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Uranium-lead geochronology of Middle River
rhyolite: implications for the provenance of
basement rocks of the Bathurst mining camp,
New Brunswick

V.J. McNicoll, C.R. van Staal, D. Lentz, and R. Stern

McNicoll, V.J., van Staal, C.R., Lentz, D., and Stern, R. 2002: Uranium-lead geochronology of
Middle River rhyolite: implications for the provenance of basement rocks of the Bathurst mining
camp, New Brunswick; Radiogenic Age and Isotopic Studies: Report 15; Geological Survey of
Canada, Current Research 2002-F9, 11 p.

Abstract: Thermal ionization mass spectrometry (TIMS) and sensitive high-resolution ion microprobe
(SHRIMP) U-Pb zircon dating techniques were employed in this study to obtain the crystallization age and
ages of xenocrystic zircon from a sample of the Middle River rhyolite of the Bathurst mining camp, New
Brunswick. A crystallization age of 479 ± 6 Ma constrains the timing of initial volcanism and refines the age
of the boundary between the Tetagouche and Miramichi groups. Ages of xenocrystic zircon from Middle
River rhyolite and synvolcanic Ordovician plutons range from Cambrian to Archean and indicate a
Gondwanan, as opposed to a Laurentian, basement.
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Résumé : Des techniques de datation par la méthode U-Pb sur zircon, ayant recours à la spectrométrie de
masse par thermoionisation et à la microsonde ionique à haute définition et à haut niveau de sensibilité
(SHRIMP), ont été appliquées à un échantillon de la rhyolite de Middle River, dans le camp minier de
Bathurst (Nouveau-Brunswick), afin de déterminer l�âge de cristallisation de cette lithologie et l�âge des
xénocristaux de zircon qu�elle renferme. Un âge de cristallisation de 479 ± 6 Ma permet de mieux situer
l�époque du volcanisme initial et de préciser l�âge de la limite entre les groupes de Tetagouche et de
Miramichi. Les âges définis pour les xénocristaux de zircon contenus dans la rhyolite de Middle River et des
plutons synvolcaniques de l�Ordovicien varient du Cambrien à l�Archéen, ce qui tend à appuyer l�hypothèse
que le socle est de caractère gondwanien plutôt que laurentien.



INTRODUCTION

The Bathurst mining camp, in the northern Miramichi High-
lands of northern New Brunswick, lies within part of the Gander
zone, one of several tectonic subdivisions within the
Canadian Appalachian Orogen (Fig. 1 inset). The oldest sedi-
mentary and volcanic rocks exposed in the Bathurst mining
camp are the thick sequence of Cambrian to Lower
Ordovician, mainly quartz-rich sandstone and shale of the
Miramichi Group (Fig. 1; van Staal and Fyffe, 1995). The
Miramichi Group has been intruded by synvolcanic granitoid
plutons that range in age between ca. 479 and 465 Ma
(Whalen et al., 1998; McNicoll et al., in press). Miramichi
Group rocks are disconformably to unconformably overlain
by Lower to Middle Ordovician, bimodal volcanic rocks and
subordinate sedimentary rocks of the California Lake,
Sheephouse Brook, and Tetagouche groups (van Staal et al.,
1992; van Staal and Fyffe, 1995; Rogers et al., in press a).
These groups represent remnants of different tectonic frag-
ments or blocks that are proposed to have formed in separated
parts of the Tetagouche�Exploits back-arc basin (van Staal
et al., in press; Rogers et al., in press a). The blocks were
structurally juxtaposed during the Late Ordovician�Silurian
closure of the basin (van Staal, 1994). The present distribu-
tion of units within the Bathurst mining camp is a result of
thrusting, nappe stacking, and superimposed folding (van
Staal and de Roo, 1995; Fig. 1).

