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Eskers as mineral exploration tools: a review

D.I. Cummings, H.A.J. Russell, D.R. Sharpe, and B.A. Kjarsgaard

Cummings, D.I., Russell, H.A.J., Sharpe, D.R., and Kjarsgaard, B.A., 2011. Eskers as mineral exploration 
tools: a review; Geological Survey of Canada, Current Research 2011-03, 17 p. 

Abstract: Eskers are commonly sampled for indicator minerals during drift prospecting campaigns on 
the Precambrian Shield; however, a literature review reveals that indicator mineral dispersal in esker sedi-
mentary systems is poorly understood. As a result, exploration companies lacking their own proprietary 
knowledge are left with little basis for understanding how to collect esker samples or how to interpret 
esker data. Based on the literature review, and drawing insights from a broader body of literature on 
modern glaciers, lab experiments, and gravel-bed streams, a preliminary conceptual framework for esker 
sedimentary systems is established to address these issues. A research strategy is then outlined, one whose 
objective is to fill knowledge gaps and, in doing so, improve the effectiveness of mineral exploration in 
Canada.

Résumé : Lors de campagnes de prospection glacio-sédimentaire sur le bouclier précambrien, des 
échantillons sont généralement prélevés dans des eskers à la recherche de minéraux indicateurs. Toutefois, 
une analyse documentaire indique que la dispersion des minéraux indicateurs dans les systèmes sédi-
mentaires d’eskers est mal comprise. Par conséquent, les sociétés d’exploration qui n’ont pas leur propre 
savoir-faire ne disposent que d’une faible base de connaissances sur la façon de prélever des échantillons 
dans les eskers ou d’en interpréter les données. En nous appuyant sur l’analyse documentaire ainsi que sur 
des connaissances approfondies tirées d’un plus vaste corpus sur les glaciers actuels, les essais en labora-
toire et les cours d’eau à lit de gravier, nous établissons un cadre conceptuel préliminaire pour les systèmes 
sédimentaires d’eskers afin d’aborder ce problème. Une stratégie de recherche est ensuite élaborée, dont 
l’objectif consiste à combler les lacunes dans les connaissances et, partant, d’améliorer l’efficacité de 
l’exploration minière au Canada.
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INTRODUCTION

Eskers are common in glaciated terrain (Fig. 1; Levasseur, 
1995; Brennand, 2000). They are, along with stream sedi-
ments and till, one of three principal media sampled during 
drift prospecting to identify indicator-mineral dispersal 
trains downflow of mineral deposits (Fig. 2). Esker sampling 
is a proven method: it has led to the discovery of several 
kimberlite occurrences (Lee, 1968), including the Lac de 
Gras kimberlite field, home to Canada’s first diamond mine 
(Krajick, 2001; Kjarsgaard and Levinson, 2002). Although 
commonly associated with diamond exploration, esker sam-
pling can be used to explore for any mineral deposit type 
that yields a characteristic suite of indicator minerals (e.g. 
Ni-Cu-PGE deposits; Averill, 2009). Given this, one might 
expect that indicator mineral dispersal in esker sedimentary 
systems is a well researched and well understood phenom-
enon. Based on the paucity of published literature on the 
subject, this may not be the case. Exploration companies 
lacking ‘in-house’ knowledge are faced with two major, 
unanswered questions.

Question 1. Esker sampling methods

How should eskers be sampled for indicator minerals?

Question 2. Esker data interpretation

How should esker data be interpreted? Specifically, if an 
indicator mineral is found in an esker, how far down-esker 
did it travel? Did it travel farther than a pebble from the same 
source? What about a boulder?  

These questions are being explored under the Diamonds 
Project of the Geo-Mapping for Energy and Minerals 
(GEM) Program at the Geological Survey of Canada 
(Cummings et al., 2010). The objectives of this paper are to

1.	 review the salient features of eskers and their dispersal 
trains;

2.	 review ideas on how eskers and their dispersal trains 
form, from bedform to basin, drawing insight from a 
broader body of literature on modern glaciers, lab experi-
ments, and gravel-bed streams;

3.	 discuss the implications of objectives 1 and 2 with 
respect to the two applied questions at hand, namely how 
to sample an esker and how to interpret esker data; and

4.	 recommend future research.

