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Abstract: Thermobarometry and in situ SHRIMP monazite geochronology reveal a complex, poly-
cyclic history for Southampton Island, Nunavut. Two cryptic metamorphic events have been recognized
at ca. 2.6 Ga (M) and 2.3 Ga (M,) followed by four Paleoproterozoic events, some accompanied by
deformation. Two samples on the western side of the study area record M,-D, at 1879 + 7 Ma and
1879 + 8 Ma. Four samples constrain M,-D, between 1861 £ 12 Ma and 1848 £ 6 Ma, with M, continuing to
1841 £ 4 Ma. Four samples also record a post-D,, M, event between 1826 £ 9 Ma and 1815 £ 7 Ma,
interpreted to represent a thermal culmination associated with extensive crustal melting and plutonism.
Monazite growth between 1.79 Ga and 1.72 Ga likely reflects fluid ingress during cooling. These new
data provide important constraints on the nature and timing of collisional events required to build robust
tectonic and metallogenic models.

Résumé : La thermobarométrie et la géochronologie par datation in situ de 1a monazite a la microsonde
SHRIMP révelent une évolution polycyclique complexe de 1’ile Southampton, au Nunavut. Elles ont per-
mis d’identifier deux épisodes métamorphiques cryptiques vers 2,6 Ga (M) et 2,3 Ga (M,), suivis de
quatre épisodes au Paléoprotérozoique, dont certains accompagnés d’une déformation. Deux échantillons
prélevés dans I’ouest de la région a I’étude révelent un épisode de métamorphisme et de déformation
M,-D, 2 1879 +7 Ma et a 1879 + 8 Ma. Quatre échantillons circonscrivent chronologiquement I’épisode
de métamorphisme et de déformation M,-D, entre 1861 + 12 et 1848 + 6 Ma, avec un prolongement
du métamorphisme M, jusqu’a 1841 + 4 Ma. Quatre échantillons témoignent aussi d’un €pisode de
métamorphisme M, postérieur a la déformation D, entre 1826 + 9 et 1815 + 7 Ma, lequel, selon notre
interprétation, représenterait un pic thermique associé a une fusion crustale & grande €chelle et a une
activité plutonique. La croissance de la monazite entre 1,79 et 1,72 Ga reflete probablement I’infiltration
de fluides au cours du refroidissement. Ces nouvelles données fournissent des valeurs restrictives impor-
tantes sur la nature des épisodes de collision et le moment ot ils se sont produits, des valeurs nécessaires a
I’élaboration de modeles tectoniques et métallogéniques robustes.
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INTRODUCTION

Situated within a 400 km wide gap between the main-
land western Churchill Province and Baffin Island (Fig. 1),
the geology of Southampton Island, Nunavut provides
critical insight into the evolution of northeast Laurentia.
Metamorphic studies initiated as part of the Southampton
Island integrated geoscience project of the Northern Mineral
Resources and Development Program constrain tectonic
and regional metallogenic models, upon which exploration
strategies for diamonds and precious- and base-metals in the
area can be based. This report summarizes initial constraints
on the pressure, temperature, and timing (P-T-t) of mul-
tiple metamorphic and deformation events on Southampton
Island.

REGIONAL GEOLOGICAL SETTING

Located near the junction of five crustal blocks (Rae,
Hearne, Chesterfield, Meta Incognita, and Sugluk; Fig. 1),
the eastern half of Southampton Island exposes a highland of
Precambrian rock comprising remnants of Archean psammite
and semipelite, a potentially Paleoproterozoic carbonate-
quartzite cover sequence, and voluminous plutonic rocks
ranging from ultramafic (peridotite-dunite) to monzogranitic
compositions (Sanborn-Barrie et al., 2008; Chakungal et al.,
2008). Uranium-lead crystallization ages reveal extensive
Archean (ca. 2.77-2.6 Ga) and Paleoproterozoic (ca. 1.94—
1.82 Ga) magmatic activity (see Rayner et al., 2011), with
Sm-Nd isotopic data (Whalen et al., 2011), supporting the
presence of Meso- to Paleoarchean basement that correlates
with Rae crust.