The Miramichi Group has been subdivided, from oldest to
youngest, into the Chain of Rocks, Knights Brook, and Patrick
Brook formations (Fig. 1, 2; van Staal and Fyffe, 1991; Fyffe
et al., 1996). The Chain of Rocks Formation comprises green-
ish grey, quartz-rich sandstone interlayered with minor green
shale, and the overlying Knights Brook Formation is com-
posed of dark grey shale and minor greenish grey sandstone
(Rogers et al., in press b). The Patrick Brook Formation com-
prises volcanogenic, grey to black sandstone and black shale.
In the Nepisguit nappe of the Tetagouche block (van Staal
et al., in press), the Patrick Brook Formation locally includes
a few lenses of rhyolite, the �Middle River rhyolite� (Lentz,
1997), at its contact with disconformably overlying rocks of
the Tetagouche Group (Fig. 2).

Middle River rhyolite
The Middle River rhyolite is located at a key stratigraphic
position along the eastern margin of Bathurst mining camp, at
the boundary between the Miramichi and Tetagouche groups
(van Staal and Rogers, 2000; Fig. 1). Lenses of Middle River
rhyolite occur at three places (Lentz, 1997) at the contact
between Lower Ordovician, mature, carbonaceous sedimen-
tary rocks of the Patrick Brook Formation (Miramichi Group)
and the more calcareous sedimentary rocks of the Vallée
Lourdes Member of the Nepisguit Falls Formation
(Tetagouche Group; Fig. 2). Pebble to cobble conglomerate
of the Patrick Brook Formation occurs discontinuously along
the Miramichi Group�Tetagouche Group boundary (Rogers
et al., in press b).

Flow-banded, aphyric, Middle River rhyolite consists
mainly of very small (<0.5 mm) alkali feldspar spherulites
(Lentz, 1997). It is a very specialized, very low temperature,
S-type rhyolite that is chemically different than most other
felsic volcanic rocks in the Bathurst mining camp (van Staal
et al., 1991; Lentz, 1997). The rhyolite has extremely low
contents of high field-strength elements (HFSE) and moder-
ately high P content (Lentz, 1997). Based simply on
Zr-saturation thermometry (<40 ppm Zr), it has been inter-
preted as probably being erupted at temperatures less than
700°C (Lentz, 1997). The geochemistry of the Middle River
rhyolite suggests that it formed by low-temperature partial
melting of a sedimentary protolith (Lentz, 1997).

The age of the Middle River rhyolite is important in pro-
viding temporal constraints on the initiation of felsic magma-
tism, comparing this timing with that of other volcanism in
the Bathurst mining camp, and refining the uppermost age of
Miramichi Group sedimentation. Ages of xenocrystic zircon
from the unit would provide insight into the age and nature of
basement to the Miramichi Group. The location of the Middle
River rhyolite sample collected for U-Pb dating in this study
(z4416) is shown in Figure 1 and UTM co-ordinates are pro-
vided in Table 1.

U-Pb GEOCHRONOLOGY

Analytical methods
Thermal ionization mass spectrometry (TIMS) U-Pb analyti-
cal methods utilized in this study are outlined in Parrish et al.
(1987), and treatment of analytical errors follows Roddick
(1987). Analytical results are presented in Table 1, where
errors for the ages are reported at the 2σ level, and displayed
in the concordia plot (Fig. 3). Zircon fractions analyzed were
very strongly air abraded following the method of Krogh
(1982). Multigrain zircon fractions comprised between 30
and 35 grains. An attempt was made to minimize the number
of grains in a fraction, while ensuring enough radiogenic Pb
in the analysis for an acceptable level of precision.

Sensitive high-resolution ion microprobe (SHRIMP II)
analyses were conducted at the Geological Survey of Canada
using analytical and data reduction procedures described in
detail by Stern (1997) and briefly summarized here. Zircons
from the Middle River rhyolite sample and fragments of a lab-
oratory zircon standard (Kipawa zircon, 993 Ma) were cast in
epoxy grain mounts (GSC mount IP108) and polished with
diamond compound to reveal the grain centres. The grains
were photographed in transmitted and reflected light, coated
with approximately 6 nm of high purity Au, and imaged with
a scanning electron microscope equipped with cathodolu-
minescence (CL) and backscattered electron (BSE) detectors
(Fig. 4). The zircons were sputtered using an O- primary beam
focused to a spot size approximately 15 µm in diameter. The
isotopic composition of the secondary ion beam was deter-
mined by sequential measurements of the following peaks at
a mass resolution of 5500 using a single electron multiplier
operating in pulse counting mode: 196Zr2O+, 204Pb+, 204.1
amu (background), 206Pb+, 207Pb+, 208Pb+, 238U+, 248ThO+,
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and 254UO+. The 204Pb+ was monitored to correct for small
amounts of common Pb that are largely due to the measured
surface blank composition. The Pb/U isotopic ratios were
corrected for interelement discrimination by reference to a
linear calibration of 254UO+/238U+ versus 206Pb+/238U+