ESKERS: A PRIMER

Eskers are shoestring-shaped ridges of glaciofluvial sand 
and gravel. They are present throughout glaciated parts of 
North America, but are best developed and best exposed on 
the Precambrian Shield (Fig. 1), where they are most com-
monly sampled during mineral exploration. Like spokes on 
a wheel, most shield eskers radiate out from two esker-free 
areas where ice masses were centred during the last degla-
ciation (Fig. 1a), one in Keewatin and one in Ungava; ridges 
south of Hudson Bay may be related to ice centred in Hudson 
Bay (Shilts et al., 1987). Eskers in the radial arrays are spaced 
quasi-regularly at 8 km to 15 km. Additional esker ridges are 
present in the outer portions of the arrays that counterbal-
ance radial divergence and maintain spacing. When traced 
outward (downflow) from the array centres, eskers tend to 
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Figure 1.  a), b), c) Eskers viewed at various scales (modi-
fied from Prest  et  al.,  1968, Aylsworth and Shilts, 1989, and 
Bolduc, 1992).
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join together, forming tree-shaped networks that look like 
tributary stream networks (Fig.  1b), albeit conspicuously 
elongate ones (Bolduc, 1992). Terminal fans are generally 
absent or poorly developed at the end of the networks. Closer 
inspection reveals that individual limbs of the networks con-
sist of two geomorphic elements, a narrow, coarse-grained, 
ridge-shaped element, commonly gravelly, superimposed 
or flanked by broad, finer grained, fan-shaped elements, 
commonly sandy (Fig. 1c). Gravelly ridge elements are on 
average 100 m wide and 5–25 m high and consist of vary-
ing proportions of medium to coarse sand and well rounded 
gravel. Locally, gravelly ridges are overlain by sparse boul-
ders, as is commonly the adjacent landscape (D.R. Sharpe, 
D.I. Cummings, and H.A.J. Russell, unpub. manuscript, 
2010). Ridge flanks tend to be near the angle of repose, and 
their tops are sharp- to round-crested or flat-topped (Bolduc, 
1992; Dredge  et  al.,  1999; D.R. Sharpe, D.I. Cummings, 
and H.A.J. Russell, unpub. manuscript, 2010). Sandy fan 
elements are of similar height to the gravelly ridges, but 
an order of magnitude wider (Cummings  et  al.,  in press). 
Their surfaces are boulder-free, flat topped to irregular, 
and can be ornamented by circular (ice-block) depressions 
and, less commonly, braid-bar–like features (Bolduc, 1992; 
Dredge  et  al.,  1999; D.R. Sharpe, D.I. Cummings, and 
H.A.J. Russell, unpub. manuscript, 2010). Gravelly ridges 
and sandy fans are typically mapped as eskers sensu stricto 
and esker-associated proglacial outwash, respectively  
(e.g. Aylsworth and Shilts, 1989; Bolduc, 1992).

Few subsurface (stratigraphic) data exist on the shield to rig-
orously constrain these geomorphic observations in the vertical 
(time) dimension. Several inferences can be made using indi-
rect data and reasoning. The Quaternary stratigraphic succesion 
on the shield is generally simple: it consists of diamicton (till), 
glaciofluvial sand and gravel (e.g. eskers), and, locally, glaciola-
custrine or glaciomarine mud (Prest et al., 1968; Fulton, 1995). 
Shield eskers commonly reside in discontinuous, till-free, 
channel-form zones of exposed bedrock, here termed ‘esker 
corridors’, each several hundred metres to several kilometres 
wide (Fig. 1b; Craig, 1964; Rampton, 2000; Utting et al., 2009; 
D.R. Sharpe, D.I. Cummings, and H.A.J. Russell, unpub. man-
uscript, 2010). This suggests eskers generally rest erosively on 
their substrates (for an alternative view, see Lundqvist (1979)). 
Moving stratigraphically upward, gravelly ridge elements are 
commonly depicted as underlying sandy fan elements (e.g. 
Fig.  1c), a relationship supported by the rare high-quality  
subsurface data sets in shield areas (e.g. Sharpe et al., 1992).

ESKER DEPOSITIONAL MODELS

Researchers generally agree on a basic depositional sce-
nario for eskers during the last deglaciation (Fig.  3). It is 
the details of this scenario, not the scenario itself, that pose 
most controversy. Below, we outline this basic scenario. For 
alternative models, see Levasseur (1995) and Huddart and 
Bennett (1997).

Bedrock
source

Glaciofluvial
(meltwater) dispersal

Glacial (ice)
dispersal

Stream dispersal

Esker
corridor

Till

Bedrock

Bedrock fragment
(gravel, sand, mud)

Figure 2.  The three principal mechanisms by which bedrock fragments are dispersed in 
glaciated terrain, and the three principle media—till, eskers, and stream sediments—that 
are sampled for indicator minerals during exploration in such settings. Eolian dispersal 
may also be important, especially for mud and finer sand (Pye, 1987), but the dispersal 
trains are likely too aerially extensive and diffuse to be of practical use. Coastal pro-
cesses likely concentrated indicator minerals as opposed to dispersing them significantly 
because late-glacial water bodies were ephemeral.
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Most glacial meltwater is produced at the glacier surface, 
and primarily at lower altitudes where the air temperature 
is warmer, during positive-degree days (Box  et  al.,  2006). 
Geothermal heating and shear at the base of the glacier 
also produces meltwater, and does so perennially, but at 
rates that are typically orders of magnitude less, at least 
outside zones of abnormally high geothermal heat flux 
(Fahnestock  et  al.,  2001). Surface meltwater flows under 
gravity down crevasses and moulins to the base of the gla-
cier (Zwally et al., 2002), then under pressure to the ice front 
through tunnels melted up into the ice, termed R-channels 
(after Röthlisberger (1972)). Meltwater discharge from 
R-channels is highly seasonal and spiky (Østrem, 1975) 
and can be punctuated by jökulhlaups from supra- or sub-
glacial lake drainage events (e.g. Fowler and Ng, 1996; 
Burke et al., 2010). Clastic particles are entrained from the 
underlying sediment and/or bedrock (Alley  et  al.,  1997), 
and from debris-rich basal ice (Shreve, 1985a) that con-
tinuously flows into R-channels under the weight of the 
overlying ice (Röthlisberger, 1972). Distributed, pressur-
ized meltwater at the base of the glacier, which occurs in 
linked cavities and thin films (Fountain and Walder, 1998), 
likewise flows into R-channels, because the R-channels 

tend to be at a lower pressure (Shreve, 1972; Röthlisberger, 
1972; Boulton et al., 2007). Finer sediment fractions in the 
R-channel are bypassed to the ice front, whereas coarser 
fractions deposit subglacially (Cummings  et  al.,  in press). 
Sediment may deposit in subglacial cavities adjacent to the 
R-channel (Gorrell and Shaw, 1991), but, given the paucity 
of sediment in esker corridors (e.g. Craig, 1964), areas lat-
eral to R-channels are net sediment sources, not net sediment 
sinks. The end result is a narrow coarse-grained ridge, com-
monly gravelly (R-channel deposit—the esker sensu stricto), 
that correlates downflow to a broad, finer grained proglacial 
fan, commonly sandy and locally deformed due to melt of 
buried ice (Shilts et al., 1987), which takes on the form of 
a subaerial outwash fan, delta, or subaqueous outwash fan 
depending on the presence and depth of proglacial water.