[] Phanerozoic cover
D Intracratonic basins (ca 1.7 Ga)

D Nueltin granite (1.76-1.75 Ga)
[l Granite (mostly 1.85-1.82 Ga)
. Granitic plutons (1.87-1.85 Ga)

[ Granitic plutons (2.0-1.9 Ga)
Snowbird tectonic zone
. granulite (1.9 Ga and 2.5 Ga)
Trans-Hudson internides
mostly (1.91-1.81 Ga)
|:I2.1—1 .8 Ga sedimentary rx
D Hurwitz, Amer groups
(>1.95 Ga; and 2.45-2.1 Ga)
[ 2.5-2.4 Ga Sherman seds

D Meta Incognita basement
. Greenstone belt
(mostly ca. 2.7 Ga)
[D 2.7-2.6 Ga granitic
gneiss (Rae, Hearne, Cb)

Western Churchill
Province

))" Thrust fault,
teeth on up-
thrust side

Athabasca
Basin

BUFFALO
HEAD

E I

Southampton
Island

Hudson Bay

SUPERIOR
CRATON

Abbreviations:

BP = Boothia Peninsula, Cb = Chesterfield block, Cbb = Committee Bay belt, CB = Cumberland Batholith, Ml = Meta Incognita microcontinent, Pi = Piling,
QM = Queen Maud, S = Sugluk block, STZ = Snowbird tectonic zone, WB = Wathaman Batholith, fz = fault zone.

Figure 1. Regional geology of the Precambrian core of Laurentia flanking Hudson Bay, modified from

Berman et al. (2005).
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Two penetrative deformational events are recognized
in fabrics and structures observed throughout much of the
study area. D, involves development of a moderately to
steeply inclined, north-trending planar tectonic fabric (S,)
defined by high-grade mineral alignment and/or compos-
itional layering. In metasedimentary rocks, S, is defined
by aligned sillimanite, whereas orthopyroxene and biotite
define S, in granodiorite (mangerite). During D,, S, was
strongly reworked into tight, recumbent, west-trending,
south-vergent F, folds and/or relatively straight panels of
gently inclined north- and west-striking S +S, transpos-
ition foliation. S, mineral assemblages indicate upper
amphibolite- to granulite-facies conditions. Locally, broad,
open, northeast-trending upright folds (F,) of the transpos-
ition foliation highlight a nonpenetrative, near-horizontal
component of shortening (D,).

Quantitative metamorphic and
geochronological constraints

In order to clarify the metamorphic evolution of the
region, P-T conditions were estimated using the winTWQ
software (version 2.35; Berman (2007)) following the meth-
odology summarized by Berman et al. (2005). In order to
link P-T conditions to timing constraints, six metasedi-
mentary rock samples were chosen that contained monazite
of a size (>10 um) suitable for in situ SHRIMP analysis,
carried out on 3 mm diameter cores drilled from texturally
significant areas of polished thin sections with the methods
of Rayner and Stern (2002). A small plug of pre-polished
laboratory standard monazite (GSC monazite z3345 and
z2908) was included on the mount. Stern and Berman (2000)
described further analytical details. A Pb fractionation cor-
rection was applied to the Pb-isotope data in some instances
(see Table 2 footnotes), the magnitude of which was deter-
mined by the analysis of monazite standards z3345 and
72908 the *7Pb/**Pb ages of which have been determined
by isotope dilution methods (Stern and Berman, 2000). The
error associated with the mass fractionation correction has
been added quadratically to the isotopic ratios when calcu-
lating weighted mean ages. Common Pb correction utilized
the Pb composition of the surface blank (Stern, 1997).

Table 1 summarizes thermobarometric and geochrono-
logical results for six, widely distributed samples (Fig. 2).
Table 2 provides SHRIMP analytical data for monazite.
Errors of mean ages and Concordia diagram ellipses are
reported at 26. The geological context, textural relation-
ships, thermobarometric data, and geochronological results
for these six samples are presented below.

Sample 69HF-154a (GSC lab #8692)

Sample 69HF-154a is an archival sample from north-
ern Southampton Island collected during reconnaissance
mapping in 1969 (Heywood and Sanford, 1976). Itis a garnet-
sillimanite-biotite paragneiss in which garnet porphyroblasts

are enveloped by a strong S, foliation defined by matrix bio-
tite, sillimanite, and quartzofeldspathic shape fabric. The
rim of one garnet porphyroblast hosts sillimanite inclusions
that outline a folded or sheared S, fabric at an angle to S,
(Fig. 3a). Ilmenite, quartz, and a monazite inclusion within
the core of this garnet define a weak S, fabric that is subpar-
allel to the sillimanite inclusion fabric (Fig. 3a), implying
garnet growth during a progression from an early, weak S
fabric to a coarser grained S, fabric at higher grade. Most
garnet porphyroblasts have inclusion-poor cores with syn-S,
rims (not shown in Fig. 3) that are elongate parallel to S, and
have overgrown S -aligned sillimanite and quartz inclusions.

Garnet cores are relatively calcic (X, = 0.032-0.045)
compared to syn-S, rims (X, = 0.020-0.024). Both cores
and rims have indistinguishable Fe/(Fe+Mg) between
0.71-0.72 and MnO between 0.5 and 0.6 weight per
cent, probably indicating diffusive re-equilibration of
the garnet core. Plagioclase is uniform in composition
(X, = 0.26-0.28), as is biotite (Fe/(Fe+Mg) = 0.32-0.34).
Pressure-temperature conditions of 4.2 kbar and 630°C
result from the rim compositions of garnet and biotite sep-
arated by quartz, and nearby plagioclase. The more calcic
composition of the garnet core indicates its growth at higher
pressure than garnet rims.