obtained for the standard Kipawa zircons. Common-Pb cor-
rected ratios and ages are reported with 1σ analytical errors in
Table 2, which include a ±1.7% external uncertainty associa-
ted with discrimination correction of the Pb/U ratios. The
206Pb/238U ages for the magmatic analyses have been cor-
rected for common Pb using both the 204 and 207 methods
(Stern, 1997), but there is no significant difference in the
results (Table 2).

Details of the zircon grains and locations of the SHRIMP
spots are given in Table 2. Magmatic and xenocrystic data are
plotted in concordia diagrams with errors at the 2σ level
(Fig. 5).

U-Pb Results
Multigrain zircon fractions selected for TIMS analysis
include delicate, elongate crystals (fraction A), prismatic
grains with very sharp terminations (fraction B), stubby
prisms (fraction C), and small (approx. 60 µm) stubby pris-
matic grains (fraction D). All of the zircons analyzed were
very clear, high-quality grains with very minor fluid inclu-
sions and no apparent cores or overgrowths under transmitted
light. All four analyses are discordant (ranging between 23
and 53% discordant) and are interpreted to contain large
inherited components (Fig. 3, Table 1). A crystallization age
for Middle River rhyolite cannot be determined from the
TIMS analyses.

On the basis of CL and BSE imaging of grains on the
SHRIMP mount, most of the zircons have obvious core-rim
relationships (Fig. 4). Large core areas overgrown by dark
CL, oscillatory-zoned rims are readily apparent (e.g.
Fig. 4a�d). There are also zircon grains in the sample that dis-
play evidence of more than one generation of overgrowth. For
example, grain W-2 (Fig. 4a, b) has a central, diffusely zoned
core area surrounded by a light CL, unzoned rim that trun-
cates zoning in the central core. This rim is overgrown by dark

CL, oscillatory-zoned rims that were dated at ca. 478 Ma.
Grain I-3 (Fig. 4e, f) has a central core with a 207Pb/206Pb age
of ca. 2390 Ma (spot I-3.2) overgrown by a ca. 560 Ma rim
(spot I-3.1), which in turn is overgrown by a very thin, oscilla-
tory-zoned rim (not dated). Rounded xenocrystic grains with
little to no magmatic zircon overgrowth are also present in the
sample (e.g. grain C-1, Fig. 4g, h). It is interesting to note that
no discrete Ordovician magmatic zircons were observed on
the SHRIMP mount.

Ages interpreted to reflect Ordovician magmatic crystal-
lization were obtained from thick rims on equant and pris-
matic to elongate grains with large subrounded cores
(Fig. 4a�f). Twelve of the SHRIMP spot determinations on
magmatic rims were pooled to obtain a weighted average
206Pb/238U age of 479 ± 6 Ma (204Pb-corrected data; 2σ error;
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Isotopic Ratios ± 1σ5 Ages ± 2σ, Ma6

Fraction1
Wt.
(mg)

U
(ppm)

Pb2

(ppm)

206Pb3

204Pb
Pbc4

(pg)

208Pb
206Pb

206Pb
238U

207Pb
235U

207Pb
206Pb

206Pb
238U

207Pb
235U

207Pb
206Pb

A (30) 8 625 57 2283 12 0.09 0.09031 ± 0.10 0.9600 ± 0.14 0.07710 ± 0.07 557 ± 1 683 ± 1 1124 ± 3
B (35) 15 873 91 17310 5 0.08 0.10598 ± 0.10 1.0455 ± 0.12 0.07155 ± 0.05 649 ± 1 727 ± 1 973 ± 2
C (31) 8 535 46 2558 9 0.07 0.08756 ± 0.10 0.7569 ± 0.14 0.06270 ± 0.08 541 ± 1 572 ± 1 698 ± 3
D (33) 10 263 22 516 28 0.08 0.08572 ± 0.13 0.8202 ± 0.33 0.06940 ± 0.26 530 ± 1 608 ± 3 911 ± 11