Within this basic scenario, the most contentious issue 
is R-channel length. Two end-member models exist, 
referred to here as the ‘short-conduit model’ (Fig. 3a) and 
the ‘long-conduit model’ (Fig. 3b).

In the short-conduit depositional model (Fig.  3a), the 
ice sheet is envisioned to remain active as its front retreats, 
which generates a steep ice profile and a narrow ablation 
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Figure 3.  Popular esker depositional models. a) The short-conduit model. In this model, 
the subglacial conduits (R-channels) remain short and the ice retreats, causing chan-
nel–fan segments to shingle onto each other, eventually generating an esker. b) The 
long-conduit model. In this model, the ablation zone is envisioned as being large and 
R-channels consequently long. A single long channel–fan segment is deposited. The pro-
glacial area is depicted as being subaqueous, but it could equally be subaerial or at water 
level. Irrespective, a fan-shaped sediment body will typically form at the efflux.
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zone. Abundant melting is restricted to the fringe of the ice 
sheet, R-channels are short, and short channel–fan segments 
are deposited in them. As the ice retreats, the short channel–
fan segments shingle time-transgressively onto each other, 
eventually depositing a long esker ridge. Tree-shaped esker 
networks, which imply optimized area-to-point fluid drain-
age (Bejan, 2000), are arguably difficult to explain under 
this model; they may form because a tree-shaped template 
was provided by a subglacial stream network maintained 
by basal melt (Ashley  et  al.,  1991; Boulton  et  al.,  2009), 
because a tree-shaped template was provided by a surface 
stream network (Shilts, 1984), or because moulins and sur-
face streams migrated during esker deposition (Hooke and 
Fastook, 2007). St-Onge (1984) suggested that eskers near 
Redrock Lake, Northwest Territories, consist of segments 
that are 1–2 km long, whereas Hooke and Fastook (2007) 
argue the Katahdin esker, Maine, consists of segments that 
are about 5 km long. In addition to these authors, versions of 
this model have been invoked by De Geer (1912), Banerjee 
and McDonald (1975), Shilts (1984), Hebrand and Amark 
(1989), and Boulton et al. (2009).

In the long-conduit depositional model (Fig.  3b), the 
basic scenario remains the same, but the ice is envisioned 
to thin or downwaste in place, generating a low ice-sur-
face profile and widespread surface melting. This permits 
R-channels to lengthen accordingly. In each R-channel, a 
single long channel–fan segment forms ‘synchronously’ that 
may take on a tree-like shape. Brennand and Shaw (1996) 
argue that the Harricana esker, Quebec, consists of a single 
approximately 300 km long tree-shaped segment, and Shreve 
(1985a, b) argues that the Katahdin esker, Maine, consists of 
a single approximately 150  km long tree-shaped segment. 
Ice-front retreat may occur subsequent to esker deposition, 
causing sandy proglacial fans to deposit over or beside the 
gravelly ridge (Brennand and Shaw, 1996), but the length 
and shape of the esker, as envisioned in this model, funda-
mentally reflects the length and shape of the original, long, 
tree-shaped R-channel. In addition to the aforementioned 
authors, versions of the long-conduit model have been 
invoked by Hummel (1874), Sollas (1896), Flint (1930), and 
Brennand (1994).

ESKER DISPERSAL TRAINS

Esker dispersal trains have been investigated by vari-
ous workers at various levels of detail (Hellaakoski, 1931; 
Trefethen and Trefethen, 1944; Virkkala, 1958; Lee, 1965, 
1968; Gillberg, 1968; Van Beever, 1971; Shilts, 1973, 1976; 
Buck, 1983; Brown, 1988; Pertunnen, 1989; Lillieskold, 1990; 
Bolduc, 1992; Brennand, 1994; Johnston, 1994; Ellemers, 
1994; Golubev, 1995; Levasseur and Prichonnet, 1995; 
Henderson, 2000; Parent et al., 2004; Tremblay et al., 2009; 
D.R. Sharpe, D.I. Cummings, and H.A.J. Russell, unpub. 
manuscript, 2010). In well constrained esker studies—stud-
ies in which multiple samples were collected from eskers 
and till downflow of a known bedrock source—gravel 

dispersal trains measured head to tail are about the same 
length as gravel dispersal trains in the underlying till, but are 
shifted downflow relative to the till by several kilometres to 
at most 25 km (Fig. 4). Coarse-sand dispersal trains reported 
from eskers are similar in length to the gravel dispersal trains 
(Fig.  4). Eskers are commonly enriched in heavy miner-
als relative to till (Wolfe  et  al.,  1975; Averill, 2001; D.R. 
Sharpe, D.I. Cummings, and H.A.J. Russell, unpub. manu-
script, 2010). Eolian deflation or wave reworking of the 
esker surface may cause further enrichment of heavy min-
erals following esker deposition (Craigie, 1993). Gravelly 
esker facies can contain more, less, or similar amounts of 
heavy minerals than sandy esker facies (Pertunnen, 1989).  
Heavy-mineral assemblages are commonly reported to be 
texturally and mineralogically immature, meaning that grains 
tend to be relatively angular and that easily weathered min-
eral species (e.g. olivine), or easily weathered components 
of individual grains (e.g. kelyphite rims on garnet grains), 
are not necessarily under-represented (Wolfe  et  al.,  1975; 
Dredge et al., 1997; Averill, 2001). Gravel clasts, in contrast 
to sand grains, tend to be well rounded; even friable rock 
types, such as shale (e.g. Johnston, 1994), tend to become 
rounded in esker sedimentary systems.

