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ABSTRACT 

Sonier, R., Comeau, L.A. and Lanteigne, L. 2010. Mapping chlorophyll-a fluorescence in a blue 
mussel (Mytilus edulis) seed collection farm. Can. Tech. Rep. Fish. Aquat. Sci. 2870: v + 17 p. 
 

The primary objective of this study was to assess the phytoplankton biomass 

distribution throughout a blue mussel (Mytilus edulis) seed collection farm using active 

fluorescence mapping technology.  Within the farm we measured a fluorescence 

depletion of up to 30% compared to outside the farm.  The depletion generally extended 

10 m past the farm, although during ebb tide it appeared to follow currents and was 

traceable further (500 m) downstream past the farm.  The scale and magnitude of this 

“shadow effect” was attenuated during flood tide.  Within the farm, there were generally 

increases in fluorescence between sets of longlines. Unexpected areas with high 

phytoplankton biomass were also observed inside the farm during the ebb tide. 

 

RÉSUMÉ 

Sonier, R., Comeau, L.A. and Lanteigne, L. 2010. Mapping chlorophyll-a fluorescence in a blue 
mussel (Mytilus edulis) seed collection farm. Can. Tech. Rep. Fish. Aquat. Sci. 2870 : v + 17 p. 

 

L’objectif primaire de cette étude fut d’évaluer la distribution de la biomasse 

phytoplanctonique à l’intérieur et autour d’une ferme de collecte de naissains de moules 

bleues (Mytilus edulis).  La fluorescence active (in-situ) fut utilisée afin de déterminer 

l’étendue  et la persistance des gradients de fluorescence à l’intérieur de la ferme.  À la 

profondeur des collecteurs de naissains, une diminution de fluorescence atteignant 

jusqu’à 30 % fut notée comparativement à l’extérieur de la ferme pour la même 

profondeur.  Cette diminution s’étendait généralement jusqu’à 10 m à l’extérieur du bail, 

toutefois durant la marée perdante cette diminution semble suivre les courants dominants 

et est détectable même jusqu'à 500 m à l’extérieure de la ferme.  Cependant, la 

fluorescence augmente rapidement entre les blocs de longues lignes (« corridors »), et 

s’accroit considérablement environ 10 mètres de distance à l’extérieur de la ferme.  

Certains endroits localisés démontrent des valeurs élevées en fluorescence au centre de la 

ferme surtout durant la marée descendante.
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INTRODUCTION 

Primary production rates in estuaries are among the highest on earth, and the 

transfer of this productivity through the food web often yields prolific fisheries (Gobler et 

al. 2005).  The yields from culturing marine shellfish in estuarine environments have 

steadily increased over the last two decades.  In 1996, bivalve production accounted for 

25% of the world’s aquaculture production in terms of value (Gibbs, 2004).  In Atlantic 

Canada, shellfish farming has grown progressively over the past eighteen years, during 

which the annual production increased from 1,463 t in 1986 to 28,039 t in 2004 (Comeau 

et al. 2006).  For instance, blue mussel (Mytilus edulis) production on Prince Edward 

Island (P.E.I.) greatly increased during this time and is now responsible for 80% of 

Canadian mussel production (Drapeau et al. 2007).  Likewise, aquacultural production of 

the American oyster (Crassostrea virginica) was approximately 4 million oysters in 

2002, and production is estimated to reach 54 million oysters in 2010 (Sonier, 2006). 

Presently, the Department of Fisheries and Oceans in Atlantic Canada grants few 

sites (leases) for new development or expansion of shellfish aquaculture.  Faced with this 

dilemma, the growers aim to optimize crop distribution at their leases and/or bay-scale to 

improve the productivity of suspension-cultured shellfish.  Therefore, some shellfish 

growers are reconsidering their growing layout according to the uneven crop growth 

within their active leases, which can cover areas of up to 300 acres.    Recently, a cost 

benefits study of P.E.I. blue mussel production analyzed sock spacing and socking 

densities.  The results of the study suggested that there was a positive effect of high sock 

spacing on shell growth and abundance for small, densely packed seeds (Comeau et al. 

2008). 

