procedural and methodological documentation, by inventory category and by submission year. The plan requires the coordination of QA/QC activities, with outside agencies and organizations providing activity data and/or developing greenhouse gas (GHG) emission and removal estimates for Environment Canada.

A6.2. Annual Inventory Development Process

The inventory development is built around a continuous process of methodological improvements, data collection, refinements and review. During the early portions of the project cycle (May to October), collection of the required data begins while the new inventory schedule is prepared. By the end of October, the methodologies are finalized and the data collection process is near completion.

Between November and January, estimates and the NIR text are prepared by sector experts. Emissions are calculated by inventory experts (dedicated to a specific sector) and QC checks are conducted and signed off by sectoral managers before the report and national totals are prepared. This process also involves key category assessment, recalculations, uncertainty analysis, QC and documentation preparation.

Over February and March, the compiled inventory is reviewed internally and select components are reviewed externally by experts, government agencies and provincial/territorial governments. Comments received are documented and, where appropriate, incorporated into the final draft. Once the submission is approved by senior officials, the inventory is submitted to the UNFCCC by April 15. The inventory is then archived and the NIR is translated into French and published.

The inventory archives consist of both electronic and hard-copy archives. The hard-copy archives are in the form of a reference library that contains hard-copy references cited within the NIR. The reference library is populated on an annual basis with updated references from the most recent submission. The electronic archives consist of a shared networked drive with a standard folder system designed specifically to contain all relevant information required to rebuild the inventory, including information on QA/QC procedures and their results. The electronic archives are also updated on an annual basis and contain information and records from the most recent inventory.

The inventory cycle is completed by lesson-learned meetings held at the end of April each year. These meetings are held internally and with partners to review the procedures in order to continually improve the process.

A6.3. QC Procedures

QC is designed to provide routine technical checks to measure and control the quality of the inventory; to ensure data consistency, integrity, correctness and completeness; and to identify and address errors and omissions. Its scope covers a wide range of inventory processes, from data acquisition and handling and application of approved procedures and methods, to calculation of estimates and documentation.

A6.3.1. Tier 1 QC

A series of systematic Tier 1 QC checks are performed annually on at least the key categories and across sectors by staff in the inventory agency. Tier 1 QC follows the *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories* (IPCC 2000), including (but not limited to)

- preventing easily avoidable data errors, e.g., during data flow, use of appropriate units and basic calculations;
- consistency checks among data used in multiple sectors:
- basic trend analysis and comparison with previous estimates;

- proper documentation of assumptions; expert credentials; and selection criteria for emission factors, parameters, methodologies; and
- · completeness checks.

Checks on the documentation and archiving of all the information required to produce the national emission estimates are performed, focusing on the key categories. The QC checklists include a record of any corrective action taken and refer to supporting documentation. Minor updates to the QC checklist were made in 2010. Formal cross-cutting QC checks on final products are performed and documented prior to submission.

A6.3.2. Tier 2 QC

A Tier 2 quality control assessment is an opportunity to review and investigate improvements of a specific category or categories. There is a need for a comprehensive assessment to ensure that the category will remain current and relevant for a number of years beyond the year of analysis. The investigation is broad and uses a variety of approaches, including

- making assessments of applicability of methods, emission factors (EFs), activity data, uncertainty, etc;
- understanding the flow of information, secondary data and data inputs, and being able to trace inputs to their root sources;
- cleaning and updating documentation (not covered by Tier I checks); and
- laying the foundation for future activities, including making and prioritizing recommendations for improvement and making preparations for subsequent quality assurance.

Documentation of the Tier 2 QC checks may be done through a standard checklist or with an in-depth study to complete a comprehensive assessment.

A6.4. QA Procedures

QA generally consists of review activities by independent experts to ensure that the inventory represents the best possible estimates of emissions and removals and to support the effectiveness of the QC program. As with QC, QA is undertaken every year on components of the inventory. Pertinent sections of the draft inventory are reviewed by members of a formal provincial and territorial expert working group on emissions. Sections are also reviewed at the same time by experts and scientists in other government departments.

Selected underlying data and methods are independently assessed each year by various groups or individual experts in industry, academia and government. QA is undertaken for the assessment of the activity data, methodology and emission factor utilized for developing estimates, and is preferably done prior to making a decision on implementing a methodological change.

on the NIR and CRF were also performed prior to submission.

A6.5. Verification

Verification is the use of third-party information to confirm the veracity of the inventory. For example, where appropriate facility-level GHG data exist from Canada's facility-level Greenhouse Gas Emissions Reporting Program, analysis is undertaken to perform bottom-up versus top-down comparisons.

A6.6. Key QA/QC Achievements in the 2011 Inventory Submission

Ongoing measurement to improve quality and the implementation of the quality framework was a key focus for 2010.

QA/QC achievements for 2010 include

- conducting a lessons-learned review to identify potential improvements and risks for the inventory;
- making further improvements to the project timeline to advance the inventory schedule;
- continued regular coordination with Environment Canada, Statistics Canada and Natural Resources Canada to review timing, quality and technical issues related to the Report on Energy Supply-Demand in Canada (RESD) and the Industrial Consumption of Energy (ICE) data developed by Statistics Canada (i.e. energy data);
- review and implementation of 21 methodological changes;
- revised QC checklists for 2011 and a random audit of QC checklists used in the 2010 NIR;
- improved tracking of improvements, notably those recommended by an external review team; and
- initiating an overhaul to the quality manual. This is expected to be an ongoing activity extending beyond a single inventory year.

For the 2011 submission, Tier 1 QC procedures were implemented and the results documented by the experts who prepared these category estimates. Cross-cutting checks

Uncertainty

A7.1. Introduction

In their respective National Inventory Reports, all Annex I parties shall report estimated uncertainties associated with both annual estimates of emissions, and with emission trends over time. According to the Intergovernmental Panel on Climate Change (IPCC), uncertainty estimates are an essential element of an inventory. They help to prioritize improvements of future inventories and to guide decisions on methodological choice (IPCC 2000). Canada performed a first uncertainty assessment of its 1990 estimates in 1994 (McCann 1994). In 2003-2004, Canada embarked on a comprehensive study to perform an Approach 2 (Monte Carlo) uncertainty assessment associated with the source categories included in the 2001 GHG inventory (the latest inventory estimates available at the time of the study); the results of this assessment were discussed in several subsequent submissions (Environment Canada 2009). Since 2004, many methodological changes, refinements and updates, including updates to uncertainty parameters themselves, have been made; uncertainty estimates have also been developed in the LULUCF Sector (see Chapter 7). The overall results of the previous assessment are not longer applicable to the inventory as a whole.

In this submission, Canada used the Approach 1 (error propagation) method for combining uncertainty estimates by completing Table 6.1 at the source category level—using methodology specified in Chapter 6 of the *IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories* (IPCC 2000). Uncertainty estimates about each source/sink category were either; retained from the previous studies; improved upon on the basis of these studies; or derived independently as in the Land Use, Land-Use Change and Forestry (LULUCF) Sector.

Uncertainty Assessment on 2008 Greenhouse Gas Emissions and Removals

A7.2.

Table A7-1 presents the uncertainty assessment for Canadian GHG emissions. Separate analyses were conducted for the inventory as a whole with and without LULUCF. The calculation of uncertainties about trends was only performed without the LULUCF Sector. Given the high interannual variability in the LULUCF estimates, and the fact that it is primarily driven by natural factors (wildfires in the managed forests), it was decided that this sector should not be considered in the analysis of uncertainties about trends in anthropogenic GHG emissions and removals.

The uncertainty for the national inventory, not including the LULUCF Sector, is $\pm 3.9\%$, consistent with the previously reported ranges of -3% to +6%. The Energy Sector had the lowest uncertainty, at $\pm 2.4\%$, while the Agriculture Sector had the highest uncertainty, at 39%. The Industrial Processes Sector, the Solvent and Other Product Use Sector, and the Waste Sector had uncertainties of ± 7.6 , ± 19.3 and $\pm 34.4\%$, respectively.

The categories that made the largest contribution to uncertainty at the national level were Agriculture – indirect agricultural soils N_2O ; Energy – fuel combustion – other transportation (off-road) N_2O ; Agriculture – direct agricultural soils N_2O ; Energy – fuel combustion – public electricity and heat combustion CO_2 ; and Waste – solid waste disposal on land CH_4 .

The trend uncertainty, not including LULUCF, was found to be 0.71%. Therefore, the total increase in emissions since 1990 has a 95% chance of being in the range of 16.2–17.6%.

The uncertainty when the LULUCF emissions and removals are included in the national total was found to be 6.1% (see Table A7-2). The top five contributors influencing the national uncertainty when LULUCF is included are LULUCF – forest land CO_2 ; Agriculture – indirect agricultural soils N_2O ; Energy – fuel combustion – other transportation (offroad) N_2O ; Agriculture – direct agricultural soils N_2O ; and Waste – solid waste disposal on land CH_4 .

Although a full uncertainty assessment is presented, it should be noted that, in accordance with information provided in previous submissions, Canada intends to improve its uncertainty assessment, incrementally, over several years. In many instances the available information for the uncertainty assessment did not conform to the assumption of non-correlated, normally distributed parameters and therefore required simplification for the purposes of this analysis. For example, in some cases uncertainty values for the emission estimates—based on the previous uncertainty assessments performed using Monte Carlo technique—were adapted for use in the error propagation model. The full impact of these simplifications, i.e., whether leading to an underestimation or overestimation of uncertainty, was not evaluated as part of this submission. However, the assumptions are expected to be reviewed and/or updated in future submissions in conjunction with Canada's quality assurance / quality control (QA/ QC) program. For further details on uncertainty related to specific sectors see the uncertainty sections throughout Chapters 3–8.

A7.3. Planned Improvements

Planned improvements for uncertainty include the development of a program to provide incremental improvements to Canada's uncertainty assessment on an annual basis. Some efforts at capacity building have been undertaken and applied in the short term. Canada will most likely build on previous methods and databases, including making use of the Monte Carlo simulation data and methods performed in 2003–2004 while ensuring that any new methodological changes and refinements consider the impact on uncertainty prior to implementation. In addition, many sectors have plans to improve the uncertainty estimates within their respective areas of expertise.

Canada notes that the expert reviews of previous submissions have identified several needs: performing uncertainty analyses on a regular basis; developing in-house capacity to perform uncertainty analyses and make full use of the results; and performing Tier 2 key category analysis. All these steps will help to further integrate QA/QC, key category analysis and uncertainty analysis in order to prioritize improvements. Canada's longer-term vision with respect to performing uncertainty assessments is consistent with these expert recommendations.

Table A7–1 Uncertainty Assessment Level and Trend without LULUCF

	IPCC Source Category	Gas	Base Year Emissions 1990	2009 Year Emissions	Activity Data Uncetainty	Emission Factor Uncertainty	Combined Uncertainty	Uncertainty as % of	Emission Factor Uncertainty as % of 2009 TOTAL	2009	Type A Sensitivity	Type B Sensitivity	in Trend in National Emissions Introduced by Emission Factor	National Emissions Introduced	Uncertainty Introduced into the Trend in Total National Emissions
			kt CO ₂ eq	kt CO ₂ eq	%	%	%			%	%	%	%	%	%
	TOTALS		590 417	690 044	0.51	3.85	3.88							tion: Activity data is fully correlated between years	
1.A.1.a	Fuel Combustion - Public Electricity and Heat Production	CO ₂	91011	97181	0.5	7.9	7.9	0.08	1.11	1.11	-0.0155	0.1646	-0.1220	-0.0084	0.1223
1.A.1.a	Fuel Combustion - Public Electricity and Heat Production	CH ₄	37	103	0.8	31.4	31.4	0.00	0.00	0.00	0.0001	0.0002	2 0.0032	0.0001	0.0032
1.A.1.a	Fuel Combustion - Public Electricity and Heat Production	N ₂ O	532	572	0.5	49.0	49.0	0.00	0.04	0.04	-0.0001	0.0010	0.0042	0.0000	0.0042
1.A.1.b	Fuel Combustion - Petroleum Refining	CO ₂	17657	19909	0.9	13.2	13.2	0.03	0.38	0.38	-0.0012	0.0337	-0.0162	-0.0011	0.0163
1.A.1.b	Fuel Combustion - Petroleum Refining	CH₄	6	6	0.7	57.8	57.8	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
1.A.1.b	Fuel Combustion - Petroleum Refining	N ₂ O	38	24	0.7	53.4	53.4	0.00	0.00	0.00	0.0000	0.0000	-0.0018	0.0000	0.0018
1.A.1.c	Fuel Combustion - Manufacture of Solid Fuels and Other Energy Industries	CO ₂	31912	41451	0.9	5.0	5.0	0.06	0.30	0.30	0.0070	0.0702	0.0349	0.0065	0.0355

Table A7-1: Uncertainty Assessment Level and Trend without LULUCF (cont'd)

	IPCC Source Category	Gas	Base Year Emissions 1990	2009 Year Emissions	Activity Data Uncetainty	Emission Factor Uncertainty	Combined Uncertainty	Activity Data Uncertainty as % of 2009 TOTAL	Emission Factor Uncertainty as % of 2009 TOTAL	2009	Type A Sensitivity	Type B Sensitivity	Uncertainty in Trend in National Emissions Introduced by Emission Factor Uncertainty	National Emissions Introduced by Activity Data	Uncertainty Introduced into the Trend in Total National Emissions
			kt CO₂ eq	kt CO₂ eq	%	%	%			%	%	%	%	%	%
1.A.1.c	Fuel Combustion - Manufacture of Solid Fuels and Other Energy Industries	CH ₄	1583	1921	1.0	41.8	41.8	0.00	0.12	0.12	0.0001	0.0033	0.0050	0.0001	0.0050
1.A.1.c	Fuel Combustion - Manufacture of Solid Fuels and Other Energy Industries	N ₂ O	250	290	0.9	84.9	84.9	0.00	0.04	0.04	0.0000	0.0005	-0.0004	0.0000	0.0004
1.A.2	Fuel Combustion - Manufacturing Industries and Construction	CO ₂	63861	74094	2.0	4.1	4.5	0.21	0.44	0.49	-0.0009	0.1255	-0.0038	-0.0018	0.0042
1.A.2	Fuel Combustion - Manufacturing Industries and Construction	CH ₄	52	63	4.2	13.9	15	0.00	0.00	0.00	0.0000	0.0001	0.0001	0.0000	0.0001
1.A.2	Fuel Combustion - Manufacturing Industries and Construction	N ₂ O	616	792	4.1	18.5	19	0.00	0.02	0.02	0.0001	0.0013	0.0022	0.0005	0.0023
1.A.3.a	Fuel Combustion - Civil Aviation	CO ₂	7152	7081	0.0	0.6	0.6	0.00	0.01	0.01	-0.0022	0.0120	-0.0013	0.0000	0.0013
1.A.3.a	Fuel Combustion -	CH ₄	10	8	0.0	61.0	61.0	0.00	0.00	0.00	0.0000	0.0000	-0.0005	0.0000	0.0005
1.A.3.a	Civil Aviation Fuel Combustion -	N ₂ O	70	66	0.0	545.0	545.0	0.00	0.05	0.05	0.0000	0.0001	-0.0153	0.0000	0.0153
1.A.3.b	Civil Aviation Fuel Combustion - Road	CO ₂	93216	127541	0.0	0.5	0.5	0.00	0.08	0.08	0.0314	0.2160	0.0142	0.0000	0.0142
	Transportation (Gas, Diesel, Natural Gas, Propane)														
1.A.3.b	Fuel Combustion - Road Transporta- tion (Gas, Diesel, Natural Gas, Propane)	CH₄	304	216	0.0	62.0	62.0	0.00	0.02	0.02	-0.0002	0.0004	-0.0146	0.0000	0.0146
1.A.3.b	Fuel Combustion - Road Transportation (Gas, Diesel, Natural Gas, Propane)	N ₂ O	3195	3734	0.0	27.4	27.4	0.00	0.15	0.15	0.0000	0.0063	0.0000	0.0000	0.0000
1.A.3.c	Fuel Combustion - Railways	CO ₂	6159	6114	0.0	1.7	1.7	0.00	0.02	0.02	-0.0018	0.0104	-0.0031	0.0000	0.0031
1.A.3.c	Fuel Combustion -	CH ₄	7	7	0.0	65.0	65.0	0.00	0.00	0.00	0.0000	0.0000	-0.0001	0.0000	0.0001
1.A.3.c	Railways Fuel Combustion - Railways	N ₂ O	790	785	0.0	280.0	280.0	0.00	0.32	0.32	-0.0002	0.0013	-0.0656	0.0000	0.0656
1.A.3.d	Fuel Combustion -	CO ₂	4693	4774	0.0	3.0	3.0	0.00	0.02	0.02	-0.0012	0.0081	-0.0036	0.0000	0.0036
1.A.3.d	Navigation Fuel Combustion - Navigation	CH₄	7	7	0.0	140.5	140.5	0.00	0.00	0.00	0.0000	0.0000	-0.0002	0.0000	0.0002
1.A.3.d	Fuel Combustion - Navigation	N ₂ O	339	283	0.0	282.0	282.0	0.00	0.12	0.12	-0.0002	0.0005	-0.0539	0.0000	0.0539
1.A.3.e	Fuel Combustion - Other Transportation (Off-Road)	CO ₂	21464	30048	0.0	1.0	1.0	0.00	0.04	0.04	0.0084	0.0509	0.0082	0.0000	0.0082
1.A.3.e	Fuel Combustion - Other Transportation (Off-Road)	CH ₄	204	216	0.0	116.6	116.6	0.00	0.04	0.04	0.0000	0.0004	-0.0044	0.0000	0.0044
1.A.3.e	Fuel Combustion - Other Transportation (Off-Road)	N ₂ O	1833	2965	0.0	272.4	272.4	0.00	1.17	1.17	0.0014	0.0050	0.3794	0.0000	0.3794
1.A.3.e	Fuel Combustion - Pipeline Transport		6652	6136	1.0	3.0	3.1	0.01	0.03	0.03	-0.0028	0.0104	-0.0082	-0.0027	0.0087
1.A.3.e	Fuel Combustion - Pipeline Transport	CH₄	141	130	1.0	40.0	40.0	0.00	0.01	0.01	-0.0001	0.0002	-0.0024	-0.0001	0.0024
1.A.3.e	Fuel Combustion - Pipeline Transport	N ₂ O	57	53	0.9	85.3	85.3	0.00	0.01	0.01	0.0000	0.0001	-0.0019	0.0000	0.0019
1.A.4	Fuel Combustion -		68763	75730	1.1	1.6	2.0	0.12	0.18	0.22	-0.0078	0.1283	-0.0129	-0.0086	0.0155
1.A.4	Other Sectors Fuel Combustion -	CH ₄	2117	2194	19.7	88.5	90.7	0.06	0.28	0.29	-0.0005	0.0037	-0.0421	-0.0094	0.0432
1.A.4	Other Sectors Fuel Combustion -	N ₂ O	701	810	8.8	47.8	48.6	0.01	0.06	0.06	0.0000	0.0014	-0.0008	-0.0001	0.0008
1.B.1.a	Other Sectors Fugitive Sources -	CH ₄	1914	709	0.0	57.5	57.5	0.00	0.06	0.06	-0.0026	0.0012	-0.1488	0.0000	0.1488
1.B.2. (a+b)	Coal Mining Fugitive Sources - Oil & Gas	CO ₂	117	271	0.0	15.0	15.0	0.00	0.01	0.01	0.0002	0.0005	0.0034	0.0000	0.0034

Table A7-1: Uncertainty Assessment Level and Trend without LULUCF (cont'd)

	IPCC Source Category	Gas	Base Year Emissions 1990	2009 Year Emissions	Activity Data Uncetainty	Emission Factor Uncertainty	Combined Uncertainty		Emission Factor Uncertainty as % of 2009 TOTAL	2009	Type A Sensitivity	Type B Sensitivity		Data	Uncertainty Introduced into the Trend in Total National Emissions
			kt CO ₂ eq	kt CO₂ eq	%	%	%			%	%	%	%	%	%
1.B.2. (a+b)	Fugitive Sources - Oil & Gas		15456	24612	0.0										
1.B.2. (a+b)	Fugitive Sources - Oil & Gas	N ₂ O	31	31	0.0	0.0	0.0	0.00	0.00	0.00	0.0000	0.0001	0.0000	0.0000	0.0000
1.B.2.c	Fugitive Sources - Venting	CO ₂	6992	10171	0.0	22.0	22.0	0.00	0.32	0.32	0.0034	0.0172	0.0745	0.0000	0.0745
1.B.2.c	Fugitive Sources - Flaring	CO ₂	4352	6296	0.0	16.0	16.0	0.00	0.15	0.15	0.0020	0.0107	0.0328	0.0000	0.0328
1.B.2.c	Fugitive Sources - Venting & Flaring	CH₄	13219	18596	0.0	17.5	17.5	0.00	0.47	0.47	0.0053	0.0315	0.0933	0.0000	0.0933
1.B.2.c	Fugitive Sources - Venting & Flaring	N ₂ O	0	13	0.0	0.0	0.0	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
2.A.1	Industrial Processes - Cement Production	CO ₂	5436	5108	0.0	28.0	28.0	0.00	0.21	0.21	-0.0021	0.0087	-0.0590	0.0000	0.0590
2.A.2	Industrial Processes - Lime Production	CO ₂	1759	1214	0.0	8.0	8.0	0.00	0.01	0.01	-0.0014	0.0021	-0.0114	0.0000	0.0114
2.A.3	Industrial Processes - Limestone and Dolomite Use	CO ₂	734	281	0.0	19.3	19.3	0.00	0.01	0.01	-0.0010	0.0005	-0.0188	0.0000	0.0188
2.A.4	Industrial Processes - Soda Ash Production and Use	CO ₂	211	99	0.0	10.2	10.2	0.00	0.00	0.00	-0.0002	0.0002	-0.0025	0.0000	0.0025
2.A.7.2	Industrial Processes - Magnesite Use	CO ₂	147	69	0.0	8.1	8.1	0.00	0.00	0.00	-0.0002	0.0001	-0.0014	0.0000	0.0014
2.B.1	Industrial Processes - Ammonia Production	CO ₂	4994	6212	0.0	7.1	7.1	0.00	0.06	0.06	0.0006	0.0105	0.0045	0.0000	0.0045
2.B.2	Industrial Processes - Nitric Acid Production	N ₂ O	1012	1150	0.0	10.2	10.2	0.00	0.02	0.02	-0.0001	0.0019	-0.0006	0.0000	0.0006
2.B.3	Industrial Processes - Adipic Acid Production	N ₂ O	10718								-0.0201		-0.2165		
	Industrial Processes - Petrochemical Production	CH₄	99	55	0.0	26.9	26.9	0.00	0.00	0.00	-0.0001	0.0001	-0.0028	0.0000	0.0028
	Industrial Processes - Petrochemical Production	N ₂ O	8	7	0.0	21.1	21.1	0.00	0.00	0.00	0.0000	0.0000	-0.0001	0.0000	0.0001
2.C.1	Industrial Processes - Iron and Steel	CO ₂	10193	7646	0.0	5.4	5.4	0.00	0.06	0.06	-0.0072	0.0130	-0.0387	0.0000	0.0387
2.C.3	Production Industrial Processes - Aluminium Production	CO ₂	2715	5026	0.0	7.1	7.1	0.00	0.05	0.05	0.0031	0.0085	0.0224	0.0000	0.0224
2.C.3	Industrial Processes - Aluminium Production	PFCs	6539	2163	0.0	9.1	9.1	0.00	0.03	0.03	-0.0093	0.0037	-0.0845	0.0000	0.0845
2.C.4.1	Industrial Processes - Aluminium Production	SF ₆	59	14	0.0	3.3	3.3	0.00	0.00	0.00	-0.0001	0.0000	-0.0003	0.0000	0.0003
2.C.4.2	Industrial Processes - Magnesium Production	SF ₆	3106	193	0.0	4.0	4.0	0.00	0.00	0.00	-0.0058	0.0003	-0.0232	0.0000	0.0232
2.C.5	Industrial Processes - Magnesium Casting	SF ₆	0	0	0.0	4.0	4.0	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
2.E	Industrial Processes - Production of Halocarbons	HFCs	767	0	0.0	35.7	35.7	0.00	0.00	0.00	-0.0015	0.0000	-0.0543	0.0000	0.0543
2.E	Industrial Processes - Production of Halocarbons	PFCs	0	0	0.0	23.5	23.5	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
2.E	Industrial Processes - Production of SF ₆	SF ₆	0	0	0.0	32.0	32.0	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000

Table A7- 1: Uncertainty Assessment Level and Trend without LULUCF (cont'd)

