CSAS

sCCS

Secrétariat canadien de consultation scientifique

Assessment of the cod (Gadus morhua) stock in NAFO Divisions 2J+3KL in 2010

Évaluation du stock de morue (Gadus morhua) dans les divisions 2 J et 3KL de I'OPANO en 2010

J. Brattey, N.G. Cadigan, K. Dwyer, B. P. Healey, M.J. Morgan, E.F. Murphy, D. Maddock Parsons and D. Power
Science Branch
Department of Fisheries and Oceans
P.O. Box 5667
St. John's, NL A1C 5X1

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

This document is available on the Internet at: Ce document est disponible sur l'Internet à:
http://www.dfo-mpo.gc.ca/csas/

TABLE OF CONTENTS

ABSTRACT v
RÉSUMÉ vii
INTRODUCTION 1
ECOSYSTEM INFORMATION 1
OCEANOGRAPHY 2
PREDATORS 2
PREY 3
REPORTED LANDINGS OF COD 3
REPORTED LANDINGS DURING 2009 3
BY-CATCH OF COD IN OTHER FISHERIES 4
DISCARDS 4
ILLEGAL FISHING 5
IMPACT OF UNACCOUNTED FISHING MORTALITY 5
CATCH NUMBERS AT AGE 5
Historic Pattern 5
Catch At Age During 2009 5
CATCH WEIGHTS AT AGE 5
STAKEHOLDER PERSPECTIVE 6
TELEPHONE SURVEY OF FISH HARVESTERS 7
INFORMATION FROM THE OFFSHORE 7
BOTTOM-TRAWL SURVEYS 7
Survey Design 7
Autumn Surveys 7
Autumn Distribution 9
Recruitment in the Offshore 10
Trends in Mortality Rates in the Offshore 10
Spring 3L Bottom-Trawl Surveys 11
INFORMATION FROM THE INSHORE 12
SENTINEL SURVEYS 12
Sentinel Standardized (Modeled) Catch Per Unit Effort (CPUE) by Area 13
Sentinel Catch Rates Indices 14
TAGGING AND TELEMETRY 14
HYDRO-ACOUSTIC SURVEYS OF COD IN SMITH SOUND 18
BEACH SEINE SURVEYS 18
INSHORE TRAWL SURVEY 19
SCIENCE LOGBOOKS 20
RECRUITMENT INDEX 21
POPULATION BIOLOGY 22
MATURITY 22
GROWTH 23
CONDITION 23
POPULATION ANALYSIS 24
PRECAUTIONARY APPROACH 26
REFERENCES 27

Correct citation for this publication:

Brattey, J., Cadigan, N.G., Dwyer, K., Healey, B.P., Morgan, M.J., Murphy, E.F., Maddock Parsons, D., and Power, D. 2011. Assessment of the cod (Gadus morhua) stock in NAFO Divisions 2J+3KL in 2010. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/103. viii + 108 p.

Abstract

The status of the northern cod (Gadus morhua) stock in NAFO Div. 2J+3KL was assessed through a Regional Assessment Process (RAP) held in St. John's, NL during 15-19 March and 22-23 March 2010. A directed commercial cod fishery and a recreational fishery were re-opened in the inshore during 2006 and continued in 2007-2009; the offshore remained closed to directed fishing. There was no formal TAC during 2006-2009, but commercial fishers were permitted an annual allowance ($3,750 \mathrm{lb}$ per license holder in 2009). Recreational fishers were permitted 5 fish per person per day, up to a maximum of 15 fish per boat. Total catch in 2009 is uncertain. Reported landings in 2009 were 3,098 t, including 2,832 t in the stewardship fishery, 216 t in the sentinel surveys, and 50 t taken as by-catch, but excluding recreational fishery removals. There are no direct estimates of recreational landings for 2009. However, analysis of tag returns suggests that recreational fishery removals during 2009 could be 64% of reported stewardship fishery removals.

In the absence of reliable catch information the assessment was based mainly on a cohort analysis of the autumn DFO research vessel (RV) trawl survey data and tagging. The cohort analysis provided relative estimates of stock size and absolute estimates of total mortality (Z). For the recent period (2008-2009) estimates of fishing mortality (F) obtained from tagging and acoustic telemetry data were used to partition Z into F and natural mortality (M). Total biomass has increased (23% per year) since 2004. Spawning stock biomass (SSB) increased (83% per year) from 2004 to 2008, but the 2009 value was similar to 2008. Total mortality in the offshore was high ($Z=1.0$ to 1.5) during 1996-2002, but has subsequently declined in spite of the reopening of directed fishing in the inshore during 2006-2009. Average annual Z during 20072009 (ages $4-8$) was 0.42 ($=35 \%$ mortality per year). Analysis of tagging data indicated that fishing mortality (F) on offshore cod during 2008 and 2009 was 0.06 and 0.02 ($=5 \%$ and 2% per year), respectively. Similar estimates of F were obtained for cod tagged inshore during 20072009 (range 0.02 to 0.10), suggesting that recent fishing mortality has been a small component of total Z. The 2003 and 2004 year-classes are weaker than those produced in 1998-2002 and have now entered the SSB; consequently, the recent rate of stock growth is unlikely to continue in the short term. Subsequent year classes (2005 and 2006) appear average for the 1993-2007 period.

In the inshore, analysis of age-disaggregated sentinel catch rate data indicate that exploitable biomass increased in the central inshore area during 2003-2008, but was lower in 2009 than in 2008 in all inshore areas. The 2003 and 2004 year-classes are notably weaker than those that have supported recent fisheries (2000 and 2002 year classes). Consequently, exploitable biomass is likely to decrease further in 2010 even with no removals. If current levels of removals are maintained then exploitation rates are expected to increase in 2010.

Overall, the status of the stock has improved, particularly during 2004-2008. The average autumn survey SSB index over the last 3 years (2007-2009) is 10% of the average during the 1980's. However, the improvements are limited to areas adjacent to the 3KL border and the central portion of the inshore. The stock has not increased across much of the historical geographic range. Recruitment has not improved in spite of recent increases in stock size.

Although specific limit reference points for this stock have not been established, overall the stock is well below any reasonable limit reference point and remains in the critical zone with respect to the precautionary approach (PA). Application of the PA would require that any catch in 2010 be at the lowest possible level. This would include no directed fishing and measures to reduce cod by-catch in other fisheries. Management should focus on promoting further increases in SSB and improved recruitment until the stock is more resilient to the effects of fishing.

RÉSUMÉ

L'état du stock de morue franche (Gadus morhua) dans les divisions 2 J et 3KL de l'OPANO a été évalué grâce au processus d'évaluation régional mené à St. John's (Terre-Neuve), du 15 au 19 mars et les 22 et 23 mars 2010. Une pêche commerciale dirigée de la morue et une autre de pêche récréative ont été rouverts dans la zone côtière en 2006, et cela a continué en 20072009. Les eaux extracôtières sont demeurées fermées à la pêche dirigée. Aucun total autorisé des captures officiel n'était en vigueur de 2006 à 2009, mais les pêcheurs commerciaux ont eu droit à une capture annuelle (3750 lb par détenteur de permis en 2009). Les pêcheurs récréatifs avaient droit à cinq poissons par personne par jour, jusqu'à un maximum de 15 poissons par bateau. La prise totale pour 2009 est incertaine. En 2009, les débarquements déclarés se sont élevés à 3098 t , soit 2832 t pour la pêche d'intendance, 216 t pour les relevés sentinelles et 50 t sous forme de prise accessoire. Par contre, cela excluait les prélèvements de la pêche récréative. On ne dispose d'aucune estimation directe des débarquements récréatifs pour 2009. Par contre, l'analyse des étiquettes récupérées donne à penser que les prélèvements de la pêche récréative, en 2009, pourraient représenter 64% des prélèvements de la pêche d'intendance déclarés.

En l'absence d'information fiable sur les captures, l'évaluation s'est fondée principalement sur une analyse de la cohorte des données et de l'étiquetage du relevé au chalut, obtenue à l'automne grâce au navire de recherche du ministère des Pêches et des Océans. L'analyse de la cohorte a fourni des estimations relatives de la taille des stocks et des estimations absolues de la mortalité totale (Z). Pour ce qui est de la période récente (2008-2009), les estimations de la mortalité par pêche (F) obtenues grâce aux données d'étiquetage et de télémétrie acoustique ont été utilisées pour répartir Z entre F et la mortalité naturelle (M). La biomasse totale a augmenté (de 23 \% par année) depuis 2004. La biomasse du stock reproducteur (BSR) a connu une croissance (de 83 \% par année) de 2004 à 2008; par contre, la valeur de 2009 est semblable à celle de 2008. La mortalité totale dans les eaux extracôtières a été élevée ($Z=$ de 1,0 à 1,5) de 1996 à 2002 pour ensuite diminuer, malgré la réouverture de la pêche dirigée dans la zone côtière de 2006 à 2009. La Z annuelle moyenne, de 2007 à 2009 (âge : de 4 à 8 ans) a été de 0,42 (= mortalité de 35% par année). L'analyse des données de l'étiquetage a indiqué que la F , chez la morue des eaux extracôtières, en 2008 et 2009, a été de 0,06 et de 0,02 (= 5% et 2% par année), respectivement. Des estimations semblables de la F ont été obtenues concernant la morue étiquetée dans la zone côtière de 2007 à 2009 (variation de 0,02 à 0,10). Cela donne à penser que la F récente a représenté une petite composante de la Z . Les classes d'âge de 2003 et 2004 sont plus faibles que celles produites de 1998 à 2002 et sont maintenant entrées dans la BSR. Par conséquent, il est peu probable que le taux récent de croissance des stocks enregistré se maintienne à court terme. Les classes d'âge suivantes (2005 et 2006) semblent se situer autour de la moyenne pour la période allant de 1993 à 2007.

Dans la zone côtière, l'analyse des données des taux de prise des pêches sentinelles désagrégées à l'âge indique que la biomasse exploitable a augmenté dans la zone côtière centrale de 2003 à 2008, mais était moindre en 2009 qu'en 2008 dans toute la zone côtière. De façon notable, les classes d'âge de 2003 et de 2004 sont plus faibles que celles qui ont soutenu les pêches récentes (classes d'âge de 2000 et de 2002). Par conséquent, il est probable que la biomasse exploitable diminue encore en 2010, même sans prélèvement. Si les niveaux actuels de prélèvement sont maintenus, les taux d'exploitation devraient augmenter en 2010.

Dans l'ensemble, l'état du stock s'est amélioré, particulièrement pour la période allant de 2004 à 2008. Le relevé d'automne a permis d'établir que l'indice moyen de la BSR, pour les trois dernières années (de 2007 à 2009) correspond à 10% de la moyenne observée au cours des années 1980. Par contre, les améliorations se limitent aux zones adjacentes à la frontière de la
division 3 KL et à la partie centrale de la zone côtière. Le stock n'a pas enregistré de croissance dans la majeure partie de l'aire de répartition géographique historique. Le recrutement ne s'est pas amélioré malgré les augmentations récentes de la taille des stocks. Aucun point de référence limite précis n'a été établi pour ces stocks. Cependant, dans l'ensemble, le stock se situe bien au-dessous de tout point de référence limite raisonnable et demeure dans la zone critique pour ce qui est du principe de précaution. L'application de ce principe exigerait que le niveau de toute prise, en 2010, soit le plus bas possible. Cela interdirait la pêche dirigée et entraînerait des mesures de réduction des prises accessoires de morue des autres pêches. La gestion devrait se concentrer sur la promotion d'une augmentation accrue de la BSR et des recrues jusqu'à ce que le stock soit plus résilient aux effets de la pêche.

INTRODUCTION

This document gives an account of the 2010 assessment of the northern (NAFO Div. $2 \mathrm{~J}+3 \mathrm{KL}$) cod (Gadus morhua) stock that inhabits waters off southern Labrador and eastern Newfoundland eastward to the edge of the continental shelf (Figs. 1a-1c). The current evaluation of the stock was conducted through a Regional Assessment Process (RAP) conducted during 15-19 March and 2223 March 2010 in St. John's, NL. A Science Advisory Report (SAR) for the 2J3KL stock has also been produced (DFO 2010). Details of previous assessments are reported elsewhere (Bishop 1994; Bishop and Shelton 1997; Bishop et al. 1993, 1994, 1995; Shelton et al. 1996; Lilly et al. 1998a; 1999, 2000, 2001, 2003, 2004, 2005; 2006; Brattey et al. 2008a, 2009).

Data from several sources were reviewed. Oceanographic information was presented (Colbourne et al. 2008, 2009, 2010; DFO 2008a, b). Broad-scale changes in some major ecosystem components as well as potential key predators and prey were also reviewed. Commercial catch information was examined. For the offshore, indices of abundance, biomass and other biological characteristics were obtained from multi-species research vessel bottom-trawl (RV) surveys conducted by Fisheries and Oceans Canada (DFO) in Div. 2J3KL during the autumn (1983-2009). Information on recruitment and total mortality is obtained from catch rate at age in the autumn surveys. Recaptures of conventionally tagged and detections of acoustically tagged offshore cod released during February-March 2007 and March 2008 were used to provide information on the distribution, abundance, and subsequent movements of cod from a traditional over-wintering area along the continental shelf edge of 2 J 3 KL . For the inshore, indices of abundance are provided by DFO-Industry fixed-gear Sentinel surveys (1995-2009), which are conducted using two traditional gears, gillnets of $51 / 2$ inch mesh and line-trawls, and a non-traditional $31 / 4$ inch mesh gillnet (19962009), which is intended to provide information on young fish. Logbooks from vessels $<35 \mathrm{ft}$ for the fisheries in 1998-2002 and 2006-09 were examined for catch rate information. Inshore tagging studies provide information on exploitation, distribution and migration; these were initiated in 1997 and were continued in 2006-09. Acoustic telemetry studies were also conducted in 2005-09 to investigate cod movement patterns and survival. Winter hydro-acoustic surveys (Rose 2003) of an over-wintering inshore aggregation in Smith Sound, Trinity Bay were conducted during 1997-2004 and in 2006-09. Annual telephone surveys of fish harvesters' observations are conducted by the Fish, Food and Allied Workers (FFAW) Union and results for the fisheries in 2009 are reported. Information on the relative abundance of young (age 0 and age 1) cod is provided by beach seine studies in Newman Sound, Bonavista Bay during 1996-2009. Information on the size and age composition of the commercial catch is obtained from lengths and otoliths collected from cod sampled at ports and at sea. DFO-Industry bottom-trawl surveys were conducted during JulyAugust 2006-2009 using small ($<65 \mathrm{ft}$) commercial vessels. This inshore trawl survey provides information on the relative abundance, age composition and distribution of cod inhabiting the coastal and near-shore area of 2 J 3 KL .

ECOSYSTEM INFORMATION

Ecosystem information was presented in the form on an overview of major signals and trends in various components of the marine fish and shellfish community off Newfoundland and Labrador. These findings are part of an ecosystem research initiative (ERI) which is part of a major focus of DFO Science activities (see http://www.dfo-mpo.gc.ca/science/Publications/index-eng.htm). Trends in biomass (B), abundance (A) and BA ratios of key species groups were examined based mainly on time series of catch data (1981-2009) from autumn research vessel (RV) surveys. Fish species were grouped into six major functional groups, namely: small benthivores [45 species] (max size $<45 \mathrm{~cm}$, e.g., alligator fish [Aspidophoroides sp., sculpins [Myoxocephalus spp.]), medium benthivores [34 species] ($45 \mathrm{~cm}<$ max size $<80 \mathrm{~cm}$, e.g., yellowtail flounder [Limanda ferruginea], lumpfish [Cyclopterus lumpus]), large benthivores [29 species] (max size $>80 \mathrm{~cm}$, e.g., American
plaice [Hippoglossoides platessoides), piscivores [31 species] (e.g., Atlantic cod, turbot [Reinhardtius hippoglossoides], Atlantic halibut [Hippoglossus hippoglossus]), plankton-piscivores [8 species] (e.g., redfish [Sebastes spp.], Arctic cod [Boreogadus saida]), planktivores [14 species] (e.g., capelin [Mallotus villosus], herring [Clupea harengus], butterfish [Peprilus triacanthus]). Biomass time-series for Pandalus shrimps and Snow crab (Chionoecetes opilio] were examined. The time series of survey catches was broken in 2 periods based on the gear used (Engels and Campelen trawls). Index values are not directly comparable between gears due to differences in catchabilities. There are no conversion coefficients for most species.

During the late 1980s and early 1990s the fish community in the Newfoundland and Labrador large marine ecosystem collapsed. This collapse was more dramatic in the northern regions and involved commercial and non-commercial species. Most fish functional groups showed significant declines in their BA ratio, which generally indicates loss of large fish. During the late 1980's and early 1990's there was an increasing trend in the population size of harp seals and a build-up of shrimp biomass; since the mid-1990s harp seals and shrimp have maintained a high population size. Since 2002-03 there is an increasing trend in the fish biomass, more so in 2 J 3 KL than for 3NO. Abundance is also increasing, but the trend is less pronounced compared to biomass. The BA trends also show an increasing trend in some functional groups in 2J3KL. Some components of the fish community (e.g., piscivores such as Atlantic cod, turbot, and Atlantic halibut) and large benthivores (e.g., American plaice) appear to be showing some positive signals, but still remain at a significantly lower level in comparison to the pre-collapse period. These are the first significant changes observed in ecosystem structure since the collapse. However, the most recent ecosystem information is less optimistic and trends in components of the fish community in 2009 are more variable.

OCEANOGRAPHY

Oceanographic information (Colbourne et al. 2008, 2009, 2010; DFO, 2008a, 2008b) indicates that the marine environment off Labrador and eastern Newfoundland experienced considerable variability since the start of standardized measurements in the mid-1940s. A general warming phase reached its maximum by the mid-1960s. Beginning in the early 1970s there was a general downward trend in ocean temperatures, with particularly cold periods in the early 1970s, early to mid-1980s and early 1990s. Ocean temperatures have been above normal for the past decade, with 2006 at a record high, but subsequently temperatures have declined slightly and in 2009 were close to nearer normal values.

Cod in the 2J3KL stock area may be more productive when water temperatures are toward the warm end of the regional norm; consistent with this observation cod in the offshore have shown improved growth rates since the low values of the early 1990s when water temperatures were low, although growth and condition in 2009 were lower than those observed in the mid 2000s.

Recent environmental indicators for the 2 J 3 KL stock area are generally positive. Water temperatures are close to average and were recently at the high end of historic range; nutrient and phytoplankton inventories have been variable with no clear trend over time. Secondary productivity shows signs of improvement with the overall abundance of zooplankton species above the longterm mean after 2004. Recent trends in these indicators coincide with the recent increases in cod abundance and biomass in the offshore; though it is noteworthy that there are as yet no clear signs of improved cod recruitment in the 2 J 3 KL area.

PREDATORS

Some species of marine mammal (seals and cetaceans) are abundant in the 2 J 3 KL stock area at certain times of year and these have the potential to exert a strong influence on ecosystem
dynamics directly through predation (DFO, 2010a). Some studies indicated an increase in the amount of cod consumed by harp seals since the late 1980s due, primarily, to increased occurrence of Atlantic cod in near shore diet samples. Estimates of total 2 J 3 KL cod consumption by harp seals are imprecise. Analyses presented in 2001 indicated that harp seals may have an impact on the recovery of 2 J 3 KL cod; however, ongoing analyses from a simple biomass-based model exploring the impact of harp seals on cod under a wide range of consumption estimates suggests that harp seal predation is not a significant factor in the lack of recovery to date.

Hooded seals and cetaceans are also found in significant numbers in the 2J3KL stock area; diet studies indicate that cod are eaten by hooded seals and some cetacean species but the overall impacts of these predators on cod are not known.

White hake (Urophycis tenuis) have been identified as an important predator of cod $<1 \mathrm{yr}$ old in the nearshore environment.

PREY

Capelin is a key prey item for cod. An index of offshore capelin biomass, based on hydro-acoustic surveys, indicates that capelin biomass was high in the 1980s, but dropped dramatically in the early 1990s and remained low for several years (DFO, 2008c). There was an increase in capelin biomass offshore in 2007, but the index has subsequently remained unchanged. In the inshore, indices of capelin biomass did not show such extensive declines in the early 1990's; inshore indices are no longer available. Overall, the status of capelin appears to have improved then stabilized; the timing of improvement coincides with the recent increases observed in the biomass of cod in portions of the offshore. Capelin arrived inshore later in 2009 than 2008 and were smaller.

REPORTED LANDINGS OF COD

Reported landings from this stock from the 1950's until 2005 are described in detail in Lilly et al. (2006) and to 2008 in Brattey et al. (2009). An updated table of the entire time-series of landings is provided herein (Table 1, Figs. 2, 3). Fixed gear landings from 1975 to 2009 are also summarized (Table 2, Fig. 4) and these show that most of the catch during 2006-2009 was taken by gillnets. New landings information is described here for the stewardship fishery in 2009 (Table 3) and revised estimates for recreational landings for 2008 are given (see below).

REPORTED LANDINGS DURING 2009

During the 2009 "stewardship" fishery the offshore remained closed to directed fishing. There was no formal TAC; commercial fishers were permitted an allowance of $3,750 \mathrm{lb}$ of cod per license holder. Recreational fishers were permitted 5 groundfish per person day, and no more than 15 fish per boat.

Total catch in 2009 is uncertain. Reported landings in 2009 were $3,098 \mathrm{t}$ (Table 1 and Table 3, Fig. 5); this included $2,832 \mathrm{t}$ in the stewardship fishery, 216 t in the sentinel surveys, and 50 t taken as by-catch, but excludes recreational fishery removals. There are no direct estimates of recreational landings for 2009. However, analysis of tag returns (see Tagging and Telemetry Section) suggests that removals from recreational fisheries during 2009 could be 64% of reported stewardship fishery removals.

Samples of the lengths of cod captured during the recreational fishery were taken by fisheries officers who measure cod at sea (on board recreational vessels) and at the dock in various communities. Mean lengths tended to vary among regions and were generally highest ($\sim 60 \mathrm{~cm}$) in

Fogo-Twillingate, Bonavista Bay and Trinity Bay and lowest (<53 cm) in areas further north (3Kd, western Notre Dame Bay) and southward in Conception Bay (3Lf). The mean lengths of cod sampled at the dock were compared with those sampled at sea by unit area for both the 2008 and 2009 recreational fishery. Samples were not available for all areas in all years. In 2008 there was no consistent difference in the means (Fig. 6, upper panel). However, in 2009 mean lengths of cod sampled at the dock during the recreational fishery were higher than those sampled at sea in all areas (Fig. 6, lower panel), suggesting widespread discarding of small fish during the 2009 recreational fishery.

The estimate of landings from the 2008 recreational fishery was revised from 818 t to $1,089 \mathrm{t}$ using area-specific average weights based on actual sampling of 2008 recreational fishery catches, rather than an average weight of 1.5 kg per fish. Further information on landings from the 2008 fishery, based on tag returns, is given later in this document (see Tagging and Telemetry section).

Estimates of commercial catch are also uncertain. Commercial fishers have commented at previous 2 J 3 KL cod assessments and at recent public consultations that commercial landings are underestimated. They also commented that some recreational fishers were making multiple trips per day and thereby exceeding the daily limit.

An estimate is not yet available for the 2009 catch by non-Canadian fleets outside the 200 nautical mile limit on the Nose of the Grand Bank (Div. 3L). The Scientific Council of the Northwest Atlantic Fisheries Organization (NAFO) reported that the annual catch of cod in the regulatory area during 2000-2008 was 82 t or less and has been declining.

Most of the landings in 2009 were from the stewardship fishery which took place inshore during September and early October; catches in remaining months were mostly from the sentinel survey and by-catch (Table 3). Most of the catch was taken in Notre Dame Bay ($3 \mathrm{Kh} / 3 \mathrm{Ki},>1,000 \mathrm{t}$), Bonavista Bay (3La, 608 t) and Trinity Bay (3Lb, 584 t). Catches and effort were much lower in the north ($2 \mathrm{~J}, 57 \mathrm{t}$) and in the extreme south (3Lq, 8 t).

BY-CATCH OF COD IN OTHER FISHERIES

By-catches of cod occur in ongoing Canadian and non-Canadian fisheries. All recorded by-catch has been incorporated into the catch (Tables 1-3), but not all by-catch is recorded and this is another reason why total catch is considered uncertain.

In the offshore, some by-catches of cod are taken by Canadian fleets fishing for Greenland halibut (turbot), but cod by-catch is typically low in this deep water fishery. The experimental fishery for turbot at shallower depths (160-300 fathoms) in northern 3L during late summer and autumn (August-November) of 2004-2008 encountered significant by-catch of cod in those years (Brattey et al. 2009) but was not continued in 2009.

In the inshore, by-catches of cod are common in gillnet fisheries for lumpfish and especially winter flounder (blackback). They also occur in the herring gillnet fishery, the capelin trap fishery, and the bait-net fishery. Note that for winter flounder and herring there are both commercial fisheries and bait fisheries. The only inshore fishery that has been studied specifically for by-catch is the herring gillnet bait fishery, in which by-catches of cod appeared to be small (Reddin et al. 2002). Reported cod by-catch in 2009 from all fisheries combined was 50 t .

DISCARDS

No new information on discarding during commercial fisheries was presented at the 2009 RAP; however, there was evidence of widespread discarding of small cod during the recreational fishery
in 2009 (see Fig. 6). Discarding of cod during the shrimp fishery was explored at the 2009 ZAP and was estimated at < 20 t per annum during 2004-2008.

Additional un-quantified sources of mortality include the fallout and discarding of low quality cod caught in gillnets, mortality caused by contact with trawl gear, discarding of small cod caught by linetrawl, as well as by hand-lining with baited and feathered hooks. Size based price-differentials are also an incentive for commercial fishers to discard smaller cod and retain only the largest and most valuable fish.

ILLEGAL FISHING

In recent years there have been removals in inshore waters in excess of sentinel surveys and legal fisheries. The magnitude of poaching is not known.

IMPACT OF UNACCOUNTED FISHING MORTALITY

In the offshore, the level of mortality associated with unreported catch, discards and injury caused by contact with gear (e.g., shrimp trawls, fall-out from gillnets) is not known. However, any such deaths may be important because the abundance of cod in the offshore is much lower than it was prior to the moratorium in 1992.

In the inshore, the magnitude of unreported catch is not known, so the impact of such removals cannot be assessed.

CATCH NUMBERS AT AGE

The age composition and mean length-at-age of the cod landings were initially calculated by gear, unit area and quarter as described in Gavaris and Gavaris (1983).

Historic Pattern

The time-series of catch-at-age from the fishery for northern cod (inshore and offshore combined) extends from 1962 to 2009 (Table 4). Descriptions of the trends to 2007 and factors influencing them can be found in previous assessment reports (Lilly et al. 2006; Brattey et al. 2008a).

Catch At Age During 2009

In the 2009 fishery, the age range represented in samples from the stewardship fishery catch extends to about age 13, but most of the catch consists of ages $5-8$ (Tables 4 and 5) which is typical for a fishery dominated by gillnets (see Table 2). However, ages 6 and 7 (2002 and 2001 year-classes) make up most (57%) of the catch numbers in 2009. Comparison of the catch-at-age over the past four years (Fig. 7) is complicated by uncertainty in the estimate of recreational catch for 2007 and 2009; however, the 2002 year class tracks through the catch and is the strongest at ages 4,5 and 6. The 2003 year-class looks much weaker at ages 4,5 and 6 relative to the 2002 year class at the same ages. The 2004 year-class (5 yr olds in 2009) also looks relatively weak. The catch-at-age data are therefore consistent with recent information on recruitment from sentinel surveys and beach seine (see below) and suggest that the 2003 and 2004 year classes are much weaker than those that have supported recent inshore fisheries.

CATCH WEIGHTS AT AGE

The following standard relationship was applied in deriving average weight-at-age of cod:

$$
\log (\text { weight })=3.0879^{*} \log (\text { length })-5.2106
$$

The mean weights-at-age calculated from mean lengths-at-age in the landings have been variable, increasing in the late 1970's and early 1980's, followed by a decline through the 1980's to low levels in the early 1990's (Table 5, 6; Fig. 8). There has been substantial improvement in the latter half of the 1990's, and for some age-groups (e.g., ages 4-7) the weights-at-age calculated for recent years have been at or near the highest levels in the time-series; however, the 2003-2005 year classes at age 6, 5 and 4 in the 2009 survey have slightly lower mean weights at age. Interpretation of changes in the weights-at-age is difficult because of changes in the relative contributions of the various gear components and changes in the location and timing of catches from each gear component. For example, much of the landings prior to the moratorium came from otter trawling offshore early in the year, but since the moratorium most of the catch has come from fixed gear inshore in the second half of the year. In addition, the high proportion of landings coming from gillnets in recent years will tend to increase the calculated mean weight-at-age of those age-classes entering the selection range of the gear. This may apply in particular to ages 4 and 5 . There may also be an underestimate of weight-at-age for those age-classes leaving the selection range of gillnets. Average weights at age for the oldest ages (>age 12) tend to be more variable due to increased variability in weight with age combined with small sample sizes. The overall trend in weights at age suggests an improvement since the low point in the early 1990's, although the more recent values for ages 4-6 suggest the increasing trend may not continue.

There are problems with the 1993 weights-at-age for ages 8 and 9 that remain to be resolved and values for these ages have been omitted from Fig. 8.

STAKEHOLDER PERSPECTIVE

Telephone surveys conducted by the Fish, Food and Allied Workers (FFAW) Union (Jarvis and Stead 2005) were continued following the fisheries in 2006-09 to assess the opinions of fish harvesters regarding the abundance of cod in inshore waters, the size and condition of the cod, and the abundance of prey. Additional comments were conveyed at the assessment meetings and these are summarized below

In contrast to the recreational fishery, the stewardship fishery for cod (as prosecuted by commercial fish harvesters) is a limited entry fishery with gear restrictions (amount and type of gear), seasonal and duration restrictions, and landings are closely monitored at sea and at dockside. Commercial fish harvesters feel that the data they collect during their participation in this fishery is very important to the continued monitoring of the recovery of this stock (inshore and offshore).

Fish harvesters feel that while the high catch rates during the late 1990's were largely driven by a narrow band of cod aggregations close to shore, much has changed in recent years. While current catch rates are about the same as those of the late 1990's cod are much more widely distributed over inshore and offshore fishing grounds in very shallow depths to depths of 150 fathoms. Harvesters feel that the current level of abundance combined with the current distribution and migration patterns that resemble historical patterns is evidence that a significant recovery has and is taking place. Based on observations of the range of year-classes and the level of abundance, harvesters feel that the current allowance can be increased and recovery can continue to take place.

TELEPHONE SURVEY OF FISH HARVESTERS

Two hundred and eighty two $2 \mathrm{~J}+3 \mathrm{KL}$ fish harvesters participated in a telephone questionnaire conducted by the FFAW in February 2010. Most harvesters felt that cod were more abundant during 2009 than during the 1980's. Most 3K and 3L harvesters felt cod abundance was better in 2009 than in the late 1980's. Harvesters in 2J+3KL found cod abundance in 2009 comparable or the same as 2008. Most harvesters felt that cod were distributed throughout their area and felt that condition and the health of cod were good. The majority of fish harvesters in all areas felt capelin, mackerel and squid abundance is at a low level and declining.

