
RESEARCH REPORT

Residential Retrofit Potential in Canada

CMHC—HOME TO CANADIANS

Canada Mortgage and Housing Corporation (CMHC) has been Canada's national housing agency for more than 60 years.

Together with other housing stakeholders, we help ensure that Canada maintains one of the best housing systems in the world. We are committed to helping Canadians access a wide choice of quality, affordable homes, while making vibrant, healthy communities and cities a reality across the country.

For more information, visit our website at www.cmhc.ca

You can also reach us by phone at 1-800-668-2642 or by fax at 1-800-245-9274.

Outside Canada call 613-748-2003 or fax to 613-748-2016.

Canada Mortgage and Housing Corporation supports the Government of Canada policy on access to information for people with disabilities. If you wish to obtain this publication in alternative formats, call 1-800-668-2642.

RESIDENTIAL RETROFIT POTENTIAL IN CANADA

Residential Retrofit Potential in Canada

for the
Research Division
of
Canada Mortgage and Housing Corporation

May 31, 1996

by

Ken Cooper, P.Eng. SAR engineering ltd. 8884-15th Ave., Burnaby, B.C. V3N 1Y3 Ph. 525 - 2239 Fax 525 - 2146

and

Christopher Mattock, Habitat Design and Consulting Ltd.
David Rousseau, Archemy Consultants

DISCLAIMER

This study was conducted for Canada Mortgage and Housing Corporation under Part IX of the National Housing Act. The analysis, interpretations and recommendations are those of the consultant and do not necessarily reflect the views of Canada Mortgage and Housing Corporation or those of the division of the Corporation that assisted in the study and its publication.

ABSTRACT

Energy efficiency upgrades can significantly reduce the environmental impact of housing. However, the extent of the upgrades required to have a meaningful impact the pollutant emissions of the residential sector has never been defined. While international agreements, such as the 1988 Toronto Protocol, provide target reductions for green house gases, the extent of the retrofit programs required within the residential sector to contribute to Canada's overall efforts to meet these goals was unknown. In order to provide direction to utility and government residential energy efficiency programs, Canada Mortgage and Housing Corporation conducted a study to determine the impacts of various levels of energy retrofits on the production of carbon dioxide by single detached housing stock in Canada. The levels of retrofit required to meet the intent the Toronto Protocol targets were also explored.

Several retrofit scenarios were proposed and applied to 765 actual house data files using a spreadsheet program that was developed to perform thermal simulations of base and upgraded houses, calculate amounts of pollutant emissions, perform retrofit costing, and calculate embodied energy and pollutants. Whole-house retrofits were performed including all portions of the envelope, mechanical systems, appliances and operation. An analysis was performed to ensure that the retrofit measures performed would not adversely affect indoor environment and durability.

The Toronto Protocol goal of achieving a 50% reduction in greenhouse gas emissions from existing Canadian housing was found to be technically feasible but will require a high level of retrofit. It should be noted that even higher levels of retrofit will be required to account for the anticipated growth in the housing stock to the year 2030.

KEY WORDS

Greenhouse Gases, Residential Retrofit, Energy Conservation, Environment

ACKNOWLEDGEMENTS

Mr. Tom Hamlin, of Natural Resources Canada, provided invaluable guidance and assistance in carrying out this project. The comments and assistance provided by Mr. Duncan Hill, of CMHC, are also greatly appreciated. We would also like to express our appreciation to the builders, contractors and suppliers who assisted our efforts in determining building costs.

This project was funded, in part, by the Program for Energy Research and Development (PERD), Natural Resources Canada.

1 EXECUTIVE SUMMARY

Reducing the production of green house gases attributable to residential energy use is critical for sustainable housing development. The targets of the 1988 Toronto Protocol serve as a useful measure by which the overall effectiveness of residential energy retrofit strategies can be assessed. The Protocol calls for green house gas emissions to be reduced to 80% of 1988 levels by 2005 and to 50% by the year 2030.

In order to evaluate the potential impact of residential energy retrofit strategies on greenhouse gas emissions, a research project was undertaken with the following objectives:

- To develop technically achievable retrofit strategies,
- To assess the energy efficiency impact of improved envelope performance, with an emphasis on wall retrofits,
- To assess the environmental impacts of the various retrofit strategies both internally (indoor air quality) and externally (embodied energy and pollutants), and
- To assess the cost effectiveness of the retrofit strategies.

A range of retrofit designs were developed, primarily for wall sections, on the basis of their suitability for energy reduction, cost, embodied energy and pollutants, moisture buildup characteristics, and their effect on indoor air quality.

The retrofit process was applied to actual houses, using a subset of 765 single family dwellings from the CMHC <u>STA</u>tistically <u>Representative</u> (STAR) housing database, to evaluate the impact on energy consumed, indoor air quality and the environment.

An Excel-based spreadsheet program, <u>Residential Energy & Economic Simulator (REES)</u>, was developed to carry out the following tasks in analyzing the retrofit process:

- thermal simulation,
- calculation of operating pollutants,
- costing, and
- calculation of embodied energy and pollutants.

The REES program was able to predict total energy use that averaged only 2% higher than measured for a random selection of 176 houses in the database

The results were extrapolated from the simulations, for individual houses, to the existing single-family Canadian housing stock, to determine overall

determine overall possible energy and emission reductions, as well as retrofit costs. The housing stock was divided into five regions and six age categories.

Assuming the existence of a residential energy retrofit program running until the year 2030, the effect of residential retrofits on greenhouse gas (GHG) emissions was also determined. Allowances were made for the annual construction of new houses and demolition of old houses.

The retrofit potential of the housing stock was carried out under three intensities of retrofit effort: LOW, MID and HIGH. The MID and HIGH level retrofits included the addition of ventilation systems to compensate for anticipated reductions in natural air leakage due to sealing work. A description of the retrofit intensities and the calculated results follows:

• **HIGH Scenario** (approximately 30% higher than proposed National Energy Code for new House levels).

Under the most intensive retrofit scenario studied, operating carbon dioxide emissions were reduced to 49% of 1989 levels. However, after factoring in new housing starts¹ and demolitions of existing housing, total equivalent GHG emissions were reduced to only 88% of 1988 levels by the year 2030,

• MID Scenario (bring all existing housing up to the proposed NECH).

This scenario reduced operating carbon dioxide emissions to 61% of 1989 levels. However, after factoring in new housing starts and demolitions of existing housing, total equivalent GHG emissions were reduced to only 96% of 1988 levels by the year 2030.

• LOW Scenario (bring existing housing up to typical 1989 new house standards).

The most modest retrofit scenario studied reduced operating carbon dioxide emissions to 75% of 1989 levels. However, after factoring in new housing starts and demolitions of existing housing, total equivalent GHG emissions were increased to 109% of 1988 levels by the year 2030.

New houses building codes, and the market place were assumed to result in houses that used about 2% per year less energy. By 2030, new houses would be using about 43% of those built in 1989 (approximately equal to current R-2000 levels of energy efficiency).

For all three scenarios, retrofits were performed on houses for which the effective cost² of source energy saved was less than \$12 per GJ. This amounted to over 80% of the available housing stock.

All three retrofit scenarios included an "optimal indoor air quality" ventilation control that provided constant total air change during the heating season. Inside to outside temperature difference control (OTC) was simulated for a limited number of houses and was found to be nearly as effective as the optimal indoor air quality control strategy. Depending on the control setpoints, OTC ventilation resulted in from 4% less to 10% more energy use (and GHG generation) than the optimal strategy (but with total ventilation rates from 30% less to 20% more than that for the optimal control in some months).

Side yard zoning restrictions did not have a significant effect for the scenarios investigated, however, even with the HIGH scenario, there were only a limited number of "thick-wall" retrofits.

Embodied energy and embodied pollutants in the retrofits analyzed were generally repaid by reductions in operating energy and pollutants in less than one year.

Achieving a 50% reduction in carbon dioxide emissions from existing Canadian housing, while technically feasible, would be a massive undertaking requiring significant whole-house retrofits (i.e.; all portions of the envelope, mechanical systems, appliances and operation). Furthermore, extensive consumer education, builder training, and very likely tax/incentive programs would be required to support this effort. Alternative energy sources and new technologies that offer substantial increases in the energy efficiency of housing systems will need to be investigated and implemented to achieve these goals.

² This Effective Life-Cycle Energy Cost (ELCEC) was defined as the total energy-related retrofit cost divided by the present worth of energy saved (including embodied energy) - \$12/GJ is about equal to the consumer price for electrical and oil heat.

RÉSUMÉ

Il est essentiel de réduire la production de gaz à effet de serre attribuable à la consommation d'énergie dans les habitations si l'on veut réaliser des aménagements résidentiels écologiques. Les objectifs fixés par la Conférence sur l'atmosphère en évolution de 1988 constituent des repères utiles à partir desquels il est possible d'évaluer l'efficacité globale des stratégies résidentielles de rattrapage éconergétique. Cette conférence visait à ramener, dès 2005, les émissions de gaz à effet de serre à 80 % de ce qu'elles étaient en 1988 et, en 2030, à 50 % des niveaux de 1988.

Pour évaluer l'incidence éventuelle des stratégies résidentielles de rattrapage éconergétique sur les émissions de gaz à effet de serre, on a entrepris une recherche qui avait pour objectifs :

- de mettre au point des stratégies de rattrapage éconergétique réalisables sur le plan technique;
- d'évaluer, du point de vue de l'efficacité énergétique, l'incidence de l'amélioration de la performance de l'enveloppe en mettant l'accent sur la rénovation des murs;
- d'évaluer les répercussions environnementales des diverses stratégies de rattrapage éconergétique, tant internes (qualité de l'air intérieur) qu'externes (polluants et énergie de production);
- d'évaluer l'efficience des stratégies de rattrapage éconergétique.

Diverses stratégies de rattrapage éconergétique ont été conçues, agissant principalement sur des sections de mur, en tenant compte de leur capacité à réduire la consommation d'énergie, des coûts, des polluants et de l'énergie de production, des caractéristiques en matière d'accumulation d'humidité et de leur effet sur la qualité de l'air intérieur.

Le processus de rattrapage a été appliqué à des maisons réelles en utilisant un sous-ensemble de 765 maisons individuelles issues de la base de données STAR-HOUSING de la SCHL afin d'en évaluer l'effet sur la consommation d'énergie, la qualité de l'air intérieur et l'environnement.

Une feuille de calcul, appelée <u>Residential Energy & Economic Simulator</u> (REES) [simulateur économique et énergétique pour les habitations], a été créée avec Excel pour exécuter les tâches suivantes dans l'analyse du processus de rattrapage éconergétique :

- simulation thermique;
- calcul des polluants d'exploitation;

- coûts;
- calcul des polluants et de l'énergie de production.

Le programme REES a été en mesure de prévoir la consommation totale d'énergie qui était en moyenne de 2 % supérieure seulement à celle mesurée pour un échantillon de 176 maisons choisies au hasard dans la base de données.

Les résultats ont été extrapolés à partir des simulations pour être appliqués au parc actuel de maisons individuelles du Canada afin de déterminer les réductions possibles de consommation d'énergie et d'émissions pour l'ensemble du parc ainsi que le coût des travaux de rattrapage. Le parc résidentiel a été divisé en cinq régions et en six groupes d'âges.

En admettant qu'un programme de rattrapage éconergétique pour les habitations soit mis sur pied et demeure en vigueur jusqu'en 2030, on a aussi déterminé l'effet qu'auraient des travaux de rattrapage résidentiels sur les émissions de gaz à effet de serre. On a tenu compte de la construction annuelle de nouvelles habitations et de la démolition des vieilles maisons.

Le potentiel de rattrapage du parc résidentiel a été examiné selon trois niveaux d'intensité : FAIBLE, MOYENNE et ÉLEVÉE. Les travaux d'intensité MOYENNE et ÉLEVÉE comportent la pose d'installations de ventilation pour compenser les réductions prévues des fuites d'air naturelles à la suite des travaux d'étanchéisation. On trouvera ci-dessous une description des niveaux d'intensité des travaux de rattrapage de même que le calcul des résultats :

• Scénario INTENSITÉ ÉLEVÉE (environ 30 % de mieux que ce qu'exigera le Code national de l'énergie pour les maisons neuves)

Dans le cadre du scénario de rattrapage le plus intensif étudié, les émissions d'exploitation de dioxyde de carbone seraient réduites à 49 % des niveaux de 1989. Toutefois, lorsqu'on tient compte des mises en chantier¹ et des démolitions, les émissions équivalentes totales de gaz à effet de serre ne seraient réduites qu'à 88 % des niveaux de 1988 en 2030.

^{1.} On a supposé que les codes du bâtiment visant les maisons neuves ainsi que le marché donnaient des maisons qui consommaient environ 2 % moins d'énergie par année. En 2030, les maisons neuves consommeraient environ 43 % de ce que consommaient les maisons construites en 1989 (soit environ une consommation équivalente à celle des maisons R-2000 construites actuellement).

• Scénario INTENSITÉ MOYENNE (rénover toutes les maisons existantes de manière qu'elles respectent les exigences du Code national de l'énergie pour les habitations)

Ce scénario permettrait de réduire les émissions d'exploitation de dioxyde de carbone à 61 % des niveaux de 1989. Cependant, lorsqu'on prend en considération les mises en chantier et les démolitions, les émissions équivalentes totales de gaz à effet de serre ne seraient réduites qu'à 96 % des niveaux de 1988 en 2030.

• Scénario INTENSITÉ FAIBLE (rénover les maisons existantes de manière qu'elles soient conformes aux normes des maisons construites en 1989)

Le scénario de rattrapage le plus modeste étudié permettrait de réduire les émissions d'exploitation de dioxyde de carbone à 75 % des niveaux de 1989. Toutefois, quand on tient compte des mises en chantier et des démolitions, les émissions équivalentes totales de gaz à effet de serre augmenteraient en fait à 109 % des niveaux de 1988 en 2030.

Pour les trois scénarios, les travaux de rattrapage ont été appliqués à des maisons pour lesquelles le coût effectif² de l'énergie épargnée équivalait à moins de 12 \$ par GJ, ce qui correspondait à plus de 80 % du parc résidentiel disponible.

Les trois scénarios de rattrapage incluaient une commande de ventilation permettant d'obtenir une qualité de l'air intérieur optimale ainsi qu'un renouvellement d'air total et constant durant la saison de chauffage. On a simulé le contrôle de la différence de température entre l'intérieur et l'extérieur pour quelques maisons et on a découvert que cette méthode était presque aussi efficace que la stratégie de qualité de l'air optimale. Selon les points de réglage déterminés, la ventilation fondée sur la différence de température a entraîné une consommation énergétique (et une production de gaz à effet de serre) variant entre 4 % de moins et 10 % de plus que la stratégie de qualité de l'air optimale (mais avec des taux de ventilation totale variant entre 30 % de moins et 20 % de plus que ce qui a été observé avec la stratégie de qualité de l'air optimale pour certains mois).

Les restrictions de zonage concernant la marge d'isolement latérale n'ont pas eu d'effets importants sur les scénarios étudiés. Or, même pour le scénario INTENSITÉ ÉLEVÉE, très peu de travaux de rattrapage visant à épaissir les murs ont été envisagés.

Ce coût effectif de l'énergie du cycle de vie a été défini comme le coût énergétique total des travaux de rattrapage divisé par la valeur actuelle de l'énergie épargnée (incluant l'énergie de production) - 12 \$/GJ correspond environ au prix que paie le consommateur pour le chauffage électrique ou au mazout.

Les polluants et l'énergie de production inhérents aux travaux de rattrapage analysés étaient généralement compensés en moins d'un an par les réductions d'énergie et de polluants d'exploitation réalisées.

Une réduction de 50 % des émissions de dioxyde de carbone produites par les habitations canadiennes actuelles, bien que techniquement possible, représenterait une opération massive qui nécessiterait d'importants travaux de rattrapage touchant des habitations entières (p. ex. toutes les parties de l'enveloppe, les installations mécaniques, les appareils et l'exploitation). En outre, il faudrait sensibiliser les consommateurs, former les constructeurs et fort probablement mettre sur pied des programmes fiscaux et incitatifs pour appuyer cet effort. Pour atteindre ces objectifs, il faudra rechercher et utiliser des sources d'énergie de rechange et des nouvelles technologies qui permettront de rendre beaucoup plus éconergétiques les composants des bâtiments.

National Office

Bureau national

700 Montreal Road Ottawa ON KIA 0P7 Telephone: (613) 748-2000 700 chemin de Montréal Ottawa ON K1A 0P7 Téléphone : (613) 748-2000

Puisqu'on prévoit une demande restreinte pour ce document de recherche, seul le résumé a été traduit.

La SCHL fera traduire le document si la demande le justifie.

Pour nous aider à déterminer si la demande justifie que ce rapport soit traduit en français, veuillez remplir la partie ci-dessous et la retourner à l'adresse suivante :

Centre canadien de documentation sur l'habitation Société canadienne d'hypothèques et de logement 700, chemin Montréal, bureau C1-200 Ottawa (Ontario) K1A 0P7

Titre du rapport: _		
Je préférerais que	ce rapport soit disponible en franç	çais.
NOM		
ADRESSE		
rue		Арр.
ville	province	Codé postal
No de téléphone ()	

CONTENTS

	CONTENTS	
Section		Page
1	EXECUTIVE SUMMARY	iii
2	BACKGROUND	1
3	OBJECTIVES	2
4	METHODOLOGY	3
4 1	Database of Existing Houses	3
4.2	Retrofit Options	4
421	Design	7
422	Costing	8
423	Embodied Energy and Pollutants	9
4.3	Retrofit Analysis	11
4 3 1	Residential Energy & Economic Simulator	11
4.3.2	Moisture Analysis	12
4 3 3	Indoor Air Quality Analysis	13
4.4	Projections to Canadian Housing Stock	14
5	RESULTS	18
5.1	Condensation Issues	18
5.2	Indoor Air Quality Issues	19
5 3	Comparison of Operating Energy	23
5 4	Energy and Environmental Impacts	23
6	CONCLUSIONS & RECOMMENDATIONS	38
7	REFERENCES	40
	APPENDICES	
Α	Wall Retrofit Options	· 43
В	REES Documentation	51
C 1	REES Results	63
C 2	Housing Statistics	93
D	Comparison with HOT-2000	95
E	OTC Ventilation	96
F	Retrofit Rules	98

2 BACKGROUND

Greenhouse gas emissions threaten to drastically alter the environment of the world. As the combustion of fossil fuels is directly related to the generation of greenhouse gases (esp. carbon dioxide which constitutes 90% of all energy-related greenhouse gas emissions), the implementation of energy efficiency measures represents an effective means of reducing the environmental impact of all sectors of the Canadian economy.

In 1994, the residential sector in Canada consumed about 1,392 PetaJoules (PJ) of secondary (i.e., end-use) energy per year which in turn produced about 40 megatonnes of carbon dioxide. This represents about 20% of Canada's total secondary energy use. Increases in fuel energy uses were, on average, 1.5% per annum from 1984 to 1994. Thus, the sizeable contributions of greenhouse gas emissions from the residential sector make it a worthwhile focus for energy efficiency measures.

Within the residential sector, energy efficiency measures can be applied to new and existing housing to reduce energy consumption associated with space conditioning, domestic hot water use, air exchange, lighting, appliances and lifestyles. As the number of houses within the existing housing stock greatly exceeds that expected to be built over the foreseeable future, the development and implementation of energy efficiency *retrofit* measures is critical to reduce the overall greenhouse gas emissions associated with housing.

It has been difficult to assess how intensively energy efficiency measures should be appled in order to have optimal effect. The 1992 Framework Convention on Climate Change recommends the stabilization of greenhouse gas emission at 1990 levels by the year 2000. The 1988 Toronto Protocol sought to limit of future greenhouse gas (GHG) emissions to 80% of 1988 levels by the year 2005 and 50% of 1988 levels by 2030. In either case, the targets set by these international agreements can be used to assess how much energy use must be reduced in the residential sector. It is then a reasonably straightforward process to determine what retrofit measures, or packages of retrofit measures, must be applied to the housing stock to achieve the requisite energy use reductions.

In order to meet any targets for greenhouse gas emission reduction, energy consumption of new and existing housing would have to be reduced accordingly. The annual increase in the number of houses added to the housing stock by construction activity and the number of houses removed from the stock due to demolition must be considered.

It has been anticipated that environmentally sound and sustainable development of housing will require residential energy consumption to be cut drastically. Additionally, housing must be more durable to minimize resource use while providing a controlled, quality indoor environment. Improved thermal envelopes can improve all these aspects.

While energy efficiency retrofits reduce operating energy and associated pollutants, energy is required to produce the materials used in the retrofit and pollutants are generated in their production. These embodied energy and embodied pollutants must be determined to ensure that any retrofit program does not result in a net increase in energy use or pollutant generation over the period of implementation.

In older housing it is also difficult to assess the effect of retrofits on air-tightness, indoor air quality, thermal bridges and building durability. All of these factors require careful consideration prior to the implementation of an ambitious retrofit program to ensure that the residential retrofit program does not create occupant health or building structural problems.

3 OBJECTIVES

The project objectives were:

- to develop retrofit strategies to provide **technically achievable solutions**³ to the goal of a 20% reduction in housing energy use by the year 2005 and a 50% reduction in housing energy use by the year 2030.
- to assess the energy efficiency impact of retrofit measures that provide improved envelope performance, with an emphasis on wall retrofits,
- to assess the environmental impacts of the various retrofit strategies both internally (indoor air quality) and externally (embodied energy and pollutants),
- to assess the impact on durability of various retrofit strategies, and
- to assess the cost effectiveness of the retrofit strategies, with respect to existing fuel prices and projected environmental factors.

³ Note that this was not a marketing study Market penetration rates of the various retrofits were assumed to be 100%

4 METHODOLOGY

Traditionally, housing archetypes ("typical houses") are used to determine the costs and benefits of conservation programs. While this approach is simpler than determining the costs and benefits of actual houses, it can only determine averages (energy, cost, etc.). The approach used here was to determine costs and benefits of retrofitting actual houses, in order to determine:

- which houses would be most cost-effective to retrofit,
- ventilation rates to provide adequate indoor air quality (and to not provide ventilation if it was not required),
- the range of retrofit costs and reductions to energy use and pollutant generation.

4.1 Database of Existing Houses

The CMHC STAR HOUSING (**STA**tistically **R**epresentative housing stock) database was obtained and HOT-2000⁴ runs were performed using its 1,125 input files to create a single spreadsheet database⁵. The spreadsheet format made the data more readily accessible to the spreadsheet-based simulation program developed for this work (see section 4.3.1)

A statistical analysis of the STAR house database was carried out, in order to look for problem data. These quality control checks, and the use of only single-detached houses⁶ reduced the usable database to 765 units. There continue to be problems with inconsistent or missing data. For example:

- furnace type information and quoted furnace efficiency often do not agree (the analysis therefore uses the furnace and water heater types in conjunction with a lookup table of known seasonal efficiencies),
- operating conditions (temperature, water use and base utilities) for newer houses use HOT-2000 default values (these houses are mostly from the CMHC/NRCan Merchant house air-tightness survey),
- some pre-1981 houses report basement temperatures of -2C. Only houses with basement temperatures greater than 10C were used, and

⁴ using HOT-2000 batch version 5.04

⁵ The STAR database consists of 1,125 files - each representing one residential housing unit "Environmental Impact Study: Phase I - Development of a Database on Housing Characteristics Representative of the Canadian Housing Stock", by Scanada Consultants Limited for CMHC, Research Division, 1992^[1] - numbers in square brackets refer to References, section 7.

⁶ The number of multi-family residential units were too few to break down into five regions and six age categories

• houses that had no, or conflicting, air-tightness information, used lookup values of NLA, based on province and age of the house.

4.2 Retrofit Options

The original objectives of this study were to assess the impact of wall retrofit options for Canadian houses, however it soon became apparent that the Toronto Protocol goal of a 50% reduction in carbon dioxide and other greenhouse gas emissions could only be achieved through whole house retrofits encompassing the entire building envelope, mechanical systems and operating conditions for a large portion of the existing housing stock.

The appropriate wall type was selected by the REES program - section 4.3.1, on the basis of several inputs:

- level of retrofit (LOW, MID or HIGH),
- region,
- space heating fuel, and
- constraints (Table 4.2, also discussed in Appendix F), such as regional factors: solid (no cavity) wall assumed in Ontario and Quebec if existing wall RSI was less than 1.2. Pre 1946 houses in Ontario were assumed⁷ to have a brick exterior finish, so only interior retrofits were allowed.

Even with the range of wall types, it was not always possible to meet the goals for wall insulation. Since a reasonable level of retrofit was desired, a "threshold" for selection was assumed (Table 4.1). A threshold added RSI equal to zero would mean that retrofit would always be performed (fill cavities, for example). If the goal was to add RSI 0.1 to an insulated 2x4 wall of RSI 2.1 (NECH goal for gas heat in Vancouver is RSI 2.2, for example), then no retrofit would be performed, since the first option would be insulated sheathing with an RSI 0.5 threshold.

The wall retrofits that were developed as part of this study are listed in Table 4.1 (see Appendix A for graphic presentations), along with NLA reductions⁸.

⁷ The STAR database does not contain information on exterior finish.

Factors based on "Air Tightness, Before and after pressure tests demonstrate residential retrofit results", by Robert Dumont, SRC, from ASHRAE Journal, June 1984 [5] The paper is a summary of six whole house retrofit studies, showing increased air tightness of from 17% to 33% with air sealing retrofits (weatherstripping and caulking) to 70% with major wall and ceiling retrofits (including a new air/vapor barrier).

Table 4.1 Wall Retrofits

Wall Retrofit Type	Added RSI	Threshold ¹ Added RSI	Remarks
1. Fill only -			
Fill wall cavity with insulation	14	0.0	low air sealing possible (reduce spread in NLA ² 40%)
2. Exterior retrofit -			
Exterior insulated sheathing	1.1	0.5	moderate air sealing possible (reduce spread in NLA 75%)
Dynamic wall with exterior air diffuser	1 4	0 7	depressurized house draws air through the wall
Exterior curtain wall	4.4	26	poly wrap outside existing structure, then add site framed wall - very tight construction (reduce spread in NLA 95%)
Exterior wall truss	4 9	4.6	poly wrap outside existing structure, then add truss - very tight construction (reduce spread in NLA 95%)
3. Interior retrofit -			
Interior insulated sheathing	11	0 5	moderate air sealing possible (reduce spread in NLA 75%)
Dynamic wall with interior air diffuser	1 4	0 7	depressurized house draws air through the wall
Interior double wall	40	2.1	high air sealing possible; new vapor barrier (reduce spread in NLA 90%)

The difference between the goal added RSI and existing RSI must be greater than the Threshold Added RSI in order for the wall retrofit type to be selected.

Basement wall retrofits (diagrams in Appendix A) consisted entirely of interior framed walls, complete with gyproc, wiring and paint - resulting in a finished basement.