	IPCC Source Category	Gas	Base Year Emissions 1990	2009 Year Emissions	Activity Data Uncetainty	Emission Factor Uncertainty	Combined Uncertainty	as % of	Emission Factor Uncertainty as % of 2009 TOTAL	2009	Type A Sensitivity	Type B Sensitivity	Uncertainty in Trend in National Emissions Introduced by Emission Factor Uncertainty	by Activity Data	Uncertainty Introduced into the Trend in Total National Emissions
			kt CO₂ eq	kt CO₂ eq	%	%	%			%	%	%	%	%	%
2.F	Industrial Processes - Consumption of Halocarbons	HFCs	0	6786	0.0	35.7	35.7	0.00	0.35	0.35	0.0115	0.0115	0.4108	0.0000	0.4108
2.F	Industrial Processes - Consumption of Halocarbons	PFCs	0	9	0.0	23.5	23.5	0.00	0.00	0.00	0.0000	0.0000	0.0003	0.0000	0.0003
2.F.7	Industrial Pro- cesses - Consumption of SF ₆ for Semi- Conductor	SF ₆	207	180	0.0	32.0	32.0	0.00	0.01	0.01	-0.0001	0.0003	-0.0034	0.0000	0.0034
2.F.8	Industrial Processes - Consumption of SF ₆ for Electrical Equipment	SF ₆	15	5	0.0	45.3	45.3	0.00	0.00	0.00	0.0000	0.0000	-0.0010	0.0000	0.0010
2.G	Industrial Processes - Other (Undifferentiated Processes)	CO ₂	8030	9435	0.0	20.9	20.9	0.00	0.29	0.29	0.0001	0.0160	0.0018	0.0000	0.0018
3.D	Solvent and Other Product Use	N ₂ O	179	260	0.0	19.3	19.3	0.00	0.01	0.01	0.0001	0.0004	0.0017	0.0000	0.0017
4.A		CH₄	16294	19325	5	19	20	0.13	0.53	0.55	0.0005	0.0327	0.0091	0.0032	0.0096
4.A	Agriculture - Manure Management	CH₄	2546	2682	3	26	26	0.01	0.10	0.10	-0.0005	0.0045	-0.0130	-0.0021	0.0131
4.A	Agriculture - Manure Management	N ₂ O	3121	3878	24	96	99	0.14	0.54	0.56	0.0004	0.0066	0.0375	0.0133	0.0398
4.D.1	Agriculture - Direct Agricultural Soils	N ₂ O	15964	19030	11	35	36	0.30	0.96	1.00	0.0006	0.0322	0.0219	0.0097	0.0239
4.D.3	Agriculture - Indirect Agricultural Soils	N ₂ O	8736	10898	16	180	180	0.26	2.84	2.85	0.0012	0.0185	0.2093	0.0269	0.2110
4.F	Field Burning of Agricultural Residues	CH₄	148	33	50	40	64	0.00	0.00	0.00	-0.0002	0.0001	-0.0096	-0.0169	0.0194
4.F	Field Burning of Agricultural Residues	N ₂ O	57	12	50	50	71	0.00	0.00	0.00	-0.0001	0.0000	-0.0046	-0.0065	0.0079
6.A	Waste - Solid Waste Disposal on Land	CH₄	17925	20345	0.0	36.5	36.5	0.00	1.08	1.08	-0.0010	0.0345	-0.0374	0.0000	0.0374
6.B	Waste - Wastewater Handling	CH₄	269	338	0.0	42.5	42.5	0.00	0.02	0.02	0.0000	0.0006	0.0017	0.0000	0.0017
6.B	Waste - Wastewater Handling	N ₂ O	514	670	0.0	62.5	62.5	0.00	0.06	0.06	0.0001	0.0011	0.0073	0.0000	0.0073
6.C	Waste - Waste Incineration	CO ₂	267	200	0.0	34.5	34.5	0.00	0.01	0.01	-0.0002	0.0003	-0.0066	0.0000	0.0066
6.C	Waste - Waste Incineration	CH₄	9												
6.C	Waste - Waste Incineration	N ₂ O	124	55	0.0	85.0	85.0	0.00	0.01	0.01	-0.0002	0.0001	-0.0130	0.0000	0.0130

Table A7–2 Uncertainty Assessment with LULUCF

	IPCC Source Category	Gas	2009 Year Emissions	Combined Uncertainty
			kt CO₂ eq	%
	TOTALS		677 944	6
1.A.1.a	Fuel Combustion - Public Electricity and Heat Production	CO ₂	97181	7
1.A.1.a	Fuel Combustion - Public Electricity and Heat Production	CH ₄	103	31
1.A.1.a	Fuel Combustion - Public Electricity and Heat Production	N ₂ O	572	49
1.A.1.b	Fuel Combustion - Petroleum Refining	CO ₂	19909	13
1.A.1.b	Fuel Combustion - Petroleum Refining	CH₄	6	57
1.A.1.b	Fuel Combustion - Petroleum Refining	N ₂ O	24	53
1.A.1.c	Fuel Combustion - Manufacture of Solid Fuels and Other Energy Industries	CO ₂	41451	5
1.A.1.c	Fuel Combustion - Manufacture of Solid Fuels and Other Energy Industries	CH₄	1921	41
1.A.1.c	Fuel Combustion - Manufacture of Solid Fuels and Other Energy Industries	N ₂ O	290	84
1.A.2 1.A.2	Fuel Combustion - Manufacturing Industries and Construction	CO ₂ CH ₄	74094 63	0 14
1.A.2 1.A.2	Fuel Combustion - Manufacturing Industries and Construction Fuel Combustion - Manufacturing Industries and Construction	N ₂ O	792	18
1.A.3.a	Fuel Combustion - Civil Aviation	CO ₂	7081	
1.A.3.a	Fuel Combustion - Civil Aviation	CH ₄	8	61
1.A.3.a	Fuel Combustion - Civil Aviation	N ₂ O	66	545
1.A.3.b	Fuel Combustion - Road Transportation (Gas, Diesel, Natural Gas, Propane)	CO ₂	127541	0
1.A.3.b	Fuel Combustion - Road Transportation (Gas, Diesel, Natural Gas, Propane)	CH ₄	216	62
1.A.3.b	Fuel Combustion - Road Transportation (Gas, Diesel, Natural Gas, Propane)	N ₂ O	3734	27
1.A.3.c	Fuel Combustion - Railways	CO ₂	6114	1
1.A.3.c	Fuel Combustion - Railways	CH ₄	7	65
1.A.3.c	Fuel Combustion - Railways	N ₂ O	785	280
1.A.3.d	Fuel Combustion - Navigation	CO ₂	4774	3
1.A.3.d	Fuel Combustion - Navigation	CH ₄	7	140
1.A.3.d	Fuel Combustion - Navigation	N ₂ O	283	282
I.A.3.e	Fuel Combustion - Other Transportation (Off-Road)	CO ₂	30048	1
1.A.3.e	Fuel Combustion - Other Transportation (Off-Road)	CH₄	216	116
1.A.3.e	Fuel Combustion - Other Transportation (Off-Road)	N ₂ O	2965	272
1.A.3.e	Fuel Combustion - Pipeline Transport	CO ₂	6136	
I.A.3.e	Fuel Combustion - Pipeline Transport	CH₄	130	40
I.A.3.e	Fuel Combustion - Pipeline Transport	N ₂ O	53	85
I.A.4	Fuel Combustion - Other Sectors	CO ₂	75730	
1.A.4 1.A.4	Fuel Combustion - Other Sectors	CH ₄	2194	90
1.B.1.a	Fuel Combustion - Other Sectors Fugitive Sources - Coal Mining	N₂O CH₄	810 709	48 57
1.B.2.(a+b)	Fugitive Sources - Coal Mining Fugitive Sources - Oil & Gas	CO ₂	271	15
1.B.2.(a+b)	Fugitive Sources - Oil & Gas	CH ₄	24612	11
1.B.2.(a+b)	Fugitive Sources - Oil & Gas	N ₂ O	31	(
1.B.2.c	Fugitive Sources - Venting	CO ₂	10171	22
1.B.2.c	Fugitive Sources - Flaring	CO ₂	6296	16
1.B.2.c	Fugitive Sources - Venting & Flaring	CH ₄	18596	17
1.B.2.c	Fugitive Sources - Venting & Flaring	N ₂ O	13	(
2.A.1	Industrial Processes - Cement Production	CO ₂	5108	28
2.A.2	Industrial Processes - Lime Production	CO ₂	1214	8
2.A.3	Industrial Processes - Limestone and Dolomite Use	CO ₂	281	19
2.A.4	Industrial Processes - Soda Ash Production and Use	CO ₂	99	10
2.A.7.2	Industrial Processes - Magnesite Use	CO ₂	69	8
2.B.1	Industrial Processes - Ammonia Production	CO ₂	6212	7
2.B.2	Industrial Processes - Nitric Acid Production	N ₂ O	1150	10
2.B.3	Industrial Processes - Adipic Acid Production	N ₂ O	662	10
	Industrial Processes - Petrochemical Production	CH ₄	55	20
	Industrial Processes - Petrochemical Production	N ₂ O	7	21
2.C.1	Industrial Processes - Iron and Steel Production	CO ₂	7646	
2.C.3	Industrial Processes - Aluminium Production	CO ₂	5026	
2.C.3	Industrial Processes - Aluminium Production	PFCs	2163	
2.C.4.1	Industrial Processes - Aluminium Production	SF ₆	14	
2.C.4.2	Industrial Processes - Magnesium Production Industrial Processes - Magnesium Casting	SF ₆	193	
2.C.5	3 3	SF ₆	0	21
.E .E	Industrial Processes - Production of Halocarbons Industrial Processes - Production of Halocarbons	HFCs PFCs	0	3.
.Е	Industrial Processes - Production of Halocarbons Industrial Processes - Production of SF ₆	SF ₆	0	3.
2.F	Industrial Processes - Production of 3F ₆ Industrial Processes - Consumption of Halocarbons	HFCs	6786	3:
2.F	Industrial Processes - Consumption of Halocarbons	PFCs	9	
2.1 !.F.7	Industrial Processes - Consumption of SF ₆ for Semi-Conductor	SF ₆	180	33
 !.F.8	Industrial Processes - Consumption of SF ₆ for Electrical Equipment	SF ₆	5	4.
2.G	Industrial Processes - Consumption of St & for Electrical Equipment Industrial Processes - Other (Undifferentiated Processes)	CO ₂	9435	2
3.D	Solvent and Other Product Use	N ₂ O	260	19
1.A	Agriculture - Enteric Fermentation	CH ₄	19325	
1.A	Agriculture - Manure Management	CH ₄	2682	
1.A	Agriculture - Manure Management	N ₂ O	3878	
4.D.1	Agriculture - Direct Agricultural Soils	N ₂ O	19030	
	Agriculture - Indirect Agricultural Soils	N ₂ O	10898	1

Table A7- 2: Uncertainty Assessment with LULUCF (cont'd)

	IPCC Source Category	Gas	2009 Year Emissions	Combined Uncertainty
			kt CO₂ eq	%
4.F	Field Burning of Agricultural Residues	CH ₄	33	64
4.F	Field Burning of Agricultural Residues	N ₂ O	12	71
5.A	Forest Land CO ₂	CO ₂	-25585	124.7
5.A	Forest Land CH ₄	CH ₄	5580	35.6
5.A	Forest Land N₂O	N ₂ O	3462	35.6
5.B	Cropland CO ₂	CO ₂	-12406	18.6
5.D	Wetlands CO ₂	CO ₂	2048	0.0
5.E	Settlements CO ₂	CO ₂	-12	0.0
	Conversion of Forest Land CO ₂	CO ₂	14446	11.7
	Conversion of Forest Land CH ₄	CH ₄	226	28.0
	Conversion of Forest Land N ₂ O	N ₂ O	140	27.8
6.A	Waste - Solid Waste Disposal on Land	CH ₄	20345	36.5
6.B	Waste - Wastewater Handling	CH ₄	338	42.5
6.B	Waste - Wastewater Handling	N ₂ O	670	62.5
6.C	Waste - Waste Incineration	CO ₂	200	34.5
6.C	Waste - Waste Incineration	CH ₄	2	60.0
6.C	Waste - Waste Incineration	N 2 O	55	85.0

Emission Factors

This annex summarizes the development and selection of emission factors for use in estimating greenhouse gas emissions. Additional details on sector-specific methodologies for the use of these factors are presented in Annex 2 and Annex 3.

A8.1. Fuel Combustion

A8.1.1. Natural Gas and Natural Gas Liquids

A8.1.1.1. CO₂

CO₂ emission factors for fossil fuel combustion are dependent primarily on fuel properties such as carbon content, density and heating value and, to a lesser extent, on the combustion technology.

For natural gas, there are two major qualities of fuel combusted in Canada: marketable fuel (processed for commercial sale) and non-marketable fuel (unprocessed for internal use). As of 2007, there are nine regions in Canada that produce natural gas for commercial sale and/or for internal consumption, resulting in regional variations of marketable and non-marketable natural gas. Provincial and territorial emission factors (Table A8–1) have been developed based on data from chemical analysis of representative natural gas samples (McCann 2000) and an assumed fuel combustion efficiency of 99.5% (IPCC/OECD/IEA 1997). Non-marketable natural gas emission factors are higher than those of marketable fuels as a result of its raw nature, which may include ethane, propane and butane in addition to methane in the fuel mix.

CO₂ emission factors (Table A8–3) for natural gas liquids (NGL) such as ethane, propane and butane were developed based on chemical analysis data for marketable fuels (McCann 2000) and an assumed fuel combustion efficiency of 99.5% (IPCC/OECD/IEA 1997). These emission factors are

lower than those developed on the assumption of pure fuels (Jaques 1992) owing to the presence of impurities in the fuels.

A8.1.1.2. CH₄

Emissions of CH₄ from fuel combustion are technology-dependent. Sectoral emission factors (Table A8–2 and Table A8–3) have been developed based on technologies typically used in Canada. The factors were developed based on a broad review of emission factors for combustion technologies (SGA Energy 2000). The emission factor for producer consumption of natural gas was developed based on a technology split for the upstream oil and gas industry (CAPP 1999) and technology-specific emission factors from the U.S. EPA report AP 42 (EPA 1996a).

A8.1.1.3. N₂O

Emissions of N_2O from fuel combustion are technology-dependent. Emission factors (Table A8–2 and Table A8–3) have been developed based on technologies typically used in Canada. The factors were developed from an analysis of combustion technologies and a review of their emission factors (SGA Energy 2000).

Table A8–1 CO₂ Emission Factors for Natural Gas

Province	Emission Fa	actor³ (g/m³)
	Marketable ¹	Non- marketable ²
Newfoundland and Labrador	1 891	2 482
Nova Scotia	1 891	2 482
New Brunswick	1 891	NO
Quebec	1 878	NO
Ontario	1 879	NO
Manitoba	1 877	NO
Saskatchewan	1 820	2 429
Alberta	1 918	2 380
British Columbia	1 916	2 151
Yukon	NO	2 389
Northwest Territories	2 454	2 454

Notes:

NO = Not occurring

- The term "marketable" applies to fuel consumed by the Electric Utilities, Manufacturing Industries, Residential/Commercial and Transport subsectors.
- 2. The term "non-marketable" applies to raw gas consumption, mainly by natural gas producers.
- 3. Adapted from McCann (2000)

Table A8–2 CH₄ and N₂O Emission Factors for Natural Gas

Source	Emission (g/m	
	CH₄	N ₂ O
Electric Utilities	0.49	0.049
Industrial	0.037	0.033
Producer Consumption (Non-marketable)	6.5 1, 2	0.06
Pipelines	1.9	0.05
Cement	0.037	0.034
Manufacturing Industries	0.037	0.033
Residential, Construction, Commercial/Institutional, Agriculture	0.037	0.035

- 1. EPA (1996)
- 2. CAPP (1999)

Table A8–3 Emission Factors for Natural Gas Liquids

Source	Emission Factor (g/L)							
Source	CO ₂	CH₄	N ₂ O					
Propane								
Residential	1 510¹	0.027 ²	0.108 ²					
All Other Uses	1 510¹	0.024 ²	0.108 ²					
Ethane	976¹	N/A	N/A					
Butane	1 730¹	0.024 ²	0.108 ²					

Notes:

- 1. Adapted from McCann (2000)
- 2. SGA Energy (2000)

N/A = Not available

A8.1.2. Refined Petroleum Products

A8.1.2.1. CO₂

 CO_2 emission factors for fossil fuel combustion are dependent primarily on fuel properties and, to a lesser extent, on the combustion technology.

Emission factors have been developed for each major class of refined petroleum products (RPP) based on their heating value, carbon content and destiny (McCann 2000) with an assumed fuel combustion efficiency of 99% (IPCC/OECD/IEA 1997), to ensure consistency with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

The composition of petroleum coke is process-specific. Factors have been developed for both refinery (catalytic cracker) derived cokes and coke used in upgrading facilities. These factors (Table A8–5) have been developed based on data provided by industry to the Canadian Industrial Energy End-Use Data Analysis Centre (CIEEDAC) in their *Review of Energy Consumption* reports on the refining and upgrading industry (CIEEDAC 2003, 2010). The bulk of the coke consumed by refineries is catalytic cracker-derived, and the emission factor is an average of petroleum coke and catalytic cracker coke emission factors. Factors were provided by industry on a mass basis and were converted to a volumetric basis for comparability with the national energy data using the density of coke provided by Statistics Canada.

Factors for still gas (Table A8–5) from refining operations and upgrading facilities were also developed based on data provided by industry and reported by CIEEDAC (CIEEDAC 2003, 2010).

A8.1.2.2. CH₄

Emissions of CH_4 from fuel combustion are technology-dependent. Emission factors have been developed (Table A8–4) based on technologies typically used in Canada. The factors were developed from an analysis of combustion technologies and a review of their emission factors (SGA Energy 2000).

The emission factor for petroleum coke was assumed to be the same for both catalytic cracker-derived cokes and coke used in upgrading facilities. An emission factor for still gas is not available, according to the 2000 SGA Energy study.

A8.1.2.3. N₂O

Emissions of N₂O from fuel combustion are technology-dependent. Emission factors for RPPs, with the exception of petroleum coke, have been developed (Table A8–4) based on technologies typically used in Canada. The factors were developed from an analysis of combustion technologies and a review of their emission factors (SGA Energy 2000). Emission factors for petroleum coke (Table A8–6) were based on 2006 IPCC default emission factors and were calculated on an annual basis using energy conversion factors provided by Statistics Canada (2008).

Table A8–4 Emission Factors for Refined Petroleum Products

Source	Emis	sion Factor (g/L	-)
	CO ₂	CH₄	N ₂ O
Light Fuel Oil			
Electric Utilities	2 725 1	0.18 ²	0.031 ²
Industrial	2 725 1	0.006 ²	0.031 ²
Producer Consumption	2 643 ¹	0.006 ²	0.031 ²
Residential	2 725 ¹	0.026 ²	0.006 ²
Forestry, Construction, Public Administration and Commercial/ Institutional	2 725 ¹	0.026 ²	0.031 ²
Heavy Fuel Oil			
Electric Utilities	3 124 ¹	0.034 ²	0.064 ²
Industrial	3 124 ¹	0.12 ²	0.064 ²
Producer Consumption	3 158 ¹	0.12 ²	0.064 ²
Residential, Forestry, Construction, Public Administration and Commercial/Institutional	3 124 ¹	0.057 ²	0.064 ²
Kerosene			
Electric Utilities	2 534 ^{1,3}	0.006 ²	0.031 ²
Industrial	2 534 ^{1,3}	0.006 ²	0.031 ²
Producer Consumption	2 534 1,3	0.006 ²	0.031 ²
Residential	2 534 1,3	0.026 ²	0.006 ²
Forestry, Construction, Public Administration and Commercial/ Institutional	2 534 ^{1,3}	0.026 ²	0.031 ²
Diesel	2 663 ¹	0.133 ²	0.4 ²
Petroleum Coke	(see Table-A8-5)	0.12 ²	(see Table A8–5)
Still Gas	(see Table-A8-5)	N/A	0.000022

N/A = Not available

Table A8–5 CO₂ Emission Factors for Petroleum Coke and Still Gas

				Emissic	n Facto	or						
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001-2009
Petroleum Coke						g/	'L					
Upgrading Facilities ¹	3 556	3 556	3 556	3 556	3 554	3 551	3 585	3 538	3 528	3 507	3 481	3 494
Still Gas						g/r	n³					
Upgrading Facilities ¹	2 310	2 310	2 310	2 310	2 280	2 090	2 210	2 320	2 300	2 110	2 120	2 140
	1990-1993	1997	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Petroleum Coke						g/	'L					
Refineries & Others ²	3 766	3 756	3 711	3 763	3 812	3 834	3 806	3 814	3 817	3 820	3 817	3 816
Still Gas g/m³												
Refineries & Others ²	1 678	1 779	1 683	1 652	1 667	1 700	1 707	1 719	1 753	1 760	1 705	1 723

^{1.} Adapted from McCann (2000)

^{2.} SGA Energy (2000)

^{3.} Assumed McCann (2000) aviation turbo fuel emission factor

Notes: 1. CIEEDAC (2003) 2. CIEEDAC (2010)

Table A8−6 N₂O Emission Factors for Petroleum Coke

Emission Factor												
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001-2009
Petroleum Coke						g/r	n³					
Upgrading Facilities1	20.1	20.3	20.6	20.8	21.1	20.8	20.8	21.1	21.7	21.8	22.3	22.2
Refineries & Others ²	18.5	18.7	19.0	19.2	19.4	19.2	19.2	19.4	19.5	19.6	20.0	19.9

- 1. IPCC (2006)
- 2. Energy content from Statistics Canada Cat. No. 57-003 (2008)

Table A8–7 CO₂ Emission Factors for Coal

Province	Coal Type	Source	Emissio	1 Factor	(kg CO ₂	/tonne) ^{1,2,3}
			Average	Low	High	Moisture (wt %)
P.E.I., Quebec	Canadian Bituminous (Eastern)	Assume Nova Scotia	2 320	2 100	2 590	3.2
Nova Scotia	Canadian Bituminous (Eastern)	Nova Scotia	2 320	2 100	2 590	3.2
New Brunswick	Canadian Bituminous (Eastern)	New Brunswick	2 310	2 180	2 400	3.2
Atlantic ⁴	Foreign Bituminous	Non-U.S.	2 540	2 480	2 600	8.3
Ontario	Canadian Bituminous (Western)	Assume Alberta	2 190	2 060	2 390	7.6
Ontario, Quebec	Foreign Bituminous	U.S. (Pennsylvania)⁵	2 430	N/A	N/A	N/A
Ontario, Manitoba	Foreign Sub-bituminous	U.S. (Wyoming)⁵	1 820	N/A	N/A	N/A
Saskatchewan	Lignite	Saskatchewan	1 390	1 330	1 440	36
Alberta, Saskatchewan, B.C.	Canadian Sub-bituminous (Western)	Alberta	1 720	1 610	1 890	19
Alberta, Saskatchewan, B.C.	Canadian Bituminous (Western)	Alberta	2 190	2 060	2 390	7.6
All Provinces & Territories	Anthracite		2 390	N/A	N/A	N/A

Notes:

- 1. Factors presented on a "wet basis." Moisture content shown is that for the "average" emission factor.
- 2. Radovan R, Sanei H. 2010. Statistical Analysis of Coal Carbon Content in Canada. Unpublished report. Ottawa (ON): Environment Canada, Greenhouse Gas Division.
- 3. High and low values represent the upper and lower bounds of the inter-quartile range, which were determined through statistical analysis of Canadian coal data.
- 4. Atlantic refers to the Maritime provinces and Newfoundland & Labrador.
- 5. U.S. factors adapted from Annex 2 of the U.S. EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2008 (April 2010), converted to 99% oxidation.

N/A = not available

A8.1.3. Coal and Coal Products

A8.1.3.1. CO₂

 ${\rm CO_2}$ emission factors for coal combustion are dependent primarily on the properties of the fuel and, to a lesser extent, on the combustion technology. Coal emission factors (Table A8–7) have been developed for each province based on the rank of the coal and the region of supply. Emission factors have been developed based on data from chemical analysis of coal samples for electric utilities, which account for the vast majority of coal consumption, and a fuel combustion efficiency of 99.0% (Jaques 1992). The factors were completely revised and updated for the

current submission through a multi-year project carried out in collaboration between Environment Canada and the Geological Survey of Canada.

Factors presented in Table A8–7 were developed based on the statistical analysis of over 3000 analytical samples for a variety of coal types and producing/consuming regions. The analysis and uncertainty calculations were conducted using the @Risk software package. The coal emission factors are presented as a range, based on the uncertainty, because the supply and quality of coal can vary over time. The average coal carbon and moisture content for each coal type was used to develop CO₂ emission factors. Lower and upper ranges are provided based on the inter-quartile range of the modelled statistical distributions. Factors for coal imported from the United States are from Annex 2 of

the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2008 (US EPA 2010).

Coke and coke oven gas emission factors are presented in Table A8–8. The coke emission factor was developed based on industry data (Jaques 1992). It is representative of coke use in the cement, non-ferrous metal and other manufacturing industries. The coke oven gas emission-factor value is from the Revised 1996 IPCC Guidelines (IPCC/OECD/IEA 1997) and is primarily representative of use in the iron and steel industry.

A8.1.3.2. CH₄

Emissions of CH₄ from fuel combustion are technologydependent. Emission factors for sectors (Table A8–9) have been developed based on technologies typically used in

Table A8–8 CO₂ Emission Factors for Coal Products¹

Coal Product - Fuel Type	Emission Factor
Coke Oven Gas ¹	878.9 g/m³
Coke ²	2 480 g/kg

Notes:

- 1. Revised IPCC 1996 Guidelines
- 2. Adapted from Jaques (1992)

Table A8–9 CH₄ and N₂O Emission Factors for Coals ¹

Source	Emission	Factor
	CH₄	N_2O
	g/kg	g/kg
Coal		
Electric Utilities	0.022	0.032
Industry and Heat & Steam Plants	0.03	0.02
Residential, Public Administration	4	0.02
Coke	0.03	0.02
Coke Oven Gas (g/m³)	0.037	0.035

Note:

1. SGA Energy (2000)

Table A8–10 Emission Factors for Alternative Fuels

Source	Fuel	Emission Fa	ctor (kg/GJ)
		CO ₂	CH₄	N ₂ O
Cement	Tires	85	N/A	N/A

Notes:

A CO₂ emission factor for tires consumed by the cement industry was developed by the World Business Council for Sustainable Development (WBCSD 2005) on a gross-calorific-value energy basis. N/A = Not available

Canada. The factors were developed from an analysis of combustion technologies and a review of their emission factors (SGA Energy 2000).