INFORMATION FROM THE OFFSHORE

BOTTOM-TRAWL SURVEYS

Research bottom-trawl surveys have been conducted by Canada during the autumn in Div. 2J, 3K and 3L since 1977, 1978 and 1981, respectively. No autumn survey was conducted in Div. 3L in 1984, but the results of a summer (August - September) survey in 1984 have been used for some analyses. The 1995 and 2002-05 autumn surveys were not completed on time and continued into late January of the following years. In addition, the 2004 survey coverage was incomplete as a portion of 3L was not surveyed and the 2004 survey estimate is likely biased low. Also, in recent years the number of sets fished in some strata has been reduced due to time constraints associated with mechanical problems with the research vessels. Inshore strata were poorly covered in 2006 and largely omitted in 2007-2009. These issues add uncertainty to survey estimates of abundance, biomass, mortality rates and biological characteristics.

Spring surveys have been conducted by Canada in Div. 3L during the years 1971-82 and 1985-present. Spring survey data to 2007 are reported in Brattey et al. (2008a) and are updated with results from 2008 and 2009 surveys herein.

Survey Design

Details of the stratified random trawl survey design are described in previous documents (Lilly et al. 2006; Brattey et al. 2008a). Additional information on surveys conducted by DFO since the introduction of the Campelen trawl in 1995 are provided by Brodie (2005) and Brodie and Stansbury (2007). The depth-based stratification scheme and location of numbered strata is illustrated by NAFO Division in Figs. 9-11.

Autumn Surveys

Autumn Abundance and Biomass Indices: Indices of cod abundance and biomass are based on the strata-area weighted arithmetic mean catch per tow (Smith and Somerton 1981). To account for incomplete coverage of some strata in some years, estimates of biomass and abundance for non-sampled strata were obtained using a multiplicative model. Note that such a procedure was not followed for the autumn survey in 2004, when several strata in Div. 3L were not fished, even though the survey was continued into January 2005. See Lilly et al. (2005) for additional information regarding the area that was not fished and the reasons for not estimating the quantity of cod that may have been in the un-fished area at the time of the survey.

Abundance and biomass indices from the autumn surveys in 1978-94 (Div. 2J and 3K) and 1981-94 (Div. 3L) may be found in Tables 12-19 of Shelton et al. (1996). The data from 1983 to 1994 have been converted to Campelen equivalents and are presented along with the actual Campelen data from 1995-2007 in Brattey et al. (2008a). Data for 1993-2007 for Div. 2J are based
on a revised stratification scheme introduced in 1993 (Bishop 1994). Many survey tables in Brattey et al. (2008a) for each NAFO Div. are divided into two parts; up to 1992 and from 1993 onwards. Estimates for surveys in Div. 3L are given separately for strata in depths <=200 fathoms (Tables 18-21 in Brattey et al. (2008a)) and for those in depths >200 fathoms (Tables 22-23 in Brattey et al. [2008a]). Estimates for inshore strata added to the surveyed area in 1996 are given in Tables 24 and 25 of Brattey et al. (2008a).

There have been some changes over time in the depths covered during the survey; consequently, trends in the indices of abundance and biomass of cod has been monitored for those strata that have been fished most consistently since the start of the surveys. These "offshore index strata" are those in the depth range 100-500 m in Div. 2J and 3K and 55-366 m (30-200 fathoms) in Div. 3L. The inshore strata fished intermittently from 1996 onwards are not included in this index, nor are deep-water strata (>200 fathoms in Div. 3L, or $>500 \mathrm{~m}$ in Div. 2J and 3K). Separate estimates of abundance and biomass by stratum have been calculated for the inshore and deep-water strata (see Brattey et al. 2008a), but coverage in these areas has been poor in the past few years. Lilly et al. (2006) provide details on the interpretation of the autumn survey data with respect to depth and timing of the survey.

For brevity, the full time series of tabulated autumn survey data is not repeated here; the data by NAFO Division and stratum are provided only for 2000 onwards, for Div. 2J (Tables 7a and 7b), 3K (Tables 8a and 8b), and 3L (Tables 9a, 9b, 10); the annual estimates for the abundance index and biomass index (from all offshore index strata combined) are highlighted in grey in these tables.

Overall, trends in the indices of abundance and biomass in the offshore index strata similar (Fig. 12), although for individual Divisions there are some differences that mostly reflect changes in the relative abundance of small and large fish. Of note are the strong positive anomalies in 2 J and 3 K in 1986, the large increase in 3 K in 1989, the increase in 3L in 1990, and the rapid decline during the early 1990's. Abundance and biomass indices remained at low levels in all divisions for several years after 1993. The abundance index increased during 2003-2009; the biomass index increased during 2003-2008, but the 2009 value is a wee bit lower. Biomass has not increased markedly in 2 J , and the overall increase is driven by changes in 3 K and 3 L . The average abundance index and average biomass index for 2J3KL during 2007-09 were 9\% of the average of the 1980's. The 2009 survey abundance and biomass index values were 175 million fish and $143,000 \mathrm{t}$, respectively.

An index of spawning stock biomass (SSB) was also calculated using the product of numbers-atage, survey mean weights-at-age, and cohort model estimates of proportion mature at age (see below) from offshore autumn survey. The index of SSB shows a similar trend to that of abundance and biomass, and remained extremely low for several years after 1993. An increasing trend is evident during 2005-08, but the 2009 value ($76,000 \mathrm{t}$) was 29% lower than 2008 (Fig. 13). The average SSB index for 2J3KL during 2007-09 was 10\% of the average of the 1980's.

Autumn Mean Catch At Age Per Tow: The divisional mean number caught at age per tow in offshore index strata during autumn surveys from 1979 (1981 in Div. 3L) to 1994, and the mean number per tow for Div. 2J, 3K and 3L combined, may be found in Tables 3-6 of Bishop et al. (1995). The data from 1983 to 1994 have been converted to Campelen equivalents and are presented along with the actual Campelen data from 1995 to 2009 by division and for all three divisions combined in Table 11. Mean catch per tow was low for each age in each Div. for several years relative to 1983-1991. There has been a slight increase in catches since 2003, particularly among ages 3-7; and a slight broadening of the age structure. In the 2009 survey, 3-5 yr olds are most strongly represented.

The relatively large catch rate at age zero in Div. 2 J in 2008 is due primarily to a single large catch of small fish in one tow in stratum 237 , which is near the coast in central 2 J ; a similar single large
catch was observed in this area in 2005. There are no age zeros in the catch at age matrix prior to 1996 and generally few in subsequent years as these small cod not selected by the Engels gear and poorly selected by the Campelen gear.

Coverage of deep water strata ($\geq 500 \mathrm{~m}$ in 2 J and ≥ 200 fathoms in 3 KL) has been inconsistent in recent years, but the available data indicate that cod are neither widespread nor abundant in deep water in recent years (Tables 7-10).

The time series of autumn survey mean catch at age per tow for 2 J 3 KL combined is illustrated using "bubble" plots (Fig. 14); only ages 1-12 are shown. Note that the raw data are converted to proportions within an age (left panel) or within a year (right panel). In the right panel, the proportion of catch at each age is first computed and then the annual standardized deviations from the mean proportion for all years are plotted for each age. Negative deviations are shown as black circles and positive deviations are shown as grey symbols. The size (i.e. area) of each symbol is proportional to the absolute value of the deviation. The symbol sizes do not reflect the year to year changes in relative strength of year classes, but are useful for indicating how consistently individual year classes track through successive surveys.

The left panel of Figure 14 shows that prior to the early 1990's the numbers of cod in survey catches were much larger for all ages. The survey catches included a broad age structure which collapsed rapidly after 1990. Some larger than average year-classes tracked through successive surveys in the early part of the time-series as diagonals of large grey symbols, e.g., the 1981 and 1982 year classes at ages 2-8 and 1-8 respectively, and the 1987 year class at ages 1-4. In contrast, the 1977 and 1976 year classes appear as average (small dots) at ages 7-12 and 6-12 in successive surveys from 1983 to 1989. The standardized proportions of all ages from surveys from 1993 onwards appear as black symbols indicating they are lower than average. In the early to mid1980s survey catches tended to be dominated by older cod (>age 4), whereas from 1993 onwards they are comprised mostly of younger cod (<= age 4). The 1994 year class is consistently well represented in survey catches at ages 1-4 from 1995-1998, but at older ages in subsequent surveys is poorly represented. In the recent period, the 2002 year class is well represented at ages $1-7$ in several consecutive surveys (2003-2009), whereas the 2003 year-class is consistently below average. In contrast, the 2000 and 2001 year classes are inconsistent, the 2001 year class appears weak at ages 2-3 and age 8, but average or relatively strong at age 1 and ages $5-6$. In the 2009 survey, the 2004-2006 year-classes are well represented at ages 5, 4, and 3, respectively, but were poorly represented at younger ages. The age structure of survey catches is expanding in recent years, mainly as a result of catches of 5-8 year old cod from the 2000-2002 year classes. Interpretation of how well year classes track through successive surveys is complicated by poor coverage in the 2004 survey, and differences in survey timing among years.

Autumn Distribution

In previous documents, the distribution of cod in autumn surveys has been illustrated in a series of "expanding symbol" plots showing numbers per standard tow (Shelton et al. 1996; Murphy et al. 1997) and in weight (kg) per standard tow (Lilly 1994, 1995). The catch from each tow in the period 1983-94 has been recalculated to Campelen equivalents, and plots of these recalculated catches for 1985-94 are illustrated in Lilly et al. (1999).

A detailed history and interpretation of changes in the distribution of cod at the time of the autumn surveys to 2005 is provided in Lilly et al. (2006). Catches from the early to mid-1990's onward tended to be very small, relative to the 1980's (see Fig. 15 in Lilly et al. [2006] and note change in scale). Since the late 1990's the offshore area with the most consistent catches of cod has been around Funk Island Bank (for location see Fig. 1b), particularly to the east and southeast. This pattern is evident in 2006-2007 (see Brattey et al. 2008a, 2009) and 2008-2009 (Figs. 15, 16)
where some larger catches were taken in a broad area that extends from off Cape Bonavista east and northeastward along the 3K-3L border and northward along the outer reaches of Funk Island Bank (see Fig. 1b for locations). In 2008 and 2009, some slightly larger catches (in terms of numbers) were also taken in 2J (Hawke Channel and Hamilton Bank) and outside the 200 nm limit on the "nose" of the Grand Banks. When the catches are illustrated in terms of weight (Fig. 16), larger catches are even more restricted, to the area south and east of Funk Island Bank, indicating that cod caught in this area were larger. Inshore strata were omitted or coverage was poor during 2007-2009, but some larger catches have been taken in the inshore strata in previous surveys (see Lilly et al. 2006).

Survey catches by stratum area (Tables 7-10) were analyzed further to determine what fraction of the total abundance and biomass from the index strata were found in the 3KL border and eastern Funk Island Bank area. The total area for strata 628, 636, 637, 638, and 639 in 3K (see Fig. 10 for stratum locations) and 344, 345, 346, and 366 in 3L (see Fig. 11 for stratum locations) was combined and accounted for approximately 14% of total area surveyed (offshore index strata only). Catches from these nine strata combined were found to comprise about 14% of the total survey biomass index and 11\% of the total survey abundance index in the 1980's; however, in the 2009 survey these values were 64% of the total survey biomass and 32% of the total survey abundance.

These survey data clearly indicate that the recent improvements in survey biomass and abundance in the offshore area are largely restricted to the area adjacent to the 3KL border and eastern Funk Island Bank. There are large offshore areas where cod are still scarce relative to the 1980s, particularly in 2J, northern 3K, and on the northern plateau of the Grand Banks in southern 3L. The area showing the most significant improvement in terms of survey catches is adjacent to the central inshore area where catch rates in recent (2006-09) inshore fisheries have been highest. This region of improved survey catches also overlaps the area of northern 3L where cod by-catch in the 2004-2008 turbot gillnet test fishery increased.

Recruitment in the Offshore

Catch rates of cod aged 2 and 3 (in Campelen equivalents prior to 1995 and actual Campelen catches from 1995 onwards) from the autumn surveys have been used to monitor trends in recruitment in the offshore. Interpreting catch rates of younger ages is problematic because of the gear change in 1995; the Engels trawl was poor at catching ages 0 and 1 and zero catches remain zero in the converted data; consequently the numbers of ages 0 and 1 are likely underestimated prior to 1995 in terms of comparison to the actual Campelen results.

Trends in the catch rates of cod aged 2 and 3 (shown as year-classes, not survey years) show that all cohorts produced since the late 1980's have been relatively weak (Fig. 17). The most recent information on offshore recruitment came from the 2009 autumn survey which provides information on 2 -yr-old cod from the 2007 cohort and 3 -yr-olds from the 2006 cohort. There is no information from the offshore on more recent cohorts which have yet to be sampled adequately by the Campelen gear. The number of age 2 and age 3 cod in the offshore survey throughout the 1990s and 2000s has consistently been much lower than during the 1980s (Fig. 17). There is no indication of any major improvement in recruitment in recent years (2006-2009) in spite of the increasing trend in the offshore abundance, biomass, and SSB indices. Furthermore, the 2003 and 2004 cohorts that will be age 6 and 7 during 2010 appear particularly weak.

Trends in Mortality Rates in the Offshore

Instantaneous rates of total mortality (Z) were estimated from autumn research vessel survey catch rate data as described by Lilly et al. (2006). Only ages $4-6$ were used in this analysis and the timeseries was divided into two periods (pre- and post-1995) because a different type of trawl (Engels)
was used in the earlier time-period, although the data for the earlier period have been converted to Campelen equivalents. Ages 4-6 are assumed to be fully recruited to the gear in this analysis. Older ages could not be included in this analysis because they were sporadic in the survey catches in the mid to late 1990's. Lilly et al. (2006) outlined many of the details and problems that can influence the outcome of this type of analysis.

The annual total mortality rate (Z) is variable, but increased to an extremely high level (>2.0) from 1989 to 1993 (Fig. 18). After the moratorium was imposed in 1992, Z remained high (~ 0.9) throughout the mid-1990`s and increased further during 2001-03, but subsequently declined substantially, possibly since 2003. It remains difficult to determine from fall survey data alone precisely when Z was changing, given the apparent year effect in the 2006 survey coupled with incomplete survey coverage in 2004 (which may also have influenced the 2004 and 2005 estimates of Z). However, there are now three consecutive surveys that give low (<0.3) values of Z and data from other sources (see Brattey et al. 2009) also support the interpretation that the rate of total mortality in the offshore has decreased.

The reasons for the high Z throughout the 1990s and early 2000s are not well understood. Fishing has been restricted in much of this period, suggesting that the rate of natural mortality (M) has been high. The recent decline in Z and upward trend in offshore abundance and biomass occurred during the years after the inshore fishery re-opened (2006-2009) suggesting that the natural mortality rate has declined substantially in the recent period. High values for Z and/or M have been observed in many Canadian Atlantic stocks in the post-moratorium period, and various hypotheses have been proposed and investigated to account for this finding, including predation by marine mammals, unreported fishing, fishing by non-Canadian fleets (3L and 3NO), poor condition and associated high mortality, selection for early maturation and subsequent high post-spawning mortality (Sinclair 2001; Swain and Chouinard 2008; Trzcinski et al. 2006; Shelton et al. 2006; Fudge and Rose 2008, DFO, 2007a; Swain 2010). The reasons likely differ among populations, but remain contentious and are the subject of ongoing investigation in many of the Canadian Atlantic cod stocks.

Spring 3L Bottom-Trawl Surveys

Spring 3L Abundance and Biomass: Abundance and biomass of cod in Div. 3L in the spring have been estimated by areal expansion of the stratified arithmetic mean catch per tow. Estimates for the surveys from 1978 to 1995 may be found in Tables 20-21 of Shelton et al. (1996). The data from 1985 to 1995 have been converted to Campelen equivalents. Estimates of abundance and biomass for the index strata (depths <= 366 m or <200 fathoms) during 1985-2007 are provided in Tables 28 and 29 in Brattey et al. (2008). These tables have been updated with results from 2008 and 2009 surveys, but for brevity only the data from 2000 onwards are reported herein (Tables 12a, b; 13) although results for the time series from 1985-2009 are illustrated in Fig. 19.

The spring 3L abundance and biomass indices have remained low since the mid-1990's (Fig. 19). Although the abundance index and biomass index increased during 2003-2007 the increasing trend has not continued and the index values for 2008 and 2009 are much lower. The average abundance index for 2007-2009 is only 6.5% of the average of $1986-89$ and the 2009 value (17.6 million) is much lower than the 2007 value (42.4 million). The average biomass index for 2007-2009 is 3.6% of the average of 1986-89 and the 2009 value ($7,600 \mathrm{t}$) is much lower than the 2007 index value $(34,500 \mathrm{t})$. No SSB index was presented at the 2010 RAP, but current SSB is clearly a small fraction of the 1980s value.

Surveying in waters deeper than 200 fathoms in spring has shown that the proportion of the total survey catches found in the deep ($200-300 \mathrm{fm}$) strata has been highly variable (see Brattey et al. 2008). During the four year period from 2000 to 2003 , the proportion of the total abundance and total
biomass in deep strata increased progressively from 0.14 to 0.65 , but dropped to zero in 2004 and has remained close to zero from 2004 to 2009 (Table 13).

Spring 3L Mean Catch at Age Per Tow: Mean catch per tow declined precipitously in the early 1990's and values continue to be well below levels obtained prior to 1992. However, the ageaggregated total per tow increased slightly after 2003 and the 2007 value (8.36) was the highest observed since 1992. However, the catches have been lower in the past two surveys (4.1 and 3.5 fish per tow, Table 14).

There have some changes in the age distribution of spring survey catches since the collapse in the early 1990's; initially, this was due to catches of small numbers of the 1989 and 1990 year-classes in the late 1990's, some of which may have moved into Div. 3L from Div. 3NO or Subdiv. 3Ps. These disappeared during 2001 and 2002. In the more recent period (2004-2008) catches of cod aged 3-6 have improved slightly compared to the mid to late 1990's and early 2000's, but the survey catch in 2009 was more restricted with no fish older than age 9.

The recent portion (1993-2009) of the time series of spring survey mean catch at age per tow (ages 1-9) is illustrated using "bubble" plots (Fig. 20). The left panel shows intermittent appearance of old fish in the spring survey in the mid to late 1990s, and a large block of lower than average catches for ages 3-9 (large black symbols) during the early 2000s. The right panel shows that the 2002 year class is well represented in spring survey catches at most ages. In general, the 2000 and 2001 year classes are well represented in some years, but overall these plots reveal a lot of inconsistency in the age composition of the spring survey during the past 16 yrs. The spring survey does not appear to be tracking age classes well. This survey covers only the southern portion of the stock area and may be heavily influenced by annual changes in the distribution of the stock across the $3 \mathrm{~K} / 3 \mathrm{~L}$ border to the north and possibly the 3L/3NO border to the south.

Spring 3L Dstribution: The distribution of cod during spring surveys in Div. 3L is described together with distribution in Div. 3NO for the years 1984-2000 in Fig. 18-20 of Lilly et al. (2001) and for the period 1996-2005 in Figs. 19a-19c in Lilly et al. 2006. The distribution of cod catches in the spring survey of 3L during 2008 and 2009 reveal that cod were scarce on the shelf in both years but more so in 2009. Some modest catches were taken in the most northern region of 3L and outside the 200 nm limit on the "nose" of the Grand Banks (Fig. 21). Similar distributions are evident in spring surveys in 2006 and 2007 (Brattey et al. 2008).

INFORMATION FROM THE INSHORE

SENTINEL SURVEYS

Sentinel surveys for cod were conducted by fishing enterprises operating from many communities in Div. 2J, 3K and 3L at various times during summer and autumn from 1995 onwards. Lilly et al. (2006) summarized sentinel data up to 2005 and the most recent accounts are provided by Maddock Parsons and Stead (2009a, b, 2010) who extend the time series to 2009.

The primary goal of these surveys when they were initiated was to obtain information on relative density of cod on traditional inshore fishing grounds during the moratorium. The surveys continued during the period of index/commercial fishing (1998-2002, 2006-09) and when there was significant by-catch during the intervening years (2003-05). The sentinel surveys have been conducted primarily with gillnets ($51 / 2$ inch mesh). Linetrawls have been used extensively in only a few areas, and the use of linetrawls has declined over time. Handlines and cod traps have been used much less and have not provided sufficient information over time to discern trends and have been
discontinued. Small mesh ($31 / 4$ inch) gillnets were introduced at many sites in 1996 to provide information on the relative size of incoming year-classes.

The sentinel surveys were also intended to provide samples that would yield information on various aspects of the biology of cod in the inshore, including age compositions, size-at-age, condition, maturity and feeding. Various analyses were conducted on data collected in 1995-97 (Lilly 1998b; Lilly et al. 1998a). Aggregated length-frequencies were examined each year up to 2005 (Lilly et al. 2006) and age compositions for the full time period are available in the form of standardized catch rates at age for each gear type (see below).

The number of enterprises participating in the sentinel surveys varied between 53 and 59 during 1995-2002, but was reduced to 42-45 in 2003-09. See Maddock Parsons and Stead (2009a, b, 2010) for additional details regarding fishing methods and sampling strategy.

Maddock Parsons and Stead (2009a, b) provided weekly average catch rates and annual relative length frequencies (total number of fish caught at length divided by total amount of gear deployed) by gear, NAFO division, and year; data for individual sites are also given.

Sentinel Standardized (Modeled) Catch Per Unit Effort (CPUE) by Area

An age-disaggregated index of standardized relative abundance for cod in the inshore of 2 J 3 KL was calculated from data gathered from sentinel fishing with gillnets and linetrawls (Stansbury et al. 2000). The catch from 2 J 3 KL was divided into cells defined by gear type ($51 / 2$ inch mesh gillnet, $31 / 4$ inch mesh gillnet and linetrawl), NAFO Div. (2J, 3K, 3L), statistical unit area (e.g., 3Ki, 3Lh), year (1995 onwards, or 1996 for $31 / 4$ inch mesh gillnet) and quarter. Age-length keys were generated for each cell using fish sampled from both fixed and experimental sites. There were no fixed sites using $31 / 4$ inch gillnets. Length frequencies and age-length keys were combined within cells. Numbers of fish at length were assigned ages using an age-length key. Because there were few or no discards in the sentinel survey and the fish harvesters measured the length of all the fish caught with line-trawl and gillnet, obtaining catch numbers-at-age was relatively straight forward [see Stansbury et al. (2000) for details].

Age-disaggregated CPUE data were standardized to remove site and seasonal effects. For gillnets, only sets fished during June to November (prior to 2006, July-November) with a soak time between 12 and 32 hours were included in the analysis. For linetrawl, sets fished during August to November with a soak time less than or equal to 12 hours were selected. Sets with effort and no catch for some or all ages were considered valid entries in the model. Ages in the model ranged from 3-10 years for $51 / 2$ inch gillnets, 2-10 years for $31 / 4$ inch gillnet and $3-9$ years for linetrawl. Fish older than age 10 were not included because of their rarity.

A generalized linear model (McCullagh and Nelder 1989) was applied to the catch and effort data for each gear and survey method. The details are described in Lilly et al. (2006). The model was fitted using the SAS procedure GENMOD. Amount of gear is expressed as number of nets for gillnet and number of hooks for line trawl. Estimates for age nested in year were adjusted for month nested in site effects (i.e., least-squares means) and transformed to a linear scale to give the relative index at age for each year. Additional details regarding the models (proportion of available data that was actually included, model output and residual plots) were reviewed at the assessment meetings in 2010 but are not shown here. Initially the data were grouped into three inshore areas as in previous assessments (Fig. 22); an inshore northern area (White Bay, the northern Peninsula and southern Labrador), an inshore central area (Notre Dame, Bonavista, and Trinity bays), and an inshore southern area (Conception Bay, eastern Avalon and St. Mary's Bay). The area boundaries were assigned based on catch rates and information from tag returns in the
post-moratorium period. Standardized catch rate indices were computed for each of these inshore areas although for some area/gear combinations there were insufficient data.

Sentinel Catch Rates Indices

The model adequately fitted the data from $51 /{ }^{\prime \prime}$ " mesh gillnets for each of the three inshore areas, and for small-mesh gillnet and linetrawls from the central area only. Age-aggregated and age disaggregated indices were computed, the former by summing the age within year effects for each year (Tables 15a, b). The addition of one more year of data for 2009 did not markedly change the fits from the previous assessment.

The gillnet ($51 / 2$ inch mesh) standardized catch rate indices show different trends in each inshore area (Fig. 23). In the northern area, catch rates with gillnets ($5 \frac{1}{2}$ inch mesh) in 2009 were lower than those observed in 2008 and are now marginally above the average of the time series, but are lower than those in other areas. In the central area, catch rates decreased in 2009, remain above average, and are above those in other areas. Catch rates in 2009 are below the levels observed in the central area in 1998. In the southern area, catch rates have remained similar since 2003, and in 2009 are below average and below those observed in the central area.

In the central area, standardized catch-rate indices from line-trawls decreased during 2009 and are above the average of the time-series (Fig. 24). There are fewer data for linetrawls and the trends are more variable and confidence intervals larger than those observed for gillnets.

In the central area, standardized catch-rate indices for small-mesh gillnets are plotted separately for younger cod (ages 3 and 4) and older cod (ages 5-10; Fig. 25). The catch rates for younger cod are higher in most years. The trend for older fish declines to lowest values in 2002 and subsequently increased to 2007, whereas for younger fish there is no clear trend. Catch rates for $3-4$ year old cod were lowest in 1998 and 1999, but higher in 1996, 2003 and 2005. The three most recent values for ages 3 and 4 are not high, suggesting that incoming recruitment is weaker.
Trends in the standardized age-disaggregated catch rates for each gear type from the central area (Tables 15a, b) are illustrated as "bubble" plots (Figs. 26, 27). Although there is some variability among gear types, in general these show that the 1990 and 1992 year-classes were relatively strong in the late 1990's. Subsequent year-classes appear to have been weaker and catch rates, particularly for older fish (\geq age 6), were lower. However, catch rates at age started to increase again, particularly for the 2000-2002 year classes in consecutive years at ages 3-7. The catch rates of young cod (ages 3-4) in small mesh gillnet and line-trawl in 2006-09 are lower, suggesting that incoming recruitment after the 2002 year class is weaker.

Interpretation of the trends in catch rate indices from sentinel surveys is complicated because the time-series includes periods with and without commercial fisheries taking place at the same time. In some years, particularly 1998-2002, and 2006-09 there may have been competition for space on fishing grounds (some sentinel fishers report commercial nets set across their sentinel gear) and possibly local depletion of cod on some fishing grounds where effort is high. Sentinel catch rates may also be influence by changes in the spatial distribution of cod; the area covered by the sentinel survey is close to shore and covers a very small fraction of the stock area; consequently, catch rates are prone to annual shifts in the distribution of cod due to changes in factors such as prey availability and water temperature.

TAGGING AND TELEMETRY

Conventional Tagging: Mark-recapture studies of cod in the inshore of NAFO Div. 3KL using conventional Floy tags were started in the mid-1990's and continued in 2006-09. The reopening of the directed fishery for cod in the inshore during 2006 provided another opportunity to
use tag returns to determine exploitation rates and investigate cod movement patterns; this approach was used extensively during the 1998-2002 period when the directed fishery was open (Brattey 1999, 2000; Brattey and Healey 2003, 2005, 2007; Cadigan and Brattey 2000, 2003). Several thousand additional cod were tagged and released with external Floy tags in the inshore of 3KL during 2006-2009.

Tag returns from the recent fisheries were used to estimate exploitation (harvest) rates among cod released in four inshore unit areas (3Ki, 3La, 3Lb, 3Lj) and one offshore area (3 Kg). The tagging study incorporated methods to estimate tagging mortality, tag loss, and reporting rates (Brattey and Cadigan 2004; Cadigan and Brattey, 2003, 2006, 2008).

Estimates of the fraction of tags returned by fishers are necessary to infer exploitation rates using tagging data, especially if the reporting rate changes over time. Cod tag reporting rates have been estimated using the proportion of low-reward tags returned from low-reward and high-reward tag releases and various methods of analyzing this type of data have been investigated (Cadigan and Brattey, 2003; 2006). The time-series of tag reporting rate data now extends over a period of 12 years (1997-2009). A newer approach that utilizes a mixed-effects logistic regression model (Cadigan and Brattey 2008) was used to estimate annual reporting rates, where rates for each region are decomposed into a main effect and a random year effect. Reporting rates were also estimated separately for commercial and recreational fisheries for the first time, and for the combined data from both fisheries. The overall reporting rate for single low reward tags in 3KL during 2009 was 0.57 , slightly lower than the rate estimated for the 1997-2005 period (0.68$0.90)($ Table 16, Fig. 28). The single tag reporting rate from recreational fishers shows no trend and has consistently been lower (range $0.46-0.54$) than that for commercial fishers (range 0.66-0.90). There is no estimate from recreational fishers for some years (1997, 2004, and 2005) due to sparse numbers of returns. The reporting rate from commercial fishers shows a slight declining trend and the value for 2009 (0.66) is the lowest in the time-series.

To estimate exploitation rates, the instantaneous rate of natural mortality (M) was assumed to be 0.4 for cod tagged in 3 K and 0.2 for those tagged in 3L in most analyses. Estimates were also computed for a range of assumed values of M ($0.1,0.2$, and 0.4). Annual estimates of exploitation (percent harvested) were computed based on tagged cod $>50 \mathrm{~cm}$ fork length (FL) and <=85 cm FL at release and recaptured within two years of release. In 2009, exploitation rates were low for cod tagged in all inshore areas and in the offshore area, ranging from 4 to 9% (Table 17). For 20072009, the estimates were all low and ranged from 3-10\% (i.e.; these estimates included the aforementioned range of assumptions about the value of M . Exploitation rates have tended to remain stable or decline in the past four years, with the decline most evident in 3 Ki .

In 2007 and 2008, cod were also tagged and released in the offshore of 3 K on the continental slope edge during March; this is the first time offshore cod tagging has been conducted in 2 J 3 KL since the early 1990's (Taggart et al. 1995). In 2007, a total 1,127 cod $>45 \mathrm{~cm}$ FL were tagged and released but no recaptures were obtained in 2007 and only two were received in 2008 and none in 2009. These cod were captured using an otter trawl in extremely deep water ($\sim 430 \mathrm{~m}$) and were assumed to have suffered high post-release mortality; consequently, the results were not used to estimate exploitation rates. In 2008, a total of $2,268 \mathrm{cod}>45 \mathrm{~cm}$ fork length were tagged and released in the offshore of 3 K about 25 nm northwest of the 2007 release site. The cod were captured using an otter trawl in shallower water ($\sim 340 \mathrm{~m}$) than during the 2007 survey, but likely suffered considerable post-release mortality. In the summer and autumn of 2008, a total of 36 tagged cod were recaptured inshore during recreational and commercial fisheries, and 12 were returned in 2009. The inshore recaptures were widely distributed, throughout 3 K and 3 L as far south as Petty Harbour in 2008, but were more clustered in 2009 (Fig. 29). To estimate the exploitation rate of these offshore cod from the tagging data we used a higher estimate for the rate of tagging mortality (0.34) than was used for inshore cod (0.02 or 0.22 depending on temperature);

The higher estimate for offshore cod was based on the average mortality rate of cod trawled from deep (200 m) water in Smith Sound implanted with acoustic transmitters. This estimate is uncertain and difficult to determine; however, among the same batch of offshore cod released with conventional and acoustic tags (see below), to date 25% of the acoustically tagged ones have been detected inshore and must have survived the stress of capture, tagging surgery, and release. This gives a minimum estimate of the fraction of conventionally tagged cod that survived. The fraction is likely to be higher because of accumulated tag loss and natural mortality (M) and not all survivors would have been detected to date. A value of 0.34 , though uncertain, seems reasonable for initial tagging mortality and is consistent with the available information. A range of assumed values for natural mortality were also used (see above), but these had little impact on the outcome; in the final analysis natural mortality was assumed to be 0.2 per yr (consistent with the DFO RV survey-based estimates of Z for 2007-2009). The annual tag reporting rate estimates for 2008 and 2009 (0.64 and 0.57 , respectively; Table 16) for inshore 3 KL were also used. Using these values and model estimates of tag loss rates based on double-tagging, the exploitation rate of offshore cod in the inshore was estimated to be 5% in 2008 and 2% in 2009 (Table 17) which corresponds to fishing mortalities (Fs) of 0.06 and 0.02 .