Over the rest of the envelope, the following retrofits were carried out - depending on the location, space heating fuel used and scenario (LOW, MID or HIGH):

- ceiling (attic assumed) cellulose loose fill added,
- doors replaced with steel insulated doors,
- windows replaced with new units,
- heated crawlspaces insulated in walls and on floors,
- unheated crawlspaces and overhanging floors insulated in floor,
- basement floors and floor slabs no retrofit,
- space heating systems replaced with more efficient units, including combined space and water heating systems,
- water heating systems replaced with more efficient units,
- air tightening⁹

² NLA spread equals base house NLA minus minimum achievable NLA (taken as 75% of 1989 house for region)

⁹ only whole-house retrofit packages were simulated, in part because field information on the effect of air tightening is only available for general, whole-house retrofits (see General Reference 6, section 7)

- ventilation systems added¹⁰ (note that this **increases** energy use) to improve air quality in the tighter retrofitted houses. Several choices were made that effected the ventilation system efficiency¹¹ -
 - Ventilation fan efficiency could be specified to allow for the use of more efficient fans,
 - Outside temperature control (OTC) of ventilation fans; Specifiy inside to outside temperature difference below which fans operate,
 - Optimal fan control operates fans to achieve specified (approximately 0.3) average monthly total air change rate (infiltration plus ventilation), and
 - · Heat recovery added to reduce energy use (depending on level of retrofit),
- more efficient appliances and lights replacing existing units to reduce utilities¹² and outdoor energy use, and
- flow restrictors used to reduce hot water use.
- Main floor temperatures remained the same as for the base cases, however the basement temperatures increased when basement retrofits were carried out (due to effect of basement internal gains and increased occupancy of finished basement).

It was assumed that the energy-related portion of these retrofits would be performed as a consequence of opportunities provided by other renovation and retrofit activities. It was also assumed that the retrofit would not extend the envelope of the house (no rooms added to the existing house). Rooms could be built in upgraded basements, however.

A set of retrofit rules were developed (see Appendix F) in order to make the results more objective and repeatable, and to allow for automation of the retrofit calculations. Guiding specific selections within this framework of rules were several overall factors, that are summarized in Table 4.2.

¹⁰ Typically the capacity of the ventilation systems was 0.30 ac/h (as for NBC), but the fans did not necessarily operate continuously - depending on the ventilation control option selected by the user

¹¹ Control options for ventilation were: continuous fan (with or without summer operation), OTC (Outside Temperature Control) - ventilation fans operate only below a specified inside to outside temperature difference, and an optimal control that operated the fans so that the total of infiltration and ventilation equalled 0 3 air changes per hour during the heating season

¹² except where combustion space heating was used in hydro-electric dominated regions as a reduction in utilities under these circumstances would result in an increase in carbon dioxide emissions, due to the increased space heating requirements

Table 4.2 Retrofit Rules - General

Upgrade level scenario	upgrade level depending on scenario (LOW, MID, HIGH), province and space heating fuel type HIGH level scenario independantly adjustable with reference to MID scenario
Scenario i mpact	minimize cost or minimize environmental impact (program selects for certain options, such as basement fiberglass insulation to minimize cost or blown cellulose to minimize environmental impact)
Economic cutoff	Program selects not to perform retrofit if the life-cycle dollar per GJ equivalent cost of the retrofit is greater than a manually specified threshold.
Dynamic walls?	Yes or No
Strip finishes?	interior or exterior retrofit allowed or not
Attic type	ceilings assumed
Minimum wall upgrade	RSI 0.5, for example (to prevent upgrades that achieve very small changes)
Maximum wall upgrade (urban)	RSI 3.0, for example (to account for urban side yard restrictions)
Minimum window upgrade	RSI 0.10, for example (to prevent upgrades that achieve very small changes)
Mechanical systems upgrade?	Yes or NO (amount depending on scenario)
Reduce hot water consumption?	Yes or NO (amount depending on scenario)
Reduce base load?	Yes or NO (amount depending on scenario), no reduction for houses with combustion heating systems in regions with hydroelectric-dominated utilities (base load reductions would reduce energy use slightly, but would increase pollutant emissions)
Ventilation control	Continuous fan, OTC or optimal

During the simulation process, these retrofit rules were applied to each house in the database, in order to determine the best retrofit for that house, based on the existing envelope and mechanical system, climate, and fuel type, as well as available retrofit options.

4.2.1 Design

The design of an energy retrofit is a complex undertaking which involves drawing together and reconciling conflicting issues such as:

- the home's siting,
- the home's physical condition,
- the home's architecture,
- the home owner's priorities,
- · the budget, and
- construction costs

Given the variability of the issues listed above it is not possible to provide a prescriptive approach that will provide an **optimal** solution for all cases.

A series of wall retrofit options are presented in Appendix A. They are based on the construction techniques presented in the builders manual produced in conjunction with this study.

When developing these wall retrofit options the following issues were addressed:

- applicability of the retrofit to the widest possible number of existing houses,
- allow preservation of either interior or exterior finishes
- provide a range of insulation levels for use in different climates and different fuel cost regimes,
- structural considerations,
- allow easy use of environmentally appropriate materials,
- minimization of moisture formation and accumulation inside the wall,
- connections to roofs, attics and ceilings (continuity of insulation and air barriers),
- cost of retrofit technique,
- · energy savings,
- maximizing benefits (comfort, energy savings and building longevity and durability) for the cost of the retrofit.

4.2.2 Costing

Costing spreadsheets were developed for major categories of energy retrofit. Costing was broken out into eight main areas.

- Above grade walls,
- Attics,
- Doors,
- Windows,
- Exposed joist floors,
- Crawlspaces,
- Basement walls, and
- Mechanical systems

These components were then broken down by construction sequence and materials for pricing. The pricing information was based on R.S. Means Residential Cost Data for 1994 using a multiplier of 1.12 to adjust prices to those of Ontario which then forms the base pricing for the rest of Canada. Multipliers, derived for the NECH, were applied to the Ontario base costs to determine retrofit costs, based on the province in which the house was located. The spreadsheets were constructed to reference house component areas that are the normal area inputs for HOT-2000 (above

grade walls, window, ceiling etc.). The following costing inputs were used in the spreadsheets.

- Materials costs,
- Installation costs (labour and equipment),
- Overhead and Profit, and
- Provincial tax and GST

The resulting outputs of the spreadsheets included the following:

- Energy-related and total cost¹³ for the retrofit of the component (above grade wall, window, furnace, etc.).,
- Average cost per square meter of air sealing measures broken down by materials, installation, overhead and profit, and

Costs generated as part of the study were checked against local costing information supplied by construction materials suppliers, subcontractors (insulation installers, siding applicators), and general contractors.

The costs do not include demolition or disposal, but do include factors for waste.

4.2.3 Embodied Energy and Pollutants

The methods used to generate the embodied energy and pollutant generation values used in the analysis include:

- Research results of embodied properties (energy, pollutant generation)
 are considered to be most reliable and accurate if derived from
 physical or energy balance analyses of processes. Statistical analysis
 of industries using energy units are next in reliability and accuracy,
 and statistical analysis using dollar value energy conversions have the
 lowest reliability and accuracy. Therefore, where data was available
 from several sources, data from process analysis would take
 precedence over industry-wide statistical analysis (energy or cost
 based)
- Where accurate fuel mix figures are not available for Canada the gross energy figures from process studies have been proportioned by fuel types using the energy by fuel types for that industry from the 1990 Statistics Canada quarterly energy supply and demand figures.

¹³ Ceiling and crawlspace retrofit costs were assumed to be 100% energy related, however wall siding, basement framing and finishing were assumed to be non-energy related as they would be carried out as part of a normal residential retrofit. Energy related costs for windows, as well as space and water heating system upgrades were assumed to be the difference between the upgraded system and a replacement of the existing system (this differential will likely be reduced in the future as more efficient systems become common).

- Base industries are used in some cases and adjusted for variations in a product. For example, wood window frames are assumed to be the same as framing lumber with some additional waste and energy allowances for 100% kiln drying and added milling.
- Where process emissions figures are available for SOx, CO, NOx and VOC's and these clearly include energy emissions, emissions from energy use are not calculated. Aluminum electricity use is assumed to be all hydro and is exempted from emissions calculations¹⁴.
- Process emissions are based on typical emissions controls for an "up to date" plant. This primarily affects particulate collection.
- Electricity calculations, for materials, are based on an average Canadian mix of 18% coal (at 33% overall efficiency), 60% hydro, 16% nuclear, 3% nat gas and 3% oil. Note that this assumption only applies to embodied properties, as regional electrical generation mixes are used for operating energy. Implicit in this assumption is that building materials and mechanical system components are transported to and from all parts of the country.

Some notes on the limitations of the analysis:

- Energy and emissions analysis typically includes extraction, transportation within the industry and processing to a deliverable building product.
- Where internal transport figures were not available and assumed to be very small they were disregarded.
- Transport to a building site, including transport of workers, were not included in the base properties tables, but were calculated separately on the basis of weight of product in the house retrofit.
- Small components of a product, such as a coating or sealer, were disregarded where data was poor and the component appears to make up less than 10% of the energy or emissions.
- Waste disposal of materials was not considered in the analysis (except for transport) and could result in some increase in emissions.
- Recycling of materials was not considered in the analysis and could result in a reduction in embodied energy and emissions.

¹⁴ Hydroelectric generation: Loss of carbon dioxide reduction due to flooding of forested areas, for new capacity, was not considered in this study

4.3 Retrofit Analysis

4.3.1 Residential Energy & Economic Simulator (REES)

The Residential Energy & Economic Simulator (REES) spreadsheet-based program was created to determine the costs and benefits of a variety of residential retofit programs. The program simultaneously calculates operating energy, at the house and at source, before and after retrofit, along with pollutant emissions - operational and embodied. Total and energy-related retrofit costs are also determined.

The thermal calculation "core" of the REES program is based on the algorithms of the HOT-2000 thermal simulation program (versions 5 through 7), including calculation of foundation losses and infiltration.

Input requirements are essentially those of HOT-2000, version 5 since this was the available output from the STAR database. Where additional data is required, such as for the AIM-2 infiltration model, it is either generated by the program or from lookup tables of defaults.

REES accesses the Excel spreadsheet database of 765 HOT-2000 outputs from the STAR house database. The control program steps through the house records sequentially (See organizational chart and details in Appendix B). A set of rules is used to determine the retrofits to be used for each house - depending on the envelope characteristics, mechanical systems, climate and fuel type.

Monthly simulations are performed on each house and the annual results for each house are copied, along with input documentation, into an output file in a format compatible with the input database. Two databases are created for each run - one for the base (unretrofitted) houses and a second database of retrofitted houses.

Results of the simulations for all the houses are extrapolated to the entire Canadian single-detached housing stock, by relating the results for the houses in five regions and six age categories with numbers of 1989 housing stock in each category.

The results are also extrapolated to the year 2030 by factoring in projections¹⁵ for new housing starts, demolition rates and selected rates of retrofit implementation (Appendix C.2).

¹⁵ projections for new housing starts and rates of demolition are based on historical regional values.

VALIDATION OF REES:

In order to check the REES calculation methodology:

- REES predicted space, water and total energy use were compared with measured energy consumption for 176 of the houses (note that a Degree Day compensation was required since the REES runs were using long term weather). The results of this analysis are presented in Section 5.3, and
- several comparison runs were performed with HOT-2000, version 7.1 (see Appendix D).

4.3.2 Moisture Analysis

In order to evaluate the wall retrofit options used in this study, from the point of view of durabilty, a moisture condensation analysis was performed. As insulation levels increase, parts of the wall that are outside the insulation become colder under winter conditions. Therefore it is essential to design and operate the walls as part of the building system so that condensation and/or freezing potential remain the same or are reduced.

Two computer programs were evaluated to determine their ability to determine condensation potential in wall retrofits:

- WALLFEM a computer program that simulates the moisture and energy related performance of residential wall systems. The model is capable of simulating transient conditions in one, two or three dimensions.
- EMPTIED¹⁶ a simple MS-DOS computer program that estimates the potential amount of moisture that is likely to accumulate, month-by-month, in a specified building envelope through air leakage and vapour diffusion.

WALLFEM was not able to accurately model air leakage into walls, so EMPTIED was selected to carry out the condensation analysis.

Since the EMPTIED calculations are based on steady-state thermal and moisture equilibrium being attained during each incremental change in conditions, the results tend to reflect an upper limit, or worst case, for moisture deposition.

To calibrate the program, it was used to predict the moisture accumulation of several walls with known, field observed, moisture accumulation. These runs were then compared to results from retrofit

EMPTIED: "Envelope Moisture Performance Through Exfiltration and Diffusion", developed by Handegord and Company Inc. and Trow Consulting Engineers for CMHC[2]

wall sections, in order to ensure that the retrofitted walls would maintain, or enhance, the durability of the building envelope (equal or less moisture accumulation than walls known to not have moisture problems). The results of these simulations are presented in section 5.1.

4.3.3 Indoor Air Quality Analysis

An indoor air quality analysis was performed to ensure that the retrofits, in combination with air-tightening, and the ventilation system with its controls, maintained or enhanced existing indoor air quality when compared to existing houses and to health standards.

The indoor air quality model AQ1¹⁷ was used for this analysis. AQ1 uses weather, pollutant and building characteristics to calculate hourly infiltration/ventilation rates and pollutant concentration rates in a one-zone building.

The AQ1 program uses the AIM-2 infiltration model to calculate natural infiltration (Walker and Wilson, 1990). Ventilation added by exhaust and supply fans is calculated using a fan model developed by Ecotope¹⁸. The program produces either hourly values or an annual summary of infiltration and pollutant concentration.

The following assumptions were made:

- whole house interior retrofits would result in pollutant source strengths similar to that for new houses, and
- pollutant source strengths for exterior retrofits would be equal or less than for interior retrofits.

AQ1 predicted pollutant concentrations for new houses, for which pollutant source strengths were known, were analysed¹⁹ to determine air-tightness and ventilation requirement thresholds to avoid indoor air quality problems. These thresholds were used in the REES simulation rules to size the ventilation systems.

The results of this analysis are presented in section 5.2.

¹⁷ "Indoor Air Quality Analysis for Detached Residences", by SAR engineering ltd et al for the Research Div. of CMHC, March 1992. [3]

¹⁸ "Field Measurement of Interaction of Mechanical System and Natural Infiltration", by L. Palmiter, T. Bond, in the Proceedings of AIVC Conference, September 24-27, 1991, Vol. 1: Air Movement and Control in Buildings [4]

¹⁹ "Indoor Air Quality Analysis for Detached Residences", by SAR engineeing ltd eta al for the Research Div. of CMHC, March 1992 [3]

4.4 Projections to Canadian Housing Stock

The REES program includes a set of spreadsheets that project the results of each set of simulations to the existing single detached housing stock. The Canadian housing stock (Statistics Canada, 1989) was classified into five regions and six age categories.

The Canadian housing stock information from Statistics Canada was analysed to indicate directions in which a retrofit program could proceed, and to assist in developing the retrofit rules (see Retrofit Options, section 4.2, and Appendix F) for the REES program. This analysis showed several interesting trends:

- Pre 1981 housing (15+ years old) amount to 84% of the total housing stock (older houses are more likely to be retrofitted with new siding, new interior finishes, etc.),
- Single-detached housing amounts to 78% of the total (single-detached, semi-detached and row housing), and
- Pre 1945, rural single-detached housing amounts to over 854,000 units

 outnumbering the under 500,000 pre 1945 urban single detached units. This fact is significant as rural housing is less likely to be restricted by regulations governing side yard property line set back requirements, for example, that could curtail curtain or truss-wall external retrofits. These houses therefore represent a target market for high level retrofits.

While an analysis on a provincial basis was originally planned and would be desirable, the STAR housing data for some east coast and prairie provinces is not representative in some age categories, so the following provinces/regions were used for purposes of grouping the database into more meaningful regional classifications:

- B.C.,
- Prairies (Alberta, Saskatchewan, Manitoba),
- Ontario,
- · Quebec, and the
- Maritimes (Newfoundland, Nova Scotia, P.E.I., New Brunswick)

Since the STAR house database consists of about 90% single-detached units, the remaining 10% of semi-detached and row units, when spread across five regions and six age categories, would not result in statistically valid results. Therefore the simulations and costing were carried out for single-detached units only.

The confidence that can be placed in such a projection is a function of the representativeness of a sample of houses with respect to the general housing stock. The representativeness of a sample depends on the sampling method and on the size of the sample. Sampling methods were addressed in the Scanada report describing the setting up of the STAR database.

Sample sizes, and their relationship to the housing stock are shown in Figure 4.1. Across Canada, the ratio of housing stock to single detached houses used in the analysis was 8,463. Generally, pre-1945 houses are under-sampled, with an average ratio of 14,822 housing stock to database houses for pre-1921 and 9,372 for 1921 to 1945 houses. These older houses in Ontario, Quebec and the Maritimes, in particular, require larger sample sizes (the Maritimes had only 3 houses in each of these two age categories).

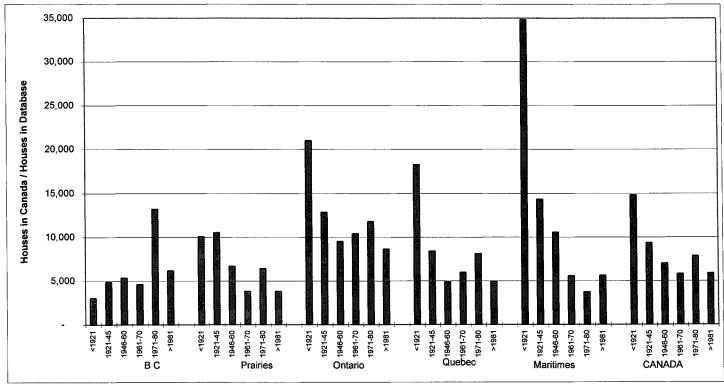
The approach used to extrapolate the simulation results to the Canadian housing stock was to determine energy and pollutant reduction associated with retrofitting specific houses in the database. The averages of energy and pollutant reduction by region and age were then determined for the houses in the two output databases created by the REES run (section 4.3.1) - the base (unretrofitted) database and the upgrade (retrofitted) database. Differences in energy and pollutant generation were determined by region and age category. Energy upgrade related and total retrofit costs were also determined.

In order to improve the confidence in the results, statistical analyses of the base and upgrade databases were also performed to determine:

- space heating breakdown by fuel type, to ensure that the number of houses in each category were representative of the total housing stock,
- number of houses retrofitted, as well as the ratio of housing stock to retrofitted houses, in each region and age category, to ensure that the number of database houses in each category was large enough to be representative,
- the range distribution of heating season air change rates to ensure that the modelling was producing realistic results, and
- ratio of retrofit costs to life-cycle net energy savings (the latter taken to be equal to annual energy savings times a present worth factor²⁰, minus the total embodied energy associated with the retrofit), to ensure that costs and predicted energy savings were within reasonable

²⁰ This is a conservative approach, since it assumes that future energy savings are not "worth" as much as present costs The result is a dollar per GJ value that can be compared to fuel prices. The analysis used a 30 year life cycle analysis with a Present Worth Factor, or PWF of 18 (achievable with a 6% discount rate and just over 2% real energy escalation rate - or other similar combinations).

bounds (note that this ratio was also used in some runs as an economic "cutoff" to determine if a retrofit should be performed).


Housing Projections to the year 2030

The results of some retrofit scenarios were also incorporated into a time projection, that incorporated projections of total single detached housing stock, new housing starts, demolition rates and retrofit rates through to the year 2030.

In order to determine energy use and pollutant generation for new houses, it was assumed that they would be equivalent to the 1989 base (unretrofitted) houses for each region. To account for changes in new housing codes, the energy use and pollutant generation for these houses was modified over time with "efficiency improvement" factors. Embodied energy and emissions associated with the operation of the new houses was determined, however embodied energy and pollutants associated with the construction of the new houses was not determined. As the focus of this study was the retrofitting of existing houses, more effort should be put into the analysis of new house trends, including projected housing starts, increases in efficiency, embodied energy and pollutants associated with construction, and the use of recyled materials.

The retrofit analyses in this study use 1989 as a reference (based on detailed Statistics Canada housing stock figures for 1989). Overall energy use and greenhouse gas generation for 1989 were extrapolated back to 1988 - the base year for the Toronto Protocols.

Figure 4.1 Canadian Housing Stock

Single Detached Houses:

		B.C. Prairies		Ontario		Quebec		Maritimes		Canada		
Const												
Date	in	Housing	in	Housing	in	Housing	in	Housing	in	Housing	in	Housing
	DB	Stock	DB	Stock	DB	Stock	DB	Stock	DB	Stock	DB	Stock
	(#)		(#)		(#)		(#)		(#)		(#)	
<1921	10	30,145	11	110,948	14	293,520	7	127,881	3	104,486	45	666,980
1921-45	22	107,100	16	168,504	19	244,171	11	92,711	5	71,687	73	684,173
1946-60	35	186,710	44	294,130	55	523,527	48	235,390	11	116,284	193	1,356,041
1961-70	29	133,505	49	186,788	28	291,760	31	185,087	14	77,904	151	875,044
1971-80	16	211,649	43	275,851	27	318,531	28	227,748	33	123,055	147	1,156,834
>1981	21	129,924	40	152,463	42	364,300	38	188,034	15	84,329	156	919,050
TOTAL	133	799,033	203	1,188,684	185	2,035,809	163	1,056,851	81	577,745	765	5,658,122
Average	22		34		31		27		14			

Note: in DB (#) = number of houses in database

Housing Stock = Single-detached houses in region and age category (Statistics Canada, 1989)

5 RESULTS

5.1 Condensation Issues

The CMHC EMPTIED program was used to predict the moisture accumulation potential of several walls with known, field observed²¹, performance, as well as walls used in this study. The following rationale was used.

The 2x4 and 2x6 walls represent current practice and they do not result in condensation problems under normal winter conditions. Table 5.1 allows us to compare several upgrade scenarios, so that we can relate the condensation performance of the wall upgrades to current practice. Unshaded areas are "safe", while shaded areas represent conditions of increased condensation potential.

Table 5.1 Predicted Condensation in Walls (location: Regina, SA)

Relative humidity profile ¹		Normai	Normal	Normal	Normal	High	High
	NLA (cm2/m2)	2x4	2x6	2x4, sheathed inside	2x4, ext. truss wall	2x4, strapped inside	2x4, ext. truss wall
Vapor barrier location (% from inside)	(/	0%	0%	30%	33%	30%	33%
Condensation (absorbed & drained)		(kg/m²)	(kg/m²)	(kg/m²)	(kg/m²)	(kg/m²)	(kg/m²)
Variations in Normalized Leakage	07	14	14	14	15	20	20
Area (NLA)	20	21	20	21	23	35	36
	4 0	31	29	31	34	58	60
	60	41	39	41	46	80	85

'Normal' is a profile with average monthly winter relative humidities from 36% in October, down to 22% in January, up to 34% in April; 'High' has winter relative humidities held constant at 40%

For example, with a conventional 2x4 wall with an NLA of 4.0 cm²/m², under normal winter conditions, EMPTIED predicts 31 kg/m² of condensation. Since this wall is known to have no significant problems with condensation, the sheathed 2x4 wall and the 2x4 with exterior truss wall will likely also not have condensation problems either, as long as their NLA values are significantly less than the original wall.

Since the air tightening assumed in this study was linked to the type of wall, NLA values were automatically reduced according to the type of wall retrofit. Sheathed walls, for example, were associated with air-tightening that resulted in an NLA of typically less than 2.0 cm²/m². An NLA of 2.0 cm²/m², in the example above, would have resulted in a predicted condensation of 21 kg/m² under normal conditions - less than the original wall. The 2x4 with exterior truss wall had only slightly

²¹ personal communication from Dr. Robert Dumont, SRC, based on field test huts in Saskatchewan Under normal winter operating conditions, walls with vapor barriers located up 33% of the depth of the wall from the inside surface suffered no condensation effects.

higher value of 23 kg/m² under normal operating conditions, but NLA values were typically reduced even more with this type of retrofit.

High winter relative humidities are unlikely with the retrofitted houses since their ventilation systems would reduce levels of humidity.

Therefore, although the retrofits generally increase the risk of condensation²² by increasing the amount of insulation (colder sheathing) and some also move the vapor barrier into the wall (colder vapor barrier), they significantly reduce condensation risk by sealing paths of air movement into the wall, and provide ventilation to reduce high humidity levels.

Until further field studies can confirm safe operation at higher levels of predicted condensation, care must be taken to ensure that all retrofit options resulting in colder vapor barrier or sheathing incorporate adequate air tightening and controlled ventilation.

5.2 Indoor Air Quality Issues

Any program promoting interior retrofits should include guidelines, standards and training in the use of materials with low emissions of toxic, mutagenic and carcinogenic pollutants. In addition, because of the probability of some pollutant generating materials being present in any house, some form of ventilation will be required in all, or at least in the more air-tight houses proposed under a full retrofit program.

To promote air circulation, it was assumed that, where applicable, forced air circulation fans operated continuously. This and the ventilation requirements, discussed below, both increased electrical energy use compared to the base houses, most of which had furnace fans operating intermittently and no ventilation systems.

The ventilation requirements for new housing under the National Building Code (1995) were used for this study. Ventilation was therefore based on an attempt to achieve a total infiltration plus ventilation of about 0.3 air changes per hour²³.

The REES program calculated natural air change rates in the "shoulder seasons" (April and October) in order to determine the forced ventilation requirement to achieve a total of 0.3 air changes per hour. With continuous ventilation systems, the **capacity** of forced ventilation was doubled to allow for increased ventilation during peak demands.

²² Exterior insulated sheathing is an exception, since it not only improves the air-tightness, but also results in a warmer existing wall - thereby reducing the risk of condensation further.

²³ Simulations using the AQ1 indoor air quality model also indicated 0 3 average air changes per hour resulted in reasonable indoor air quality with typical interior construction. With proper selection of materials, pollutant concentrations would be reduced further.

Various control scenarios were then implemented to maintain adequate air quality while minimizing energy use. In order to show the maximum technically achievable reductions in energy and greenhouse gases, while maintaining indoor air quality, most runs were performed with a ventilation control that operated the fans so that the total average air change of about 0.3 air changes per hour was maintained for all months of the heating season (optimal control). This would result in a nearly constant state of indoor air quality.

One type that approximates the optimum is an inside to outside temperature difference (OTC) ventilation controller. OTC activates the ventilation system when the temperature difference is too small to provide adequate air change through infiltration (typically during the spring and fall). The REES program can simulate an OTC as long as the user specifies the temperature difference (inside to outside) above which the fans will be turned on.

A series of OTC runs on individual houses found that this type of controller could closely approximate an optimal controller, however, the optimal temperature difference setpoint was highly dependant on:

- air-tightness of the house, and
- climate

The detailed results in Appendix E show that adequate ventilation in the critical spring and fall months can be achieved with a very small energy penalty. In all cases, the OTC runs resulted in operating carbon dioxide generation and space heat fuel use that was within -3% to +10% of the optimum (iaq_opt). Selecting the control temperature such that OTC resulted in the same average total ventilation as the optimal controller, usually had the lowest LCEC - indicating the most economic option, however minimum monthly total air change dropped to as low as 0.16 ac/h in some cases. These houses were sufficiently air-tight that the natural infiltration during cold months (fan off) was inadequate to maintain good air quality. A control that provides a constant minimum ventilation plus OTC may be necessary to avoid too low ventilation in tight houses.