Given the short- versus long-conduit debate (Fig.  3), 
one might surmise that the dispersal data in Figure 4 have 
an obvious explanation: eskers must form according to the 
short-conduit model, namely in segments as the ice front 
retreats; the segments must be short, between 1  km and 
25 km long; and this must limit esker dispersal to distances 
of 1 km to 25 km past the edge of the till dispersal train. 
Such a conclusion is preliminary for two reasons. First, the 
esker dispersal-train data set is small, and therefore of ques-
tionable statistical significance, especially for sand-sized 
indicator minerals (e.g. heavy minerals). Second, as outlined 
below, processes in long conduits could potentially produce 
similar results.

Variables affecting dispersal trains

Clastic dispersal trains in sedimentary media—whether 
in eskers, till, stream deposits, eolian deposits, or other-
wise—can be viewed as the product of five variables: source 
characteristics (S), dispersal regime (D), weathering regime 
(W), base-level (B) changes, and residency time (T) of clas-
tic particles in the sedimentary system (see Fig. 6). In other 
words,

Clastic dispersal train = f{S, D, W, B, T}

Different dispersal trains reflect different combinations of 
these controlling variables. In some cases, a particular variable 
dominates. Gold dispersal trains in till are commonly short 
(<5 km), dilute, and composed of silt-sized grains, because 
gold-grain sources (S), such as quartz veins, are commonly 
small and the gold in them is scarce and silt-sized (Averill, 
1990). By contrast, dispersal trains of eolian dust emanating 
from major deserts can be global in scale (Pye, 1987), not 
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because S is global in scale, but because D is. Heavy mineral 
assemblages in fluvial dispersal trains in classic diamondif-
erous regions (Africa, Borneo, Brazil, Australia) tend to be 
texturally and mineralogically mature, meaning that grains 
tend to be well rounded and easily weathered minerals tend 
to be under-represented (e.g. Mosig, 1980). This is because 
of the long residency time (e.g. T >90 million years in west 
Africa; Sutherland (1982)), which compounds the effects of 
D and what is already an intense and chemically dominated 
W (Marshall and Baxter-Brown, 1995), resulting in shorter 
dispersal distances for labile particles and longer dispersal 
distances for resistant ones (Jones and Humphrey, 1997). As 
an extreme example, diamonds, which lose little if any mass 
during transport (Afanasev  et  al.,  2008), can be dispersed 
thousands of kilometres from source (Sutherland, 1982), and 
in some cases are the only indicator minerals left (Marshall, 
1991). An intense D can have similar effects as an intense 
W, in that it enhances downflow partitioning of different 
rock types (Kodama, 1994). Change in B—which in a strati-
graphic sense (Sloss, 1962) equates to shoreline translation 
for most nonglacial sedimentary systems (Posamentier and 
Allen, 1999) and ice-front translation for most glacial sedi-
mentary systems (Alley  et  al.,  2003; Cummings  et  al.,  in 
press)—functions to shift depositional environments across 
the landscape, superimposing, or in the case of till, possibly 
mixing (Finck and Stea, 1995), dispersal trains of differ-
ent age and provenance, and causing widespread patterns 
of erosion or deposition. Huge, dilute, fan-shaped till dis-
persal trains composed exclusively of weathered, rounded 
clasts, such as the more than 1000 km long Omar dispersal 
train (Prest et al., 2000), which are comingled with smaller, 
local dispersal trains, could be interpreted as recording 
multiple changes in B associated with multiple glaciations. 
Alternatively, dynamics internal to D (e.g. migrating ice 
divides) could produce dispersal responses that, in some 
cases, may be difficult to differentiate from those generated 
by changes in B.

Key controlling variables for esker dispersal trains can 
be estimated based on previous work. The primary source 
(S) of most esker dispersal trains on the shield is a pre-
existing, poorly sorted till dispersal train (Shilts, 1976; 
Bolduc, 1992), with secondary contributions from bedrock 
(Alley  et  al.,  1997) and/or debris-rich basal ice (Shreve, 
1985a). The dispersal regime (D) is both glacially influenced 
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and fluvial (i.e. it is glaciofluvial). Sediment is transported in 
near-freezing water (e.g. Hong et al., 1984; Ettema and Daly, 
2004) up- or downslope through pressurized R-channels 
(Röthlisberger, 1972; Shreve, 1972), primarily during rapid, 
high-magnitude flood events (Gorrell and Shaw, 1991; 
Brennand, 1994; Cummings et al., in press). Water discharge 
increases down R-channel (Shreve, 1972), as does sedi-
ment transport capacity in some cases (Alley et al., 1997). 
The bed material in the R-channel is gravelly and the total 
sediment load is heterogeneous (mud ³  sand > gravel; 
Cummings et al. (2007)). The key unknown with respect 
to D is the length of the R-channels (Fig.  3). The weath-
ering regime (W) is weak compared to that of the classic 
diamondiferous regions discussed above, both subglacially 
(Anderson, 2007) and proglacially (Peltier, 1950). It has 
little effect on silicate indicator minerals (Averill, 2001), 
though labile grains (e.g. sulphide grains, carbonate grains) 
are commonly weathered out of soil profiles (Shilts, 1973). 
In terms of B, the ice front is generally thought to have 
retreated, either during (Hooke and Fastook, 2007) or fol-
lowing (Shreve, 1985a, b; Brennand and Shaw, 1996) esker 
deposition, causing distal facies (sandy fans) to deposit over 
top of or adjacent to proximal facies (gravelly ridges). The 
residency time (T) for clastic particles in esker sedimentary 
systems is geologically instantaneous: it ranges from as little 
as several days, as observed for modern jökulhlaup eskers  
(e.g. Burke  et  al.,  2008), to perhaps as much as tens or 