The distribution of recaptured tagged cod was similar to that from previous (1997-2002) inshore cod tagging experiments and indicated that cod tagged inshore in early spring or late fall tended to remain inshore, with considerable movement among adjacent bays. Cod tagged and released inshore in 3 Ki , 3La, 3Lb tended to be recaptured within an area bounded by the $3 \mathrm{Kd} / 3 \mathrm{Ki}$ border in the north and the 3Lb/3Lf border to the south (see Fig. 1c for boundaries). Cod tagged in southern $3 \mathrm{~L}(3 \mathrm{Lj})$ were often recaptured either locally or to the south in the neighbouring 3Ps stock area.

During the 2010 assessment meeting, further analysis of the cod tag return information was requested to determine whether the number of reported tag recaptures could be used to estimate the magnitude of recreational fishery landings relative to reported commercial landings during 2007-2009. No direct estimates of recreational landings were provided by Fisheries and Aquaculture Management for the 2009 fishery. In this analysis, the annual estimates of tag reporting rates for each type of fishery (Table 16) were used to adjust the actual number of tags returned annually from each unit area by commercial and recreational fishers (Table 18). The adjustments were area-specific as the ratio of adjusted tag returns from recreational versus commercial fishers varied consistently among unit areas. The number of tags returned was sparse in some areas (3Kh, 3Lf), so data for each unit area were pooled across years for the period 20072009. Recreational tags comprised close to half ($48 \%-58 \%$) of the total tags returned from Bonavista Bay (3La), Trinity Bay (3Lb) and Conception Bay (3Lf), whereas in more northerly regions around Fogo, Twillingate, and Notre Dame Bay (3Ki, 3Kh) and southerly areas (3Lj) commercial fishers returned the largest percentage (73-76\%)(Table 18). Annual estimates of the recreational landings were obtained by multiplying the reported commercial landings by the ratio of recreational to commercial tag returns, then summing across unit areas within each year. This analysis indicated that the recreational landings ranged from 61-64\% of the reported commercial landings during 2007-2009. Note that commercial landings are underestimated so the sum of reported commercial plus estimated recreational landings underestimates total landings which remain uncertain. Nonetheless, this analysis suggests that recreational landings in the past three years are a substantial fraction of the reported commercial landings, especially in unit areas 3La, 3Lb, and 3Lf.

Acoustic telemetry: During March 2007, 164 cod were released in the offshore of 3 K with surgically implanted acoustic transmitters. A further 147 acoustically tagged cod were released in March 2008; both these groups of cod were released with two external Floy tags (one low reward and one high reward) with a combined reward value of $\$ 110$. Acoustically tagged cod were released along with conventionally tagged cod. Two sizes of transmitters were used, Vemco V13s in cod 40-60cm
fork length (FL) and Vemco V16s in >60 cm FL cod. Preliminary results from this ongoing telemetry project, which includes inshore and offshore cod, were reported in Brattey et al. (2008, 2009).

A total of 3 (2\%) of the offshore cod released in 2007 and 35 (24\%) of those released in 2008 have subsequently been detected on receivers moored in the inshore. In addition, two acoustically tagged cod released in 2008 were recaptured inshore in 2008 and had not been detected; transmitters in both these fish were functioning normally at capture. No acoustically tagged cod were reported as recaptured in 2009. These data indicate that overall at least 37 (25%) of the cod released in March 2008 survived the stress of capture and migrated to the inshore during 2008 or 2009; whereas most of those released in 2007 appear to have died immediately after release. Among the cod with V16 transmitters released in 2008, four were detected inshore only in 2008, 5 in both 2008 and 2009, and 7 only in 2009. Batteries in V13 transmitters released in 2008 lasted only one year and gave no detections in 2009, whereas V13s released in 2007 and all V16s lasted at least two years.

The numbers of recaptured acoustically tagged cod relative to the numbers detected (i.e. available to the inshore fishery) also provides an estimate of the exploitation rate (\% harvested) for acoustically tagged cod that migrated to the inshore. For 2008, two were captured and 26 were detected, therefore the estimate is $2 / 26=8 \%$ were harvested. Although based on a small sample size, this estimate agrees well with that obtained from conventionally tagged cod released at the same time (Table 17, 5\%).

The numbers of offshore cod recaptured inshore each month (Fig. 30a) was compared with the numbers of acoustically tagged cod detected inshore (Fig. 30b). There was a distinct seasonal pattern in the both data sets; the timing of recapture of conventionally tagged cod was determined by fishing activity and all recaptured were taken during summer and fall when inshore fisheries were open. However, detections of offshore cod showed a similar pattern; offshore cod appeared inshore during summer and fall, but disappeared during winter during 2007/08 and 2008/09. The maximum number of offshore cod detected inshore in a single month was 14 in September 2008 (Fig 30a); this coincided with the month when the maximum numbers of conventionally tagged offshore cod were captured (21 in September 2008, Fig. 30b). The overall numbers of offshore cod captured or detected from the 2007 releases was much smaller than from the 2008 releases and this likely reflects the high initial tagging mortality of these cod described previously (see above). Cod released in 2008 with smaller V13 transmitters were detected only in summer and autumn 2008 because transmitter batteries had expired by summer 2009.

Acoustically tagged cod were detected on receivers moored at widely dispersed locations across the northeast coast, from Twillingate (array 2) southward to Cape Broyle (array 30) (Fig. 31). The maximum number of offshore cod detected on a single array was 5 on arrays 6,15 , and 27 which are located close to headlands. Only three cod from the 2007 releases were detected, but these cod were recorded at a total of thirteen arrays, mainly in northern 3L (arrays 7-9, 14-19, 20, 22, and 25) and southern 3K (array 6). One fish released offshore in 2007 was detected inshore in summer and autumn (July-November) 2007 on arrays in northwestern Trinity Bay (arrays 15, 16, 17, 19), but disappeared in November and was detected 160 km offshore in the vicinity of the release site in March 2008 (closed triangle, Fig. 31). The same fish was detected again inshore in northwestern Trinity Bay in summer 2008 (arrays 15, 16, 17, 18), disappeared in November 2008, but was detected inshore for a third consecutive summer (arrays 15, 16, 20, 22) in 2009.

Most of the arrays detected at least one offshore cod from the 2008 releases, indicating that offshore cod from a single release site dispersed widely around the northeast coast of Newfoundland during summer and autumn. A notable exception was three arrays within Smith Sound (arrays 17-19) where coastal cod are known to over-winter but no offshore cod from 2008 were detected. The recapture locations of conventionally tagged cod showed a similar pattern (Fig.
29) but were dispersed further northward than the most northerly receiver array. Consequently, some acoustically tagged offshore cod that migrated to these northerly inshore areas would not have been detected.

In 2008, the first offshore cod was detected on receivers in the inshore on 7 July, but the median date of first detection in 2008 was 12 August (Fig. 32). The cumulative date of first detection was protracted and extended to the end of the year, indicating that some offshore cod were not detected on the inshore arrays until late in the year. In 2009, there were fewer detections and the first offshore cod was detected inshore on 28 June; subsequent detection times initially overlapped with those from 2008 through July and August but were slightly earlier through September and ended sooner (in October) in 2009 compared to 2008. Overall, arrival dates in the inshore during 2008 and 2009 were mostly during mid- to late July and throughout August which is somewhat later than the traditional times observed in the 1980s when offshore cod would typically begin to appear inshore in late June. These findings indicate that sentinel and stewardship fishery catches may comprise different proportions of coastal and offshore components of the stock depending on when fishing occurs. Fishing prior to mid-July in the past two years would likely encounter mostly coastal cod, whereas later in the season a mixture of coastal and offshore components would be available.

Results for 2009 from ongoing acoustic telemetry of inshore cod (Brattey et al. 2008b) were not updated at the 2010 assessment as the transmitter batteries have now expired in most of the inshore cod released up to the end of 2007. In addition, many coastal receivers could not be retrieved due to adverse weather conditions in the autumn of 2009 and the data were not available.

HYDRO-ACOUSTIC SURVEYS OF COD IN SMITH SOUND

Hydro-acoustic studies have been conducted in an effort to quantify a large aggregation of cod that over-winters in Smith Sound in western Trinity Bay (Rose 2003); this aggregation was first observed in 1995. Most cod leave Smith Sound from late spring to early summer and disperse around the coast in summer, but tagging and telemetry studies show that these cod show strong over-wintering site fidelity and many of the same individuals return to Smith Sound the following autumn or early winter (Brattey et al. 2008b).

Estimates of the over-wintering biomass of cod within Smith Sound have varied considerably. From hydro-acoustic surveys in January-February, the average index of biomass has ranged from $15,000 \mathrm{t}$ in 1999 to about $26,000 \mathrm{t}$ in 2001 (Rose 2003). There was no comparable January-February survey of Smith Sound during 2005, but surveying resumed in 2006. Average indices of biomass were stable in 2006 at 16,500-18,500 t , but declined in 2007 to $13,000 \mathrm{t}$, and to $7,200 t$ in 2008. The estimated biomass from a survey in 2009 was $600 t$, however, it is uncertain whether the results are comparable with previous years as the 2009 survey was conducted later (1-3 April) than those used to provide estimates for previous years. Biological sampling has been sporadic, but samples collected during the 2004 survey typically included a wide range of cod sizes (30-120 cm).

BEACH SEINE SURVEYS

Information on recent year-classes is available from a beach seining survey in Newman Sound, Bonavista Bay (Gregory et al. 2006). The survey catches cod mainly of ages 0 and 1 , with age 0 being much more strongly represented. New information from this survey in 2009 was presented at the 2010 assessment.

The pre-recruit ages sampled in this survey are not adequately represented in surveys with other gear types and information from this survey can provide useful early indications of the relative
strength of recent year classes entering the population. Trends in the numbers of age 1 cod from the beach seine survey are illustrated in Fig. 33. Although the beach seine survey has limited spatial coverage, the information on age 1 cod from this study has been consistent with the sentinel gillnet indices for the same year-classes at older ages (DFO, 2007b). Recent year-classes (2003-2006, 2008) are all weak at age 1 and the 2005 year-class is the lowest in the time-series. In recent years only the 2007 year class at age 1 is close to the average for year-classes produced during 1995-2008. Numbers of age 0 cod caught at Newman Sound and several other sites during 2009 surveys were higher than those observed in 2008. However, survival to age 1 can be highly variable; therefore, the strength of the 2009 year-class is currently uncertain.

INSHORE TRAWL SURVEY

This joint industry-DFO survey was initiated in July-August 2006 and continued in August 2007, 2008, and 2009. The surveyed area included the coastal zone from 15 to 200 m depth and the intent was to cover the area where recent inshore commercial fisheries have taken place, within the 12 nm limit. The survey followed a stratified random design. A stratification scheme in place since the mid-1990's for "inshore" strata employed on the DFO multi-species spring and autumn surveys (generally beginning at 50 m) was available, but further stratification landward of this was required. The allocation of sets was apportioned separately for two areas and within each area set allocation was proportional to stratum size. The new strata most adjacent to land (within which most of the fishery was to occur) encompassed an area of $3837 \mathrm{sq} . \mathrm{n}$. mi and these were allocated 110 sets. Perimeter strata on the seaward side, but adjacent to the inshore strata taken from the existing DFO multispecies stratification, covered an area of $9095 \mathrm{sq} . \mathrm{n}$. mi; this area was allocated 65 sets. With the exception of trawl doors and restrictor cables on the warps, each vessel used the same gear employed in the Northern Gulf (4RS-3Pn) and Southern Gulf (4T) cod surveys, i.e., a Star Balloon 300 trawl with Rockhopper footgear and a 40 mm liner in the cod-end. Vessel speed was 2.5 knots. A net monitoring system that enabled measurements of door spread and opening was used. An estimation of wingspread was then possible (approximately $15.8 \mathrm{~m} \sim 52 \mathrm{ft}$) for swept area estimates of biomass and abundance. In spite of the rough bottom that is characteristic of many near-shore areas, the survey coverage was reasonably good in each year, with >=140 sets successfully completed.

For analysis, catches in each stratum were grouped into the same three inshore areas as described in the sentinel survey results, and strata within these three areas were further subdivided into "inshore" (adjacent to land) and "perimeter strata", as described above. The "inshore" strata correspond to the area closest to shore where most fishing for cod has taken place in the post-moratorium period. These strata encompass a much smaller area than the perimeter strata in northern and southern areas, but a similar ratio in the central area; the area ratios for "inshore" versus "perimeter" strata for northern, central, and southern areas are $0.21,1.16$, and 0.39 , respectively. Survey catches have often been more than ten times higher in the "inshore" strata ($<50 \mathrm{~m}$ depth) compared to "perimeter" strata (depth 50 m to 200 m) and lowest in the northern area (Table 19). The results indicate that at the time of the survey in August, cod tend occur at much higher densities in the area closest to shore in all three regions. For each inshore area the time series is still rather short to interpret trends in catch rates or to use the data as an index of abundance or biomass; early indications are that this survey has high inter-annual variability, especially in the central and southern regions.

Lengths of cod sampled from the entire surveyed area ranged from 10 cm to $>100 \mathrm{~cm}$ with strong modes at between 12 cm and 23 cm in most years; the exception was the 2009 survey when the length distribution has more larger (> 65 cm) fish and a smaller mode at about 20 cm (Fig. 34). The corresponding age distributions indicate a broad range of ages (1-10) in most years, extending to a maximum of age 17. Ages 1-3 are most strongly represented in 2006-2008, comprising about 70\% of the numbers caught in those years. Age 1's in the 2008 survey (2007 year-class) were the most strongly represented overall, and these are relatively well represented at age 2 in the 2009 survey although the overall catch in 2009 was lower. The 2009 survey catch was unusual and comprised much larger proportions of older cod, especially age 7 (2002 year-class). The time-series of age compositions suggests a declining trend in the numbers of young fish (especially ages 2-3) and an increase in the numbers of older cod (ages 6-9) over the period 2006-2009. This is consistent with the trends seen in commercial and sentinel fishery catches over the same period.

A time-series of mean numbers per tow at age were also computed for the three inshore areas (northern, central, and southern) as defined in the sentinel fishery section. Only four years of data are available, but the results for each area are variable among regions and among years within regions (Table 20). The age structure is reasonably broad, extending up to age 8 in the northern area and to age 12 in most years in the central and southern areas. Catch rates are higher for almost all ages in central and southern areas relative to the northern area. Ages 1-3 are most strongly represented, especially in the southern area. However, there are no clear indications of individual cohorts tracking consistently through the time series in any of the regions.

SCIENCE LOGBOOKS

Catch and effort data for the $<35 \mathrm{ft}$ sector from log-books for the 2008 and 2009 fisheries were presented at the 2010 assessment. Fishers that participate in the cod fishery are required to return logbooks which include information on the weight of fish caught and the type and amount of gear fished. The number of participants in the fishery has been similar over the past four years; the total number of < 35 ft vessels that fished for cod in 2 J 3 KL was 1,847 in 2006, 2,092 in 2007, 2,048 in 2008 and 1,812 in 2009. The return rate for logbooks since the stewardship fishery opened in 2006 has declined slightly, from 89\% in 2006 to 77% in 2009.

For gillnets, the number of fishing set records (amount of gear and catch weight) available to calculate catch rates now exceeds 75,800 for the 1998-2002 and 2006-2009 period combined. Within each inshore unit area (see Figure 1c) there are typically several hundred set records each year (Table 21) to investigate catch rate trends; the only exceptions are for inshore 2 J during 19982002 and 3Lq during 2006-2009 where there are ≤ 15 records per year.

Median commercial gillnet catch rates were calculated separately for each unit area for years when the directed inshore cod fishery was open (Fig. 35). There were insufficient data to produce a time series for other gear types (i.e. line-trawl or hand-line) and there was no directed fishery for cod during 2003-05. Catch rates in the northern (2J, 3Ka, 3Kd) and southern unit areas (3Lf, 3Lj) have been lower than those in the central area (3Ki, 3La, 3Lb) after 1998, suggesting lower cod densities in these areas. Catch rates were increasing in all areas during 2006-2008 and continued to increase in 2009 in the 3La, 3Lb and 3Lf, but declined in the more northerly and southerly areas. Catch rates within each region were highly variable; for example, in 3La and 3Lb in 2007-2009 the upper $90^{\text {th }}$ percentile often exceeds 150 kg per net, whereas the lower $10^{\text {th }}$ percentile is often less than 20 kg per net in the same year. Areas 3La and 3Lb had the highest median catch rates in 2009, at 81 and $83 \mathrm{~kg} /$ net, respectively.

There have been many changes in the management plans for the recent inshore cod fisheries during 1998-2002 and 2006-09, particularly with respect to the duration and timing of the fishery.

Due to the changes in the seasonal availability of cod in different regions, this could influence catch rates in a manner that is not directly related to stock size. Consequently, it is uncertain to what degree commercial catch rates are indicative of trends in stock size.

The catch rate trends from log-book data can be compared in general terms with those from the sentinel fishery. However, the log-book catch rates are expressed in terms of weight, whereas sentinel catch rates are calculated in terms of numbers. Also, log-book data have been analyzed by unit area, whereas sentinel data are grouped into three broader regions. Nonetheless, the trends are broadly similar. In terms of overall catch rates the sentinel and log-book data are consistent in that catch rates are highest in unit areas in the central portion of the inshore and there has been an increasing trend in both series during 2006-2008. However, sentinel catch rates (in numbers) show a decline in all three regions in 2009, whereas log-books indicate a decline in the northern unit areas and southerly areas, but a continued increase in the central area. This difference may reflect the shift in age composition in 2009, with older heavier fish in the catch in 2009 (Fig. 7) compensating for the lower catch rates in terms of numbers in the central area, but not in the northern and southern areas where large cod are less abundant.

RECRUITMENT INDEX

Information on changes in catch rates of young fish (\leq age 4) was examined to determine if a recruitment index could be developed for the inshore central area. For this area, a time-series of catch rate information is available from the beach seine survey, DFO-industry inshore mobile survey, sentinel line-trawl, sentinel $31 / 4^{\prime \prime}$ mesh gillnet, and sentinel $51 / 2^{\prime \prime}$ mesh gillnet. Initially, a preliminary screening of pair-wise correlations of catch rates-at-age between surveys was examined. This revealed many inconsistencies in the data, with poor correlations between many of the pairs. The final input data set was restricted to:
i) Sentinel survey $31 / 4^{\prime \prime}$ mesh gillnet, ages 3 and 4, 1995-2009 (mean no. fish per net)
ii) Sentinel survey $51 / 2^{\prime \prime}$ mesh gillnet, ages 3 and 4, 1995-2009 (mean no. fish per net)

A multiplicative model was used to estimate the relative year class strength from these data. Only year-classes with two or more observations were included in the input and one zero value for the 1992 year-class from sentinel $51 / 2^{\prime \prime}$ mesh gillnet was excluded.

On a log-scale the model can be written as follows:

$$
\log \left(I_{s, a, y}\right)=\mu+Y_{y}+(S A)_{s, a}+\varepsilon_{s, a, y}
$$

where:
$\mu=$ overall mean
$s=$ survey subscript
a = age subscript
$y=$ year class subscript
$I=$ Index (mean nos. per tow)
$Y=$ year class effect
SA = Survey * Age effect, and
$\varepsilon=$ error term.
Estimation of model parameters was conducted using PROC MIXED in SAS/OR software. The input data were equally weighted. Each of the model terms (year-class and survey-age) was significant in all analyses. Residual plots (not shown here) indicated no trends. The estimated
least-squares means are plotted in Fig. 36. The results indicate that the 1992, 2000 and 2002 yearclasses are well above the average of those produced during 1992-2006. Among the four most recent year-classes 2004 is average and the others $(2003,2005,2006)$ are estimated to be weaker than average. These year-classes are now the main contributors to the exploitable biomass. These results are generally consistent with recruitment information from the offshore.

Several additional exploratory analyses were also conducted, including a two-year retrospective analysis and including/excluding data on age 3 and age 4 from the DFO-industry inshore mobile survey and the sentinel line-trawl survey. These analyses generally gave poorer fits but similar trends to the final analyses depicted in Figure 36.

POPULATION BIOLOGY

The information on maturity, growth and condition reported in this section is derived from sampling during the autumn offshore bottom-trawl surveys.

MATURITY

Annual estimates of age at 50% maturity (A50) for females from the 2 J 3 KL cod stock, collected during annual autumn DFO research bottom-trawl surveys, were calculated as described by Morgan and Hoenig (1997). Maturation is estimated by cohort. The estimated age at 50% maturity (A50) was generally between 6.0 and 7.0 among cohorts produced in the late-1950's and around 6.0 among those produced during the late 1960's to the early 1980's, but declined thereafter (Fig. 37).

Age at maturity has remained low but variable (4.9-5.7) for the 1990-2005 cohorts, with no clear trend. Estimates for the last three cohorts (2003-05) are more uncertain because only younger ages are available to estimate A50. Estimates of A50 for the 1990 cohort onwards from the 2009 assessment are overlaid on the 2010 assessment results (Fig. 37). This comparison shows that the addition of one more year of data mainly influences the most recent cohorts (2004 and 2005) for which there is less data. Males show a similar trend in A50 over time (data not shown), but tend to mature about one year earlier than females.

The proportion of female cod that are mature at young ages has increased over time particularly among cohorts produced from the late 1980s onward (Table 22, Fig. 38). For example, the percentage of age 6 cod that are mature averaged about 50% in the 1980's, but has increased to about 80% since the early 1990s. The estimates show considerable inter-annual variability, notably for ages 5 and 6 . Values for age at maturity among recent cohorts (2002-2005) show a slight trend towards maturation at older ages but are more uncertain.

The number of cod older than age 6 in the offshore has increased in the past 2-3 years, but the age composition of the offshore components of 2 J 3 KL cod remains extremely contracted relative to the pre-moratorium period. A spawning stock biomass that consists mainly of older fish, or a broad age range, may result in a longer time span of spawning (Hutchings and Myers 1993; Trippel and Morgan 1994). Older, larger fish also produce more viable eggs and larvae (Solemdal et al. 1995; Kjesbu et al. 1996; Trippel 1998; Stares et al. 2007). However, Morgan et al. (2007) found that there was no consistent relationship between age-composition of the spawning stock and recruitment in three populations of cod including those in 2J3KL. To date, the increase in SSB in the offshore has not translated into a notable improvement in recruitment.

GROWTH

The mean lengths-at-age and mean weights-at-age of cod sampled during the autumn surveys (Tables 23, 24; Figs. 39ab, 40ab) illustrate that the changes in weights and lengths varied with Division. There was a strong decline in Division 2J and Division 3K from the late 1970's to the early 1990's followed by an increase in length-at-age, while there was little or no decline in Division 3L over that period. In 3K ages 4 to 6 and in 3L ages 4 to 7 were all smaller at age in 2009 than in 2007 and 2008.

Weight-at-age also showed a steep decline in Division 2 J and 3 K during the same period that lengths were declining and as with length-at-age there was less of a trend in Division 3L. In Division 3K and 3L weights at ages 4-7 were substantially less in 2009 than they had been in 2007 or 2008.

To examine whether there has been significant change in growth length and weight increments were calculated from mean length (or weight) at age a-1 in year y - 1 to length (or weight) at age a in year y. The growth increments were first modeled as a function of age

$$
\operatorname{Ln}\left(\Delta G_{a, y}\right)=\tau+\beta_{a}+\varepsilon
$$

where $\Delta G_{a, y}$ is the length (or weight) increment for a cohort at age a in year y, τ is the intercept, β_{a} is the age effect and ε is normally distributed error. The residuals from this fitted model were then tested for a significant effect of year using a generalized linear model with an identity link and normal error. For 2 J and 3 K ages 2 to 6 over 1978 to 2009 were used and for 3L ages 2 to 7 were used over the 1985 to 2009 period. In all Divisions there was a significant year effect on growth in length ($2 J, X^{2}=63, d f=30, p<0.0005 ; 3 K, X^{2}=123, d f=30, p<0.0001 ; 3 L, X^{2}=42, d f=23, p<0.01$) and weight ($2 \mathrm{~J}, \mathrm{X}^{2}=116, \mathrm{df}=30, \mathrm{p}<0.0001$; $3 \mathrm{~K}, \mathrm{X}^{2}=114$, $\mathrm{df}=30, \mathrm{p}<0.0001$; $3 \mathrm{~L}, \mathrm{X}^{2}=41.5, \mathrm{df}=33, \mathrm{p}<0.02$). Growth in length was significantly less in 2009 (from fall 2008 to fall 2009) than in 2007 in Divisions 3K and 3L and greater in 2009 than in 2008 in Division 2J. The length increments in 2007 in Divisions 3 K and 3 L were among the highest observed. Growth in weight was significantly less in Divisions 3K in 2009 than in 2007 or 2008 and in 3L in 2009 than 2007. Growth in weight in 2007 was amongst the highest observed in these Divisions.

CONDITION

Information on condition is obtained from sampling during the autumn survey and it should be noted that there is a strong seasonal cycle in condition of cod, with lowest values typically occurring in spring just after spawning. Values reported here are based on sampling when condition would be near the high end of the seasonal cycle.

Condition can be expressed in various formulations. One formulation is Fulton's condition factor $\left(\mathrm{W} / \mathrm{L}^{3}\right.$ * 10^{5}), where W is either the gutted weight of the fish or the liver weight in kg , and L is the length in cm . Gutted condition and liver indices were calculated for each Division for 3 length classes ($27-29 \mathrm{~cm}, 36-38 \mathrm{~cm}$ and $48-50 \mathrm{~cm}$)(Tables 25, 26; Figs. 41, 42). In Divisions 2J and 3K gutted condition at length declined during the early 1990's and then increased to the levels observed prior to the 1990's. Gutted condition at length showed little trend over time in Division 3L (Fig. 41). In both Division 3K and 3L there was a decline in gutted condition in 2009 compared to 2008. For Division 3K and 3L, liver condition increased up to the early 1990's. Liver condition has declined in 2009 in these Divisions. In Division 2J, there is an indication of lower liver condition after the 1990's, particularly for bigger fish (Fig. 42).

Another way to examine condition without an effect of length is to calculate relative condition (relative K). A length versus gutted weight regression was fit for each Division. The condition index
is then observed condition divided by the condition predicted from the length-weight regression for a fish of that length. Relative liver condition (relative LK) was calculated in a similar fashion using a liver weight-length regression. Relative K and relative LK for each year were estimated for each Division using a generalized linear model with an identity link and a gamma error, with year as a class variable (Figs. 43 and 44). Both Division 2 J and 3 K show lower relative K in the early 1990's. There is little trend in Division 3L, but condition is estimated to have been high in 1995. The cause of this large estimate has not been examined. Relative K declined in all Divisions in 2009. There was a significant year effect in all three Divisions and relative K was significantly less in 2009 than in 2008 in both Division 3K and 3L. Relative LK showed a decline in the late 1980's early 1990's in Division 2J. Relative LK subsequently increased but did not reach the levels of the early 1980's. However, in all Divisions there has been a decline over the last 2 to 3 years. In each Division there was a significant year effect. Relative LK was significantly lower in 2009 than in 2008 or 2007 in all three Divisions. In 2J this continues a trend to lower relative LK. In Division 3K relative LK was the lowest since 1985 in 2009 and since 1990 in Division 3L.

In conclusion, in 2009 growth and condition were lower than in recent years particularly in Divisions 3K and 3L. Fish were smaller at age and weighed less in 2009 after a couple of years of very good growth. In addition body and liver condition were also less. Relative liver condition was the lowest it has been since the late 1980's in both 3K and 3L.

Overall, the biological data based on sampling during the autumn research surveys indicate that aspects of stock productivity such as growth and condition have improved over values in the 1990s, but are below the peak values observed in the early part of the time series. Growth and condition declined in 2009, notably in 3K and 3L. The apparent lack of a strong improvement in growth rates in spite of greatly reduced population size suggests that the stock is not as productive as it was in the past. Age-at-maturation also remains low which suggests the population may not be as effective at producing recruitment as it was in the past. Recruitment has not improved significantly, although SSB has increased and the age structure in the offshore has expanded.

POPULATION ANALYSIS

There have been no accepted population models that capture the dynamics of the 2 J 3 KL stock as a whole since the early 1990's. Since the mid-1990's there have been strong indications that the inshore and offshore components of the stock were showing different dynamics; furthermore, the dynamics also appear to differ north to south along the coastal region of 2J3KL (i.e., Fig. 23). An analytic model (ADAPT) that attempted to capture the dynamics of the inshore components of the stock was introduced in 2001. These analyses, using inshore catch from the post-moratorium period and tuned with indices from the inshore, were refined and modified in various ways as new data became available at assessments conducted during 2001-06; in these analyses the offshore components of the stock were at very low levels and were assumed to be contributing little to catches and indices in the inshore. The "inshore" SPA was refined to capture the dynamics of the inshore components of the stock inhabiting only the central inshore region (i.e., 3Ki, 3La, 3Lb) where resident inshore cod appeared to be most abundant. These analyses were not continued in the 2008 assessment partly because the total catch from the inshore fishery in 2007 was unknown. Evidence from tagging and telemetry also indicated that the inshore fishery catch in 2008, and hence the indices available to tune an inshore SPA, likely included increasing numbers of fish from the offshore (Brattey et al. 2009). In light of these findings, and the lack of reliable catch information, the modeling approach described above to capture the dynamics of the inshore component in the central area was abandoned.

The lack of reliable information on total catch for many stocks has led to the development of fishery independent assessment methods such as SURBA (Beare et al. 2005; Needle, 2008; Mesnil et al.
2009). SURBA is based on the separable mortality model developed by Cook (1997) and incorporates a cohort model in which annual age-specific total mortality rates are divided into age effects and year effects. The mortality rates can be accumulated along a cohort and applied to estimates of recruitment to generate age-based estimates of stock size. Surveys generally provide relative estimates of stock size; consequently, SURBA can only provide relative estimates of stock size, but the approach provides absolute estimates of total mortality rates. The tagging studies are a useful complement to the SURBA approach as they can provide independent estimates of fishing mortality rates (F) which can be subtracted from Z to provide estimates of natural mortality (M).

Some exploratory analysis of the 2 J 3 KL autumn survey data were conducted using SURBA and presented at the 2009 assessment, but these analyses were not used directly in the formulation of advice. More recently, Cadigan (2010) developed a SAS (Cary, NC) based implementation of the basic SURBA model that provides greater flexibility in model settings compared to the basic SURBA package. At the 2010 assessment this approach was applied to the autumn DFO RV survey index for cod. The input data included a vector of mean numbers per tow at age (19932009, ages 2-8) from the DFO RV autumn survey of the index strata of 2J3KL. The full time series of survey data could not be used in this analysis because of a change in the selectivity in the fishery before and after the moratorium. This analysis provided estimates of total mortality, relative recruitment strength, and relative estimates of total and spawning biomass for the portion of the stock present in the surveyed area (index strata).

Several SURBA formulations were presented during the assessment. These were conducted to examine the sensitivity of model results to the following: (i) differing assumptions about survey catchability at age (domed versus flat-topped), (ii) inclusion of 2004 survey results (which had incomplete coverage), (iii) the exclusion of the 1993 and 1994 survey results (which were based on Engels data converted to Campelen equivalents, whereas the remainder of the data were based on actual Campelen catches).