Mussels feed on phytoplankton, and strong depletions in chlorophyll are 

commonly observed above mussel beds (Maar et al. 2007). At low algal concentrations, 

mussels can close their valves and temporarily stop feeding to reduce their oxygen uptake 

and respiration and save energy (Dolmer, 2000; Riisgård et al.2003).  The growth of 

filter-feeding bivalves is largely controlled by food availability. In turn, food availability 

is affected by phytoplankton dynamics, the concentration of suspended particulate matter 

(seston), community composition (i.e. quality and species) and transport rates (currents 

and waves) (Strohmeier et al. 2008).  One of the shellfish industry’s concerns is that 
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seeds and juveniles are deployed with inadequate consideration to localized inequalities 

in growing conditions, such as phytoplankton concentrations and current velocities.  For 

instance, several areas have a high phytoplankton abundance with a low crop biomass, or 

vice-versa.  Shellfish growers may gain some control over the management of these 

characteristics by taking into account localized patterns and trends in phytoplankton 

availability from punctual (seasonal blooms) or non-punctual (runoffs, anthropogenic 

enrichment) sources.  

 All phytoplankton species contain chlorophyll, the primary molecule used for 

photosynthesis, which allows chlorophyll a (chl-a) to be used as a general indicator of 

phytoplankton biomass worldwide (Trotter et al. 2008).  The well-known optical 

characteristics of chlorophyll molecules allow for easy detection and quantification of the 

phytoplankton biomass using optical fluorometric techniques (Röttgers, 2007).  

Fluorescence readings with field fluorometers have many advantages, such as specificity 

(no two molecules excite and emit at the same wavelength), simplicity (no treatment is 

required for many applications and filters can be smudged without affecting accuracy) 

and speed (readings can be taken on-site in nearly 2 s).  Recent technologies use optical 

readings rather than chemical analysis to measure chlorophyll concentrations in water.  

Optical fluorometric readings are much more practical, and the scientific community 

recognizes the readings as a reliable data collection technique (Fujiki et al. 2007; Pinto et 

al. 2001; Maxwell and Johnson, 2000)  Therefore, fluorescence mapping can provide 

shellfish growers with a “snap shot” of their leases in terms of its primary production 

The primary objective of this study was to assess the phytoplankton biomass 

distribution throughout a shellfish farm using active fluorescence mapping technology.  

As a first step towards this goal, our laboratory has begun assessing both the magnitude 

and persistence of localized features within culture estuaries.  We used field fluorometers 

to describe spatial and temporal patterns in phytoplankton biomass by measuring chl-a 

levels in the farm. Our preliminary results highlight the importance of frequent samplings 

with field fluorometers to identify persistent features in highly dynamic estuarine 

environments.  The combination of fluorometric data with Geographic Information 

System (GIS) information can also be used to describe spatial and temporal patterns in 

phytoplankton biomass. 
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MATERIALS AND METHODS 

STUDY SITE 

The mussel farm chosen for this study was a seed collection site located in 

Lamèque Bay, which is situated in northeastern New Brunswick, Canada. The farm is in 

proximity to the Shippagan Harbour (Figure 1).  In our study, mussel spat was collected 

on ropes that were arranged in a grid layout to maximize the surface area available for 

larvae settlement (Figure 2).  

 

CHLOROPHYLL MEASUREMENTS 

In-situ active fluorescence measurements 

 A field fluorometer (model 10-AU) manufactured by the Turner Design© 

company was used, which has the capability to give real-time fluorescence readings 

while water is pumped continuously through the instrument.  Using the fluorometer, 

transects were carried out through an aquaculture lease and between longlines to acquire 

relative fluorescence data and measure the phytoplankton biomass.  The results were used 

to determine whether there was an increase or decrease in fluorescence measured in 

Relative Fluorescence Units (RFU). Changes in RFU were measured at a chosen water 

depth (approximately 1.5m) as we evaluated the interior and immediate exterior 

surroundings of the shellfish farm under study.  