Five SHRIMP analyses of two monazite inclusions in
the core of the garnet porphyroblast shown in Figure 3a
yield a weighted mean 2Pb/*®Pb age of 1879 + 7 Ma
(Mean Square of Weighted Deviates (MSWD) = 1.5;
Fig. 3b). One of these grains is equant, whereas the other
is elongate parallel to several nearby inclusions of ilmen-
ite and quartz that define the early, weak S, fabric (Fig. 3a).
A distinctly younger weighted mean 2’Pb/**Pb age of
1841 £ 4 Ma (MSWD = 1.0; Fig. 3b) is derived from five
analyses of three matrix grains interpreted as post-D, on the
basis of their equant shapes.

Sample 07CYA-X64a (GSC lab #9477)

Sample 07CYA-X64a is a metaquartzite collected from
a panel of calc-silicate-quartzitetsemipelite, which was
deposited after 2615 £ 23 Ma (Rayner et al., 2011) and, given
the lithological association, may represent metasedimentary
rocks correlative with Paleoproterozoic cover sequences on
the Rae craton (Rainbird et al., 2010). The outcrop contains
centimetre-sized porphyroblasts of garnet and cordierite,
whereas the analyzed thin section contains the assemblage
garnet-biotite-sillimanite-cordierite-K-feldspar-quartz-
plagioclase-ilmenite. The outer parts of anhedral garnet
porphyroblasts, up to 1 cm in diameter, contain a weak fabric
(S,, Fig. 4a, b) defined by the alignment of ilmenite, mona-
zite, and sillimanite needles within one monazite inclusion
(#241, inset of Fig. 4b). This internal S| foliation is at a high
angle to the main (S,) foliation, defined by elongate quartz
and feldspar grains, that envelops the garnet (Fig. 4a).
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Sample localities recording:
M,-D, @ 1.88 Ga

OM,-D, @ 1.85 Ga

M, @ 1.82 Ga

East Bay

South Bay

D 50 km

Native Bay BELL PENINSULA

LEGEND

PHANEROZOIC Ultramafic-mafic plutonic suite

[ Paleozoic limestone, unsubdivided [ Diorite, leucodiorite, gabbro

PROTEROZOIC and ARCHEAN [ Peridotite, pyroxenitetgabbro . ™) Trace of S, folation

Felsic intermediate plutonic suite . Q Inclusions, rafts of gabbro, dioritetpyroxenite -~ -
- Trace of S;+ S, foliation

Il Syenogranite, quartz syenite

. . Metasedimentary rocks
- Hornblende magnetite monzogranite+

p h —_ Silicate- and oxide-facies ironstone iati
monzonitetquartz monzonite Trace of S foliation
- . . | | Semipelitetquartzitetpsammitetperaluminous Shear zone,
|:| Biotitetmagnetitetmonzogranite granite ~§ ~ ginistral transcurrent
|:| Biotitetmagnetitethornblende granodiorite+ [ Marble, calc-silicate

monzogranite veins
1 Hornblendetmagnetitetbiotite granodiorite

[ Orthopyroxene-monzogranite (chamockite) and/or greasy 1 Piutonic rocks, unsubdivided
brown (high-grade) biotite monzogranitetgranodiorite

Figure 2. Simplified geology of Southampton Island (Sanborn-Barrie et al., 2008), with abbreviated
sample numbers.
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Table 1. Summary SHRIMP U-Pb in situ monazite ages and pressure-temperature conditions.

P-T estimates’

Sample # Lithology Age + 26 | Event

T (°C) | P(kbar) Monazite textures

69HF-154a Metapelite 18797 M,-D,
184114 M,

S, garnet inclusions

630" 42" | late M,, post-D,; equant matrix grains

07CYA-X64a | Metaquartzite 18798 M,-D,

S, garnet inclusions

1815+7 M, 755 7.4 post-D,, equant matrix grain
1790-1750 M,
07CYA-A18a | Metasemipelite 1849+ 6 M,-D, 755 7.0 S, matrix grains and garnet inclusion
655" | 6.6°

07CYA-M5 Metapelite 1866+ 18 | M,-D,
1826+ 9 M,

Garnet inclusion
post-D,, irregular matrix grains

07CYA-M92 | Metasemipelite | 1861+ 12 | M,-D,
1820+ 7 M,

S, matrix grain and garnet inclusion
720 6.4 post-D,, equant matrix grains

07CYA-A29 | Metasemipelite | 1816+ 10 M,

post-D,, matrix grains and garnet

790 7.7 ; :
inclusions

1721+ 36 M,

Errors are reported at the 2c uncertainty level.

recorded by each sample.