In the final SURBA analysis, survey data from 1993, 1994, and 2004 were excluded. This analysis indicated that total biomass was low throughout the 1990s and early 2000s, but has increased (23\% per year) since 2004 (Fig. 45). Spawning stock biomass was extremely low throughout 19932004, but on average increased 83% per year from 2004 to 2008; the 2009 value was similar to 2008 (Fig. 45).

The relative strength of the 1998-2002 year-classes at age 2 are all above the 1993-2007 average, whereas the 1993-1996 and 2003-2004 year-classes are below average (Fig. 46). The confidence intervals for the 1998-2001 year classes are large and this is partly a reflection of their inconsistent appearance in fall survey catches (see Fig. 14). The strength of the most recent year class (2007) is uncertain as it is based on only two data points, i.e. catches at age 1 and age 2 in the 2008 and 2009 autumn surveys, respectively. The trends in post-moratorium recruitment from the SURBA analysis generally agree with the recruitment index based on data on ages 3 and 4 from the inshore.

The recent increases in offshore biomass and SSB were mostly due to improved survival and growth of the 1998-2002 year-classes which are generally above the average for the postmoratorium period. The 2003 and 2004 year-classes are weaker and these have now entered the SSB; consequently, the recent rate of stock growth is unlikely to continue in the short term. The lack of increase in SSB in 2009 may be reflecting the influence of these weaker year classes. In addition, subsequent year classes (2005 and 2006) that are entering the SSB in 2010 (at ages 5 and 4) and are estimated at about the 1993-2007 average.

Estimates of the total mortality rate (Z) from the cohort analysis (ages 4-8) indicate that the annual instantaneous rate of mortality was high (~ 1.0) during 1995-1999, increased further to 1.5 during

2002, but declined substantially during 2003-2006 (Fig. 47). The average value for 2007-2009 is 0.42 which corresponds to 35% mortality per year. The average value of Z for 2007-2009 from the SURBA analyses is slightly higher than the direct estimates (0.28) from survey data (see Fig. 18) because the SURBA analyses includes older ages which tend to have higher Z values. Overall, the total mortality rate has not increased in the recent period (2006-2009) in spite of re-opening of the fishery in the inshore; this suggests that the rate of natural mortality has declined substantially. The tagging studies indicated low exploitation rates for cod tagged offshore, and the annual percentages (harvest rates) given in Table 17 correspond to annual instantaneous rates for F of 0.06 (2008) and 0.02 (2009). This suggests that in the past two years the portion of total $Z(=0.42)$ that can be accounted for by fishing is small.

In terms of providing information on trends in the stock as a whole, the SURBA analysis uses survey information from index strata only and assumes that the fraction of the stock in the index strata at the time of the survey is representative of the whole stock and is constant over time. This validity of this assumption is difficult to evaluate as there are few time-series data on the abundance of cod outside the index strata. Deep-water strata are also fished during the autumn survey, but catches of cod in deep water in the past nine years have been low (Table 10). Inshore strata were added to the overall surveyed area during 1995, but these have not been fished consistently enough to be informative about this assumption. The time series of acoustic estimates of over-wintering biomass for cod in Smith Sound, Trinity Bay, provides some inshore data and shows a progressive decline from a high of $26,000 \mathrm{t}$ in 2001 to much lower values in the recent period. Tagging and telemetry data (Brattey et al. 2008b) suggest that this decline is not due to high mortality through fishing or natural causes, but more likely represents a redistribution of overwintering inshore cod to other inshore areas that were not surveyed in winter, or to the offshore. Consequently, some of the recent increase evident in the offshore survey time-series (and decline in Z) could be due to immigration of coastal cod that have changed their migration patterns. This issue was discussed in detail at the 2009 assessment and it was inferred that while some movement from inshore was possible, it could not account for the large increases observed in the offshore (Brattey et al. 2009). In the late 1990's and early 2000s when offshore abundance and biomass indices were at a very low level, aggregations of large cod were observed inshore of the surveyed area during winter, whereas larger, older cod (>age 6) were rarely encountered in offshore survey catches. During this period, the fraction of the total stock that was outside the index strata was likely greater than observed currently. Consequently, the SURBA analysis likely underestimates overall stock size for that period, particularly with respect to SSB. Although data on cod abundance in the inshore in winter are limited, most of the stock now appears to be offshore and for the most recent period (2006-2009) the autumn survey has provided information on trends in the stock as a whole.

PRECAUTIONARY APPROACH

Under the DFO precautionary approach (PA) framework, upper and lower (limit) reference points need to be determined with regard to spawner biomass in order to define the boundaries of the Cautious, Critical and Healthy zones (Shelton and Sinclair 2008). In the 2003 Zonal assessment of cod stocks it was determined that a spawner biomass of $150,000 \mathrm{t}$ represented a milestone for 2 J 3 KL stock recovery, at which point it may be possible to determine an appropriate limit reference point for the 2 J 3 KL stock as a whole. It was considered that an appropriate limit reference point would be a level greater than $300,000 \mathrm{t}$ of SSB and that recovery to this level would likely take several years. Subsequent assessments considered the status of inshore and offshore components separately as they were showing different dynamics, and there were no requests regarding the PA in the Terms of Reference (ToR) for assessments in 2006 or 2007. At the 2009 ZAP, the PA issue was re-introduced in the ToR and there were several presentations regarding the PA (see DFO 2009b). However, no further analysis regarding the 2 J 3 KL cod stock as a whole
with respect to the PA was presented at the 2010 RAP. Nonetheless, the 2010 RAP concluded that although no specific limit reference point had been established, the 2J3KL stock was well below any reasonable value and remains in the critical zone. If management wished to adhere strictly to principles of the PA, this would require that catches in 2010 would be at the lowest possible level. This would include no directed fishing and measures to reduce cod by-catch in other fisheries.

REFERENCES

Beare, D.J., Needle, C.L., Burns, F. and Reid, D.G. 2005. Using survey data independently from commercial data in stock assessment: an example using haddock in ICES Division Via. ICES J. Mar. Sci. 62: 996-1005.

Bishop, C.A. 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. NAFO SCR Doc. 94/43, Ser. No. N2413. 23 p.

Bishop, C.A., Anderson, J., Dalley, E., Davis, M.B., Murphy, E.F., Rose, G.A., Stansbury, D.E., Taggart, C., and Winters, G. 1994. An assessment of the cod stock in NAFO Divisions 2J+3KL. NAFO SCR Doc. 94/40, Ser. No. N2410. 50 p.

Bishop, C.A., Murphy, E.F., Davis, M.B., Baird, J.W., and Rose, G.A. 1993. An assessment of the cod stock in NAFO Divisions 2J+3KL. NAFO SCR Doc. 93/86, Ser. No. N2271. 51 p.

Bishop, C.A., and Shelton, P.A. 1997. A narrative of NAFO Div. 2J3KL cod assessments from extension of jurisdiction to moratorium. Can. Tech. Rep. Fish. Aquat. Sci. 2199: 66 p.

Bishop, C.A., Stansbury, D.E., and Murphy, E.F. 1995. An update of the stock status of Div. 2J3KL cod. DFO Atl. Fish. Res. Doc. 95/34.

Bowering, W.R., and Orr, D.C. 2004. By-catch of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) in the Canadian fishery for northern shrimp (Pandalus borealis, Koyer) in NAFO Subarea 2 and Divisions 3KL. NAFO SCR Doc. 04/67.

Brattey, J. 1999. Stock structure and seasonal migration patterns of Atlantic cod (Gadus morhua) based on inshore tagging experiments in Div. 3KL during 1995-97. DFO Can. Stock Ass. Sec. Res. Doc. 99/103. 19 p.
2000. Stock structure and seasonal movements of Atlantic cod (Gadus morhua) in NAFO Div. 3KL inferred from recent tagging experiments. DFO Can. Stock Ass. Sec. Res. Doc. 2000/084.

Brattey, J., and Cadigan, N.G. 2004. Estimation of short-term tagging mortality of adult Atlantic cod (Gadus morhua). Fisheries Research 66: 223-233.

Brattey, J., and Healey, B.P. 2003. Exploitation rates and movements of Atlantic cod (Gadus morhua) in NAFO Div. 3KL based on tagging experiments conducted during 1997-2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/032.
2005. Exploitation and movements of Atlantic cod (Gadus morhua) in NAFO Div. 3KL: further updates based on tag returns during 1995-2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/047.
2007. Exploitation of Atlantic cod (Gadus morhua) in NAFO Div. 3KL: tagging results from the reopened fishery in 2006. DFO Can. Sci. Advis. Sec. Res. Doc. 2007/027.

Brattey, J., Cadigan, N.G., Dwyer, K., Healey, B.P., Morgan, M.J., Murphy, E.F., Parsons, D., and Power, D. 2008a. Assessments of the cod (Gadus morhua) stock in NAFO Divisions 2J3KL (April 2007 and April 2008). DFO Can. Sci. Advis. Sec. Res. Doc. 2008/047.
2009. Assessment of the cod (Gadus morhua) stock in NAFO Divisions $2 \mathrm{~J}+3 \mathrm{KL}$ in 2009. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/061.

Brattey, J., Healey, B.P., and Porter, D. 2008b. Northern cod (Gadus morhua) 16 years after the moratorium: new information from tagging and acoustic telemetry. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/047. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/086.

Brodie, W. 2005. A description of the autumn multispecies surveys in SA2+ Divisions 3KLMNO from 1995-2004. NAFO SCR Doc. 05/8.

Brodie, W. and Stansbury, D. 2007. A brief description of Canadian multispecies surveys in SA2+ Divisions 3KLMNO from 1995 to 2006. NAFO SCR Doc. 07/18. Ser. No. N5366.

Cadigan, N. 2010. Trends in Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps cod (Gadus morhua) stock size based on a separable total mortality model and the Fisheries and Oceans Canada Research Vessel survey index. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/015.

Cadigan, N., Brattey, J. 2003. Semi-parametric estimation of tag loss and reporting rates for tagrecovery experiments using exact time-at-liberty data. Biometrics 59: 869-876

Cadigan, N. G., and Brattey, J. 2006. Reporting and shedding rate estimates from tag-recovery experiments in Atlantic cod (Gadus morhua) in coastal Newfoundland. Can. J. Fish. Aquat. Sci. 63: 1944-1958.
2008. Reporting rates from cod tagging studies in NAFO Divisions 2J3KL and Subdivision 3Ps. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/031.

Colbourne, E.B., Craig, J., Fitzpatrick, C., Senciall, D., Stead, P. and Bailey, W. 2008. An assessment of the physical oceanographic environment on the Newfoundland and Labrador Shelf during 2007. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2008/020.
2009. An assessment of the physical oceanographic environment on the Newfoundland and Labrador Shelf during 2007. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2009/ in prep.
2010. An assessment of the physical oceanographic environment on the Newfoundland and Labrador shelf in NAFO Subareas 2 and 3 during 2009. NAFO SCR Doc 10/16. Serial No. N5770

Cooke, R.M. 1997. Stock trends in six North Sea stocks as revealed by an analysis of research vessel surveys. ICES Journal of Marine Science 54: 924-933.

DFO 2007a. Accounting for changes in natural mortality in Gulf of St. Lawrence cod stocks. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2007/002.

2007b. Stock assessment of Northern (2J3KL) cod in 2007. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2007/018.

2008a. 2007 State of the ocean: physical oceanographic conditions in the Newfoundland and Labrador Region. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2008/017.

2008b. 2007 State of the ocean: chemical and biological oceanographic conditions in the Newfoundland and Labrador Region. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2008/038.

2008c. Assessment of capelin in SA2 + Div. 3L in 2008. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2008/054.

2009a. Proceedings of the National Workshop on the impacts of seals on fish populations in eastern Canada (Part 2): 24-28 November 2008. DFO Can Sci. Advis. Sec. Proceed Ser. 2009/020.

2009b. Stock assessment of Northern (2J3KL) cod in 2008. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2008/034.

2009c. Stock assessment of Northern (2J3KL) cod in 2009. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2009/009.
2010. Stock assessment of Northern (2J3KL) cod in 2010. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2010/019.

Fudge, S.B., and Rose, G.A. 2008. Life history co-variation in a fishery depleted Atlantic cod stock. Fish. Res. 92: 107-113.

Gavaris, S., and Gavaris, C.A. 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland region. In Sampling commercial catches of marine fish and invertebrates. Edited by W.G. Doubleday and D. Rivard. Can. Spec. Publ. Fish. Aquat. Sci. 66. pp. 178-182.

Gregory, R.S., Morris, C., Sheppard, G.L., Thistle, M.E., Linehan, J.E., and Schneider, D.C. 2006. Relative strength of the 2003 and 2004 year-classes, from nearshore surveys of demersal age 0 and 1 Atlantic cod in Newman Sound, Bonavista Bay. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/038.

Hutchings, J.A., and Myers, R.A. 1993. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 50: 2468-2474.

Jarvis, H., and Stead, R. 2005. Results of the 2005 fish harvesters' telephone survey on the status of northern (2J3KL) cod. DFO Can. Stock Ass. Sec. Res. Doc. 2005/092.

Kjesbu, O.S., Solemdal, P., Bratland, P., and Fonn, M. 1996. Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 53: 610-620.

Lilly, G.R. 1994. Predation by Atlantic cod on capelin on the southern Labrador and Northeast Newfoundland shelves during a period of changing spatial distributions. ICES Mar. Sci. Symp. 198: 600-611.
1995. Did the feeding level of the cod off southern Labrador and eastern Newfoundland decline in the 1990's? DFO Atl. Fish. Res. Doc. 95/74. 25 p.
1998. Size-at-age and condition of cod in Divisions 2J+3KL during 1978-1997. DFO Can. Stock Ass. Sec. Res. Doc. 98/76.

Lilly, G.R., Brattey, J., and Davis, M.B. 1998b. Age composition, growth and maturity of cod in inshore waters of Divisions 2J, 3K and 3L as determined from sentinel surveys (1995-1997). DFO Can. Stock Assess. Sec. Res. Doc. 98/14.

Lilly, G.R., and Murphy, E.F. 2004. Biology, fishery and status of the 2GH and 2J3KL (northern) cod stocks: information supporting an assessment of allowable harm under the Species at Risk Act for the COSEWIC-defined Newfoundland and Labrador population of Atlantic cod (Gadus morhua). DFO Can. Sci. Adv. Sec. Res. Doc. 2004/102.

Lilly, G.R., Murphy, E.F., Healey, B.P., Maddock Parsons, D., and Stead, R. 2004. An update of the status of the cod (Gadus morhua) stock in NAFO Divisions 2J+3KL in March 2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2004/023. 55 p.

Lilly, G.R., Murphy, E.F., Healey, B.P., and Brattey, J. 2005. An assessment of the cod (Gadus morhua) stock in NAFO Divisions 2J3KL in March 2005. DFO Can. Sci. Advis. Sec. Res. Doc. 2005/018.
2006. An assessment of the cod (Gadus morhua) stock in NAFO Divisions 2J3KL in April 2006. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/043.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G, Murphy, E.F., and Stansbury, D.E., Davis, M.B., and Morgan, M.J. 1998a. n assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 98/15. 102 p.
1999. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 99/42. 165 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Murphy, E.F., and Stansbury, D.E. 2000. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 2000/063. 123 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., and Stansbury, D.E. 2001. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 2001/044. 148 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., Stansbury, D.E., and Chen, N. 2003. An assessment of the cod stock in NAFO Divisions 2J+3KL in February 2003. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/023.

McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. London, Chapman and Hall.
Maddock Parsons, D., and Stead, R. 2009a. Sentinel surveys 1995-2008: catch per unit effort in NAFO Divisions 2J3KL. DFO Can. Sci. Adv. Sec. Res. Doc. 2006/074.

Maddock Parsons, D., and Stead, R. 2009b. Overview of Sentinel Surveys in NAFO Divisions 2J3KL and Subdivision 3Ps 1995-2008. DFO Can. Sci. Adv. Sec. Res. Doc. 2009 (in prep).

Maddock Parsons, D., and Stead, R. 2010. Sentinel surveys in NAFO Divisions 2J3KL. 1995 to 2009. DFO Can. Sci. Adv. Sec. Res. Doc. 2010/(in prep).

Mesnil, B., Cotter, A.J.R., Fryer, R.J., Needle, C.L. and Trenkel, V.M. 2009. A review of fishery independent assessment models, and initial evaluation based on simulated data, Aquat. Living Resour. 22: 207-216.

Morgan, M.J., and Hoenig, J.M. 1997. Estimating maturity-at-age from length stratified sampling. J. Northw. Atl. Fish. Sci. 21: 51-63.

Morgan, M.J., Shelton, P.A., and Brattey, J. 2007. Age composition of the spawning stock does not always influence recruitment. J. Northw. Atl. Fish. Sci. 38: 1-12.

Murphy, E.F., Stansbury, D.E., Shelton, P.A., Brattey, J., and Lilly, G.R. 1997. A stock status update for NAFO Divisions 2J+3KL cod. NAFO SCR Doc. 97/59, Ser. No. N2893. 58 p.

Needle, C. L. 2008. Survey-based fish stock assessments with SURBA. Fisheries Research Services Marine Laboratory, Aberdeen, Scotland.

Reddin, D.G., Johnson, R., and Downton, P. 2002. A study of by-catches in herring bait nets in Newfoundland, 2001. DFO Can. Sci. Adv. Sec. Res. Doc. 2002/031. 19 p.

Rose, G.A. 2003. Monitoring coastal northern cod: towards an optimal survey of Smith Sound, Newfoundland. ICES J. Mar. Sci. 60: 453-462.

Shelton, P.A., and Sinclair, A.F. 2008. It's time to sharpen our definition of sustainability. Can. J. Fish. Aquat. Sci. 65: 2305-2314.

Shelton, P.A., Stansbury, D.E., Murphy, E.F., Lilly, G.R., and Brattey, J. 1996. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Atl. Fish. Res. Doc. 96/80 (also NAFO SCR Doc. 96/62.).

Shelton, P.A., Sinclair, A.F., Chouinard, G.A., Mohn, R., Duplisea, D. 2006. Fishing under low productivity conditions is further delaying recovery of Northwest Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 63: 235-238.

Sinclair, A. 2001. Natural mortality of cod (Gadus morhua) in the southern Gulf of St. Lawrence. ICES J. Mar. Sci. 58: 1-10.

Smith, S.J., and Somerton, G.D. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv + 66 p.

Solemdal, P., Kjesbu, O.S., and Fonn, M. 1995. Egg mortality in recruit- and repeat-spawning cod an experimental study. ICES C.M. G:35: 14 p .

Stansbury, D.E., Maddock Parsons, D., and Shelton, P.A. 2000. An age disaggregate index from the sentinel program for cod in 2J3KL. DFO Can. Stock Ass. Sec. Res. Doc. 2000/090. 64 p.

Stares, J.C., Rideout, R.M., Morgan, M.J., and Brattey, J. 2007. Did population collapse influence individual fecundity of Northwest Atlantic cod? ICES J. Mar. Sci. 64: 1338-1347.

Swain, D.P. 2010. Life history evolution an elevated natural mortality in a population of Atlantic cod (Gadus morhua). Evolutionary applications ISSN 1752-4571, 13p.

Swain, D.P., and Chouinard, G.A. 2008. Predicted extirpation of the dominant demersal fish in large marine ecosystem: Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 65: 2315-2319.

Taggart, C.T., Penney, P., Barrowman, N., and George, C. 1995. The 1954-1993 Newfoundland cod-tagging database: statistical summaries and spatial-temporal distributions. Canadian Technical Report of Fisheries and Aquatic Sciences 2042: 441p.

Trippel, E.A. 1998. Egg size and viability and seasonal offspring production of young Atlantic cod. Trans. Amer. Fish. Soc. 127: 339-359.

Trippel, E.A., and Morgan, M.J. 1994. Age-specific paternal influences on reproductive success of Atlantic cod (Gadus morhua L.) of the Grand Banks, Newfoundland. ICES Mar. Sci. Symp. 198: 414-422.

Trzcinski, M.K., Mohn, R., and Bowen, D. 2006. Continued decline of an Atlantic cod population: how important is gray seal predation? Ecol. Appl. 16: 2276-2292.

Table 1. Reported landings (t) of cod from NAFO Div. 2J+3KL from 1959 onward.

Year	2 J				3K				3L				2J3KL			$\begin{gathered} \text { TAC } \\ (000 \text { 's } \\ \hline \end{gathered}$
	Offshore gea	mobile ar	$\begin{gathered} \text { Fixed } \\ \text { gear } \end{gathered}$		Offshore mobile gear		$\begin{gathered} \text { Fixed } \\ \text { gear } \\ \hline \end{gathered}$	Total	Offshore mobile gear		Fixed gear	Total	Total Canada	Total Other	Total	
	Canada	Other	Canada	Total	Canada	Other	Canada		Canada	Other	Canada					
1959	0	46372	17533	63905	0	97678	56264	153942	4515	51515	85695	141725	164007	195565	359572	
1960	1	164123	15418	179542	53	74999	47676	122728	7355	63985	94192	165532	164695	303107	467802	
1961	1	243144	17545	260690	0	64023	31159	95182	4675	73899	70659	149233	124039	381066	505105	
1962	0	226841	23424	250265	0	47015	42816	89831	4383	90276	72271	166930	142894	364132	507026	
1963	1	197868	23767	221636	0	79331	47486	126817	4446	83015	73295	160756	148995	360214	509209	
1964	13	197359	14787	212159	0	121423	40735	162158	10158	142370	75806	228334	141499	461152	602651	
1965	0	246650	25117	271767	21	50097	26467	76585	7353	130387	58943	196683	117901	427134	545035	
1966	39	226244	22645	248928	13	58907	32208	91128	8253	120206	55990	184449	119148	405357	524505	
1967	28	217255	27721	245004	114	78687	24905	103706	13478	200343	49233	263054	115479	496285	611764	
1968	4650	355108	12937	372695	1849	119778	40768	162395	15784	211808	47332	274924	123320	686694	810014	
1969	30	405231	4328	409589	56	80949	24923	105928	18255	151945	67973	238173	115565	638125	753690	
1970	0	212961	1963	214924	92	78274	21512	99878	14471	137840	53113	205424	91151	429075	520226	
1971	0	154700	3313	158013	31	61506	21111	82648	11976	148766	38115	198857	74546	364972	439518	
1972	0	149435	1725	151160	7	133369	14054	147430	4380	109052	46273	159705	66439	391856	458295	
1973	1123	52985	3619	57727	108	159653	13190	172951	1258	97734	24839	123831	44137	310372	354509	666
1974	0	119463	1804	121267	19	149189	10747	159955	880	67918	22630	91428	36080	336570	372650	657
1975	410	78578	3000	81988	189	112678	15518	128385	670	53770	22695	77135	42482	245026	287508	554
1976	94	30691	3851	34636	771	79540	20879	101190	2187	40998	35209	78394	62991	151229	214220	300
1977	525	39584	3523	43632	1051	26776	28818	56645	5362	26799	40282	72443	79561	93159	172720	160
1978	4682	17546	6638	28866	7027	6373	29623	43023	9213	12263	45194	66670	102377	36182	138559	135
1979	9194	6537	8445	24176	21572	16890	27025	65487	14184	12693	50359	77236	130779	36120	166899	180
1980	13592	7437	17210	38239	21920	6830	37015	65765	15523	13963	42298	71784	147558	28230	175788	180
1981	22125	4760	14251	41136	23112	3847	23002	49961	21754	15070	42827	79651	147071	23677	170748	200
1982	58384	8923	14429	81736	8881	4074	42141	55096	27181	9271	56490	92942	207506	22268	229774	230
1983	37276	4158	10748	52182	31621	2815	40683	75119	39123	10920	55001	105044	214452	17893	232345	260
1984	9231	2782	13150	25163	48114	11059	35143	94316	47668	15973	49351	112992	202657	29814	232471	266
1985	1466	78	10211	11755	68880	12945	30368	112193	36863	31176	39306	107345	187094	44199	231293	266
1986	5734	7859	12916	26509	62086	5781	28384	96251	57805	53946	32202	143953	199127	67586	266713	266
1987	39344	3999	16022	59365	39686	6160	27442	73288	44612	25916	36743	107271	203849	36075	239924	256
1988	41468	9	17112	58589	40260	50	33820	74130	57805	26748	51405	135958	241870	26807	268677	266
1989	33626	1003	23304	57933	37350	1179	20711	59240	40958	36621	59238	136817	215187	38803	253990	235
1990	17883	183	14505	32571	26920	504	27516	54940	31187	25488	75266	131941	193277	26175	219452	199
1991	621	82	2214	2917	30112	311	13332	43755	30264	$49660{ }^{2}$	$45416{ }^{3}$	125340	121959	50053	172012	190
1992	0	0	18	18	584	273	884	1741	13627	$14610{ }^{4}$	$10960{ }^{5}$	39197	26073	14883	40956	0
1993	0	0	13	13	0	0	541	541	2	$2425{ }^{6}$	$8411{ }^{7}$	10838	8967	2425	11392	0
1994	0	0	9	9	0	0	368	368	0	1	936	937	1313	1	1314	0
$1995{ }^{13}$	0	0	0	1	0	0	122	122	1	0	290	290	413	0	413	0
$1996{ }^{13}$	0	0	3	3	0	0	961	961	1	1	908	910	1874	1	1875	0
$1997{ }^{13}$	0	0	4	4	0	0	280	280	0	0	592	593	877	0	877	0
$1998{ }^{13}$	0	0	16	16	0	0	1994	1994	1	6	2491	2497	4501	0	4507	4
$1999{ }^{\text {13 }}$	0	0	33	33	0	0	3554	3554	0	1	4938	4939	8525	1	8526	9
$2000{ }^{1}$	0	0	3	3	0	0	1410	1410	26	54^{12}	3937	4017	5376	54	5430	7

Cont'd:-

Table 1. (Cont'd.)

Provisional catches.
${ }^{2}$ Includes French catch and other foreign catch as estimated by Canadian surveillance.
${ }^{3}$ Figure is 4000 t less than Can. statistics (this quantity is 3 NO catch misreported as 3 L).
${ }^{4}$ Derived from reported catch and Canadian surveillance estimate of foreign catch
${ }^{5}$ Includes 5000 t catch from the recreational fishery after the moritorium was declared.
${ }^{6}$ Canadian surveillance estimate of foreign catch .
${ }^{7}$ Includes 5053 t estimated for the recreational fishery additional to that recorded by Canadian statistics.
${ }^{8} 1300 t$ is from the food fishery; the remainder is bycatch
${ }^{9}$ Includes 275 t caught in the sentinel survey and 138 t caught as bycatch.

Comprised of a sentinel survey catch of 296 t , a food fishery catch of 1155 and bycatch of 422 t .
${ }^{11} 780 \mathrm{t}$ of this catch was the result of a mass mortality in Smith Sound
12 NAFO Scientific Council agreed catches.
${ }^{13}$ Canadian catches have been updated based most recent catch data
14 There was no TAC in 2006-2009 but an annual allowance per licence holder for vessels < 45 ft only.
${ }^{15}$ Excludes recreational fishery

Table 2. Annual fixed gear landings of cod from NAFO Div. 2J, 3K and 3L from 1975 onwards. Landings from statistical areas other than Newfoundland are not included. GN=gillnet, $L T=$ Line-trawl, $H L=h a n d-l i n e$.

Year	2J					3K					3L					$\begin{array}{r} 2 \mathrm{~J} 3 \mathrm{KL} \\ \hline \text { Total } \end{array}$	
	Trap	GN	LL	HL	Total	Trap	GN	LL	HL	Total	Trap	GN	LL	HL	Total		
1975	642	2304	0	54	3000	4662	8645	565	1646	15518	10390	7552	1641	3112	22695	41213	
1976	1022	2787	6	36	3851	7056	10666	718	2439	20879	18404	9066	2904	4835	35209	59939	
1977	1285	2076	37	125	3523	11501	11611	1294	4412	28818	20988	8852	3591	6851	40282	72623	
1978	2872	3376	55	335	6638	11329	11445	3647	3202	29623	23218	9023	5114	7839	45194	81455	
1979	1333	5663	175	1274	8445	3532	11474	8414	3605	27025	20785	13488	7022	9064	50359	85829	
1980	4679	11414	204	913	17210	12732	13549	8059	2675	37015	12871	11231	9394	8802	42298	96523	
1981	3893	10105	72	181	14251	3952	10679	6360	2011	23002	10177	13579	11425	7646	42827	80080	
1982	4464	9121	114	730	14429	16415	17571	6101	2054	42141	24248	20295	5704	6243	56490	113060	
1983	3870	4854	842	1182	10748	10490	18305	2560	9328	40683	25690	16446	3834	9031	55001	106432	
1984	5618	6116	379	1037	13150	9957	14362	2499	8325	35143	23103	14985	3824	7439	49351	97644	
1985	4973	2992	252	1994	10211	13310	8082	2352	6624	30368	21594	8760	3245	5707	39306	79885	
1986	4373	7804	109	630	12916	14555	7626	1555	4648	28384	15669	9865	2492	4176	32202	73502	
1987	5158	9228	218	1418	16022	11278	10223	1590	4351	27442	11370	17419	3338	4616	36743	80207	
1988	5907	9183	272	1750	17112	16261	11898	935	4726	33820	22148	18576	4004	6677	51405	102337	
1989	6713	14846	290	1455	23304	8189	7921	700	3901	20711	23964	22231	4676	8367	59238	103253	
1990	3616	9364	653	872	14505	11201	7726	3838	4751	27516	32158	28936	4545	9627	75266	117287	
1991	1016	271	93	834	2214	7696	1384	1851	2401	13332	26524	11696	1247	5949	45416	60962	
1992	0	0	2	16	18	27	103	9	745	884	1173	1131	16	$8640{ }^{3}$	10960	11862	
1993	0	0	1	12	13	3	37	9	492	541	11	93	80	$8227{ }^{3}$	8411	8965	
1994	0	0	0	9	9	0	8	0	359	367	6	38	22	870	936	1312	
1995	0	0	0	0	0	25	65	31	1	122	23	207	41	20	291	413	
1996	0	0	0	3	3	65	184	31	680	959	42	335	30	501	656	1500	
1997	0	2	0	0	2	57	150	63	8	278	71	427	42	45	585	865	
1998	0	3	5	8	16	24	1081	245	644	1994	31	1377	284	798	2490	4501	
$1999{ }^{\text {¹ }}$	0	20	4	9	33	14	3080	110	350	3554	35	4469	70	365	4938	8525	
$2000{ }^{1}$	0	4	0	1	5	15	1126	43	275	1459	63	2954	189	684	3891	5354	
$2001{ }^{1}$	0	3	1	17	21	28	796	90	822	1735	175	2844	110	1994	5124	6880	
2002	0	7	0	6	13	2	272	30	342	647	128	2517	30	858	3533	4193	
2003	0	2	0	0	2	0	25	4	0	29	0	152	4	781	937	968	
2004	0	1	0	0	1	0	146	5	0	152	0	479	2	0	481	635	
2005	0	6	0	0	6	0	547	8	1	555	0	763	4	0	767	1328	
$2006{ }^{1}$	0	5	0	31	35	0	856	21	203	1080	5	1004	58	439	1505	2621	
$2007{ }^{1}$	0	17	2	52	71	0	783	21	374	1178	6	1112	13	538	1668	2917	6
2008	0	38	2	32	71	0	1260	25	233	1518	6	1407	25	312	1750	3340	6
2009	0	24	3	30	57	0	818	29	335	1182	0	1476	35	345	1855	3094	

[^0]Table 3. Reported landings (t) of cod in NAFO Div. 2J+3KL during 2009 (excluding recreational fishery) by unit area and month.