Runs with a single setpoint result in a too much scatter - with some houses having too much ventilation and some too little (see Figure 5.1). The results for the "optimal" controller (as implemented in REES) show very little scatter around the 0.30 ac/h goal, while the OTC results for a 14C setpoint result in air change rates from 0.10 ac/h to 0.70 ac/h.

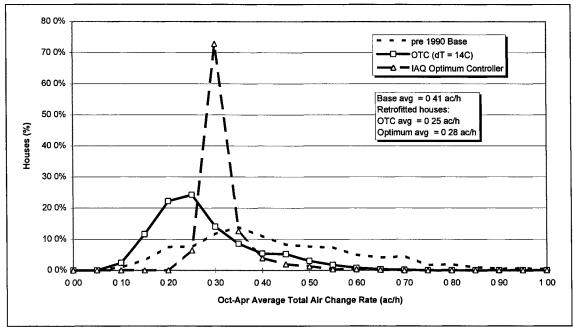


Figure 5.1 Ventilation controls

The analysis of seven houses in Appendix E used optimal inside to outside temperature difference setpoints ranging from 11C (loose house in B.C.), to 46C (tight house in Manitoba). Until "smart" algorithms can be developed that enable the program to determine the optimal OTC setpoint for each house, REES can be used for manual OTC runs, where the user selects the setpoint.

The indoor air quality critical retrofits are likely to be those involving extensive interior work - with pollutant source strengths approaching that of new house construction. Table 5.2 shows that, for these houses, optimal ventilation control resulted in no houses with winter total infiltration plus ventilation rates averaging less than 0.25 air changes per hour.

Table 5.2 Effect of Ventilation Control on Heating Season Average Air Change Rate (Optimal control vs Continuous fans)

	Optimal (H12C01) Continuous (H12C02)								
		Base houses	Interior retrofits	-	All houses	Interior retrofits		Ali houses	Interior retrofits
		Ventilation	fraction	Ventilation	Vent.+ Infil.	Vent.+ Infil.	Ventilation	Vent.+ Infil	Vent.+ Infil
l		+ Infiltration		+ Infiltration	more than	less than	+ Infiltration	more than	less than
Period	Region	ac/h	%	ac/h	0 40 ac/h	0 25 ac/h	ac/h	0.40 ac/h	0 25 ac/h
<1921	ВС	0 70	0%	0.34	10%	0%	0.48	90%	0%
1921-45	ВС	0 60	0%	0.33	5%	0%	0 47	50%	0%
1946-60	вс	0 53	0%	0 35	9%	0%	0.51	49%	0%
1961-70	вс	0 44	0%	0.31	3%	0%	0 43	41%	0%
1971-80	вс	0.39	0%	0.33	6%	0%	0 47	31%	0%
>1981	вс	0 21	0%	0.25	0%	0%	0 35	5%	0%
<1921	PR	0 54	9%	0.29	0%	0%	0.40	36%	0%
1921-45	PR	0 47	13%	0 28	0%	0%	0.39	31%	0%
1946-60	PR	0 31	7%	0 28	2%	0%	0.38	16%	0%
1961-70	PR	0 27	8%	0 26	0%	0%	0 37	10%	0%
1971-80	PR	0 20	5%	0 27	0%	0%	0 36	7%	0%
>1981	PR	0 22	0%	0.26	0%	0%	0 35	3%	0%
<1921	ON	0 78	100%	0 40	50%	0%	0.56	100%	0%
1921-45	ON	0 61	100%	0 34	5%	0%	0.48	95%	0%
1946-60	ON	0 37	0%	0.28	2%	0%	0.40	25%	0%
1961-70	ON	0 33	0%	0 27	0%	0%	0.39	14%	0%
1971-80	ON	0 28	4%	0 27	0%	0%	0 38	4%	0%
>1981	ON	0 19	0%	0.26	0%	0%	0 36	7%	0%
<1921	QU	0 60	14%	0 28	0%	0%	0 40	29%	0%
1921-45	QU	0 54	18%	0.29	9%	0%	0 40	18%	0%
1946-60	QU	0 40	33%	0.28	4%	0%	0 39	27%	0%
1961-70	QU	0 32	23%	0 27	0%	0%	0.38	13%	0%
1971-80	QU	0 28	14%	0 27	0%	0%	0.38	4%	0%
>1981	QU	0 15	0%	0 27	0%	0%	0.37	0%	0%
<1921	MT	0 79	0%	0 36	33%	0%	0.51	100%	0%
1921-45	MT	0 89	0%	0.36	40%	0%	0.50	80%	0%
1946-60	MT	0 60	27%	0 31	18%	0%	0.44	73%	0%
1961-70	MT	0 49	57%	0 30	0%	0%	0 42	57%	0%
1971-80	MT	0 37	9%	0 27	0%	0%	0.38	12%	0%
>1981	MT	0 17	0%	0 25	0%	0%	0.34	0%	0%

Compared to a 0.3 ac/h goal, the older base (unretrofitted) houses were generally over ventilated due to leaky construction, while newer base houses were often under-ventilated due to tighter construction (very few had forced ventilation).

Both optimal and continuous fans were able to maintain all interior retrofits at greater than 0.25 ac/h (designed to provide 0.30 ac/h in April and October), however continuous fans resulted in over-ventilation (greater than 0.40 ac/h) of a significant fraction of the houses. Most older retrofitted houses are not sufficiently air-tight to require continuous ventilation. This should be confirmed by field observations, however.

5.3 Comparison of Operating Energy

A comparison of REES-predicted energy use with measured values[1] was carried out for a random selection of 176 houses in the database (23% of the total). The measured data were obtained by split-metering and provide values for total space heating, water heating and utilities (including outdoor energy use). In addition, Degree Days (base 18C) were available for the monitored period for each house.

Based on the average energy requirements of the 176 house sample, REES predicted space heating 2% higher than that measured, ²⁴ water heating 3% higher than measured, and total energy use 2% higher than measured. HOT-2000 version 5, previously used by Scanada [1], predicted total energy use 5% less than measured²⁵ for the same houses.

Uncertainties in average furnace and water heater efficiencies, as well as unknowns in the operating conditions, could easily account for these differences. The predictions are sufficiently close to real energy use that predicted retrofit savings should be quite reliable²⁶. Predicted savings should be compared with field measured savings from retrofitted houses when they become available, however.

5.4 Energy and Environmental Impacts

REES simulations were performed, using several retrofit scenarios, including variations on the following:

- **HIGH** scenario: Levels of envelope performance approximately 30% greater than that proposed in version 2 of the National Energy Code for Houses (NECH)²⁷,
- MID scenario: equal to NECH version 2, and
- LOW scenario: levels of envelope and mechanical system performance equal to typical 1989 housing for the region.

Most of the base houses had uninsulated basements - usually with temperatures indicated to be in the 14C to 18C range. The houses with

²⁴ The REES space heating results used long-term average weather, so the predictions were corrected by the ratio of actual Degree Days to long term Degree Days (long term Degree Days averaged 4% lower than actual) The correction increased the REES values by an average of 5%.

²⁵ Note that version 7 of HOT-2000 predicts space heating energy use about 10% to 15% higher than version 5.

²⁶ REES predicted retrofit upgrade energy savings of 5% less than predicted by version 7 of HOT-2000 for a sample of 3 houses (Appendix D).

²⁷ The level of retrofit was linked to the NECH because it has a basis in life-cycle costed economic levels of thermal performance (for **new** houses, however) It would also be politically easier to implement levels of insulation in a retrofit program if they are equal, or at least linked, to new house levels. "National Energy Code for Houses, 1995 ver 20", Canadian Commission on Building and Fire Codes, 23 March, 1995 [6]

retrofitted (insulated) basements, were assumed to have basement temperatures 2C lower than the main floor temperatures ²⁸. This usually meant an increase in basement temperature of from 1C to 3C - somewhat reducing the energy savings associated with the basement retrofit.

The simulations were carried out using average weather for the city in which the house was located, or a nearby alternate if weather data was not available.

The values shown in the following tables are for **source** carbon dioxide and energy reduction²⁹ - including the generation and transmission losses for electrical generation³⁰.

The REES program calculates quantity takeoffs for each house, in order to determine amounts of each material used in the retrofit, along with its associated energy and pollutants. Energy and pollutants associated with the retrofit were generally found to be paid back in less than one year (see Table 5.4c and Appendix C).

Figures 5.2 and 5.3 illustrate the effect of retrofitting only the more cost effective cases. In Figure 5.2, all 765 houses were retrofitted to HIGH levels (run H99C01). The lines on the graph represent constant energy-related retrofit cost divided by life-cycle net energy saved - a Life Cycle Energy Cost (LCEC). The life-cycle net energy is equal to the life-time (30 years in this case) energy³¹ savings for electric utilities, water heating and space heating minus the embodied energy expended to carry out the retrofit. The units are \$/GJ (dollars spent per GJ saved) - an energy cost, except that the source of the energy is conservation.

$$LCEC = \frac{(RetrofitCost)}{(Life \times Energy_{saved/year} - Energy_{embodied})} , \$/GJ$$

Assuming that future energy savings are not as valuable - not "worth" as much as energy purchased today, future energy savings must be discounted back to the present. Therefore, instead of multiplying operating energy savings by the life-time of 30 years, a "Present Worth Factor", or PWF was used. The PWF accounts for typical real energy

²⁸ The effect of internal sources of heat (furnace, water tank, ducts, etc.) after insulating the basement would result in an increase in temperature. In addition, the insulated and finished basement would more likely be occupied (and therefore heated).

²⁹ Note that the source energy is used for combustion fuels only - not for nuclear or hydroelectric, as the the former has no impact on greenhouse gas generation and the impact of hydroelectric (methane generation due to rotting of flooded valleys) is unknown. Further research would be required if the thermal and greenhouse gas effects of these electrical generation sources are to be included

³⁰ Electrical generation split for 1989 (Scanada STAR housing database report [1]), also see section 4 3

³¹ Because this is a "societal" analysis, source energy was used for both the operating savings and the embodied energy. Electrical generation and transmission inefficiencies were therefore factored into the analysis.

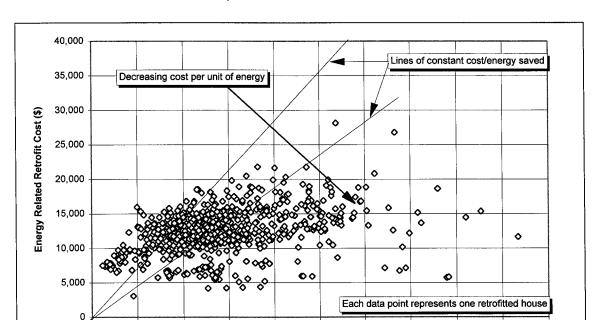
inflation rates, value of money invested, etc.. This analysis used a PWF equal to 18^{32} - resulting in an "Effective Life Cycle Energy Cost", or ELCEC³³.

$$ELCEC = \frac{(RetrofitCost)}{(PWF \times Energy_{savedlyear} - Energy_{embodied})}, \$/GJ$$

In Figure 5.3 only houses with an Effective Life Cycle Energy Cost (ELCEC) less than \$12/GJ were retrofitted (run H12C01) - amounting to 81% of the available housing stock. The \$12/GJ threshold was used as it represents approximately the consumer cost of electric and oil heating, and is probably close to the consumer cost of gas heating if a greenhouse gas driven "environmental factor" were included³⁴.

Note that, in Figure 5.3), the houses to the left of the \$12/GJ ELCEC line (in Figure 5.2) were not retrofitted, due to being "uneconomic", based on the \$12/GJ retrofit criteria.

Since most of the non-retrofitted houses had relatively low net energy savings³⁵, dropping them from a retrofit program has a small impact on overall energy and emissions reductions - a HIGH level retrofit of all the houses (run H99C01) reduced operating carbon dioxide emissions to 46% of original levels, while carrying out retrofits on 81% of the houses meeting the maximum ELCEC criteria of \$12/GJ, reduced carbon dioxide emissions to 49% (run ID H12C01, see Table 5.7).


This analysis shows a benefit of analysing a database of real houses instead of a few average archetypes - "outliers" with poor retrofit cost to energy savings ratios can be eliminated from the analysis.

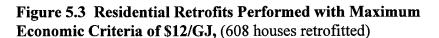
³² A PWF equal to 18 corresponds to a 6% discount rate and a real energy inflation rate of 2.2% per year.

³³ While the ELCEC is economically "correct" in that it assumes future savings are not worth as much as today's costs, this type of analysis fails to account for future environmental costs such as global warming due to emissions of greenhouse gases. Therefore the LCEC may be a truer representation of societal factors - in effect incorporating a higher "energy inflation factor" to account for environmental costs in order to obtain a PWF equal to 30 (obtainable with a 6% discount rate and a real energy inflation rate of 6% - or an immediate increase in the environmental value of energy followed by an energy inflation rate less than 6%)

³⁴ Assigning values to GHG driven "environmental factors" for the different types of heating fuels is an area requiring further research, but was beyond the scope of this study

³⁵ life-cycle net energy is equal to the life-time (30 years in this case) energy savings for electric utilities, water heating and space heating minus the embodied energy expended to carry out the retrofit

4,000


* Effective Energy Cost = Retrofit Cost/(PWF x Annual Energy Savings - Retrofit Embodied Energy), (PWF = 18)

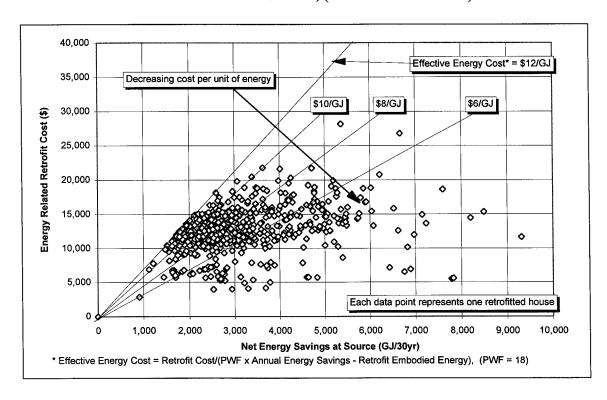
1,000

2,000

3,000

Figure 5.2 Residential Retrofit Cost vs Life-Cycle Energy Saved (765 houses retrofitted)

5,000


Net Energy Savings at Source (GJ/30yr)

6,000

7,000

8.000

10,000

In each region, LOW level retrofits raised all housing to approximately 1989 levels of new housing (except above grade wall cavities only filled with insulation), MID level retrofits to approximately the level of new housing projected for 1996 - National Energy Code (NECH ver. 2.0) and HIGH level retrofits to approximately the NECH level plus 30% (+6 ER for windows).

HIGH level retrofits result in normalized energy use (kJ/m² floor area - degree day) that is comparable to the R-2000 budget for new houses (however they may not comply with the R-2000 standard in all respects). While higher performance is undoubtedly possible for individual houses - as shown by the spread in results in Figure 5.4, this probably represents a practical upper limit for retrofitting the majority of the housing stock.

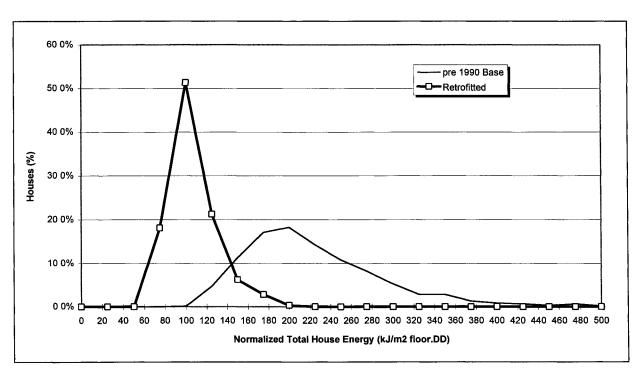


Figure 5.4 Normalized Energy Use: HIGH scenario (run H12C01)

The averages of key output parameters (energy use, pollutant generation, embodied values of energy and pollutants, retrofit cost, etc.) for each house were used to extrapolate the results for each run to the 1989 Canadian housing stock.

The results for the HIGH level retrofit with a \$12 per GJ economic criteria (run H12C01), are shown in the tables 5.3 to 5.6. See Appendix C.1 for detailed outputs for the other runs.

Table 5.3 summarizes average characteristics of the base and upgraded houses, by region and age for this HIGH level retrofit scenario (H12C01).

Table 5.3 also shows that, for this run, 6% of the upgraded houses had total ventilation (infiltration plus mechanical ventilation) that exceeded 0.4 air changes per hour from October to April. This was in spite of the fact that this run used an optimal ventilation control that was supposed to maintain an monthly average of 0.3 air changes per hour total. Some of these houses were still sufficiently loose that average **natural air change** rates exceeded 0.3 air changes per hour in some months.

Table 5.3 also shows that 16% of the houses were interior retrofits, and that none of these houses had average air change rates of less than 0.25 air changes per hour ³⁶. Fan depressurization tests (not included in the costs) would probably be required for some or all of the high level retrofits to "tune" the control system, to reduce the potential for over or under ventilating.

Table 5.4 shows the reduction of carbon dioxide, carbon monoxide, nitrogen oxides and methane due to **operation** by province/region and age category. For this run, there was a potential of a 51% reduction in source carbon dioxide emissions due to operation, on a national basis.

Table 5.4c shows a summary of embodied pollutants associated with the retrofits to the houses - except for carbon monoxide, all have paybacks of less than one year.

Since the older houses (pre 1921 and 1921 to 1945) were generally of lower thermal efficiency initially, the reductions in emissions associated with retrofits of these houses was greatest - with a national average of 60% (Table 5.4a).

Table 5.5 shows a reduction in operating energy of 45%. Note that this is a source value - including energy by utilities for electrical generation and transmission.

Table 5.6 summarizes the retrofit costs by region and age, with a national energy related cost of over 59 billion dollars and a total cost of over 122 billion dollars. These results should be taken as representative of what is **technically feasible**, since **all** houses meeting the economic criteria of an ELCEC equal to \$12/GJ were assumed to be retrofitted.

³⁶ These houses with interior retrofits could have the highest levels of new, pollutant generating, materials added to the interior spaces However, proper selection of low emission materials could minimize these harmful pollutants, AND the requirement for additional ventilation

Table 5.3 Retrofit of Canadian Houses: HIGH Scenario

Retrofitted houses only

Simulations using REES version 1 20
Impact: minimize Cost

Cutoff for retrofit: \$12.00 /GJ equiv

	Main floor	Basement	.,		Mechai	nical systems:		Operations:	111111111111111111111111111111111111111	L	Run ID: H1	2C01	
Interior finish:		strip			Space heating:	upgrade	•	DHW:	20%		Base		
Exterior finish:	strip	retain			estic hot water:	upgrade		Utilities:	20%	reduction			
Exterior limeri.	ouip	, otali,		D01111		Ventilation co	ntrol·iaa opt	Ounuou.	2070	Interior retro	fits:	1	
		Number		Floor area	Natural air		Total air ch	nange	Ventilation	Ventilation		Walls	
		of Houses	Volume	(incl bsmt)	Base	Upgrade	Base	Upgrade	more than		% of	Base	Upgrade
Region	Age	Retrofitted	(m ³)	(m²)	ac/h	ac/h	ac/h	ac/h	0.4 ac/h	I	stock	RSI	RSI
ВC	<1921	9	478	186	0 70	0 32	0 70	0 34	10%	0%	0%	1 27	3 24
	1921-45	12	458	182	0 60	0 31	0 60	0 33	5%	0%	0%	1 45	3 29
	1946-60	24	441	165	0 53	0 33	0 53	0 35	9%		0%	1 81	3 26
	1961-70	19	514	190	0 44	0 28	0 44	0 31	3%	0%	0%	1 97	3 24
	1971-80	6	553	181	0 39	0 31	0 39	0 33	6%	0%	0%	2 20	3 27
	>1981	18	687	268	0 21	0 17	0 53	0 25	0%	0%	0%	2 35	3 24
Prairies	<1921	11	407	150	0 54	0 21	0 54	0 29	0%	0%	9%	2 06	3 64
	1921-45	16	369	136	0 47	0 19	0 47	0 28	0%	0%	13%	2 10	4 13
	1946-60	41	417	155	0 31	0 19	0 31	0 28	2%	0%	7%	1 98	3 72
	1961-70	45	495	181	0 27	0 16	0 27	0 26	0%	0%	8%	2 12	3 72
	1971-80	37	485	183	0 20	0 14	0 20	0 27	0%	0%	5%	2 33	4 03
	>1981	40	593	226	0 22	0 13	0 44	0 26	0%	0%	0%	3 62	3 64
Ontario	<1921	14	520	186	0 78	0 37	0 78	0 40		1	100%	1 43	
	1921-45	19	416	150	0 61	0 30	0 61	0 34			100%	1	
	1946-60	49	507	192	0 37	0 22	0 37	0 28	2%	0%	0%	1 71	3 30
	1961-70	23	529	200			0 33	0 27			0%	2 05	
	1971-80	21	475	182			0 28			1	4%	2 21	
	>1981	41	847	321	0 19	0 16	0 24	0 26	0%	0%	0%	2 55	3 31
Quebec	<1921	6	506	187							14%	1	
	1921-45	11	442	163							18%	1	
	1946-60	44	476	173							33%		
	1961-70	18	451	178							23%	1	
	1971-80	15	441	160							14%		
	>1981	2	471	192	0 15	0 21	0 15	0 27	′ 0%	0%	0%	3 64	5 09
Maritimes	<1921	3	367	138							0%		
	1921-45	5	338	127						1	0%	1	
	1946-60	11	433	157						L .	27%	1	
	1961-70	14	470	166							57%		
	1971-80	24	463	174							9%		
	>1981	10	625	239	0 17	0 15	0 44	0 25	5 0%	6 0%	0%	3 70	4 78
CANADA	<1921	43	455	16							48%		
	1921-45	63	405	15:							41%	1	
	1946-60	169	455	16						<u> </u>		ı	
	1961-70	119	492	18						1			
	1971-80	103	483	17								1	
	>1981	111	644	24	9 0 19	0 16	0 36	0 26	6 09	6 0%	0%	6 3 17	4 01
	Total Average:		489	18	3 0 43	0 23	3 0 46	0 30	69	6 0%	16%	6 2 20) 431
	Average:		409	10	0 043	0 23	v 40	, 030	יס ,	ا¤ ∪%	107	∪ا ∠∠ل	, 431

Notes:

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

^{**} percentages less than 0 25 ac/h apply to interior retrofits only (next column)

Table 5.3...Retrofit of Canadian Houses: HIGH Scenario

Cutoff for retrofit: **\$12.00** /GJ equiv

Base

		Ceiling	Above grade Bsmi			Windows (south) Window			Energy Related Costs Retrofit Total		Life cycle Unit Energy
		Base	Upgrade	Base		Williadws (so			Unit Cost	Cost	
Region	Age	RSI	RSI	RSI	Upgrade RSI	RSI	RSI	/floor area %	\$	(10 ⁶ \$)	Cost (\$/GJ/30y)
B C	<1921	1 88	9 42	0 91	3 31	0 26	0 42	9%	14,532	394	7 32
50	1921-45	3 05	8 00	0 84	3 21	0 26	0 38	11%	14,332	837	8 63
	1946-60	3 72	8 85	1 13	3 07	0 28	0 39	14%	14,210	1,819	9 15
	1961-70	3 41	9 18	1 37	3 02	0 28	0 43	13%	13,652	1,194	9 3
	1971-80	3 53	8 23	1 35	3 00	0 29	0 40	13%	13,683	1,086	7 61
	>1981	4 60	7 64	1 17	2 78	0 36	0 36	12%	10,767	1,199	6 67
	- 1001	400	, 04		210	0 00	0 00	1270	Subtotal:	6,530	
Prairies	<1921	3 38	9 41	0 64	3 39	0 37	0 66	8%	12,673	1,406	5 64
i iaiiles	1921-45	3 62	9 51	0 56	3 44	0 36	0 59	8%	12,756	2,150	6 78
	1946-60	3 98	9 14	0 95	3 18	0 37	0 59	9%	12,730	3,429	7 30
	1961-70	3 24	8 51	0 95	3 00	0 35	0 54	9%		2,130	7 12
	1971-80	3 58	8 78	1 35	2 82	0 36	0 56	9%	13,116	3,113	8 66
	>1981	6 96	8 32	1 88	2 85	0 49	0 62	7%		1,000	4 03
					_ 00	0 .0		. ,,	Subtotal:	13,228	
Ontario	<1921	3 37	9 47	0 65	3 52	0 35	0 48	9%		4,144	4 85
Ontano	1921-45	4 24	8 97	0 72	3 30	0 36	0 48	10%		2,815	6 38
	1946-60	4 11	8 60	0 75	3 19	0 37	0 47	10%	•	6,086	8 47
	1961-70	3 62	8 40	0 91	3 11	0 37	0 47			3,282	9 00
	1971-80	3 98	8 02	1 35	2 76	0 35	0 48	11%	,	3,203	9 88
	>1981	5 69	7 54	1 44	2 45	0 36	0 49	8%	•	3,782	
									Subtotal:	23,311	•
Quebec	<1921	2 94	11 70	0 99	3 20	0 38	0 46	7%		1,562	7.4
	1921-45	3 68	11 70	0 90	3 49	0 38	0 48	8%	•	1,484	6 93
	1946-60	4 23	11 70	1 07	3 23	0 37	0 47		,	3,159	7 5
	1961-70	3 67	11 70	1 31	2 95	0 37	0 48			1,556	8 4
	1971-80	3 77	11 54	1 39	2 96	0 37	0 48	11%		1,699	9 10
	>1981	5 84	11 70	1 92	3 14	0 39	0 48	14%		95	10 0:
									Subtotal:	9,555	•
Maritimes	<1921	2 54	9 36	1 19	2 95	0 33	0 47	11%	11,382	1,189	5 2
	1921-45	1 73	10 30	0 92	3 39	0 35	0 49	9%	14,112	1,012	5 5
	1946-60	3 07	11 06	0 82	3 42	0 35	0 48	9%	14,228	1,654	5 6
	1961-70	2 89	11 53	0 89	3 30	0 36	0 49	9%	13,798	1,075	6 7
	1971-80	3 27	11 02	1 33	3 12	0 35	0 49	10%	13,513	1,209	7.7
	>1981	6 14	11 70	2 50	3 13	0 37	0 52	8%	8,266	465	4 0
									Subtotal:	6,604	_
CANADA	<1921	2 82	9 87	0 88	3 27	0 34	0 50	9%	13,391	8,695	6 0
	1921-45	3 26	9 69	0 79	3 36	0 34	0 48	9%	13,746	8,297	6 8
	1946-60	3 82	9 87	0 95	3 22	0 35	0 48		•	16,148	
	1961-70	3 36	9 86	1 08	3 07	0 35	0 48	11%	13,608	9,237	8 1
	1971-80	3 62	9 52	1 35	2 93	0 34	0 48			10,311	
	>1981	5 85	9 38	1 78	2 87	0 39	0 49	10%	· -	6,541	_
	Total	1							Total:	59,229	
	Average	3 79	9 70	1 14	3 12	0 35	0 49	10%	\$12,845		7 2

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

Tables 5.4 to 5.6 summarize the results, with respect to emissions, energy and cost, of the retrofit run H12C01, performed with REES, using a database of 765 single detached houses from across Canada.