M,, M, based on monazite ages from an S-type granite (Berman et al., unpub. data, 2010; Rayner et al., 2011).
1near-peak P-T conditions, except for: L = late, post-D, based on monazite textures, P = prograde; note that
rims of garnet and matrix phases are assumed to have equilibrated during the last main monazite growth event

Garnet has a relatively uniform core composition, with
X, between 0.06-0.07, Fe/(Fe+Mg) = 0.69-0.72, and MnO
decreasing slightly from 2.0 to 1.2 weight per cent toward
the rim. The outer 50 um of the garnet rim touching matrix
K-feldspar has higher Fe/(Fe+Mg) up to 0.83, and lower
X, down to 0.033. This less calcic rim region has constant
MnO (1.2 weight per cent) except for the extreme garnet
rim (MnO = 2.0 weight per cent), indicating minor garnet
resorption (e.g. Kohn and Spear, 2000).

Plagioclase forms mostly unzoned matrix grains
(X,, = 0.24-0.26), although one matrix grain has a more
sodic core (X, =0.18-0.21). More calcic (X, = 0.30-0.38)
plagioclase also forms about 20 wm wide discontinuous rims
on quartz inclusions in garnet, with less calcic compositions
generally in contact with garnet. The occurrence of plagio-
clase solely as rims between quartz inclusions and garnet
indicates that plagioclase formed from garnet breakdown
in the presence of a fluid which removed ferromagnesium
components (no biotite is present in these inclusions).
One 30 um wide plagioclase inclusion in the garnet core
has X, = 0.35-0.42. In regions around plagioclase inter-
nal to garnet, garnet composition decreases from typical
core X, values to X, = 0.030 (with Fe/(Fe+Mg) remain-
ing low (0.69-0.70)). This decrease in X in garnet is also
consistent with garnet breakdown to form plagioclase.
Matrix biotite is unzoned with Fe/(Fe+Mg) = 0.49-0.51 and

TiO, equals about 4 weight per cent. Biotite inclusions in
garnet have low TiO, (2.6-3.2 weight per cent) and lower Fe/
(Fe+Mg), ranging from 0.32 in contact with garnet to 0.35 in
contact with quartz.

Pressure-temperature conditions of 7.4 kbar and 755°C
were calculated from the rim compositions of garnet and
biotite separated by matrix K-feldspar and nearby plagio-
clase. Cordierite could not be used because it is partially
pinitized. The higher pressure conditions of garnet core for-
mation (assumed from its more calcic composition) could
not be calculated reliably, since plagioclase within garnet
formed late in the history, and biotite within quartz inclu-
sions in garnet appear to have re-equilibrated due to their
contact with garnet.

The SHRIMP analyses of three aligned monazite
inclusions in garnet (e.g. #241 in Fig. 4b inset) yielded a
weighted mean *"Pb/**Pb age of 1879 £ 8 Ma (n = 5,
MSWD = 0.42; Fig. 4c). Monazite inclusion #25, form-
ing part of a weak internal fabric in another garnet
porphyroblast, yielded an overlapping, but imprecise age
(1896 £20 Ma, MSWD =2.0) due to high **Pb. Six SHRIMP
analyses of the near-rim, very low Y region of an equant, matrix
grain (#1 in Table 2) yielded a weighted mean **’Pb/**Pb age of
1815 £ 7 Ma (MSWD = 0.92). Two analyses (#1.5 and 1.6)
of the higher-Y core of this grain yielded a ca. 1.84 Ga
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Figure 3. a) Backscattered scanning electron microscope image
of textural relationships in sample 69HF-154a; note that right
side of garnet is composite image showing sillimanite inclusion
fabric (S,); 2011-003; b) Concordia diagram of SHRIMP U-Pb
results. Grt = garnet, Qtz = quartz, llm = ilmenite, Bt = biotite,
Mnz = monzonite, Pl = plagioclase.
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Figure 4. a), b) Backscattered scanning electron microscope
image of textural relationships in 07CYA-X64a. Inset in (b)
is Y map of analyzed monazite grain that is elongate par-
allel to weak internal S, fabric in garnet and which has
overgrown S, -parallel sillimanite needles; 2011-004, 2011-005.
c) Concordia diagram of SHRIMP U-Pb results. Hatched ellipses
are analyses of the core of a matrix monazite. Grt = garnet,
lim = ilmenite, Qtz = quartz, Kfs = K-feldspar, Sil = sillimanite,
Mnz = monazite.
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age. The older of these two analyses (#1.5) has distinctly
higher Th/U ratio (14.1) than all other analyses (Th/U <6),
suggesting that the core of this monazite grain crystallized
during an earlier, ca. 1.84 Ga event than the rim. One small
matrix grain that is not aligned with the S, foliation yields
two disparate ca. 1.77 Ga results (grain #5, Table 2).