Div/Unit Area	MAY	JUN	JUL	AUG	SEP	OCT	NOV	Totals
2JD	.				0.8			0.8
2JM	.	.	0.1	1.0	49.7	5.2		56.0
3KA	.		0.1	2.2	24.0	1.7		28.0
3KB	2.7	0.2		2.9
3KD	.	0.0	2.7	13.2	68.5	6.1		90.5
3 KH	.	0.7	5.5	11.1	193.5	56.9	1.6	269.4
3 KI	.	3.8	55.8	54.5	632.4	46.9	1.6	795.0
3LA		2.5	29.6	54.8	478.4	37.5	5.3	608.0
3LB	.	7.6	19.0	33.0	497.4	26.6		583.6
3LD	.		2.4	1.0	1.8			5.1
3LF	0.5	0.8	23.0	22.8	343.8	25.2		416.3
3LG	.		0.9	4.7	5.9			11.5
3LJ	0.0	0.3	2.3	5.7	192.6	22.5		223.4
3LQ	.	0.3	2.7	0.2	4.5	0.0		7.6
3LR	.	0.0	.	0.1	.			0.1
Total	0.5	16.0	144.2	204.4	2496.0	228.6	8.4	3098.2

Table 4. Annual catch numbers at age (000's, ages 2-20) for cod caught in the fishery in NAFO Div. 2J+3KL from 1962 onwards.

Age	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
2	301	1446	2872	85	819	790	288	59	6819	33	236	0	473	420	15	108
3	8666	5746	19338	5177	14057	15262	6142	4330	18104	12876	6737	3963	3231	3968	13767	7128
4	26194	27577	27603	28709	65992	77873	94291	39626	60102	71557	79809	40785	13201	14101	33727	65510
5	64337	60234	57757	46800	93687	100339	205805	100858	82357	95384	116562	94844	34927	25370	28049	40462
6	58163	118112	60681	66946	62812	96759	150541	163228	101249	98111	76196	59503	74403	34426	20898	12107
7	47314	58996	100147	64360	59312	54996	83808	107509	85696	57865	55984	35464	60539	39105	16811	5397
8	27521	29349	50865	68176	30423	38691	39443	52661	29218	25055	29553	27351	35687	36485	16022	3396
9	20142	15520	20892	33819	23844	17146	23171	19651	10857	11732	11750	14153	18854	13421	10931	2730
10	18036	11612	12264	14913	8762	16084	10984	12370	3825	4470	6393	7566	10492	7514	4637	1381
11	10444	8248	8698	6945	4528	5949	5591	6389	2000	2223	2987	3815	5818	2315	1462	532
12	9468	4204	6352	3729	2280	3367	5249	4479	1200	1287	1660	2153	2934	1179	631	296
13	7778	3942	4989	3948	1825	2108	1939	3004	507	1140	1388	1173	1078	808	292	149
14	5785	2933	4036	3730	1186	1529	1334	1557	224	720	725	450	652	372	251	75
15	4669	2928	2703	2722	967	685	818	622	214	355	748	278	249	165	100	42
16	3888	1737	1456	1859	806	424	610	567	244	474	606	309	338	82	50	21
17	3955	1263	1918	575	416	193	127	319	124	124	452	85	162	5	40	20
18	2161	1352	1154	971	279	107	89	100	32	128	136	27	113	8	64	14
19	232	328	501	183	486	72	83	46	10	148	195	38	45	22	30	2
20	403	182	312	226	178	211	26	99	34	78	36	8	20	1	20	6
Total	319457	355709	384538	353873	372659	432585	630339	517474	402816	383760	392153	291965	263216	179767	147797	139376

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
2	0	0	92	0	0	18	3	0	1	42	25	8	58	35	0
3	1323	1152	2554	2185	1702	2585	782	650	831	2329	2779	1696	7693	3111	430
4	17556	12361	12025	7172	31286	13616	14871	14824	15219	9217	14651	17639	40557	31654	3860
5	39206	37493	28814	13191	19003	42602	31760	36614	44168	32340	20184	21150	36410	53805	14535
6	20319	29202	30016	24800	14397	19028	38624	33922	45869	49061	47917	25212	22695	29553	12211
7	7711	10982	18017	22014	25435	12044	12503	28006	26025	28469	45725	38708	16390	9064	4526
8	3078	3460	4830	11848	16930	14701	7246	7050	14722	19505	18608	28499	17940	6164	1372
9	1530	1300	1217	3175	11936	8934	8910	3836	3104	5818	9026	8696	9156	4745	376
10	1083	757	520	779	1923	6341	4227	5162	2000	1346	4337	3640	2865	1696	199
11	437	560	232	309	338	1018	2536	2905	1977	676	774	1695	1084	641	104
12	219	183	229	195	156	248	451	1681	1101	873	422	572	478	250	18
13	105	116	56	125	90	90	146	254	574	391	366	244	103	88	9
14	62	51	65	48	153	41	48	107	116	200	223	180	98	39	4
15	40	43	37	14	40	29	41	39	29	37	100	94	36	21	0
16	21	38	13	28	12	11	30	20	18	22	32	43	25	9	0
17	7	7	10	20	13	9	7	17	11	3	5	4	8	3	0
18	8	7	14	5	4	6	7	1	9	1	10	9	7	2	0
19	2	4	4	5	0	2	4	3	2	4	5	0	1	2	0
20	7	9	10	5	0	3	3	5	2	0	5	1	0	0	0
Total	92714	97725	98755	85918	123418	121326	122199	135096	155778	150334	165194	148090	155604	140882	37644
12084															

Age	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007*	2008*	2009*
2	0	0	1	0	3	7	5	10	6	0	1	0	0	0	0	0
3	105	12	35	12	96	70	141	249	166	9	10	16	12	12	11	25
4	379	41	157	39	229	238	258	778	296	11	24	27	159	44	84	96
5	575	93	304	92	395	638	419	710	399	19	33	137	307	357	172	124
6	177	76	401	95	689	795	437	611	335	53	47	182	381	423	649	170
7	74	25	131	148	384	1157	328	365	235	44	59	101	168	178	422	410
8	22	10	24	35	236	370	294	190	124	28	32	51	79	69	147	248
9	2	2	7	5	74	253	151	272	77	22	14	19	30	21	37	68
10	0	0	2	2	10	52	136	80	113	9	7	7	13	8	12	15
11	0	0	0	0	5	13	33	117	50	32	3	4	5	5	6	5
12	0	0	0	0	2	3	5	33	52	20	5	2	2	2	2	1
13	0	0	0	0	1	0	3	3	10	27	2	2	1	1	1	1
14	0	0	0	0	0	0	1	1	2	7	2	1	2	1	1	0
15	0	0	0	0	0	0	0	0	0	3	0	1	1	1	1	0
16	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
19	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	.	0	0
Total	1334	259	1062	429	2125	3596	2210	3418	1866	286	241	550	1161	1122	1549	1164

*The 2007-2009 values exclude the recreational fishery catch. Most of the catch in 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay.

Table 5. Estimated average weight (kg), length (cm) and number (000's, plus standard error and coefficient of variation) of cod for the 2009 catch-at-age from Div. 2J3KL (excluding the recreational fishery catch).

AVERAGE WEIGHT (kg.)							LENGTH (cm.)	(000'S)		NTD ERR.	CV
$\mathbf{A G E}$	0.00	0.00	.	.	.						
$\mathbf{1}$	0.32	33.35	0.1	0.03	0.18						
$\mathbf{3}$	0.60	41.16	24.6	3.44	0.14						
$\mathbf{4}$	0.90	46.75	96.1	6.07	0.06						
$\mathbf{5}$	1.42	54.00	123.7	7.20	0.06						
$\mathbf{6}$	2.09	61.21	170.3	8.33	0.05						
$\mathbf{7}$	2.85	67.90	410.0	10.60	0.03						
$\mathbf{8}$	3.36	71.55	248.0	8.13	0.03						
$\mathbf{9}$	4.15	76.49	68.1	4.46	0.07						
$\mathbf{1 0}$	5.15	82.05	15.2	1.65	0.11						
$\mathbf{1 1}$	5.10	81.68	5.0	1.16	0.23						
$\mathbf{1 2}$	6.69	89.49	1.1	0.22	0.20						
$\mathbf{1 3}$	7.24	91.40	0.8	0.21	0.26						
$\mathbf{1 4}$	7.74	94.23	0.3	0.11	0.35						
$\mathbf{1 5}$	8.76	98.22	0.1	0.07	0.49						
$\mathbf{1 6}$	6.22	88.00	0.1	0.07	0.60						
$\mathbf{1 7}$	0.00	0.00	0.0	0.00							
$\mathbf{1 8}$	7.62	94.00	0.0	0.03	0.84						
$\mathbf{1 9}$	6.65	89.70	0.1	.							
$\mathbf{2 0}$	0.00	0.00	0.0	.							

Table 6. Catch weights-at-age (kg) for cod caught in the fishery in NAFO Div. 2J+3KL from 1962 onward.

Age	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
2	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14		0.11	0.26	0.25	0.09
3	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.44	0.32	0.35	0.45	0.45	0.45
4	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.53	0.47	0.68	0.63	0.61	0.60
5	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.64	0.71	0.91	0.96	0.93	0.97
6	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.08	0.96	1.11	1.18	1.32	1.66
7	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.52	1.30	1.27	1.39	1.75	2.33
8	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.13	1.80	1.56	1.74	2.07	2.82
9	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.86	2.20	2.05	2.21	2.24	3.46
10	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.29	2.82	2.75	2.61	2.99	3.88
11	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.95	3.19	3.13	3.34	3.67	4.78
12	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.12	3.79	3.41	3.66	4.56	6.13
13	6.06	6.06	6.06	6.06	6.06	6.06	6.06	6.06	6.06	6.06	5.00	4.53	4.92	4.78	6.18	7.31
14	5.54	5.54	5.54	5.54	5.54	5.54	5.54	5.54	5.54	5.54	9.32	6.93	4.40	5.20	8.19	8.40
15	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11	9.40	7.22	6.33	5.20	9.77	8.81
16	5.83	5.83	5.83	5.83	5.83	5.83	5.83	5.83	5.83	5.83	6.89	7.05	5.50	5.46	11.23	11.75
17	6.44	6.44	6.44	6.44	6.44	6.44	6.44	6.44	6.44	6.44	14.67	9.45	7.57	8.51	12.44	10.63
18	6.07	6.07	6.07	6.07	6.07	6.07	6.07	6.07	6.07	6.07	12.04	11.16	11.07	9.24	11.16	12.27
19	6.61	6.61	6.61	6.61	6.61	6.61	6.61	6.61	6.61	6.61	7.62	7.62	7.62	7.62	7.62	7.62
20	7.19	7.19	7.19	7.19	7.19	7.19	7.19	7.19	7.19	7.19	17.46	17.46	17.46	17.46	17.46	17.46
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
2			0.41			0.31	0.34		0.21	0.32	0.29	0.26	0.29	0.17		
3	0.40	0.46	0.53	0.55	0.53	0.62	0.59	0.48	0.51	0.43	0.49	0.48	0.42	0.36	0.29	0.57
4	0.72	0.74	0.77	0.78	0.84	0.87	0.88	0.73	0.72	0.66	0.73	0.74	0.69	0.61	0.58	0.71
5	1.04	1.13	1.16	1.17	1.20	1.32	1.20	1.10	1.04	1.03	1.08	1.03	1.06	0.97	0.81	0.97
6	1.58	1.67	1.71	1.64	1.77	1.75	1.79	1.43	1.54	1.32	1.38	1.44	1.50	1.41	1.19	1.25
7	2.46	2.46	2.38	2.23	2.10	2.28	2.28	2.06	1.85	1.87	1.67	1.83	1.94	1.88	1.73	1.59
8	3.26	3.57	3.56	2.86	2.66	2.61	2.71	2.66	2.35	1.93	2.21	2.07	2.22	2.27	2.05	8.40
9	4.05	4.41	5.01	3.81	3.09	3.18	2.96	3.23	2.94	2.80	2.51	2.64	2.44	2.63	2.66	9.23
10	4.46	5.25	5.49	5.32	4.18	3.50	3.65	3.32	3.47	3.51	3.04	3.02	3.06	3.14	2.24	
11	5.02	5.80	6.72	6.29	6.16	4.79	4.28	4.06	3.80	4.80	4.37	3.96	3.58	3.80	2.68	
12	6.72	7.03	7.87	7.06	7.19	7.76	6.19	4.55	4.54	4.64	5.49	5.41	4.68	4.96	4.95	
13	8.10	8.96	8.38	7.32	8.00	9.07	8.39	7.03	5.34	5.74	6.55	7.50	6.23	5.49	5.34	
14	7.42	8.54	10.03	10.01	8.36	9.14	10.26	9.67	7.12	6.13	8.60	9.24	8.51	7.61	7.02	
15	8.20	9.46	11.31	8.99	7.86	10.62	11.44	11.37	11.77	8.53	9.76	10.05	9.78	11.58		
16	11.26	10.70	13.87	11.54	7.91	10.57	11.61	11.27	11.24	13.51	9.73	9.34	12.58	11.01		
17	11.61	13.12	10.68	10.48	9.58	13.13	17.47	12.68	14.15	9.10	12.58	15.74	15.45	12.82		
18	8.92	13.49	16.09	11.15	12.95	15.97	12.94	12.42	16.14	21.77	16.01	18.66	13.58	13.00		
19	10.57	15.51	12.04	9.82		9.73	15.21	14.38	12.30	17.66	16.60		17.26	13.10	.	
20	16.00	14.77	11.37	12.59		15.88	12.81	19.49	15.72	.	11.03	17.64	.	.	.	
Age	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007*	2008*	2009*
2		0.22	0.37	0.32	0.29	0.32	0.26	0.38	0.41	0.31	0.33	0.28	0.27	0.38	0.38	0.32
3	0.40	0.49	0.70	0.54	0.63	0.59	0.66	0.63	0.63	0.50	0.56	0.53	0.57	0.59	0.62	0.60
4	0.68	0.80	1.01	0.88	0.94	1.05	0.97	0.91	0.91	0.82	0.87	0.85	1.12	1.12	1.05	0.90
5	0.98	1.47	1.42	1.46	1.51	1.62	1.71	1.36	1.56	1.41	1.54	1.77	1.54	1.68	1.66	1.42
6	1.41	1.91	2.04	1.98	2.14	2.12	2.14	2.02	2.09	2.03	2.12	2.17	2.27	2.08	2.34	2.09
7	1.85	2.27	2.51	2.44	2.48	2.51	2.79	2.54	2.70	2.54	2.73	2.60	2.82	2.79	2.87	2.85
8	2.05	2.62	2.77	2.91	3.02	2.96	3.39	3.24	3.24	3.03	3.33	3.14	3.29	3.53	3.44	3.36
9	3.05	3.02	3.22	3.63	3.35	3.66	3.95	3.93	3.83	3.64	4.18	3.89	4.10	4.23	4.24	4.15
10		2.81	3.87	4.25	4.18	4.70	4.54	4.43	4.45	4.36	5.02	4.71	4.71	4.94	5.48	5.15
11		4.67	5.18	4.36	4.01	5.17	4.88	5.06	4.77	4.91	5.46	5.68	5.59	5.90	6.29	5.10
12		.	4.04	6.06	3.80	5.57	6.03	6.56	5.13	5.72	6.34	6.43	6.63	6.35	6.57	6.69
13	.	.	7.62	6.22	6.42	6.23	5.63	7.21	5.90	5.92	6.26	7.80	7.15	6.79	8.44	7.24
14			4.46	.	.	7.66	4.80	5.46	5.70	6.07	6.56	6.69	7.19	7.57	7.86	7.74
15		9.42	7.62	6.10	5.38	6.81	7.73	6.75	7.98	10.29	8.76
16	8.26	7.62	8.01	9.06	6.22
17	.	.	.				11.28		.	6.90	.	8.43	7.86	9.21	7.31	0.00
18	8.40	.	.	.	7.52	12.45	8.66	7.62
19	6.42	.	6.65
20						7.62			

* note that 2007-2009 values exclude the recreational fishery catch.

Table 7a. Annual estimates of cod abundance (000's) from autumn surveys in NAFO Div. 2J during 2000-09 (in Campelen units) (nf=stratum not fished). Estimates for years prior to 2000 are given in Brattey et al. 2008 a.

Stratum Stratum Area sq. depth number nautical (meters) miles Mean survey date			Tel.	Tel. 361	el. 415,454,	Tel.		Tel. 611,612	Tel.	Tel. 802	Wt 839-840	Tel
			340-343	AN 399-400	457	509-510	537-539	WT 632	680-682	752-753	Tel 820	896897
			2000	2001	2002	2003	2004	2005-6	2006	2007	2008	2009
			7-Nov-00	28-Nov-01	24-Dec-02	8 -Dec-03	10-Nov-04	27-Nov-05	2-Nov-06	15-Nov-07	23-Nov-08	13-Nov-09
101-200	201	633	0	0	0	44	44	0	121	0	44	0
	205	1594	37	37	0	0	37	37	73	0	132	232
	206	1870	115	171	37	110	220	37	514	992	886	686
	207	2246	1280	447	1032	1122	623	623	835	2566	22946	1479
	237	733	101	25	307	2041	178	7125	571	5042	134	50
	238	778	0	36	0	306	41	0	0	0	36	36
201-300	202	621	0	0	0	0	0	0	85	0	0	0
	209	680	187	28	218	258	234	31	699	1350	504	140
	210	1035	676	261	269	473	570	249	320	854	886	522
	213	1583	1161	416	954	1327	617	1716	2178	5807	5004	2090
	214	1341	517	823	833	148	1402	369	221	2675	2324	1291
	215	1302	609	191	466	1197	2006	1075	537	1648	1209	985
	228	2196	944	1847	1729	874	1284	2228	1020	1635	3428	1165
	234	530	36	36	146	0	146	36	49	0	450	231
301-400	203	487	0	0	33	0	67	167	0	38	1191	91
	208	588	335	144	0	352	243	1213	324	337	1762	1537
	211	251	533	78	72	104	138	173	104	161	2164	155
	216	360	198	303	297	57	371	891	297	322	338	176
	222	450	495	954	836	340	464	248	743	2569	990	2096
	229	536	184	1180	885	442	332	1548	2618	221	655	1917
401-500	204	288	0	0	20	0	0	0	198	20	95	20
	217	241	33	15	715	38	83	215	17	0	116	0
	223	158	nf	0	73	54	54	33	22	22	68	75
	227	598	55	0	329	0	247	247	165	370	146	0
	235	414	0	0	159	28	85	111	28	28	76	256
	240	133	18	42	125	0	18	146	0	0	0	18
total strata fished <= 500 m upper			7516	7033	9534	9315	9503	18519	11739	26656	45583	15250
			10007	9222	12588	13125	11582	50073	19669	42992	95778	21044
t-value1 STD strata fished $<=500 \mathrm{~m}$			2.200	2.140	2.090	2.365	2.050	4.300	4.300	2.780	2.360	3.170
			1132	1023	1461	1611	1014	7338	1844	5876	21269	1828
501-750	212	557	38	0	72	82	0	38	0	88	34	77
	218	362	0	0	100	0	25	0	0		0	25
	224	228	0	0	233	47	0	0	0	0	0	0
	230	185	13	0	480	0	0	0	0	0	0	0
	239	120	0	7	8	0	8	8	25	17	18	47
751-1000	219	283	0	0	0	0	0	0	0	0	nf	0
	231	186	0	0	0	0	0	0	0	0	0	0
	236	193	0	0	0	0	0	0	0	0	nf	
1001-1250	220	330		0	0	0	0	0	0	0	nf	0
	225	195		0	0	0	0	0	0	0	0	0
	232	228		0	0	0	0	0	0	0	0	0
1001-1250 ${ }^{1}$			0	0	0	0	0	0	0	0	0	
1251-1500	221	330	0	0	0	0	0	0	0	0	nf	0
	226	201	0	0	0	0	0	0	0	0	nf	0
	233	237	0	0	0	0	0	0	0	0	0	0
1251-1500 ${ }^{1}$			0	0	0	0	0	0	0	0	0	
total strata fished > 500 m			51	7	893	129	33	46	25	105	52	149
			7567	7040	10427	9445	9536	18465	11764	26760	45635	15399
total all strata fished upper			10060	9230	13495	13254	11615	50120	19695	43098	95831	21194
t-value			2.2	2.14	2.09	2.365	2.05	4.3	4.3	2.78	2.36	3.17
1 STD all strata fished			1133	1023	1468	1611	1014	7362	1844	5877	21269	1828

Table 7b. Annual estimates of cod biomass (t) from autumn surveys in NAFO Division 2 J during 2000-09 (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Stratum depth (meters) \qquad	Stratum number survey date	Area sq. nautical miles ate -		Tel. 361 AN $399-400$ 2001 $28-$ Nov-01	Tel. 415,454, Tel.457 2002 $24-$ Dec-02	$\begin{array}{r} \text { Tel. } \\ 509-510 \\ 2003 \\ \text { 8-Dec-03 } \end{array}$		Tel. 611-612 WT 632 2005-6 27-Nov-05	$\begin{array}{r} \text { Tel. } \\ \text { 680-682 } \\ 2006 \\ \text { 2-Nov-06 } \end{array}$	$\begin{array}{r} \text { Tel. } 802 \\ 752-753 \\ 2007 \\ \text { 15-Nov-07 } \end{array}$	Wt 839-840 Tel 820 2008 23-Nov-08	
101-200	201	633	0	0	0	44	24	0	115	0	4	
	205	1594	42	41	0	0	5	39	7	0	61	95
	206	1870	47	90	20	7	76	34	246	332	284	232
	207	2246	220	107	26	204	114	118	349	510	573	265
	237	733	3	8	2	23	22	65	252	40	40	5
	238	778	0	11	0	2	59	0	0	0	14	1
201-300	202	621	0	0	0	0	0	0	58	0	0	0
	209	680	60	7	56	82	79	19	458	794	123	103
	210	1035	271	77	72	121	254	59	193	145	409	139
	213	1583	398	208	389	715	410	817	956	2183	1708	960
	214	1341	303	355	460	122	878	194	111	817	1217	562
	215	1302	436	88	371	646	1207	736	378	822	718	418
	228	2196	433	514	613	329	572	924	667	1070	1462	454
	234	530	3	17	31	0	54	3	11	0	203	47
301-400	203	487	0	0	23	0	26	148	0	19	747	16
	208	588	268	63	0	149	142	229	206	31	533	896
	211	251	208	36	17	27	43	60	30	59	605	25
	216	360	95	148	134	33	186	515	298	300	219	97
	222	450	193	363	374	257	297	142	412	1300	696	975
	229	536	63	469	339	216	190	984	1760	109	321	960
401-500	204	288	0	0	25	0	0	0	118	1	79	19
	217	241	7	10	401	37	40	121	12	0	144	0
	223	158	nf	0	47	43	42	28	22	35	66	50
	227	598	23	0	146	0	115	224	102	165	71	0
	235	414	0	0	58	8	74	121	57	26	130	128
	240	133	10	32	77	0	13	140	0	0	0	26
total strata fished $<=500 \mathrm{~m}$			3082	2646	3680	3065	4921	5719	6818	8755	10429	6473
			4171	3345	4790	4226	5996	7650	26037	12633	13742	9350
upper t -value			2.23	2.09	2.13	2.262	2.07	2.26	12.71	2.57	2.12	2.57
$\underline{1 \text { STD strata fished }<=500 \mathrm{~m}}$			488	334	521	513	519	854	1512	1509	1563	1119
501-750	212	557	10	0	45	115	0	63	0	5	2	33
	218	362	0	0	77	0	31	0	0	0	0	17
	224	228	0	0	152	68	0	0	0	0	0	0
	230	185	6	0	307	0	0	0	0	0	0	0
	239	120	0	1	7	0	1	11	15	8	7	34
751-1000	219	283	0	0	0	0	0	0	0	0	nf	0
	231	186	0	0	0	0	0	0	0	0	0	
	236	193	0	0	0	0	0	0	0	0	nf	0
$\overline{\text { 1001-1250 }}$	220	330	0		0	0	0	0	0	0	nf	0
	225	195	0		0	0	0	0	0	0	0	0
	232	228	0	0	0	0	0	0	0	0	0	0
1001-1250 ${ }^{1}$			0	0	0	0	0	0	0	0		
1251-1500	221	330	0	0	0	0	0	0	0	0	nf	0
	226	201	0	0	0	0	0	0	0	0	nf	0
	233	237	0	0	0	0	0	0	0	0	0	0
1251-1500 ${ }^{1}$			0		0	0	0	0	0	0	0	
total strata fished $>500 \mathrm{~m}$			16		588	183	32	74	15	13	9	84
			3098	2647	4270	3248	4953	5793	6833	8768	10439	6558
			4187	3346	5387	4411	6028	7730	26053	12646	13750	9436
upper t-value			2.23	2.09	2.12	2.262	2.07	2.26	12.71	2.57	2.12	2.57
t -value 1 STD all strata fished			488	334	527	514	519	857	1512	1509	1562	1120

Table 8a. Annual estimates of cod abundance (000's) from autumn surveys of NAFO Division 3K during 2000-09 (in Campelen units) Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Depth range meters	Stratum number	Stratum area sq. mi. e	WT 376, 398 Tel. 415,457 Tel. 509,510					Tel. 611, 662 WT 631-632	Tel. 681-682 684, 733	Tel. 755,802 Vt 838-841 iN 917918		
			Tel.	Tel. 362, 397	WT431, 455		Tel. 539-542			WT 774	n 868-869	TEL 897
			340-343	AN 399	WT 456	WT 511,515	WT 588	WT 660	WT 707-708		Tel 821	TEL 898
			2000	2001	2002-3	2003-4	2004-5	2005-6	2006	2007	2008	2009
Mean survey date			23-Nov-00	8 -Dec-01	20-Dec-02	15-Jan-04	14-Dec-04	24-Dec-05	30-Nov-06	6-Dec-07	1-Dec-08	2-Dec-09
101-200	618	1347	2038	812	388	1346	1544	813	1746	1863	3533	642
	619	1753	2097	1021	512	1131	693	586	5899	864	586	69
201-300	620	2545	3383	3172	1246	3214	2976	1641	2741	3701	3151	620
	621	2736	1700	1196	988	979	3403	761	966	748	1835	1645
	624	1105	456	1277	924	213	730	790	517	1009	1115	0
	634	1555	616	1497	937	299	1176	4054	250	3212	297	36
	635	1274	361	70	257	70	0	208	nf	1928	136	436
	636	1455	291	392	371	272	534	271	4937	9807	7628	2165
	637	1132	nf	352	775	436	799	1017	1393	3956	2876	2061
301-400	617	593	1332	2882	236	109	1224	979	1097	530	2202	489
	623	494	136	1446	755	442	1665	238	815	748	4153	166
	625	888	275	912	1000	92	1530	366	702	580	1032	244
	626	1113	1217	3253	2927	1654	7196	2616	1014	732	2812	1554
	628	1085	2478	1791	2047	1944	2158	1970	1918	3134	1488	2066
	629	495	393	230	847	306	180	613	375	454	163	291
	630	332	95	15	0	0	23	0	20	0	180	23
	633	2067	853	876	2428	903	2514	2537	2085	1294	1580	1434
	638	2059	7308	5119	13407	3191	3682	5490	9045	10284	12742	13961
	639	1463	786	690	7864	973	738	993	14960	8151	6574	18787
401-500	622	691	665	602	383	289	475	2743	475	634	444	172
	627	1255	9091	699	1746	886	863	3061	623	345	2494	1027
	631	1321	54	99	199	346	91	1296	683	30	5723	36
	640	69	47	19	71	100	20	394	0	28	4	24
	645	216	104	66	45	178	193	158	15	15	92	0
	650	134	nf	46	1501	535	65	238	9	74	8	0
total strata fished $<=500 \mathrm{~m}$ upper			35776	28534	41854	19908	34468	33834	52285	54122	62848	47949
			59488	35927	64414	23813	41996	41953	97712	72011	84018	82043
t-value			2.78	2.13	2.2	2.017	2.12	2.06	3.18	2.18	2.57	2.45
1 STD strata fished <= 500 m			8529	3471	10255	1936	3551	3941	14285	8206	8237	13916
501-750	641	230	nf	16	662	158	16	253	0	0	0	0
	646	325	0	0	45	224	1565	0	0	0	0	0
	651	359	nf	28	85	1580	0	25	0	0	0	0
751-1000	642	418	0	0	0	0	0	0	0	0	0	0
	647	360	0	0	0	0	0	0	0	0	nf	0
	652	516	0	0	0	0	0	0	0	0	0	0
1001-1250	643	733		0	0	0	0	0	0	0	nf	0
	648	228		16	0	0	0	0	0	0	nf	0
	653	531		0	0	0	0	0	0	0	0	0
1001-1250 ${ }^{3}$		1492	0	16	0	0	0	0	0	0	0	
1251-1500	644	474	0	0	0	0	0	0	0	0	nf	0
	649	212	0	0	0	0	0	0	0	0	nf	0
	654	479	0	0	0	0	0	0	0	0	nf	0
1251-1500 ${ }^{3}$		1165	0	0	0	0	0	0	0	0	0	
total strata fished > 500 m			0	60	792	1962	1581	278	0	0	0	0
total all strata fished			39110	28595	42644	21868	36049	34112	52285	54122	62848	47949
upper			61174	35987	65206	25860	44372	42248	97712	72011	84018	82403
t-value			2.57	2.13	2.2	2.014	2.14	2.06	3.18	2.18	2.57	2.45
1 STD all strata fished			8585	3470	10255	1982	3889	3950	14285	8206	8237	14063