Table 5.4a Reduction in Carbon Dioxide Emissions due to Operations (run H12C01)

		-	`	,				
Age	Housing	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	
	Stock	(kilotonnes/y)	(kilotonnes/y)	(kilotonnes/y)	(kilotonnes/y)	(kilotonnes/y)	(kilotonnes/y)	(%)
<1921	666,980	159	801	3,218	567	1,026	5,772	60%
1921-45	684,173	311	1,023	1,637	888	902	4,761	60%
1946-60	1,356,041	657	1,504	2,561	1,397	1,257	7,377	53%
1961-70	875,044	363	1,034	1,178	526	620	3,720	46%
1971-80	1,156,834	392	1,031	983	525	482	3,412	39%
>1981	919,050	524	859	1,624	1	550	3,558	43%
Total	5,658,122	2,406	6,252	11,201	3,904	4,837	28,600	51%

Table 5.4b Reduction in Pollutant Emissions due to Operations (run H12C01)

Age	Housing	Retrofit	CH4	CO	NOx
	Stock	(%)	(kilotonnes/y)	(kilotonnes/y)	(kilotonnes/y)
<1921	666,980	96%	0.04	0.54	45.1
1921-45	684,173	86%	0.04	0.1	38.2
1946-60	1,356,041	88%	0.07	0.28	51.7
1961-70	875,044	79%	0.04	0.26	21.5
1971-80	1,156,834	70%	0.05	0.34	12.3
>1981	919,050	71%	0.07	0.4	4.8
Total	5,658,122	81%	0.31	1.92	173.6

Table 5.4c Embodied Pollutants associated with Retrofits (run H12C01)

Age	Housing	CO2	payback	CH4	payback	СО	payback	NOx	payback
	Stock	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)
<1921	666,980	1,689	0.3	0.04	0.9	2.3	4.3	4.7	0.1
1921-45	684,173	1,550	0.3	0.03	0.9	2.3	23.1	4.3	0.1
1946-60	1,356,041	3,132	0.4	0.06	0.9	3.8	13.7	8.3	0.2
1961-70	875,044	1,832	0.5	0.04	0.9	2.1	8.1	4.9	0.2
1971-80	1,156,834	2,120	0.6	0.04	0.9	2.3	6.8	5.6	0.5
>1981	919,050	1,605	0.5	0.03	0.5	2.1	5.2	4.1	0.8
Total	5,658,122	11,927	0.4	0.25	0.8	14.9	7.8	31.9	0.2

Table 5.5 National Energy associated with Retrofits (run H12C01)

Age	Housing Stock	Retrofit	Operating S	Operating Savings		Payback
		(%)	(PJ/year)	(%)	(PJ)	(years)
<1921	666,980	96%	96.7	56%	43.7	0.5
1921-45	684,173	86%	76.7	54%	39.2	0.5
1946-60	1,356,041	88%	128.6	48%	81.4	0.6
1961-70	875,044	79%	69.7	41%	48.1	0.7
1971-80	1,156,834	70%	72.7	35%	55.4	0.8
>1981	919,050	71%	68.6	37%	43.8	0.6
Total	5,658,122	81%	513	45%	312	0.6

Table 5.6 National Energy-related Retrofit Costs (run H12C01)

	Housing						<u>-</u>		Canada
Age	Stock	Retrofit	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Total Cost
		(%)	(10 ⁶ \$)						
<1921	666,980	96%	394	1,406	4,144	1,562	1,189	8,695	16,825
1921-45	684,173	86%	837	2,150	2,815	1,484	1,012	8,297	15,931
1946-60	1,356,041	88%	1,819	3,429	6,086	3,159	1,654	16,148	32,672
1961-70	875,044	79%	1,194	2,130	3,282	1,556	1,075	9,237	19,249
1971-80	1,156,834	70%	1,086	3,113	3,203	1,699	1,209	10,311	21,332
>1981	919,050	71%	1,199	1,000	3,782	95	465	6,541	16,301
Total	5,658,122	81%	6,530	13,228	23,311	9,555	6,604	59,229	122,310

Table 5.7 summarizes the results of several runs performed with REES, using a database of 765 single detached houses from across Canada.

Table 5.7a Single-Detached Housing Retrofits - Descriptions

Run	Run ID	Retrofit Level	Minimize impact on ¹ :	Cost Criteria ² (\$/GJ eff.)	Ventilation Control	Summer Fans	Remarks
1	H99C01	HIGH	Cost	unlimited	optimum	off	see Appendix C
2	H12C01	HIGH	Cost	\$12.00	optimum	off	< see Tables 5.4 to 5.6, & see Appendix C
3	H12C02	HIGH	Cost	\$12.00	continuous	off	see Appendix C
4	H12C04	HIGH	Cost	\$12.00	optimum	off	unrestricted side yard
5	M12C01	MID	Cost	\$12.00	optimum	off	see Appendix C
6	L12C01	LOW	Cost	\$12.00	optimum	off	see Appendix C

minimize environmental impact meant that cellulose insulation was used in wall retrofits and, for HIGH level retrofits, that a solar domestic water heater was used Minimize cost meant that fiberglass insulation was used in wall retrofits, wherever technically feasible..

Table 5.7b Single-Detached Housing Retrofits - Results summary

Run	Run ID	Housing stock	Operating Carbon	Operating Carbon	Operating Energy	Operating Energy	Retrofit Embodied	Energy Related
		retrofitted	Dioxide	Dioxide	Reduction		Energy	Retrofit Cost
1		(%)	Reduction (kilotonnes/yr)	Emissions ¹ (% 1989)	(PJ/yr)	(% 1989)	(PJ)	(billions of \$)
1	H99C01	100%	30,460	46%	562	51%	381	71.8
2	H12C01	81%	28,600	49%	513	55%	312	59.2
3	H12C02	74%	24,706	56%	436	62%	280	52.9
4	H12C04	80%	28,584	50%	511	55%	320	59.8
5	M12C01	82%	22,014	61%	389	66%	224	38.4
6	L12C01	89%	13,897	75%	240	79%	66	16.1

Note that these are levels with respect to 1989, however Tables 5.4 and 5.5 show reductions of emissions and energy with respect to original levels (for example run H99C01 reduced CO2 emissions by 54%, so emissions are equal to 46% of original levels).

The effect of eliminating side yard restrictions (H12C04 - compare to H12C01) was minimal under the scenario employed here - there were only a limited number of "thick-wall" retrofits.

These levels of reduction in energy use and carbon dioxide generation could be **approached** with penetration rates approaching 100% and only if implemented very quickly. Over time, the existing housing stock will be demolished, thereby reducing the number of houses that can be retrofitted - see Tables 5.8 and 5.9 for projected reductions with longer term retrofit programs.

Retrofit houses only if the life-cycle effective retrofit energy cost less than value shown
 ELCEC = (Energy-related Retrofit cost)/(Present Worth Factor x Annual Source Energy Savings - Source Retrofit Embodied Energy)

GHG emissions of the order of 50% of 1989 levels are possible only with the HIGH level scenarios.

Energy and Emissions Projections

The Toronto Protocol set goals for greenhouse gas emissions at 80% of 1988 levels by 2005 and 50% of 1988 levels by 2030. In order to project the results of the housing retrofit analysis carried out on the 1989 housing stock, projections of total housing, new house completions, demolitions and retrofits were performed to estimate the single-detached housing market through to the year 2030.

Single-detached housing completion projections were estimated (Appendix C.2), based on historical trends, and also accounting for an observed shift from single-detached to multi-family dwellings. This trend is greatest in Ontario and B.C.. As of 1994, new single detached houses represent 56% of housing unit completions nationally - down from an average of 63% for the 1984-1993 period³⁷. This trend is likely to continue for the foreseeable future³⁸.

The following analysis is based on a 1989 Statistics Canada breakdown of housing by region, 1990 to 1995 actual single detached housing completions by region (67,619 for all of Canada in 1995), and **estimates** of future completions by region (for Canada, totals ranged from about 76,500 in 2000 to 63,200 in 2030). Based on historical trends, demolitions were assumed to average from 4% (Maritimes) to 14.3% (B.C.) - averaging 8% of new house completions nationally (App. C.2). Demolitions were assumed to be replaced by new houses. Retrofits were performed at a rate of about 2.7% of the retrofittable housing stock per year - sufficient to upgrade virtually all the retrofittable houses in the analyses in Table 5.7 by the year 2030 (for results of these projections, see Table 5.8).

Energy consumption and pollutant emissions for new houses were determined from values for the 1989 Base houses, multiplied by an "efficiency improvement" factor. The energy efficiency of **new houses** was assumed to improve by 10% in each five year period - resulting in energy consumption and pollutant emissions of 43% of 1989 levels by the year 2030 (better than current R-2000 houses). While an analysis of new house energy use is outside the scope of this analysis, this level of performance is achievable today (NRCan Advanced houses)³⁹.

³⁷ CMHC Canadian Housing Statistics (1994),

³⁸ personal communication from Helmut Pastrick, Regional Economist for CMHC

³⁹ Seven, level-B monitored, R-2000 houses showed total consumption averaging 138 kJ/m² floor/DD18C (82% of 1989 houses), while results for five occupied NRCan Advanced houses showed total consumption averaging 68 kJ/m² floor/DD18C (41% of 1989 houses)

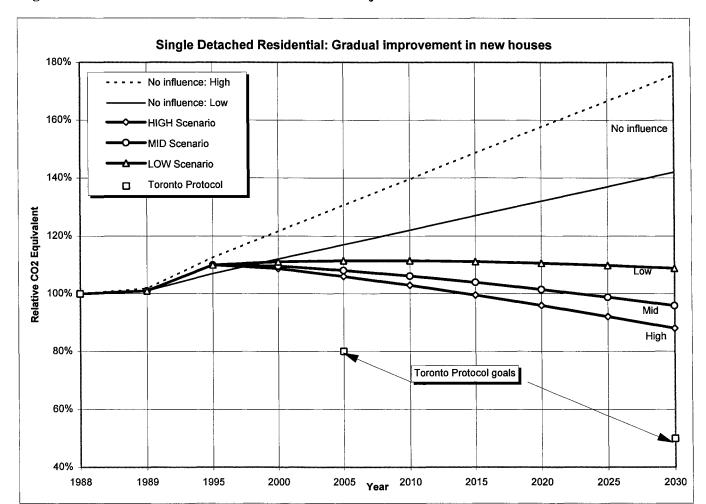


Figure 5.5 Residential Greenhouse Gas Emission Projections

Table 5.8 Single-Detached Residential Retrofit Greenhouse Gas Projections

Scenario:	HIGH	MID	LOW		No Influence	Options**:
New houses	improve by:	Improve by:	Improve by:			
improvement:	10%/5years*	10%/5years	10%/5years	Toronto	Low est.	High est
	CO2	CO2	CO2	Protocol	CO2	CO2
	Equivalent	Equivalent	Equivalent	Goals	Equivalent	Equivalent
Year	(%)	(%)	(%)	(%)	(%)	(%)
1988	100%	100%	100%	100%	100%	100%
1989	101%	101%	101%	į.	101%	102%
1995	110%	110%	110%		107%	113%
2000	109%	110%	111%		112%	122%
2005	106%	108%	111%	80%	117%	131%
2010	103%	106%	111%		122%	140%
2015	100%	104%	111%		127%	149%
2020	96%	101%	111%		132%	158%
2025	92%	99%	110%		137%	167%
2030	88%	96%	109%	50%	142%	176%
2030 (existing)	60%	68%	80%	< Existing he	ousing stock or	niy

Notes:

Retrofits performed only on houses with a net energy equivalent cost of less than \$12/GJ:

LOW scenario takes existing houses to regional 1989 levels of energy efficiency (85% of 1989 stock retrofitted)

MID scenario takes existing houses to NECH (ver. 2) levels of energy efficiency (80% of 1989 stock retrofitted)

HIGH scenario takes existing houses to NECH plus 30% levels of energy efficiency (78% of 1989 stock retrofitted)

^{*} New housing (post 1989) assumed to have energy consumption and emissions reduced by 10% every five years

^{**} No influence options - personal communication from Tom Hamlin, NRCan

Note that new houses built over the period were not retrofitted. Also, this analysis does not account for energy use or greenhouse gas emissions for multi-family dwellings (row house through to high-rise apartments).

Table 5.9 summarizes retrofit projections to the year 2030 for several retrofit scenarios. In addition to the original stock of houses (unchanged and retrofitted), these analyses include the effect of new, single-detached houses and also account for houses demolished during the period.

Table 5.9a Housing Retrofit Projections - Descriptions

Run	Run ID	Retrofit Level	Minimize impact on:	Cost Criteria ¹ (\$/GJ eff.)	Ventilation Control	Summe r Fans	Remarks
2	H12C01	HIGH	Cost	\$12.00	optimum	off	(see Tables 5.5, 5.6, and Appendix C)
5	M12C01	MID	Cost	\$12.00	optimum	off	see Appendix C
6	L12C01	LOW	Cost	\$12.00	optimum	off	see Appendix C

Retrofit houses only if the life-cycle effective retrofit energy cost less than value shown; based on Effective Life-Cycle Energy Cost, ELCEC = (Energy-related Retrofit Cost)/(Present Worth Factor x Annual Source Energy Savings - Source Embodied Energy)

Table 5.9b Housing Retrofit GHG Projections

		from	Table 5.7	to	year 2005	to	year 2030		
Run	Run ID	Housing stock to be retrofitted	Operating CO ₂ Emissions	Actual Houses retrofitted	Equiv. CO ₂ emissions ¹ (all houses)	Actual Houses retrofitted²	Equiv.CO ₂ emissions (all houses)	Equiv. CO ₂ emissions (existing)	Retrofit Costs
		(%)	(% 1989)	(%)	(% 1988)	(%)	(% 1988)	(% 1988)	(\$millions/yr)
2	H12C01	81%	49%	26%	106%	77%	88%	60%	1,413
5	M12C01	82%	61%	27%	108%	78%	96%	68%	920
6	L12C01	89%	75%	27%	111%	85%	109%	80%	395

[&]quot;Equiv. CO_2 emissions" are total equivalent greenhouse gas emissions (GHG), calculated from CO_2 emissions + CO emissions x 3000 + NO_x emissions x 150 + CH_4 emissions x 63 (all emissions at source and, except for "Operating CO_2 emissions", include emissions due to retrofits)

With a HIGH level of retrofit, existing housing (original plus retrofitted) have source carbon dioxide equivalent emissions of 60% of 1988 levels - close to the 50% target (run H12C01, Table 5.9b).

However, even though the HIGH level retrofit scenario results in houses that are comparable or exceed the performance of current new R-2000 houses (Figure 5.4), and new houses have steadily improving thermal performance (exceeding current R-2000 levels by 2030), carbon dioxide equivalent emissions from **all single-detached** houses are still projected

Most potential retrofits carried out by 2030; difference between "Actual Houses Retrofitted" (year 2030) and "Housing stock to be retrofitted" is due to houses that were demolished (replaced by new houses)

to be above 1988 levels by 2005, and at 88% of 1988 levels by 2030 (run H12C01, Table 5.9 - similar results for other runs are in Appendix C.1).

Therefore, by the year 2030, if the environmental objectives of the Toronto Protocol are to be achieved, significant changes in housing will have to occur. Some of these include:

retrofits described in this analysis:

- retrofit of a significant fraction of the existing housing stock to high levels of performance to the -
 - · envelope,
 - · mechanical systems,
 - · controls, and
 - · appliances, lighting, outdoors
- reductions in energy use due to operational factors (reduced temperatures, reduced hot water usage, for example)

investigation of retrofit measures beyond the analysis performed in this study, for example:

- joining single-detached dwellings with buffered spaces (for storage, for example) to reduce side wall heat losses,
- use of co-generation units (probably most effective in multi-family dwellings with common heating systems),

A more integrated analytical approach that examines cross-program benefits and effects would also be useful, for example:

- continuing improvements in new housing energy standards (for example: energy standards that discourage the construction of large new houses could be used to encourage retrofits of existing houses, since they would be the only large houses left),
- a greater shift to more efficient multi-family dwellings,
- reduction of urban sprawl to reduce transportation energy.

These factors would impact on the number of single-family dwellings both new and existing, and would therefore also impact on any retrofit program aimed at single-detached dwellings.

6 CONCLUSIONS and RECOMMENDATIONS

The REES software was found to be effective at determining cost-effective residential retrofit strategies.

In order to achieve the goals of carbon dioxide and energy reductions, it was necessary to perform whole-house retrofits - including all portions of the envelope, mechanical systems, appliances and operation. MID and HIGH level scenarios also included retrofits of ventilation systems. Several runs were carried out, encompassing a range of retrofit options (the following are all based on retrofits meeting an economic criteria of \$12/GJ):

- HIGH scenario (approximately 30% higher than proposed National Energy Code for new House levels). Result: retrofitting 81% of existing housing stock reduced operating carbon dioxide emissions to 49% of 1989 levels, however, after factoring in new housing starts and demolitions of existing housing, total equivalent GHG emissions were reduced to only 88% of 1988 levels by the year 2030,
- MID scenario (bring existing housing up to the proposed NECH).
 Result: retrofitting 82% of existing housing stock reduced operating carbon dioxide emissions to 61% of 1989 levels, however after factoring in new housing starts and demolitions of existing housing, total equivalent GHG emissions were reduced to only 96% of 1988 levels by the year 2030, and
- LOW scenario (bring existing housing up to typical 1989 new house standards, except wall retrofits that were limited to filling empty wall cavities). **Result:** retrofitting 89% of existing housing stock reduced operating carbon dioxide emissions to 75% of 1989 levels, however after factoring in new housing starts and demolitions of existing housing, total equivalent GHG emissions were increased to 109% of 1988 levels by the year 2030.

GHG projections considered new housing starts and increasing performance levels for new houses. A demolition rate of existing stock equal to a national average 8% of new housing was assumed.

The goal of achieving a 50% reduction in carbon dioxide emissions from existing Canadian housing, while technically feasible, would require a penetration rate of over 80% of the existing housing market. At this rate of penetration, retrofits could be performed with an life-cycle effective cost of source energy saved equal to about \$12 per GJ - about equal to the consumer price of oil and electric energy. If environmental-societal factors were incorporated into the analysis, the effective cost of source energy saved approaches the consumer price for natural gas. These

analyses indicate that these retrofits are cost-effective now, from a societal perspective (although fuel price environmental multipliers or "carbon taxes" may be required).

Implementation of a retrofit program to achieve even a fraction of the 50% reduction goal would be a massive, multi-billion dollar undertaking, involving extensive consumer education, builder training, and very likely tax/incentive programs.

Regional sensitivities would be required to ensure the success of such a program. For example, reducing the use of hydro-generated electricity for internal appliances and lights in gas or oil heated houses can result in a net **increase** in carbon dioxide emissions - counter-productive to a program aimed at reducing carbon dioxide emissions (as distinct from reducing energy use).

Embodied energy and most embodied pollutants in the retrofits analyzed were repaid by reductions in operating energy and pollutants in less than one year. This indicates that the energy used and pollutants generated, in retrofitting houses, is a good investment toward future savings.

Adverse effects on indoor air quality, due to the materials in the retrofit and to tightening of the envelope, can be eliminated in most cases through appropriate selection of materials with reduced emissions and through the installation and operation of mechanical ventilation.

The wall retrofits developed as part of this study, should have no moisture condensation problems.

RECOMMENDATIONS:

Predicted energy savings should be compared with field measured energy savings for retrofitted houses, when they become available.

Further research should be carried out with respect to new housing starts, demolitions of existing houses, and additions to living space and their role in retrofits. Air-tightness of retrofitted houses should be confirmed by fan-door tests.

Develop algorithms to determine optimal OTC setpoints as a function of house air tightness and climate.

Research environmental impacts of adding hydroelectric and nuclear power generation systems to the present generation grid.

Carry out research into greenhouse gas driven "environmental factors" to determine the true (societal) costs of energy sources.

7 REFERENCES

General:

- 1. "Environmental Impact Study: Phase I Development of a Database on Housing Characteristics Representative of the Canadian Housing Stock", by Scanada Consultants Limited for CMHC, Research Division, 1992
- 2. EMPTIED: "Envelope Moisture Performance Through Exfiltration and Diffusion", developed by Handegord and Company Inc. and Trow Consulting Engineers for CMHC
- 3. "Indoor Air Quality Analysis for Detached Residences", by SAR engineering ltd. et al for the Research Div. of CMHC, March 1992
- "Field Measurement of Interaction of Mechanical System and Natural Infiltration", by L. Palmiter, T. Bond, in the Proceedings of AIVC Conference, September 24-27, 1991, Vol. 1: Air Movement and Control in Buildings.
- 5. "Air Tightness, Before and after pressure tests demonstrate residential retrofit results", by Robert Dumont, SRC, from ASHRAE Journal, June 1984.
- 6. "National Energy Code for Houses, 1995 ver. 2.0", Canadian Commission on Building and Fire Codes, 23 March, 1995
- 7. "R-2000 Monitoring Program, Data Processing Results", by SAR engineering ltd. for NRCan, March 1995
- 8. "Natural Resources Canada Advanced House Monitoring Comparative Results", by SAR engineering ltd. for NRCan, March, 1996

Embodied Energy and Pollutants⁴⁰:

- 1. Canadian Inventory of Common Air Contaminants (1985), Environment Canada, Report #EPS 5-AP-3, 1990
- 2. Energy Consumption and Pollution of Building Construction, Proceedings, Kohler, N., ICBEM Sept.28, 1987
- 3. *Life Cycle Costs of Buildings*, Kohler, N., European Forum on Buildings and the Environment. UBC School of Architecture, March 16 1991

⁴⁰ See REES program: TAKEOFF xls[Materials] sheet

- 4. Carbon Dioxide Emissions From Fossil Fuels..., Marland, G. and Rotty, R.M., Carbon Dioxide, Research Division, Report #DOE/NBB-0036 TR-003, U.S. Dept. of Energy, 1983.
- 5. Emissions Factors for Greenhouse Gases, EMR, Canada, Report of the Ad Hoc Committee on Emission factors
- 6. Quarterly Energy Supply and Demand (57-003), 1985 and 1990, Statistics Canada
- 7. Statistics Canada, various industry production reports for forestry, mining, petroleum products and metals.
- 8. Canadian Industry Program for Energy Conservation, (CIPEC) 1991 report, EMR.
- 9. *The Plastics Industry*, NATO Industrial International Database, North Atlantic Treaty Organization, Office of Conservation, 1977
- 10. Energy Analysis, Energy, Quality and Environment: Energy Analysis, a New Public Policy Tool, Odum, H.T., Westview Press, 1978
- 11. *The Petrochemical Industry*, OECD, Energy Aspects of Structural Change, Ch. I, Organization for Economic Cooperation and Development, 1985
- 12. Environmental Costs of Electricity, Pace University Center for Environmental Legal Studies, Oceana Publications, New York, 1990
- 13. Environmental Sources and Emissions Handbook, Sittig, M. Noyes Data Corp., Park Ridge N.J., 1975
- 14. Pollution Control in the Organic Chemical Industries, Sittig, M., Noyes Data Corp., Park Ridge N.J.,
- 15. Pollution Control in the Plastics and Rubber Industry, Sittig, M., Noyes Data Corp., Park Ridge N.J.,
- 16. Vinyl Chloride and PVC Manufacture; process and Environmental Aspects, Sittig, M., Noyes Data Corp., Park Ridge N.J., 1978
- 17. Human Activity and the Environment, Statistics Canada, Supply and Services Canada, Ottawa, 1986.
- 18. Compilation of Air Emissions Factors for the 1985 NAPAP (National Air Pollution and Acidic Precipitation Program), United States Environmental Protection Agency, U.S. EPA, Research Triangle Park, N.C.., 1989

- 19. Stationary, Point and Area Sources, (AP-42 Series) Volumes I and II, United States Environmental Protection Agency, Compilation of Air Pollutant Emissions Factors. N.T.I.S.Document # PB86-124906, U.S. Dept of Commerce, Springfield VA., 1985 (See also Supplements B and C, Docs. # PB89-128631 and PB91-125906)
- 20. Energy Use in the Petrochemical Industries, U.S. DOE, Battelle Columbus Laboratories, (with BASF and ICI)
- 21. Energy Use for Building Construction, Stein, Richard G., Serber, D. and Hannon, B., Center for Advanced Computation, University of Illinois and R.G.Stein and Assoc., U.S.DOE, EDRA Report 1976.
- 22. The Energy Cost of Materials, Chapman, P.F., Energy Policy, pp 47-57, March 1975
- 23. Energi-Innehallett I Husbyggande (Energy Contents of House Building), Salokangas, .R., Perala, A.L. and Kontuniemi, P., Nordic Conference on Total Energy in Buildings and Energy Related Environmental Effects, Copenhagen, Sept.11, 1990 (Article in Swedish)
- 24. The Energy Cost of Houses and Light Construction Buildings, Baird, G., and Chan, S.A., New Zealand Energy Research Committee (NZERDC contract #3175) Auckland N.Z. 1983
- 25. Handbook of Industrial Energy Analysis, Boustead, I. and Hancock, G.F., Ellis Horwood (West Sussex U.K.) John Wiley N.Y. 1979
- 26. Renewable Resources for Industrial Materials, CORRIM (Committee on Renewable Resources for Industrial Materials), N.R.C. U.S. National Science Foundation, Division of Policy Research and Analysis, Sept. 1976. N.T.I.S. Document # PB-257-357, U.S. Dept of Commerce, Springfield VA.
- 27. Energy Analysis of 108 Industrial Processes, Brown, H.L., Hamel, B.B., and Hedman, B.A., (Drexel Univ. Dept. of Mech. Engineering), U.S. DOE Contract # E(11-1)2862 (circa 1978)
- 28. Environmental Auditing for Building Construction: Energy and Air Pollution Indices for Building Materials, Buildings and Environment, Cole, R.J. and Rousseau, D.L., (Pergamon Press, Oxford U.K.) V.27 No.1 pp.23-30, 1992
- 29. Environmental Audits of Alternate Structural Systems for Warehouse Buildings, Cole, R.J. and Rousseau, D.L., Canadian Journal of Civil Engineering, Nov. 1992

Appendix A WALL RETROFIT OPTIONS

Thermal resistances are quoted for the various wall sections in Table 4.1

The figures that follow are the wall retrofit sections used in this study:

- A.1 Cavity fill (also applied in addition to interior or exterior retrofits)

 Interior retrofits -
- A.2 Interior insulated sheathing
- A.3 Dynamic insulation interior retrofit
- A.4 Double wall interior retrofit

Exterior retrofits -

- A.5 Exterior insulated sheathing
- A.6 Dynamic wall with exterior air diffuser
- A.7 Exterior Wall Truss/Curtain wall

Note that basement retrofits are shown with RSI 3.88 (R22) batt insulation. In the simulations, batt and blown cellulose ranging from RSI 2.1 to RSI 4.9 were used (framing was spaced away from the wall).