A8.1.3.3. N₂O

Emissions of N₂O from fuel combustion are technology-dependent. Emission factors for sectors (Table A8–9) have been developed based on technologies typically used in Canada. The factors were developed from an analysis of combustion technologies and a review of their emission factors (SGA Energy 2000).

A8.1.4. Other Fuels

A8.1.4.1. CO₂

Alternative fuels such as tires, refuse, and waste oil and solvents are used by some industries to offset combustion of purchased fuels like coal, oil or natural gas. CO₂ emissions associated with the stationary combustion of waste fuels are included in the National Inventory Report where data are available. The cement industry in particular is known to consume "tire-derived fuel" (TDF) (Cement Association of Canada 2007) and it is assumed that the emission factor for TDF is appropriate for all waste fuel combustion (Table A8–10).

A8.1.4.2. CH₄

 CH_4 emission factors for alternative fuels (specifically TDF) are not currently available.

A8.1.4.3. N₂O

 N_2O emission factors for alternative fuels (specifically TDF) are not currently available.

A8.1.5. Mobile Combustion

A8.1.5.1. CO₂

 CO_2 emission factors for mobile combustion are dependent on fuel properties and are generally the same as those used for stationary combustion fuels.

A8.1.5.2. CH₄

Emissions of CH_4 from fuel combustion are technologydependent. Mode-specific CH_4 emission factors have been developed based on technologies typically used in Cana-

Table A8–11 Emission Factors for Energy Mobile Combustion Sources

	Emissior	n Factor (g/L fuel)	
Mode [†]	CO ₂	CH₄	N ₂ O
Road Transport			
Gasoline Vehicles			
Light-duty Gasoline Vehicles (LDGVs)			
Tier 2	2 289¹	0.14 ²	0.0223
Tier 1	2 289¹	0.234	0.474
Tier 0	2 289¹	0.325	0.666
Oxidation Catalyst	2 289¹	0.52 ⁷	0.205
Non-catalytic Controlled	2 289¹	0.467	0.0285
Light-duty Gasoline Trucks (LDGTs)			
Tier 2	2 289¹	0.14 ²	0.0223
Tier 1	2 289¹	0.244	0.584
Tier 0	2 289¹	0.217	0.666
Oxidation Catalyst	2 289¹	0.437	0.205
Non-catalytic Controlled	2 289¹	0.56 ⁵	0.0285
Heavy-duty Gasoline Vehicles (HDGVs)			
Three-way Catalyst	2 289¹	0.068 ⁷	0.207
Non-catalytic Controlled	2 289¹	0.29⁵	0.0475
Uncontrolled	2 289¹	0.49 ⁵	0.0845
Motorcycles			
Non-catalytic Controlled	2 289¹	0.77 ²	0.0412
Uncontrolled	2 289¹	2.35	0.0485
Diesel Vehicles			
Light-duty Diesel Vehicles (LDDVs)			
Advanced Control*	2 663¹	0.0515	0.225
Moderate Control	2 663¹	0.0685	0.215
Uncontrolled	2 663¹	0.105	0.165
Light-duty Diesel Trucks (LDDTs)			
Advanced Control*	2 663¹	0.0685	0.225
Moderate Control	2 663¹	0.0685	0.215
Uncontrolled	2 663¹	0.0855	0.165
Heavy-duty Diesel Vehicles (HDDVs)			
Advanced Control	2 663¹	0.118	0.1518
Moderate Control	2 663¹	0.145	0.0825
Uncontrolled	2 663¹	0.15⁵	0.0755
Natural Gas Vehicles	1.891	9E-03 ⁵	6E-05 ⁵
Propane Vehicles	1 510¹	0.645	0.0285
Off-road	1310	0.01	0.020
Off-road Gasoline	2 2891	2.75	0.0505
Off-road Diesel	2 6631	0.155	1.15
Railways	2 003	0.13	1.1
Diesel Train	2 6631	0.15⁵	1.15
Marine	2 003	0.13	1.1
Gasoline Boats	2 2891	1.35	0.0665
Diesel Ships	2 6631	0.15⁵	1.15
Light Fuel Oil Ships	2 7251	0.265	0.0735
Heavy Fuel Oil Ships	3 1241	0.285	0.079 ⁵
Aviation	3 12 1	J.20	0.073
Aviation Gasoline	2 342 ⁹	2.29	0.239
Aviation Gasonne Aviation Turbo Fuel	2 5341	0.02810	0.071
Renewable Fuels	Z 534·	U.UZO ·-	0.071
Ethanol	1 49412	**	**
Biodiesel	2 449 ^{12,13}	***	***
Notes:	2 44 3 · - · · ·		

In the context of Transportation Modes, Tiers 0–2 refer to increasingly stringent U.S. EPA emission standards, enabled through advancements in emission control technologies. It should not be confused with IPCC GHG estimation methodologies. EPA Tiers apply to on-road vehicles under the following model year breakdown, with some overlap due to technology penetration (refer to Figure A2-2 of Annex 2 for more details): Tier 0: 1980–1995; Tier 1: 1994–2003; Tier 2: 2004–2009.

- 1. Adapted from McCann (2000)
- 2. Adapted from Environment Canada ERMD Report 04-44 (2006)
- Adapted from Environment Canada ERMD Report 04-44 (2006) and Graham et al. (2009)
- 4. Adapted from Environment Canada ERMS Report 07-14A (2009)

- 5. SGA (2000)
- 6. Adapted from Barton & Simpson (1994) ICF (2004)
- 8. Graham et al. (2008)
- 9. Jaques (1992)
- 10. National overall average emission factor based on 2006 IPCC Guidelines (IPCC 2006). Refer to Section A2.4.2.3 of Annex 2 for further information.
- 11.IPCC (2006)
- 12. Refer to Section 3.4.2.3 and 3.4.2.4 of Chapter 3 for further information.
- 13.BioMer (2005)
- * Advanced control diesel emission factors are used for Tier 2 diesel vehicle populations. ** Gasoline CH_4 and N_2O emission factors (by mode and technology) are used for ethanol.
- *** Diesel CH₄ and N₂O emission factors (by mode and technology) are used for biodiesel.

da, and are summarized in Table A8–11. The factors were initially adopted from a review of available knowledge and an analysis of combustion technologies (SGA Energy 2000).

Existing on-road CH₄ emission factors were re-evaluated in 2010 (Franchi 2011) and compared to a compilation of recently acquired Canadian and U.S. emissions test results (Environment Canada 2006, 2009; Graham et al. 2008). The existing emission factors were assessed for calculation accuracy, supporting assumptions and sample size. These results were compared against the newly acquired emission factor test data, which were typically found to be more representative of Canadian on-road vehicle emission control technologies. Consequently, six on-road CH₄ emission factors were updated for light-duty gasoline vehicles (LDGVs), light-duty gasoline trucks (LDGTs), motorcycles and heavy-duty diesel vehicles (HDDVs).

Over 50 updated aircraft-specific aviation-turbo-fuel CH₄ emission factors from the 2006 IPCC Guidelines (IPCC 2006) were introduced into the Tier 3 civil aviation model (Aviation Greenhouse Gas Emission Model - AGEM); Table A8–11 displays a national overall average implied emission factor, for conciseness. Refer to Section A2.4.2.3 for more information on AGEM.

A8.1.5.3. N₂O

Emissions of N_2O from fuel combustion are technology-dependent. Mode-specific N_2O emission factors have been developed based on technologies typically used in Canada. The factors were initially adopted from a review of available knowledge and an analysis of combustion technologies (SGA Energy 2000).

Similar to the CH₄ emission factor study of Section A8.1.5.2, the existing on-road N₂O emission factors from the SGA Energy study were reviewed in 2010 (Franchi 2011), and weighed against a compilation of recently acquired Canadian and U.S. emissions test results (Environment Canada 2006, 2009; Graham et al. 2008, 2009). The calculation accuracy, sample sizes and supporting assumptions of the existing emission factors were compared to the newly acquired emission factor test data, which were typically found to be more representative of Canadian on-road vehicle emission control technologies.

In particular, the updated test data highlighted the effect of high-sulphur gasoline on N_2O emission factors: vehicles fuelled with high-sulphur gasoline for the majority of their useful lives generally emitted higher levels of N_2O than those run on low-sulphur gasoline (Environment Canada 2009). Because Canadian vehicles consumed high-sulphur gasoline prior to the introduction of low-sulphur fuel regulations in 2005 (Environment Canada 2001), six onroad N_2O emission factors were updated for LDGVs, LDGTs, motorcycles and HDDVs.

The Tier 1 aviation-turbo-fuel N_2O emission factor from the 2006 IPCC Guidelines (IPCC 2006) is applied in the Tier 3 civil aviation model (AGEM), replacing the emission factor previously originating from Jaques (Jaques 1992). Refer to Section A2.4.2.3 for more information on AGEM.

Table A8–12 Carbon Dioxide (CO₂) Emission Factors for Mineral Products

Category	Mineral Product	Emission Factor (g CO ₂ /kg of mineral product)
Cement Production	Clinker	507.1 ¹
Lime Production	High-Calcium Lime	751²
	Dolomitic lime	889²
Limestone and Dolomite Use	Limestone	418 ³
	Dolomite	468³
Soda Ash Use	Soda Ash	415³
Magnesite Use	Magnesite	506³

- 1. IPCC/OECD/IEA (1997)
- 2. Developed based on information provided by W. Kenefick 2008. Personal communication (e-mail from Kenefick W. to Amy Shen dated October 7, 2008). Canadian Lime Institute (CLI).
- 3. AMEC (2006)

Industrial Processes A8.2.

A8.2.1. **Mineral Products**

To estimate emissions from the production and use of mineral products, many parameters have been used as emission factors; they are all listed in Table A8–12.

A8.2.2. **Chemical Industry**

Shown in Table A8-13, Table A8-14 and Table A8-15 are the emission factors used for categories included under the Chemical Industry, as well as the sources from which these factors were obtained.

Table A8–13 Emission Factors for Ammonia and Adipic Acid Production

Category	Process Description	Emission Factor (tonne per tonne (t/t) of chemical proc	
		CO ₂	N ₂ O
Ammonia Production	Natural gas reforming which produces hydrogen needed for ammonia manufacturing	1.56¹	NA
Adipic Acid Production	Oxidation reaction of cyclohexanone and cyclohexanol mixture without $N_2\text{O}$ abatement	NA	0.32
Notes: 1. Jaques (1992) 2. IPCC (2000)			

Table A8−14 N₂O Emission Factors for Nitric Acid Production

Process Description	N₂O Emission Factor (kg/t)
Dual-pressure plants with extended absorption "Type 1"	9.4 ¹
Dual-pressure plants with extended absorption "Type 2"	12 ¹
High-pressure plants with non-selective catalytic reduction	0.661
High-pressure plants with selective catalytic reduction	8.5 ²
	Dual-pressure plants with extended absorption "Type 1" Dual-pressure plants with extended absorption "Type 2" High-pressure plants with non-selective catalytic reduction

Table A8–15 Emission Factors for Petrochemical Products

Petrochemical Product	Emission Factor	Туре
Silicon Carbide	11.6 kg CH ₄ / t (tonne) product	IPCC default ¹
Calcium Carbide	4.8 kg CH₄ / t product	Derived from IPCC data ²
Carbon Black	1.29 kg CH ₄ / t product	Sector-wide weighted average ³
Ethylene	0.013 kg CH ₄ / t product	Sector-wide weighted average ³
	0.0055 kg N₂O / t product	Sector-wide weighted average ³
Ethylene Dichloride	0.4 kg CH ₄ / t product	IPCC default ¹
Styrene	4 kg CH₄ / t product	IPCC default ¹
Methanol	0.031 kg CH₄ / t product	Sector-wide weighted average ³

^{1.} Collis G. (1992). Personal communication (letter dated March 23, 1992). Canadian Fertilizer Institute

^{2.} IPCC (2000)

Default value from IPCC (2006)
 Derived from IPCC (2006) data. See section 4.10.2 for details.
 Cheminfo Services (2010)

A8.2.3. Metal Production

Tier 1-type emission factors for the category of aluminium production and the sources from which these emission factors were obtained are shown in Table A8–16. The parameter values of other tier types, which were also used

in the estimation of emissions from aluminium production, are found in Section 4.17.2 of Chapter 4.

Table A8–17 shows the values of the parameters used for estimating emissions from iron and steel production.

Table A8–16 Tier 1 Emission Factors for Aluminium Production

Cell Technology Type		Emission Factor ¹ (kg /t product)	
	CO ₂	Carbon Tetrafluoride (CF ₄)	Carbon Hexafluoride (C ₂ F ₆)
Side-worked pre-baked	1600	1.6	0.4
Centre-worked pre-baked	1600	0.4	0.04
Horizontal stud Söderberg	1700	0.4	0.03
Vertical stud Söderberg	1700	0.8	0.04
Notes:			

1. IAI (2006)

Table A8–17 CO₂ Emission Factors for Iron and Steel Industry

Parameter	Emission Factor	Unit
Iron ore reduction with coke	3.2-3.3 ¹	t CO ₂ /t (tonne) coke used
Electrode consumption in electric arc furnaces	4.53 ²	kg CO ₂ / t steel
Electrode consumption in basic oxide furnaces	0.23 ²	kg CO ₂ / t steel

- 1. Year-specific emission factors provided in Cheminfo Services (2010).
- Provided by the Canadian Steel Producers Association. Chan K. 2009. Personal communication (email from Chan K to Maryse Pagé, Greenhouse Gas Division, dated July 21, 2009). Canadian Steel Producers Association.

Table A8–18 Emission Factors for Consumption of HFCs in 1995

Application	Emission Factor (kg loss/ g consumed)	Assumptions
Aerosols	0.8	For aerosol products, the IPCC (2000) suggests a default emission factor of 50% of the initial charge per year. It was assumed that 1994 production was 50% of that of 1995, meaning that emissions from 1994 production that occurred in 1995 would be equivalent to 25% of production in 1995. Therefore, the emission factor applied to the 1995 production was 75% or 80% (rounded).
Foams	1	For foam blowing, it was assumed that all HFCs used for foam blowing in 1995 were for the open cell type. According to the <i>Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories</i> ¹ emissions equal 100% of the quantity sold for blowing open cell foam.
AC OEM	0.04	For AC OEM, a typical range of 2–5% loss rate is mentioned in the <i>Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories</i> . ¹ Therefore, a loss rate of 4% was assumed here.
AC Service	1	For AC service, it was assumed that most service HFCs were used to replace operating losses. In other words, it was assumed that service HFCs replace an identical amount of HFCs that was previously vented. Hence, the loss rate was 100%.
Refrigeration	0.1	As shown in Equation 4-18 of Chapter 4, the emission factor for refrigeration is (0.17/1.17), which equals roughly 0.1.
Total Flooding Systems	0.35	For total flooding systems, the default loss rate, as shown in the <i>Revised 1996 IPCC Guide-lines for National Greenhouse Gas Inventories</i> , 1 is 35%.
Notes: 1. IPCC/OECD/IEA (19	997)	

A8.2.4. Consumption of Halocarbons

The use of halocarbons in various applications, such as air conditioning (AC), refrigeration, aerosols, foam blowing, solvents, fire extinguishing and semiconductor manufacturing (for PFCs only), can result in hydrofluorocarbon / perfluorocarbon (HFC/PFC) emissions.

As mentioned in Chapter 4 of this report, detailed 1995 HFC activity data were not available. Therefore, a modified Tier 1, instead of Tier 2, methodology was used to estimate 1995 HFC emissions for the following use types: aerosols, foam blowing, AC original equipment manufacturing (OEM), AC servicing, refrigeration and total flooding systems. Shown in Table A8–18 are the emission factors used in the modified Tier 1 estimation method and the assumptions made to derive and to use these factors.

Table A8–19 summarizes emission rates used to estimate 1996–2009 HFC emissions and 1995–2009 PFC emissions.

A8.2.5. Other and Undifferentiated Production

The use of fossil fuels as feedstock or for other non-energy uses may result in emissions during the life of manufactured products. To estimate CO_2 emissions from non-energy use of natural gas, an emission factor of 1522 g CO_2/m^3 was used (Cheminfo Services 2005). Table A8–20 shows the emission factors used to develop CO_2 emission estimates for non-energy applications of natural gas liquids and non-energy petroleum producs, respectively. Please refer to the emission factor for petroleum coke, refineries & others in Table A8–5 for the emission factor associated with non-energy use of petroleum coke, and to Table A8–7 for emission factors for non-energy use of coal and coal products.

Table A8–19 Emission Rates for Consumption of HFCs and PFCs ¹

Application	HFC Emission Rate (%)	PFC Emissions Rate (%)
Assembly		
Residential Refrigeration Equipment	2% (of charge)	2.50/ (of above a)?
Commercial Refrigeration Equipment	3.5% (of charge) ²	3.5% (of charge) ²
Stationary AC Equipment	3.5% (of charge) ²	3.5% (of charge) ²
Mobile AC Equipment	4.5% (of charge) ³	4.5% (of charge) ³
Operation		
Residential Refrigeration Equipment	1% (of stock in existing systems)	170/ /-f-+libi-tib
Commercial Refrigeration Equipment	17% (of stock in existing systems)	17% (of stock in existing systems)
Stationary AC Equipment	17% (of stock in existing systems)	17% (of stock in existing systems)
Mobile AC Equipment	15% (of stock in existing systems) 4	30% (of stock in existing systems)
Other Applications		
Foam Blowing - open cell	100% (of use)	100% (of use)
Foam Blowing - closed cell	10% of charge released during manufacturing and 4.5% of the original quantity charge released per year over the product's lifetime	10% of charge released during manufacturing and 4.5% of the original quantity charge released per year over the product's lifetime
Fire Extinguishing – portable	60% (of HFC use in new systems)	NA
Fire Extinguishing – total flooding systems	35% (of HFC use in new systems)	NA
Aerosol Products	50% (of use) in the first year and the other 50% (of use) in the second year	NA
Solvents	50% (of use) in the first year and the other 50% (of use) in the second year	50% (of use) in the first year and the other 50% (of use) in the second year
Other Products – contained	NA	1% of the quantity sold is emitted during manufacturing and 2% of stock is emitted per year during the product's lifetime
Other Products – emissive	NA	50% (of use) in the first year and the other 50% (of use) in the second year

^{1.} IPCC/OECD/IEA (1997)

^{2.} The Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories provide two ranges for values: 2–3% and 4–5%. The mid-point of the two ranges was used.

 $^{3. \ \, \}text{The Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories provide a range of 4-5\% as values.} \\ \text{The average value was used.} \\$

^{4.} The Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories provide a range of 10–20% as values. The average value was used.

NA = Not applicable

Table A8–20 CO₂ Emission Factors for Non-energy Use of Natural Gas Liquids and Petroleum Products

Product	Fraction of Carbon Stored in Product	CO ₂ Emission Factor (g CO ₂ /L)
Natural Gas Liquids		
Propane	0.81	303 ²
Butane	0.81	349 ²
Ethane	0.81	197 ²
Petroleum Products		
Petrochemical Feedstocks ³	0.81	500 ⁷
Naphthas ⁴	0.75 ¹	625 ⁷
Lubricating Oils and Greases ⁵	0.51	1 410 ⁷
Petroleum Used for Other Products ⁶	0.51	1 450 ⁷

Table A8–21 Emission Factors for Solvent and Other Product Use

Product	Application	N₂O Emission Rate (%)
N.O.Uso	Anaesthetic Usage	100
N₂O Use —	Propellant Usage	100

Source: IPCC (2006)

Table A8-22 Methane Emission Factors for Enteric Fermentation for Non-cattle Animals

Non-cattle Animal Category	Enteric Fermentation Emission Factor¹ (kg CH₄/head per year)
Pigs	
Boars	1.5
Sows	1.5
Pigs < 20 kg	1.5
Pigs 20-60 kg	1.5
Pigs > 60 kg	1.5
Other Livestock	
Sheep	8
Lambs	8
Goats	5
Horses	18
Buffalo	55
Poultry	
Chickens	N/A
Hens	N/A
Turkeys	N/A
Makes.	

1. IPCC Tier 1 default emission factors (IPCC/OECD/IEA 1997)

N/A = Not available

^{1.} IPCC/OECD/IEA (1997)

^{2.} McCann (2000)

^{3.} Carbon factor for Petrochemical Feedstocks is 680 g C/L (Jaques 1992)

^{4.} Carbon factor for Napthas is 680 g C/L (Jaques 1992)

^{5.} Carbon factor for Lubricating Oils and Greases is 770 g C/L (Jaques 1992)

^{6.} Carbon factor for Petroleum Used in Other Products is 790 g C/L (Jaques 1992)

^{7.} The resulting CO_2 emission factor is calculated by multiplying the carbon factor for each product by the molecular weight ratio between CO_2 and Carbon (44/12) and by (1-fraction of carbon stored in product).

A8.3. Solvent and Other Product Use

 N_2O emissions can result from the use of N_2O as an anaesthetic and propellant. The development of the emission factors shown in Table A8–21 is described in the Solvent and Other Product Use chapter of the Inventory Report (Chapter 5).

A8.4. Agriculture

The sources of agricultural greenhouse gas emissions are enteric fermentation, manure management and agricultural soils. Methodologies for generating country-specific CH₄ emission factors for enteric fermentation (cattle only) and manure management emission estimates are detailed in Section A3.3. Other emission factors and related information are provided below, in Table A8–22 to Table A8–25.

Table A8–23 Maximum Methane-Producing Potential (B0) by animal category¹

Animal Category	Maximum CH₄ Producing Potential (B₀) (m³/kg VS)⁴
Dairy Cattle ²	0.24
Non-dairy Cattle ³	0.19
Sheep	0.19
Goats	0.18
Horses	0.30
Swines	0.48
Hens	0.39
Broilers	0.36
Turkeys	0.36

Notes:

- 1. Data source: IPCC (2006), Volume 4: Agriculture, Forestry and Other Land Uses, Tables 10A-5 to 10A-9
- 2. Dairy cattle include dairy cows and dairy heifers.
- 3. The non-dairy cattle value is also used for buffalo.
- 4. VS = volatile solids

Table A8-24 Methane Conversion Factors (MCFs) by Animal Category and Manure Management System¹

Animal Categories	Liquid Systems (MCFL)	Solid Storage and Drylot (MCFSSD)	Pasture, Range and Paddock (MCFPRP)	Other Systems (MCFO)
Dairy Cattle	0.20	0.02	0.01	0.01
Non-dairy Cattle ²	0.20	0.02	0.01	0.01
Swine	0.20	0.02	NA	0.01
Poultry	0.015	0.015	0.015	NA
Horses	NA	0.01	0.01	NA
Goats	NA	0.01	0.01	NA
Sheep	NA	0.01	0.01	NA
Lambs	NA	0.01	0.01	NA

- 1. Data source: IPCC (2006), Volume 4: Agriculture, Forestry and Other Land Uses, Tables 10A-5 to 10A-9 (cool climate, average annual temperature 12°C)
- 2. Non-dairy cattle values are also used for buffalo.
- 3. NA = Not applicable

Table A8–25 Emission Factors (EFs) for Manure Nitrogen (N) Lost as N₂O-N by Animal Category and Animal Waste Management Systems (IPCC/OECD/IEA 1997))

Animal Category		% of Manure N Lost as N₂O-N					
	Liquid Systems (EF _L)	Solid Storage and Drylot (EF _{SSD})	Pasture, Range and Paddock (EF _{PRP})	Other Systems (EF _O)			
Non-dairy Cattle	0.001	0.02	0.02	0.005			
Dairy Cattle	0.001	0.02	0.02	0.005			
Poultry	0.001	0.02	0.02	0.005			
Sheep and Lambs	0.001	0.02	0.01	0.005			
Swine	0.001	0.02	0.02	0.005			
Goats	0.001	0.02	0.01	0.005			
Horses	0.001	0.02	0.01	0.005			
Buffalo	0.001	0.02	0.02	0.005			

Source: IPCC (2006), Volume 4, Agriculture, Forestry and Other Land Uses, Table 11.1

A8.5. Biomass Combustion

A8.5.1. CO₂

Emissions of CO_2 from the combustion of biomass (whether for energy use, from prescribed burning or from wildfires) are not included in National Inventory totals. These emissions are estimated and recorded as a loss of biomass stock in the Land Use, Land-use Change and Forestry (LULUCF) Sector.

The emissions related to energy use are reported as memo items in the common reporting format (CRF) tables as required by the United Nations Framework Convention on Climate Change (UNFCCC). Emission factors for residential combustion (Table A8–26) are technology-dependent. Emission factors for CO₂ are from an Environment Canada study (ORTECH Corporation 1994) and assume a moisture content of 50%.

Emissions from industrial combustion of biomass are dependent primarily on the characteristics of the fuel being combusted. The CO₂ emission factor (Table A8–26) for industrial wood waste has been developed from facility source sampling data collected by the U.S. EPA in units of lb/MMBTU (EPA 2003). The U.S. EPA data were converted to kg/tonne at 50% moisture content (m.c.) using a higher heating value (HHV) of 10.47 MJ/kg at 50% m.c., which was developed from an internal review of available moisture content and heating value data. The emission factor for spent pulping liquor is calculated from data collected by the National Council for Air and Stream Improvement (NCASI), based on carbon content assuming a 1% correc-

tion for unoxidized carbon (NCASI 2010). The NCASI emission factors were reported in units of kg/GJ HHV, which was converted to kg/tonne at 50% m.c. based on the same HHV vs. moisture convert wood waste.