Sample 07CYA-A18a (GSC lab #9472)

Sample 07CYA-Al8a is a metapsammite with the
assemblage garnet-orthopyroxene-cordierite-sillimanite-
biotite-K-feldspar-plagioclase-quartz-ilmenite collected from
an outcrop with visible orthopyroxene and some leuco-
some. The single strong foliation at this outcrop is oriented
at 336/36°NE. It is interpreted as the regional S, foliation
that has been deflected from the typical southwest-strike
(e.g. 260/29°N) observed several kilometres to the north-
east at station 07CYA-A19. In sample 07CYA-A18a, garnet
porphyroblasts up to 1 cm in diameter are equant, variably
embayed, and wrapped by the main foliation (S,) defined
by elongate grains of quartz, K-feldspar, and cordier-
ite (Fig. 5a). The largest garnet contains small ilmenite
and rutile needles that are parallel to S, (Fig. 5a), whereas
smaller garnet porphyroblasts contain randomly oriented
inclusions of quartz and plagioclase. Sparse, S, -parallel sil-
limanite is intergrown with matrix cordierite, commonly in
areas with relict, Zn-bearing spinel. Sparse biotite forms
scattered matrix grains.

Garnet has uniform Fe/(Fe+Mg) between 0.60 and 0.61,
except for an increase up to 0.64 at rims touching cordier-
ite. Garnet cores are calcic (X, = 0.06-0.08), decreasing to
0.046-0.049 at rims touching matrix plagioclase or quartz
and at the location of plagioclase inclusions. No zoning in
MnO is discernible. Matrix plagioclase is uniform in com-
position (X, = 0.40-0.42). Plagioclase inclusions in garnet
have sodic cores (X, = 0.32-0.35) that increase to more cal-
cic rims (up to X, = 0.49) in contact with garnet. Matrix
biotite varies in Fe/(Fe+Mg) between 0.35 and 0.37, with
TiO, between 6.2-6.6 weight per cent. One biotite inclu-
sion partly surrounded by plagioclase in garnet has Fe/
(Fe+Mg) = 0.21-0.22 and TiO, = 2.0-2.5 weight per cent,
suggesting that it crystallized at lower grade than matrix bio-
tite. Cordierite forming partial rims on garnet is uniform in
composition.

The compositions of randomly oriented plagioclase
and biotite inclusions in garnet (Grt-1, Fig. 5a), together
with calcic garnet near these inclusions yield pressure
and temperature conditions of 6.6 kbar and 655°C, inter-
preted to represent prograde conditions prior to the onset
of D,. Pressure and temperature conditions of 7 kbar and
755°C result from the rim compositions of garnet touching
cordierite, together with nearby biotite and plagioclase.

The weighted average *’Pb/**Pb age of 23 analyses from
4 low-Y, elongate, S -parallel matrix monazite grains (i.e.
Mnz-3; Fig. 5b), is 1848 + 6 Ma (MSWD = 0.78; Fig. 5c).

| &  07-CYA-A18a
3
o
0.34 §
.32} inclusion
1861 + 20 Ma
0.30F
! 1848 + 6 Ma
Matrix Mnz
0.28
207Pbl235U
4..4 4..8 5..2 5‘.6

Figure 5. a) Backscattered scanning electron microscope
image of textural relationships in sample 07CYA-A18a. Inset is
Y map of analyzed monazite grain. b) Backscattered scanning
electron microscope image of elongate matrix monazite paral-
lel to S,. Inset is composite Y map of analyzed monazite grain;
2011-006, 2011-007. ¢) Concordia diagram illustrating SHRIMP
U-Pb results. Grt = garnet, Qtz = quartz, Crd = cordierite,
Ilm = ilmenite, Kfs = K-feldspar, Mnz = monazite.
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Two analyses of an Sz-parallel, monazite inclusion (Mnz-4,
Fig. 5a) within garnet (Grt-2, Fig. 5a) possibly indicate an
older component (ca. 1.86 Ga); however, this is not statistic-
ally distinguishable from the age of matrix monazite in this
sample. The weighted mean age of all 25 monazite analyses
(matrix and inclusion) is 1849 = 6 Ma (MSWD = 0.89).

Sample 07CYA-MS (GSC lab #9475)

This sample was collected from garnet-rich metapelite
that forms rare, 2-10 cm wide layers within poorly exposed
metaquartzite felsenmeer. Large (centimetre diameter),
embayed garnet porphyroblasts are wrapped by the main
foliation defined by coarse sillimanite needles and a pre-
ferred shape fabric in quartz and K-feldspar. Plagioclase
is not present in this sample, which prevents calculation of
pressure-temperature conditions.