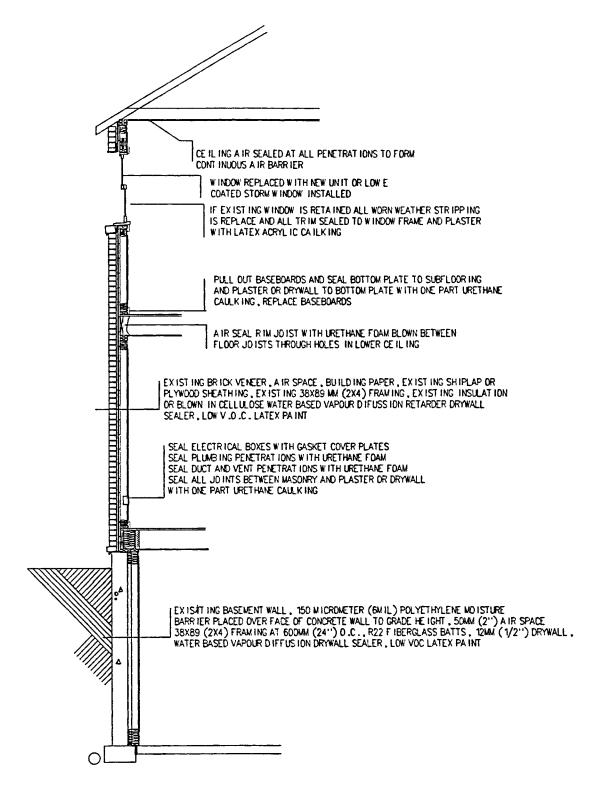


Figure A.1 EXISTING BRICK VENEER WALL CAVITY FILLED AND PENETRATIONS AND OPENINGS AIR SEALED SCALE 1/4"=1"-0"

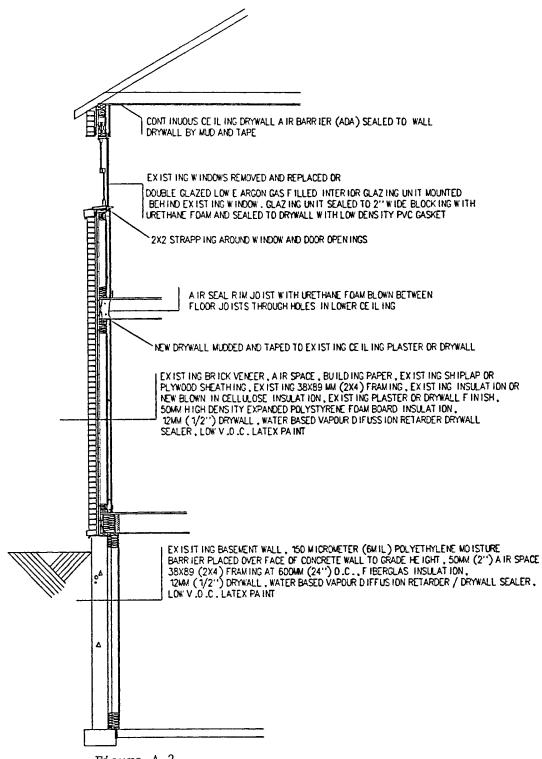


Figure A.2
INTERIOR INSULATED SHEATHING AS APPLIED TO AN EXISTING BRICK VENEER WALL

SCALE 1/4"= 1'-0"

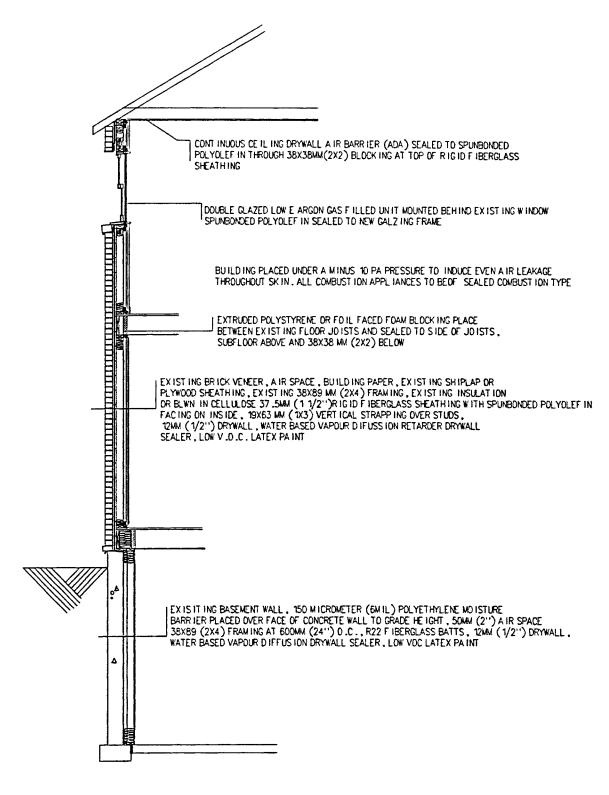


Figure A.3
DYNAMIC INSULATION AS APPLIED TO EXISTING BRICK VENEER WALL
SCALE 1/4"=1"-0"

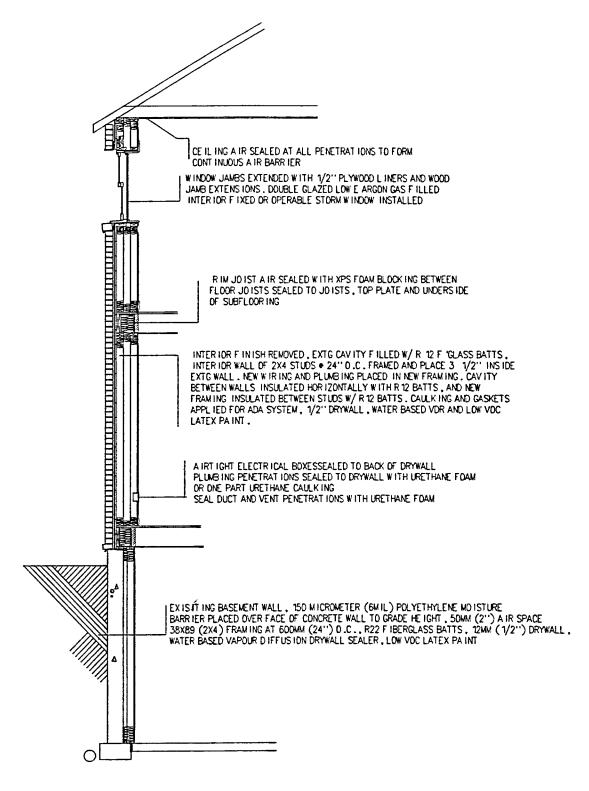


Figure A.4

DOUBLE WALL INTERIOR RETROFIT

SCALE 1/4"=1"-0"

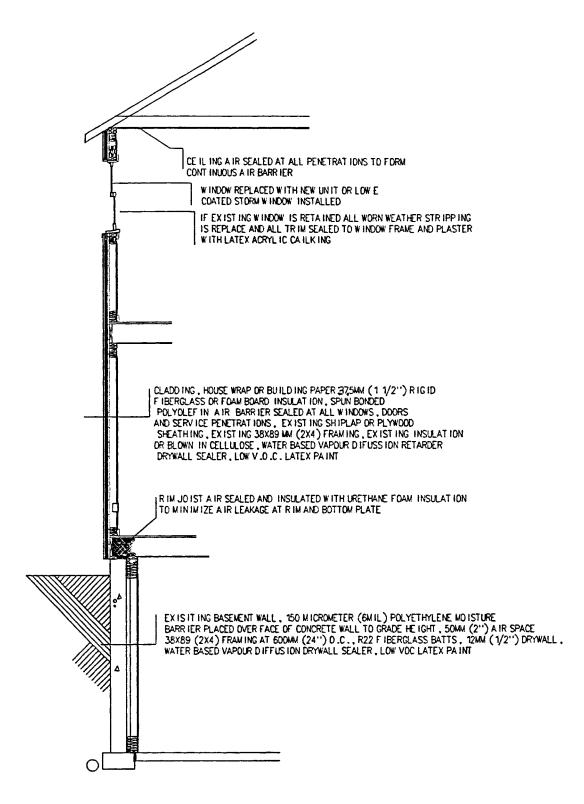


Figure A.5
EXTERIOR INSULATED SHEATHING RETROFIT
SCALE 1/4"=1"-0"

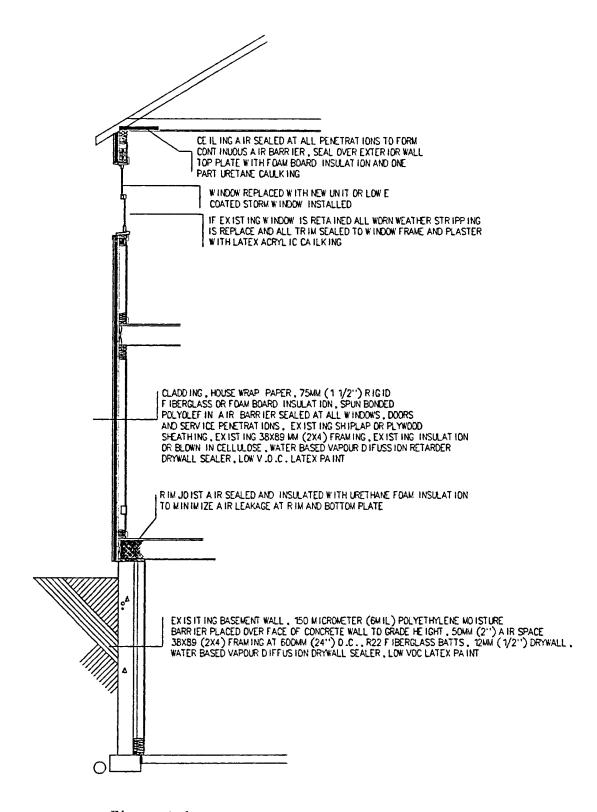


Figure A.6
DYNAMIC WALL WITH EXTERIOR AIR DIFFUSER
SCALE 1/4"=1"-0"

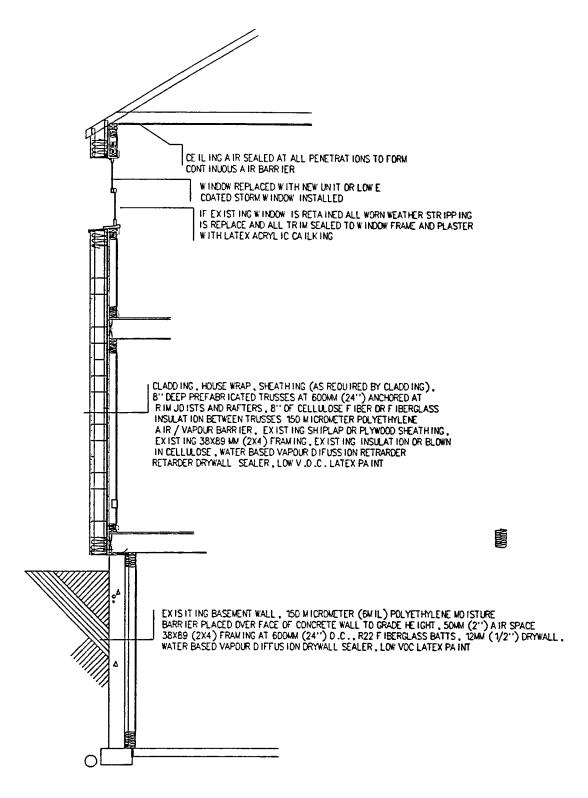


Figure A.7 EXTERIOR WALL TRUSS SCALE 1/4"=1'-0"

Appendix B RESIDENTIAL ENERGY & ECONOMIC SIMULATOR - DOCUMENTATION

The thermal calculation "core" of the REES program is based on the algorithms of the HOT-2000 thermal simulation program (versions 5 through 7), including the following:

- Barakat solar Gain Load Ratio,
- Mitalas foundation model,
- AIM-2 infiltration model with Kiel-Wilson fan interaction model,
- selectable Davenport logarithmic or Power law modified local wind speeds, and
- a database of monthly weather for Canadian stations.

and some enhancements:

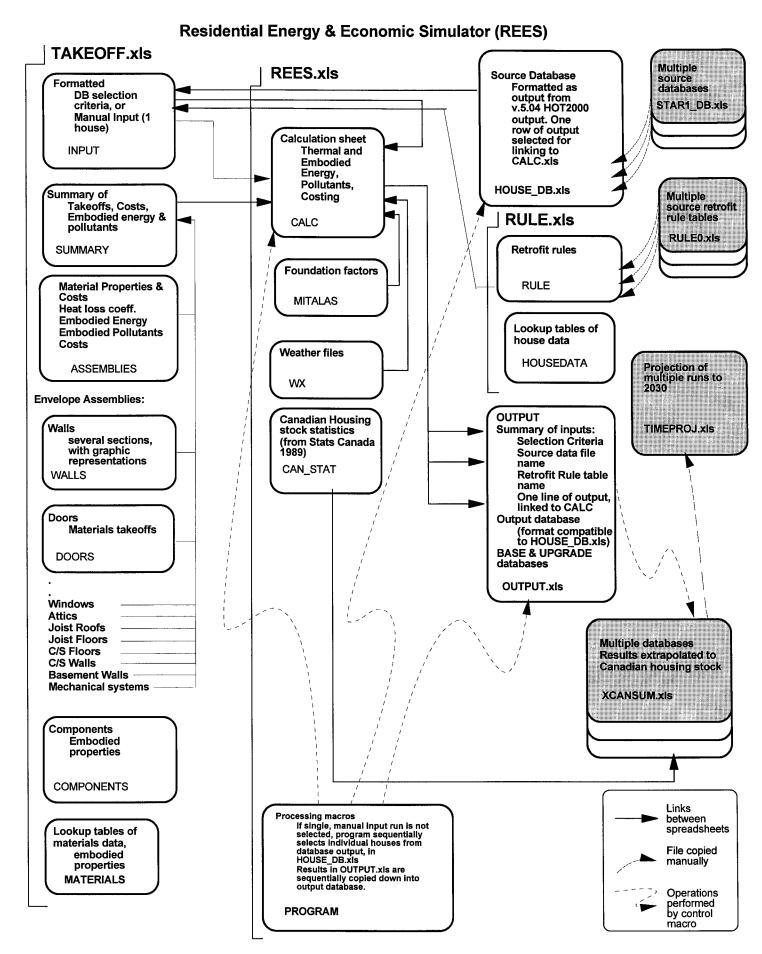
- ventilation system sizing using a "look-ahead" based on total ventilation rate minus shoulder season natural infiltration rates in April and October (a "pro" retrofitter strategy),
- alternate ventilation control systems, including outside temperature control (OTC) and optimized control (to result in a constant total air change rate,
- batch (database) or manual input
- modified OPTIMIZE⁴¹ embodied energy & pollutant calculations (in conjunction with an updated database of embodied energy and pollutant values),
- calculation of energy use and pollutant generation, at the house and at source (accounting for regional energy source mix of electrical generation see Table B.1)
- retrofit takeoff and costing model that incorporates a database of envelope sections (modified to account for characteristics of each house simulated),
- "extrapolation program" to determine regional and cross-Canada effects on the housing stock, and an
- "extrapolation program" to determine effects of various implementation rates through the year 2030, by accounting for projections of total housing stock, new housing and varying rates of retrofit of existing housing.

⁴¹ program developed by Sheltair Scientific, SAR engineering et al for CMHC

Gen. efficiency:	33%	33%	33%	100%¹	100%	33%
Trans. efficiency:	95%	95%	95%	95%	90%	95%
Province/Region	Coal	Oil	Gas	Nuclear	Hydro ²	Other
Newfoundland	0 0%	5 8%	0.0%	0.0%	94.2%	0 0%
Prince Edward Isl.	55.3%	44.7%	0 0%	0.0%	0.0%	0.0%
Nova Scotia	59.8%	28 2%	0 0%	0.0%	10.4%	1.6%
New Brunswick	9.3%	45 4%	0.0%	30 2%	13 5%	1 6%
MARITIMES	31.1%	31 0%	0 0%	7.5%	29.5%	0.8%
Quebec	0.0%	1.1%	0.0%	3.3%	95 6%	0.0%
Ontario	24.1%	1.0%	1.3%	46.1%	27.3%	0 2%
Manitoba	2.0%	0 0%	0.0%	0.0%	97.6%	0 3%
Saskatchewan	72 6%	0.0%	4.9%	0 0%	21 0%	1.5%
Alberta	78 8%	0.0%	15.9%	0 0%	3.7%	1.3%
PRAIRIES	51.1%	0 0%	6.9%	0.0%	40 8%	1 0%
British Columbia	0.0%	0.5%	8 6%	0.0%	88 6%	2.3%
CANADA	22.1%	7.5%	2.0%	15 4%	52.4%	0.5%

¹ Nuclear and hydro-electric systems are not 100% efficient, but we were not calculating source nuclear thermal or hydroelectric mechanical energy.

Advantages to this spreadsheet-based system include the ability to easily modify the source code to try out new calculation methods (used to develop ventilation control options, for example),


Some limitations of the program include the fact that mechanical system efficiencies are presently set at a fixed value (determined from HOT-2000, version 7.1 runs) for each type of system with archetype houses in several of the climate zones, that self shading of windows from building overhangs is not determined (though this can be entered as a monthly value, as part of overall shading), and that monthly energy balances are determined on the basis of a single outside temperature, rather than binned temperatures.

The following material describes the organization and inputs to the REES program⁴²:

- organization chart
- available weather files
- sample base houses summary

² Hydro electric systems are associated with the destruction of vegetation that stores carbon dioxide. No penalty has been assumed for this study.

⁴² Note: System requirements to run REES are Microsoft Excel for Windows version 5. Recommended hardware configuration - pentium computer with 24 MB RAM (16 MB minimum) and 20 MB available hard drive space Run time on a 90 MHz pentium system is ~35 seconds/house or about 8 hours for the the 765 houses used in this study.

Residential Energy & Economic Simulator WEATHER FILES

Database of monthly weather

11-Mar-94

Tin design

Weather data for one city is selected into the OUTPUT range after entering the appropriate City number (see table below) in the INPUT sheet The Output is available as a Lookup table (LOOKWX) for use by the Calc sheet

The Output is available as a Lookup table (LOOKWA) for use by the Calc sheet.

Weather is long-term data from HOT-2000 (ver 6 02); Note that data for all cities has NOT been entered (see Table below)

N-	City	Drovinco	7000	DD18	ProvNo	Source	l atitudo	(C) dTdesign	(C) TgrdS	(C)	(C) Tcdbdes	(m) Zmet	Solindex
No.	City	Province	Zone	אוטט	Provno	Source	Latitude				capaes	Zmet	Solinaex
British Col		DC.		2150				Bold	= estima	tea			
1	Abbotsford	BC	A	3150	1	LIOTOGO	40.3	40	113	8.5	32	20	1 04
2	Castlegar	BC	D	3747	1	HOT2000	49 3	40	113	6.5	32	20	1 04
3	Fort Nelson	BC	В	7063	1	LIGTOGO	FC 00		5 1	8.5	20		0 95
4	Fort St John	BC	B D	6119	1	HOT2000 HOT2000	56 23 50 7	57 46	103	8.5	26 34	20 20	1 07
5	Kamloops	BC		3756	1	HO12000	50 /	40	10 3	0.0	34	20	107
6	Port Hardy	BC	C	3661	1	LIGTORGA	F0 00	E.4	62	12	20	20	0 91
7	Prince George	BC	В	5388	1	HOT2000	53 88	54			28		
8	Prince Rupert	BC	D	4117	1	HOT2000	54 3	35	62	8.5	19	20	0 73
9	Smithers	BC	В	5290	1		40.57	0.4	40.0	44.0	00		4.00
10	Summerland	BC	D	3318	1	HOT2000	49 57	31	123	11 9	33	20	
11	Vancouver	BC	Α	3007	1	HOT2000	49 25	28	11 3	85	26	20	
12	Victoria	BC	С	3076	1	HOT2000	48 65	40	118	8.5	24	20	1 03
13	Williams's Lake	BC	В	5105	1	1 1							
13 1	user defined	BC			1								
Alborto													
Alberta	Calman	A D	Α	5345	2	НОТ2000	51 1	52	64	12 2	29	20	1 14
14	Calgary	AB	В	5589	2	HOT2000	53 6	53	55	12 2		19	
15	Edmonton	AB				HO12000	53 6	53	55	122	20	19	1 12
16	Fort McMurray	AB	C	6778	2	иотаооо	40.20	E4	7 1	42	21	20	1 16
17	Lethbridge	AB	A	4718	2	HOT2000	49 38	51		12			
18	Rocky Mtn House	AB	В	5550	2	HOT2000	52 38	52	6 1	12	28	20	0 99
19	Suffield	AB	Α	5102	2								
191	user defined	AB			2								
Caalaataba													
Saskatche		64		5542	3	HOT2000	49 07	53	66	12	32	20	1 14
20	Estevan	SA	A			n012000	4901	55	00	12	32	20	1 14
21	Prince Albert	SA	A	6562	3	LICTORO	50.40	55	49	440	24	24	1 16
22	Regina	SA	A	5920	3	HOT2000	50 43			14 0		21	
23	Saskatoon	SA	Α	6077	3	HOT2000	52 17	56	53	12 7		20	
24	Swift Current	SA	Α	5482	3	HOT2000	50 27	53	56	11 4	32	20	1 12
25	Uranium City	SA	Α	8210	3	l i							
25 1	user defined	SA	Α		3								
Manitoba													
1	Brandon	MA	Α	6037	4	HOT2000	49 92	54	58	12.4	31	20	1 11
26			В	9213	4	11012000	49 32	54	56	12.4	3,	20	
27	Churchill	MA											
28	The Pas	MA	B B	6852	4								
29	Thompson	MA		7930	4	LICTOCC	400	54	6 1	12 4	30	23	1 10
30	Winnipeg	MA	Α	5889	4 4	HOT2000	499	54	0 1	124	30	23	1 10
30 1	user defined	MA			4								
Ontario													
31	Big Trout Lake	ON	В	7680	5		1						
32	-	ON	A	4266	5	HOT2000	44 22	43	89	11.7	27	20	1 14
33	Kingston London	ON	Ā	4068	5	HOT2000	43 02		97	11.7		20	
33	Muskoka	ON	Ä	4837	5	HOT2000	44 58		8	11.7		20	
1			В	5318	5	HOT2000	46 37		59	11.7		20	
35	North Bay	ON	A	4673	5	HOT2000	45 45		89	11.4		23	
36	Ottawa	ON			5	HO12000	4040	40	0.9	114	, 31	2.0	, , , ,
37	Sault Ste Marie	ON	В	5180		LICTOR	40.50	38	97	11.7	30	20) 111
38	Simcoe	ON	A	3962	5	HOT2000	42 52						
39	Sudbury	ON	В	5447	5	HOT2000	46 62	49	59	11.7	29	20	1 05
40	Thunder Bay	ON	В	5746	5	i							
41	Timmins	ON	В	6189	5		40.7		44.4	40.4	24	0.0	
42	Toronto	ON	A	4082	5	HOT2000	43 7			12 1		23	
43	Windsor	ON	Α	3590	5	HOT2000	42 27	37	103	11.7	31	20	1 15
43 1	user defined	ON			5	1							
0													
Quebec	Dogotvillo	QU	D	5776	6	HOT2000	48 33	52	57	11	1 28	20	0 98
44	Bagotville		В			TO 12000	48 33	52	5/	17	20	20	. 090
45	Fort Chimo	QU	C	8460	6	ПОТОССС	4			40.			. 400
46	Montreal	QU	A	4471	6	HOT2000	45 47	44	6 4	10 5	5 30	2:	3 100
47	Poste de la Baleine		С	8225	6							_	
48	Quebec	QU	В	5080	6	HOT2000	46 8	46	7 4	10 5	5 28	2:	2 1 02
49	Schefferville	QU	С	8229	6	I		_					
50	Sept lies	QU	В	6135	6	HOT2000	50 22					20	
51	Sherbrooke	QU	Α	5242	6	HOT2000	45 43	3 49	87	10.8	5 29	2	0 102
52	Val-d'Or	QU	В	6146	6								

Residential Energy & Economic Simulator

WEATHER FILES

Database of monthly weather

11-Mar-94

Tin design 21

Weather data for one city is selected into the OUTPUT range after entering the appropriate City number (see table below) in the INPUT sheet The Output is available as a Lookup table (LOOKWX) for use by the Calc sheet

Weather is long-term data from HOT-2000 (ver 6 02); Note that data for all cities has NOT been entered (see Table below)

(C) (C) (C) (C)

No.	City	Province	Zone	DD18	ProvNo	Source	Latitude	(C) dTdesign	(C) TgrdS	(C) TgrdV	(C) Tcdbdes	(m) Zmet	Solindex
52 1	user defined	QU			6	l			- 0	- 0			
New Brun	nswick												
53	Chatham	NB	Α	4884	7	НОТ2000	47 02	45	76	11.0	30	20	1 04
54	Fredericton	NB	Α	4699	7	HQT2000	45 92	45	77	11 9	29	21	0 98
55	Moncton	NB	Α	4709	7	НОТ2000	46 12	43	77	11.0	28	20	1 02
56	Saint John	NB	Α	4771	7								
56 1	user defined	NB	Α		7								
Nova Sco	otia												
57	Greenwood	NS	Α	4130	8	1							
58	Halifax	NS	Α	4123	8	HOT2000	44 7	37	85	11 0	26	20	0 94
59	Sydney	NS	Α	4159	8	1 [
60	Truro	NS	Α	4704	8	1 I							
61	Yarmouth	NS	Α	4024	8								
61 1	user defined	NS	Α		8								
Prince Ed	dward Island												
62	Charlottetown	PE	Α	4623	9	HOT2000	46 25	41	75	10 1	26	21	0 96
63	Summerside	PE	Α	4600	9								
63 1	user defined	PE	Α		9								
Newfound	dland												
64	Bonavista	NF	Α	5010	10								
65	Gander	NF	Α	5039	10	HOT2000	48 95	39	67	10	27	20	0 85
66	Goose Bay	NF	С	6522	10	HOT2000	53 32	52	49	10 3	27	20	0 89
67	Saint John's	NF	Α	4804	10	HOT2000	47 52	35	67	85	24	20	0 76
68	Stephenville	NF	Α	4783	10	HOT2000	48 53	38	67	10	24	20	0 89
68 1	user defined	NF			10								
Yukon Te	erritory												
69	Whitehorse	YT	Α	6879	11	HOT2000	60 72	62	20	14	25	15	0 82
69 1	user defined	YT			11								
69 2	user defined	YT			11								
Northwes	st Territories												
70	Baker Lake	NW	E	10870	12								
71	Fort Smith	NW	A	7852	12								
72	Frobisher Bay	NW	F	9845	12								
73	Inuvik	NW	С	10174	12								
74	Norman Wells	NW	Ċ	8830	12								
75	Resolute	NW	H	12549	12								
76	Yellowknife	NW	В	8593	12	НОТ2000	62 47	64	40	14	25	17	0 94
76 1	user defined	NW			12	1	••					• • •	