 CO_2 emissions occur during forest wildfires and from controlled burning during forest conversion activities. The carbon emitted as CO_2 (CO_2 -C) during forest fires is considered in the forest carbon balance, whereas the CO_2 -C emitted during controlled burns is reported under the new land-use categories. There is no unique CO_2 emission factor applicable to all fires, as the proportion of CO_2 -C emitted for each pool can be specific to the pool, the type of forest and disturbance, and the ecological zone (see Section A3.4.2).

A8.5.2. CH₄

Emissions of CH_4 from residential combustion of firewood are technology-dependent. The emission factors (Table A8–26) were chosen based on a review of emission factors for combustion technologies (SGA Energy 2000). The factors are taken from the U.S. EPA AP 42 Supplement B (EPA 1996b).

Emissions from industrial combustion of biomass are dependent primarily on the characteristics of the fuel being combusted. The emission factor (Table A8–26) for CH₄ from industrial wood waste has been developed from facility source sampling data collected by the U.S. EPA in units of lb/MMBTU (EPA 2003) and converted to kg/tonne at 50% m.c. as discussed in section A8.5.1 above. The emission factor for CH₄ from spent pulping liquor is from the IPCC

Table A8–26 Emission Factors for Biomass

Source 1	Description	Emission Factor (g/kg fuel		
		CO ₂	CH₄	N ₂ O
Wood Fuel / Wood Waste	Industrial Combustion	840 ⁴	0.094	0.02
Forest Wildfires	Open Combustion	NA	NA ²	NA
Controlled Burning	Open Combustion	NA	NA ²	NA
Spent Pulping Liquor	Industrial Combustion	891⁵	0.026	0.02
Stoves and Fireplaces	Residential Combustion			
Conventional Stoves		1 500 ⁷	15 ⁸	0.16
Conventional Fireplaces and Inserts		1 500 ⁷	15 ⁸	0.16
Stoves/Fireplaces with Advanced Technology or Catalytic Control 9		1 500 ⁷	6.98	0.16
Other Wood-burning Equipment		1 500 ⁷	15 ⁸	0.16

- 1. CO₂ emissions from biomass combusted for energy purposes are not included in inventory totals, whereas CH4 and N2O emissions from these sources are inventoried under the Energy Sector. All greenhouse gas (GHG) emissions, including CO2 from biomass burned in managed forests (wildfires and controlled burning), are reported under Land Use, Land-Use Change and Forestry (LULUCF) and excluded from national inventory totals.
- 2. Emission ratio for CH₄ is 1/90th CO₂. See Section A3.4 in Annex 3.
- 3. Emission ratio for N_2O is 0.017% CO_2 . See Section A3.4 in Annex 3.
- 4. No CH₄ or N₂O emission factors were available for spent pulping liquor therefore the emission factor for Industrial Fuelwood was used in its place.
- 5. The CH₄ emission factor used is an average of the Non-Catalyst Stove and Catalyst Stove Emission factors
- 6. SGA Energy (2000)
- 7. EPA (1996)
- 8. Jaques (1992)
- 9. ORTECH (1994)

NA = not applicable

Table A8–27 Emission Factors for Landfill Gas Combustion

Source	Description	Emission Factor (kg / terajoule)			
		CO ₂	CH ₄	N ₂ O	
Landfill Gas	Industrial Combustion	54,600	1.0	0.1	

Source: IPCC (2006)

(2006). It is converted from the units reported in the IPCC (kg/TJ lower heating value [LHV]) to kg/tonne at 50% m.c. based on the assumption that the LHV is 20% lower than the HHV along with the same HHV vs. moisture content relationship discussed in A8.5.1.

Emission factors from landfill gas (Table A8–27) are from the IPCC (2006).

Emissions of carbon as CH_4 (CH_4 -C) from wildfires and controlled burning are always equal to 1/90th of CO_2 -C emissions.

A8.5.3. N₂O

Emissions of N_2O from residential combustion of firewood are technology-dependent. The emission factors (Table A8–26) were chosen based on a review of emission factors for combustion technologies and an analysis of combustion technologies typically used in Canada (SGA Energy 2000). The factors are taken from the U.S. EPA AP 42 Supplement B (EPA 1996b).

Emissions from industrial combustion of biomass are dependent primarily on the characteristics of the fuel being combusted. Emission factors (Table A8–26) for industrial wood waste have been developed from facility source sampling data collected by the U.S. EPA in units of lb/MMB-TU (EPA 2003) and converted to kg/tonne at 50% m.c. as

discussed in section A8.5.2 above. The emission factor for CH_4 from spent pulping liquor is from the IPCC (2006). It is converted from the units reported in the IPCC (kg/TJ LHV) to kg/tonne at 50% m.c. based on the assumption that the LHV is 20% lower than the HHV along with the same HHV vs. moisture content relationship discussed in A8.5.1.

Emission factors for landfill gas (Table A8–27) are from the IPCC (2006).

 N_2O emissions from wildfires and controlled burning are equal to 0.017% vol/vol of CO_2 emissions. Since both gases have the same molecular weight, the same ratio can be applied on a mass basis (see Section A3.4.2).

A8.6. Waste

A8.6.1. Municipal Wastewater Handling – Wastewater

A8.6.1.1. CH₄

Emissions from municipal wastewater handling are dependent upon the organic loading of the effluent stream, population and the type of wastewater treatment provided. The emission factor in this case is the product of the methane correction factor (MCF), which is an estimate of the fraction of biological oxygen demand (BOD) that will ultimately degrade anaerobically (MCF) and the maximum methane-producing capacity (Bo), which is expressed in terms of kg CH₄/kg BOD removed. From a recent study by AECOM Canada (2010), commissioned by Environment Canada, it is recommended that the following countryspecific values be used: an MCF of 0.3, which is a blended category that represents the Canadian proportion of septic tanks, anaerobic lagoons and untreated effluents as well as the degree of degradation of the organics expected of the treatment or discharge and a B_o of 0.36 kg CH₄/kg BOD₅. Therefore, the emission factor is 0.108 kg CH₄/kg BOD₅.

The IPCC default emission factor of 0.6 kg CH₄/kg BOD was not used, as the AECOM study confirmed that its derivation from the 0.25 kg CH4/kg COD was erroneous, where COD is the chemical oxygen demand.

A8.6.2. Municipal Wastewater Handling - Human Sewage

A8.6.2.1. N₂O

 N_2O emissions from human sewage are a function of protein consumption per capita, population and the nitrogen content in protein. The emission factor used is the IPCC default value of 0.01 kg N_2O -N kg sewage-N (IPCC/OECD/ IEA 1997).

A8.6.3. Waste Incineration

A8.6.3.1. CH₄

 CH_4 emissions from sewage sludge incinerators are estimated from an emission factor of 1.6 kg CH_4 /tonne of dry sludge, which is obtained from the U.S. EPA (1995).

A8.6.3.2. N₂O

The emission estimates from municipal solid waste (MSW) incineration are calculated from an average IPCC default emission factor for MSW five-stoker facilities of 0.148 kg N $_2$ O/tonne of waste (IPCC/OECD/IEA 1997). For wastewater sludge incineration, the emission factor is taken from the IPCC Good Practice Guidance and has the value of 0.8 kg N $_2$ O/tonne of dry sludge.

Rounding Protocol

A rounding protocol has been developed for the emission and removal estimates in order to reflect their uncertainty levels. The accuracy of a value is reflected by presenting the emission and removal estimates rounded to an appropriate number of significant figures based on the uncertainty of the category in question. The number of significant figures to which each source and sink category has been rounded, using the rounding rules provided in this protocol, can be found in Table A9–1.

A large number of the uncertainty ranges that are used for the various categories were developed using Monte Carlo analysis, as performed by ICF Consulting (ICF Consulting 2004, 2005), using the 2001 inventory estimates submitted in the NIR 2003. Default uncertainty values published by the IPCC (IPCC/OECD/IEA 1997; IPCC 2001) and those resulting from expert elicitation were also utilized for some ranges. Uncertainty ranges have been calculated around the mean values, as determined by Monte Carlo analysis. In cases where uncertainty ranges are asymmetric about the mean, the range with a greater absolute distance from the mean has been employed to represent that uncertainty.

Recently developed uncertainty values have been adopted for certain categories in all sectors. These new uncertainty estimates have been considered in developing Table A9–1. For a more complete description of the analysis of uncertainty in Canada's emission estimates, please refer to Annex 7, which includes tables of current uncertainty values. Recent updates to uncertainty estimates are provided in the respective sectoral chapters.

The following uncertainty ranges have been used to establish the number of significant figures to which the estimates have been rounded:

- one significant figure: uncertainty equal to and greater than 50%;
- two significant figures: uncertainty between 10% and 50%; and

 three significant figures: uncertainty equal to and less than 10%.

The LULUCF Sector was not formally assessed for uncertainty in the 2004 ICF Consulting study. Since then, new methodologies have been used to develop uncertainty estimates in the Cropland and Deforestation¹ categories (Chapter 7, sections 4 and 8 respectively). The number of significant figures for the remaining categories was determined by expert opinion.

All calculations, including the summing of emission totals, were made using unrounded data. The rounding protocol was applied only after the calculations had been completed. The reader should also note that formatting in Annex 12 and Annex 15 limits the maximum number of decimal places and, therefore, even though a zero entry is recorded, some emissions may exist in that category (zero emissions are identified with a dash "-"). Because of these procedures, individual values in the emission tables may not add up to the subtotals and/or overall totals.

1 Kyoto category – see Chapter 7.

Table A9–1 Number of Significant Figures Applied to GHG Summary Tables

GHG Sourc	e/Sink Categories	Number of Si	gnificant Fig	gures				
		CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	TOT
OTAL		3	2	2	2	2	2	
NERGY		3	2	1				
	Stationary Combustion Sources	3	1	1				
	Electricity and Heat Generation	3	2	1				
F	Fossil Fuel Industries	3	1	1				
	Petroleum Refining and Upgrading	2	1	1				
	Fossil Fuel Production	3	1	1				
		3	1	1				
	Mining & Oil and Gas Extraction							
I I	Manufacturing Industries	3	1	1				
	Iron and Steel	3	1	1				
	Non-ferrous Metals	3	1	1				
	Chemical	3	2	1				
	Pulp and Paper	3	1	i				
	Cement	3	1	1				
	Other Manufacturing	3	1	1				
	Construction	3	1	1				
	Commercial & Institutional	3	1	1				
	Residential	3	1	1				
	Agriculture & Forestry		1	1				
		3						
	Fransportation	3	1	1				
	Domestic Aviation	3	1	1				
F	Road Transportation	3	2	2				
	Light-duty Gasoline Vehicles	3	2	2				
	Light-duty Gasoline Trucks	3	2	2				
							-	
	Heavy-duty Gasoline Vehicles	3	2	2				
	Motorcycles	3	2	2				
	Light-duty Diesel Vehicles	3	1	1				
	Light-duty Diesel Trucks	3	1	1				
	Heavy-duty Diesel Vehicles	3	1	1				
	Propane & Natural Gas Vehicles	3	1	1				
-								
	Railways	3	1	1				
	Domestic Marine	3	1	1				
	Others	2	1	1				
	Off-road Gasoline	2	1	1				
	Off-road Diesel	2	1	1				
-	Pipelines	3	2	1				
	-ugitive Sources	3	3	1				
	Coal Mining		1					
	Oil and Natural Gas	3	3	1				
	Oil	2	3	1				
	Natural Gas	3	3					
	Venting	3	3	1				
				1				
	Flaring	2	2					
INDUSTRIAL P		2		3	2	2	2	
a. N	Mineral Production	2						
	Cement Production	2						
	Lime Production	2						
	Mineral Product Use	3		-				
o. (Chemical Industry	2		3				
	Ammonia Production	2						
	Nitric Acid Production			3				
	Adipic Acid Production			2				
	Petrochemical Production		2	2				
c. N	Metal Production	3	-			2	3	
P	Iron and Steel Production						3	
		3						
	Aluminium Production	2				2	3	
	SF ₆ Used in Magnesium Smelters and Casters						3	
d. C	Consumption of Halocarbons and SF ₆				2	1	2	
	Other & Undifferentiated Production	2						
SOLVENT AND	OTHER PRODUCT USE			2				
			2				-	
AGRICULTURE			2	2				
	Enteric Fermentation		2					
	Manure Management		2	2				
	Agricultural Soils			2				
- /	Direct Sources			2				
							+	
	Pasture, Range, and Paddock Manure			2				
	Indirect Sources			1				
	Field Burning of Agricultural Residues		2	2				
WASTE		2	2	1				
	Solid Waste Disposal on Land	_	2					
				1			-	
	Wastewater Handling		2	1				
	Naste Incineration	2	1	1				
	ND-USE CHANGE AND FORESTRY	2	2	2				
	orest Land	2	2	2				
	Cropland	2	1	1				
			- 1					
	Grassland							
d. V	Vetlands	1	1	1				
	Settlements	1	1	1				

Ozone and Aerosol Precursors

The 2009 national summary table for carbon monoxide (CO), nitrogen oxides (NO $_{x}$), non-methane volatile organic compounds (NMVOC) and sulphur oxides (SO $_{x}$) is included in this annex (Table A10-1). These gases are reported to the United Nations Economic Commission for the Environment under the Convention on Long-range Transboundary

Air Pollution. As recommended by the Conference of the Parties to the UNFCCC (FCCC/SBSTA/2006/9), Annex I Parties should provide information on indirect GHGs such as CO, NO_{x_r} NMVOC and SO_x in the NIR.

While these gases do not have a direct global warming effect, they either influence the creation and destruction of tropospheric and stratospheric ozone or affect the terrestrial radiation absorption, as in the case of SO_x . These gases can impact the climate by acting as short-lived GHGs, alter atmospheric lifetimes of other GHGs and form GHGs, as in the case of CO reacting with a hydroxyl radical to form CO_2 in the atmosphere. These emissions are produced by a number of sources, such as fossil fuel combustion in the energy and transportation sectors, industrial production and biomass combustion.

Table A10–1 Carbon Monoxide, Nitrogen Oxides, Non-Methane Volatile Organic Compounds and Sulphur Oxides 2009 Emissions Summary for Canada

NFR Sectors	Reported to LRTAP ¹	co	NO _x	NMVOC	SO,
1 A 1 a	Public Electricity and Heat Production	40.82	205.35	2.63	374.34
1A1b	Petroleum Refining	16.35	19.81	0.90	53.89
1 A 1 c	Manufacture of Solid Fuels and Other Energy Industries	463.41	411.02	62.81	265.46
1 A 2 a	Stationary Combustion in Manufacturing Industries and Construction: Iron and Steel	1.68	5.59	0.01	7.47
1 A 2 b	Stationary Combustion in Manufacturing Industries and Construction: Non-ferrous Metals	9.19	1.77	0.04	1.56
1 A 2 c	Stationary Combustion in Manufacturing Industries and Construction: Chemicals	0.95	4.33	0.38	3.64
1 A 2 d	Stationary Combustion in Manufacturing Industries and Construction: Pulp, Paper and Print	324.88	24.63	23.94	24.05
1 A 2 e	"Stationary Combustion in Manufacturing Industries and Construction: Food Processing, Beverages and Tobacco"	0.23	0.76	0.01	0.48
1 A 2 f i	Stationary Combustion in Manufacturing Industries and Construction: Other	47.48	35.93	2.55	28.96
1 A 2 f ii	Mobile Combustion in Manufacturing Industries and Construction	IE	IE	IE	IE
1 A 3 a ii (i)	Civil Aviation (Domestic, LTO)	27.37	8.65	7.25	0.92
1 A 3 a i (i)	International Aviation (LTO)	IE	IE	IE	IE
1 A 3 b i	Road Transport: Passenger Cars	1767.96	82.95	99.61	0.66
1 A 3 b ii	Road Transport: Light-duty Vehicles	1858.58	101.69	102.32	0.76
1 A 3 b iii	Road Transport: Heavy-duty Vehicles	127.91	228.24	15.43	0.65
I A 3 b iv	Road Transport: Mopeds & Motorcycles	20.48	1.44	3.36	0.00
I A 3 b v	Road Transport: Gasoline Evaporation	NA	NA	IE	NA
I A 3 b vi	Road Transport: Automobile Tyre and Brake Wear	NA	NA	NA	NA
I A 3 b vii	Road Transport: Automobile Road Abrasion	NA	NA	NA	NA
1 A 3 c	Railways	16.06	98.83	2.82	2.24
1 A 3 d i (ii)	International Inland Waterways	IE	IE	IE	IE
I A 3 d ii	National Navigation (Shipping)	9.98	119.37	3.94	82.77
A 3 e	Pipeline Compressors	IE	IE	IE	IE
A4ai	Commercial / Institutional: Stationary	19.68	35.18	1.47	39.38
I A 4 a ii	Commercial / Institutional: Mobile	IE	IE	IE	IE
I A 4 b i	Residential: Stationary Plants	704.07	43.52	153.59	8.77
1 A 4 b ii	Residential: Household and Gardening (mobile)	IE	IE	IE	IE
1 A 4 c i	Agriculture/Forestry/Fishing: Stationary	IE	IE	IE	IE
1 A 4 c ii	Agriculture/Forestry/Fishing: Off-road Vehicles and Other Machinery	2738.92	425.19	270.14	2.98
1A4ciii	Agriculture/Forestry/Fishing: National Fishing	IE .	IE	IE	IE.
1 A 5 a	Other, Stationary (including Military)	IE	IE	IE	IE
1 A 5 b	Other, Mobile (including Military, Land-Based and Recreational Boats)	IE	IE 0.20	IE 0.07	IE
1 B 1 a	Fugitive Emission from Solid Fuels: Coal Mining and Handling	0.06 0.81	0.28 1.39	0.07 9.88	0.03 13.74
1 B 1 b 1 B 1 c	Fugitive Emission from Solid Fuels:Solid Fuel Transformation	0.67	0.79	9.88	
1B2ai	Other Fugitive Emissions from Solid Fuels Exploration, Production, Transport	NA	0.79 NA	0.03	0.73
1 B 2 a iv	Refining / Storage	4.16	5.41	40.47	17.49
B2av	Distribution of Oil Products	NA	NA	51.13	0.00
1 B 2 b	Natural Gas	NA	NA	371.47	0.00
1 B 2 c	Venting and Flaring	29.49	29.49	1.71	32.03
1 B 3	Other fugitive emissions from geothermal energy production, peat and other energy extraction not included in 1 B 2	IE	IE	IE	IE
2 A 1	Cement Production	8.00	23.37	0.20	16.11
2 A 2	Lime Production	1.43	2.91	0.00	1.27
2 A 3	Limestone and Dolomite Use	NA	NA	NA	NA
2 A 4	Soda Ash Production and Use	NA	NA	NA	NA
2 A 5	Asphalt Roofing	0.00	NA	0.00	0.00
2 A 6	Road Paving with Asphalt	3.54	1.11	4.49	0.50
2 A 7 a	Quarrying and Mining of Minerals Other Than Coal	0.64	0.83	0.09	0.19
2 A 7 b	Construction and Demolition	NA	NA	NA	NA
2 A 7 c	Storage, Handling and Transport of Mineral Products	NA	NA	NA	NA
2 A 7 d	Other Mineral Products	3.36	0.26	0.22	0.93
2 B 1	Ammonia Production	3.20	4.13	0.37	1.92
2 B 2	Nitric Acid Production	NA	IE	NA	NA
2 B 3	Adipic Acid Production	IE	IE	NA	NA
2 B 4	Carbide Production	IE 0.61	IE 0.46	IE 6.40	IE C 71
2 B 5 a	Other Chemical Industry	8.61	9.46	6.48	5.71
2 B 5 b	Storage, Handling and Transport of Chemical Products	17.02	IE 2.00	IE 0.63	14 22
2C1	Iron and Steel Production	17.93	3.09	0.63	14.32
2 C 2	Ferroalloys Production	51.24	0.15	6.81	0.05

Notes:

1. Nomenclature for Reporting (NFR) sectors reported to the Convention on Long-range Transboundary Air Pollution (LRTAP).

^{2.} Includes NH3 from Enteric Fermentation and emissions from Cultivation of Rice.

^{3.} Includes PM sources.

^{4.} Excludes waste incineration for energy (this is included in 1 A 1) and in industry (if used as fuel).

^{5.} Includes accidental fires.

6. "National Total" refers to the territory declared upon ratification of the relevant Protocol of the Convention.

NA = Not applicable; NE = Not estimated; NO = Not occurring; IE = Included elsewhere; LTO = Landing and takeoff; POPs = Persistent organic pollutants...

Table A10-1 Carbon Monoxide, Nitrogen Oxides, Non-Methane Volatile Organic Compounds and Sulphur Oxides 2009 Emissions Summary for Canada (cont'd)

NFR Sector	s Reported to LRTAP ¹	co	NO _x	NMVOC	SO _x
2 C 3	Aluminum Production	371.46	0.77	0.80	60.44
2 C 5 a	Copper Production	0.03	0.48	0.00	47.36
2 C 5 b	Lead Production	0.11	0.06	0.00	8.25
2 C 5 c	Nickel Production	0.00	0.06	0.00	145.73
2 C 5 d	Zinc Production	IE	IE	IE	IE
2 C 5 e	Other Metal Production	0.04	1.28	1.34	198.49
2 C 5 f	Storage, Handling and Transport of Metal Products	IE	IE	IE	IE
2 D 1	Pulp and Paper	30.89	13.17	13.65	7.06
2 D 2	Food and Drink	NA	NA	2.60	NA
2 D 3	Wood Processing	19.40	2.95	33.45	0.18
2 E	Production of POPs	NO	NO	NO	NO
2 F	Consumption of POPs and Heavy Metals (e.g. electricial and scientific equipment)	NA	NA	NA	NA
2 G	Other Production, Consumption, Storage, Transportation or Handling of Bulk Products	6.04	1.79	42.55	1.40
3 A 1	Decorative Coating Application	NA	NA	IE	NA
3 A 2	Industrial Coating Application	NA NA	NA	İĒ	NA
3 A 3	Other Coating Application	NA	NA	77.40	NA
3 B 1	Degreasing	NA NA	NA	253.54	NA
3 B 2	Dry cleaning	NA NA	NA	0.30	NA
3 C	Chemical products	0.00	0.00	0.89	0.00
3 D 1	Printing	NA	NA	43.06	NA
3D2	Domestic Solvent Use Including Fungicides	NA NA	NA	45.00 IE	NA NA
3 D 3	Other Product Use	NA	NA	NA NA	NA NA
4B1a	Cattle Dairy	0.00	NA NA	26.32	NA NA
4B1b		0.00	NA NA	224.88	NA NA
4B1B	Cattle Non-Dairy Buffalo	NE	NA NA	224.88 NE	NA NA
4 B 3		0.00	NA NA	1.49	
4 B 3	Sheep Goats	IE	NA NA		NA NA
4B6	Horses	NA	NA NA	1.86	
					NA
4 B 7	Mules and Asses	NA NA	NA	0.00	NA
4 B 8	Swine	NA	NA	2.40	NA
4 B 9 a	Laying Hens	NA	NA	0.06	NA
4 B 9 b	Broilers	NA	NA	0.14	NA
4B9c	Turkeys	NA	0.00	0.02	NA
4 B 9 d	Other Poultry	NA	0.00	0.22	NA
4 B 13	Other	NA	0.00	0.00	NA
4 D 1 a	Synthetic N-fertilizers ²	NA	0.00	0.00	NA
4 D 2 a	Farm-level Agricultural Operations Including Storage, Handling and Transport of Agricultural Products	NA	0.00	0.00	NA
4 D 2 b	Off-farm Storage, Handling and Transport of Bulk Agricultural Products	0.12	0.24	2.81	0.11
4 D 2 c	N-excretion on Pasture Range and Paddock Unspecified	NA	0.00	NA	NA
4 F	Field Burning of Agricultural Wastes	0.00	0.00	0.00	0.00
4 G	Agriculture Other ³	IE	IE	IE	IE
6 A	Solid Waste Disposal on Land	NA	NA	11.71	NA
6 B	Waste-water Handling	NA	NA	IE	NA
6Ca	Clinical Waste Incineration ⁴	IE	IE	IE	IE
6Cb	Industrial Waste Incineration4	1.90	0.64	0.64	0.52
6Cc	Municipal Waste Incineration	5.43	3.39	1.87	2.32
6Cd	Cremation	0.02	0.02	0.00	0.01
6Ce	Small-scale Waste Burning	11.18	0.80	3.99	0.01
6D	Other Waste 5	0.58	0.65	0.34	0.13
7 A	Other (included in National Total for Entire Territory)	13.56	0.03	2.74	0.00
/ /\	Other findiaged in National Iotal for Entire Territory)	13.30	0.23	2./4	0.00

Supplementary Information Required under Article 7.1 of the Kyoto Protocol

This annex serves the purpose of reporting supplementary information required under Article 7, paragraph 1, of the Kyoto Protocol (KP). At its first meeting, the Conference of the Parties serving as the Meeting of the Parties to the Kyoto Protocol, agreed to guidelines for the preparation of the information required under Article 7 of the Kyoto Protocol (Decision 15/CMP.1 in FCCC/KP/CMP/2005/8/Add.2). The required supplementary information is to be provided in different documents: a party's Initial Report¹ (as per Annex to Decision 13/CMP.1), and a dedicated annex to the National Inventory Report.

This annex provides supplementary information on

- Land Use, Land-use Change and Forestry (LULUCF) activities under articles 3.3 and 3.4;
- · accounting units;
- changes to the national system;
- · changes to the national registry; and
- minimization of adverse impacts in accordance with article 3.14.