Table 8b. Annual estimates of cod biomass (t) from autumn surveys of NAFO Division 3K during 2000-09 (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Depth range meters		$\begin{array}{r} \text { Stratum } \\ \text { area } \\ \text { sq. mi. } \end{array}$	WT 376, 398 Tel. 415,457 Tel. 509,510					Tel. 611, 662 Wt 631-632	Tel. 681-682	el. 755,802 Vt 838-841 \N 917918		
	Stratum number		Tel.	el. 362397	WT431,455	513,514	el. 539-542			Wt 774 -nn 868-869		TEL 897
			340-343	AN 399	WT 456 W	T 511, 515	WT 588	WT 660	Wt 707-708		el 821	TEL 898
			2000	2001	2002-3	2003-4	2004-5	2005-6	2006	2007	2008	2009
Mean survey date			23-Nov-00	8-Dec-01	20-Dec-02	15-Jan-04	14-Dec-04	24-Dec-05		$\frac{\text { ec-07 }}{246}$	1-Dec-08	2-Dec-09 113
101-200	618	1347			72	85	170	138	166		366	
	619	1753	154	97	101	38	80	82	178	73	108	16
201-30	620	2545	415	649	164	595	671	443	364	659	481	181
	621	2736	397	169	186	44	567	129	254	100	542	237
	624	1105	225	492	364	64	342	430	191	263	320	0
	634	1555	152	637	424	219	481	2400	48	1354	408	201
	635	1274	104	17	82	6	0	122	nf	1056	118	156
	636	1455	260	96	93	49	131	107	4136	16783	14582	2102
	637	1132	nf	168	235	109	253	410	1127	5855	4155	1223
301-40	617	593	237	748	97	53	306	407	212	145	867	142
	623	494	41	309	153	107	272	119	115	177	853	32
	625	888	173	296	342	75	658	192	226	311	372	58
	626	1113	259	716	543	156	1366	574	347	197	1040	405
	628	1085	524	953	588	171	554	837	2116	2381	2620	882
	629	495	192	97	176	69	21	220	266	236	335	55
	630	332	38	8	0	0	3	0	9	0	210	71
	633	2067	615	543	1105	534	1114	1833	1280	1116	1255	748
	638	2059	3974	2863	3385	1080	1691	3259	9824	14139	22570	16270
	639	1463	780	418	2542	422	265	550	16979	12753	13695	27763
401-500	622	691	138	214	70	218	106	1580	143	78	101	44
	627	1255	2917	135	438	194	166	1295	335	244	1604	376
	631	1321	27	59	36	218	36	827	340	15	4607	2
	640	69	37	13	35	58	29	275	0	49	6	27
	645	216	84	63	48	111	254	220	46	31	110	0
	650	134	nf	30	613	236	72	245	8	166	6	0
			11994	9890	11889	4912	9609	16696	38709	58427	71329	51106
total strata fished $<=500 \mathrm{~m}$upper			19284	12834	18138	6118	11713	21527	104979	85973	100136	111131
1 -value Strata fished <= 500 m			2.45	2.14	2.18	2.023	2.05	2.07	4.3	2.26	2.45	2.57
			2976	1376	2867	596	1026	2334	15412	12188	11758	23356
501-750	641	230	nf	14	438	175	17	329	0	0	0	0
	646	325	0	0	41	208	749	0	0	0	0	0
	651	359	nf	35	78	1274	0	12	0	0	0	0
751-1000	642	418	0	0	0	0	0	0	0	0	0	0
	647	360	0	0	0	0	0	0	0	0	nf	0
	652	516	0	0	0	0	0	0	0	0	0	0
1001-1250	643	733	0	0	0	0	0	0	0	0	nf	0
	648	228	0	7	0	0	0	0	0	0	nf	0
$1001-1250^{3} \quad 653 \quad 531$			0	0	0	0	0	0	0	0	0	0
			0	7	0	0	0	0	0	0	0	
1251-1500	644	474	0	0	0	0	0	0	0	0	nf	0
	649	212	0	0	0	0	0	0	0	0	nf	0
	654	479	0	0	0	0	0	0	0	0	nf	0
1251-1500 ${ }^{3}$			0	0	0	0	0	0	0	0	0	0
total strata fi	hed > 500		0	56	557	1657	766	341	0	0	0	0
total all strat	fished		12585	9946	12446	6569	10375	17038	38709	58427	71329	51148
upper			19889	12892	18696	8435	13381	21904	104979	85973	100136	111173
t-value			2.45	2.14	2.18	2.365	2.36	2.07	4.3	2.26	2.45	2.57
1 STD all str	ta fished		2981	1377	2867	789	1274	2351	15412	12188	11758	23356

Table 9a. Annual estimates of cod abundance (000's) from autumn surveys of NAFO Division 3L during 2000-09 in depths $<=200$ fathoms (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

$\begin{aligned} & \hline \text { Stratum Stratum } \\ & \text { depth number } \\ & \text { (fath) } \end{aligned}$		Area sq.		AN 399, WT	Tel 412,413	Tel 513	WT 558-559	Tel 662	Tel 682-684	Wt 772-773,	Vt 837-838	AN 916-918
		nautical	WT 321-323	373-376, Tel.	Tel 415	WT 487-489	WT 587	WT 628-630, 637	Wt 705-707	804, Tel 751	n 867-868	Tel 895-899
		miles	Tel 342-343	357-358, 361	WT 428-431	WT 511	Tel 540	AN 657-658		Tel 752, 803		
			2000	2001	2002-03	2003	2004	2005-06	2006	2007	2008	2009
Mean survey date			28-Nov-00	15-Nov-01		$5-$ Dec-03	5-Dec-04	14-Nov-05	10-Nov-06	21-Nov-07	7-Nov-08	23-Nov-09
31-50	350	2071	936	1420	512	692	1750	163	413	2754	624	1055
	363	1780	184	245	408	245	542	77	740	77	1777	239
	371	1121	0	0	77	77	77	0	121	154	59	51
	372	2460	1523	926	550	296	296	254	350	1747	338	97
	384	1120	77	0	39	0	77	0	0	0	103	154
51-100	328	1519	209	5391	775	3636	1319	251	478	4681	1562	2989
	341	1574	476	1261	558	693	1291	396	173	2737	179	755
	342	585	201	188	40	201	483	0	40	1006	0	501
	343	525	397	36	36	144	144	29	217	253	100	289
	348	2120	292	1333	287	329	1280	208	833	542	826	808
	349	2114	614	706	291	706	1015	412	83	831	339	587
	364	2817	1163	388	172	400	2177	560	301	464	678	377
	365	1041	nf	95	239	0	nf	143	143	180	48	0
	370	1320	257	45	40	52	nf	0	0	45	0	91
	385	2356	0	162	0	0	41	41	0	0	41	0
	390	1481	0	0	0	41	41	0	0	0	51	0
101-150	344	1494	2023	968	1219	2089	4091	1169	1878	3863	7351	1396
	347	983	371	496	225	406	406	90	1467	135	4804	545
	366	1394	671	5420	3209	920	nf	107	2685	17148	18856	4787
	369	961	0	176	44	176	nf	32	157	416	365	78
	386	983	0	45	45	0	nf	0	0	85	240	0
	389	821	113	38	0	0	225	38	33	38	56	51750
	391	282	19	0	17	19	39	39	190	205	1138	78
151-200	345	1432	4436	3467	1055	1435	2272	630	4982	5117	8405	7894
	346	865	4557	3570	806	535	801	920	1446	3799	2935	35010
	368	334	9396	694	184	436	nf	49	296	431	435	449
	387	718	494	329	88	99	nf	0	88	280	1207	483
	388	361	472	221	50	0	199	3129	1473	221	1280	1280
	392	145	130	104	18	9	38	44	124	40	160	38
total strata fished <= 200 fath.			29010	27724	10984	13638	18605	8780	18711	47249	53957	111782
ADJUSTEDupper			29010	27724	10984	13638		8780	18711	47249	53597	111782
			52913	42861	15550	18275	22936	49867	25842	62123	109902	792411
t-value			4.3	2.23	2.36	2.365	2.06	12.71	2.2	2.36	3.18	12.71
1 STD strata fished <= 200 fatr			5559	6788	1935	1961	2102	3233	3241	6303	17593	53551

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the <= $\mathbf{2 0 0}$ fathom depth range have been
filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 9b. Annual estimates of cod biomass (t) from autumn surveys of NAFO Division 3L during 2000-09 in depths <= 200 fathoms (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Stratum depth (fath)	Stratum	Area sq.		AN 399	Tel 412,413	Tel 513	WT 558,559	Tel 662; WT	Tel 682-684	Wt 772-773,	Vt 837-838	AN 916-918
	number	nautical	WT 321-323	WT 373-376	Tel 415	WT 487-489	WT 587	628-630, 637	Wt 705-707	804 , Tel 751	In 867-868	Tel 895-899
		miles	Tel 342-343	TEL 357-358 361	WT 428-431	WT 511	Tel 540	AN 657-658		Tel 752, 803		
			2000	2001	2002-3	2003	2004	2005/6	2006	2007	2008	2009
Mean survey date			28-Nov-00	15-Nov-01	12-Nov-02	5-Dec-03	5-Dec-04	14-Nov-05	10-Nov-06	21-Nov-07	7-Nov-08	23-Nov-09
31-50	350	2071	842	2442	367	1181	179	39	299	1595	266	926
	363	1780	28	588	1230	232	42	36	301	62	1953	191
	371	1121	0	0	73	51	11	0	42	70	9	23
	372	2460	66	1303	1074	49	127	165	201	208	577	718
	384	1120	4	0	0	0	33	0	0	0	7	104
51-100	328	1519	41	3995	145	407	394	190	609	370	1519	299
	341	1574	120	475	272	304	181	101	160	136	172	202
	342	585	135	79	13	74	54	0	40	73	0	83
	343	525	130	5	6	44	31	10	51	11	20	243
	348	2120	55	583	174	122	300	123	1207	315	869	289
	349	2114	228	658	114	88	313	254	61	892	164	255
	364	2817	403	59	82	97	712	325	276	102	333	134
	365	1041	nf	72	72	0		35	11	155	3	0
	370	1320	107	17	22	2		0	0	10	0	69
	385	2356	0	77	0	0	2	13	0	0	7	0
	390	1481	0	0	0	8	16	0	0	0	38	0
101-150	344	1494	908	274	601	765	1343	741	1987	3425	12809	562
	347	983	87	224	175	109	144	22	1483	32	6152	192
	366	1394	321	2527	1572	292		57	2242	17434	20062	1501
	369	961	0	64	15	71		17	29	864	72	58
	386	983	0	18	10	0		0	0	112	94	0
	389	821	54	9	0	0	102	37	3	2	163	36479
	391	282	1	0	31	6	4	16	45	51	266	16
151-200	345	1432	1299	2178	709	658	627	449	5312	3559	14501	4848
	346	865	1359	2350	394	77	618	487	1701	5328	4459	36868
	368	334	8268	290	169	201		97	158	268	460	125
	387	718	227	180	30	2		0	99	430	695	164
	388	361	335	140	97	0	23	1887	571	221	662	1047
	392	145	51	97	10	7	11	16	97	47	69	15
total strata fished <= 200 fathc			15070	18706	7460	4849	5266	5118	16985	35772	66401	85411
ADJUSTED			15070	18706	7460	4849		5118	16985	35772	66401	85411
upper			83892	27204	10528	7539	6640	29932	23443	54137	121799	587251
t-value			12.71	2.12	2.13	2.228	2.09	12.71	2.2	2.57	2.78	12.71
1 STD strata fished <= 200 fa			5415	4008	1440	1207	657	1952	2935	7146	19927	39484

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992 . Std are for strata fished in the depth range.

Table 10. Annual estimates of cod abundance (000 's) and biomass (t) from autumn surveys of NAFO Division 3L during 2000-09 in depths >200 fathoms (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Stratum depth (fathoms)	Stratum	Area sq.			Tel 412,413		558-559	Tel 662, WT				AN 916-918
	number	nautical	WT 321-323	WT 373-376	Tel 415 W	WT 487-489	WT 587	628-630, 637	Wt 705-707	804, Tel 751	An 867-868	Tel 895-899
		miles	Tel 342-343	TEL 357-358 361	WT 428-431	WT 511	Tel 540	AN 657-658		Tel 752, 803		
			2000	2001	2002-3	2003	2004	2005/6	2006	2007	2008	2009
Mean survey date			28-Nov-00	15-Nov-01	12-Nov-02	5-Dec-03	5-Dec-04	14-Nov-05	10-Nov-06	21-Nov-07	7-Nov-08	23-Nov-09
201-300				ABUNDANCE								
	729	186	0	38	0	13	36	0	0	23	0	13
	731	216	208	106	0	0	17	0	0	0	0	0
	733	468	101	444	29	322	0	0	0	0	86	0
	735	272	3528	692	83	337	nf	33	50	0	0	56
301-400	730	170	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	0	0	nf	0	0	0	0	0
	736	175	0	12	0	139	nf	0	0	0	0	0
401-500	737	227	0	0	0	0	nf	0	0	0	nf	0
	741	223	0	0	0	0	nf	nf	0	0	nf	0
	745	348	0	0	0	0	nf	nf	0	0	nf	0
	748	159	0	0	0	0	nf	nf	0	0	nf	0
401-500		957	0	0	0	0	nf	0	0	0	nf	0
501-600	738	221	0	0	0	0	nf	nf	0	0	nf	0
	742	206	0	0	0	0	nf	nf	0	0	nf	0
	746	392	0	0	0	0	nf	nf	0	0	nf	0
	749	126	0	0	0	0	nf	nf	nf	0	nf	0
501-600		945	0	0	0	0	nf	nf		0	nf	0
601-700	739	254	0	0	0	0	nf	0	0	0	nf	0
	743	211	0	0	0	0	nf	nf	0	0	nf	0
	747	724	0	0	0	0	nf	nf	0	0	nf	0
	750	556	0	0	0	0	nf	nf	nf	0	nf	0
$601-700$		1745	0	0			nf	0	0	0	nf	
701-800	740	264	0	0	0	0	nf	0	0	0	nf	0
	744	280	0	0	0	0	nf	nf	0	0	nf	0
	751	229	0	0	0	0	nf	nf	nf	0	nf	0
701-800		773	0	0	0	0	nf	0	0	0	nf	0
total strata fished >200 fathom total all strata fished offshore upper			3837	1292	112	811	53	33	50	23	86	69
			32846	29017	11096	14448	18657	8813	18761	47271	54044	111851
			58560	44211	15667	19068	22989	49903	25892	62145	109989	792480
t-value			4.3	2.23	2.36	2.306	2.06	12.71	2.2	2.36	3.18	12.71
1 STD all strata fished offshore			5980	6813	1937	2003	2103	3233	3241	6303	17593	53551
201-300				BIOMASS								
	729	186	0	45	0	42	30	0	0	23	0	13
	731	216	165	108	0	0	4	0	0	0	0	0
	733	468	110	261	36	156	0	0	0	0	113	0
	735	272	3973	697	155	226	nf	43	87	0	0	22
301-400	730	170	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	0	0	nf	0	0	0	0	0
	736	175	0	7	0	164	nf	0	0	0	0	0
401-500	737	227	0	0	0	0	nf	0	0	0	nf	0
	741	223	0	0	0	0	nf	nf	0	0	nf	0
	745	348	0	0	0	0	nf	nf	0	0	nf	0
	748	159	0	0	0	0	nf	nf	0	0	nf	0
401-500		957	0	0	0	0	nf		0	0	nf	0
501-600	738	221		0	0	0	nf	nf	0	0	nf	0
	742	206		0	0	0	nf	nf	0	0	nf	0
	746	392		0	0	0	nf	nf	0	0	nf	0
	749	126		0	0	0	nf	nf	nf	0	nf	0
501-600		945	0	0	0	0	nf			0	nf	0
601-700	739	254		0	0	0	nf	0	0	0	nf	0
	743	211		0	0	0	nf	nf	0	0	nf	0
	747	724		0	0	0	nf	nf	0	0	nf	0
	750	556		0	0	0	nf	nf	nf	0	nf	0
601-700		1745	0	0	0	0	nf		0	0	nf	
701-800	740	264		0	0	0	nf	0	0	0	nf	0
	744	280		0	0	0	nf	nf	0	0	nf	0
	751	229		0	0	0	nf	nf	nf	0	nf	0
701-800		773	0	0	0	0	nf		0	0	nf	0
total strata fished > 200 fath.			4248	1118	191	588	34	43	87	23	113	35
total all strata fished offshore			19318	19824	7652	5438	5300	5161	17072	35794	66513	85445
upperutar			91155	28382	10721	8157	6675	29981	23533	54160	121913	587285
t-value			12.71	2.12	2.12	2.201	2.09	12.71	2.2	2.57	2.78	12.71
1 SD all strata fished offshore			5652	4037	1448	1235	658	1953	2937	7146	19928	39484

Note: Not all strata in the depth range have been fished. Strata not fished in the greater than 200 fathom depth
range have not been filled using a multiplicative model.

Table 11. Mean number of cod per tow at age in the index strata (adjusted for missing strata) for the autumn DFO RV bottom-trawl survey from 1983 onwards. The 2J3KL total is the mean of the Divisional means, weighted by the Divisional survey areas.

cont'd.

Table 11 (Cont'd.)

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32	0.30	0.04	0.03	0.03	0.17	0.27	0.02	0.03	0.69	0.01	0.03
1	17.62	7.68	0.15	1.03	3.87	1.26	0.54	0.82	1.06	0.08	0.00	0.00	0.11	0.04	0.07	0.14	0.79	1.18	0.67	0.30	1.54	0.98	0.07	0.06	1.76	0.43	0.60
2	27.24	75.48	11.11	9.71	22.54	12.57	5.36	6.54	5.27	3.25	1.66	0.19	0.34	0.21	0.64	0.17	1.51	1.59	1.66	0.90	0.32	2.64	0.25	0.67	1.78	1.70	3.17
3	40.89	56.42	32.05	9.02	7.70	13.43	12.73	22.12	5.02	8.14	2.44	0.28	0.52	0.36	0.61	0.32	1.86	1.62	1.49	0.37	0.40	0.33	0.99	0.78	1.58	2.55	8.09
4	9.53	35.05	24.62	22.23	6.96	4.08	7.03	24.38	7.89	7.96	2.46	0.23	0.27	0.43	0.27	0.17	0.20	0.98	0.95	0.31	0.13	0.12	0.31	1.13	1.43	1.97	5.99
5	9.21	6.44	13.18	13.13	10.93	5.57	2.17	11.06	5.59	5.64	0.79	0.09	0.15	0.19	0.15	0.04	0.15	0.31	0.45	0.18	0.06	0.08	0.05	0.72	1.38	1.31	2.68
6	1.50	10.12	5.23	10.20	6.81	5.91	2.30	5.29	2.66	3.07	0.32	0.04	0.11	0.09	0.04	0.03	0.08	0.09	0.10	0.05	0.03	0.03	0.03	0.18	0.45	1.77	0.79
7	1.45	1.48	3.04	2.97	2.86	4.19	2.20	3.21	0.44	0.79	0.05	0.02	0.03	0.05	0.07	0.01	0.01	0.03	0.02	0.01	0.01	0.02	0.00	0.05	0.16	0.58	0.56
8	2.36	1.02	0.57	2.09	1.10	1.86	0.81	2.38	0.22	0.06	0.01	0.00	0.01	0.01	0.09	0.05	0.02	0.03	0.01	0.00	0.00	0.01	0.01	0.01	0.04	0.17	0.10
9	1.26	0.88	0.69	0.80	0.85	0.90	0.56	1.31	0.23	0.04	0.00	0.00	0.00	0.01	0.01	0.02	0.03	0.01	0.02	0.00	0.00	0.01	0.00	0.02	0.02	0.08	0.01
10	0.44	0.94	0.35	0.32	0.09	0.46	0.17	0.51	0.09	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00
11	0.13	0.38	0.25	0.41	0.12	0.12	0.06	0.24	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.06	0.00	0.01	0.00	0.00	0.00	0.00	0.04	0.01
12	0.06	0.22	0.11	0.22	0.19	0.10	0.03	0.15	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.01	0.01	0.02	0.01
13	0.02	0.04	0.04	0.09	0.10	0.12	0.03	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00
14	0.05	0.03	0.01	0.03	0.03	0.07	0.04	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.01	0.03	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.02	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	111.87	196.27	91.42	72.30	64.19	50.68	34.04	78.19	28.59	29.08	7.73	0.85	1.54	1.39	1.95	1.28	4.98	5.88	5.48	2.18	2.69	4.49	1.73	3.68	9.32	10.64	22.04

2J3KL

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.18	0.22	0.26	0.03	0.11	0.43	0.12	0.70	0.50	0.76	1.76	0.04
1	26.49	7.85	0.58	3.23	4.44	18.12	13.75	8.44	0.73	0.25	0.09	0.11	1.58	0.38	0.05	0.46	0.74	1.51	0.81	0.93	1.59	1.37	0.34	0.39	1.68	1.41	0.63
2	58.68	52.62	9.81	14.81	12.42	19.41	66.33	16.98	10.22	2.48	3.05	0.51	0.97	1.38	0.68	0.39	1.73	1.61	1.61	2.30	0.54	2.76	0.96	1.15	2.26	2.11	2.55
3	41.65	53.05	29.73	20.48	8.02	14.48	33.08	48.74	14.80	5.89	2.03	0.71	0.74	0.86	0.89	0.62	1.59	1.62	1.72	1.03	0.65	0.68	2.06	1.47	1.89	2.82	4.48
4	24.08	31.67	32.81	55.20	9.25	7.51	21.96	29.59	41.55	4.54	1.72	0.31	0.30	0.41	0.28	0.49	0.45	0.91	0.68	0.63	0.22	0.41	0.78	1.97	1.40	1.89	3.55
5	15.93	19.82	16.18	62.23	22.83	8.67	12.16	13.54	18.47	4.52	0.51	0.12	0.12	0.15	0.12	0.15	0.23	0.23	0.30	0.17	0.09	0.15	0.21	1.17	1.76	1.14	1.93
6	4.67	10.93	10.25	30.82	17.22	15.21	9.74	6.93	4.58	1.75	0.31	0.03	0.06	0.04	0.02	0.04	0.04	0.06	0.05	0.03	0.02	0.04	0.04	0.35	0.71	1.45	0.63
7	2.67	2.37	4.76	13.08	5.05	13.51	10.34	4.29	1.29	0.39	0.06	0.02	0.01	0.03	0.03	0.02	0.01	0.02	0.01	0.00	0.00	0.02	0.00	0.04	0.18	0.61	0.55
8	5.48	1.35	0.86	5.77	2.97	2.82	5.44	4.12	0.54	0.04	0.01	0.01	0.00	0.00	0.04	0.02	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.02	0.04	0.14	0.14
9	2.77	1.93	0.71	1.31	1.41	1.58	1.44	1.60	0.35	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.08	0.02
10	1.20	1.12	0.61	0.51	0.31	0.77	0.73	0.50	0.15	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
11	0.27	0.41	0.33	0.57	0.13	0.13	0.33	0.19	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
12	0.07	0.16	0.12	0.36	0.15	0.08	0.10	0.10	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
13	0.02	0.04	0.03	0.09	0.08	0.07	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.03	0.02	0.00	0.04	0.03	0.04	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.02	0.00	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	184.04	183.38	106.79	208.52	84.33	102.43	175.50	135.09	92.76	19.89	7.77	1.81	3.79	3.25	2.10	2.21	5.05	6.23	5.28	5.21	3.56	5.56	5.09	7.10	10.70	13.45	14.53

Table 12a. Annual estimates of cod abundance (000's) from spring surveys of NAFO Division 3L during 2000-09 in depths $<=200$ fathoms (in Campelen units)(NF=stratum not fished). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Depth range (fath)				WT	Tel 799	Tel 864	Tel 885						
		Stratum	Stratum	317-318	365-370	422-424	479-482	546-549	621	692-693	Vt 762 ,800	Wt 829	906927
		number	area	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Mean Date			sq mi.	17-Jun-00	11-Jun-01	10-Jun-02	15-Jun-03	16-Jun-04	20-Jun-05	19-Jun-06	27-Jun-07	18-Jun-08	3-Jun-09
31-50		350	2071	71	297	81	163	285	570	366	581	2137	0
		363	1780	420	82	0	41	122	147	245	740	392	286
		371	1121	0	39	39	0	39	62	193	39	77	0
		372	2460	1203	42	0	42	381	169	435	931	387	323
		384	1120	77	0	0	39	0	39	116	0	0	0
51-100		328	1519	1254	139	84	507	79	279	167	788	NF	612
		341	1574	476	909	43	173	433	379	520	136	433	308
		342	585	322	241	40	80	201	201	172	161	322	241
		343	525	72	36	0	0	144	401	108	193	144	169
		348	2120	109	0	167	333	232	500	596	583	194	167
		349	2114	332	249	166	249	291	872	374	291	598	162
		364	2817	155	254	129	0	43	48	406	86	484	86
		365	1041	0	48	48	0	95	143	245	199	143	0
		370	1320	36	0	0	0	0	182	45	45	272	45
		385	2356	81	46	41	0	81	216	41	36	324	0
		390	1481	0	122	0	0	0	36	163	81	634	0
101-150		344	1494	260	392	485	870	575	1212	1045	3319	381	172
		347	983	135	676	45	180	90	1713	4101	19781	180	1590
		366	1394	1630	230	3545	652	1432	1142	8821	6834	336	4142
		369	961	132	196	206	264	118	1586	925	1464	428	88
		386	983	406	260	45	0	40	130	406	85	225	0
		389	821	1412	1016	75	0	376	565	75	167	100	129
		391	282	0	78	19	39	0	466	183	345	614	17
151-200		345	1432	2151	2053	2403	906	2430	2114	2758	2075	1822	1248
		346	865	948	996	2248	1282	363	1547	6425	2380	2340	3162
		368	334	863	1330	578	347	523	712	158	204	684	2297
		387	718	3556	307	285	198	1054	1564	592	593	5054	1235
		388	361	564	695	290	770	221	1324	323	276	684	876
		392	145	195	150	748	140	70	417	120	30	239	247
total strata fished <= 200 fath				16860	10884	11810	7277	9718	18736	30125	42444	19630	17601
ADJUSTED				16860	10884	11810	7277	9718	18736	30125	42444	19630	17601
upper t-value				52643	14422	16092	9317	14260	24225	47677	256007	68157	28950
				12.71	2.31	2.33	2.12	2.26	2.31	2.31	12.71	12.71	2.45
1 STD strata fished <= 200 fath				2815	1532	1838	962	2010	2376	7598	16803	3818	4632

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=200$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 12b. Annual estimates of cod biomass (t) from spring surveys of NAFO Division 3L during 2000-09 in depths <= 200 fathoms (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Depth		Stratum	WT	Tel 799	Tel 864	Tel 885						
range	Stratum	area	317-318	365-370	422-424	479-482	546-549	621	692-693	Vt 762,800	Wt 829	N 906927
(fath)	number	sq mi.	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Mean Date			17-Jun	11-Jun	10-Jun	15-Jun	16-Jun-04	20-Jun-05	19-Jun-06	27-Jun-07	18-Jun-08	3-Jun-09
31-50	350	2071	17	621	28	11	22	2142	204	506	1356	0
	363	1780	193	1	0	3	1275	8	641	1544	1860	36
	371	1121	0	25	1	0	1	13	156	3	519	0
	372	2460	392	4	0	355	8	56	282	153	64	24
	384	1120	20	0	0	1	0	8	175	0	0	0
51-100	328	1519	89	37	3	129	61	318	216	251	nf	380
	341	1574	96	549	3	16	644	1911	89	9	442	145
	342	585	23	9	2	9	13	23	14	36	72	10
	343	525	27	0.361	0	0	11	173	36	28	18	6
	348	2120	10	0	14	16	20	204	550	143	18	12
	349	2114	615	26	5	113	34	551	278	191	549	8
	364	2817	43	15	3	0	3	75	953	14	820	21
	365	1041	0	17	1	0	8	37	80	14	11	0
	370	1320	1	0	0	0	0	59	34	39	196	9
	385	2356	2	4	42	0	3	86	12	13	184	0
	390	1481	0	5	0	0	0	9	54	22	105	0
101-150	344	1494	152	126	71	307	128	579	443	2828	35	8
	347	983	9	182	3	32	13	949	3557	17971	50	1134
	366	1394	210	25	292	130	396	424	3250	4182	15	1253
	369	961	218	159	10	60	93	976	306	816	158	4
	386	983	311	131	10	0	25	61	270	119	219	0
	389	821	587	440	83	0	137	237	9	228	6	13
	391	282	0	41	2	3	0	145	55	128	198	1
151-200	345	1432	956	725	605	327	349	918	1867	2597	670	510
	346	865	582	260	558	644	215	643	4583	2062	972	1999
	368	334	499	417	100	91	225	381	70	60	142	1481
	387	718	2057	191	112	34	325	604	332	333	1680	294
	388	361	251	176	147	497	67	571	187	141	243	153
	392	145	19	74	332	13	16	219	53	14	214	74
total strata fished <= 200 fathoms			7378	4262	2428	2794	4094	12377	18758	34445	10816	7577
ADJUSTED			7378	4262	2428	2794	4094	12377	18758	34445	10816	7577
			30307	6164	3040	4093	7427	18175	30571	223582	15450	12022
t-value			12.71	2.14	2.18	28	2.36	2.36	2.57	12.71	2.23	2.31
1 STD strata fished <= 200 fathoms			1804	889	281	46	1412	2457	4596	14881	2078	1924

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=200$ fathom depth range have been filled using
a multiplicative model using data to 1992 . Std are for strata fished in the depth range.

Table 13. Annual estimates of cod abundance (000s) and biomass (t) from spring surveys of NAFO Division 3L during 2000-09 in depths > 200 fathoms (in Campelen units). Estimates for years prior to 2000 are given in Brattey et al. 2008a.

Depth range (fath) Mean Date		Stratum	WT	Tel 799	Tel 864	Tel 885						
	Stratum	area	317-318	365-370	422-424	479-482	546-549	621	692-693	Wt 762 ,800	Wt 829	, 906927
	number	nautical miles	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
			17-Jun	11-Jun	10-Jun	15-Jun	16-Jun-04	20-Jun-05	19-Jun-06		18-Jun-08	3-Jun-09
Abundance												
201-300	729	186	2240	171	50	280	0	0	0	0	0	113
	731	216	155	409	272	1398	0	43	43	51	0	15
	733	468	315	626	1094	5565	0	0	0	0	0	0
	735	272	580	3792	3138	3530	0	0	0	0	50	37
301-400	730	170	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	13
	734	228	0	0	0	14	0	0	0	0	nf	235
	736	175	0	0	0	0	0	0	0	0	0	0
401-500	737	227	nf									
	741	223	nf									
	745	348	nf									
	748	159	nf									
Total >200 fathoms			3290	4998	4554	10787	0	43	43	51	50	413
Total all strata fished			20150	15881	16364	18064	9718	18779	30168	42495	19680	18014
			58359	67976	60855	41584	14260	24268	47720	256059	68211	29378
upper t-value			12.706	12.706	12.71	4.303	2.26	2.31	2.31	12.71	12.71	2.45
1 STD all strata fished			3007	4100	3500	5466	2010	2376	7598	16803	3818	4638
Biomass												
201-300	729	186	858	78	15	108	0	0	0	0	0	44
	731	216	51	321	117	1588	0	18	36	41	0	6
	733	468	172	290	351	2071	0	0	0	0	0	0
	735	272	270	2557	1877	1486	0	0	0	0	250	29
301-400	730	170	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	0	50	0	0	0	0	nf	294
	736	175	0	0	0	0		0	0	0	0	0
401-500	737	227	nf									
	741	223	nf									
	745	348	nf									
	748	159	nf									
Total >200 fathoms			1351	3246	2360	5303	0	18	36	41	250	373
Total all strata fished			8728	7507	4788	8097	4094	12395	18794	34486	11067	7951
			32059	41939	27442	16216	7427	18193	30607	223624	15665	12339
t-value			12.706	12.706	12.71	3.182	2.36	2.36	2.57	12.71	2.26	2.31
1 STD all strata fished			1836	2710	1782	2552	1412	2457	4596	14881	2035	1900

Note: $\mathbf{n f}=$ not fished. Strata not fished in the greater than 200 fathom depth range have not been filled using a multiplicative model.