											ŀ		ŀ						
Summary of	ō						i de l'actività i l				+		+	+	+				
Base Houses:		Based on:	Archetypal house	s generated from	Archetypal houses generated from STARmod1.xls database	atabase		21-Mar-94					-						
				(single detached	(single detached houses only; bsmt temp. > 10C; ceiling area > 0)	t temp. > 10C;	ceiling area > 0)							+					
			Pollutant factors based on MatProp0.xls	based on MatPro	po.xls	-	and broadedone.	Z-Apr-93								1			
				(operating energ	(operating energy uses provincial/regional erect, source preakdown) embodied factors use X-Canada elect, source breakdown)	lect, source brea	ource preaktown, akdown)							-					
			Housing statistics	from Statistics C	Housing statistics from Statistics Canada (Urban + Rural, single detached)	ural, single deta	ached)	1989											
			Simulations using	1 HOT-2000, ver.	5,06 and long tern	n weather; elect	Simulations using HOT-2000, ver. 5.06 and long term weather; electric heat (other fuels use appropriate seasonal eff.)	seasonal eff.)											
			Using space & wa	ater heating fuel	Using space & water heating fuel split from database (local)	(local)									-		-		+
													-				!		
										Space									
						-			Solar System	Τ_	<<<<< HRV >>>>>	<<< </th <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	-						
	-	No.houses in				Construction			WJly	%	(s/l)	(%)	၁	o	O	EE E	8	ac/h e	ac/h (kW/d)
Age	Region	sample	CanStatType	HouseType	Q	Date	Description	Clfy	CSIA		VentRate	HRVeff		\dashv	4	4	7	-	BaseLoad
<1921	BC	10	UrbanRural	Single	BC0020B	1909	Archetype - base case	Vancouver	0	82%	0	%0	18.3	15.3	5.0 3.5	5 478	0.70	9.0	15.0
1921-45	ည္ထ	22	UrbanRural	Single	BC2145B	1935		Vancouver	0	71%	5	%	10.	+	+	-	+	+	17.8
1946-60	ည္က	8	UrbanKural	Single	BC466UB	1934	Archetype - base case	Vancouver	0 0	76%	0	%0	186	+	150	+	+	+	17.7
1961-70	3 2	16	UrbanRural	Single	BC7180B	1974	Archetype - base case	Vancouver	0	79%	0	%0	18.0	+	5.0 3.5	5 553	\vdash	\vdash	18.5
>1981	88	212	UrbanRural	Single	BC8189B	-	Archetype - base case	Vancouver	0	73%	62	%0	20.9	Н	15.0 3.				14.3
														\dashv	\dashv		+		,
<1921	PR	11	UrbanRural	Single	PR0020B	1912	Archetype - base case	Edmonton	0	%02	0	%0	19.7	-	+	-	+	0.00	15.1
1921-45	PR	16	UrbanRural	Single	PR2145B	1935	Archetype - base case	Edmonton	0	72%	0	%	18.7	+	15.0 3.5	369	0.47	0.00	15.6
1946-60	æ	4	UrbanRural		PR4660B	+	Archetype - base case	Edmonton	٥	73%	0 0	8 8	19.7	+	+	+		+	17.6
1961-70	R.	49	UrbanRural	4	PR6170B	+	Archetype - base case	Edmonton	5 6	7697	> 0	8 8	- 0	18.2	+	485	0.20	+	17.5
1971-80	#	43	UrbanRural	Single	PR/180B	19/5	Archetype - base case	Edmonton	0	7079	27	80	20.9	+	+	+	+	ł	14.0
>1981	¥	04	OrbanKural	Single	PK81895	8081	Alcheighe - base case		5	8 5	5	800	0.17	+	+	-	+	-	
<1921	NO	14	UrbanRural	Single	ON0020B	1903	Archetype - base case	Toronto	0	77%	0	%0	19.1	-		5 520	0.78	0.00	18.5
1921-45	NO	19	UrbanRural	Single	ON2145B	1934	Archetype - base case	Toronto	0	73%	0	%0	19.4			3.5 416		0.0	16.1
1946-60	NO	55	UrbanRural	Single	ON4660B	L	Archetype - base case	Toronto	0	74%	0	%0	19.2	15.4	-	4	+	-	16.9
1961-70	NO	28	UrbanRural	Single	ON6170B		Archetype - base case	Toronto	0	%92	0	%0	19.6	-	+	5 529	0.33	+	17.1
1971-80	NO	27	UrbanRural	Single	ON7180B	_	Archetype - base case	Toronto	0	74%	0	%0	19.4	-	+	+	+	+	0.7
>1981	NO	42	UrbanRural	Single	ON8189B	1989	Archetype - base case	Toronto	0	%69	- -	%	0.12	70.07	\perp	748	8.0	50.0	1
<1921	ī	7	UrbanRural	Single	QU0020B	1891	Archetype - base case	Montreal	0	87%	0	%0	+	16.7	\perp	+	\vdash	H	16.9
1921-45	3	-	UrbanRural	Single	QU2145B		1 1	Montreal	0	73%	0	%0					-	0.00	17.4
1946-60	g	48	UrbanRural		QU4660B		Archetype - base case	Montreal	0	%92	0	%0	_	+	4	+	+	_	15.8
1961-70	σΩ	31	UrbanRural		QU6170B	1966	Archetype - base case	Montreal	0	85%	0 0	%0	20.0	16.3	15.0 3.5	457	0.32	000	15.5
1971-80	3 5	8 8	Urbankura	Single	QU/180B	+	Archetype - base case	Montreal	0	100%	0	%0		+	-	+			14.0
	3	3												\vdash					3,7,
<1921	ΤM	3	UrbanRural	_	MT0020B	-	Archetype - base case	Halifax	0	80%	0	% 6	20.7	+	+	+	+	+	5 6
1921-45	TM:	3	UrbanRural		MT2145B	1940	Archetype - base case	Hallfay	0	25%	0	%0	181	15.0	15.0 3.5	433	0.60	0.00	17.4
1940-00	I M	- 4	UrbanRural	Single	MT6170B	+	Archetype - base case	Halifax	0	74%	0	%0	18.2	+					16.6
1971-80	¥	33	UrbanRural		MT7180B	╀	Archetype - base case	Halifax	0	93%	0	%0	18.2	15.3	Н				16.2
>1981	M	5	UrbanRural	L	MT8189B	1989	Archetype - base case	Halifax	0	%66	42	37%	21.0	\dashv	\perp		+	\dashv	15.1
Canada:															+			+	+
<1921															$\frac{1}{1}$	+		<u> </u>	-
1921-45																+			
1946-60													+		1	-	-		
1961-70					_	_								-	-	_			
1971-80						-													
2															-	1	+	 -	+
TOTAL		765											+		1		+	1	+
											-		1	1	_	-			

SAR engineering ltd.

								Areas	<u> </u>	ASfirper	29.0	23.5	22.1	22.7	4.47	20	15.0	6.1	4.2	2.0	3.6	9.1		14.0	15.6	6.2	4.7	18.2	0.0	3.9	13.9	14.1	11.3	80.	2	3.0	0.0	11.9	15.1	19.3	6.5									_
								Shallow Bsmt. Areas	m2	ASbgwall	20.5	19.4	19.7	20.7	0.42	0.0	10.4	6.9	4.6	2.2	3.8	10.3		16.4	16.7	7.2	0.9	20.5	0.0	5.1	15.2	16.1	12.3	12.3		4.8	0.0	9.7	13.7	22.0	6.9									
								Bsmt	ÇE	Aabvgrd	44.1	41.5	43.4	54.1	22.5	0.4	21.9	18.3	27.3	29.9	26.4	31.1		23.9	23.4	26.2	25.2	37.8	73.6	20.1	24.4	32.4	32.0	39.5	31.5	10.7	19.4	38.6	43.2	38.2	24.8									
									m2	Auhosfir	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0									
					i			Juheated:	m2	AuhosWall	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0									
									cm	Ahosotr	3.1	0.0	0.0	0.0	0:0	16.4	0.0	0.0	9.0	0.0	0.0	0.1		0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0		Ì							
									2	Ahosper	1.9	0.0	0.0	0.0	0.0	8.8	0.0	00	4.0	0.0	0.0	0.8		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		T							
								Heated:	T	hcsWall	0.0	0.0	0.0	0.0	0:0	10.6	0.0	00	0.0	0.0	0.0	13		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0									-
								Ĭ		Aslabetr	-	0.0	1.4	0.0	0.0	19.2	0.0	0.0	4.	6.	0.0	0.0		0.0	0.0	4.4	1.1	2.3	0.0	0.0	0.0	0.3	0.0	1.3	0.0	0.0	0.0	0.0	0.0	7:	2.1	-	+	+				_		
					+			h Arose	m2 cm2	-	╁	0.0	0.7	0.0	0.0	10.5	0.0	18	1.9	0.7	1,3	0.0		0.0	0.0	4.7	6.0	4.9	0.0	00	4.2	1.6	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.5	1.2	-	+	$\frac{1}{1}$				_		
		+			-			i di	5 6	Ē	╁	8.9	34.3	15.9	20.6	40.9	7.9	14.4	7.7	2.0	12.1	7.5		20.2	9.7	10.1	18.2	27.0	8.1	8.7	17.9	8.4	7.5	8.5	3.3	37.6	30.4	25.9	3.1	9.0	9.6	-	-	+	-				+	
						+			î	Т	7.1	5.8	6.2	5.4	0.0	5.5	5.3	4.4	44	4.3	4.2	3.5		5.4	4.7	5.2	4.4	3.2	4.5	35	4.1	6.1	7.7	6.1	2.5	2.4	8.4	4.9	4.5	4.4	4.5		+	+						
			-		-				-	1	┞			129.4	4	+	29.8	76.7	18.5	117.2	26.3	42.6		04.6	139.5	35.0	44.7	30.9	97.0	613	48.5	133.0	17.5	13.0	15.9	47.9	31.8	131.7	12.2	17.8	61.6	+	+	+						
									٢	1	1-	\vdash		115.4	-	+	+	╁	╀	103.4	+	+	+	+	80.0		_	-	+		╁	97.3		\dashv	+	-	_	97.4	Н		╀	+	+							
	-				-				1	Acfr 4		-	Ĺ		_	556.3	379.9	+	394.4	+	466 7 1	+	+	473.7	_	Ĺ	ľ	Ì	591.5	+	424.4	-	_	422.4	_	369.7	L			438.4		-	1	-	+					
		-							9	Ĕ	3.077 4	ŀ	-		2,171 5	+	1 359 3	+	1 052	╁	+	586	-	2,432 4	\vdash		1,685 4			1 018	+	-		\dashv	522	2.103	-	-			\vdash	+	-		+					
			-	-	-	-			-	5	15 3.	+	13 2,			9	-		+	\dagger	- 4	-		11 2.	-		9 1,		4	+	9 6			6 1,	+	14 2.			1,	-	3	+		+				-		
		-	+	-	+					ĝ	+	-				-	+	7.7	+		-	-								+	2.5	1			2.0	2.0				_		+	+	+			-			
		+			+				1		2.0	-		5 2.3		+		+	-	+	2.2	+		2.3	-	-				+	+	-	-				1		 	9 2.5		+	+		+	_				-
					-			+	T	5	144			3 205			174	+	777	+	2 2	ł	+	189	-		H			-	+	185				145		199	-	5 219	\vdash	+	+	+	+	+			_	
		+								+	0.9				1.0	+	200		+				1	2.2		1.3	<u> </u>	1.0		-				0.3		-	-	-	-	0.5	H	+	+	-	$\frac{1}{1}$	+	<u> </u>	_		
Summary of	Base Houses:		-						+	+	1		L	O BC				1	1	ב ב	1	1	+	+	NO 92					-	1	2 00				-	15 MT			MT MT	Ш	a:		5 0	2 5	وام	2 -	_	_	
Summ	Base										√ge <1921	1921-45	1946-60	1961-70	1971-80	>1981	71021	1004 45	1046 60	1061 7	1071 80	8/1-0	190	<1921	1921-4	1946-60	1961-70	1971-80	>1981	7007	1021 45	1946-6	1961-7	1971-80	>1981	<1921	1921-45	1946-60	1961-7	1971-80	>1981	Canada:	<1921	1921-45	1946-60	1971-80	>1981		TOTAL	

Summary of	jo	ľ						_							_						
Base Houses:	ses:																				
												1									
		Ì								-											
																1					
			Deep basement Areas (m2):	t Areas (m2):			Windows:													Heated c/s	2000
	Е	щ2	щ2	ш2	ш5	E ZE	m2	<u> </u>		Т		т2 ш2		=	\neg					-	mzc/w
Age	Region	ASfirct	AFbgUwall	AFbgLwali	AFfirper	AFfiretr 0.7	AWs	AWse	AWe	AWne	AWh 2 B	AWnw	3.7	AWsw 0.0	Floor_Area	Reing 1.88	1.27	10.47	0.91	0.00	0.00
12872	2 6	22.2	0.7	11.0	101	16.3	0.5	000	4.6	00	3.4	0.0	4.5	0.0	176.0	3.05	1.45	0.40		-	
1946-60	3 8	34.5	5.5	10.7	7.8	12.7	9.9	0.0	5.8	0.0	5.2	0.0	6.2	0.0	169.7	3.72	1.81	0.41	1.52		
1961-70	28	36.2	10.0	18.3	15.1	27.8	7.1	0.0	5.6	0:0	5.5	0.0	7.3	0.0	197.6	3.41	1.97	0.45	2.31		
1971-80	BC	45.2	7.6	13.9	11.3	19.8	7.1	0.0	8.5	0:0	8, 6	0.0	0.6	0.0	212.5	3.53	2.20	0.46	3.04	83	000
>1981	S	0.0	10.8	22.5	15.6	26.6	7.2	2.1	9.6	7.7	2.0	8.0	8.0	0	5	3	200.7	5	8	8	
71007	00	14.7	12.6	22.5	184	26.3	2.2	0.0	2.8	0.0	3.5	0.0	3.8	0.0	156.5	3.38	2.06	0.59	1.58		
1921-45	2 2	6.9	13.9	26.8	20.2	28.1	3.0	0.0	3.2	0.0	2.2	0.0	2.4	0.0	141.8	3.62	2.10	0.57	1.09		
1946-60	8	6.1	18.1	29.5	26.7	40.6	2.8	0.0	3.8	0.0	2.9	0.0	3.7	0.0	160.3	3.98	1.98	0.60	1.20	0.0	0.40
1961-70	R.	3.2	23.6	45.1	35.6	59.3	4.0	0.0	4.1	0.0	4.1	0.0	3.3	0.0	190.5	3.24	2.12	0.58	1.33		
1971-80	PR	6.1	21.8	45.0	32.7	57.5	3.9	0.0	4.6	0:0	3.5	0.0	1.4	0.0	186.7	20.00	2.33	10.0	20.7	1 80	5
>1981	PR	14.6	18.9	41.2	28.8	43.2	3.2	0.4	3.4	9.0	3.8	0.5	3.9	9.0	0.822	0.90	3.02	70.	4.07	60.	3
74007	2	18.7	α	17.0	14.3	23.2	5.2	0.0	1.4	0.0	3.4	0.0	3.8	0.0	200.1	3.37	1.43	0.54	0.85		
1921-45	5 6	180	10.3	19.0	15.3	19.9	4.0	0.0	3.8	0.0	3.9	0.0	3.5	0.0	159.9	4.24	1.49	0.51	2.16		
1946-60	NO	7.2	20.1	37.2	30.2	51.6	4.5	0.0	4.9	0:0	4.1	0.0	5.1	0.0	195.1	11.4	1.71	0.51	1.84		
1961-70	NO	7.5	19.9	38.1	29.7	51.4	5.3	0.0	6.5	0.0	5.1	0.0	5.7	000	203.5	3.62	2.05	0.53	2.09		
1971-80	NO	26.5	9.0	16.2	13.3	22.6	3.9	0.0	5.7	0.0	3.7	0.0	5.0	0.0	102.7	0.30	2.51	184	5.23		
>1981	S	0.0	26.8	62.7	41.7	9.69	6.7	8.0	8,6	8.0	0.0	5	0.	9.	353.3	20.0	6.3	<u> </u>	27.5		
<1921	e	4.9	19.3	32.0	28.7	45.2	2.6	0.0	2.8	0:0	4.0	0.0	3.1	0.0	194.5	2.94	2.72	0.48	0.82		
1921-45	88	18.6	10.3	18.2	15.0	29.3	3.6	0.0	3.7	0.0	2.8	0.0	3.4	0.0	170.2	3.68	2.01	0.46	0.73		000
1946-60	ş	23.0	12.9	22.6	19.2	32.5	4.1	0.0	3.8	0.0	3.9	0.0	4.7	0.0	183.0	4.23	1.96	0.48	211	30.00	0.00
1961-70	3	18.4	15.2	27.4	22.7	40.6	8.4	0.0	U. 4	0.0	4 6	0.0	y. 4.	0.0	169.7	377	243	0.47	2.59		
19/1-80	3 3	1.7	21.8	33.1	29.6	47.6	2.6	1.7	2.8	1.9	2.8	2.1	3.1	1.7	181.0	5.84	3.64	2.22	4.93		
													0		7777	720	2 50	270	07.0		
<1921	¥.	0.5	13.1	23.3	19.2	14.8	5.9	0.0	2.0	0.00	2.5	0.0	2.7	000	130.1	1.73	2.08	0.51	0.85		
1921-40	2 2	200	13.3	20.5	19.6	28.1	3.8	000	3.5	0.0	2.9	00	4.4	0.0	166.4	3.07	1.90	0.45	1.1		
1961-70	¥	23.4	14.3	20.0	21.6	37.5	3.9	0.0	4.3	0:0	4.3	0.0	3.3	0.0	180.6	2.89	1.79	0.49	3.01		
1971-80	F	30.5	10.7	18.9	16.0	28.6	5.0	0.0	3.6	0.0	4.2	0.0	4.4	0.0	178.1	3.27	2.25	0.48	1.20		
>1981	ΤM	11.9	20.3	39.8	28.6	49.5	4.5	1.5	3.6	0.0	4.1	1.6	4.5	0.2	240.3	6.14	3.70	1.90	5.05		
Canada:																					
<1921											+	+								1	
1921-45																		-			
1946-60																					
1961-70																			i		
1971-80																					
200																					
TOTAL													+								
												1	_								

96/2/9

	•									-	-							-		-	
Summary or	ō											-									
Base Houses:	ises:												+				-				
													+]
						Slab RSI		Bsmt	Shallow basement	-	۵	Deep basement RSI nominal:	Si nominal:								
			S's				T		Α Ν		1										, av
	П	Т			m2C/W	\neg	\neg	-	타	Ē	Т	m2C/W m2		E						-	mzc/w
Age	Region	Rhesetr	Ruhcswall	Ruhcsper	Ruhosotr	Rslabber	Rslabctr	+	RSbgWall 0.58	+	RSflrct R	r-bgUwall n		+	A-Incir	0.26	Kwse	0 25	Kvvne	╁	WIIM
1281	2 6	3						╈	+	8 8	Т	0.62	-	0.30	030	0.26		0.26		0.27	
1946-60	2 2					00.00	0.00	1.13	0.75	0.00		0.47		0.27	0.27	0.28		0.27		0.29	
1961-70	BC							1.37	\vdash	0.00	0.00	0.53	0.53	0.27	0.27	0.28		0.29		0.29	
1971-80	BC							1.35	0.37	0.00		0.36	0.36	0.26	0.26	0.29		0:30		0.29	
>1981	BC	0.00				0.59	0.40	1.17				1.14	1.14	0.05	0.05	0.36	0.36	0.36	0.36	0.36	0.36
<1921	PR		1					0.64	0.28	0.00	0.00	09.0	09.0	0.20	0.20	0.37		0.39		0.38	
1921-45	R					0.00		0.56	0.26	0.00	0.00	0.42	0.42	0.23	0.23	98.0		0.35		0.36	
1946-60	R.	0.40				0.00	00:00	0.95	1.07	0.00	0.00	99.0	99.0	0.36	0.36	0.37		0.37		0.38	
1961-70	PR					0.00	00'0	0.95	0.55	0.00	0.00	0.75	0.75	0.33	0.33	0.35		0.37		0.36	
1971-80	H.					0.00		1.35	0.83	0.00	0.00	26.0	76.0	0.33	0.33	0.36	ţ	0.37	2	0.36	9
>1981	R.	0.00						1.88	1.87	0.00	0.00	1,66	1.59	80.08	80.0	84.0	74.0	84.0	70.0	94.	06:0
<1921	NO							0.65	0.41	0.00	0.00	0.33	0.33	0.20	0.20	0.35		98.0		0.37	
1921-45	NO							0.72	0.41	0.00	0.00	0.80	0.80	0.32	0.32	0.36		0.37		0.37	
946-60	NO					0.00	00.0	0.75	69:0	0.00	0.00	0.56	0.56	0.28	0.28	0.37		0.37		0.37	
1961-70	NO					0.00	0.0	0.91	0.63	0.0	0.00	0.63	0.63	0.29	0.29	0.37		0.36		0.37	
1971-80	S					0.00	0.00	35	08.0	90:0	0.00	1.00	0.00	07.0	07.0	C. C.	98.0	95.0	0.36	0.36	0.36
×1981	NO							1.44				1.4/	40.0	0.00	3	0.30	85.5	00.00	95.0	200	3
<1921	90							66.0	0.78	0.00	0.00	1.20	1.20	0.23	0.23	0.38		0.38		0.38	
1921-45	G					0.00		06:0	99.0	0.00	0.00	0.57	0.57	0.23	0.23	0.38		0.38		0.38	
1946-60	g	0.00				0.00	0.00	1.07	98.0	0.0	0.00	0.86	98.0	0.32	0.32	0.37		0.36		0.38	
1961-70	3						300	1.31	1.27	0.00	0.00	1.18	1.18	0.42	0.42	0.37		0.39		38.0	
1971-80	8 8					0.00	0.00	1.39	0.83	000	800	1.95	1.53	0.00	0.00	0.39	0.40	0.39	0.40	0.39	0.39
3	25																			200	
<1921	Ψ							1.19	0.26	000	0.00	0.96	0.96	0.12	0.12	0.33		0.35		0.32	
1921-45	¥.							0.92	200	8	5	0.30	0.50	2 2 2	0.13	0.35		0.35		0.39	
1940-60	ΣŞ							0.02	0.83	000	0.00	0.81	0.81	0.29	0.29	0.36		0.34		0.34	
1901-70 1971-80	E L					000	00.0	1.33	1.15	00.0	0.00	0.92	0.92	0.38	0.38	0.35		0.33		0.34	
1981	Ψ					1.76	1.76	2.50	2.52	0.00	0.00	1.65	1.16	0.18	0.18	0.37	0.38	0.37	0.38	0.37	0.38
Canada:																					
<1921										+											
1921-45																					
1946-60										-											
1971-80																					
>1981																					
										+				+							
TOTAL										+		+									
1										-											

Summary of	of															1					
Base Houses:	ises:																				
												\dagger									
											+	\dagger									
					1 1 1 1 2 2 2 2 2	Paremon				Init Operati	Init Operation Frency Use by End use & Fuel Type	Ise by End	use & Fue	Type							Unit Total
					Sielle IIIIO	OIIIL EIREIBY DEIIIAIN	Offit Efferly Defination	******	DHW	Utilities + Out	20.	Space Heat				5	Water Heat				
		m2CAV	m2CAV	8	A) S	ALD OJV	SJ/v	GJ/y	GJly	GJÍY	GJ/y	GJ/y	GJİy	_	-		Н		-	GJ/y	GJ/y
Age	Region	RWW	RWsw	Destross	SpHtDmnd	IntGain	SolGain	TOTload	DHWload	Н	SpHtElect	\vdash		\perp	-	DHWElect	\dashv	_	_	OHWSolar 0.0	Coal
<1921	S	0.25		19,042	103.5	22.7	17.5	138.0	7.9	-	50.1	\dashv	\dashv	_	\dashv	9.4	+	_	-	0.0	0.0
1921-45	BC	0.25		14,899	69.0	24.2	17.7	99.2	9.3	+	4.2	27.9	58.5	0.0	20.7	2.0	5.0	2.7	00	00	0.0
1946-60	2 2	0.28		13,782	6.07	7.07	70.0	1401	11.0	┿	21.5	+	+	4-	+	43	╁	$^{+}$	+-	0.0	0.0
1961-70	2 6	0.28		15 196	81.9	27.3	25.2	124.6	11.4	+	20.1	╀	+	4-	+-	4.7	-	_	_	0.0	0.0
>1971-00	2 2	0.36	0.36	11,578	89.2	27.0	22.3	136.9	13.3	27.2	18.5	Н	\vdash	-	1	2.2	H	\vdash	щ.	0.0	0.0
										7		15	000	- 6	0,0			46.6	6	C	20.7
<1921	PR	0.38		16,091	122.4	24.3	12.2	156.9	11.1	25.0	0.0	33.7	139.9	0.0	12.2	9.0	2. c	15.5	0.0	0.0	410
1921-45	Ж	0.37		14,683	105.4	24.1	13.3	137.6	9.1	25.2	6.9	36.1	7.001	200	5.57	7.0	2,7	13.4	0.00	200	43.4
1946-60	æ	0.38		13,485	98.8	24.7	13.7	134.3	11.4	20.2	4.4	23.3	120.5	0.0	15.0	2.5	0.6	17.6	00	000	70.5
1961-70	۲ (0.36		14,079	103.1	8.97	15.9	122 0	120	0.12	18.0	6.7	7 20 2	200	15.7	3.4	1.6	16.6	0.0	0.0	56.4
1971-80	ا ا	0.38	9,0	13,082	92.8	75.0	15.7	152.0	15.3	27.72	0.0	00	1683	00	15.1	0.0	0.0	28.2	0.0	0.0	37.1
>1981	H	0.49	0.46	13,468	112.3	0.62	20.0	7.00.1	7.01	20.07	8	25	200								
1007	200	0.37		22 409	161.2	28.9	19.6	194.6	11.0	29.7	26.5	143.4	43.6	0.0	19.6	6.6	1.3	2.4	0.0	0.0	50.8
1921-45	200	0.36		14.359	101.6	25.4	15.7	131.2	6.6	25.9	6.4	9.77	56.8	0.0	15.7	5.4	2.3	7.0	0.0	0:0	27.8
1946-60	S	0.37		12.927	88.1	25.4	18.6	119.4	9.7	26.6	5.8	51.6	63.2	0.0	18.6	5.4	0.1	8.4	0:0	0.0	29.1
1961-70	No	0.37		12,491	85.3	25.6	21.2	120.6	12.2	26.7	9.1	27.2	77.5	0.0	21.2	5.1	0:	13.7	0:0	0.0	31.5
1971-80	No	0.36		11,111	72.4	25.2	19.0	105.2	11.6	26.3	8.4	5.1	83.8	0:0	19.0	2.4	0.0	17.4	0.0	0.0	78.6
>1981	NO	0.36	0.36	12,744	103.9	23.7	20.4	148.0	13.5	23.9	0.0	0.0	150.4	0.0	20.4	0.0	0.0	6.42	0.0	200	4.0
7007	-	00.0		44 040	108.0	24.5	11.8	138.5	12.9	25.8	59.1	66.5	0.0	0.0	11.8	8.9	10.2	0.0	0.0	0.0	0.0
1921.45	3 2	98.0		15.263	117.1	26.5	13.6	154.1	14.7	27.72	12.0	150.9	0.0	0.0	13.6	10.8	10.5	0.0	0:0	0.0	0.0
1946-60	3	0.37		14,118	105.4	24.0	15.4	141.2	11.2	24.9	34.7	98.6	1.1	3.7	15.4	8.3	7.0	2.0	0:0	0.0	0.0
1961-70	OG.	0.38		12,155	89.0	24.0	16.1	126.1	13.3	24.7	45.4	52.7	9.8	0.0	16.1	11.5	3.2	2.2	0.0	0.0	17
1971-80	2	0.38	30	11,671	84.9	22.7	15.8	119.6	12.6	23.4	83.8	63.6	* 0	0.0	2 6	5.0	0.0	0.0	000	0.0	0.0
>1981	3	0.39	0.38	024.1	5	71.7	2.0	9	ř		2	23	2								
<1921	TM	0.36		14,392	117.3	23.7	17.1	157.0	8.9	23.9	52.7	92.3	0.0	0.0	17.1	9.6	0.0	0.0	0.0	0.0	25.5
1921-45	TM	0.36		14,817	119.2	22.2	12.2	149.7	12.7	22.2	0.0	184.9	0.0	0.0	12.2	0.0	28.1	0.0	0.0	0.0	0.4
1946-60	TM	0.37		14,767	119.7	27.4	13.9	158.7	12.4	27.7	9.02	141.5	0.0	0.0	13.9	5 5	7.0	0.0	0.0	0.0	2.0
1961-70	MT	0.35		12,539	106.8	26.9	13.7	145.7	13.2	26.3	25.2	121.7	0.0	0:0	13.7	11.0	9 9	0.0	0.0	200	0.0
1971-80	MT	0.35		11,254	87.5	24.4	15.3	125.7	13.7	24.6	61.4	37.0	0.0	0.0	15.3	C.71	0 0	2 6	200	0 0	132.4
>1981	TM	0.37	0.37	9,407	76.2	24.8	15.9	116.8	15.5	25.2	4.77	0.0	0.0	0.0	9.6	0.0	2.0	7.0	2.	2.2	
Canada:												+		+							
<1921												+	+								
1921-45													-								
1946-60																					
1961-70																					
19/ 1-80 ×1981																					
																1	+	+		1	
TOTAL														1				+	\dagger		
												1	1							1]