hundreds of years, when radiocarbon-constrained ice-retreat 
rates (Dyke and Prest, 1987) and time frames needed for 
gravel rounding over multiple deposition-erosion cycles 
(Kuenen, 1956) are taken into account.

Because of the weak W and short T, the dispersal regime 
(D) is suspected to take on paramount importance in control-
ling the nature and attenuating the length of esker dispersal 
trains downflow of S. Three phenomena—selective sorting, 
abrasion (i.e. comminution), and dilution—are of particu-
lar importance. As a lead up to a discussion of how these 
phenomena operate in esker sedimentary systems, it is 
instructive to first examine how they operate in gravel-bed 
streams, a similar, but better understood type of gravel-bed 
fluvial sedimentary system.

Dispersal trains in gravel-bed streams

Attenuation of dispersal trains in gravel-bed streams 
downflow of S commonly reflects sub-equal contributions 
of selective sorting, abrasion, and dilution (Fig. 5). Flowing 
water, unlike flowing ice, is not competent enough to transport 
all grain sizes at the same rate. As such, selective sorting of 
the dispersal train material occurs (Parker, 2008). Sediment 
is mobilized primarily during floods. Gravel and heavier, 
coarser sand grains tend to roll or slide along the bed as 
bedload or bounce along as intermittent suspended load in 
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the lower, slower moving part of the flow, whereas finer, 
lighter sand and mud tend to travel in the upper, faster mov-
ing part of the flow as suspended load. P. Wilcock (unpub. 
course notes, 2004; http://calm.geo.berkeley.edu/geomorph/ 
[accessed December 2, 2010]) suggested that, as a gen-
eral rule of thumb, grains with a similar density as quartz 
(~2.65 g/cm3) that are coarser than 8 mm (boulders, cobbles, 
and larger pebbles) always travel as bedload in gravel-bed 
streams, grains finer than 1/8 mm (very fine sand and mud) 
always travel as suspended load, and grains in between 8 and 
1/8 mm travel either as bedload or suspended load, depend-
ing on the strength of the flow.

The finer, lighter particles therefore travel farther during each 
flood than larger, denser grains (e.g. Frostick et al., 2006). Mud 
and the finest sand fractions travel in suspension and, if they are 
not trapped in floodplains (Goodbred and Kuehl, 1999), com-
monly bypass the system entirely (P. Wilcock, unpub. course 
notes, 2004; http://calm.geo.berkeley.edu/geomorph/ [accessed 
December 2, 2010]). For example, much of the mud at the 
mouth of the Amazon River is derived thousands of kilome-
tres upriver from the Andes Mountains (McDaniel et al., 1997). 
Abrasion is also significant in gravel-bed streams, its rate pro-
portional to grain size: sand grains abrade (lose mass) orders 
of magnitude more slowly than gravel clasts—experiments 
suggest that angular sand grains may require hundreds to thou-
sands of kilometers of transport before they become rounded 
(Kuenen, 1956, 1959). Gravel abrasion does not necessarily 
require entrainment; it may occur in part by in-place jostling 
(Schumm and Stevens, 1973). In conjunction, abrasion and 
selective sorting cause downstream fining of the bed material 
(Frings, 2008; Parker, 2008), with breaks in slope commonly 
characterized by abrupt gravel-sand transitions (Yatsu, 1955). In 
general, the larger the clast, the closer the source: boulders tend 
to fine downflow over several kilometres, cobbles and pebbles 
over tens of kilometres, and sand over hundreds to thousands of 
kilometres (Fig. 6). In many streams, dilution of dispersal trains 
by influx of coarser sediment occurs primarily at tributary junc-
tions; this can generate smaller, nested downflow fining cycles, 
termed ‘sedimentary links’ (Rice and Church, 1998), which add 
noise to the main downstream fining trend (Knighton, 1980). 
Dilution with coarser material can also occur if the stream is 
incising into a coarse-grained substrate, as is common for 
streams in till-covered shield areas undergoing postglacial 
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isostatic rebound (e.g. Davey and Lapointe, 2007). Because of 
the combination of selective sorting, abrasion, and dilution, dis-
persal trains in gravel-bed streams tend to fine downflow and 
can span the entire length of the system, which for large rivers 
can be hundreds to thousands of kilometres in extent (Fig. 5).