A11.1. Supplementary Information Required under Articles 3.3 and 3.4

To facilitate the review of the required information, Table A11–1 lists all reporting requirements from paragraphs 5 to 9 in the annex to Decision 15/CMP.1, and indicates

1 Canada's initial report is available online at http://unfccc.int/files/national_reports/initial_reports_under_the_kyoto_protocol/application/pdf/initial_report_of_canada.pdf.

the location of this information in the present inventory report.

A11.1.1. General Information

Canada's Monitoring Accounting and Reporting System (MARS) for Land Use, Land-use Change and Forestry has been designed and is flexible enough to meet the monitoring, accounting and reporting requirements of both the United Nations Framework Convention on Climate Change (UNFCCC – LULUCF Sector) and the Kyoto Protocol (LULUCF activities under articles 3.3 and 3.4). To achieve this objective while minimizing duplication and inconsistencies, Canada has sought to implement, to the extent possible, the same definitions, approaches and methodologies for the development of Convention and Kyoto Protocol estimates.

Hence, the definition of "forest" as described in Canada's initial report for use in accounting for its activities under Article 3, paragraphs 3 and 4, is equally applied to Convention estimates. The definition is based on the following single minimum values:

Minimum tree crown cover = 25% Minimum land area = 1 ha Minimum tree height = 5 m

In addition, as recommended in Chapter 4 of *IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry* (IPCC 2003), Canada has identified a minimum width of 20 metres (distance between trunks) as a definitional criterion to specify the shape of the forests. These parameters have been implemented in the procedures for mapping forest conversion under the Convention, and deforestation under the Kyoto Protocol.

Tables NIR-1 and NIR-3 of the KP module show which KP-LULUCF estimates are reported by Canada. All estimates relative to Article 3, paragraph 3 activities and to Cropland Management under Article 3, paragraph 4 are provided, with two exceptions: there is no liming occurring on afforested land, and emissions from liming on deforested land are included in the estimates provided for Cropland Management activities.

None of the LULUCF estimates reported by Canada explicitly factor in, or out, the putative effects of elevated atmospheric concentrations of CO₂ compared to pre-industrial levels, or of nitrogen deposition. The current knowledge on these indirect effects remains too limited to allow any

Table A11–1 Location of Additional Information Reported on LULUCF Activities Under the Kyoto Protocol

INFORMATION ELEMENT	LOCATION
Emissions by sources and removals by sinks are clearly distinguished from emissions from Annex A sources.	 Annex A sources: CRF tables for categories 1, 2, 3, 4 and 6
	LULUCF estimates under the Convention: CRF category 5
	3. LULUCF estimates under the KP: CRF KP module "
Information on how inventory methodologies have been applied taking into account IPCC Good Practice Guidance for LULUCF and Decision 16/CMP.1.	Annex 11, Section 1, and references therein to Chapter 7 and Annex 3, Section 4
Information on geographical location of the boundaries of areas that encompass:	
Units of land subject to activities under Article 3.3	Annex 11, Section 1 and references therein to Chapter 7 and methodological Annex 3, Section 4
Units of land subject to activities under Article 3.3, which would otherwise be included in land subject to elected activities under Article 3.4	Actual estimates are provided by reporting zone in CRF KP module.
Land subject to elected activities under Article 3.4	
Information on the spatial assessment unit for determining the area of accounting for afforestation, reforestation and deforestation.	Annex 11, Section 1 and references therein to Chapter 7 and methodological Annex 3, Section 4
Information on GHGs resulting from activities under Article 3, paragraphs 3 and	1. CRF KP module
4, for all geographical locations reported in the current and previous years since the beginning of the commitment period or the onset of the activity, whichever comes later.	 Annex 11, Section 1 and references therein to Chapter 7 and methodological Annex 3, Section 4
Information on which pools (above-ground / below-ground biomass, litter, dead wood and soil organic carbon) were not accounted for.	Annex 11, Section 1 and references thereir to Chapter 7 and methodological Annex 3, Section 4
Information should also be provided which indicates whether anthropogenic GHGs from LULUCF activities under KP3.3 + 3.4 factor out removals from:	
Elevated carbon dioxide concentrations above pre-industrial levels	Annex 11, Section 1
Indirect nitrogen deposition	
The dynamic effects of age structure resulting from activities prior to 1 January 1990.	Not applicable
Specific information to be reported for Article 3.3 activities:	
Information that activities under Article 3.3 began on or after 1 January 1990 and before 31 December of the last year of the commitment period	Annex 11, Section 1 and references therein to Chapter 7 and methodological Annex 3, Section 4
Information on how harvesting or forest disturbance that is followed by the re-establishment of forest is distinguished from deforestation	Annex 11, Section 1
Information on emissions/removals from lands harvested during the first commitment period following afforestation and reforestation on these units of land since 1990.	Annex 11, Section 1
Specific information to be reported for Article 3.4 activities:	
Information that activities under Article 3.4 occurred since 1 January 1990 and are human induced	Annex 11, Section 1 and references therein to Chapter 7 and methodological Annex 3, Section 4
Cropland management, grazing land management, revegetation: emissions/ removals reported for each year of the commitment period and for the base year for each of the elected activities on the geographical locations reported	CRF KP module
Information that emissions/removals from Article 3.4 activities are not accounted for under activities under Article 3.3	Annex 11, Section 1 and references thereir to Chapter 7 and methodological Annex 3, Section 4
Forest management: information on the extent that GHG removal by sinks offsets the debit incurred under Article 3.3	Not applicable

reliable quantification at the scale of the Canadian landscape.

A11.1.2. Land Information

Canada's MARS for LULUCF uses a consistent spatial framework for the geographical referencing of all LULUCF estimates to "reporting zones". This framework, described in Chapter 7, Section 2 and Annex 3, Section 3.4.1 of the current report, is used to report all LULUCF estimates, including cropland management, afforestation, reforestation and deforestation under the Kyoto Protocol (see CRF KP module). The framework is compliant with the method used to identify the lands in the IPCC Method 1 (IPCC 2003, page 4.24, Section 4.2.2.2) by which multiple land units subject to afforestation, reforestation, deforestation or cropland management are encompassed within established geo-referenced boundaries (the reporting zones described in Chapter 7).

Canada's LULUCF system is integrated in such a way that different modelling frameworks for forest, cropland or wetlands can nevertheless exchange information on land that is converted from one category to another, using consistent spatial referencing. This ensures that neither land nor associated GHG estimates are double counted.

The land transition matrix (Table NIR-2) is very different from the LULUC matrix of Chapter 7. Under the Convention, the national territory is divided into six categories, while under the KP it is divided among the following four KP categories: Afforestation/Reforestation, Deforestation, Cropland Management, and Other. Since Canada has not chosen Forest Management, deforestation activities that occurred in 2009 are entirely captured in the land transition from Other to Deforestation; all Afforestation activities that occurred in 2009 are represented as a transition from Cropland Management. The 0.21 kha of land gained by Cropland Management in 2009 originated from grassland (in the Convention), but in the KP matrix are reported as a land transition from the category Other.

Inconsistencies between Convention and KP LULUCF area estimates for 2009 resulted solely from the differences in the temporal frameworks of otherwise comparable events such as "Forest Conversion" under the Convention and "Deforestation" under the KP. For example, the area of "Forest Conversion" (1019 kha) for inventory year 2009 equals the total forest area converted to other land categories from January 1, 1990, (from January 1, 2000, in the case of con-

version to reservoirs) to December 31, 2009; the "Deforestation" area [1023 kha in Table 5(KP-1)A.2] is the total area converted from January 1, 1990, to December 31, 2009. The difference amounts to -3.9 kha and corresponds to forests converted to reservoirs before 2000. These Convention and KP estimates will increasingly diverge after inventory year 2009, since areas deforested after December 31, 1989, will remain in the Deforestation category under KP, whereas the 20-year transition rule (10 years in the case of conversion to reservoirs) will continue to apply to the category "Forest Conversion" under the Convention.

Table 5(KP-1)A.2.1 illustrates the artefact of the Deforestation definition, which leads to ever-increasing area estimates, while in reality the annual rate of forest conversion in Canada has significantly decreased, from 76 kha in 1990 to 45 kha in 2009, as reflected in the Convention estimates.

A11.1.3. Information Specific to Activities under Article 3, Paragraph 3

The general approach to estimate deforestation is the same as that used for forest conversion, and is described in Annex 3.4 of the present report, Section A3.4.2.2, including quality control procedures and uncertainty estimates. The core method involves identifying and interpreting the changes observed on Landsat imagery between two dates. Each deforestation event identified and larger than 1 ha is manually delineated. The 1975, 1990, 2000 and 2008 imagery, and abundant ancillary information, ensure that events are accurately assigned to the proper time period. A standard interpolation procedure is used to calculate annual deforestation rates, by cause, for each spatial unit, allowing a query and compilation of all events for each individual inventory year. The procedures are fully documented in Leckie et al. (2006).

Canada distinguishes a temporary loss of forest (due to harvesting or forest disturbance) from deforestation through the same system of visual interpretation of satellite imagery supported by ancillary data (as described above and in Annex 3.4 of this report). Potential causes of deforestation are captured explicitly and are subject to regular quality control procedures. The main potential causes of deforestation due to harvesting are forest roads and landings, which are explicitly captured, and insufficient regeneration, which is an exception and is not explicitly captured. Harvested areas are assumed to regenerate to forests that meet the definition stated above. A back-

ground study (Canadian Forest Service 2008) determined that the small potential for such deforestation (0–0.5% of the harvested area) was well within the error bounds of the estimate of the total forest area converted annually in Canada.

Emission estimates from deforestation and afforestation/reforestation are developed in the same modelling framework as for all forest-related land-use change under the Convention, which is summarized in Annex 3, Section A3.4.2.1. The modelling framework notably includes all carbon pools.

Note that none of the afforestation land has been harvested since 1990; due to the slow tree growth rates under the Canadian climate, newly planted stands require several decades before reaching merchantable levels.

A11.1.4. Information Specific to Activities under Article 3, Paragraph 4

Cropland management estimates for the years 2008 and 2009 (net removals of 11.7 and 12.4 Mt CO₂, respectively) reflect the combined effects of various changes in agricultural land management practices, and also include the residual emissions from pre-1990 forest conversion; both are described in more detail in Chapter 7 and Annex 3.4 of this report. KP estimates are constructed in essentially the same way as Convention estimates, the difference being that emissions and removals on forest land converted to cropland since January 1, 1990 (net emissions of 5.46 Mt CO₂ in 2008 and 5.51 in 2009) are reported under the Deforestation KP category. The ability to quantify emissions and removals on forest land converted to cropland, and report them under the category Deforestation, ensures that there is no double counting between the two activities. Likewise, cropland converted to forest is removed from the cropland modelling framework, thereby eliminating possible double counting of activities on these lands.

The management practices that drive emissions and removals on cropland soils are documented in the *Census of Agriculture*, which is published every five years. Changes in these practices are determined from a consistent time series of census data since 1981, allowing the best possible temporal allocation. Annex 3.4 of the present report provides more information.

Burning of perennial, woody biomass is not occurring on

Canadian cropland. A full time series of non- CO_2 emissions from controlled burning of crop residues is reported in the Agriculture Sector (see Chapter 6,).

A11.2. Information on Accounting of Kyoto Units

A11.2.1. Canada's Assigned Amount

Canada's assigned amount has been established as 2.791.792.771 tonnes CO_2 eq (UNFCCC Report of the review of Canada's Initial Report Under the Kyoto Protocol [2008]).²

A11.2.2. Canada's Commitment Period Reserve

In accordance with Decision 11/CMP.1, the commitment period reserve is either 90% of a Party's assigned amount **or** 100% of five times its most recently reviewed inventory, whichever is lowest. Therefore Canada's commitment period reserve is calculated as either:

- a) 90% of Canada's assigned amount = 0.9×2791792771 tonnes CO₂ eq
 - = 2 512 613 494 tonnes CO₂ eq

or

- b) 100% of 5 × Canada's most recently reviewed inventory (2006)
 - $= 5 \times 720 631 734 \text{ tonnes CO}_2 \text{ eq}$
 - $= 3603158670 \text{ tonnes } CO_2 \text{ eq}$

The lower of the two numbers in a) and b) above is then calculated as 90% of Canada's assigned amount in a).

Therefore, Canada's commitment period reserve is 2 512 613 494 tonnes of CO₂ eq.

A11.2.3. Reported Information in Standard Electronic Format Tables

In accordance with Decision 15/CMP.1 and reporting requirements under Article 7, paragraph 1 of the Kyoto Protocol, Parties included in Annex I must report in their

² UNFCCC's review of Canada's Initial Report Under the Kyoto Protocol is available online at http://unfccc.int/national_reports/initial_reports_under_the_kyoto_protocol/items/3765.php

Table A11–2 Total Quantities of Kyoto Protocol Units by Account Type at Beginning of 2010.¹

			Unit	type		
Account type	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
Party holding accounts	NO	NO	NO	NO	NO	NO
Entity holding accounts	NO	NO	NO	NO	NO	NO
Article 3.3/3.4 net source cancellation accounts	NO	NO	NO	NO		
Non-compliance cancellation accounts	NO	NO	NO	NO		
Other cancellation accounts	NO	NO	NO	NO	NO	NO
Retirement account	NO	NO	NO	NO	NO	NO
tCER replacement account for expiry	NO	NO	NO	NO	NO	
ICER replacement account for expiry	NO	NO	NO	NO		
ICER replacement account for reversal of storage	NO	NO	NO	NO		NO
ICER replacement account for non-submission of certification report	NO	NO	NO	NO		NO
Total	NO	NO	NO	NO	NO	NO
Notes:						
1. Unit types (AAUs, ERUs, etc.) are fully defined in the Annex to Decision 9/CMP.1						

Table A11–3 Annual Internal Transactions and Retirements

			Add	itions	;		Subtractions								
		Unit type							Unit type						
Transaction Type	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICER			
Article 6 issuance and conversion															
Party-verified projects		NO					NO		NO						
Independently verifed projects		NO					NO		NO						
Article 3.3 and 3.4 issuance or cancellation															
3.3 Afforestation and reforestation			NO				NO	NO	NO	NO					
3.3 Deforestation			NO				NO	NO	NO	NO					
3.4 Forest management			NO				NO	NO	NO	NO					
3.4 Cropland management			NO				NO	NO	NO	NO					
3.4 Grazing land management			NO				NO	NO	NO	NO					
3.4 Revegetation			NO				NO	NO	NO	NO					
Article 12 afforestation and reforestation															
Replacement of expired tCERs							NO	NO	NO	NO	NO				
Replacement of expired ICERs							NO	NO	NO	NO					
Replacement for reversal of storage							NO	NO	NO	NO		NO			
Replacement for non-submission of certification report							NO	NO	NO	NO		NO			
Other cancellation							NO	NO	NO	NO	NO	NO			
Sub-total		NO	NO				NO	NO	NO	NO	NO	NO			

			Reti	remei	nt	
	Unit type					
Transaction Type	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
Retirement	NO	NO	NO	NO	NO	NO

Table A11–4 Annual External Transactions and Additional Information

		Additions							Subtra	action	ıs		
		Unit type						Unit type					
	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICER:	
Transfers and acquisitions													
CDM	NO	NO	NO	216750	NO	NO	NO	NO	NO	NO	NO	NO	
Sub-total	NO	NO	NO	216750	NO	NO	NO	NO	NO	NO	NO	NO	
Independently verified ERUs								NO					

Table A11–5 Total Annual Transactions

		Additions						5	Subtra	actior	ıs	
		Unit type					Unit type					
	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs
Total (Sum of tables 2a and 2b)	NO	NO	NO	216750	NO	NO	NO	NO	NO	NO	NO	NO

Table A11–6 Expiry, Cancellation and Replacement

	Exp cancella require to rep	Replacement Unit type							
	Unit								
Transaction or event type	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	
Temporary CERs (tCERS)									
Expired in retirement and replacement accounts	NO								
Replacement of expired tCERs			NO	NO	NO	NO	NO		
Expired in holding accounts	NO								
Cancellation of tCERs expired in holding accounts	NO								
Long-term CERs (ICERs)									
Expired in retirement and replacement accounts		NO							
Replacement of expired ICERs			NO	NO	NO	NO			
Expired in holding accounts		NO							
Cancellation of ICERs expired in holding accounts		NO							
Subject to replacement for reversal of storage		NO							
Replacement for reversal of storage			NO	NO	NO	NO		NO	
Subject to replacement for non-submission of certification report		NO							
Replacement for non-submission of certification report			NO	NO	NO	NO		NO	
Total			NO	NO	NO	NO	NO	NO	

Table A11–7 Total Quantities of Kyoto Protocol Units by Account Type at End of 2010

	Unit type									
Account type	AAUs	ERUs	RMUs	CERs	tCERs	ICER				
Party holding accounts	2.79E+09	NO	NO	216750	NO	NO				
Entity holding accounts	NO	NO	NO	NO	NO	NO				
Article 3.3/3.4 net source cancellation accounts	NO	NO	NO	NO						
Non-compliance cancellation accounts	NO	NO	NO	NO						
Other cancellation accounts	NO	NO	NO	NO	NO	NC				
Retirement account	NO	NO	NO	NO	NO	NC				
tCER replacement account for expiry	NO	NO	NO	NO	NO					
ICER replacement account for expiry	NO	NO	NO	NO						
ICER replacement account for reversal of storage	NO	NO	NO	NO		NC				
ICER replacement account for non-submission of certification report	NO	NO	NO	NO		NC				
Total	2.79E+09	NO	NO	216750	NO	NC				

Table A11–8 Summary Information on Additions and Subtractions

		Additions Unit type							Subtractions Unit type						
Starting values	AAUs	ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICER			
Issuance pursuant to Article 3.7 and 3.8	2.79E+09														
Non-compliance cancellation							NO	NO	NO	NO					
Carry-over	NO	NO		NO											
Sub-total	2.79E+09	NO		NO			NO	NO	NO	NO					
Annual transactions															
Year 0 (2007)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 1 (2008)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 2 (2009)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 3 (2010)	NO	NO	NO	216750	NO	NO	NO	NO	NO	NO	NO	NO			
Year 4 (2011)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 5 (2012)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 6 (2013)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 7 (2014)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Year 8 (2015)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO			
Sub-total	NO	NO	NO	216750	NO	NO	NO	NO	NO	NO	NO	NO			
Total	2.79E+09	NO	NO	216750	NO	NO	NO	NO	NO	NO	NO	NO			

Table A11–9 Summary Information on Replacement

		Requirement for replacement Unit type			Replacement Unit type					
	Unit 1									
	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs		
Previous CPs			NO	NO	NO	NO	NO	NO		
Year 1 (2008)		NO	NO	NO	NO	NO	NO	NO		
Year 2 (2009)		NO	NO	NO	NO	NO	NO	NO		
Year 3 (2010)		NO	NO	NO	NO	NO	NO	NO		
Year 4 (2011)		NO	NO	NO	NO	NO	NO	NO		
Year 5 (2012)	NO	NO	NO	NO	NO	NO	NO	NO		
Year 6 (2013)	NO	NO	NO	NO	NO	NO	NO	NO		
Year 7 (2014)	NO	NO	NO	NO	NO	NO	NO	NO		
Year 8 (2015)	NO	NO	NO	NO	NO	NO	NO	NO		
Total	NO	NO	NO	NO	NO	NO	NO	NO		

Table A11–10 Summary Information on Retirement

	Retirement									
		Unit type								
Year	AAUs	ERUs	RMUs	CERs	tCERs	ICERs				
Year 1 (2008)	NO	NO	NO	NO	NO	NO				
Year 2 (2009)	NO	NO	NO	NO	NO	NO				
Year 3 (2010)	NO	NO	NO	NO	NO	NO				
Year 4 (2011)	NO	NO	NO	NO	NO	NO				
Year 5 (2012)	NO	NO	NO	NO	NO	NO				
Year 6 (2013)	NO	NO	NO	NO	NO	NO				
Year 7 (2014)	NO	NO	NO	NO	NO	NO				
Year 8 (2015)	NO	NO	NO	NO	NO	NO				
Total	NO	NO	NO	NO	NO	NO				

Table A11–11 Memo Item: Corrective Transactions Relating to Additions and Subtractions

	Additions Unit type			Subtractions							
				Unit type							
UAA	Us ERUs	RMUs	CERs	tCERs	ICERs	AAUs	ERUs	RMUs	CERs	tCERs	ICERs

Table A11–12 Memo Item: Corrective Transactions Relating to to Replacement

	Requirement for replacement Unit type tCERs ICERs			F	Replac	ceme	nt	
			Unit type					
			AAUs	ERUs	RMUs	CERs	tCERs	ICERs

Table A11–13 Memo Item: Corrective Transactions Relating to Retirement

Retirement								
Unit type								
AAUs	ERUs	RMUs	CERs	tCERs	ICERs			

Table A11-14 Information Elements to be Reported on Kyoto Protocol Accounting Units

INFORMATION ELEMENT	Report
15/CMP.1 Annex I.E, paragraph 11: Standard electronic format (SEF)	See Section A11.2.3. The SEF tables have been submitted to the UNFCCC.
15/CMP.1 Annex I.E, paragraph 12: List of discrepant transactions	Canada had no discrepant transactions for the reporting year.
15/CMP.1 Annex I.E, paragraphs 13 & 14: List of CDM notifications	Canada did not receive any CDM notifications in the reporting year.
15/CMP.1 Annex I.E, paragraph 15: List of non-replacements	Canada had no non-replacements for the reporting year.
15/CMP.1 Annex I.E paragraph 16: List of invalid units	Canada had no invalid units for the reporting year.
15/CMP.1 Annex I.E, paragraph 17: Actions and changes to address discrepancies	Canada did not require any actions or changes to address discrepancies for the reporting year.

inventory submissions information on their holdings and transactions of KP units. Table A11–2 to Table A11–13 provide, for Canada, the information specified in 15/CMP.1 Annex 1E, paragraph 11, in standard electronic formats.

In accordance with Decision 15/CMP.1 and reporting requirements under Article 7, paragraph 1 of the Kyoto Protocol, Parties included in Annex I must further report in their inventory submission, information on notifications received, records of non-replacement and additional information of a similar nature. Table A11–14 indicates where such information is provided, when applicable.

A11.3. Information on Changes to Canada's National System

Canada has not made any changes to its national system as compared to information reported since the 2009 submission. A description of how the national system is performing the general and specific functions, as defined in the guidelines for national systems under Article 5, paragraph 1, is provided in the National Inventory Report (NIR). To facilitate the review of the information, Table A11–15 indicates the location of this information in the present inventory report.

Table A11–15 Location of Supplementary Information Reported on the National System under the Kyoto Protocol

	INFORMATION ELEMENT	Change from 2009 Submission	LOCATION
30 (a)	The name and the contact information for the national entity and its designated representative with overall responsibility for the national inventory of the Party.	No	Chapter 1.2
30 (b)	The roles and responsibilities of various agencies and entities in relation to the inventory development process, as well as the institutional, legal and procedural arrangements made to prepare the inventory	No	Chapter 1.2.3
30 (c)	A description of the process for collecting activity data, for selecting emission factors and methods, and for the development of emission estimates	No	Chapter 1, Section 4 and throughout text
30 (d)	A description of the process and the results of key source identification and, where relevant, archiving of test data	No	Annex 1
30 (e)	A description of the process for the recalculation of previously submitted inventory data	No	Chapter 9
30 (f)	A description of the quality assurance and quality control plan, its implementation and the quality objectives established, and information on internal and external evaluation and review processes and their results in accordance with the guidelines for national systems	No	Annex 6 and relevant sections within Chapters 3-8 Chapter 1.3
30 (g)	A description of the procedures for the official consideration and approval of the inventory.	No	Chapter 1.3

Table A11–16 Changes to Information Reported on the National Registry under the Kyoto Protoco

Information Element	Change from last submission	Updated Information
The name and the contact information of the registry administrator designated by the Party to maintain the national registry	Yes	"Environment Canada, Legislative and Regulatory Affairs Division Primary Contact: Lynda Danquah Environment Canada, Legislative and Regulatory Affairs Directorate Trading Regimes Division lynda.danquah@ec.gc.ca 819-956-4448 351 St. Joseph Blvd. Gatineau, Quebec K1A 0H3"
		Secondary contact: No change has been made to the secondary contact.
The names of the other Parties with which the Party cooperates by maintaining their national registries in a consolidated system	No	In accordance with Decision 15/CMP.1 and Article 7 of the Kyoto Protocol, Canada's Kyoto Protocol National Registry maintains its national registry as a stand-alone system, and does not maintain a system that is consolidated with other national registries.
A description of the database structure and capacity of the national registry	No	No changes have been made to the database or the capacity of Canada's Kyoto Protocol National Registry.
A description of how the national registry conforms to the technical standards for data exchange between registry systems for the purpose of ensuring the accurate, transparent and efficient exchange of data between national registries, the clean development registry and the transaction log (Decision 19/CP.7, paragraph 1)12	Yes	In February 2010, Canada's Kyoto Protocol National Registry successfully connected with the International Transaction Log.
A description of the procedures employed in the national registry to minimize discrepancies in the issuance, transfer, acquisition, cancellation and retirement of Emission Reduction Units (ERUs), Certified Emission Reduction (CERs), temporary CERs (tCERs), long-term CERs (ICERs), Assigned Amount Units (AAUs) and/or Removal Units (RMUs), and replacement of tCERS and ICERs, and of the steps taken to terminate transactions where a discrepancy is notified and to correct problems in the event of a failure to terminate the transactions	No	No changes have been made to the procedures of Canada's Kyoto Protocol National Registry.
An overview of security measures employed in the national registry to prevent unauthorized manipulations and to prevent operator error, and an overview of how these measures are kept up to date	Yes	As Canada's Kyoto Protocol National Registry was not open to entity accounts, there was no need to make any changes to the security of the Registry. A threat and risk assessment and a risk mitigation plan were prepared and Canada will implement additional authentication measures before the Registry is open to entity accounts.
A list of the information publicly accessible by means of the user interface to the national registry	Yes	Publicly available information related to Canada's Kyoto Protocol National Registry was made available on the Registry website located at: http://www.ec.gc.ca/rncpk-ckpnr/default.asp?lang=En&n=1F96522D-1
The Internet address of the interface to its national registry	No	No changes have been made to the Internet address of the national registry.
A description of measures taken to safeguard, maintain and recover data in order to ensure the integrity of data storage and the recovery of registry services in the event of a disaster	No	No changes were made to the data integrity measures of Canada's Kyoto Protocol National Registry during the reporting period.
The results of any test procedures that might be available or developed with the aim of testing the performance, procedures and security measures of the national registry undertaken pursuant to the provisions of Decision 19/CP.7 relating to the technical standards for data exchange between registry systems.	Yes	Testing and assessment of unit block fragmentation was performed to address the issues of fragmentation in Canada's Kyoto Protocol National Registry. The outcome of this testing identified that Canada's national registry could not process sufficient number of unit blocks. Ir addition to this, Canada's Kyoto Protocol National Registry was found to not be able to gracefully terminate transactions above the variable limit of 3000 unit blocks. To address this issue, Canada's Kyoto Protocol National Registry is scheduled to be enhanced in order to gracefully terminate transactions that exceed the 1000 character limit.