Sample Location: UTM zone 19, 281782E, 5269681N
1number in brackets refer to number of grains in analysis
2radiogenic Pb
3measured ratio, corrected for spike and fractionation
4total common Pb in analysis corrected for fractionation and spike
5corrected for blank Pb and U and common Pb, errors quoted are 1σ (in per cent)
6corrected for blank and common Pb, errors quoted are 2σ (in Ma)

Table 1. Thermal ionization mass spectrometry (TIMS) U-Pb analytical data for Middle River rhyolite (sample z4416).

Figure 4. Backscattered electron (BSE; first image in each
pair) and cathodoluminescence (CL; second image in each
pair) scanning electron microscope (SEM) images of
representative zircons from sample z4416, analyzed using the
sensitive high-resolution ion microprobe (SHRIMP): a) and
b) grain W-2, consisting of a central zoned core and low CL
rims, overgrown by thick, euhedral , dark CL,
oscillatory-zoned magmatic rims; c) and d) grain U-2,
consisting of a core with an age of ca. 1177 Ma (spot U-2.5),
overgrown by thick, oscillatory-zoned, magmatic rims
(magmatic-aged spots U-2.2 and U-2.4); e) and f) grain I-3,
containing a large core of ca. 2390 Ma age overgrown by a
mantle of ca. 560 Ma age (the very thin, strongly
oscillatory-zoned exterior rims were not analyzed); g) and
h) rounded, inherited grain C-1, whose thickest domain is ca.
963 Ma (the very thin rim and possible core area were not
analyzed). The oval spots (central ellipses in BSE images) are
SHRIMP pits. Spots outlined with a white dashed line have
ages interpreted to reflect Ordovician magmatic
crystallization. Labels on the photos refer to SHRIMP
analyses listed in Table 2. Scale bars are 50 µm in length.
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mean square of weighted deviates [MSWD] = 1.3, probability
of fit = 0.24), which is interpreted to be the crystallization age
of the rock. Three discordant analyses on magmatic rims
(H-3.1, T-1.2, AA-1.2; Table 2, Fig. 5) were not included in
the weighted-average calculation. A weighted average of 481
± 6 Ma was calculated using the 207Pb-corrected 206Pb/238U
ages.

Most of the ca. 479 Ma magmatic rims have quite high U
contents (Table 2). Almost all of the rims are greater than
500 ppm U and most are greater than 1000 ppm U. These rims
also have very low Th contents and corresponding very low

Th/U ratios, almost consistently less than 0.10 and frequently
less than 0.01 (Table 2). These data suggest that low Th/U
ratios are not always indicative of metamorphic zircon
growth.

A wide range of inherited ages was obtained from a total
of fifteen cores and older rims, and includes Cambrian,
Neoproterozoic, Mesoproterozoic, and Paleoproterozoic
ages (Table 2, Fig. 5), with a high proportion of
Neoproterozoic (960�560 Ma) results. The Middle River rhy-
olite has been interpreted to have formed by low-temperature
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Spot
name Loc.1

U
(ppm)

Th
(ppm) Th/U

Pb
(ppm)

204Pb
(ppb)

204Pb/
206Pb f2062

208Pb/
206Pb

± 208Pb/
206Pb

206Pb/
238U

±206Pb/
238U3

Magmatic:

AA-1.1 rim 2562 25 0.010 177 1 5.31E-06 0.00009 0.0030 0.0005 0.07600 0.00144
W-2.1 rim 3865 36 0.009 270 2 8.32E-06 0.00014 0.0029 0.0004 0.07691 0.00133
V-2.2 rim 3727 33 0.009 263 2 8.11E-06 0.00014 0.0024 0.0004 0.07755 0.00140
U-2.2 rim 2988 13 0.004 208 9 4.84E-05 0.00084 0.0021 0.0013 0.07660 0.00135
N-2.1 rim 479 36 0.074 34 5 1.54E-04 0.00268 0.0186 0.0029 0.07584 0.00159
H-3.1 rim 226 27 0.119 14 0 1.00E-05 0.00017 0.0398 0.0023 0.06330 0.00157
H-3.3 rim 493 34 0.069 34 1 2.92E-05 0.00051 0.0208 0.0021 0.07452 0.00149
I-1.1 rim 673 22 0.033 49 0 1.00E-05 0.00017 0.0094 0.0008 0.07917 0.00168
I-1.2 rim 787 22 0.027 57 1 2.74E-05 0.00047 0.0087 0.0014 0.07852 0.00146
I-2.1 rim 629 39 0.063 44 1 3.09E-05 0.00054 0.0187 0.0015 0.07486 0.00143
U-2.4 rim 3993 31 0.008 290 3 1.00E-05 0.00017 0.0021 0.0004 0.07979 0.00139
U-3.1 rim 1190 22 0.019 85 1 1.00E-05 0.00017 0.0062 0.0005 0.07822 0.00153
T-1.2 rim 2434 25 0.010 162 1 6.69E-06 0.00012 0.0031 0.0005 0.07293 0.00129
AA-1.2 rim 1776 18 0.010 117 1 1.00E-05 0.00017 0.0028 0.0004 0.07265 0.00128
Y-2.1 rim 489 31 0.063 35 0 1.00E-05 0.00017 0.0188 0.0014 0.07777 0.00158

Inherited:

T-3.1 core 254 113 0.446 22 0 1.66E-05 0.00029 0.1370 0.0053 0.08378 0.00195
I-3.1 old rim 686 19 0.028 57 1 1.62E-05 0.00028 0.0081 0.0012 0.09077 0.00204
W-3.1 core 691 142 0.205 61 11 1.99E-04 0.00345 0.0698 0.0031 0.09125 0.00188
Q-2.1 core 556 439 0.790 58 2 3.59E-05 0.00062 0.2473 0.0033 0.09252 0.00181
V-1.1 core 440 166 0.377 42 2 5.47E-05 0.00095 0.1179 0.0040 0.09404 0.00204
D-3.1 xeno 480 225 0.469 52 2 4.01E-05 0.00069 0.1523 0.0038 0.10415 0.00208
A-1.2 core 813 313 0.385 88 0 5.02E-06 0.00009 0.1197 0.0027 0.10596 0.00222
V-3.2 old rim 616 110 0.178 67 1 1.00E-05 0.00017 0.0807 0.0019 0.11039 0.00217
E-4.1 core 333 177 0.531 42 0 1.00E-05 0.00017 0.1636 0.0028 0.11820 0.00232
C-1.1 xeno 319 61 0.192 50 1 1.50E-05 0.00026 0.0591 0.0025 0.16109 0.00326
L-1.1 core 349 152 0.435 68 1 1.00E-05 0.00017 0.1239 0.0049 0.18787 0.00451
U-2.5 core 257 96 0.372 53 0 1.00E-05 0.00017 0.1178 0.0048 0.20026 0.00459
H-3.2 core 195 68 0.349 43 1 3.64E-05 0.00063 0.1120 0.0031 0.21283 0.00572
P-2.1 core 191 119 0.624 63 0 1.00E-05 0.00017 0.1779 0.0032 0.29970 0.00725
I-3.2 core 306 243 0.793 146 1 9.07E-06 0.00016 0.2292 0.0020 0.40167 0.00895
1 SHRIMP spots are located on the following: core, core with magmatic rims; xeno, inherited grain (some with very thin rims); rim, euhedral

magmatic rim
2 mole fraction of total 206Pb that is due to common Pb, based on 204Pb; data have been corrected for common Pb according to procedures

outlined in Stern (1997)
3 uncertainties reported at one sigma and are calculated by numerical propagation of all known sources of error (Stern, 1997)
4 2 0 4 Pb-corrected ages
5 100 x (206Pb/238U age)/(207Pb/206Pb age)
6 207Pb-corrected ages

Table 2. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb analytical data for Middle River rhyolite (sample z4416).



partial melting of a sedimentary protolith (Lentz, 1997),
which is consistent with the prevalence and wide range of
ages of inherited zircon obtained in this study.