Fifteen analyses from two, moderate-Y monazite
grains that occur along the edge of a garnet porphyroblast
(Fig. 6a) yield an average *’Pb/*Pb age of 1826 £ 9 Ma
(MSWD = 0.68, Fig. 6b). Two analyses of a small, moder-
ate-Y monazite inclusion in garnet yield a weighted mean
27Pb/?Pb age of 1866 £ 18 Ma (MSWD = 0.38, Fig. 6b).

Sample 07CYA-M92 (GSC lab #9476)

This sample from a raft of rusty metapelite included
within diorite near the eastern coast of Southampton Island
contains the assemblage garnet-biotite-cordierite-silli-
manite-plagioclase-quartz. Garnet forms centimetre-sized,
variably embayed porphyroblasts that are wrapped by a
strong external fabric (S,) defined by biotite, quartz, and
feldspar (Fig. 7a). The cores of some garnet porphyroblasts
contain inclusions of quartz and biotite that form a moderate
internal fabric that is parallel to the external S, fabric. Some
garnet has 0.3 mm wide rims of cordierite with minor quartz.

Inclusion-rich garnet cores are more calcic (X, = 0.065—
0.086) than clear rims (X, = 0.041), with relatively uniform
Fe/(Fe+Mg) between 0.70-0.72. The slight enrichment in
MnO of garnet rims (1.0 weight per cent) relative to cores
(0.75-0.80 weight per cent) likely occurred during partial
breakdown of rims to cordierite. The Fe/(Fe+Mg) of matrix
biotite near garnet, but surrounded by quartz increases from
0.4 to 0.45 with proximity to garnet, and is considered to
reflect Fe enrichment during partial garnet breakdown (e.g.
Kohn and Spear, 2000). Pressure and temperature conditions
of 6.4 kbar and 720°C (with garnet-cordierite and garnet-
biotite Fe-Mg exchange temperatures agreeing within 20°C)
were calculated from the compositions of garnet just inside
the MnO-enriched rim, biotite furthest removed from garnet,
cordierite adjacent to garnet, and matrix plagioclase. Lack of
appropriate inclusions in garnet preclude calculation of the
conditions of garnet core formation.

07-CYA-M5

&
0.35f "N’\
8 1866 + 18 Ma
] Grt inclusions
0.33F

0.31F

0.29F

1826 = 9 Ma

Matrix Mnz
0.27F
. . . 207Pb /235U
4.2 4.6 5.0 5.4

Figure 6. a) Backscattered scanning electron microscope
image of textural relationships in sample 07CYA-M5; 2011-008.
b) Concordia diagram illustrating SHRIMP U-Pb results. Grt =
garnet, Qtz = quartz, Mnz = monazite.

Two SHRIMP analyses of a S -aligned, moderate- to
high-Y monazite inclusion (#20) in garnet and one analy-
sis of a small, S -parallel, moderate-Y, matrix grain (#27)
yield a weighted mean *’Pb/**Pb age of 1861 £ 12 Ma
(MSWD = 0.31, Fig. 7b). Nine analyses of equant, low-Y
matrix grain #6 (Fig. 7b), which has a thin, very high-Y,
unanalyzed rim, and one analysis of a small matrix grain
(#10) that lies at a high angle to S, yield a weighted mean
27Pb/2Pb age of 1820 £ 7 Ma (MSWD = 1.08, Fig. 7b). A
small monazite inclusion in garnet (#12) that is intersected
by a large fracture gave a *’Pb/**Pb age of 1791 = 16 Ma
(20), interpreted as a mixed age based on the distinct Y
zonation in Mnz-12 parallel to this fracture.

Sample 07CYA-A29 (GSC lab #9473)

Sample 07CYA-A29 is a granulite-facies metapsammite
(Fig. 2) with the assemblage garnet-orthopyroxene-biotite-
K-feldspar-plagioclase-quartz-ilmenite. Irregular, embayed
garnet porphyroblasts up to 7 mm in diameter are wrapped
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4.4 4.8 5.2

Figure 7. a) Backscattered scanning electron microscope
image of textural relationships in sample 07CYA-M92. Inset
shows Y map of analyzed monazite inclusion in garnet;
2011-009. b) Concordia diagram illustrating SHRIMP U-Pb
results. Inset shows Y map of equant monazite grain with
high-Y undated rim. Grt = garnet, Bt = biotite, Qtz = quartz,
Pl = plagioclase, Mnz = monazite.

by the main foliation (S,) defined by alignment of bio-
tite, orthopyroxene, and ilmenite with the preferred shape
of quartz and feldspar (Fig. 8a). Smaller, relict garnet is
surrounded and in places replaced by biotite.