Table 14. Mean number of cod per tow at age in the index strata (adjusted for missing strata) from the spring DFO RV bottom-trawl survey of NAFO Div. 3L.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
0												0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.24	0.05	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.05	0.23	0.69	0.28	0.76	0.16	0.19	0.14	0.16	0.34	0.30	0.08
2	24.66	4.71	6.20	4.56	6.56	8.14	4.82	1.29	0.08	0.19	0.25	0.43	0.18	0.08	0.54	0.87	0.86	0.89	0.27	1.10	0.72	1.12	0.61	1.01	0.78
3	85.66	17.70	11.95	24.30	23.92	46.84	13.81	2.26	1.71	0.33	0.19	0.23	0.43	0.25	0.26	0.86	0.35	0.43	0.38	0.31	1.83	1.93	2.35	1.60	1.43
4	48.28	31.74	11.45	10.16	20.06	41.76	19.67	1.82	0.79	0.12	0.16	0.15	0.16	0.25	0.17	0.69	0.13	0.16	0.12	0.19	0.59	1.61	2.55	0.68	0.50
5	23.76	18.51	19.07	9.93	5.23	18.34	9.80	2.54	0.34	0.06	0.05	0.05	0.07	0.11	0.11	0.08	0.11	0.07	0.07	0.07	0.20	0.75	1.75	0.22	0.44
6	8.24	9.85	13.15	17.32	3.62	5.05	4.25	1.09	0.24	0.01	0.01	0.05	0.03	0.07	0.08	0.08	0.01	0.02	0.02	0.01	0.04	0.29	0.51	0.10	0.12
7	7.17	3.96	6.27	7.39	8.32	4.30	1.07	0.36	0.07	0.00		0.03	0.20	0.02	0.08	0.01	0.00		0.00	0.02	0.07	0.02	0.08	0.02	0.09
8	1.39	2.95	1.95	3.71	6.06	4.74	0.85	0.06	0.04				0.06	0.02	0.05	0.00	0.01		0.00	0.01	0.06	0.02	0.13	0.02	0.02
9	0.65	0.65	1.52	1.25	1.58	2.53	0.80	0.01	0.00				0.02	0.01	0.16	0.00			0.00	0.00	0.00	0.02	0.00	0.00	0.01
10	0.92	0.56	0.58	1.04	0.62	1.02	0.28	0.04					0.01	0.00	0.06	0.00			0.00	0.00	0.01	0.01	0.01	0.02	
11	1.04	0.96	0.41	0.30	0.54	0.44	0.28	0.00					0.01		0.03	0.01			0.00	0.00	0.01	0.00	0.02	0.03	
12	0.35	0.62	0.54	0.36	0.14	0.28	0.09	0.00							0.01	0.01			0.00	0.01	0.00	0.00	0.00	0.03	
13	0.14	0.21	0.33	0.32	0.19	0.21	0.03	0.01							0.01	0.01			0.03	0.00	0.00	0.00	0.01	0.00	
14	0.04	0.07	0.10	0.25	0.33	0.15	0.01	0.01							0.01					0.01	0.00	0.01		0.00	
15	0.06	0.06	0.05	0.10	0.13	0.13	0.02													0.00	0.02	0.00		0.00	
16	0.01	0.02	0.01	0.04	0.04	0.07	0.00													0.01				0.01	
17	0.00	0.00	0.00	0.03	0.03	0.05	0.00																	0.00	
18	0.01	0.02	0.01	0.02	0.02	0.01	0.00																	0.01	
19	0.00	0.00	0.01	0.00	0.01	0.01	0.01																		
20	0.01	0.00		0.01			0.01																		
TOTAL	202.41	92.59	73.84	81.14	77.40	134.23	55.80	9.49	3.27	0.71	0.66	1.00	1.17	0.86	1.80	3.33	1.75	2.33	1.05	1.93	3.69	5.94	8.36	4.05	3.47

Table 15a. Sentinel survey standardized catch rate-at-age indices (fish per net) for $51 / 2$ " mesh gillnets for three inshore areas.

Inshore Northern area

YrlAge	3	4	5	6	7	8	9	10
1995	0.00	0.04	0.21	0.04	0.03	0.01	0.00	0.00
1996	0.01	0.02	0.26	1.17	0.19	0.04	0.01	0.00
1997	0.02	0.05	0.20	0.59	0.55	0.07	0.00	0.01
1998	0.01	0.06	0.27	0.75	0.70	0.21	0.04	0.01
1999	0.00	0.03	0.27	0.39	0.36	0.15	0.04	0.03
2000	0.03	0.06	0.14	0.36	0.33	0.16	0.03	0.01
2001	0.01	0.05	0.12	0.15	0.15	0.06	0.04	0.01
2002	0.11	0.19	0.27	0.24	0.14	0.07	0.01	0.01
2003	0.03	0.06	0.18	0.32	0.24	0.07	0.04	0.00
2004	0.02	0.04	0.16	0.36	0.32	0.11	0.03	0.01
2005	0.04	0.12	1.00	1.66	1.26	0.39	0.16	0.03
2006	0.02	0.28	1.05	2.28	1.15	0.43	0.19	0.07
2007	0.02	0.06	0.95	2.11	1.18	0.44	0.09	0.06
2008	0.01	0.10	0.33	2.52	2.07	0.61	0.15	0.05
2009	0.03	0.07	0.24	0.65	1.56	0.79	0.24	0.06

Inshore Central area

Yr\Age	3	4	5	6	7	8	9	10
1995	0.00	0.05	1.88	1.84	0.85	0.22	0.03	0.00
1996	0.05	0.16	1.45	7.54	1.87	0.40	0.05	0.03
1997	0.01	0.09	1.18	3.44	6.61	1.07	0.10	0.03
1998	0.07	0.11	1.32	5.77	5.66	3.55	0.76	0.07
1999	0.02	0.16	1.42	2.24	3.46	1.09	0.73	0.16
2000	0.02	0.10	1.12	1.88	1.07	1.50	0.69	0.41
2001	0.02	0.08	0.49	1.29	0.76	0.28	0.45	0.14
2002	0.01	0.05	0.59	0.95	0.78	0.25	0.18	0.28
2003	0.05	0.13	0.56	1.42	1.00	0.29	0.12	0.06
2004	0.02	0.17	1.19	1.74	1.13	0.41	0.17	0.06
2005	0.03	0.09	2.41	3.38	1.26	0.47	0.16	0.07
2006	0.02	0.50	1.66	4.03	1.90	0.49	0.16	0.09
2007	0.05	0.10	3.82	4.81	2.29	0.65	0.19	0.08
2008	0.04	0.12	0.69	7.55	4.28	1.31	0.33	0.10
2009	0.03	0.07	0.43	1.38	4.97	2.80	0.71	0.18

Inshore Southern area

Yr\Age	3	4	5	6	7	8	9	10
1995	0.01	0.06	0.79	2.92	0.94	1.18	0.35	0.08
1996	0.04	0.25	1.01	6.57	4.94	1.67	0.43	0.09
1997	0.03	0.14	3.12	2.46	4.28	1.79	0.28	0.13
1998	0.01	0.09	1.84	10.34	4.11	1.83	0.81	0.14
1999	0.02	0.10	2.01	3.86	4.84	1.26	0.50	0.14
2000	0.02	0.08	0.85	1.31	1.26	1.38	0.60	0.16
2001	0.01	0.06	0.35	0.86	0.54	0.42	0.57	0.16
2002	0.01	0.05	0.54	0.65	0.59	0.36	0.14	0.10
2003	0.01	0.05	0.29	2.69	1.40	0.66	0.30	0.11
2004	0.01	0.16	0.82	1.83	3.04	0.85	0.26	0.06
2005	0.02	0.05	0.84	1.52	1.48	1.08	0.40	0.08
2006	0.00	0.27	0.95	2.20	1.14	0.61	0.41	0.07
2007	0.00	0.04	1.33	2.35	1.01	0.46	0.18	0.10
2008	0.00	0.03	0.36	3.75	2.74	0.77	0.26	0.05
2009	0.00	0.02	0.31	0.78	2.27	2.07	0.41	0.08

Table 15b. Sentinel survey standardized catch rate-at-age indices for line-trawl (fish per 1000 hooks) and 3¼" gillnet (fish per net) for the inshore central area.

Linetrawl							
YrlAge	3	4	5	6	7	8	9
1995	10.20	57.70	51.20	15.90	4.40	0.40	0.40
1996	24.00	39.90	51.10	24.70	2.80	0.40	0.10
1997	14.10	56.40	72.60	47.60	32.40	3.90	1.10
1998	18.10	32.00	25.60	20.30	6.40	8.20	1.20
1999	10.90	23.30	29.70	14.30	9.70	2.50	4.00
2000	14.70	53.40	25.60	17.20	8.20	4.50	3.00
2001	28.90	39.70	13.70	3.60	1.20	0.50	0.40
2002	161.30	26.70	16.10	6.60	1.30	0.20	1.50
2003	31.20	69.30	32.40	6.20	2.70	0.80	0.50
2004	32.10	52.30	34.70	21.20	1.40	1.00	0.00
2005	34.50	56.20	46.10	14.50	4.20	1.30	0.50
2006	14.60	50.10	32.20	17.40	3.30	1.50	0.10
2007	5.90	25.10	79.90	43.10	16.80	6.10	0.50
2008	8.90	40.60	48.50	49.90	34.20	7.30	0.50
2009	6.90	35.00	29.90	20.50	46.00	19.10	4.30

$31 / 4^{\prime \prime}$ Gillnet

YrlAge	2	3	4	5	6	7	8	9	10
1996	0.02	9.46	20.23	8.08	8.48	0.34	0.04	0.00	0.00
1997	0.01	5.80	13.16	5.04	4.82	3.90	0.41	0.02	0.00
1998	0.08	6.79	3.93	4.47	7.98	4.12	1.72	0.39	0.01
1999	0.38	8.47	5.76	4.11	1.70	1.79	0.33	0.20	0.05
2000	0.29	8.76	7.16	3.35	1.74	0.50	0.47	0.19	0.13
2001	0.25	8.50	7.61	2.65	1.33	0.31	0.09	0.13	0.03
2002	0.66	11.85	5.78	1.90	1.03	0.35	0.05	0.03	0.04
2003	0.47	20.13	9.07	2.69	1.31	0.52	0.08	0.03	0.01
2004	0.91	8.16	9.51	4.95	1.77	0.56	0.11	0.04	0.02
2005	0.23	17.58	10.17	5.36	2.23	0.35	0.12	0.03	0.00
2006	0.28	7.15	10.67	5.57	2.93	0.78	0.12	0.02	0.02
2007	0.35	7.51	7.18	10.84	6.09	1.27	0.34	0.02	0.01
2008	0.54	6.82	8.20	3.64	9.20	2.82	0.61	0.11	0.01
2009	0.13	5.37	8.21	5.07	3.66	4.83	1.97	0.33	0.09

Table 16. Annual reporting rate estimates for single and double tagged cod from fisheries in the inshore of NAFO Divs. 3KL during 1997-2009 based on the high-reward tagging method. See text for details.

	Single tag reporting rates (NAFO Divs. 3KL)												
Group	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
All	0.70	0.68	0.79	0.70	0.90	0.73	0.73	0.68	0.68	0.61	0.62	0.64	0.57
Commercial	0.74	0.73	0.81	0.72	0.90	0.78	0.76	0.72	0.72	0.69	0.68	0.70	0.66
Recreational	NA	0.48	0.50	0.51	0.54	0.46	0.48	NA	NA	0.46	0.48	0.50	0.47

	Double tag reporting rates (NAFO Divs. 3KL)												
	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
All	0.80	0.78	0.86	0.80	0.94	0.82	0.82	0.79	0.78	0.73	0.74	0.75	0.70
Commercial	0.83	0.82	0.88	0.81	0.94	0.86	0.84	0.82	0.82	0.79	0.79	0.80	0.77
Recreational	NA	0.62	0.63	0.64	0.67	0.59	0.62	NA	NA	0.59	0.61	0.63	0.60

Table 17. Estimates of annual mean exploitation rate (harvest rate, in percent) for cod tagged in NAFO Div. 3KL during 1997-2009. Shaded cells represent partial estimates as fishery in that year was already in progress. Boxed columns of cells indicate values used to compute annual means, weighted by numbers released. See text for details.

Unit area	$\begin{array}{r} \text { Expt. } \\ \text { number } \end{array}$	Area of release	$\begin{aligned} & \hline \text { Nos tagged } \\ & (50-85 \mathrm{~cm}) \end{aligned}$	Recapture year			
				2006	2007	2008	2009
3KI	2005002	TOO GOOD ARM (HL)	190	11.4	0.0		
3KI	2006006	TOO GOOD ARM	488	30.4	10.9	8.9	
3KI	2006007	TWILLINGATE	1282	23.6	3.4	1.6	
3KI	2006008	FOGO	941	9.0	8.6	3.7	
3KI	2007-006	TOO GOOD ARM	403		7.7	3.8	4.1
3 KI	2008-007	TOO GOOD ARM	490			10.6	6.9
3KI	2008-008	FOGO NORTH	307			2.6	1.5
3KI	2008-010	TWILLINGATE	184			11.6	0.0
Annual means				19.2	7.6	4.5	4.0

3LA	2006005	BONAVISTA	1345	5.0	6.5	3.9	
3LA	2007012	DEER HARBOUR BB	50		7.4	8.2	0.0
3LA	2007015	BONAVISTA BAY	105		0.0	0.0	2.7
3LA	2008-003	BONAVISTA	512			3.5	4.8
3LA	2009-004	BONAVISTA	517				3.7
		Annual means		5.0	6.63 .7		3.9

3LB	2004001	SMITH SOUND (HL)	932	11.2			
3LB	$2005-001$	SMITH SOUND (HL)	667	9.4	6.9		
3LB	$2005-003$	SMITH SOUND (HL)	110	13.9	11.1		
3LB	$2005-009$	SMITH SOUND (HL)	51	20.0	13.4		
3LB	$2006-001$	SMITH SOUND (HL)	384	9.1	5.8	4.0	
3LB	$2006-003$	SMITH SOUND (OT)	25	25.1	0.0	0.0	
3LB	$2006-004$	SMITH SOUND HL	390	9.4	7.2	7.5	
3LB	200009	SMITH SOUND HL	472	0.0	12.1	6.2	
3LB	2006010	SMITH SND CP	264	0.0	16.7	8.0	
3LB	2006011	SMITH SND CP	319	0.0	7.8	13.5	
3LB	2006012	SMITH SND HL	637	0.0	5.9	5.6	
3LB	$2007-002$	SMITH SOUND OT	73		4.8	6.7	19.4
3LB	$2007-003$	SMITH SOUND HL	202		3.1	4.8	10.2
3LB	$2007-016$	SMITH SND CP	860		0.0	8.7	6.0
3LB	$2007-017$	SMITH SND HL	52		0.0	9.1	0.0
3LB	$2008-002$	SMITH SOUND	49			5.4	8.8
3LB	$2008-011$	SMITH SOUND CP	355			2.5	9.7
3LB	$2008-012$	SMITH SOUND CP	401			0.0	10.2
3LB	$2008-013$	SMITH SOUND HL	105			0.0	3.6
3LB	200001	SMITH SOUND CP	53			8.1	
3LB	2009002	SMITH SOUND HL	1137			5.0	

3LJ	$2007-009$	PETTY HARBOUR	523		7.6	8.8
3LJ	$2008-009$	PETTY HARBOUR	414	7.7		
3LJ	$2009-006$	PETTY HARBOUR	216			7.9

3KG	2007001	OFFSHORE 3K	871	0.4	0
3KG	2008001	OFFSHORE 3K	1758	Annual means	$\mathbf{5 . 3}$

Table 18. Tag return and commercial landings data by unit area used to estimate the ratio of commercial to recreational fishery landings during 2007-2009.

Unit Area	Adjusted tag returns	Proportions		Reportedcommercial landings (t)			Estimatedrecreational landings (t)		
		Commercial	Recreationa\|	2007	2008	2009	2007	2008	2009
3Kh	17	0.76	0.24	286	397	269	90	125	84
3 Ki	150	0.73	0.27	553	817	526	207	306	197
3La	117	0.58	0.42	361	509	608	263	371	443
3Lb	294	0.51	0.49	359	491	584	346	473	563
3Lf	15	0.48	0.52	257	326	416	282	357	456
3Lj	87	0.76	0.24	218	236	639	68	74	200
				2034	2776	3042	1256	1706	1943

Table 19. Time series of estimates of mean numbers per tow, abundance (000s) and biomass (t) for the DFO-industry inshore mobile gear survey of near-shore areas of NAFO Div. 2J3KL in 2006-09. Values are given for inshore and perimeter portions of three areas (Northern, Central, and Southern) that correspond to those defined for the sentinel survey (see Fig. 22). Inshore encompasses strata adjacent to land (depth < 50 m) and perimeter is strata seaward of inshore strata (depth 50-200 m).

	Area	2006	2007	2008	2009
Mean no. per tow	Northern inshore	4.7	10.0	8.3	1.7
	Northern perimeter	2.2	1.6	1.4	0.7
	Central inshore	175.2	34.9	78.2	144.1
	Central perimeter	3.7	7.1	6.3	2.5
	Southern inshore	171.7	529.8	802.7	65.5
	Southern perimeter	13.4	2.5	6.1	2.4
Abundance	Northern inshore	502	1,066	757	183
	Northern perimeter	1,116	789	712	368
	Central inshore	32,279	6,563	14,685	29,308
	Central perimeter	596	1,149	1,021	398
	Southern inshore	8,512	26,884	40,732	4,261
	Southern perimeter	1,721	317	779	305
Biomass	Northern inshore	268	177	109	134
	Northern perimeter	1,254	685	667	238
	Central inshore	12,917	7,135	3,809	56,721
	Central perimeter	748	1,549	1,369	684
	Southern inshore	2,543	4,315	27,761	2,195
	Southern perimeter	341	356	642	283

Table 20. Time series of age-disaggregated mean numbers per tow for the DFO-industry inshore mobile gear survey of near-shore areas of NAFO Div. 2J3KL in 2006-09. Values are given for all strata in three areas that correspond to those defined for the sentinel survey (northern, central, and southern).

Northern				
Age	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$
$\mathbf{0}$
$\mathbf{1}$	0.14	0.23	0.46	0.04
$\mathbf{2}$	0.23	1.25	0.46	0.19
$\mathbf{3}$	0.34	0.53	0.54	0.19
$\mathbf{4}$	0.80	0.47	0.40	0.27
$\mathbf{5}$	0.76	0.33	0.20	0.08
$\mathbf{6}$	0.25	0.18	0.17	0.05
$\mathbf{7}$	0.09	0.04	0.05	0.04
$\mathbf{8}$	0.06	0.01	0.02	0.02
$\mathbf{9}$	0.02	.	.	0.01
$\mathbf{1 0}$	0.01	.	.	.
$\mathbf{1 1}$
$\mathbf{1 2}$
$\mathbf{1 3}$
$\mathbf{1 4}$
$\mathbf{1 5}$
$\mathbf{1 6}$
$\mathbf{1 7}$

Central				
Age	2006	2007	2008	2009
0				
1	3.98	0.48	21.10	2.59
2	28.30	1.86	10.27	13.03
3	37.77	4.07	7.05	3.81
4	13.71	4.60	2.41	5.81
5	8.56	7.08	1.33	11.86
6	1.79	3.04	1.71	9.22
7	0.80	0.55	0.86	16.39
8	0.30	0.31	0.42	12.64
9	0.04	0.07	0.13	3.79
10	0.13	0.04	0.04	1.47
11	0.06	0.06	0.03	0.40
12	0.10	0.04		0.21
13				
14				
15		0.02		
16		0.07		
17				0.13
	95.54	22.29	45.35	81.35
Southern				
Age	2006	2007	2008	2009
0			0.28	
1	5.16	13.78	69.64	4.66
2	28.63	96.39	36.24	7.84
3	14.65	34.81	31.07	2.97
4	3.66	3.00	24.54	2.57
5	3.27	2.51	21.20	2.19
6	1.01	1.44	27.47	1.24
7	0.40	0.56	13.14	1.16
8	0.30	0.26	5.04	0.76
9	0.22	0.10	1.39	0.16
10	0.12	0.24	1.16	0.03
11	0.06	0.17	0.30	0.01
12		0.11	0.12	0.01
13		0.03		
14				
15		0.03		
16				
17				
	57.48	153.43	231.59	23.60

Table 21. Number of gillnet set records by year and unit area from logbooks for vessels <35ft fishing the inshore of NAFO Divs. 2J3KL during 1998-2002 and 2006-2009. There was no directed fishery for cod during 2003-2005.

Unit area	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$
2J	0	0	0	0	0	86	22	46	27
3Kd	485	585	118	73	16	103	70	85	73
3Kh	2595	5577	1433	1092	582	873	792	1225	705
3Ki	1571	5748	3732	3193	1288	1079	641	808	818
3La	637	2593	2531	2602	2148	722	482	557	487
3Lb	580	2342	2067	2218	1812	906	602	706	590
3Lf	669	2004	1527	1428	864	775	665	660	616
3Lj	330	1116	884	652	582	609	560	533	357
3Lq	38	182	136	267	249	5	15	2	1
Totals	6905	20147	12428	11525	7541	5158	3849	4622	3674

Table 22. Estimated proportions mature for female cod from NAFO Div. 2J+3KL from DFO autumn bottom trawl surveys from 1963 to 2009 projected forward to 2012 and back to 1958. Estimates were obtained from a probit model fitted by cohort to observed proportions mature at age. Lightly shaded cells are averages of the first or last three estimates extrapolated back or forward. Darkly shaded cells are the average of adjacent estimates for the same age group.

Year/Age	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1958	0.0000	0.0000	0.0000	0.0007	0.0112	0.1576	0.7634	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1959	0.0000	0.0000	0.0000	0.0007	0.0112	0.1576	0.7634	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1960	0.0000	0.0000	0.0000	0.0007	0.0112	0.1576	0.7634	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1961	0.0000	0.0000	0.0000	0.0000	0.0112	0.1576	0.7634	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1962	0.0000	0.0000	0.0001	0.0008	0.0009	0.1576	0.7634	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1963	0.0001	0.0002	0.0003	0.0012	0.0130	0.0396	0.7634	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1964	0.0002	0.0004	0.0015	0.0035	0.0197	0.1863	0.6493	0.9875	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1965	0.0003	0.0010	0.0026	0.0098	0.0402	0.2468	0.7986	0.9881	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
1966	0.0000	0.0017	0.0054	0.0160	0.0659	0.3347	0.8422	0.9856	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000
1967	0.0000	0.0001	0.0081	0.0275	0.0917	0.3598	0.8579	0.9886	0.9992	1.0000	1.0000	1.0000	1.0000	1.0000
1968	0.0000	0.0000	0.0011	0.0389	0.1290	0.3848	0.8264	0.9864	0.9993	1.0000	1.0000	1.0000	1.0000	1.0000
1969	0.0001	0.0000	0.0003	0.0086	0.1664	0.4403	0.7949	0.9732	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000
1970	0.0002	0.0006	0.0000	0.0037	0.0657	0.4959	0.8120	0.9600	0.9961	0.9999	1.0000	1.0000	1.0000	1.0000
1971	0.0086	0.0012	0.0035	0.0003	0.0446	0.3638	0.8290	0.9599	0.9933	0.9994	1.0000	1.0000	1.0000	1.0000
1972	0.0170	0.0217	0.0069	0.0187	0.0085	0.3678	0.8231	0.9599	0.9925	0.9989	0.9999	1.0000	1.0000	1.0000
1973	0.0000	0.0421	0.0539	0.0371	0.0924	0.2004	0.8787	0.9743	0.9916	0.9986	0.9998	1.0000	1.0000	1.0000
1974	0.0000	0.0000	0.1008	0.1298	0.1764	0.3718	0.8800	0.9890	0.9968	0.9983	0.9997	1.0000	1.0000	1.0000
1975	0.0002	0.0002	0.0003	0.2224	0.2990	0.5432	0.8743	0.9954	0.9991	0.9996	0.9997	1.0000	1.0000	1.0000
1976	0.0001	0.0009	0.0018	0.0036	0.4217	0.5967	0.8685	0.9844	0.9998	0.9999	1.0000	0.9999	1.0000	1.0000
1977	0.0000	0.0008	0.0052	0.0150	0.0430	0.6502	0.8471	0.9735	0.9975	1.0000	1.0000	1.0000	1.0000	1.0000
1978	0.0000	0.0003	0.0051	0.0285	0.1136	0.3554	0.8258	0.9485	0.9951	0.9996	1.0000	1.0000	1.0000	1.0000
1979	0.0000	0.0000	0.0024	0.0308	0.1400	0.5188	0.8713	0.9236	0.9818	0.9991	0.9999	1.0000	1.0000	1.0000
1980	0.0000	0.0000	0.0002	0.0173	0.1655	0.4748	0.9007	0.9881	0.9686	0.9933	0.9998	1.0000	1.0000	1.0000
1981	0.0002	0.0002	0.0003	0.0031	0.1129	0.5530	0.8339	0.9871	0.9990	0.9874	0.9974	1.0000	1.0000	1.0000
1982	0.0000	0.0010	0.0022	0.0042	0.0436	0.4788	0.8852	0.9654	0.9984	0.9999	0.9950	0.9990	1.0000	1.0000
1983	0.0000	0.0000	0.0049	0.0186	0.0588	0.3980	0.8689	0.9796	0.9936	0.9998	1.0000	0.9980	0.9996	1.0000
1984	0.0000	0.0000	0.0004	0.0241	0.1417	0.4805	0.9055	0.9795	0.9967	0.9988	1.0000	1.0000	0.9992	0.9998
1985	0.0000	0.0001	0.0002	0.0045	0.1114	0.5898	0.9320	0.9928	0.9971	0.9995	0.9998	1.0000	1.0000	0.9997
1986	0.0000	0.0001	0.0014	0.0027	0.0533	0.3885	0.9260	0.9951	0.9995	0.9996	0.9999	1.0000	1.0000	1.0000
1987	0.0000	0.0003	0.0013	0.0139	0.0394	0.4114	0.7631	0.9909	0.9997	1.0000	0.9999	1.0000	1.0000	1.0000
1988	0.0000	0.0002	0.0022	0.0127	0.1223	0.3800	0.8966	0.9423	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000
1989	0.0000	0.0001	0.0019	0.0150	0.1151	0.5798	0.9015	0.9908	0.9881	0.9999	1.0000	1.0000	1.0000	1.0000
1990	0.0000	0.0000	0.0010	0.0168	0.0976	0.5691	0.9318	0.9927	0.9993	0.9976	1.0000	1.0000	1.0000	1.0000
1991	0.0001	0.0001	0.0005	0.0179	0.1302	0.4338	0.9306	0.9927	0.9995	0.9999	0.9995	1.0000	1.0000	1.0000
1992	0.0023	0.0010	0.0014	0.0131	0.2500	0.5674	0.8444	0.9927	0.9993	1.0000	1.0000	0.9999	1.0000	1.0000
1993	0.0000	0.0082	0.0086	0.0365	0.2756	0.8591	0.9200	0.9746	0.9993	0.9999	1.0000	1.0000	1.0000	1.0000
1994	0.0000	0.0002	0.0291	0.0711	0.5105	0.9160	0.9911	0.9902	0.9963	0.9999	1.0000	1.0000	1.0000	1.0000
1995	0.0001	0.0001	0.0029	0.0980	0.4045	0.9663	0.9968	0.9995	0.9989	0.9995	1.0000	1.0000	1.0000	1.0000
1996	0.0020	0.0008	0.0020	0.0336	0.2825	0.8576	0.9987	0.9999	1.0000	0.9999	0.9999	1.0000	1.0000	1.0000
1997	0.0006	0.0079	0.0078	0.0292	0.2944	0.5877	0.9816	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1998	0.0000	0.0029	0.0303	0.0763	0.3112	0.8336	0.8377	0.9979	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1999	0.0000	0.0003	0.0142	0.1091	0.4636	0.8716	0.9837	0.9492	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000
2000	0.0001	0.0001	0.0035	0.0669	0.3246	0.9004	0.9903	0.9986	0.9854	1.0000	1.0000	1.0000	1.0000	1.0000
2001	0.0011	0.0012	0.0014	0.0396	0.2630	0.6536	0.9895	0.9993	0.9999	0.9959	1.0000	1.0000	1.0000	1.0000
2002	0.0001	0.0054	0.0102	0.0283	0.3249	0.6399	0.8810	0.9990	1.0000	1.0000	0.9989	1.0000	1.0000	1.0000
2003	0.0000	0.0010	0.0255	0.0802	0.3797	0.8487	0.8985	0.9667	0.9999	1.0000	1.0000	0.9997	1.0000	1.0000
2004	0.0004	0.0003	0.0076	0.1125	0.4253	0.9279	0.9849	0.9778	0.9913	1.0000	1.0000	1.0000	0.9999	1.0000
2005	0.0008	0.0027	0.0044	0.0559	0.3800	0.8627	0.9963	0.9987	0.9955	0.9978	1.0000	1.0000	1.0000	1.0000
2006	0.0000	0.0044	0.0189	0.0722	0.3153	0.7478	0.9816	0.9998	0.9999	0.9991	0.9994	1.0000	1.0000	1.0000
2007	0.0004	0.0003	0.0225	0.1191	0.5757	0.7818	0.9348	0.9978	1.0000	1.0000	0.9998	0.9999	1.0000	1.0000
2008	0.0004	0.0025	0.0036	0.1072	0.4865	0.9594	0.9654	0.9858	0.9997	1.0000	1.0000	1.0000	1.0000	1.0000
2009	0.0004	0.0025	0.0150	0.0354	0.3851	0.8692	0.9976	0.9954	0.9970	1.0000	1.0000	1.0000	1.0000	1.0000
2010	0.0004	0.0025	0.0150	0.0872	0.2735	0.7656	0.9790	0.9999	0.9994	0.9994	1.0000	1.0000	1.0000	1.0000
2011	0.0004	0.0025	0.0150	0.0872	0.3817	0.7944	0.9446	0.9969	1.0000	0.9999	0.9999	1.0000	1.0000	1.0000
2012	0.0004	0.0025	0.0150	0.0872	0.3817	0.8097	0.9754	0.9889	0.9996	1.0000	1.0000	1.0000	1.0000	1.0000

Table 23. Mean length (cm) at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2009. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-1980 and 1984.

Division 2J																	
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
1																	
2	29.3	30.1	30.6	29.9	29.8	26.6	27.6	27.0	28.2	29.5	30.4	28.1	26.5	28.1	26.6	26.3	25.8
3	38.0	41.4	39.4	38.8	38.2	38.9	34.5	33.6	35.7	36.5	37.6	37.3	34.0	33.4	34.1	32.2	36.4
4	45.9	47.8	49.5	47.1	47.2	46.2	44.6	40.3	41.2	43.3	44.2	43.7	42.2	38.7	38.9	40.2	42.6
5	54.1	55.7	54.7	54.6	53.5	53.9	51.1	48.6	47.8	49.0	48.6	50.1	46.9	44.0	41.8	44.6	47.0
6	59.7	61.3	60.7	58.2	59.6	60.2	56.7	53.5	52.8	52.5	53.8	53.9	53.3	51.2	47.3	47.0	56.6
7	66.4	68.1	64.4	63.1	61.5	62.9	63.5	57.5	56.6	57.4	55.9	57.1	56.6	56.9	57.1	47.0	55.8
8	69.6	74.0	69.5	66.9	64.5	64.7	65.8	64.3	59.5	58.9	59.8	59.7	59.3	58.7			
9	79.4	69.3	82.2	73.6	68.9	68.6	66.9	67.2	67.7	61.9	63.9	62.9	61.0	63.8			
10	80.4	76.9	83.5	84.1	76.9	73.5	71.6	70.3	68.4	67.8	66.2	64.8	65.4	65.6			
11	87.9	87.7	86.5	90.5	85.5	74.9	78.4	72.8	72.3	77.6	74.2	69.7	71.5	72.7			
12	91.4	85.9	87.8	88.6	94.8	94.5	83.5	75.9	75.9	75.7	80.6	69.3	73.0	66.2			

Division 3K

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
1																	
2	27.9	29.8	30.8	31.3	29.4	28.6	26.5	28.7	29.5	29.7	25.7	27.5	28.2	29.3	28.7	28.4	28.5
3	37.7	42.0	40.1	42.3	40.4	40.8	37.0	36.0	36.7	38.3	36.7	37.5	36.2	36.4	36.6	37.4	36.9
4	47.2	49.5	47.4	50.4	50.3	48.3	47.2	44.0	44.1	45.0	44.5	45.3	44.0	43.2	42.7	43.9	41.7
5	55.1	55.5	54.9	56.4	54.2	56.6	54.5	51.9	50.2	51.3	52.0	51.9	49.7	48.0	47.1	49.7	51.4
6	62.7	63.0	62.0	60.4	60.7	62.5	61.9	57.3	56.4	54.3	56.2	56.2	56.4	54.9	51.6	51.4	54.2
7	69.7	70.0	69.7	65.3	64.5	67.0	64.5	62.6	58.9	60.2	58.7	60.4	58.9	59.7	57.9	51.1	58.5
8	74.3	76.8	76.5	69.2	69.2	67.8	68.9	69.5	64.3	63.3	66.4	63.6	61.2	62.8	65.2	64.0	61.2
9	76.7	83.4	85.7	81.9	74.8	72.3	73.1	70.3	67.4	69.6	73.1	67.7	62.8	65.5	64.0		
10	81.9	78.1	87.8	90.2	79.7	76.4	78.0	73.3	76.8	75.5	78.6	73.8	64.7	69.2			
11	88.4	86.0	104.5	92.0	89.8	84.4	85.4	79.1	76.0	80.8	84.2	74.7	71.2	80.5			
12	91.7	78.9	94.5	92.1	97.0	85.2	90.8	86.9	73.7	86.6	89.3	82.9	68.0	68.4			

Division 3L

Age	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
1														
2	28.5	28.8	30.1		26.9	27.9	27.5	28.7	28.5	27.0	29.9	27.9	29.7	28.5
3	40.0	38.3	39.7		36.1	35.5	35.0	37.4	37.9	35.5	36.6	38.6	38.1	34.8
4	44.9	50.4	48.1		43.7	44.0	44.1	45.3	44.9	44.8	44.7	44.6	45.7	45.3
5	53.0	56.4	57.0		52.4	50.7	52.5	53.2	52.3	52.9	51.2	50.7	52.1	52.2
6	60.6	63.8	62.3		58.1	58.3	59.3	58.8	59.4	59.6	56.5	54.9	56.1	58.6
7	66.9	69.8	64.8		65.5	62.6	65.2	62.6	64.0	66.5	61.1	56.7	61.7	70.0
8	73.1	73.9	69.7		73.3	70.1	69.0	66.7	68.8	71.0	68.0	66.1	75.0	67.0
9	82.3	83.2	73.6		72.7	73.2	75.3	69.6	74.9	75.2	71.4	77.4		
10	91.1	92.9	76.2		82.5	77.7	80.8	74.3	84.1	76.3	73.3	70.3	87.0	
11	103.7	94.2	90.5		86.8	81.5	88.0	88.9	87.7	82.6	74.5	73.7		
12	119.2	110.1	85.0		97.8	86.8	85.6	96.7	94.2	86.9	81.7	94.5		

Cont'd.