A11.4. Changes in Canada's National Registry

As per 15/CMP.1 Annex I, G, each Party included in Annex I with a commitment inscribed in Annex B shall include in its national inventory report, information on any changes that have occurred in its national registry, compared with information reported in its last submission, including information submitted in accordance with paragraph 32 of the guidelines.

To facilitate the review, Table A11–16 lists all changes to reporting requirements from paragraph 32 in Annex II to Decision 15/CMP.1, and provides the updated information (where applicable).

A11.5. Minimization of Adverse Impacts in Accordance with Article 3.14

Canada's efforts to implement its commitments under Article 3, paragraph 1, of the Kyoto Protocol are undertaken in such a way as to minimize potentially adverse social, environmental and economic impacts on developing country Parties. The processes to establish and implement climate change response measures include consultations with federal departments with international responsibilities, including the Department of Foreign Affairs and International Trade and the Canadian International Development Agency, which provide advice on international aspects of proposed measures. Canada also consults with provinces and territories and other key stakeholders on issues related to the impacts of proposed policies and measures.

Canada maintains an open trading environment, consistent with the principles of free trade and investment, ensuring that both developed and developing countries can maximize opportunities in Canada's market regardless of the climate change response measures Canada undertakes. Canada also works with partner developing countries to strengthen their governance and enabling environments, improving their ability to respond to changing circumstances.

Domestically, Canada's Federal Sustainable Development Act received Royal Assent on June 26, 2008. The Act responds to a number of international commitments Canada has made to produce such a strategy, including at the Earth

Summit in Rio de Janeiro, Brazil, in 1992 and at the 2002 World Summit on Sustainable Development in Johannesburg, South Africa. The development of a federal sustainable development strategy (FSDS), is mandated by the Act.

The first FSDS was tabled on October 6, 2010. The FSDS clearly identifies Canada's environmental sustainability priorities and reports on progress in achieving them. The FSDS presents a detailed description of federal government activities to achieve environmental sustainability. The FSDS also commits to strengthening the guidelines for strategic environmental assessments by federal departments which help integrate environmental considerations related to economic and social decision making. The Office of Greening Government Operations provides a series of guidelines to help departments and agencies implement and report progress on the FSDS. FSDSs must be updated every three years through a regular cycle of progress reports.

In terms of the progressive reduction or phasing out of market imperfections, fiscal incentives, tax and duty exemptions and subsidies in all greenhouse-gas-emitting sectors, taking into account the need for energy price reforms to reflect market prices and externalities, Canada has undertaken a number of fiscal and tax measures, the details of which can be found in *Canada's Fifth National Communication on Climate Change*³, Section 4.5 (pages 43–58).

Information on Canada's adaptation assistance provided to developing countries can also be found in *Canada's Fifth National Communication on Climate Change*, Section 4.5 (pages 86–90).

In terms of activities related to the transfer of technologies, a detailed description of selected projects or programs that have promoted practicable steps to facilitate and/or finance the transfer of, or access to, environmentally sound technologies is provided in *Canada's Fifth National Communication on Climate Change*, Section 4.5 (pages 166–181).

³ Canada's Fifth National Communication on Climate Change is available online at http://unfccc.int/resource/docs/natc/can_nc5.pdf

References

Annex 1, Key Categories

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipccnggip.iges.or.jp/public/gp/english/

[IPCC] Intergovernmental Panel on Climate Change. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm

Annex 2, Methodology and Data for Estimating Emissions from Fossil Fuel Combustion

[AMS] Aircraft Movement Statistics. 2009. Ottawa (ON): Statistics Canada. Data base extracts from Rose Krakower from Statistics Canada for years Nov 1, 1996 to 2009; Transport Canada personnel for years 1990 to Oct 31, 1996.

[BADA] Base of Aircraft Data. 2009. Version 3.7. France. Eurocontrol Experimental Centre. Available online at www. eurocontrol.int

Cadieux JY. 2006. AMS Lookup Tables. Transport Canada.

Canadian Facts. 1997. Residential Fuelwood Combustion in Canada. Canadian Facts. Prepared for the National Emission Inventory and Project Task Group. Toronto (ON): CF Group Inc. April.

[CIEEDAC] Canadian Industrial Energy End-use Data Analysis Centre. 2009. A Review of Energy Consumption and Related Data: Canadian Cement Manufacturing Industry 1990 to 2007. Report prepared by Nyboer and Jaccard for the Cement Association of Canada.

DesRosiers. Canadian Vehicles in Operation Census (CVIOC). Annual reports prepared by DesRosiers Automotive Consultants.

[EMEP/CORINAIR] European Monitoring and Evaluation Programme/The Core Inventory of Air Emissions in Europe. 2006. EMEP/CORINAIR Emission Inventory Guidebook. Group 8. Air Traffic. Version 2.3. Made available online by the European Environment Agency at http://www.eea.europa.eu/publications/EMEPCORINAIR4/page017.html

Environment Canada. 1999. 1995 Criteria Contaminants Emissions Inventory Guidebook, Version 1. Section 2.4.

National Emissions Inventory and Projections Task Group, Criteria Air Contaminants Division, Environment Canada.

[FAA] Federal Aviation Administration. 2009. FAA Airports. Available online at http://www.faa.gov/airports/airport_safety/airportdata_5010/menu/index.cfm

Fleming G. 2008a. Canada OD Pairs grt10flts.xls. Federal Aviation Administration.

Fleming G. 2008b. SAGE Airport Codes and Locations. Federal Aviation Administration.

Fleming G. 2008c. CAEP8 Goals Operations Round 1. Modeling and Database Task Force.

Hagstrom M. 2010. TPengs FOI orig comp data 031105 corr 071129 Jason Hickey 13 June 2010. Stockholm (SE): Department of Systems Technology, Swedish Defence Research Agency.

[ICAO] International Civil Aviation Organization. 2008. ICAO Carbon Emissions Calculator. Report on Methodology.

[ICAO] International Civil Aviation Organization. 2009. ICAO Engine Emissions Databank. Version 16A. Made available online by the Civil Aviation Authority at http://www.caa.co.uk/default.aspx?catid=702

[IPCC] Intergovernmental Panel on Climate Change. 2006. IPCC 2006 Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Kanagawa (JP): Institute for Global Environmental Studies. Available online at www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development, and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Jaques AP. 1992. Canada's Greenhouse Gas Emissions: Estimates for 1990. Environmental Protection, Conservation and Protection, Environment Canada. Report No. EPS 5/AP/4.

Manning G. [Excel spreadsheet model]. 2007. FromTo Gillian's work V3. Version 3. Environment Canada.

Maples JD. 1993. The Light-Duty Vehicle MPG Gap: Its Size Today and Potential Impacts in the Future. Knoxville (TN): University of Tennessee, Transportation Centre U.S.A.

McCann TJ. 2000. 1998 Fossil Fuel and Derivative Factors. Prepared by TJ McCann and Associates Ltd. and Clearstone Engineering Ltd. for Environment Canada. March.

[MMIC] Motorcycle and Moped Industry Council. 2009. Motorcycle, Scooter and All-Terrain Vehicle Annual Industry Statistics Report.

NAV Canada. 2009. Canada Flight Supplement. Ottawa (ON): NAV Canada.

[NRCan] Natural Resources Canada. 2010. Transportation End-Use Model (FCR Calculations). Natural Resources Canada.

Polk RL. Vehicles in Operation (VIO) Database. Compiled by R.L. Polk and Co., Southfield, Michigan, USA.

Statistics Canada. 1995. Household Facilities and Equipment, Household Surveys Division. Statistics Canada. #64-202 (discontinued).

Statistics Canada. CANSIM Database Table 405-0002: Road Motor Vehicles, Fuel Sales, Annual (Litres). Available online at http://cansim2.statcan.ca

Statistics Canada. Canadian Vehicle Survey (CVS). (Annual). Catalogue No.53-223-XIE.

Statistics Canada. Report on Energy Supply–Demand in Canada (Annual). Catalogue No. 57-003-XIB.

Stewart Brown Associates. 2010. Generating Statistics on the Canadian On-Road Vehicle Fleet Profile.

TFIS Inc. 2008. Canadian Liquid Transportation Biofuels Production and Consumption Information. Unpublished report prepared by TFIS Inc for the Greenhouse Gas Division, Environment Canada.

[U.S. EPA] United States Environmental Protection Agency. 2010. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2008. Washington (DC): Environmental Protection Agency, U.S.A..

Wiesen P, Kleffmann J, Kurtenbach R, Becker KH. 1994. Nitrous Oxide and Methane Emissions from Aero Engines. Geophysical Research Letters 21(18):2027–2030.

Annex 3.1, Methodology for Fugitive Emissions from Fossil Fuel Production, Processing, Transmission and Distribution

[CAPP] Canadian Association of Petroleum Producers. 1999. CH4 and VOC Emissions from the Canadian Upstream Oil and Gas Industry, Vols. 1 and 2. Prepared for the Canadian Association of Petroleum Producers. Calgary (AB): Clearstone Engineering Ltd. Publication No. 1999-0010.

[CAPP] Canadian Association of Petroleum Producers. 2005a. A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry, Vols. 1–5. Calgary (AB): Clearstone Engineering Ltd. January.

[CAPP] Canadian Association of Petroleum Producers. 2005b. Extrapolation of the 2000 UOG Emission Inventory to 2001, 2002 and 2003. Calgary (AB): Clearstone Engineering Ltd.

[CAPP] Canadian Association of Petroleum Producers. 2006. An Inventory of GHGs, CACs, and H2S Emissions by the Canadian Bitumen Industry: 1990 to 2003. Calgary (AB): Clearstone Engineering Ltd.

[CAPP] Canadian Association of Petroleum Producers. 2010. Statistical Handbook for Canada's Upstream Petroleum Industry. [revised: 2010 Sep; cited: 2010 Oct 13]. Available online at http://www.capp.ca/library/statistics/handbook/Pages/default.aspx#guXHeU7LDhLS

[CGA] Canadian Gas Association. 1997. 1995 Air Inventory of the Canadian Natural Gas Industry. Calgary (AB): Radian International LLC.

[CNLOPB] Canada-Newfoundland and Labrador Offshore Petroleum Board. 2010a. Development Wells - Hibernia. [revised: 2010 Sep 28; cited: 2010 Oct 13]. Available online at http://www.cnlopb.nl.ca/pdfs/hwells.pdf

[CNLOPB] Canada-Newfoundland and Labrador Offshore Petroleum Board. 2010b. Development Wells - Terra Nova. [revised: 2009 Aug 20; cited: 2010 Oct 13]. Available online at http://www.cnlopb.nl.ca/pdfs/tnwells.pdf

[CNLOPB] Canada-Newfoundland and Labrador Offshore Petroleum Board. 2010c. Development Wells - White Rose. [revised: 2010 Sep 28; cited: 2010 Oct 13]. Available online at http://www.cnlopb.nl.ca/pdfs/wrwells.pdf

[CPPI] Canadian Petroleum Products Institute. 2004. Economic and Environmental Impacts of Removing Sulphur from Canadian Gasoline and Distillate Production. Calgary (AB): Levelton Consultants Ltd. in association with Purvin & Gertz Inc. August.

Environment Canada. 2007. Bitumen-Oil Sands Extrapolation Model – Rev 3. Calgary (AB): Clearstone Engineering Ltd.

[ERCB] Energy Resources Conservation Board. 2010a. Field Surveillance and Operations Branch Provincial Summary 2009: ST57-2010. Available online at http://www.ercb.ca/docs/products/STs/ST57-2010.pdf

[ERCB] Energy Resources Conservation Board. 2010b. Alberta Drilling Activity, Monthly Statistics, December 2009: ST59-2009. Available online at http://www.ercb.ca/docs/products/STs/st59/st59-2009.pdf

[ERCB] Energy Resources Conservation Board. 2010c.

Alberta's Energy Reserves and Supply/Demand Outlook: ST98-2010. Available online at http://www.ercb.ca/portal/server.pt/gateway/PTARGS_0_0_308_265_0_43/http%3B/ercbContent/publishedcontent/publish/ercb_home/publications_catalogue/publications_available/serial_publications/st98.aspx

[ERCB] Energy Resources Conservation Board. 2010d. Mineable Alberta Oil Sands, Annual Statistics for 2009: ST43-2009. Available online at http://www.ercb.ca/docs/products/sts/st43_2009.pdf

[GRI] Gas Research Institute. 2000. Vented Emissions from Maintenance at Natural Gas Distribution Stations in Canada. Austin (TX): Radian International LLC.

Hollingshead B. 1990. Methane Emissions from Canadian Coal Operations: A Quantitative Estimate. Devon (AB): Coal Mining Research Company. Report CI 8936.

King B. 1994. Management of Methane Emissions from Coal Mines: Environmental, Engineering, Economic and Institutional Implications of Options. Report prepared by Neill and Gunter for Environment Canada.

[NEB] National Energy Board. 2010. 2009 Estimated Production of Canadian Crude Oil and Equivalent. [revised: 2010 Jul 27; cited: 2010 Oct 26]. Available online at http://www.neb-one.gc.ca/clf-nsi/rnrgynfmtn/sttstc/crdlndptrlm-prdct/stmtdprdctn-eng.html

Quenneville G. 2009. Inuvik Gas operators keep town flush with power. Northern New Services. Oil & Gas Drum, October 2009. Available online at http://www.nnsl.com/pdf/oilgas.pdf

Saskatchewan Energy and Resources. 2010a. Monthly Production and Disposition of Crude Oil at the Producer Level, Year 2009, Ending Month 12. [revised: 2010 May 14; cited: 2010 Sep 1]. Available online at http://www.ir.gov.sk.ca/adx/aspx/adxGetMedia.aspx?DocID=3732,3620,3384,5460,2936,Documents&MediaID=29278&Filename=2009+Monthly+Production+and+Disposition+of+Crude+Oil+(Yearly+Summary).pdf

Saskatchewan Energy and Resources. 2010b. 2009–2010 Annual Report – Saskatchewan Energy and Resources. Province of Saskatchewan, Ministry of Energy and Resources. [cited: 2010 Oct 13]. Available online at http://www.er.gov.sk.ca/planandannualreport/annualreport

Statistics Canada. Report on Energy Supply–Demand in Canada (annual). Catalogue No. 57-003-XIB.

Statistics Canada. Coal and Coke Statistics. Catalogue No. 45-002.

Statistics Canada. 2010a. Table 131-0001 – Supply and disposition of natural gas, monthly (cubic metres). CANSIM. Available online at http://cansim2.statcan.ca/

Statistics Canada. 2010b. Energy Statistics Handbook – First quarter 2010. Catalogue No. 57-601. [cited: 2010 Aug 3]. Available online at http://www.statcan.gc.ca/bsolc/olc-cel/olc-cel?catno=57-601-X&lang=eng

Annex 3.2, Methodology for Industrial Processes

Cheminfo Services. 2005. Improvements to Canada's Greenhouse Gas Emissions Inventory Related to Non-Energy Use of Hydrocarbon Products. Unpublished report, Markham, Ontario, Canada, March.

Cheminfo Services. 2006. Improvements and Updates to Certain Industrial Process and Solvent Use-Related Sections in Canada's Greenhouse Gas Inventory. Unpublished report, Markham, Ontario, Canada, September.

Environment Canada (GHG Division) and Canadian Electricity Association. 2008. SF6 Emission Estimation and Reporting Protocol for Electric Utilities. Available online at http://www.ec.gc.ca/Publications/default. asp?lang=En&xml=5926D759-36A6-467C-AE05-077C5E-6C12A2

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development, and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Jaques AP. 1992. Canada's Greenhouse Gas Emissions: Estimates for 1990, Environmental Protection, Conservation and Protection, Environment Canada. Report EPS 5/AP/4.

Lowenheim FA, Moran M. 1980. (Faith, Keyes and Clark's) Industrial Chemicals. New York (NY): J. Wiley & Sons.

McCann TJ. 2000. 1998 Fossil Fuel and Derivative Factors. Unpublished report, Prepared by TJ McCann and Associates for Environment Canada, March.

Statistics Canada. Industrial Chemicals and Synthetic Resins, 1990–2007 (Monthly). Catalogue No. 46-002-XIE.

Statistics Canada. 2010. CANSIM Database Table 303-0053: Production of industrial chemicals and synthetic resins, annual (tonnes) 2008-2009. Available online at http://cansim2.statcan.ca

Statistics Canada. Report on Energy Supply–Demand in Canada (Annual). Catalogue No. 57-003-XIB.

Annex 3.3, Agriculture

[AAFRD] Alberta Agriculture, Food and Rural Development. 2001. Alberta Cow–Calf Audit, 1997/1998 Production Indicators and Management Practices over the Last 10 Years. Edmonton, Alberta, Canada.

[AAFRD and University of Alberta] Alberta Agriculture, Food and Rural Development and University of Alberta. 2003. Development of a Farm-Level Greenhouse Gas Assessment: Identification of Knowledge Gaps and Development of a Science Plan, Alberta Agricultural Research Institute (AARI) Project No. 2001J204. Available online at http://www.climatechangecentral.com/default.asp?V_DOC_ID=1003

Agriculture and Agri-Food Canada. 1990–2008. Annual Livestock and Meat Report. Available online at http://www.agr.gc.ca/redmeat/almrcalendar.htm

Arrouays D, Saby N, Walter C, Lemercier B, Schvartz C. 2006. Relationships between particle-size distribution and organic carbon in French arable topsoils. Soil Use and Management 22:48–51.

Beauchemin KA, McGinn SM. 2005. Methane emissions from feedlot cattle fed barley or corn diets. Journal of Animal Science 83:653–661.

Beauchemin KA, McGinn SM. 2006. Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Canadian Journal of Animal Science 86(3):401–408.

Beauchemin KA, McGinn SM, Benchaar C, Holtshausen L. 2009. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science 92:2118–2127.

Boadi DA, Wittenberg KM. 2002. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Science 82:201–206.

Boadi DA, Wittenberg KM, McCaughey WP. 2002. Effects of grain supplementation on methane production of grazing steers using the sulphur (SF6) tracer gas technique. Canadian Journal of Animal Science 82:151–157.

Boadi DA, Wittenberg KM, Scott SL, Burton D, Buckley K, Small JA, Ominski KH. 2004a. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Canadian Journal of Animal Science 84:445–453.

Boadi DA, Ominski KH, Fulawka DL, Wittenberg KM. 2004b. Improving Estimates of Methane Emissions Associated with Enteric Fermentation of Cattle in Canada by Adopting an IPCC (Intergovernmental Panel on Climate Change) Tier-

2 Methodology. Final report submitted to the Greenhouse Gas Division, Environment Canada, by the Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada.

Bouwman AF, Boumans LJM, Batjes NH. 2002. Emissions of N2O and NO from fertilized fields: Summary of available data. Global Biogeochem. Cycles 16:doi:10.1029/2001GB001811.

Bouwman AF. 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems 46:53–70.

Chadwick DR, Sneath RW, Phillips VR, Pain BF. 1999. A UK inventory of nitrous oxide emissions from farmed livestock. Atmospheric Environment 33:3345–3354.

Chang C, Janzen HH. 1996. Long-term fate of nitrogen from annual feedlot manure applications. Journal of Environmental Quality 25:785–790.

Chaves AV. 2006. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Canadian Journal of Animal Science 86:409–418.

Christensen DA, Steacy G, Crowe WL. 1977. Nutritive value of whole crop cereal silages. Canadian Journal of Animal Science 57:803–805.

Coote DR, Liang BC, Huffman EC. 2008. Crop residue burning in Canada. Gatineau (QC): Greenhouse Gas Division, Environment Canada.

Corre MD, Van Kessel C, Pennock DJ. 1996. Landscape and seasonal patterns of nitrous oxide emissions in a semiarid region. Soil Science Society of America Journal 60:1806–1815

Corre MD, Pennock DJ, Van Kessel C, Elliott DK. 1999. Estimation of annual nitrous oxide emissions from a transitional Grassland–Forest region in Saskatchewan, Canada. Biogeochemistry 44:29–49.

[CRAAQ] Centre de référence en agriculture et agroalimentaire du Québec. 1999. Chèvres laitières—Budget: Production laitière. Centre de Référence en Agriculture et Agroalimentaire du Québec. Agdex 435/821. Comité de références économiques en agriculture du Québec. Group GRÉAGRI inc.

da Sylva AP, Kay BD. 1997. Estimating the least limiting water range of soils from properties and management. Soil Science Society of America Journal 61:877–883.

Decisioneering. 2000. Crystal Ball®, Decisioneering Inc., Denver, Colorado, U.S.A. Available online at http://www.crystalball.com

Dobbie KE, McTaggart IP, Smith KP. 1999. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables and mean emission factors. Journal of Geophysical Research 104:26891–26899.

Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. 2007. Prediction of methane production from dairy and beef cattle. Journal of Dairy Science 90:3456–3467.

Ellis JL, Kebreab E, Odongo NE, Beauchemin K, McGinn S, Nkrumah JD, Moore SS, Christopherson R, Murdoch GK, McBride BW, et al., 2009. Modeling methane production from beef cattle using linear and nonlinear approaches. Journal of Animal Science 87:1334–1345.

Ellis JL, Bannink A, France J, Kebreab E, Dijkstra J. 2010. Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Global Change Biology 16:3246–3256.

Environment Canada. 2002. Canadian Climate Normals— Precipitation. Available online at http://www.climate. weatheroffice.ec.gc.ca/prods_servs/cdcd_iso_e.html?&

Eugène M, Massé D, Chiquette J, Benchaar C. 2008. Metaanalysis on the effects of lipid supplementation on methane production in lactating dairy cows. Canadian Journal of Animal Science 88:331–334.

Flynn HC, Smith JO, Smith KA, Wright J, Smith P, Massheder J. 2005. Climate- and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer use. Global Change Biology 11:1522–1536.

Freibauer A. 2003. Regionalized inventory of biogenic greenhouse gas emissions from European agriculture. European Journal of Agronomy 19:135–160.

Godbout S, Verma M, Larouche JP, Potvin L, Chapman AM, Lemay SP, Pelletier F. Brar SK. 2010. Methane production potential (B0) of swine and cattle manures - A Canadian perspective. Environmental Technology 31:1371–1379.

Goss MJ, Goorahoo D. 1995. Nitrate contamination of groundwater: measurement and prediction. Fertilizer Research 42:331–338.

Grant R, Pattey E.1999. Mathematical modeling of nitrous oxide emissions from an agricultural field during spring thaw. Global Biogeochemical Cycles 13:679–694.

Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA. 2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil & Tillage Research 76:1–20.

Hao X. 2007. Nitrate accumulation and greenhouse gas emissions during compost storage. Nutrient Cycling in Agroecosystems 78:189–195.

Hao X, Chang C, Carefoot JM, Janzen HH, Ellert BH. .2001a. Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutrient Cycling in Agroecosystems 60:1–8.

Hao X, Chang C, Larney FJ, Travis GR. 2001b. Greenhouse gas emissions during cattle feedlot manure composting. Journal of Environmental Quality 30:376–386.

Hao X, Xu S, McAllister TA, Larney FJ. 2008. Antibiotics in cattle diet affect greenhouse gas emissions from manure composting. Australian Journal of Experimental Agriculture 48.

Hao X, Stanford K, McAllister TA, Larney FJ, Xu S. 2009. Greenhouse gas emissions and final compost properties from co-composting bovine specified risk material and mortalities with manure. Nutrient Cycling in Agroecosystems 83:289–299.

Hao X, Benke M, Larney FJ, McAllister TA. 2010a. Greenhouse gas emissions when composting manure from cattle fed wheat dried distillers' grains with solubles. Nutrient Cycling in Agroecosystems 89:105–114.

Hao X, Xu S, Larney FJ, Stanford K, Cessna AJ, McAllister TA. 2010b. Inclusion of antibiotics in feed alters greenhouse gas emissions from feedlot manure during composting. Nutrient Cycling in Agroecosystems 89(2):257–267.

Hashimoto AG, Varel VH, Chen YR. 1981. Ultimate methane yield from beef cattle manure: effect of temperature, ration constituents, antibiotics and manure age. Agricultural Wastes 3:241–256.

Hénault C, Devis X, Page S, Justes E, Reau R, Germon J-C. 1998. Nitrous oxide emissions under different soil and land management conditions. Biology and Fertility of Soils 26:199–207.