Implications of fluvial systems for 
glaciofluvial systems

Theoretically, selective sorting and abrasion should oper-
ate similarly in R-channels as they do in gravel-bed streams; 
fluid-bed interactions and sediment transport mechanisms 
are similar in open channels (streams) and pipes (esker 
sedimentary systems), as are the bedforms and sedimentary 
structures produced (McDonald and Vincent, 1972; Southard 
and Boguchwal, 1990). It is the glacial influence on the flu-
vial system that differentiates esker sedimentary systems 
from gravel-bed streams. In particular, the mechanisms and 
rates by which dispersal trains become diluted may be differ-
ent. Dilution of esker dispersal trains, like those of streams, 
can occur by tributary sediment input (Lillieskold, 1990; 
Bolduc, 1992) and/or vertical downcutting into the substrate 
(Alley et al., 1997); however, a third dilution mechanism—
lateral influx of poorly sorted till and/or debris-rich basal ice 
along the length of the R-channel—may deliver significant 
amounts of sediment to esker sedimentary systems (Trefethen 
and Trefethen, 1944; Röthlisberger, 1972; Shreve, 1972). 
Inward-trending striae near some eskers (e.g. Veillette, 
1986) attest to this process. Shreve (1985a) considers it to 
be the major mechanism by which sediment is delivered 
to R-channels. Levasseur and Prichonnet (1995) suggest 
dilution from debris flowing into the R-channel was more 
important than other processes in generating the downflow 
attenuation of a dispersal train in the Chibaugamau esker, 
Quebec. Meltwater could equally deliver adjacent sediment 
to R-channels, possibly at the tail end of broader jökulhlaup-
like floods beneath the glacier (e.g. Paola, 1983; Fowler and 
Ng, 1996; Brennand and Shaw, 1996; Burke et al., 2008). In 
sum, because of dilution, in addition to selective sorting and 
abrasion, deposition of eskers in short segments as outlined 
in the short-conduit model (Fig. 3a) may not necessarily be 
a prerequisite for the development of short esker dispersal 
trains downflow of the till source (Fig.  4). Rather, similar 
dispersal trains could potentially be produced due to intense 
dilution in a long conduit (Fig. 3b).

DISCUSSION

Provided this context, we now return to our two main 
questions: how should eskers be sampled, and how should 
data be interpreted?

Question 1. Esker sampling methods

The goal of drift prospecting is simple: first, locate a dis-
persal train; and second, trace the dispersal train back to the 
bedrock source. Eskers can be used during both stages, but 
they are typically used during the former.

Regional-scale sampling campaigns  
(tens to hundreds of kilometres)

Eskers, like regional stream networks, are commonly 
sampled during the initial, reconnaissance stages of an explo-
ration campaign (Atkinson, 1989; Craigie, 1993; Krajick, 
2001; Kjarsgaard and Levinson, 2002). A reasonable ques-
tion might therefore be the following: should long eskers be 
targeted first, just as regional stream networks are targeted 
first, the idea being that they are more likely to contain the 
longest dispersal trains? If the data are representative, there 
is no reason to suspect this to be the case, at least for coarse 
sand and gravel fractions. Previous work suggests that long 
eskers commonly contain dispersal trains that are only a 
fraction of total esker length (Fig.  4): there is no obvious 
correlation between esker length and dispersal train length. 
Rather, the length of the underlying till dispersal train across 
which the esker passes may be the primary control on the 
length of dispersal trains in the coarse sand and gravel frac-
tions. Whether this applies to finer sand and mud fractions is 
unknown; they are more likely to travel as suspended load, 
and will therefore be more likely to travel farther down the 
R-channel or beyond (Cummings et al., 2007). If the esker 
in question formed under the long-conduit model (Fig. 3b), 
it could potentially contain both local and regional prov-
enance signals, depending on what grain size is analyzed 
(Cummings  et  al.,  2008). Eskers formed under the short 
conduit model, by contrast, should contain limited dispersal 
distances for all grain sizes—gravel, sand, and mud. Gillberg 
(1968) claimed that several eskers in Sweden contain such 
dispersal trains.

How closely should samples be spaced along an esker? 
This is perhaps the main ‘regional-scale’ question faced 
prior to the start of a drift prospecting campaign, irrespec-
tive of the media sampled. The spacing will need to be 
adjusted for the geographic region and mineral deposit type 
in question. For example, a closer spacing may be required 
during gold exploration than kimberlite exploration, because 
visible gold-grain dispersal trains in till (Averill, 1990) 
are generally shorter and more dilute than kimberlite dis-
persal trains (Armstrong and Kjarsgaard, 2003). In areas 
of reconnaissance exploration where no a priori knowl-
edge exists, samples should be spaced along the esker as 
closely as possible, given constraints controlled by budget, 
time, and region to cover. Sampling tributary confluences to 
reduce the number of samples per ‘catchment’, a common 
practice for streams, may be effective on eskers, given that 
co-mingled provenance signals have been observed at esker 
tributary confluences (Lillieskold, 1990; Bolduc, 1992). 
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Samples should be collected at least several hundred metres  
downflow of the confluence, not at the confluence itself, to 
ensure proper co-mingling of sediment signals from the two 
tributary branches (cf. Best and Brayshaw, 1985).

Landform-scale sampling (hundreds of  
metres to several kilometres)

In the past, esker indicator-mineral sampling campaigns 
have typically targeted gravelly ridge elements—the eskers 
sensu stricto—as opposed to the associated sandy fan ele-
ments (e.g. Parent et al., 2004). This method is prudent for 
two reasons. First, heavy minerals are known to concentrate 
in gravelly facies of some gravel-bed streams, and especially 
bouldery and tightly packed gravelly facies, whereas they 
can be scarce to absent in sandy stream facies (Fig. 7). This 
has led, in part, to the saying that “…the more difficult the 
sample is to collect, the better is its quality” (Gregory and 
White, 1989). Second, gravelly ridge elements represent a 
more proximal part of the esker sedimentary system than 
sandy fans (Banerjee and McDonald, 1975); their matrices, 
if anything, might therefore be expected to record a more 
proximal provenance signal.