Garnet porphyroblasts have texturally indistinct calcic
core regions (X = 0.14-0.17) surrounded by less calcic
regions and rims (X, = 0.093-0.102). The Fe/(Fe+Mg) and
MnO are uniform (0.73-0.74 and 0.9-1.0 weight per cent,
respectively), except for relict garnet, which has higher Fe/
(Fe+Mg) and MnO (0.76-0.78, and 1.2 weight per cent,
respectively). Plagioclase is very consistent in composition
(X, = 0.38-0.42), except where it is adjacent to relict gar-
net (X, = 0.48). Also relatively uniform in composition are
orthopyroxene (Fe/(Fe+Mg) = 0.48-0.51; ALO, = 1.4-1.7

g  07-CYA-A29
el s 2000

1816 =10 Ma

Mnz in matrix, Grt
0.28}

.207 Pb /25.35 u

5.6 6.0

4.0 4.4 4.8 5.2

Figure 8. a) Backscattered scanning electron microscope
image of textural relationships in sample 07CYA-A29. Inset
shows Y map of monazite #3; 2011-010 b) Concordia dia-
gram illustrating SHRIMP U-Pb results. Hatched ellipse
is analysis of monazite inclusion in garnet. Grt = garnet,
Qtz = quartz, Pl = plagioclase, Opx = orthopyroxene, Kfs =
K-feldspar, Mnz = monazite.

weight per cent) and biotite (Fe/(Fe+Mg) = 0.43-0.45,
TiO, = 5.1-5.3 weight per cent). Pressure-temperature
conditions of 7.7 kbar and 790°C result from rim compos-
itions of garnet separated from orthopyroxene and biotite by
plagioclase.

Six analyses, from two matrix grains and one inclu-
sion in garnet, yield a weighted mean ’Pb/?*Pb age of
1816 = 10 Ma (MSWD = 0.99, Fig. 8b). One of these matrix
grains (#3) is at a high angle to S, (Fig. 8a), whereas the
other (#32) is a stubby grain (2:1 aspect ratio) parallel to S..
A discrete, low-Th rim of grain #3 gives a nominally younger
age (1796 + 24 Ma, Fig. 8b) that nevertheless is statistically
indistinguishable from the mean. One analysis of monazite
(#10) within biotite adjacent to relict garnet gives a much
younger age, 1721 = 36 Ma, interpreted as dating this garnet
breakdown reaction.
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DISCUSSION

The quantitative metamorphic and geochronological
data presented above provide first-order constraints on the
tectonometamorphic evolution of Southampton Island, with
evidence for four distinct metamorphic events and two pene-
trative deformational events. The nomenclature used below
for these events (Table 1) is predicated on evidence of M, at
ca. 2.6 Ga and M, at ca. 2.3 Ga, as derived from preliminary
monazite data (Berman et al., unpub. data, 2010) for a ca.
2.68 Ga S-type granite (Rayner et al., 2011).

M3-D1 at 1.88 Ga

Samples 07CYA-X64a and 69HF-154a both display
a weak first generation (S,) foliation within garnet that is
oriented at a high angle to the main S, foliation. In both
samples, elongate monazite inclusions contribute to S , and
yield near-identical 1879 + 7 Ma and 1879 * 8 Ma ages for
M, at an early stage of D, deformation. The occurrence of
monazite within the calcic cores of garnet in both samples
indicates that M,-D, occurred at relatively high pressure,
strengthening a potential link with the Chesterfield block to
the west (Fig. 1), where 7—10 kbar pressures are recorded at
ca. 1.89-1.88 Ga (Berman et al., 2007). The 1.88 Ga event
is considered to reflect microcontinent accretion to the Rae
craton during an early stage of Hudsonian Orogeny (Berman
et al., 2005, 2007). At present the 1.88 Ga event is evident
only in two samples on west side of the study area (Fig. 2).
Further studies are underway to determine the areal extent
of this event on Southampton Island, and should better
constrain the tectonic boundary conditions of this event.

M,-D, at 1.86-1.84 Ga

Four samples widely distributed across Southampton
Island record evidence for a 1.86—1.84 Ga event (Fig. 2).
Monazite inclusions in garnet form a texturally distinct
population of high-Y grains in three samples (07CYA-MS,
07CYA-A18a, and 07CYA-M92). The nominally older age
of these inclusions in two of the samples (1866 = 18 Ma and
1861 = 20 Ma for 07CYA-MS5 and 07CYA -A18a, respect-
ively) are similar to the 1861+ 12 Ma age of S -aligned matrix
monazite and garnet inclusions in sample M92, suggesting
that they may date the early stages of D, deformation and M,
garnet growth. Elongate matrix monazite grains in sample
07CYA-A18a record a slightly younger age of 1848 + 6 Ma.
Equant matrix monazite in sample 69HF-154a may indicate
that D, had ended in the north by 1841 + 4 Ma, whereas
S,-foliated 1852 + 8 Ma granodiorite and 1842 + 5 Ma
diorite (Rayner et al., 2011) establish that D, was ongoing
across the south until at least ca. 1840 Ma. The occurrence
of only syn-M,-D, monazite in sample 07CYA-A18a sug-
gests that the calculated pressure-temperature values for this

sample (6.6 kbar and 655°C and 7 kbar and 755°C, Table 1)
constrain a clockwise pressure-temperature-time path for the
M, event.