Hutchings NJ, Sommer SG, Andersen JM, Asman WAH. 2001. A detailed ammonia emission inventory for Denmark. Atmospheric Environment 35:1959–1968.

Hybrid. 2001. Hybrid Converter—Commercial Hens and Toms. Available online at http://www.hybridturkeys.com/en/Hybrid%20Products/Mainstream%20Products/Converter.aspx

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-ngqip.iges.or.jp/public/gp/english/

[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change. Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development, and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Izaurralde RC, Lemke RL, Goddard TW, McConkey B, Zhang Z. 2004. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Science Society of America Journal 68:1285–1294.

Jambert C, Delmas R, Serça D, Thouron L, Labroue L, Delprat L. 1997. N2O and CH4 emissions from fertilized agricultural soils in southwest France. Nutrient Cycling in Agroecosystems 48:105–114.

Janzen HH, Beauchemin KA, Bruinsma Y, Campbell CA, Desjardins RL, Ellert BH, Smith EG. 2003. The fate of nitrogen in agroecosystems: an illustration using Canadian estimates. Nutrient Cycling in Agroecosystems 67: 85–102.

Kaharabata SK, Schuepp PH, Desjardins RL. 1998. Methane emissions from above ground open manure slurry tanks. Global Biogeochemical Cycles 12:545–554.

Karimi-Zindashty Y, Macdonald JD, Desjardins RL, Worth D. 2011. Analysis of the uncertainty in the IPCC Tier 2 Canadian livestock model: sources of uncertainty. Submitted, Journal of Agricultural Science, 21 ms, 4 tables, 3 figures.

Kebreab E, Clark K, Wagner-Riddle C, France J. 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Canadian Journal of Animal Science 86:135–158.

Kononoff PJ, Mustafa AF, Christensen DA, McKinnon JJ. 2000. Effects of barley silage particle length and effective fiber on yield and composition of milk from dairy cows. Canadian Journal of Animal Science 80:749–752.

Kopp JC, Wittenberg KM, McCaughey WP. 2004. Management strategies to improve cow–calf productivity on meadow bromegrass pastures. Canadian Journal of Animal Science. 84(3):529–535.

Laguë C, Gaudet É, Agnew J, Fonstad TA. 2005. Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. Transactions of the American Society of Agricultural Engineers 48:2289–2296.

Lemke RL, Izaurralde RC, Nyborg M, Solberg ED. 1999. Tillage and N-source influence soil-emitted nitrous oxide in the Alberta Parkland Region. Canadian Journal of Soil Science 79:15–24.

Liang BC, Padbury G, Patterson G. 2004. Cultivated organic soils in Canada. Gatineau (QC): Greenhouse Gas Division, Environment Canada.

Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE. 2005. Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil & Tillage Research 83:25–52.

MacDonald JD, Liang BC, Blain D. 2011. Analysis of Canadian Quantification Methodologies of Greenhouse Gas emissions from Livestock: IPCC Tier 2 Quality Control Documentation 2011 submission. Internal report. Gatineau (QG) Greenhouse Gas Division, Environment Canada.

MacMillan RA, Pettapiece WW. 2000. Alberta Landforms: Quantitative Morphometric Descriptions and Classification of Typical Alberta Landforms, Semiarid Prairie Agricultural Research Centre, Research Branch, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada, Technical Bulletin No. 2000-2E.

Manitoba Agriculture and Food. 2000. Manitoba Cattle on Feed 1999/2000. Market Analysis and Statistics Section, Program and Policy Analysis Branch, Manitoba Agriculture and Food.

Marinier M, Clark K, Wagner-Riddle C. 2004. Improving Estimates of Methane Emissions Associated with Animal Waste Management Systems in Canada by Adopting an IPCC Tier-2 Methodology. Final report submitted to the Greenhouse Gas Division, Environment Canada, by the Department of Land Resource Science, University of Guelph, Guelph, Ontario, Canada.

Marinier M, Clark K, Wagner-Riddle C. 2005. Determining manure management practices for major domestic animals in Canada. Final report submitted to the Greenhouse Gas Division, Environment Canada, by the Department of Land Resource Science, University of Guelph, Guelph, Ontario, Canada.

Massé DI, Croteau F, Patni NK, Masse L. 2003. Methane emissions from dairy cow and swine manure slurries stored at 10°C and 15°C. Canadian Biosystems Engineering / Le Genie des biosystems au Canada 45.

Massé DI, Masse L, Claveau S, Benchaar C, Thomas O. 2008. Methane emissions from manure storages. Transactions of the ASABE 51:1775–1781.

McCaughey WP, Wittenberg K, Corrigan D. 1997. Methane production by steers on pasture. Canadian Journal of Animal Science 77:519–524.

McCaughey WP, Wittenberg K, Corrigan D. 1999. Impact of pasture type on methane production by lactating beef

cows. Canadian Journal of Animal Science 79:221-226.

McGinn SM, Beauchemin KA, Coates T, Colombatto D. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 82:3346–3356.

McGinn SM, Chen D, Loh Z, Hill J, Beauchemin KA, Denmead OT. 2008. Methane emissions from feedlot cattle in Australia and Canada. Australian Journal of Experimental Agriculture 48:183–185.

McGinn SM, Chung YH, Beauchemin KA, Iwaasa AD, Grainger C. 2009. Use of corn distillers' dried grains to reduce enteric methane loss from beef cattle. Canadian Journal of Animal Science 89:409–413.

Minasny B, McBratney AB, Bristow KL. 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93:225–253.

[NRC] National Research Council (U.S.). 1981. Nutrient Requirements of Goats. Washington (DC): National Research Council, National Academy Press.

[NRC] National Research Council (U.S.). 1985. Nutrient Requirements of Sheep, 6th Revised Edition. Washington (DC): National Research Council, National Academy Press.

[NRC] National Research Council (U.S.). 1989. Nutrient Requirements of Horses, 5th Revised Edition. Washington (DC): National Research Council, National Academy Press.

[NRC] National Research Council (U.S.). 1998. Nutrient Requirements of Swine, 10th Revised Edition. Washington (DC): National Research Council, National Academy Press.

[NRC] National Research Council (U.S.). 2001. Nutrient Requirements of Dairy Cattle, 7th Revised Edition. Washington (DC): National Research Council. National Academy Press.

Nyborg M, Solberg ED, Izaurralde RC, Malhi SS, Molina-Ayala M. 1995. Influence of long-term tillage, straw and N fertilizer on barley yield, plant-N uptake and soil-N balance. Soil & Tillage Research 36:165–174.

Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, Gray JT, Kebreab E, France J, McBride BW. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science 90:1781–1788.

Okine EK, Mathison GW. 1991. Effects of feed intake on particle distribution, passage of digesta, and extent of digestion in the gastrointestinal tract of cattle. Journal of Animal Science 69:3435–3445.

Ominski KH, Boadi DA, Wittenberg KM. 2006. Enteric

methane emissions from backgrounded cattle consuming all-forage diets. Canadian Journal of Animal Science 86:393–400.

Park KH, Thompson AG, Marinier M, Clark K, Wagner-Riddle C. 2006. Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmospheric Environment 40:618–627.

Park KH, Wagner-Riddle C, Gordon RJ. 2010. Comparing methane fluxes from stored liquid manure using micrometeorological mass balance and floating chamber methods. Agricultural and Forest Meteorology 150:175–181.

Pattey E, Trzcinski MK, Desjardins RL. 2005. Quantifying the reduction of greenhouse gas emissions as a result of composting dairy and beef cattle manure. Nutrient Cycling in Agroecosystems 72:173–187.

Paul JW, Zebarth BJ. 1997. Denitrification and nitrate leaching during the fall and winter following dairy cattle slurry application. Canadian Journal of Soil Science 77:231–240.

Pennock DJ, Corre MD. 2001. Development and application of landform segmentation procedures. Soil & Tillage Research 58:151–162.

Petit HV, Dewhurst RJ, Proulx JG, Khalid M, Haresign W, Twagiramungu H. 2001. Milk production, milk composition, and reproductive function of dairy cows fed different fats. Canadian Journal of Animal Science 81:263–271.

Rochette P, Janzen HH. 2005. Towards a revised coefficient for estimating N2O from legumes. Nutrient Cycling in Agroecosystems 73:171–179.

Rochette P, Worth DE, Lemke RL, McConkey BG, Pennock DJ, Wagner-Riddle C, Desjardins RL. 2008. Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Canadian Journal of Soil Science 88:641–654.

Rotz CA. 2004. Management to reduce nitrogen losses in animal production. Journal of Animal Science 82(Suppl.):E119–E137.

Safely LM Jr, Casada MF, Woodbury JW, Roos KF.1992. Global Methane Emissions from Livestock and Poultry Manure. Research Report. Washington (DC): U.S. Environmental Protection Agency.

Small JA, McCaughey WP. 1999. Beef cattle management in Manitoba. Canadian Journal of Animal Science 79:539–544.

Statistics Canada. Canadian Socio-Economic Information Management System (CANSIM). [database on the Internet]. [updated daily; cited 2008 January 10]. Available online at http://cansim2.statcan.ca/

Statistics Canada. 1987. Agriculture, Census Canada 1986.

Statistics Canada. Catelogue 96-102.

Statistics Canada. 1992. Agricultural Profile of Canada in 1991. Census of Agriculture. Catalogue No. 93350.

Statistics Canada. 1997. Agricultural Profile of Canada in 1996. Census of Agriculture. Catalogue No. 93356.

Statistics Canada. 2002. Agricultural Profile of Canada in 2001. Census of Agriculture. Catalogue No. 95F0301XIE.

Statistics Canada 2007a. 2006 Census of Agriculture. Catalogue No. 95-629. Available online at http://www.statcan.ca/english/agcensus2006/index.htm

Statistics Canada 2007b. Selected Historical Data from the Census of Agriculture. Catalogue No. 95-632. Available online at http://www.statcan.ca/english/freepub/95-632-XIE/2007000/tables/table2.16-en.htm

Statistics Canada. 2008. Alternative Livestock on Canadian Farms. Census years 1981, 1986, 1991, 1996, 2001 and 2006. Catalogue No. 23-502-X.

Statistics Canada. 2009. Field Crop Reporting Series, 1990–2009 (Annual). Catalogue No. 22-002.

Statistics Canada. 2010a. Cattle Statistics, 2010. Vol. 9, no. 2. Statistics Canada Catalogue no. 23-012-XWE. Available online at http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/pub/23-012-x/23-012-x2010001-eng.pdf&t=Cattle%20Statistics (accessed Sept. 30, 2010).

Statistics Canada. 2010b. Sheep Statistics, 2010. Vol. 9, no. 2. Statistics Canada Catalogue no. 23-011-XWE. Available online at http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/pub/23-011-x/23-011-x2010001-eng.pdf&t=Sheep%20Statistics (accessed Sept. 30, 2010).

Statistics Canada. 2010c. Hog Statistics, 2010. Vol. 9, no. 4. Statistics Canada Catalogue no. 23-010-XWE. Available online at http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/pub/23-010-x/23-010-x2010004-eng.pdf&t=Hog%20Statistics (accessed Sept. 30, 2010).

[U.S. EPA] United States Environmental Protection Agency. 2004. National Emission Inventory—Ammonia Emissions from Animal Husbandry Operations. Draft report. January 30. Washington (DC): U.S. Environmental Protection Agency.

VanderZaag AC, Gordon RJ, Jamieson RC, Burton DL, Stratton GW. 2009. Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Transactions of the ASABE 52:599–608.

VanderZaag AC, Gordon RJ, Jamieson RC, Burton DL, Strat-

ton GW. 2010. Effects of winter storage conditions and subsequent agitation on gaseous emissions from liquid dairy manure. Canadian Journal of Soil Science 90:229–239.

Van Haarlem RP, Desjardins RL, Gao Z, Flesch TK, Li X. 2008. Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall. Canadian Journal of Animal Science 88:641–649.

Wagner-Riddle C, Thurtel GW. 1998. Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices. Nutrient Cycling in Agroecosystems 52:151–163.

Wagner-Riddle C, Furon A, McLaughlin NL, Lee I, Barbeau J, Jayasundara S, Parkin G, von Bertoldi P, Warland J. 2007. Intensive measurement of nitrous oxide emissions from a corn soybean wheat rotation under two contrasting management systems over 5 years. Global Change Biology 13:1722–1736.

Wagner-Riddle C, Park KH, Thurtell GW. 2006. A micrometeorological mass balance approach for greenhouse gas flux measurements from stored animal manure. Agricultural and Forest Meteorology 136:175–187.

Western Canadian Dairy Herd Improvement Services. 2002. 2002 Herd Improvement Report. Edmonton, Alberta, Canada. 16 pp.

Weston RH. 2002. Constraints on feed intake by grazing sheep. In Freer M, Dove H, editors. Sheep Nutrition. Collingwood (AU): CSIRO Publishing.

Xu S, Hao X, Stanford K, McAllister T, Larney FJ, Wang J. 2007. Greenhouse gas emissions during co-composting of cattle mortalities with manure. Nutrient Cycling in Agroecosystems 78:177–187.

Yang JY, De Jong R, Drury CF, Huffman E, Kirkwood V, Yang XM. 2007. Development of a Canadian agricultural nitrogen model (CANB v2.0): simulation of the nitrogen indicators and integrated modeling for policy scenarios. Canadian Journal of Soil Science 87:153–165.

Zebarth BJ, Hii B, Liebscher H, Chipperfield K, Paul JW, Grove G, Szeto SY. 1998. Agricultural land use practices and nitrate contamination in the Abbotsford aquifer, British Columbia, Canada. Agriculture, Ecosystems & Environment 69:99–112.

Annex 3.4, Methodology for Land Use, Land-Use Change and Forestry

Anderson HG, Bailey AW. 1980. Effects of annual burning on grassland in the aspen parkland of east-central Alberta. Canadian Journal of Botany 58(8):985–996.

Bai Y, Abouguendia Z, Redmann RE. 2001. Relationship between plant species diversity and grassland condition. Journal of Range Management 54:177–183.

Baron VS, Mapfumo E, Dick AC, Naeth MA, Okine EK, Chanasyk DS. 2002. Grazing intensity impacts on pasture carbon and nitrogen flow. Journal of Range Management 55(6):535–541.

Bartelink HH. 1998. A model of dry matter partitioning in trees. Tree Physiology 18(2):91–101.

Biederbeck VO, Campbell CA, Zentner RP. 1984. Effect of crop rotation and fertilization on some biological properties of a loam in southwestern Saskatchewan. Canadian Journal of Soil Science 64:355–367.

Biondini ME, Manske L. 1996. Grazing frequency and ecosystem processes in a northern mixed prairie, USA. Ecological Applications 6(1):239–256.

Blain D, Seed E, Lindsay M. 2007. Forest Land and Other Land Conversion to Wetlands (Reservoirs) Estimation and Reporting of CO2 Emissions. Draft report. Greenhouse Gas Division, Environment Canada.

Bolinder MA. 2004. Contribution aux connaissances de la dynamique du C dans les systèmes sol-plante de l'est du Canada. Ph.D. Thesis, Université Laval, Ste-Foy, Quebec, Canada.

Boudewyn P, Song X, Magnussen S, Gillis M. 2007. Model-based, volume-to-biomass conversion MD A.I. for forested and vegetated land in Canada. Natural Resources Canada, Canadian Forest Service. Information Report – BC-X-411.

Bremer E, Janzen HH, Johnston AM. 1994. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil. Canadian Journal of Soil Science 74:131–138.

Bruce JP, Frome M, Haites E, Janzen H, Lal R, Paustian K. 1999. Carbon sequestration in soils. Journal of Soil Water Conservation 54:382–389.

Butson C, Fraser R. 2005. Mapping land cover change and terrestrial dynamics over northern Canada using multitemporal Landsat imagery. In: Proceedings of MultiTemp 2005, The Third International Workshop on the Analysis of Multi-temporal Remote Sensing Images, May 16–18, 2005. Biloxi (MS): Institute of Electrical and Electronics Engineers.

Campbell CA, McConkey BG, Zentner RP, Dyck RP, Selles F, Curtin D. 1995. Carbon sequestration in a Brown Chernozem as affected by tillage and rotation. Canadian Journal of Soil Science 75:449–458.

Campbell CA, McConkey BG, Zentner RP, Selles F, Curtin D. 1996a. Longterm effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Sas-

katchewan. Canadian Journal of Soil Science 76:395-401.

Campbell CA, McConkey BG, Zentner RP, Selles F, Curtin D. 1996b. Tillage and crop rotation effects on soil organic matter in a coarse-textured Typic Haploboroll in southwestern Saskatchewan. Soil & Tillage Research 37:3–14.

Campbell CA, Selles F, LaFond GP, McConkey BG, Hahn D. 1998. Effect of crop management on C and N in long-term crop rotations after adopting no-tillage management: Comparison of soil sampling strategies. Canadian Journal of Soil Science 78:155–162.

Campbell CA, Zentner RP, Liang BC, Roloff G, Gregorich EG, Blomert B. 2000. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan—Effect of crop rotations and fertilizers. Canadian Journal of Soil Science 80:179–192.

Campbell CA, Janzen HH, Paustian K, Gregorich EG, Sherrod L, Liang BC, Zentner RP. 2005. Carbon storage in soils of the North American Great Plains: Effect of cropping frequency. Agronomy Journal 97:349–363.

[[CanFI]. 2001. Canada's National Forest Inventory. Available online at http://nfi.cfs.nrcan.gc.ca/canfi/index_e.html.

Carter MR, Kunelius HT, Sanderson JB, Kimpinski J, Platt HW, Bolinder MA. 2003. Trends in productivity parameters and soil health under long-term two-year potato rotations. Soil & Tillage Research (Special Issue) 72:153–168.

Chen W, Blain D, Li J, Fraser R, Zhang Y, Leblanc S, Keohler K, Butson C, Olthof I, Orazietti J, et al. 2005. Estimation of Greenhouse Gas Removals/Emissions Due to Land Use Changes over Canada's North during 1985–1990 and 1990–2000. Summary report. Submitted to the Greenhouse Gas Division, Environment Canada.

Chen W, Blain D, Li J, Fraser R, Zhang Y, Leblanc S, Keohler K, Olthof I, Wang J, McGovern M. 2009. Estimating carbon release caused by land use changes over Canada's north during 1985–1990 and 1990–2000 using satellite Earth observation. Journal of Geophysical Research 114: G01017

Cleary J. 2003. Greenhouse Gas Emissions from Peat Extraction in Canada: A Life Cycle Perspective. M.Sc. Thesis, McGill University, Montréal (QC). C2GCR Report No. 2003-1.

Cofer WR, Winstead EL, Stocks BJ, Goldammer JG, Cahoon DR. 1998. Crown fire emissions of CO2, CO, H2, CO4, and TNMHC from a dense jack pine boreal forest fire. Geophysical Research Letters 25: 3919–3922.

Conant RT, Paustian K, Elliott ET. 2001. Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications 11(2):343–355.

Duchemin É. 2002. Canadian Reservoir Database / Répertoire des réservoirs canadiens [Computer file]. Environ-

ment Canada and DREXenvironment (distributor).

Duchemin É. 2006. Émissions de gaz provoquant l'effet de serre à partir des terres inondées au Canada. Final report submitted to the Greenhouse Gas Division, Environment Canada.

Dyk A, Leckie D, Tinis S, Ortlepp S. 2010. Changes in National Deforestation Estimation for the 2011 National Inventory Report – Greenhouse Gas Sources and Sinks in Canada. Canadian Forest Service, Natural Resources Canada. 40 p. Report DRS-N-028.

Dyk A, Tinis S, Leckie D. 2011. Deforestation Area Estimation for Canada: Quality Control Overview. Canadian Forest Service, Natural Resources Canada. 9 p. Report DRS-N-031

Ellert B, Bettany JR. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science 75:529–538.

Frank AB. 2002. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environmental Pollution 116:397–403.

Eichel F. 2006. Review of Environment Canada Reservoir Flooding Dates on Hydro Reservoirs 2007 Sub Nov24.xls. Canadian Forest Service, Natural Resources Canada. 6 p.

Fraser R, Olthof I, Girouard G, Pavlic G, Clouston A, Pouliot D, Chen W. 2005. Remote Sensing Based Estimate of Land Use Change Area in Canada's Arctic/Sub-Arctic. Final report to the Greenhouse Gas Division, Environment Canada.

Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H. 2004. The effect of fire on soil organic matter—a review. Environment International 30(6):855–870.

Hutchinson JJ, Rochette P, Vergé X, Worth D, Desjardins R. 2007. Uncertainties in Methane and Nitrous Oxide Emissions Estimates from Canadian Agroecosystems Using Crystal Ball. Preliminary report submitted to the Greenhouse Gas Division, Environment Canada, by the Research Branch, Agriculture and Agri-Food Canada.

[IPCC] Intergovernmental Panel on Climate Change. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm

[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use, Intergovernmental Panel on Climate Change. Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm

Janzen HH, Campbell CA, Gregorich EG, Ellert BH. 1997. Soil carbon dynamics in Canadian agroecosystems. In: Lal R, Kimble JM, Follett RF, Stewart BA, editors. Soil Processes and Carbon Cycles. Boca Raton (FL): CRC Press. p. 57–80.

Janzen HH, Campbell CA, Izaurralde RC, Ellert BH, Juma N, McGill WB, Zentner RP. 1998. Management effects on soil C storage in the Canadian prairies. Soil & Tillage Research 47:181–195.

Johnson RD, Kasischke ES. 1998. Change vector analysis: a technique for the multispectral monitoring of land cover and condition. International Journal of Remote Sensing 19:411–426.

Kasischke ES, Bruhwiler LP. 2003. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research Atmospheres 108(D1):8146.

Kurz WA, Apps MJ, Webb TM, McNamee PJ. 1992. The Carbon Budget of the Canadian Forest Sector: Phase 1. Edmonton (AB): Northern Forestry Centre, Forestry Canada. Information Report NOR-X-326.

Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. 2008a. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990.

Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET. 2008b Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences 105:1551–1555.

Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ. 2009. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling 220:480–504.

Leckie DG, Gillis MD, Wulder MA. 2002. Deforestation estimation for Canada under the Kyoto Protocol: A design study. Canadian Journal of Remote Sensing 28(5):672–678.

Leckie D. 2006a. Deforestation Monitoring Pilot Project Reports v1.0. Canadian Forest Service, Natural Resources Canada. 199 p. Report DRS-Q-004.

Leckie D. 2006b. NIR 2006 Records of Decision for Canada's National Deforestation Estimate 2006. Canadian Forest Service, Natural Resources Canada. 56 p. Report DRS-N-011.

Leckie D, Paradine D, Burt W, Hardman D, Tinis S. 2006. NIR 2006 Deforestation Area Estimation for Canada: Methods Summary. Victoria (BC): Canadian Forest Service, Natural Resources Canada. 13 p. Report DRS-Q-001.

Leckie D, Dyk A, Paradine D, Tammadge D, Tinis S. 2010a. Deforestation Interpretation Guide (Version NIR 2011). Canadian Forest Service, Natural Resources Canada. 85 p. Report DRS-M-016.

Leckie D, Dyk A, Ortlepp S, Tinis S. 2010b. Records of Decision for Canada's National Deforestation Estimate. Canadian Forest Service, Natural Resources Canada. 20 p. Report DRS-N-029.

Leckie D. 2011. Deforestation Area Estimation Uncertainty for Canada's National Inventory Report Greenhouse Gas Sources and Sinks 2011. Canadian Forest Service, Natural Resources Canada. 12 p. Report DRS-N-030.

Li Z, Kurz WA, Apps MJ, Beukema SJ. 2003. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Canadian Journal of Forest Research 33:126–136.

Liang BC, Gregorich EG, MacKenzie AF. 1996. Modelling the effects of inorganic and organic amendments on organic matter in a Quebec soil. Soil Science 161:109–114.

Liang BC, Padbury G, Patterson G. 2004. Cultivated organic soils in Canada. Gatineau (QC): Greenhouse Gas Division, Environment Canada.

Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE. 2005. Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil & Tillage Research 83(1):25–52.

Litton CM, Ryan MG, Tinker DB, Knight DH. 2003. Belowground and aboveground biomass in young post-fire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33(2):351–363.

Lynch DH, Cohen RDH, Fredeen A, Patterson G, Martin RC. 2005. Management of Canadian prairie region grazed grasslands: Soil C sequestration, livestock productivity and profitability. Canadian Journal of Soil Science 85(2):183–192.

Magnuson JL, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel TA, Barry RG, Card V, Kuusisto E, et al. 2000. Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746.

Mailvaganam S. 2002. 2001 Ontario Grape Vine Survey. Ontario Ministry of Agriculture and Food. Available online at http://www.omafra.gov.on.ca/english/stats/hort/grape-vine01/ogvs01.html

Marshall IB, Schut PH. 1999. A National Ecological Framework for Canada—Overview. Prepared by Environment Canada and Agriculture and Agri-Food Canada. Available online at http://sis.agr.gc.ca/cansis/nsdb/ecostrat/intro.html

McConkey BG, Liang BC, Campbell CA, Curtin D, Moulin A, Brandt SA, Lafond GP. 2003. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil & Tillage Research 74:81–90.

McConkey B, Angers D, Bentham M, Boehm M, Brierley T, Cerkowniak D, Liang BC, Collas P, de Gooijer H, Desjardins R, et al. 2007a. CanAG-MARS Methodology and Greenhouse Gas Estimates for Agricultural Land in the LULUCF Sector for NIR 2006. Report submitted to the Greenhouse Gas Division, Environment Canada, by the Research Branch of Agriculture and Agri-Food Canada, April.