Although prudent, this method of sampling eskers is not 
proven. It is unclear whether gravelly facies in eskers do, as a 
general rule, contain more heavy minerals than sandy facies 
(Pertunnen, 1989). It is also questionable whether samples 
from gravelly ridges and sandy fans provide significantly 
different provenance signals. Gillberg (1968) reports simi-
lar transport distances for carbonate sand grains in gravelly 
ridges and sandy fans of several Swedish eskers. It is possi-
ble that it does not matter what parts of the esker complexes 
are sampled—gravelly ridges or sandy fans. At present, 

sampling gravelly ridges in eskers is a prudent method. The 
idea that sandy fans provide comparable data (e.g. Gillberg, 
1968) constitutes a testable hypothesis.

Facies-scale sampling (centimetres to metres)

‘Bedform’ or ‘facies’ scale sampling takes into account 
selective sorting at a ‘bedform’ or ‘bed’ scale; it is the small-
est scale of interest when planning esker-sampling targets, 
and accounts for variation within, or on the surface of, grav-
elly ridges and sandy fans. During reconnaissance sampling, 
it is desirable to target facies that are prone to containing 
indicator minerals because even one or two indicator miner-
als can lead to a mine discovery (Muggeridge, 1995). What 
facies contain the most heavy minerals in eskers, if any? No 
published data exist to constrain this. Insights can be gained, 
however, from the gravel-bed stream literature (e.g. Best 
and Brayshaw, 1985; Atkinson, 1989; Gregory and White, 
1989; Carling and Breakspear, 2006). Two general themes 
emerge. First, heavy minerals tend to concentrate in zones of 
flow separation, such in the lee of bedforms and barforms, 
behind larger boulders, and in bedrock crags. Second, heavy 
minerals tend to concentrate as lag on erosion surfaces, such 
as at the winnowed heads of mid-channel bars, on the tops 
of dunes, in tributary confluence scour pits, in channel thal-
wegs, and on flood-generated erosion surfaces. These two 
general themes—that heavy minerals concentrate in zones of 
flow separation (e.g. in crossbed toesets; in sediment behind 
boulders) and as lag on erosion surfaces—constitute another 
testable hypothesis for eskers. In addition to these poten-
tial sampling targets, pebbly eolian deflation lags, which 
commonly cover the surface of eskers on the shield, and 
wave-reworked beach ridges, which can be present locally, 
may prove to be locations where heavy minerals become 
concentrated after deposition of the esker. These deposits 
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Figure 7.  Concentration of kimberlite indicator minerals in different fluvial facies down-
stream from the Devil’s Elbow kimberlite, Australia (modified from Muggeridge, 1995) 
Note that gravelly and sandy facies are rich and poor in indicator minerals, respectively. 
This represents a hypothesis waiting to be tested for eskers.
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are commonly targeted during esker-sampling campaigns, in 
addition to locations where streams have cut through eskers 
(Craigie, 1993). Irrespective of what type of material is sam-
pled, it is prudent to describe it on-site and photograph the 
sample pit. This will help vet lab results following the field 
campaign.

Sediment in esker corridors, where present, repre-
sents an additional, untested ‘facies-scale’ sampling target 
(Fig.  1b). Till patches in esker corridors (e.g. Rampton, 
2000), because of their thinness, may be derived from more 
proximal bedrock sources than the top of the thick till out-
side the corridors, the typical till-sampling medium. Lag in 
bedrock joints and crevasses, a favoured sampling target in 
classic diamondiferous regions (Gregory and White, 1989), 
may be present in the corridors, as may larger glaciofluvial 
bed forms (St-Onge, 1984; Brennand and Sharpe, 1993; 
Rampton, 2000; Utting et al., 2009), both of which may be 
indicator concentration sites.

Question 2. Esker data interpretation

When an indicator mineral is found in an esker, only 
one question matters: where is the bedrock source? Several 
points can help guide interpretation, as outlined below.

The longer the till dispersal train, the longer 
the esker dispersal train

The till dispersal train across which the esker passes, in 
most cases, is probably the primary source of esker sedi-
ment. In most regions (but not all; see Shilts (1976)), eskers 
trend parallel to till dispersal trains. In these areas, the length 
of the till dispersal train will exert a first-order control on 
the length of the esker dispersal train, at least for gravel and 
coarse sand fractions. If the data in Figure 4 are representa-
tive, which remains to be tested in most parts of Canada, 
the abundance of gravel and coarse sand indicators in esker 
dispersal trains may decrease rapidly downflow of the till 
dispersal trains, typically within several kilometres.

Anomalous samples may be significant,  
but should be treated with caution

The till dispersal trains from which eskers are sourced 
vary tremendously in size, from less than a kilometre (Averill, 
1990) to over a thousand kilometres (Prest et al., 2000). Short 
and long dispersal trains are commonly comingled within 
the same till unit (Finck and Stea, 1995). Short, concentrated 
till dispersal trains have the potential to yield recognizable 
esker dispersal trains. Clusters or trends in indicator-mineral 
data in esker samples (i.e. evidence for discrete dispersal 
trains) are therefore good signs. By contrast, isolated indica-
tor clasts or isolated ‘hot’ samples in eskers should be treated 
with caution in absence of detailed follow-up sampling 

because they may be sourced from large, diffuse dispersal 
trains (e.g. Prest et al., 2000). The level of scepticism should 
increase in proportion to the durability of the clast (e.g. dia-
monds will survive long distance transport) and in inverse 
proportion to clast size (see ‘The larger the clast, the closer 
the till source’, below).