   

Transects and GIS 

 Sampling transects were repeated several times by boat between the lines and 

outside the lease on September 13th, 2006 through the course of a tidal cycle (ebb tide and 

flood tide). Each transect continued for approximately one hundred feet (30 m) outside 

the lease to be certain to measure any continuous or residual depletion that occurred 

inside the lease that did not have time to recuperate or stabilize.  Our boat navigated 

across the farm along pre-determined transects. Seawater was continuously pumped from 

the side of the vessel through the field fluorometer, which was connected to a portable 

computer (Itronix® Toughbook laptop). Thousands of fluorescence data were collected 

and related to the geographic latitudinal and longitudinal coordinates. Those coordinates 

were simultaneously logged using a handheld global positioning system (GPS; Garmin 
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60CX).  Geographic tracks were imputed from the GPS data logger into geomatic 

software (MapInfo® version 6.5). This allowed us to develop a GIS protocol to map the 

chlorophyll at the farm. From this data, using MapInfo software, a series of chlorophyll 

biomass maps were produced, which represent the relative fluorescence levels in color.  

 

RESULTS 

 Our observations at the mussel seed collector lease demonstrated a fluorescence 

reduction (Figure 3 and 4) compared to outside of the lease at the same depth.  Transects 

made alongside the longlines of the mussel seed collector lease showed that there was a 

0-30% reduction in fluorescence (Figure 5) compared to a significant increase in biomass 

approximately 30 feet outside the lease.  Moreover, the chlorophyll-a biomass increased 

in corridors between the mussel collectors longlines as well.  During ebb tides, the 

depletion appeared to follow the currents and was traceable after passing through the 

`farm as a “shadow effect.”  However, we observed that this shadow effect showed 

irregularities during flood tide.  In nearly every transect, especially those conducted 

during the flood tide, the relative fluorescence values declined alongside the mussel 

collector longlines, and there were increases in fluorescence in corridors and outside of 

the lease (Figure 3 and 5).      

Following the direction of the flow at ebb tide, the shadow effect was monitored 

south of the mussel collection lease. In contrast, on the north side of the map, pockets of 

high phytoplankton biomass were observed, which were brought by the river to the north 

(Figure 3, blue and green colored areas).  As shown in Figure 4, during flood tide, a 

pocket of highly chlorophyll concentrated water is visible at the south of the map that 

arrives from the outside of the bay, which is close to the ocean (blue and green colored 

areas).    

Phytoplankton biomass appeared higher in transects that were made close to the 

shore than in those made near the channel waterway (Figure 6).  When the data was 

collected during the ebb tide, the phytoplankton concentrations were high towards the 

inner bay, and they decreased by approximately 22% downstream towards to mouth of 

the bay, after passing though the farm (Figure 7).  However, unexpected areas of high 

phytoplankton biomass were observed in the middle of the farm, as shown in Figure 3.  
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The fluorescence transect made closest to the channel showed that there was an 

increase of phytoplankton biomass in the area, whereas there were no mussel lines in the 

middle of the lease. On either side of the empty area where the mussel seeds were 

collected, the fluorescence values decreased (Figure 8). 

 

DISCUSSION 

Mussels are well-known phytoplankton grazers, and strong depletions in 

chlorophyll have been reported above mussel beds (Maar et al. 2007).  Prior to our study, 

the majority of studies on the relationship between bivalves and primary production have 

been undertaken on bivalves in natural benthic environments.  Such studies have shown 

that bivalves, like blue mussels, can reduce phytoplankton biomass (Ogilvie et al. 2000).  

It is important to extend this research to shellfish aquaculture sites to study the 

interactions between pelagic (or mid-water) growing structure and the environment.  

Also, comparisons between the reduction of phytoplankton biomass occurring over a 

natural mussel bed and aquaculture leases would be relevant future research.  

Additionally, it is important to examine the interactions of floating structures, such as 

OysterGro© cage or Vexar® bags, which are used for oyster suspension aquaculture.  The 

“shadow effect” that we observed during low tide is an interesting result for shellfish 

growers. It suggests that if a new lease is to be added at the end of the one surveyed, there 

would be a potential deficit of food downstream of the first lease. 

Areas with high concentrations of phytoplankton that may have been generated by 

nutrient-rich water running off from the river were also observed.  Moreover, studies 

have suggested that bivalves can promote primary production by converting particulate 

nitrogen into dissolved inorganic nitrogen, and hence making it available for 

phytoplankton utilization (Ogilvie et al. 2003).  Trottet et al. (2008) showed that 

phytoplankton productivity in a mussel farm was enhanced because the mussels helped 

supplement the concentrations of nutrients locally present. This study indicated that the 

net production rates of phytoplankton were significantly greater inside the mussel farm 

than outside the farm (Trottet et al. 2008). The ammonia excreted by the mussel seeds 

may compensate for the phytoplankton uptake by promoting localized blooms around the 

farm and between blocks.  This relationship may explain the augmentation of biomass in 
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the corridors.  Dense populations of suspension feeders play a key role in coastal 

ecosystems where their large grazing potential strongly influences the plankton 

community by consuming the phytoplankton and detritus above the seabed. These events 

drive phytoplankton succession towards smaller, faster-growing species. At the same 

time, bivalve populations fertilize the phytoplankton community by excreting nutrients 

(Nielsen and Maar, 2007).   