DISCUSSION

The crystallization age of Middle River rhyolite is interpreted
to be 479 ± 6 Ma. The SHRIMP analysis was successful in
obtaining a crystallization age on a low-temperature volcanic
rock with a very high proportion of inherited material of
numerous ages. This age of 479 ± 6 Ma, which sets an upper

limit on the age of the Miramichi Group, is slightly older than
the oldest known rocks in the overlying Tetagouche Group
(473�469 Ma; Sullivan and van Staal, 1996; Rogers et al.,
1997; Rogers et al., in press a). In addition, it constrains the
timing of initial volcanism in the area, suggesting the pres-
ence of a hiatus between the Miramichi and Tetagouche
groups (van Staal et al., in press). The youngest zircon xeno-
cryst in Middle River rhyolite (ca. 519 Ma) also constrains the
maximum age for the Miramichi Group.

Figure 6 presents a cumulative probability plot of inher-
ited zircon ages from Middle River rhyolite (this paper), and
Ordovician plutons in the Bathurst mining camp area
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Ages (Ma) ± 1σ4 Ages (Ma) ± 1σ6

Spot
name

207Pb/
235U

±207Pb/
235U3

207Pb/
206Pb

±207Pb/
206Pb3

206Pb/
238U

±206Pb/
238U

207Pb/
206Pb

±207Pb/
206Pb

Conc.5

(%)

206Pb/
238U

±206Pb/
238U

Magmatic:

AA-1.1 0.5935 0.0124 0.05663 0.00038 472.2 8.7 477.4 15.0 99 473.6 8.7
W-2.1 0.5889 0.0111 0.05553 0.00030 477.7 8.0 433.5 12.2 110 479.7 8.0
V-2.2 0.5968 0.0124 0.05581 0.00047 481.5 8.4 444.8 19.0 108 483.3 8.4
U-2.2 0.5991 0.0132 0.05673 0.00063 475.8 8.1 481.0 24.8 99 477.1 8.1
N-2.1 0.5684 0.0197 0.05436 0.00136 471.2 9.6 385.9 57.1 122 473.8 9.6
H-3.1 0.5160 0.0207 0.05912 0.00169 395.7 9.5 571.6 63.6 69 395.7 9.5
H-3.3 0.5740 0.0170 0.05586 0.00109 463.3 9.0 447.0 43.9 104 465.1 9.0
I-1.1 0.6006 0.0170 0.05502 0.00089 491.2 10.1 412.9 36.5 119 493.5 10.1
I-1.2 0.6079 0.0160 0.05615 0.00092 487.3 8.7 458.5 37.0 106 488.9 8.8
I-2.1 0.5844 0.0142 0.05662 0.00073 465.4 8.6 476.7 28.9 98 466.7 8.6
U-2.4 0.6144 0.0116 0.05585 0.00031 494.9 8.3 446.3 12.3 111 496.8 8.3
U-3.1 0.6060 0.0136 0.05619 0.00050 485.5 9.2 459.8 19.8 106 487.2 9.2
T-1.2 0.5848 0.0120 0.05816 0.00049 453.8 7.8 535.7 18.5 85 454.3 7.8
AA-1.2 0.5657 0.0114 0.05647 0.00043 452.1 7.7 471.0 16.9 96 453.5 7.7
Y-2.1 0.5886 0.0171 0.05489 0.00100 482.8 9.5 407.7 41.4 118 485.2 9.5

Inherited:

T-3.1 0.6583 0.0268 0.05699 0.00174 518.6 11.6 491.2 68.9 106
I-3.1 0.7226 0.0207 0.05774 0.00088 560.1 12.1 519.9 33.8 108
W-3.1 0.7284 0.0222 0.05789 0.00116 563.0 11.1 525.8 44.4 107
Q-2.1 0.7865 0.0197 0.06165 0.00083 570.4 10.7 662.1 28.9 86
V-1.1 0.7736 0.0255 0.05967 0.00132 579.4 12.0 591.5 48.8 98
D-3.1 0.8746 0.0223 0.06090 0.00082 638.7 12.2 635.8 29.2 100
A-1.2 0.9006 0.0244 0.06164 0.00091 649.2 13.0 661.7 32.0 98
V-3.2 1.0054 0.0257 0.06605 0.00092 675.0 12.6 808.1 29.5 84
E-4.1 1.0717 0.0258 0.06576 0.00077 720.2 13.4 798.6 24.7 90
C-1.1 1.6117 0.0434 0.07256 0.00112 962.8 18.1 1001.8 31.5 96
L-1.1 1.9529 0.0831 0.07539 0.00243 1109.8 24.5 1078.9 66.1 103
U-2.5 2.3453 0.0925 0.08494 0.00249 1176.7 24.7 1314.1 58.0 90
H-3.2 2.7184 0.1092 0.09264 0.00247 1243.9 30.5 1480.5 51.5 84
P-2.1 4.4121 0.1165 0.10677 0.00085 1689.8 36.1 1745.1 14.7 97
I-3.2 8.5279 0.2094 0.15398 0.00122 2176.7 41.3 2390.6 13.5 91

1 SHRIMP spots are located on the following: core, core with magmatic rims; xeno, inherited grain (some with very
thin rims); rim, euhedral magmatic rim

2 mole fraction of total 206Pb that is due to common Pb, based on 204Pb; data have been corrected for common Pb
according to procedures outlined in Stern (1997)

3 uncertainties reported at one sigma and are calculated by numerical propagation of all known sources of error (Stern, 1997)
4 204Pb-corrected ages
5 100 x (206Pb/238U age)/(207Pb/206Pb age)
6 207Pb-corrected ages

Table 2. (cont.)
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U-Pb concordia diagram of SHRIMP II analyses of
sample z4416, with error ellipses at 2σ.
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Cumulative probability plot of inherited zircon
ages from Middle River rhyolite (this paper) and
Ordovician plutons in the Bathurst mining camp
area (Roddick and Bevier, 1995; McNicoll et al.,
in press). Only data that are less than 5%
discordant are plotted in the diagram. The plot
presents 206Pb/238U ages for data less than
800 Ma, and 207Pb/206Pb ages for data greater
than 800 Ma.



(Roddick and Bevier, 1995; McNicoll et al., in press). Inheri-
tance ages range from Cambrian through to Archean, sug-
gesting the presence of complex, old basement. Similar
inherited ages have been obtained from cobbles found in the
Vallée Lourdes Member of the Nepisguit Falls Formation of
the Tetagouche Group, and in the Late Neoproterozoic to
Lower Cambrian (554�543 Ma) Upsalquitch gabbro in the
northwestern part of Bathurst mining camp (van Staal et al.,
1996). Upsalquitch gabbro is inferred to represent a tectonic
fragment of Gander basement (van Staal et al., 1996).

The range of inherited ages from Middle River rhyolite
and the synvolcanic Ordovician plutons, particularly the
abundance of xenocrysts of Neoproterozoic�Cambrian age,
combined with isotopic and geochemical data (Whalen et al.,
1998), is not compatible with Laurentia as a possible base-
ment to the Gander zone. Rocks with an eastern Laurentian
margin provenance would be characterized by a dominance
of 1.5�1.0 Ga (Mesoproterozoic) zircon grains, accompanied
by 615�550 Ma (late Neoproterozoic) grains and a paucity or
absence of 1.6�1.5 Ga (G. Ross, pers comm), 850�600 Ma,
and 543�520 Ma zircons (Neoproterozoic and Early Cam-
brian, respectively; van Staal et al., 1996 and references
therein). In contrast, rocks with an Avalonian or other
Gondwanan provenance should contain 850�550 Ma zircon
grains (Neoproterozoic), possibly accompanied by grains of
Cambrian, Mesoproterozoic (1.6�1.0 Ga), and Archean age.
The presence of late Neoproterozoic to Early Cambrian
inherited zircon in Middle River rhyolite and the synvolcanic
Ordovician plutons is significant, as it provides a link with
igneous rocks of similar age in the New River�Brookville
belt of the New Brunswick Avalon zone (van Staal et al., 1996
and references therein; Johnson and McLeod, 1996; White
and Barr, 1996; Barr and White, 1996; Currie and McNicoll,
1999).
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