McConkey BG, VandenByGaart B, Hutchinson J, Huffman T, Martin T. 2007b. Uncertainty Analysis for Carbon Change—Cropland Remaining Cropland. Report submitted to Environment Canada by the Research Branch of Agriculture and Agri-Food Canada.

McCrae T, Smith CAS, Gregorich LJ. 2000. Environmental Sustainability of Canadian Agriculture: Report of the Agri-Environmental Indicator Project. Ottawa (ON): Agriculture and Agri-Food Canada. Publication 2022/E.

McGovern M. 2008. Reporting Zones – GHG Spatial Reporting Structure for Canada 2008. Greenhouse Gas Division, Environment Canada.

McKenney D. 2005. Regional, National and International Climate Modeling. Ottawa (ON): Canadian Forest Service, Natural Resources Canada. Available online at http://www.glfc.cfs.nrcan.gc.ca/landscape/climate_models_e.html

Metsaranta JM. 2010. Potentially limited detectability of short term changes in boreal fire regimes. International Journal of Wildland Fire 19:1140–1146.

Metsaranta J, Shaw C, Smyth C, Hilger A, Hafer M, Stinson G, Neilson E, Morken S, Kurz WA. 2011. Uncertainty Estimates: National Forest GHG Inventory Reporting for the 2011 National Inventory Report. Unpublished manuscript.

Monreal CM, Zentner RP, Robertson JA. 1997. An analysis of soil organic matter dynamics in relation to management, erosion and yield of wheat in long-term crop rotation plots. Canadian Journal of Soil Science 77:553–563.

[NRCan] Natural Resources Canada. 1974. Lakes—Ice Free Period [map], 1:35,000,000. In: National Atlas of Canada, 4th Edition. Available online at http://atlas.gc.ca/site/eng-lish/maps/archives/4thedition/environment/water/013_14

[NRCan] Natural Resources Canada. 2008. Preliminary Estimate of the Mineral Production of Canada, by Province, 2007. Natural Resources Canada. Available online at http://mmsd.mms.nrcan.gc.ca/stat-stat/prod-prod/2007p-eng.

Nendel C, Kersebaum KC. 2004. A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecological Modelling 177:1–5.

Olthof I, Butson C, Fraser R. 2005. Signature extension through space for northern landcover classification: a comparison of radiometric correction methods. Remote Sensing of Environment 95:290–302.

Paradine D, Kurz W, Magnussen S, Leckie D. 2004 Kyoto Protocol Deforestation Mapping Sampling Design for Canadian Landscapes. Canadian Forest Service, Natural Resources Canada. 25 p. Report DRS-Q-005.

Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51:1173–1179.

Parton WJ, Stewart JWB, Cole CV. 1988. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131.

Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. 2002. Change in soil carbon following afforestation. Forest Ecology and Management 168(1–3):241–257.

Pennock DJ, Frick AH. 2001. The role of field studies in land-scape-scale applications of process models: an example of soil redistribution and soil organic carbon modeling using CENTURY. Soil & Tillage Research 58(3/4):183–191.

Prairie Farm Rehabilitation Administration. 2000. Prairie Agricultural Landscapes. Regina (SK): Prairie Farm Rehabilitation Administration, Agriculture and Agri-Food Canada.

Schuman GE, Janzen HH, Herrick JE. 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution 116:391–396.

Smith WN, Rochette P, Monreal C, Desjardins RL, Pattey E, Jaques A. 1997. The rate of carbon change in agricultural soils in Canada at the landscape level. Canadian Journal of Soil Science 77:219–229.

Smith WN, Desjardins RL, Pattey E. 2000. The net flux of carbon from agricultural soils in Canada 1970–2010. Global Change Biology 6(5):558–568.

Smith WN, Desjardins RL, Grant B. 2001. Estimated changes in soil carbon associated with agricultural practices in Canada. Canadian Journal of Soil Science 81:221–227.

Smoliak S. 1965. Effects of manure, straw and inorganic fertilizers on Northern Great Plains ranges. Journal of Range Management 18:11–14.

Statistics Canada. 1997. Econnections—Indicators and Detailed Statistics 1997. Ottawa (ON): National Accounts

and Environment Division, Statistics Canada. Catalogue no. 16-200-XKE.

Stinson G, Zhang G, Rampley G, Dymond C, White T, Kurz WA. 2006a. Forest Inventory Rollback Tool for CBM-CFS3. Internal report. Ottawa (ON): Greenhouse Gas Division, Environment Canada.

Stinson G, White T, Kurz WA, Dymond C. 2006b. Delineating Canada's Managed Forest for NIR 2007. Internal report. Ottawa (ON): Greenhouse Gas Division, Environment Canada.

Tarnocai C. 1997. The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Lal R, Kimble JM, Follett RF, Stewart BA, editors. Soil Processes and the Carbon Cycle. Boca Raton (FL): CRC Press. p. 81–92.

VandenBygaart AJ, Gregorich EG, Angers DA. 2003. Influence of agricultural management on soil organic carbon: A compendium and assessment of Canadian studies. Canadian Journal of Soil Science 83:363–380.

VandenBygaart AJ, McConkey BG, Angers DA, Smith W, De Gooijer H, Bentham M, Martin T. 2008. Soil carbon change factors for the Canadian agriculture national greenhouse gas inventory. Canadian Journal of Soil Science 88:671–680.

Voroney RP, Angers DA. 1995. Analysis of the short-term effects of management on soil organic matter using the CENTURY model. In: Lal R, Kimble J, Levine E and Stewart BA, editors. Soil Management and the Greenhouse Effect. New York (NY): Springer-Verlag. p. 113–120.

Waddington JM, McNeil P. 2002. Peat oxidation in an abandoned cutover peatland. Canadian Journal of Soil Science 82:279–286.

White T, Kurz WA. 2005. Afforestation on private land in Canada from 1990 to 2002 estimated from historical records. The Forestry Chronicle 81(4):491–497.

White T, Luckai N, Larocque GR, Kurz WA, Smyth C. 2008. A practical approach for assessing the sensitivity of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Ecological Modelling 219(3–4):373–382.

Wulder M, Cranny M, Dechka J, White J. 2004. An Illustrated Methodology for Land Cover Mapping of Forests with Landsat-7 ETM+ Data: Methods in Support of EOSD Land Cover, Version 3. Victoria (BC): Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada. March. 35 p.

Xiao CW, Ceulemans R. 2004. Allometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecology and Management 203(1–3):177–186

Annex 3.5, Waste

AECOM Canada. 2010a. Improved Methodology for the Estimation of Greenhouse Gases from Canadian Municipal Wastewater Treatment Facilities. March 29, 2010.

AECOM Canada. 2010b. Recommended Disaggregation for Calculation Methane Emissions – a supplemental document to the report: Improved Methodology for the Estimation of Greenhouse Gases from Canadian Municipal Wastewater Treatment Facilities.

American Public Works Association. 1964. Characteristics of municipal reference. In: Proceedings of the National Conference on Solid Waste Research. February 1964.

Anon. 1967a. World survey finds less organic matter. Refuse Removal Journal 10:26. September.

Anon. 1967b. Can garbage become a national asset? Compost Science 8(1):3.

Climate Action Reserve. 2009. Table B.6 Organic Waste Digestion Project Protocol. [accessed 2010 Oct 12]. p. 66. Available online at www.climateactionreserve.org/wp-content/uploads/2009/10/Organic-Waste-Digestion-Project-Protocol-Version-1.0.pdf

CRC Press. 1973. National Waste Composition (1967), Table 1.1-9: Summary of International Refuse Composition of the Handbook of Environmental Control, Volume II: Solid Waste; Table 1.1-10: Composition of Household Garbage and Table 1.1-28: Composition and Analysis of Average Municipal Refuse.

Crolla A et al. 2004. ATAU Course Notes – Anaerobic Digestion in Canada. Lecture notes from an anaerobic treatment of sewage and agriculture use of treated effluent seminar in Morocco. [accessed 2010 Oct 12]. Available online at www.zer0-m.org/download/ATAU%20Seminar%20Morocco%202004/Guelph/ANAEROBIC%20DIGESTION%20 IN%20CANADA_Lecture.pdf

Environment Canada, 1941–2007, Historical Precipitation Data. Available online at http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html

Environment Canada. 1983–1999. Municipal Water Use Data Base. Available online at http://www.ec.gc.ca/water/en/manage/use/e_data.htm.

Environment Canada. 1986, 1991, 1996a. Water Use in Canadian Industry. Prepared by D. Scharf et al., Environmental Economics Branch, Environment Canada.

Environment Canada. 1994a. Options for Managing Emissions from Solid Waste Landfills. Prepared by Hickling for Environment Canada in association with Emcon Associates.

Environment Canada. 1994b. Study of Greenhouse Gas

Emissions From Non-Fossil Fuel Sources. Prepared by Senes Consultants for Environment Canada, May 1994.

Environment Canada. 1995a. Estimation of the Effects of Various Municipal Waste Management Strategies on Greenhouse Gas Emissions. Report EPS 2/AP/1.

Environment Canada. 1995b. Waste Analysis, Sampling, Testing and Evaluation (WASTE) Program: The Effect of Waste Stream Characteristics on Municipal Solid Waste Incineration—The Fate and Behaviour of Trace Metals, Vol. I. Report EPS 3/HA/10.

Environment Canada. 1996b. Perspectives on Solid Waste Management in Canada: An Assessment of the Physical, Economic and Energy Dimensions of Solid Waste Management in Canada. Vol. I. Prepared by Resource Integration Systems Ltd. March.

Environment Canada. 1997. Telephone survey conducted by Environment Canada.

Environment Canada. 1999. Municipal Solid Waste Incineration in Canada: An Update on Operations 1997–1998. Prepared by Compass Environmental Inc. for Environment Canada and Federal Panel on Energy Research Development.

Environment Canada. 2003a. Inventory of Landfill Gas Recovery and Utilization in Canada. National Office of Pollution Prevention, Environment Canada.

Environment Canada. 2003b. Municipal Solid Waste Incineration in Canada: An Update on Operations 1999–2001. Prepared by A.J. Chandler & Associates in conjunction with Compass Environmental Inc. for Environment Canada.

Environment Canada. 2007. An Inventory of Landfill Gas Recovery and Utilization in Canada 2005. Unpublished report prepared by the Greenhouse Gas Division of Environment Canada with the support of the University of Manitoba.

Environment Canada. 2009. An Inventory of Landfill Gas Recovery and Utilization in Canada 2006 and 2007. Unpublished report prepared by the Greenhouse Gas Division of Environment Canada

Environment Canada. 2011. An Inventory of Landfill Gas Recovery and Utilization in Canada 2008 and 2009. Greenhouse Gas Division, Environment Canada.

Golder Associates Ltd. 2008. Inventory of Greenhouse Gas Generation from Landfills in British Columbia. Prepared for the Ministry of Environment – Community Waste Reduction Section, Victoria, B.C., February 11, 2008.

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www. ipcc-nggip.iges.or.jp/public/gp/english/

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development, and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Jensen EF, Pipatti R. 2003. CH4 Emissions from Solid Waste Disposal, February. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_1_CH4_Solid_Waste.pdf

Levelton BH. 1991. Inventory of Methane Emissions from Landfills in Canada. Unpublished report prepared for Environment Canada by Levelton & Associates.

Maurice C, Lagerkvist A. 2003. LFG emission measurements in cold climatic conditions: seasonal variations and methane emissions mitigation. Cold Regions Science and Technology 36:37–46.

MWA Consultants Paprican. 1998. Increased Use of Wood Residue for Energy: Potential Barriers to Implementation. Final draft. Prepared for the Canadian Petroleum Producers Association (confidential internal document).

[NCASI] National Council for Air and Stream Improvement. 2003. Calculation Tools for Estimating Greenhouse Gas Emissions from Wood Products Manufacturing Facilities. National Council for Air and Stream Improvement, Inc.

[NRCan] Natural Resources Canada. 1997. National Wood Residue Data Base. Natural Resources Canada (printouts from J. Roberts).

[NRCan] Natural Resources Canada. 1999. Canada's Wood Residues: A Profile of Current Surplus and Regional Concentrations. Prepared by the Canadian Forest Service, Industry, Economics and Programs Branch, Natural Resources Canada for the National Climate Change Process Forest Sector Table. March.

[NRCan] Natural Resources Canada. 2005. Estimated Production, Consumption and Surplus Mill Wood Residues in Canada—2004. Prepared by the Forest Products Association of Canada for Natural Resources Canada.

[NRCan] Natural Resources Canada. 2006. Provincial/Territorial Disposal Waste Compositions (2002), an Analysis of Resource Recovery Opportunities in Canada and the Projection of Greenhouse Gas Emission Implications. Natural Resources Canada. March 2006.

Ontario Ministry of the Environment. 1991. Residential waste composition study: Volume 1 of the Ontario Waste Composition Study, prepared by Gore and Storrie Limited., Decima Research Limited for the Ontario Ministry of the

Environment, Toronto. January 1991

ORTECH Corporation. 1994. Inventory Methods Manual for Estimating Canadian Emissions of Greenhouse Gases. Unpublished report prepared for the Regulatory Affairs and Program Integration Branch, Conservation and Protection, Environment Canada. Report No. 93-T61-P7013-FG.

Peavy HS, Rowe DR, Tchobanoglous G. 1985. Environmental Engineering. New York (NY): McGraw Hill Book Company.

Rich LG. 2005. Technical Note Number 8. Facultative Lagoons: A Different Technology. Clemson (SC): Clemson University. Available online at http://www.lagoonsonline.com/technote8.htm

[RTI] Research Triangle Institute. 2004). Documentation for Changes to the Methodology for the Inventory of Methane Emissions from Landfills. September 2004.

Statistics Canada. 2000, 2003, 2004, 2007a, 2008a. Waste Management Industry Survey: Business and Government Sectors. System of National Accounts, Statistics Canada. Catalogue No. 16F0023XIE.

Statistics Canada. 2006. Annual Demographic Statistics. Catalogue no. 91-213-XIB.

Statistics Canada. 2007b, 2008b, 2010b Food Statistics – #21-020-XIE.

Statistics Canada. 2010a. Annual Demographic Estimates: Canada, Provinces and Territories. Catalogue No. 91-215-X.

Tchobanoglous G, Theisen H, Vigil S. 1993. Integrated Solid Waste Management, Engineering Principles and Management Issues. New York (NY): McGraw Hill.

Thompson S, Tanapat S. 2005. Waste management options for greenhouse gas reduction. Journal of Environmental Informatics 6(1):16–24.

Thompson S, Sawyer J, Bonam RK, Smith S. 2006. Recommendations for Improving the Canadian Methane Generation Model for Landfills. Winnipeg (MB): Natural Resources Institute, University of Manitoba. Canada.

Toprak H. 1993. Methane emissions originating from the anaerobic waste stabilization ponds case study: Izmir Wastewater Treatment System. Chemosphere 26(1–4):633–639.

[US EPA] United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors. Vol. I—Stationary Point and Area Sources. AP 42, 5th Edition. Chapter 2, Solid Waste Disposal. U.S Environmental Protection Agency. Available online at http://www.epa.gov/ttn/chief/ap42/ch02

Annex 4, Comparison of Sectoral and Reference Approaches

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development, and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Jaques AP. 1992. Canada's Greenhouse Gas Emissions: Estimates for 1990, Environmental Protection, Conservation and Protection. Environment Canada. Report No. EPS 5/AP/4.

McCann TJ. 2000. 1998 Fossil Fuel and Derivative Factors. Report prepared by T.J. McCann and Associates for Environment Canada.

Statistics Canada. Report on Energy Supply–Demand in Canada (Annual). #57-003-XIB.

Statistics Canada. 2010. Energy Statistics Handbook – First quarter 2010. Catalogue No. 57-601. Available online at http://www.statcan.gc.ca/pub/57-601-x/57-601-x2010001-eng.pdf

Annex 5, Assessment of Completeness

Cheminfo Services. 2010. Study of Potential Additions and Updates to the Industrial Process Sources of GHGs in the Canadian GHG Inventory, and Development of Canadian-Specific Methodologies and Emission Estimates for such Sources. Final Report. Markham (ON): Cheminfo Services Inc. December.

[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co-operation and Development and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Statistics Canada. 2000, 2003, 2004, 2007, 2008, Waste Management Industry Survey: Business and Government Sectors. System of National Accounts. Statistics Canada. #16F0023XIE.

[IPCC] Intergovernmental Panel on Climate Change. 2003.

Good Practice Guidance for Land Use, Land-Use Change and Forestry. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/ gpglulucf/gpglulucf.htm

Annex 6, Quality Assurance and Quality Control

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/

[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm

Annex 7, Uncertainty

Environment Canada. 2009. Canada's Greenhouse Gas Inventory, 1990–2007. Greenhouse Gas Division, Environment Canada.

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/

McCann TJ. 1994. Uncertainties in Canada's 1990 Greenhouse Gas Emission Estimates: A Quantitative Assessment. Unpublished report prepared by T.J. McCann and Associates for the Greenhouse Gas Division, Environment Canada.

Annex 8, Emission Factors

AECOM Canada. 2010. Improved Methodology for the Estimation of Greenhouse Gases from Canadian Municipal Wastewater Treatment Facilities. March 29, 2010.

AMEC Earth & Environmental. 2006. Identifying and Updating Industrial Process Activity Data in the Minerals Sector for the Canadian Greenhouse Gas Inventory. AMEC Earth & Environmental. March.

Barton P, Simpson J. 1994. The Effects of Aged Catalysts and Cold Ambient Temperatures on Nitrous Oxide Emis-

sions. Mobile Sources Emissions Division, Environment Canada. MSED Report no. 94-21.

BioMer. 2005. Biodiesel Demonstration and Assessment for Tour Boats in the Old Port of Montreal and Lachine Canal National Historic Site. Final Report.

[CAPP] Canadian Association of Petroleum Producers. 1999. CH4 and VOC Emissions from the Canadian Upstream Oil and Gas Industry. Vols. 1 and 2. Prepared for the Canadian Association of Petroleum Producers. Calgary (AB): Clearstone Engineering. Publication no. 1999-0010.

Cement Association of Canada. 2008. 2008 Sustainability Report. Ottawa (ON): Cement Association of Canada.

Cheminfo Services. 2005. Improvements to Canada's Greenhouse Gas Emissions Inventory Related to Non-Energy Use of Hydrocarbon Products. Markham (ON): Cheminfo Services Inc.

Cheminfo Services. 2010. Study of Potential Additions and Updates to the Industrial Process Sources of GHGs in the Canadian GHG Inventory, and Development of Canadian-Specific Methodologies and Emission Estimates for such Sources. Final Report. Markham (ON): Cheminfo Services Inc. December.

[CIEEDAC] Canadian Industrial Energy End-Use Data Analysis Centre. 2003. A Review of Energy Consumption in Canadian Oil Sands Operations, Heavy Oil Upgrading 1990, 1994 to 2001. Burnaby (BC): Simon Fraser University. March.

[CIEEDAC] Canadian Industrial Energy End-Use Data Analysis Centre. 2010. A Review of Energy Consumption in Canadian Oil Refineries 1990, 1994 to 2008. Burnaby (BC): Simon Fraser University. March.

Environment Canada. 2001. Questions and Answers on the Federal Sulphur in Gasoline Regulations. Ottawa (ON): Oil, Gas & Energy Branch, Environment Canada. Available online at http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=54FE5535-1&wsdoc=ECF819CC-E14D-5442-921B-317D3E5E7DC1

Environment Canada. 2006. ERMD Report 04-44: Greenhouse Gas Emissions from 1997-2005 Model Year Light Duty Vehicles. Unpublished internal Environment Canada report. Ottawa (ON): Emissions Research and Measurement Division, Environment Canada.

Environment Canada. 2009. ERMS Report 07-14A: N2O Emissions from In-Use Canadian Tier 1 Vehicles, Report A: Greenhouse Gas Emission Rates. Unpublished internal Environment Canada report. Ottawa (ON): Emissions Research and Measurement Section, Environment Canada.

Franchi G. 2011. On-road Transport CH4 and N2O Emission Factors for 2011 NIR. Unpublished internal Environment

Canada report. Gatineau (QC): Greenhouse Gas Division, Environment Canada.

Graham et al. 2008. Greenhouse Gas Emissions from Heavy-Duty Vehicles, Atmospheric Environment 42: 4665–4681.

Graham et al. 2009. Nitrous Oxide Emissions from Light Duty Vehicles, Atmospheric Environment 43:2031–2044.

[IAI] International Aluminum Institute. 2006. The Aluminum Sector Greenhouse Gas Protocol (Addendum to the WRI/WBCSD Greenhouse Gas Protocol). International Aluminum Institute. October.

ICF Consulting. 2004. Update of Methane and Nitrous Oxide Emission Factors for On-Highway Vehicles. Prepared by ICF Consulting for the U.S. Environmental Protection Agency. Report no. 420-P-04-16.

[IPCC] Intergovernmental Panel on Climate Change. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gp/english/

[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/2006gl/

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change / Organisation for Economic Co-operation and Development / International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Jaques AP. 1992. Canada's Greenhouse Gas Emissions: Estimates for 1990. Ottawa (ON): Environmental Protection Publications, Conservation and Protection, Environment Canada. Report No. EPS 5/AP/4.

McCann TJ. 2000. 1998 Fossil Fuel and Derivative Factors. Prepared by T.J. McCann and Associates for Environment Canada. March.

[NCASI] National Council for Air and Stream Improvement. 2010. ICFPA/NCASI Spreadsheets for Calculating GHG Emissions from Pulp and Paper Manufacturing. Version 3.2. National Council for Air and Stream Improvements. [revised 2010 March; cited 2010 Dec 3]. Available online at http://www.ncasi.org/programs/areas/climate/ghgtools/default.aspx

ORTECH Corporation. 1994. Inventory Methods Manual for Estimating Canadian Emissions of Greenhouse Gases. Unpublished report prepared for the Regulatory Affairs and

Program Integration Branch, Conservation and Protection, Environment Canada. Report no. 93-T61-P7013-FG.

Radovan R, Sanei H. 2010. Statistical Analysis of Coal Carbon Content in Canada. Unpublished report. Ottawa (ON): Environment Canada, Greenhouse Gas Division.

SGA Energy. 2000. Emission Factors and Uncertainties for CH4 & N2O from Fuel Combustion. Unpublished report prepared by SGA Energy Limited for the Greenhouse Gas Division, Environment Canada. August.

Statistics Canada. Report on Energy Supply–Demand in Canada (Annual). Catalogue No. 57-003-XIB.

[U.S. EPA] United States Environmental Protection Agency. 1995. Compilation of Air Pollutant Emission Factors, 5th Edition. Vol. 1, Chapter 2.2, Sewage Sludge Incineration. :U.S. Environmental Protection Agency. Available online at www.epa.gov/ttn/chief/ap42/ch02

[U.S. EPA] United States Environmental Protection Agency. 1996a. Compilation of Air Pollutant Emission Factors—Vol. I: Stationary Point and Area Sources, AP 42, 5th Edition, Supplement B. Washington (DC): U.S. Environmental Protection Agency. January.

[U.S. EPA] United States Environmental Protection Agency. 1996b. Compilation of Air Pollutant Emission Factors—Vol. 1: Stationary Point and Area Sources, AP 42, 5th Edition, Supplement B, Section 1.9 and 1.10. Washington (DC): U. S. Environmental Protection Agency. October.

[U.S. EPA] United States Environmental Protection Agency. 2003. Compilation of Air Pollutant Emission Factors—Vol. 1: Stationary Point and Area Sources, AP 42, 5th Edition, Section 1.6. Washington (DC): U.S. Environmental Protection Agency. September.

[U.S. EPA] United States Environmental Protection Agency. 2010. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008. Washington (DC): U.S. Environmental Protection Agency. April.

[WBCSD] World Business Council for Sustainable Development. 2005. CO2 Accounting and Reporting Standard for the Cement Industry, Version 2.0. Switzerland. June 2005.

Annex 9, Rounding Protocol

IICF Consulting. 2004. Quantitative Assessment of Uncertainty in Canada's National GHG Inventory Estimates for 2001. Unpublished report. Contract # K-2362-3-0060. Submitted to Environment Canada.

ICF Consulting 2005. Quantitative Assessment of Uncertainty in Canada's National GHG Inventory Estimates for 2001—Supplementary Analysis. Unpublished report. Con-

tract # K2362-04-0121. Submitted to Environment Canada.

[IPCC] Intergovernmental Panel on Climate Change. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press.

[IPCC/OECD/IEA] Intergovernmental Panel on Climate Change, Organisation for Economic Co operation and Development, and International Energy Agency. 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available online at http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm

Annex 10, Ozone and Aerosol Precursors

[UNFCCC] United Nations Framework Convention on Climate Change. 2006. Updated UNFCCC reporting guidelines on annual inventories following incorporation of the provisions of decision 14/CP.11, 18 August 2006. FCCC/SB-STA/2006/9. Available online at http://unfccc.int/resource/docs/2006/sbsta/eng/09.pdf

Annex 11, Supplementary Information

Canadian Forest Service. 2008. 2008 Survey of Insufficient Regeneration after Harvest to Meet Kyoto Protocol Forest Standards. Victoria (BC): Canadian Forest Service, Natural Resources Canada. Internal Report.

[IPCC] Intergovernmental Panel on Climate Change. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available online at http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/qpglulucf.htm

Leckie D, Paradine D, Burt W, Hardman D, Eichel F, Tinis S, Tammadge D. 2006. NIR 2007 Deforestation Area Estimation: Methods Summary, Digital Remote Sensing, Deforestation Monitoring Group. Victoria (BC): Canadian Forest Service, Natural Resources Canada.