Although our results showed a slight reduction of the phytoplankton biomass at 

the shellfish farm studied, some publications have suggested that shellfish aquaculture is 

important for controlling the risk of eutrophication in bays and estuaries.  Grazing by 

bivalves may effectively control phytoplankton biomass (Prins et al. 1994).  In New 

Zealand, mussels were shown to have a stabilizing influence on phytoplankton biomass 

by reducing the high ambient levels during the winter and by slightly increasing the low 

levels during the summer (Ogilvie et al. 2003).  Therefore, shellfish aquaculture plays a 

significant role in controlling eutrophication throughout coastal areas, such as those in 

South East Asia (Ferreira et al. 2007).  Shellfish can also control phytoplankton blooms 

produced by anthropogenic sources of nitrogen.  For example, oyster reef restoration has 

been used in the Chesapeake Bay to control eutrophication (Pomeroy et al. 2006). 

Bivalves accelerate nutrient recycling and provide the water column with dissolved 

nitrogen, which is the limiting factor for primary production in most aquatic 

environments (Sarà, 2007; Mazouni, 2004). Oysters contribute to this recycling activity 

through their excretions, which support the regeneration of primary production (Chapelle 

et al. 2000).   

In terms of mapping techniques, remote sensing has been used extensively to 

provide quantitative information on the distribution of phytoplankton in inland waters. 

Remote sensing relies on surrogate chl-a mapping; however, since chl-a is common to 

nearly all phytoplankton species, it cannot provide any information on the taxonomic 

composition of the phytoplankton communities (Hunter et al. 2008).  Fluorescence 

monitoring can be used to assess live phytoplankton cells, which are able to perform 

photosynthesis.  In theory, fluorescence is used to quantify the total food available to 

shellfish in a system, but bivalves do not exclusively feed on active phytoplankton. 

Bivalves also feed on inactive cells, bacteria and protists, which do not fluoresce.  Thus, 
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it would be informative to characterize the organic vs. inorganic matter and classify 

species in water samples from locations with extremely low or high fluorescence values.   

Our preliminary results demonstrate the importance of frequent samplings to 

identify persistent trends in highly dynamic estuarine environments. Many factors, such 

as changes in currents and temperature, can cause stress and lead to reductions in food 

uptake.  In future studies, many additional parameters that influence fluorescence and 

phytoplankton biomass should be examined, such as light intensity, currents, total 

suspended matter, mussel sizes, filtrations rates, as well as nutrient inputs (enrichment) 

from river systems and runoffs.  Additionally, in situ fluorescence readings obtained from 

mapping surveys should be converted into absolute chlorophyll concentrations (µg/L). 

Such a conversion requires the collection of water samples and extraction of chlorophyll.    
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Figure 1 - Mussel collection lease () in Lamèque Bay in northern New Brunswick. 
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Figure 2 - Mussel seed collectors in a grid layout in Lamèque Bay. 
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Figure 3 - Fluorescence (RFU) mapping of a mussel seed lease in Lamèque Bay, N.B. on September 13th, 2006 during ebb tide.  

Rectangles outline the mussel leases layout. 
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Figure 4 - Fluorescence (RFU) mapping of a mussel seed lease in Lamèque Bay, N.B. on September 13th, 2006 during flood tide. 

Rectangles outline the mussel leases layout 
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Figure 5 - Longitudinal view of fluorescence (RFU) variations along a transect of a 

mussel seed lease in Lamèque Bay, N.B. 
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Figure 7 - Fluorescence (RFU) measurements along a transect line close to the shore in 
Lamèque Bay, N.B. during ebb tide. 
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Figure 8 - Fluorescence (RFU) measurements along a transect line close to the navigation 

channel in Lamèque Bay, N.B. during ebb tide.  The empty section is labeled with 

the boxed area.  