In Figure 4, the esker dispersal trains do not appear more 
spiky than the till dispersal trains however, concentration of 
heavy minerals at a ‘bedform’ or ‘facies’ scale is suspected 
to occur in esker sedimentary systems because it occurs in 
gravel-bed streams. As such, there is almost certainly some 
noise in the data. The key is to filter the noise and resolve 
the signal (the dispersal train). Again, data clusters or trends 
are good signs; isolated ‘hot’ samples should be treated with 
caution.

The larger the clast, the closer the till source

Fluvial dispersal trains fine downflow (Fig. 6); the same 
is suspected to apply to esker dispersal trains beyond the 
limit of the till dispersal train. Eskers themselves do not 
exhibit net downflow fining, presumably because of influx 
of coarse sediment (i.e. dilution of dispersal train) along the 
length of the R-channel and/or deposition in segments, as 
per the short-conduit model. Within the till dispersal train, 
poorly sorted debris, including gravel, may have been intro-
duced along the length of the R-channel (Shreve, 1985a; 
Fowler and Ng, 1996), counterbalancing downflow fining.

The more angular the gravel clast, the closer 
the till source

Gravel is typically more angular in till than in eskers; 
gravel abrasion therefore occurs in esker sedimentary sys-
tems. As such, angular or striated gravel clasts in eskers 
may not have travelled far from their till source. It is unclear 
if this relationship applies for sand-sized indicator miner-
als, which tend to be angular in eskers (Wolfe et al., 1975; 
Averill, 2001), possibly because sand experiences little 
abrasion over the time scales involved in esker deposition  
(e.g. Kuenen, 1959).

A LOOK FORWARD

If a theme has emerged from this review, it is that little 
nonproprietary work has been conducted to help understand 
how to sample eskers for indicator minerals during explora-
tion or how to interpret results. Several lines of research have 
the potential to fill these knowledge gaps, as outlined below.

Regionally, the opportunity exists to move past the quali-
tative (air-photo–based) depiction of eskers as lines on maps 
(e.g. Fig. 1a) to a quantitative understanding of esker geomor-
phology through the analysis of modern landscape imagery 
(e.g. satellite images, digital elevation models). The resultant 
regional data—such as the height, width, shape, continuity, 
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and volume of eskers and associated esker corridors—will 
provide new insight into how eskers form (Fig. 3). This will 
lay a more rigorous, empirical foundation for understanding 
and possibly predicting indicator mineral dispersal in esker 
systems at the local scale.

Within this remotely sensed regional framework, ‘land-
form-scale’ fieldwork is required. Eskers that cross known 
bedrock sources should be targeted. Analysis of indica-
tor minerals in the suspended load fraction (technological 
development now allows identification of indicator minerals 
in the fine sand and coarse silt-sized fractions) in addition to 
the more commonly analyzed bedload fraction (pebbles, and 
medium and coarse sand) may help determine if the esker 
formed in segments or not (Cummings  et  al.,  2008). The 
adjacent till should be analyzed to ascertain the relative con-
tribution of glaciofluvial (esker) versus glacial (till) transport 
to total dispersal. The sedimentology and sedimentary 
architecture of eskers needs to be considered. For example, 
different geomorphic elements (gravelly ridges, sandy fans) 
at different stratigraphic levels should be sampled, as should 
sediment from esker corridors, to determine if differences in 
indicator-mineral provenance, concentration, and/or textural 
and mineralogical maturity exist. A combination of methods, 
including numerical calculations using existing glaciologi-
cal theory, data syntheses (e.g. inward-trending striae near 
eskers), and scrutiny of depositional and erosional features 
in esker corridors, may help constrain the size of esker sedi-
ment-source areas and the mechanisms (ice-mediated and/or 
meltwater-mediated) by which sediment is transferred from 
source area to esker.

At the smallest scale (individual grains), simple abra-
sion experiments can help quantify the breakdown and 
wear of different bedrock rock types during transport in 
esker systems and the characteristic size fractions and tex-
tural maturities (roundness, shape) of the indicator-mineral 
assemblages that are produced.

By fostering insight into how esker sedimentary sys-
tems work, these research initiatives will, in concert, help 
improve the chances of success when using eskers as mineral  
exploration tools.

CONCLUSIONS

Esker dispersal trains are typically sourced primarily 
from underlying till dispersal trains, with possible second-
ary contributions from bedrock and/or debris-rich basal ice. 
The use of eskers as mineral exploration tools is therefore 
a two-stage process (e.g. Shilts, 1976): trace the esker dis-
persal train back to the till dispersal train, then trace the till 
dispersal train back to the bedrock source.

Measured from head to tail, gravel dispersal trains in 
eskers studied to date are similar in length to the till disper-
sal train from which they were sourced, but they are shifted 
1–25 km downflow.

Sand dispersal trains (e.g. heavy minerals) in eskers have 
rarely been studied. In the available data, coarse sand disper-
sal trains are similar in length to the gravel dispersal trains. 
Both are similar in length to the till dispersal trains from 
which they were sourced, but are shifted by 1–25 km down-
flow. Whether this is representative of eskers in general is 
unknown due to the paucity of published data.

Heavy minerals are commonly enriched in eskers rela-
tive to till, in some cases by several times per unit volume. 
Sampling sandy fans may yield similar data as sampling 
gravelly ridges, and at the same time be less time consuming 
and thus more cost effective.

Due to lack of data, however,  it is unclear whether 
heavy minerals preferentially concentrate in gravelly ridges 
or sandy fans of esker complexes (or neither), and whether 
certain sedimentary facies in these geomorphic elements are 
more likely than others to contain high concentrations of 
heavy minerals.
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