The M,-D, event at 1.86-1.84 Ga overlaps with the
1852 + 6 Ma age of granodiorite plutonism on Southampton
Island (Rayner et al., 2011). Given the strong penetra-
tive deformation characterizing this event, the clockwise
pressure-temperature path determined for sample 07CYA-
18a, the monazite evidence that this event began prior to
1852 Ma, and the geochemistry of 1852 Ma granodiorite
(Whalen et al., 2011), M,-D, is consistent with a colli-
sional event involving crustal thickening. This collisional
event is also believed to have resulted in northwest-vergent
folding and thickening that induced 1.86-1.84 Ga mona-
zite growth further northwest in the Committee Bay belt
(Berman et al., 2005). Crustal thickening at this time may
have been driven by the ca. 1.88—1.86 Ga collision of Meta
Incognita microcontinent with the southeastern flank of the
Rae craton (St-Onge et al., 2006; Berman et al., 2005).

M5 at 1.82 Ga

Four samples across Southampton Island (07CYA-MS,
07CYA-M92, 07CYA-A29, 07CYA-X64a) record evidence
of an M, event, with statistically indistinguishable ages,
ranging from 1826 = 9 Ma to 1815 = 7 Ma (Table 1). In
agreement with the 1822 £ 3 Ma age of a late- to post-tec-
tonic monzogranite (Rayner et al., in 2011), the M, event
is interpreted as post-D, based on textural evidence that all
monazite (except for #32 in CYA-07-A29; see above) is
either equant in shape, or elongate at a high angle to the S,
fabric. The extremely low-Y content of most of the 1.82 Ga
grains (e.g. Fig. 7b inset) suggests a high-grade event during
which garnet was stable, rather than releasing yttrium during
breakdown. Pressure-temperature conditions for this event
are consistent with this interpretation, with results calculated
from rim compositions in three samples ranging between
6.4 kbar and 720°C and 7.7 kbar and 790°C (Table 1).

The M; event is similar in age to a metamorphic event
dated on southwest Baffin Island (Rayner et al., 2008), and
appears to represent a regional thermal culmination associ-
ated with voluminous crustal melting and plutonism dated at
1.83-1.82 Ga on Southampton Island and southwest Baffin
Island (Rayner et al., 2008, 2011).

M6 at ca. 1.79-1.72 Ga

Monazite growth at this time is recorded in sample
07CYA-A29, where 1.72 Ga monazite is associated with gar-
net breakdown, and in 07CYA-X64a, where a single, post-D,
matrix grain ranges in age between 1.79 Ga and 1.75 Ga.
The authors interpret these ages to reflect fluid influx during
regional cooling.
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CONCLUSIONS

Thermobarometric and in situ SHRIMP monazite geo-
chronology provide the first constraints on Southampton
Island’s metamorphic and deformational history which are
required to improve regional tectonic and metallogenic mod-
els. The new data reveal a complex, polycyclic evolution
with the possibility of six metamorphic and two penetra-
tive deformational events. Preliminary monazite ages from
ca. 2.68 Ga S-type granite suggest M, at ca. 2.6 Ga and
M, at 2.3 Ga (Berman et al., unpub. data, 2010). Monazite
inclusions in garnet from two samples on the western side
of the study area define M,-D, at ca. 1880 Ma, which may
mark an early accretionary event in the region. M,-D,, initi-
ated by 1861 = 12 Ma with garnet growth, and continued
until at least 1848 = 6 Ma. Equant matrix monazite in one
sample suggests that post-D,, M, metamorphism affected
the northern part of exposed basement at 1841 + 4 Ma,
whereas deformation continued across the south until at least
1842 + 5 Ma. The timing of the M,-D, event is consist-
ent with age constraints on Baffin Island (St-Onge et al.,
2007) for the accretion of Meta Incognita microcontinent
to the southeastern flank of the Rae Province. Four samples
also record a post-D,, M, event between 1826 + 9 Ma and
1815 £ 7 Ma, which is interpreted to represent a thermal
culmination associated with extensive crustal melting and
ca. 1.83-1.82 Ga post-D, plutonism (Rayner et al., 2011).
Monazite ages of ca. 1.79 Ga and 1.72 Ga may correspond
to fluid influxes during regional cooling.
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