Table 23. Cont'd. (Mean length (cm) at age)

Division 2J

Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1	20.2	19.1		21.9	20.8	22.0	23.0	21.1	20.2	22.6	22.7	22.0	22.0	22.1	20.9
2	26.2	28.8	30.6	25.3	27.6	27.8	29.6	28.0	31.6	31.1	28.9	27.4	27.4	27.9	29.4
3	33.3	35.0	37.6	38.8	33.7	37.8	35.1	37.5	38.2	38.1	36.5	35.6	36.5	35.8	37.2
4	42.5	43.5	43.0	44.4	42.1	44.0	44.1	43.6	43.2	45.7	43.3	43.6	43.3	45.0	44.2
5	47.4	49.4	48.2	47.8	52.4	54.3	50.0	45.9	50.7	50.3	51.1	48.2	52.2	43.8	52.5
6	57.0	56.0		52.8	69.0	62.3	55.0	41.0	61.4	55.7	52.8	57.9	57.2	59.2	57.7
7		69.0		51.0			57.0				66.0		62.0	59.4	59.0
8					79.0							74.0			
9														67.0	
10															
11															
12															

Division 3K

Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1	19.0	19.1	21.8	19.5	20.5	20.9	20.1	22.1	19.4	20.9	20.4	17.9	20.6	20.8	19.7
2	25.7	28.8	29.7	25.6	29.2	27.9	28.2	28.5	30.5	28.1	29.1	25.1	27.4	27.9	28.4
3	34.5	35.0	39.3	39.2	36.8	37.1	34.9	35.5	39.0	35.0	38.3	37.1	37.9	37.5	37.7
4	42.2	43.5	48.2	45.4	45.8	45.9	42.7	41.7	45.4	43.7	44.5	47.0	47.9	46.4	45.5
5	47.4	49.4	56.4	51.9	52.6	51.9	52.7	47.6	53.8	49.4	51.6	52.5	57.2	55.2	52.8
6	53.8	56.0		57.9	55.8	61.0	55.4	56.7		57.4	60.4	56.2	61.2	64.0	59.9
7		69.0		62.6	72.9			57.0		60.5		71.1	66.9	67.8	68.0
8			68.0	83.0			73.0			81.0		65.6	74.0	66.7	75.9
9	68.0			80.0	81.0		74.0						90.0	71.3	73.2
10					89.0					58.0			80.0		82.0
11															
12														102.0	

Division 3K

Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1	16.6	17.3	21.5	18.4	19.3	19.4	18.4	20.6	17.7	20.1	18.6	18.1	18.2	19.2	19.5
2	27.9	29.7	30.5	31.2	30.0	28.5	29.0	29.6	29.1	29.0	29.8	28.2	26.8	29.4	28.8
3	36.9	38.8	37.2	39.8	39.9	39.8	36.7	38.8	39.8	37.3	38.6	38.9	38.6	36.9	39.0
4	41.6	44.3	44.3	47.8	47.4	45.9	45.0	47.3	50.1	48.0	43.9	46.5	47.3	46.6	43.5
5	49.7	49.5	53.6	54.2	55.4	53.3	51.5	56.5	51.0	50.1	49.6	51.0	55.1	53.9	50.3
6	58.6	58.9	61.7	59.0	60.3	58.0	58.4	63.0	60.5	58.9	59.5	54.3	59.9	62.1	58.4
7	66.7	66.7	68.2	78.0	64.0	65.4	65.9	68.0	70.0	72.0	61.0	72.0	67.1	67.6	64.8
8	74.0	70.0	72.8	75.8	72.9	77.9	67.9			57.0	65.7	63.0	78.1	67.8	73.9
9		66.0	74.0	79.0	86.3	81.0	75.1		71.0	69.0		87.7	93.6		77.0
10					90.7					82.0		81.5	90.0	64.5	
11				77.0	79.0		91.0		89.0					75.8	104.0
12					100.0		101.0	97.0				75.0	100.0	103.3	105.0

Table 24. Mean weight (kg) at age of cod sampled during autumn bottom-trawl surveys in Divisions 2J, 3K and 3L in 1978-2009. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-1980 and 1984.

Division 2J																	
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
,																	
2	0.20	0.26	0.24	0.22	0.21	0.17	0.15	0.19	0.25	0.27	0.25	0.20	0.15	0.18	0.14	0.15	0.15
3	0.46	0.63	0.52	0.55	0.50	0.58	0.38	0.36	0.36	0.50	0.54	0.50	0.36	0.31	0.31	0.29	0.41
4	0.96	1.02	1.04	1.08	0.95	0.96	0.81	0.63	0.62	0.87	0.81	0.82	0.70	0.52	0.51	0.57	0.68
5	1.54	1.57	1.36	1.67	1.55	1.51	1.32	1.12	1.07	1.32	1.12	1.23	1.02	0.79	0.63	0.79	0.93
6	2.22	2.30	2.02	1.96	1.90	1.94	1.81	1.49	1.59	1.52	1.53	1.52	1.46	1.13	0.90	0.89	1.63
7	2.69	2.97	2.65	2.49	2.33	2.18	2.42	1.95	1.98	2.17	1.75	1.94	1.82	1.57	1.65	0.86	1.76
8	3.80	3.38	3.07	3.19	2.79	2.69	2.59	2.41	2.60	2.50	2.43	2.37	2.13	1.76			
9	4.45	5.84	5.68	4.39	4.17	3.31	3.01	3.02	3.75	1.80	2.42	2.72	2.46	2.40			
10	5.94	6.05	8.12	6.55	6.58	4.31	3.56	3.36	4.48	4.80	3.49	3.25	3.10	2.87			
11	6.41	7.41	7.08	7.75	7.23	4.73	5.68	4.43	4.62	4.34	4.13	3.91	4.21	4.07			
12	9.19	6.24	7.67	10.95	10.18	9.09	6.81	4.27	6.12	4.71	7.09	3.61	4.70	3.12			

Division 3K

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
1																	
2	0.16	0.21	0.23	0.27	0.23	0.23	0.14	0.20	0.19	0.19	0.17	0.19	0.18	0.21	0.20	0.20	0.20
3	0.38	0.52	0.59	0.70	0.73	0.55	0.39	0.44	0.43	0.47	0.47	0.49	0.41	0.41	0.41	0.46	0.43
4	0.83	1.18	0.87	1.25	1.22	1.08	0.86	0.87	0.80	0.89	0.84	0.88	0.77	0.70	0.69	0.76	0.67
5	1.48	1.60	1.36	$\mathbf{1 . 7 3}$	1.50	1.70	1.37	1.22	1.18	1.31	1.37	1.37	1.14	1.05	0.97	1.12	1.25
6	2.37	2.25	2.00	1.94	1.94	2.08	2.08	1.79	1.93	1.51	1.74	1.83	1.61	1.55	1.37	1.33	$\mathbf{1 . 5 0}$
7	3.12	3.33	3.41	2.77	2.47	2.92	2.35	2.56	2.52	2.40	2.37	2.29	1.92	2.02	1.84	1.39	$\mathbf{1 . 9 9}$
8	$\mathbf{5 . 5 1}$	4.40	3.49	5.12	3.11	3.36		3.45	3.46	2.89	3.04	2.70	2.32	2.33	2.75	$\mathbf{2 . 4 0}$	$\mathbf{2 . 3 6}$
9	4.64	4.81	5.88	6.85	4.46	3.77	3.60	4.02	3.54	3.52	4.35	3.37	2.56	2.72	$\mathbf{2 . 1 9}$		
10	6.76	4.64	7.84	6.69	6.38	4.81	5.05	5.05	5.01	5.46	4.91	4.27	2.71	3.53			
$\mathbf{1 1}$	$\mathbf{6 . 0 8}$	8.86	$\mathbf{1 1 . 9 2}$	9.46	6.91	7.20	6.39	6.47	5.97	$\mathbf{1 0 . 6 9}$	5.94	4.63	3.68	$\mathbf{5 . 7 9}$			
$\mathbf{n} \mathbf{1 2}$	$\mathbf{8 . 6 7}$	$\mathbf{1 0 . 4 1}$	7.46	8.25	$\mathbf{9 . 9 5}$	$\mathbf{1 1 . 8 4}$	6.25	6.35	$\mathbf{6 . 4 8}$	7.31	$\mathbf{7 . 9 8}$	6.00	3.45	$\mathbf{3 . 2 2}$			

Division 3L

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
2				0.20	0.17	0.22		0.15	0.22	0.18	0.22	0.19	0.16	0.23	0.19	0.23	0.20
3				0.55	0.38	0.54		0.42	0.45	0.35	0.43	0.44	0.38	0.45	0.55	0.48	0.37
4				0.82	0.48	1.08		0.77	0.78	0.74	0.75	0.79	0.80	0.80	0.87	0.84	0.84
5				1.26		1.44		1.34	1.15	1.25	1.31	1.52	1.35	1.28	1.29	1.34	1.34
6				1.94		2.05		2.15	1.84	1.79	1.79	1.85	1.91	1.84	1.77	1.84	2.01
7				2.67		2.21		2.45	2.60	2.43	2.13	2.59	2.72	2.21	1.98	2.61	3.34
8				5.09	5.44	2.93		3.47	2.80	2.89	3.13	3.74	3.52	3.11	3.04	4.30	3.16
9				6.01	6.16	4.18		3.90	4.42	3.84	3.08	3.95	4.38	3.79	4.85		
10				11.42	8.34	4.55		6.31	5.28	6.71	3.64	6.98	4.75	4.06	3.59	6.44	
11				11.67	7.84	8.70		5.69	4.64	7.43	7.25	7.53	6.07	4.81	4.53		
12				17.44	11.31	8.75		11.49	10.88	6.08	9.48	10.20	7.29	6.06	8.81		

Cont'd.

Table 24. Cont'd. (Mean weight (kg) at age)

Division 2J															
Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1	0.07	0.19		0.08	0.08	0.09	0.10	0.09	0.07	0.09	0.10	0.08	0.09	0.09	0.074
2	0.17	0.37	0.26	0.14	0.20	0.19	0.22	0.19	0.27	0.29	0.22	0.18	0.20	0.20	0.225
3	0.33	0.71	0.48	0.51	0.37	0.47	0.41	0.47	0.50	0.51	0.45	0.41	0.46	0.41	0.451
4	0.70	1.20	0.73	0.82	0.72	0.80	0.77	0.77	0.75	0.88	0.80	0.77	0.75	0.85	0.792
5	1.00	1.39	1.05	1.05	1.44	1.42	1.15	0.92	1.24	1.25	1.40	1.09	1.31	0.93	1.293
6	1.78	2.19		1.46	3.21	2.46	1.49	0.58	2.16	1.82	1.32	1.85	1.85	1.89	1.653
7		2.15		1.53			1.64				2.67		2.54	1.94	1.88
8					5.18							3.82			
9														2.40	
10															
11															
12															

Division 3K

Division 3L

Table 25. Mean gutted condition index at length classes $28 \mathrm{~cm}, 37 \mathrm{~cm}$ and 49 cm of cod in Divisions 2J, 3 K and 3 L in 1978-2009, from sampling during bottom-trawl surveys in autumn. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Division 3 L in 1978-80 and 1984.

Division 2J																	
Lengthclass	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
28	0.741	0.713	0.767	0.774	0.761	0.725	0.712	0.711	0.751	0.747	0.742	0.754	0.722	0.717	0.684	0.757	0.745
37	0.695	0.737	0.777	0.776	0.765	0.762	0.746	0.764	0.803	0.862	0.805	0.756	0.740	0.743	0.711	0.771	0.787
49	0.782	0.763	0.791	0.826	0.763	0.819	0.785	0.763	0.819	0.818	0.801	0.790	0.765	0.709	0.709	0.740	0.726
Division 3K																	
Lengthclass	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
28	0.676	0.668	0.691	0.792	0.718	0.733	0.738	0.754	0.715	0.774	0.755	0.719	0.711	0.735	0.749	0.733	0.740
37	0.723	0.748	0.766	0.770	0.752	0.758	0.730	0.736	0.759	0.755	0.803	0.765	0.721	0.728	0.681	0.727	0.759
49	0.728	0.766	0.738	0.772	0.816	0.793	0.724	0.770	0.796	0.777	0.803	0.773	0.732	0.733	0.717	0.711	0.750
Division 3L																	
Lengthclass	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
28				0.752	0.670	0.751		0.700	0.732	0.720	0.698	0.722	0.737	0.729	0.749	0.718	0.773
37				0.795	0.815	0.712		0.722	0.729	0.751	0.759	0.781	0.742	0.761	0.798	0.739	0.756
49				0.797		0.752		0.742	0.769	0.767	0.774	0.790	0.738	0.744	0.800	0.741	0.734

Division 2J															
Lengthclass	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
28	0.745	0.737	0.733	0.721	0.728	0.741	0.725	0.757	0.733	0.752	0.750	0.749	0.766	0.732	0.745
37	0.775	0.760	0.762	0.794	0.764	0.741	0.750	0.754	0.732	0.786	0.752	0.775	0.761	0.777	0.758
49	0.785	0.807	0.740	0.762	0.777	0.750	0.767	0.751	0.763	0.762	0.757	0.723	0.731	0.754	0.760
Division 3K															
Lengthclass	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
28	0.757	0.730	0.746	0.728	0.746	0.742	0.734	0.745	0.746	0.763	0.740	0.739	0.74	0.762	0.730
37	0.760	0.760	0.763	0.766	0.760	0.740	0.730	0.753	0.739	0.784	0.768	0.746	0.781	0.807	0.763
49	0.739	0.756	0.712	0.749	0.763	0.719	0.738	0.752	0.727	0.786	0.792	0.769	0.806	0.834	0.750
Division 3L															
Lengthclass	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
28	0.763	0.764	0.827	0.766	0.724	0.703	0.741	0.736	0.741	0.767	0.680	0.751	0.719	0.773	0.714
37	0.735	0.730	0.763	0.738	0.795	0.751	0.769	0.750	0.754	0.766	0.759	0.741	0.739	0.802	0.761
49	0.774	0.759	0.767	0.777	0.772	0.770	0.755	0.776	0.742	0.832	0.789	0.798	0.788	0.803	0.753

Table 26. Mean liver index at length classes $28 \mathrm{~cm}, 37 \mathrm{~cm}$ and 49 cm of cod in Divisions 2J, 3K and $3 L$ in 1978-2009, from sampling during bottom-trawl surveys in autumn. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Division 3L in 1978-80 and 1984.

Division 2J																	
Lengthclass	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
28		0.028	0.036	0.046	0.033	0.031	0.035	0.025	0.038	0.021	0.028	0.039	0.042	0.038	0.024	0.042	0.031
37		0.053	0.047	0.039	0.044	0.065	0.046	0.048	0.072	0.063	0.049	0.056	0.051	0.048	0.036	0.038	0.046
49		0.066	0.058	0.065	0.049	0.064	0.066	0.054	0.083	0.071	0.073	0.069	0.064	0.035	0.030	0.039	0.036
Division 3K																	
Lengthclass	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
28	0.024	0.024	0.014	0.034	0.017	0.022	0.014	0.028	0.027	0.029	0.031	0.035	0.035	0.037	0.032	0.041	0.034
37	0.019	0.026	0.042	0.035	0.027	0.047	0.034	0.048	0.044	0.046	0.039	0.045	0.046	0.048	0.037	0.041	0.042
49	0.029	0.052	0.035	0.051	0.049	0.064	0.044	0.051	0.075	0.058	0.062	0.067	0.058	0.052	0.056	0.049	0.059
Division 3L																	
Lengthclass	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
28				0.027	0.011	0.030		0.017	0.027	0.028	0.020	0.026	0.035	0.045	0.043	0.042	0.037
37				0.042	0.027	0.020		0.037	0.032	0.035	0.033	0.039	0.038	0.062	0.067	0.050	0.051
49				0.042		0.023		0.043	0.045	0.042	0.045	0.042	0.037	0.055	0.073	0.061	0.055

Figure 1a. Major geographic features and NAFO Division and Subdivision boundaries around Newfoundland and Labrador.

Figure 1b. Bathymetry, fishing banks, and major bays around eastern Newfoundland and Labrador. The dashed line is Canada's 200 nautical mile limit. WB=White Bay, NDB=Notre Dame Bay, $B B=$ Bonavista Bay, TB=Trinity Bay, and CB=Conception Bay.

Figure 1c. Boundaries of commercial fishery statistical unit areas and Canada's 200 nautical mile limit (dotted line).

Figure 2. Total allowable catches (TACs) and reported landings (thousands of tons) of cod from 2 J3KL by non-Canadian fleets and Canadian mobile gear (offshore) and Canadian fixed gear (mainly inshore).

Figure 3. Reported landings of cod (thousands of tons) from 2J3KL by NAFO Division.

Figure 4. Reported fixed gear landings (000s t) of cod from 2J3KL by gear type.

Figure 5. Total allowable catches (TACs) and reported inshore fixed-gear landings (thousands of tons) of cod from 2J3KL for the inshore fishery (1995-2009). Most of the landings in 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay in April. The asterisks indicates that the 2007 and 2009 values exclude the recreational catch which has not been determined.

| | Number of fish measured | | | | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area | 2 Jm | 3 Ka | 3 Kd | 3 Kh | 3 Ki | 3 La | 3Lb | 3Lf | 3 Lj | 3 Lq |
| dock | 10 | 41 | \cdot | \cdot | 328 | 907 | 594 | 338 | 399 | 64 |
| sea | 47 | 44 | | . | 344 | 127 | 742 | 583 | 324 | 109 |

	Number of fish measured									
Area	2 Jm	3 Ka	3 Kd	3Kh	3 Ki	3La	3Lb	3Lf	3Lj	3Lq
dock	10	68		166	649		604	235		
sea	41	214		842	852		156	135		

Figure 6. Comparison of mean lengths (cm) by unit area for cod measured at sea and at the dock by fisheries officers during the recreational fishery for cod in 2J3KL during 2008 and 2009.

Figure 7. Comparison of the catch at age (ages 2-12, in percents) of cod in 2J3KL during 200609.

Figure 8. Mean weights-at-age of cod from 2J3KL calculated from mean lengths-at-age in the catch from 1972 onwards. Values for 8 and 9 yr olds in 1993 were anomalous and are omitted. Landings prior to the 1993 moratorium were mostly from otter trawling offshore early in the year; since the moratorium most of the catch has come from fixed gear inshore in the second half of the year.

Figure 9. Boundaries of strata used in research bottom-trawl surveys in NAFO Division 2 J.

Figure 10. Boundaries of strata used in research bottom-trawl surveys in NAFO Division $3 K$.

Figure 11. Boundaries of strata used in research bottom-trawl surveys in NAFO Division $3 L$.

Figure 12. Trends in offshore indices of abundance +2SE's (upper panels) and biomass +2SE's (lower panels) of cod in NAFO Divs 2 J 3 KL from autumn bottom trawl surveys. The right panels are expanded to show trends from 1992 onwards. Asterisks indicate partial estimates from incomplete survey coverage in 3L in 2004.

Figure 13. Trends in offshore spawner biomass index for cod in NAFO Divs 2J3KL from autumn bottom trawl surveys. The right panels are expanded to show trends from 1992 onwards. Asterisks indicate partial estimates from incomplete survey coverage in 3L in 2004.

Figure 14. Standardized age-disaggregated catch rates from the autumn bottom trawl survey of 2 J 3 KL . Catch rates (mean nos per tow) were converted to proportions within an age (left panel) or within a year (right panel). Values were standardized by subtracting the mean proportion and dividing by the standard deviation of the proportions computed across years. Symbol sizes are scaled and values greater than average are shown as grey circles, average values are shown as small dots, and less than average values are shown as black circles. Cohorts are labeled down the diagonal.

Figure 15. Cod distribution (number per standard tow) during the autumn research survey in NAFO Divisions 2J+3KL in 2008 and 2009. Cohorts are labeled down the diagonal.

Figure 16. Cod distribution (total weight [kg] per standard tow) during the autumn research survey in NAFO Divisions 2J+3KL in 2008 and 2009.

Figure 17. Abundance of the 1980-2007 year-classes at age 2 and age 3 in the offshore of 2J3KL from the autumn RV surveys. Asterisks indicate partial estimates for the 2001 and 2002 year-classes from incomplete survey coverage of 3L in 2004.

Figure 18. Trends in the annual instantaneous mortality rate (Z) of cod aged 4-6 calculated using data from the autumn RV surveys of the offshore of 2J3KL. For example, the value in 1996 is the mortality experienced by the 1991-1989 year-classes from ages 4-6 in 1995 to ages 5-7 in 1996. The dashed line is the time-series average ($Z=0.87$, which corresponds to 58% mortality each year). Open symbols indicate estimates based on an incomplete survey in 2004.

Figure 19. Trends in offshore indices of abundance (upper panels) and biomass (lower panels) of cod in NAFO Div. 3 from spring bottom trawl surveys. The right panels are expanded to show trends from 1992 onwards.

Figure 20. Standardized age-disaggregated catch rates (ages 1-8) from the spring bottom trawl survey of $3 L$ for the period 1993-2009. Catch rates (mean nos per tow) were converted to proportions within an age (left panel) or within a year (right panel). Values were standardized by subtracting the mean proportion and dividing by the standard deviation of the proportions computed across years. Symbol sizes are scaled and values greater than average are shown as grey circles, average values are shown as small dots, and less than average values are shown as black circles. Cohorts are labeled down the diagonal.

Figure 21. Cod distribution (upper panels, number per standard tow; lower panels weight [kg] per standard tow) during spring research surveys in NAFO Div. 3L in 2008 and 2009.

Figure 22. Eastern Newfoundland showing the boundaries of the inshore northern, inshore central and inshore southern areas as defined for the present assessment. WB=White Bay, NDB=Notre Dame Bay, BB=Bonavista Bay, TB=Trinity Bay, CB=Conception Bay and SMB=St. Mary's Bay; PB=Placentia Bay which is in Subdiv. 3Ps

Figure 23. Comparison of trends in standardized catch rates of cod ($\pm 95 \%$ CL's) from sentinel surveys of three inshore regions of $2 J 3 K L$ using $51 / 2 "$ mesh gillnets. Dashed grey lines indicate series means.

Figure 24. Trends in standardized catch rates of cod ($\pm 95 \%$ CL's) from sentinel surveys of the inshore central region of $3 K L$ using linetrawls. Dashed grey lines indicate series means.

Figure 25. Trends in standardized catch rates (with 95\% confidence intervals) for two age groups of cod from sentinel surveys in the inshore central area of $3 K L$ using small mesh ($3^{1 ⁄ 2}$) gillnets.

Figure 26. Standardized age-disaggregated catch rate indices for small mesh ($31 / 4{ }^{\prime \prime}$) gillnets (upper panel) and $51 / 2 "$ mesh gillnets (lower panel) estimated using data from sentinel survey sites in the inshore central area of Divs. 3 KL. Catch rates are proportional to symbol area; values within each age were divided by the maximum within an age. Cohorts are labeled down the diagonals.

Figure 27. Standardized age-disaggregated catch rate indices for linetrawls (lower panel) estimated using data from sentinel survey sites in the inshore central area of $3 K L$. Catch rates are proportional to symbol area; values within each age were divided by the maximum within an age. Cohorts are labeled down the diagonal.

Figure 28. Annual estimates of tag reporting rate for commercial and recreational fishers from the mixed-effects linear regression model (see text for details). Error bars are 95\% confidence intervals. The upper dashed line at 1.0 in each panel is shown for reference (=100\% reporting rate). The lower dashed line is the average of the series.

Figure 29. Release sites and recapture locations for cod tagged in the offshore of $3 K$ east of Funk Island Bank during March 2007 (open star) and 2008 (black star). Open triangles are recaptures from the 2007 release location, solid triangles from the 2008 release location; there were no recaptures in 2007. The 300 m and 350 m depth contours are also indicated.

Figure 30a. Monthly trends in the numbers of conventionally tagged offshore cod recaptured in the inshore of eastern Newfoundland during 2007-2009. The cod were captured, tagged, and released offshore in NAFO Div. 3K in March 2007 (arrow, upper panel) and March 2008 (arrow, lower panel).

Figure 30b. Monthly trends in the numbers of acoustically tagged offshore cod detected on inshore receiver arrays moored off the east coast of Newfoundland (or recaptured inshore). The cod were captured, acoustically and conventionally tagged, and released in the offshore of NAFO Div. 3K in March 2007 (arrow, upper panel) and March 2008 (arrow, lower panel).

Figure 31. Detections of acoustically tagged offshore cod on receiver arrays moored along the northeast coast of insular Newfoundland. The map indicates the release locations in March 2007 (open triangles) and 2008 (solid triangles) and positions of the arrays, numbered 1 to 30 anti-clockwise (from north to south). The horizontal bar charts show annual total numbers of acoustically tagged offshore cod detected on each receiver array for cod released in 2007 (left panel) and 2008 (right panel). Detection data for 2009 may be incomplete for arrays 4,5, 6, 24-27, and 30 as these arrays have not been retrieved since early summer 2009.

Figure 32. Cumulative annual dates of first detection of acoustically tagged offshore cod at inshore receiver arrays during 2008 and 2009. Day 182 (1 July), day 213 (1 August), and day 244 (1 September) are shown as vertical dashed lines for reference.

Figure 33. Trends in the numbers of age 1 cod from beach seine surveys in Newman Sound, Bonavista Bay.

Figure 34. Comparison of the length composition (upper panel) and age composition (lower panel) of the catch of cod from the DFO-Industry mobile gear survey of the near-shore of NAFO Divisions 2J3KL during 2006-09.

Figure 35. Trends in median catch rates of cod (with $10^{\text {th }}$ and $90^{\text {th }}$ percentiles) by unit area from log-book data for vessels <35 ft. Unit area 3Lq (St. Mary's Bay) is not shown due to lack of data for the 2006-2009 period.

Figure 36. Standardized year class strength from sentinel survey catch rate data for age 3 and age 4 using 311/4" mesh gillnet and $51 / 2^{\prime \prime}$ mesh gillnet. The dashed grey line is the time series average, error bars are 95% confidence intervals.

Figure 37. Age at 50% maturity ($\pm 95 \%$ CI) by cohort for female cod in Divisions 2J3KL combined based on sampling during autumn research bottom-trawl surveys. The open circles show the results from the previous assessment back to the 1990 cohort. See text for details.

Figure 38. Estimated proportions mature at ages 3-8 for female cod from NAFO Divisions 2J3KL combined. The percentage mature at age estimated from sampling during the autumn research bottom-trawl survey in year t is displayed for year $t+1$ as fish sampled during the autumn survey are maturing to spawn the following year.

Figure 39a. Mean lengths (cm) at ages 2-8 of cod in Divisions 2J, 3K and 3L in 1978-2009, from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 39b. Mean lengths (cm) at ages 4 and 5 of cod in Divisions 2J, 3K and 3L during 1978-2009 from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. The lines in each panel indicate the annual means (solid line with symbols), a 3-year moving average (heavy solid line) and the mean over all years for which there were observations (dashed line). There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 40a. Mean weights at ages 2-8 of cod in Divisions 2J, 3K and 3L in 1978-2009, from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 40b. Mean weights (Kg) at ages 4 and 5 of cod in Divisions 2J, 3K and 3L during 1978-2009, from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. The lines in each panel indicate the annual means (solid line with symbols), a 3-year moving average (heavy solid line) and the mean over all years for which there were observations (dashed line). There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 41. Mean gutted condition index at length classes $28 \mathrm{~cm}, 37 \mathrm{~cm}$ and 49 cm of cod in Divisions $2 \mathrm{~J}, 3 \mathrm{~K}$ and $3 L$ in 1978-2009, from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish in 1995-97 are not plotted. There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 42. Mean liver index at length classes $28 \mathrm{~cm}, 37 \mathrm{~cm}$ and 49 cm of cod in Divisions 2J, 3K and 3L in 19782009 from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish in 1995-97 are not plotted. There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 43. Relative gutted condition of cod in Divisions 2J, 3K and 3L in 1978-2009, from sampling during bottom-trawl surveys in autumn. There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 44. Relative liver condition of cod in Divisions 2J, 3K and 3L in 1978-2009, from sampling during bottomtrawl surveys in autumn. There were no autumn surveys in Division 3L in 1978-80 and 1984.

Figure 45. Relative trends in biomass (ages 2-8) and spawning stock biomass (SSB) from cohort analysis of the DFO autumn survey data. Error bars are 95\% confidence intervals.

Figure 46. Relative trends in recruitment (age 2) from cohort analysis of the DFO autumn survey data. Error bars are 95% confidence intervals.

Figure 47. Trends in the instantaneous total mortality rate (Z) of cod aged 4-8 estimated from cohort analysis of DFO autumn survey data. The dashed lines indicate values of $Z=1.0$ and $Z=0.5$ which correspond to annual mortality rates of 63% and 39%, respectively. Error bars are 95\% confidence intervals.

[^0]: ${ }^{1}$ Provisional catches.
 ${ }^{2}$ Catch is 4000 (t) less than Canadian statistics as this quantity is considered 3 NO gillnet catch misreported in 3L
 ${ }^{3}$ Estimate for recreational fishery has been reported as 3L handline.
 ${ }^{4}$ Comprised of sentinel survey catch of $294 t$, a food fishery catch of $1155 t$ and by-catch $142 t$.
 An amount of 103 t must still be allocated by gear type and division from the sentinel catches.
 ${ }^{5} 780 t$ of this catch was the result of a mass mortality in Smith Sound. (Actual gear used was gaff or dip net)
 ${ }^{6}$ Excludes recreational fishery catch.