Base Houses:						_	_	_						_	_		_			
															Total Fuer	Total Energy by End Use (T. Ilvear)	se (T.I/vear			
														1989) and (a (6	(1)			
	ource Ope	ource Operating Energy Use	gy Use				Unit Emis	ions due to	Unit Emissions due to OPERATING energy	G energy:				Housing						
							- ınduding	electrical ge	- ıncluding electrical generation split	.				Stock					3	Motor Heat
	GJ/y	GJ/y	GJ/y	GJ/y	GJ/y	GJly	kg/y	kg/y	kg/y	kg/y	kg/y	kg/y	kgý		Utilities	S.	ã	88	Mood	Electric
Age Region	io ;	Gas	Nuclear	Hydro 76.0	Other F 7	TOTAL	CO2op	Particop 1.5	doxos	000 000	NOxop 59.1	03 03 03	£ 6	30.145	708	1,510	1,981	341	0	138
_	28.7	81.4	0.0	34.6	2.6	147.3	6,389	7	3.7	0.2	27.7	0.2	0.1	107,100	1	1	2,992	6,911	0	609
1946-60 BC	36.6	80.4	0.0	46.1	3.4	166.6	6,997	1.2	4.7	0.2	33.8	0.3	0.1	186,710		2,645	6,439	10,918	0	1,053
	26.7	81.5	0.0	52.1	3.9	164.1	6,364	1.2	3.9	0.2	25.9	0.3	50	133,505		1	3,207	7, 799	5 6	2/8
1971-80 BC	18.0	96.2	0.0	52.2	3.9	170.3	6,463	£. 4	3.0	0.3	19.9	0.3	0.2	129,924	3,529	2,400	0	13,836	0	284
_	9.5	 C:3	0.0	-	3	2	35.	:												
	38.5	159.8	0.0	15.2	7.0	247.0	13,661	4.6	31.9	3.3	48.5	0.3	0.2	110,948		0	3,741	15,520	0 0	70%
	38.6	121.5	0.0	20.6	6.0	222.7	12,504	5.2	38.9	0.4	48.4	0.3	0.2	168,504			6,090	32 201	5 6	1 003
1946-60 PR	25.4	129.3	0.0	19.3	0.9	218.4	12,133	5.4	39.7	5.4	36.7	5.0	7.0	186.788	5.188	1,508	2.273	22,457	0	467
	12.7	120.5	0.0	32.4	3 6	2188	11,57,5	9.9	49.0	5.3	27.9	0.3	0.2	275,851			1,847	26,679	0	951
2 -	0.0	200.6	0.0	14.0	0.8	252.5	13,262	5.0	31.7	3.7	21.2	0.3	0.2	152,463		0	0	25,666	0	0
											1			000	0 710	7 704	020 04	12 700	c	2 898
	146.8	48.7	32.1	20.0	4.0	298.8	17,593	6.3	39.6	0.0	75.0	5.0		293,320		ŀ	18,954	13.864	0	1,317
	81.1	23.5	18.4	2.5	0.0	185.3	10.052	3.7	31.0	2.9	53.2	0.2	0.1	523,527			27,016	33,089	0	2,850
1961-70 ON	28.5	92.9	19.9	12.4	0.3	185.4	9,453	3.9	30.6	3.1	35.3	0.2	0.1	291,760	7,781	2,663	7,922	22,617	0	1,498
	6.3	102.7	18.0	11.3	0.2	167.1	8,064	3.6	25.8	2.8	17.5	0.2	0.1	318,531			1,623	26,683	5 0	89/
	9.0	176.3	11.6	7.2	0.2	214.4	10,425	2.9	16.3	2.0	15.1	0.2	0.2	364,300		5	5	26.40 28.	>	
71021 OIL	0.08	00	33	7 66	0.0	182.9	5,848	0.5	10.3	0.2	61.9	0.1	0.0	127,881			8,500	0	0	1,140
	163.2	0.0	1.8	53.6	0.0	218.5	11,928	1.0	17.8	0.3	129.4	0.2	0.0	92,711			13,992	0	0	1,001
	108.0	4.8	2.4	72.1	3.7	191.0	8,134	2.0	12.6	0.2	85.2	1.0	0.0	235,390			23,218	929	6/8	1,955
Ц.	58.8	11.9	2.8	86.7	0.0	160.3	4,895	0.5	13.1	0.7	23.9	5	0.0	727 748			5,702	1,690	0	2,686
1971-80 QU	38.0	4.8	3.2	98.9	0.0	103.0	236	0.1	2.4	0.0	0.5	0:0	0.0	188,034	3,966	10,147	0	0	0	2,998
						004.0	4000	C	136 E	2.2	100 5	0.7	0.0	104 486	2 494	5.502	9 643	o	0	666
	217.0	0.0	4.72	14.3	4.4	254.2	17 536	2.0	41.2	0.8	174.8	0.3	0.1	71.687			13,257	0	0	0
_	199.0	0.0	10.8	32.3	17	253.9	15,632	3.2	64.5	1.3	127.4	0.4	0.1	116,284			16,452	0	0	1,342
1961-70 MT	139.8	0.0	0.0	65.4	0.0	205.2	10,231	1.0	21.9	0.3	104.5	0.2	0.0	77,904	2,052	1,960	9,480	0	0	826
	93.8	0.0	8.6	79.0	1.4	190.7	7,729	2.3	51.0	6.0	43.7	0.3	0.1	123,055			4,551	0		1,542
	71.7	0.0	0.0	60.3	3.5	267.9	17,115	15.2	167.5	12.1	44.9	9.0	0.2	84,329			0	0	0	1,404
Canada:									1					666 980			65 944	28.651		5.246
- !														684 173		3,859	55,286	38.502		3,135
45														1.356,041			926,67	77,167		8,202
1946-60														875,044	23,215	17,508	32,643	54,118		5,519
2 08														1,156,834	Ш		17,075	69,551		6,941
>1981														919,050		19,084	0	94,295		4,686
																704 777				33 729
TOTAL						l								200			25000	780 087		

Summary of	Jo >																		+		
Base Houses	nses:																				
												+								-	
																100	ONE.				
					Operating	Energy Use	by Source							Ш	Emissions due to Or Erra Hivo energy.	10 OF ER	Silling Chilling	.,	-		
					- at the house	esn			- including	- including electrical generation	eneration s	split		•	- including electrical generation split	ctrical gen	eration spli				
					(TJ/year)				(TJ/year)									1	1	9	110
];		ē	d	1	1	ě	(formetveer)	Partic.	SOx	(fonne/vear)	(fonne/vear)	(tonne/vear)	(tonne/year)
Age	Region	io 140	Gas	Wood	Electric 2.356		Gas 429	i i	g 0	2.158	1.076	O	2,319	1	227,523	45.9	-	+	1	-	2.8
1921-45	2 2	27	774	0		3,019			0	3,079	8,717	0	3,701	276	684,240	113.0	395.5	24.0	2,962.3	22.9	11.5
1946-60	28	254	1,701	0			`	0	0	6,833	15,018	0	8,611	642	1,306,356	229.3	885.5	7.44	6,317.8	47.8	21.4
1961-70	BC	243	1,700	0					0	3,562	10,874	0	6,956	518	849,688	166.0	575.4	7.67	4 200 2	50.4 57.5	27.7
1971-80	BC	0	2,773	0		3,63	17,271		0	3,816	20,351	5 0	11,050	458	1,307,973	170 0	145.5	37.4	1 131 6	36.8	22.0
>1981	2	0	2,714	0	6,213	0	16,550	0	5 6	40 540	4C7'8	9 6	38 754	2 888	5 393 198	1,005	2.844	192	19.865	211	101
200,	6	003	4 740		2 244	0967	17 230	orane.	3 633	4 270	17 729	0	1,689	79	1.515.637	507.1	3,539.4	371.1	5,376.3	30.6	20.9
12617	¥ 8	970	2 137			L		0	6.900	6.511	20.479	0	3,478	160	2,107,006	875.9	6,557.4	675.2	8,154.8	43.7	26.2
1946-60	2 2	419	3 949	0		7.464			12,770	7,467	38,033	0	5,687	270	3,568,608	1,590.6	11,664.8	1,240.7	11,431.2	75.5	47.8
1961-70	H.	105	3.297	0					13,177	2,381	27,803	0	2,665	252	2,722,017	1,536.7	11,487.7	1,246.7	6,859.3	0.09	36.8
1971-80	PR.	436	4,572	0	•	2,283			15,553	2,286	33,239	0	8,936	352	3,200,642	1,821.3	13,513.2	1,471.3	7,706.0	73.0	44.2
>1981	PR	0	4,301	0	3,933	0	29,967	0		-	30,577	0	2,139	123	2,021,920	1,67.8	4,835.1	5/0./	3,229.4	227	24.4
					ŀ		Prairie	s Subtotal:		22,915	167,859	2	24,594	1,236	15,135,630	1 062 4	17 405 0	1 456 B	38 646 1	95.9	30.1
<1921	8	379	969	0	`			0	14,910	43,076	18,291	3,412	2,000	1 4	2 834 515	905.4	7 989 0	682.7	18,308.1	48.8	23.2
1921-45	8 8	571	1,713	0	8,833			37 482		27.716	38,304	9,612	6.00.9	126	5,262,426	1,946.7	16,212.6	1,502.7	27,846.0	95.2	51.9
1940-00	3 8	9 0	4 001			7.922		0		8,303	27,113	5,795	3,622	9/	2,757,876	1,147.2	8,917.0	1.768	10,299.7	53.0	34.0
1971-80	8	0	5,532	0		L	1	0		2,001	32,706	5,748	3,593	9/	2,568,659	1,135.4	8,209.8	889.0	5,571.6	52.1	38.5
>1981	8	0	9,067	0			l	0	6,692	278	64,221	4,224	2,640	99	3,797,701	1,068.4	5,919.9	731.3	5,511.1	77.3	68.3
							Ontario	Subtotal:	61,90	101,181	192,577	39,077	24,427	514	22,385,144	8,066	64,743	6,160	7 044 4	412	246
<1921	g	1,304	0	0	12,004					10,226	0	417	12,751	0	747,888	67.3	1,320.2	20.02	11 005 0	- 4	2.0
1921-45	8	970	0	0					0	15,126	0 8	162	4,968	0 020	1,105,865	167.1	1,000.9	53.1	20.044.3	777	5.7
1946-60	3	1,642	164	0	15,978	24,860	1,123			174,67	2 206	525	16,972	6 0	905 308	86.0	1.459.6	26.2	8.500.0	14.2	4.4
1961-70	3 5	294	398						36	8,660	1,909	1.158	22.742	89	770,668	150.0	2,977.7	56.6	5,441.7	19.2	6.3
>1971-00	3 5	5 0	0							009	0	294	18,176	0	44,429	12.0	456.3	1.2	96.1	1.8	0.6
	9						Quebec	Subto		70,920	5,238	3,411	91,655	947	5,489,350	575	10,827	- 1	53,989	88	21
<1921	μ	0	0	0					2,669	22,670	0	2,860	1,349	429	1,943,419	654.1	13,219.4	7.987	10,504.9		19.0
1921-45	LΜ	2,016	0	0					787	16,778	5	200	2757	8 5	1,437,070	0.70	7 505 5		14 815 5	45.5	11.2
1946-60	¥:	428	0	0	6,965		0		80-	10 803	0	207,	5,095	30	797,058	78.0	1,703.6	21.8	8,137.7	12.7	2.5
1961-70	Σ:	71.0			ľ	5,332			786	11.546	0	1054	9.716	169	951,042	283.1	6,271.8	111.9	5,380.2	32.7	9.1
19/1-60	- F	700	2 0					0	11.164	6.044	0	0	5,085	299	1,443,290	1,282.1	14,126.8	1,017.3	3,783.5	46.8	14.0
Canada:	Ē	2					Maritimes	Subtota	16,270	91,075	0	5,471	25,809	1,177	8,209,598	2,828	45,778	1,648	55,156	231	61
<1921		2,351	2,503		45,592		1		21,212	82,400	33,095	12,688	23,992	834	9,598,433	3,137	35,844	2,141	64,219	500	75
1921-45		4,003	4,624		24,403	59,288	43,125		13,975	61,300	45,138	4,754	15,634	541	7,988,702	2,145	19,543	1,471	53,955	153	130
1946-60		3,006	10,207		61,309				29,166	90,581	92,477	11,420	41,036	2,119	13,869,695	4,307	39,230	2,993	80,455	292	138
1961-70		1,455	968'6		46,243				22,357	36,025	966'29	6,319	34,382	846	8,032,547	3,014	24,083	2,221	37,260	1/5	126
1971-80		1,582	13,095		71,408	18,65			26,035	28,310	88,205	7,960	56,037	1,488	8,858,986	3,661	31,604	2,578	13 752	207	139
>1981		0	16,082		46,027	0	110,377		23,515	7,022	113,051	4,818	34,157	200	161,402,8	210,0	104'07	2,000	10,10	124	3
TOTAI		12.397	55.907		294.981	263,320	418,191	0	136,260	305,639	439,964	47,959	205,239	6,761	56,613,119	19,574	175,789	13,763	277,950	1,270	640
2																				_	

Appendix C.1 REES Results

Results for the following runs are included (see Tables 5.7 to 5.9 for a summary of results):

Run	Run ID		Minimize impact on ¹ .	Cost Criteria² (\$/GJ eff)	Ventilation Control	Summer Fans	Remarks
1	H99C01	HIGH	Cost	unlimited	optimum	off	
2	H12C01	HIGH	Cost	\$12.00	optimum	off	< see Tables 5.3 to 5.6
3	H12C02	HIGH	Cost	\$12.00	continuous	off	
5	M12C01	MID	Cost	\$12.00	optimum	off	
6	L12C01	LOW	Cost	\$12.00	optimum	off	

minimize environmental impact meant that cellulose insulation was used in wall retrofits and, for HIGH level retrofits, that a solar domestic water heater was used Minimize cost meant that fiberglass insulation was used in wall retrofits, wherever technically feasible.

For each run, the following are included:

- Projections to the year 2030
- House envelope descriptive tables (2 pages)
- Retrofit results tables and graphs; energy and pollutant reduction due to operation, embodied pollutants and energy, retrofit costs (2 pages)
- Normalized total house energy

² Retrofit houses only if the life-cycle effective retrofit energy cost less than value shown.

Effective cost = (Retrofit cost)/(Present Worth Factor x Annual Source Energy Savings - Source Retrofit Embodied Energy)

Canadian Single Detached Residential Retrofit Program **Assumptions:**

Retrofit Goal: HIGH (Increase 30% over MID)

Impact: minimize Cost Basement

strip

retain

reduction

Mechanical systems: Space heating: upgrade

> upgrade iaq_opt no ventilation in summer

Present Worth Factor: 18.0 Retrofit if less than: \$999.00 (energy retrofit cost/life-cycle net energy)

Run ID: H99C01

Description: Description:

years /GJ equiv

3.00 RSI added

Max. Exterior wall (urban)

30

Utilities consumption: 20% reduction* *(except with combustion heating & hydroelectric utilities)

Main floor

strip

strip

20%

Canadian Single Detached Housing Projections:

Demolition rate = 8.1% of new housing

Amortization period:

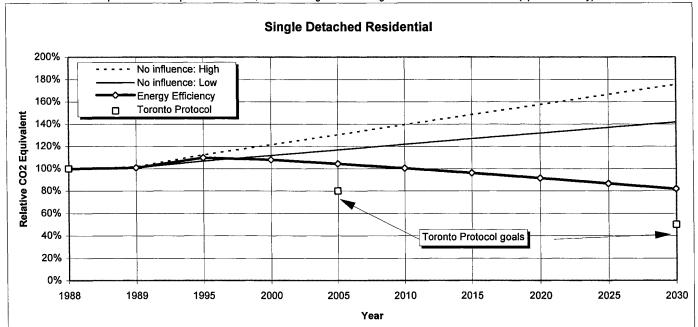
New housing are all houses built after 1989; Old housing are not retrofitted pre-1989; Retrofits are accumulated totals to date.

Domestic hot water:

Ventilation control:

					I cai				
	1989	1995	2000	2005	2010	2015	2020	2025	2030
Old housing	5,658,122	5,612,310	4,809,225	4,008,016	3,208,028	2,408,733	1,609,571	810,416	11,218
Retrofits	0	0	770,623	1,541,508	2,312,553	3,083,674	3,854,782	4,625,853	5,396,877
New Housing	0	545,032	927,472	1,281,787	1,616,794	1,939,932	2,258,948	2,576,003	2,892,128
Total Housing	5,658,122	6,157,342	6,507,320	6,831,311	7,137,375	7,432,339	7,723,301	8,012,272	8,300,223

New Housing energy use and pollutant generation based on 1989 housing values, multiplied by: 100% 90% 48% 43% Relative to 1989: 81% 73% 66% 53%


Results:

Interior finish:

Exterior finish:

Water consumption:

100 0% of original (1989) housing stock had potential for retrofit, however only 95 4% of original stock were actually retrofitted With full implementation of potential retrofits, 1989 housing stock would generate 46 2% as much CO2 (operations only)

	Energy Effic	iency Optio	n:						No influence (Options:
	Energy	Total	Pollutant Ge	neration due	to Operation	& Retrofits		Toronto	Low est.	High est.
	Retrofit	energy					CO2	Protocol	CO2	CO2
	Costs	(source)	CO2	CO	NOx	CH4	Equivalent	Goals	Equivalent	Equivalent
Year	(\$ 10 ⁶ /yr)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1988	0	100%	100%	100%	100%	100%	100%	100%	100%	100%
1989	0	101%	101%	101%	101%	101%	101%		101%	102%
1995	0	116%	109%	117%	104%	115%	110%		107%	113%
2000	1,954	113%	107%	122%	96%	115%	108%		112%	122%
2005	1,954	110%	103%	124%	88%	113%	104%	80%	117%	131%
2010	1,955	106%	98%	125%	79%	111%	100%		122%	140%
2015	1,955	102%	93%	126%	71%	107%	96%		127%	149%
2020	1,955	98%	88%	126%	62%	104%	92%		132%	158%
2025	1,955	93%	83%	126%	53%	100%	87%		137%	167%
2030	1,955	88%	77%	126%	44%	96%	82%	50%	142%	176%
2030		50%	45.1%	86%	33%	47%	54%	< Existing hou	sing stock only	

Note: Energy Efficiency Option values calculated on basis of 1989 values, then adjusted by estimated increases from 1988 to 1989

Cutoff for retrofit:

Simulations using REES version 1 20

Retrofit of Canadian Houses: HIGH Scenario

iteti oni t		i houses on		iii oceiia					sing KEES versio	11120	\$999.00	•	
			ıy			-114		•	minimize Cost		Run ID: H9	3	
	Main floor	Basement				nical systems:	•	Operations:				3C0 I	
Interior finish:	strip	strip			Space heating:	upgrade		DHW:	20%	reduction	Base		
Exterior finish:	strip	retain		Dom	estic hot water:	upgrade	-41-1	Utilities:	20%	reduction	dito.	1	
		Number		Floor area	Natural air	Ventilation co	ntroi: iaq_opt Total air cl	ango	Ventilation	Interior retro	mis.	Walls	
		of Houses	Volume	(incl bsmt)	Base	Upgrade		-			% of	1	Upgrade
Pogion	Λαο	Retrofitted	(m ³)	(mcrosint)	ac/h	ac/h	ac/h	ac/h		1	stock	RSI	RS
Region B C	Age <1921	10	478	180	0 70	0 32		0 34		0.23 acm	0%		3 23
ьс	1921-45	22	458	172	0 60	0 32	0 60				0%	L	3 26
	1946-60	35	441	166	0 53	0 31	0 53			1	0%		3 25
	1961-70	29	514	194	0 44	0 27					0%	1	3 26
	1971-80	16	553	208	0 39	0 26					0%	1	3 33
	>1971-00	21	687	263	0 21	0 18					0%		3 30
	>1901	21	007	263	0.21	0 10	0 53	0 25	070	0%	U%	2 35	3 30
Prairies	<1921	11	407	150	0 54	0 21							3 64
	1921-45	16	369	136	0 47	0 19	0 47					1	4.13
	1946-60	44	417	154	0 31	0 18							3 77
	1961-70	49	495	184	0 27								
	1971-80	43	485	182	0 20							i	
	>1981	40	593	226	0 22	0 13	0 44	0 26	0%	0%	0%	3 62	3 64
Ontario	<1921	14	520	186	0 78	0 37	0 78	0 40	50%	0%	100%	1 43	3 23
	1921-45	19	416	150	0 61	0 30	0 61	0 34	5%	0%	100%	1 49	3 19
	1946-60	55	507	190	0 37	0 22	0 37	0 28	2%	0%	0%	1 71	3 3
	1961-70	28	529	199	0 33	0 20	0 33	0 27	′ 0%	0%	0%	2 05	3 7
	1971-80	27	475	178	0 28	0 19	0 28	0 27	′ 0%	0%	4%	2 21	3 64
	>1981	42	847	324	0 19	0 16	0 24	0 26	0%	0%	0%	2 55	3 3
Quebec	<1921	7	506	189	0 60	0 21	0 60	0 28	3 0%	. 0%	14%	2 72	6 1
•••	1921-45	11	442	163								1	6.5
	1946-60	48	476	173									
	1961-70	31	451	166						N		2 28	6.0
	1971-80	28	441	163	0 28	0 16	0 28	0 27	' 0%	0%	25%	2 43	6 4
	>1981	38	471	180	0 15	0 14	0 15	0 26	0%	0%	0%	3 64	4 7
Maritimes	<1921	3	367	138	0 79	0 35	5 0 79	0 36	33%	. 0%	0%	2 50	36
	1921-45	5	338	127						•		i i	
	1946-60	11	433	157						•		1 90	5 6
	1961-70	14	470	166	0 49	0 23	0 49	0 30	0%	0%	57%	1 79	6 1
	1971-80	33	463	172	0 37	0 20	0 37	7 0 27	7 0%	0%	15%	2 25	5.7
	>1981	15	625	238		0 16	0 44	0 25	5 0%	0%	0%	3 70	4 7
CANADA	<1921	45	455	16	9 068	3 0 29	9 0 68	3 033	3 28%	6 0%	48%	6 200	39
·	1921-45	73	405	15									
	1946-60	193	455	16									
	1961-70	151	492	18									
	1971-80	147	483	18									
	>1981	156	644	24									
	Total									Į.			
	Average:		489	18	3 0 43	3 0 2:	2 040	0 29	9 69	6 0%	5 179	6 2 20	43

Notes:

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

^{**} percentages less than 0 25 ac/h apply to interior retrofits only (next column)

Cutoff for retrofit: \$999.00 /GJ equiv

Base

		Ceiling	۸	ove grade	Domt	Windows (so	utb\	Window	Energy Relate Retrofit	d Costs Total	Life cycle
		Base	Upgrade	Base	Upgrade	Base	•	/floor area	Unit Cost	Cost	Unit Energy Cost
Domina	A = 0	RSI	RSI	RSI			. •			(10 ⁶ \$)	
Region B C	Age <1921	1 88	9 41	0 91	RSI 3 35	RSI 0 26	RSI 0 42		\$ 14.300	434	(\$/GJ/30y)
5 C	1921-45	3 05	8 28	084	3 35 3 07	0 26	0 42		14,390 13,596		8 43
	1946-60	3 72	8 64	1 13	2 92	0 28	0 39			1,456	12 01 11 41
	1961-70	3 41	8 68	1 37	2 85	0 28	0 39		14,225 13,615	2,656 1,818	11 06
	1971-80	3 53	8 78	1 35	2 78	0 28	0 41		•		12 86
									14,197	3,005	
	>1981	4 60	8 11	1 17	2 77	0 36	0 37	12%	11,474	1,491	7 78
	11001	0.00	0.44	0.04	0.00	0.07		201	Subtotal:	10,859	
Prairies	<1921	3 38	9 41	0 64	3 39	0 37	0 66		12,673	1,406	5 63
	1921-45	3 62	9 51	0 56	3 44	0 36	0 59		12,756	2,150	6 77
	1946-60	3 98	9 21	0 95	3 12	0 37	0 60		12,422	3,654	7 86
	1961-70	3 24	8 64	0 95	2 96	0 35	0 55		12,436	2,323	7 63
	1971-80	3 58	8 94	1 35	2 77	0 36	0 59		12,952	3,573	9 82
	>1981	6 96	8 32	1 88	2 85	0 49	0 62	7%	6,708	1,023	4 10
									Subtotal:	14,128	
Ontario	<1921	3 37	9 47	0 65	3 52	0 35	0 48		14,117	4,144	4 85
	1921- 4 5	4 24	8 97	0 72	3 30	0 36	0 48		11,527	2,815	6 38
	1946-60	4 11	8 65	0 75	3 20	0 37	0 47		12,927	6,768	9 17
	1961-70	3 62	8 52	0 91	3 02	0 37	0 48		13,695	3,996	9 96
	1971-80	3 98	7 95	1 35	2 71	0 35	0 48			3,996	10 65
	>1981	5 69	7 54	1 44	2 45	0 36	0 49	8%	,	3,892	. 7 23
									Subtotal:	25,610	
Quebec	<1921	2 94	11 70	0 99	3 11	0 38	0 47		•	1,816	8 12
	1921-45	3 68	11 70	0 90	3 49	0 38	0 48		16,005	1,484	6 93
	1946-60	4 23	11 70	1 07	3 19	0 37	0 47	′ 10%	14,533	3,421	8 03
	1961-70	3 67	11 70	1 31	2 83	0 37	0 48		•	2,531	10 67
	1971-80	3 77	11 62	1 39	2 77	0 37	0 48			3,007	11 83
	>1981	5 84	11 70	1 92	2 24	0 39	0 48	10%	8,426	1,584	. 27 96
									Subtotal:	13,842	
Maritimes	<1921	2 54	9 36	1 19	2 95	0 33	0 47			1,189	5 20
	1921-45	1 73	10 30	0 92	3 39	0 35	0 49	9%	14,112	1,012	5 5
	1946-60	3 07	11 06	0 82	3 42	0 35	0 48		•	1,654	
	1961-70	2 89	11 53	0 89	3 30	0 36	0 49	9%	13,798	1,075	6 7
	1971-80	3 27	11 20	1 33	2 97	0 35	0 50	10%	13,644	1,679	
	>1981	6 14	11 70	2 50	3 10	0 37	0 52	2 8%	8,625	727	8 0
									Subtotal:	7,337	-
CANADA	<1921	2 82	9 87	0 88	3 26	0 34	0 50	9%	13,353	8,989	6 4
	1921-45	3 26	9 75	0 79	3 34	0 34	0 48	9%	13,599	8,916	7 5
	1946-60	3 82	9 85	0 95	3 17	0 35	0 48	3 10%	13,667	18,153	8 4
	1961-70	3 36	9 81	1 08	2 99	0 35	0 48	3 11%	13,443	11,741	9 2
	1971-80	3 62	9 70	1 35	2 80	0 34	0 49	11%	13,308	15,259	10 9
	>1981	5 85	9 47	1 78	2 68	0 39	0 50	9%	9,183	8,717	11 0
	Total	:							Total:	71,775	-
	Average	: 379	9 74	1 14	3 04	0 35	0 49	9 10%	\$12,759		8 9
Note	_								(unweighted)		

* Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

Based on:

Retrofit rules:

Houses from STAR1 xls database

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls 2-Apr-93 (embodied factors use X-Canada elect source breakdown)

Upgrade level selection based on space heating fuel type & location

Housing statistics: Statistics Canada (Urban + Rural, single det) HIGH scenario (Increase 30% over MID), using Rule0 xls

Attic type ceilings assumed

Main floor Basement Interior finish: strip strip Exterior finish: strip retain

Simulations using REES version 1 20

DHW:

Utilities:

Impact: minimize Cost

20%

20%

Cutoff for retrofit:

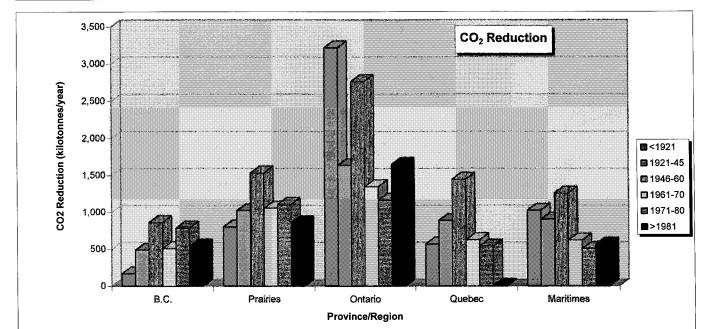
\$999.00 /GJ equiv

reduction

Run ID: H99C01

reduction*

*(except with combustion heating & hydroelectric utilities) Min. upgrade: RSI


Walls 0 50 Windows 0 10 added Max. Exterior (urban) 3 00 RSI added

Mechanical systems: Space heating: upgrade Ventilation control: iaq_opt Domestic hot water: upgrade no ventilation in summer

PJ = PetaJoule (= one million GJ or 278 million kWh) Note:

	Housing		CO₂ red	uction - O	peration on	ly		CO₂	CH4	co	NOx
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction	Reduction	Reduction	Reduction
			(ilotonnes/yr)			(kilotonnes/yr)		(kilotonnes/yr)	(kilotonnes/yr)	(kilotonnes/yr)
<1921	666,980	170	801	3,218	569	1,026	5,785	60%	0.04	0.54	45.2
1921-45	684,173	488	1,023	1,638	888	902	4,939	62%	0.04	0.10	39.7
1946-60	1,356,041	860	1,534	2,761	1,446	1,257	7,859	57%	0.07	0.29	55.4
1961-70	875,044	511	1,057	1,349	625	620	4,161	52%	0.05	0.31	23.5
1971-80	1,156,834	785	1,106	1,161	537	505	4,095	46%	0.06	0.37	15.0
>1981	919,050	543	859	1,648	10	562	3,622	44%	0.07	0.39	4 9
Total	5,658,122	3,357	6,380	11,775	4,076	4,873	30,460	54%	0.33	2.01	183.6

1989

	Housing	RE'	TROFIT EN	BODIED: I	POLLUTAN	ITS				RETROFIT EN	ERGY
Age	Stock	CO₂	payback	CH4	payback	co	payback	NOx	payback	Used	Payback
	1	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(PJ)	(years)
<1921	666,980	1,749	0.3	0.04	0.9	2.3	4.3	4.9	0.1	45.2	0.5
1921-45	684,173	1,656	0.3	0.03	0.9	2.4	23.3	4.6	0.1	42.1	0.5
1946-60	1,356,041	3,523	0.4	0.07	1.0	4.3	14.6	9.3	0.2	91.8	0.7
1961-70	875,044	2,338	0.6	0.05	1.0	2.7	8.6	6.3	0.3	61.4	8.0
1971-80	1,156,834	3,116	0.8	0.07	1.1	3.3	8.9	8.3	0.6	82.0	0.9
>1981	919,050	2,099	06	0 04	06	24	6 1	5 3	1.1	58 6	08
Total	5,658,122	14,480	0.5	0.30	0.9	17.4	8.6	38.6	0.2	381	0.7

\$999.00 /GJ equiv

Cutoff for retrofit:

Run ID: H99C01

Base

Retrofit of Canadian Houses: HIGH Scenario

Based on: Houses from STAR1 xls database

Retrofit rules:

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls

(embodied factors use X-Canada elect source breakdown)

Upgrade level selection based on space heating fuel type & location

Housing statistics: Statistics Canada (Urban + Rurat, single det)
HIGH scenario (Increase 30% over MID), using Rule0 xls

Attic type ceilings assumed

 Main floor
 Basement

 Interior finish:
 strip
 strip

 Exterior finish:
 strip
 retain

2-Apr-93

Min. upgrade: RSI
Walls 0 50
Windows 0 10

Simulations using REES version 1 20

DHW:

Utilities:

Impact: minimize Cost

20%

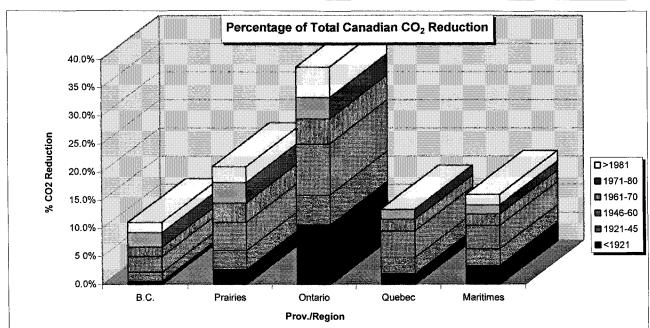
20%

*(except with combustion heating & hydroelectric utilities)

reduction

reduction*

Max. Exterior (urban)
3 00 RSI

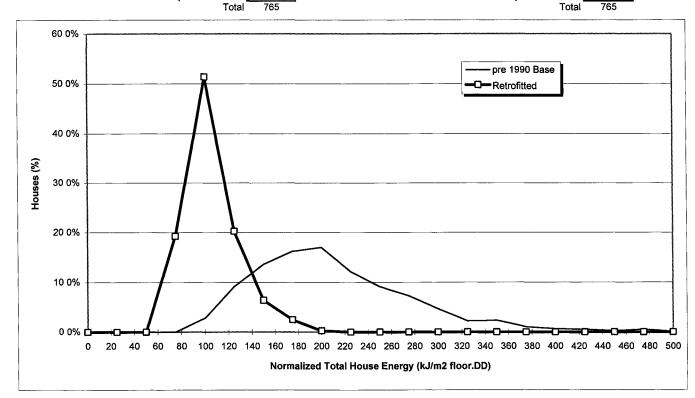

0 10 Mechanical systems:

Space heating: upgrade Ventilation control: iaq_opt

Domestic hot water: upgrade no ventilation in summer

Note: PJ = PetaJoule (= one million GJ or 278 million kWh)

	Housing	% of To	tal Canadi	an CO ₂ red	uction - Op	peration only		CO ₂	*******	Energy	
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction		Savings	
								(kilotonnes/yr)	(%)	(PJ/year)	(%)
<1921	666,980	0.6%	2.6%	10.6%	1.9%	3.4%	19.0%	5,785	60%	98.0	56%
1921-45	684,173	1.6%	3.4%	5.4%	2.9%	3.0%	16.2%	4,939	62%	79.2	56%
1946-60	1,356,041	2.8%	5.0%	9.1%	4.7%	4.1%	25.8%	7,859	57%	136.7	51%
1961-70	875,044	1.7%	3.5%	4.4%	2.1%	2.0%	13.7%	4,161	52%	80.5	48%
1971-80	1,156,834	2.6%	3.6%	3.8%	1.8%	1.7%	13.4%	4,095	46%	93.1	45%
>1981	919,050	1 8%	2 8%	5 4%	0 0%	1 8%	11.9%	3,622	44%	75 0	41%
Total	5,658,122	11.0%	20.9%	38.7%	13.4%	16.0%	100.0%	30,460	54%	562.5	49%


	Housing		E	NERGY RE	LATED RET	ROFIT COS	STS		Canada
Age	Stock	Retrofit (%)	B.C. (10 ⁶ \$)	Prairies (10 ⁶ \$)	Ontario (10 ⁶ \$)	Quebec (10 ⁶ \$)	Maritimes (10 ⁶ \$)	Canada (10 ⁸ \$)	Total Cost (10 ⁶ \$)
<1921	666,980	100%	434	1,406	4,144	1,816	1,189	8,989	17,361
1921-45	684,173	100%	1,456	2,150	2,815	1,484	1,012	8,916	17,123
1946-60	1,356,041	100%	2,656	3,654	6,768	3,421	1,654	18,153	36,712
1961-70	875,044	100%	1,818	2,323	3,996	2,531	1,075	11,741	24,207
1971-80	1,156,834	100%	3,005	3,573	3,996	3,007	1,679	15,259	31,356
>1981	919,050	100%	1,491	1,023	3,892	1,584	727	8,717	21,266
Total	5,658,122	100%	10,859	14,128	25,610	13,842	7,337	71,775	148,025

Normalized Total Energy Use (Existing Single-Detached Houses) for HIGH Scenario

Base

Impact: I	ninimize C	ost		Base	Retrofitted	I	Run ID: H99C01
Cutoff for retrofit:	\$999	/GJ equiv	Average	198	93	kJ/m ² DD	Note:
Houses retrofitted:	0%	of total	Minimum	76	52	kJ/m²DD	Results are for 765 houses
Energy reduction:	49%	of total source use	Maximum	553	189	kJ/m²DD	(unweighted by region or age)

Base Single-D	Detached					Retrofitted	Single-De	tached			
Energy use	Cumulat	ive houses	Normalized			Energy use	Cumulati	ive houses	Normalized		
Threshold	less than	n threshold	Energy use	Ho	uses	Threshold	less thar	threshold	Energy use	Hou	ıses
kJ/m ² DD	no.	%	kJ/m ² DD	no.	%	kJ/m²DD	no.	%	kJ/m²DD	no.	%
0	0	0 0%	0	0	0 0%	0	0	0 0%	0	0	0 0%
25	0	0 0%	0 to 25	0	0 0%	25	0	0 0%	0 to 25	0	0 0%
50	0	0 0%	25 to 50	0	0 0%	50	0	0 0%	25 to 50	0	0 0%
75	0	0 0%	50 to 75	0	0 0%	75	147	19 2%	50 to 75	147	19 2%
100	22	2 9%	75 to 100	22	2 9%	100	540	70 6%	75 to 100	393	51 4%
125	92	12 0%	100 to 125	70	9 2%	125	695	90 8%	100 to 125	155	20 3%
150	196	25 6%	125 to 150	104	13 6%	150	744	97 3%	125 to 150	49	6 4%
175	320	41 8%	150 to 175	124	16 2%	175	763	99 7%	150 to 175	19	2 5%
200	450	58 8%	175 to 200	130	17 0%	200	765	100 0%	175 to 200	2	0 3%
225	543	71 0%	200 to 225	93	12 2%	225	765	100 0%	200 to 225	0	0 0%
250	613	80 1%	225 to 250	70	9 2%	250	765	100 0%	225 to 250	0	0 0%
275	669	87 5%	250 to 275	56	7 3%	275	765	100 0%	250 to 275	0	0 0%
300	705	92 2%	275 to 300	36	4 7%	300	765	100 0%	275 to 300	0	0 0%
325	722	94 4%	300 to 325	17	2 2%	325	765	100 0%	300 to 325	0	0 0%
350	740	96 7%	325 to350	18	2 4%	350	765	100 0%	325 to350	0	0 0%
375	748	97.8%	350 to 375	8	1 0%	375	765	100 0%	350 to 375	0	0 0%
400	753	98 4%	375 to 400	5	0 7%	400	765	100 0%	375 to 400	0	0 0%
425	757	99 0%	400 to 425	4	0 5%	425	765	100 0%	400 to 425	0	0 0%
450	759	99 2%	425 to 450	2	0 3%	450	765	100 0%	425 to 450	0	0 0%
475	763	99 7%	450 to 475	4	0 5%	475	765	100 0%	450 to 475	0	0 0%
500	764	99 9%	475 to 500	1	0 1%	500	765	100 0%	475 to 500	0	0 0%
525	764	99 9%	500 to 525	0	0 0%	525	765	100 0%	500 to 525	0	0 0%
550	764	99 9%	525 to 550	0	0 0%	550	765	100 0%	525 to 550	0	0 0%
575	765	100 0%	550 to 575	1	0 1%	575	765	100 0%	550 to 575	0	0 0%
600	765	100 0%	575 to 600	0	0 0%	600	765	100 0%	575 to 600	0	0 0%
		•	Total	765	-			·	Total	765	-

Canadian Single Detached Residential Retrofit Program

Assumptions:

(Increase 30% over MID) HIGH

Basement

reduction

reduction*

strip

retain

Amortization period:

Description: Description: 30 years

Impact: minimize Cost Main floor

Present Worth Factor:

18.0

Run ID: H12C01

/GJ equiv.

Interior finish: Exterior finish:

Retrofit Goal:

strip strip

Mechanical systems: Space heating: upgrade Domestic hot water: upgrade Retrofit if less than: \$12.00 (energy retrofit cost/life-cycle net energy)

Water consumption: Utilities consumption:

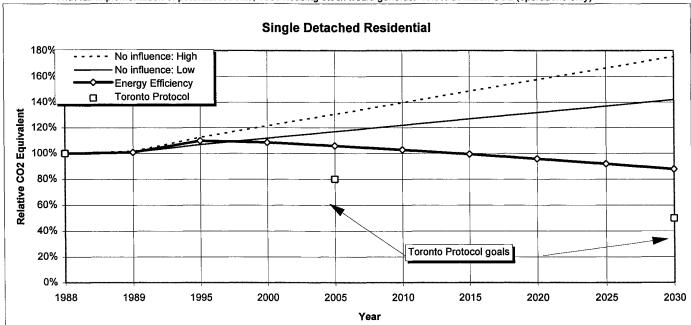
20% 20% Ventilation control:

iaq_opt no ventilation in summer Max. Exterior wall (urban) 3.00 RSI added

*(except with combustion heating & hydroelectric utilities)

Canadian Single Detached Housing Projections:

Demolition rate = 8.% of new housing


New housing are all houses built after 1989; Old housing are not retrofitted pre-1989; Retrofits are accumulated totals to date.

					rear				
	1989	1995	2000	2005	2010	2015	2020	2025	2030
Old housing	5,658,122	5,612,310	4,947,943	4,285,497	3,624,295	2,963,795	2,303,423	1,643,050	982,622
Retrofits	0	0	631,905	1,264,027	1,896,286	2,528,612	3,160,930	3,793,219	4,425,474
New Housing	0	545,032	927,472	1,281,787	1,616,794	1,939,932	2,258,948	2,576,003	2,892,128
Total Housing	5,658,122	6,157,342	6,507,320	6,831,311	7,137,375	7,432,339	7,723,301	8,012,272	8,300,223
Now Housing	000TOV 1100	and nallutant	generation b	d 4000	hausing vale	oo multiplica	har		

New Housing energy use and pollutant generation based on 1989 housing values, multiplied by Relative to 1989: 100% 90% 81% 53% 48% 43% 73%

Results:

80.8% of original (1989) housing stock had potential for retrofit, however only 77.2% of original stock were actually retrofitted With full implementation of potential retrofits, 1989 housing stock would generate 49.5% as much CO2 (operations only)

-	Energy Effic	iency Optio	n:						No Influence (Options:
	Energy	Total	Pollutant Ge	neration due	to Operation	& Retrofits		Toronto	Low est.	High est.
	Retrofit	energy					CO2	Protocol	CO2	CO2
	Costs	(source)	CO2	CO	NOx	CH4	Equivalent	Goals	Equivalent	Equivalent
Year	(\$ 10 ⁶ /yr)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1988	0	100%	100%	100%	100%	100%	100%	100%	100%	100%
1989	0	101%	101%	101%	101%	101%	101%		101%	102%
1995	0	116%	109%	117%	104%	115%	110%		107%	113%
2000	1,412	114%	108%	122%	97%	116%	109%		112%	122%
2005	1,412	112%	105%	124%	90%	115%	106%	80%	117%	131%
2010	1,412	110%	101%	125%	83%	114%	103%		122%	140%
2015	1,413	107%	98%	127%	75%	112%	100%		127%	149%
2020	1,413	104%	94%	127%	68%	110%	96%		132%	158%
2025	1,413	100%	89%	128%	60%	107%	92%		137%	167%
2030	1,412	97%	85%	128%	53%	104%	88%	50%	142%	176%
2030		58%	53%	88%	41%	55%	60%	< Existing hou	sing stock only	

Note: Energy Efficiency Option values calculated on basis of 1989 values, then adjusted by estimated increases from 1988 to 1989

Cutoff for retrofit:

Simulations using REES version 1 20

Retrofit of Canadian Houses: HIGH Scenario

Kenoni (ian nous		in Scella	rio			Simulations u	sing REES version	n 1 20	Cutoff for re		
	Retrofitte	d houses on	ıly					Impact:	minimize Cost		\$12.00		
	Main floor	Basement			Mechai	nical systems:		Operations:			Run ID: H1	2C01	
Interior finish:	strip	strip			Space heating:	upgrade		DHW:	20%	reduction	Base		
Exterior finish:	strip	retain		Dome	estic hot water:	upgrade		Utilities:	20%	reduction			
						Ventilation cor	_			Interior retro	ofits:		
		Number		Floor area	Natural air	-	Total air ch	-	Ventilation	Ventilation		Walls	
		of Houses	Volume	(incl bsmt)	Base	Upgrade	Base	Upgrade	more than		% of		Upgrade
Region	Age	Retrofitted	(m ³)	(m ²)	ac/h	ac/h	ac/h	ac/h	0.4 ac/h	0.25 ac/h**	stock	RSI	RSI
ВС	<1921	9	478	186	0 70	0 32	0 70	0 34	10%	0%		1 27	3 24
	1921-45	12	458	182	0 60	0 31	0 60	0 33	5%	1	0%	1	3 29
	1946-60	24	441	165	0 53	0 33	0 53	0 35	9%	1	0%		3 26
	1961-70	19	514	190	0 44	0 28	0 44	0 31	3%		0%		3 24
	1971-80	6	553	181	0 39	0 31	0 39	0 33	6%	0%	0%	2 20	3 27
	>1981	18	687	268	0 21	0 17	0 53	0 25	0%	0%	0%	2 35	3 24
Prairies	<1921	11	407	150	0 54	0 21	0 54	0 29	0%	0%	9%	2 06	3 64
	1921-45	16	369	136	0 47	0 19	0 47	0 28	0%	0%	13%	2 10	4 13
	1946-60	41	417	155	0 31	0 19	0 31	0 28	2%	0%	7%	1 98	3 72
	1961-70	45	495	181	0 27	0 16	0 27	0 26	0%	0%	8%	2 12	3 72
	1971-80	37	485	183	0 20	0 14	0 20	0 27	0%	0%	5%	2 33	4 03
	>1981	40	593	226	0 22	0 13	0 44	0 26	0%	0%	0%	3 62	3 64
Ontario	<1921	14	520	186	0 78	0 37	0 78	0 40	50%	0%	100%	1 43	3 23
	1921-45	19	416	150	0 61	0 30	0 61	0 34	5%	0%	100%	1 49	3 19
	1946-60	49	507	192	0 37	0 22	0 37	0 28	2%			1 71	3 30
	1961-70	23	529	200	0 33	0 21	0 33	0 27	0%	0%	0%	2 05	3 68
	1971-80	21	475	182	0 28	0 19	0 28	0 27	0%	0%	4%	2 21	3 70
	>1981	41	847	321	0 19	0 16	0 24	0 26	0%	0%	0%	2 55	3 31
Quebec	<1921	6	506	187	0 60	0 22	0 60	0 28	0%	. 0%	14%	2 72	6 01
	1921-45	11	442	163	0 54	0 20	0 54	0 29	9%	0%	18%	2 01	6.51
	1946-60	44	476	173	0 40	0 19	0 40	0 28	4%	0%	33%	1 96	6 12
	1961-70	18	451	178	0 32	0 18	0 32	0 27	0%	0%	23%	2 28	5 99
	1971-80	15	441	160	0 28	0 17	0 28	0 27	0%	0%	14%	2 43	6 30
	>1981	2	471	192	0 15	0 21	0 15	0 27	0%	0%	0%	3 64	5 09
Maritimes	<1921	3	367	138	0 79	0 35	0 79	0 36	33%	0%	0%	2 50	3 60
	1921-45	5	338	127	0 89	0 34	0 89	0 36	40%	0%	0%	2 08	4 8
	1946-60	11	433	157	0 60	0 26	0 60	0 31	18%	0%	27%	1 90	5 66
	1961-70	14	470	166	0 49	0 23	0 49		0%				
	1971-80	24	463	174	0 37	0 20	0 37	0 27	0%	. 0%	9%	2 25	5 4
	>1981	10	625	239	0 17	0 15	0 44	0 25	0%	0%	0%	3 70	4 78
CANADA	<1921	43	455	169	0 68	0 30	0 68	0 34	28%	0%	48%	2 00	3 94
	1921-45	63	405	152		0 27	0 62					1	
	1946-60	169	455	168		0 24	0 44					1	
	1961-70	119	492	183	3 0 37	0 21	0 37					2 04	4 5
	1971-80	103	483	176	0 30	0 20	0 30	0 28	1%	. 0%	6%	2 28	4.5
	>1981	111	644	249		0 16						1	
	Total				_			_					
Notes	Average:	-	489	183	3 0 43	0 23	0 46	0 30	6%	0%	16%	2 20	4 3

Notes:

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

^{**} percentages less than 0 25 ac/h apply to interior retrofits only (next column)

Cutoff for retrofit: \$12.00 /GJ equiv

Base

		a :::		,					Energy Related		Life cycle
	(Ceiling		ove grade		Windows (sou	•	Window	Retrofit	Total	Unit Energy
Region	Amo	Base RSI	Upgrade RSI	Base RSI	Upgrade RSI	Base RSI	Upgrade RSI	/floor area %	Unit Cost \$	Cost (10 ⁶ \$)	Cost (\$/GJ/30y)
B C	Age <1921	1 88	9 42	0 91	3 31	0 26	0 42	9%	· · · · · · · · · · · · · · · · · · ·	394	(\$/GJ/30y) 7 32
ьс	1921-45	3 05	8 00	0 84	3 21	0 26	0 42		14,532	394 837	7 32 8 63
		3 05 3 72	8 85	1 13	3 07		0 30	11%	14,331		
	1946-60 1961-70	3 72 3 41	9 18	1 13	3 07	0 28 0 28	0 43	14% 13%	14,210	1,819	9 15 9 35
		3 53	8 23	1 35	3 02		0 40		13,652	1,194	
	1971-80					0 29		13%	13,683	1,086	76
	>1981	4 60	7 64	1 17	2 78	0 36	0 36	12%	10,767	1,199	6 6
D. atata a	14004	0.00	0.44	0.04	0.00	0.07	0.00	00/	Subtotal:	6,530	5 0
Prairies	<1921	3 38	9 41	0 64	3 39	0 37	0 66	8%	12,673	1,406	5 6
	1921-45	3 62	9 51	0 56	3 44	0 36	0 59	8%	12,756	2,150	6 78
	1946-60	3 98	9 14	0 95	3 18	0 37	0 59	9%	12,513	3,429	7 30
	1961-70	3 24	8 51	0 95	3 00	0 35	0 54	9%	•	2,130	7 1:
	1971-80	3 58	8 78	1 35	2 82	0 36	0 56	9%	•	3,113	8 6
	>1981	6 96	8 32	1 88	2 85	0 49	0 62	7%	· -	1,000	4 0
									Subtotal:	13,228	
Ontario	<1921	3 37	9 47	0 65	3 52	0 35	0 48	9%	•	4,144	4 8
	1921-45	4 24	8 97	0 72	3 30	0 36	0 48	10%	•	2,815	6 3
	1946-60	4 11	8 60	0 75	3 19	0 37	0 47	10%	•	6,086	8 4
	1961-70	3 62	8 40	0 91	3 11	0 37	0 47	11%		3,282	9 0
	1971-80	3 98	8 02	1 35	2 76	0 35	0 48	11%		3,203	9 8
	>1981	5 69	7 54	1 44	2 45	0 36	0 49	8%	·	3,782	7 0
									Subtotal:	23,311	
Quebec	<1921	2 94	11 70	0 99	3 20	0 38	0 46			1,562	7 4
	1921-45	3 68	11 70	0 90	3 49	0 38	0 48	8%	•	1,484	6 9
	1946-60	4 23	11 70	1 07	3 23	0 37	0 47		•	3,159	7 5
	1961-70	3 67	11 70	1 31	2 95	0 37	0 48		·	1,556	8 4
	1971-80	3 77	11 54	1 39	2 96	0 37	0 48		•	1,699	9 1
	>1981	5 84	11 70	1 92	3 14	0 39	0 48	14%	_	95	. 100
									Subtotal:	9,555	
Maritimes	<1921	2 54	9 36	1 19	2 95	0 33	0 47		•	1,189	5 2
	1921-45	1 73	10 30	0 92	3 39	0 35	0 49			1,012	
	1946-60	3 07	11 06	0 82	3 42	0 35	0 48		,	1,654	5 6
	1961-70	2 89	11 53	0 89	3 30	0 36	0 49			1,075	67
	1971-80	3 27	11 02	1 33	3 12	0 35	0 49		•	1,209	7 7
	>1981	6 14	11 70	2 50	3 13	0 37	0 52	8%	· · · -	465	. 40
									Subtotal:	6,604	
CANADA	<1921	2 82	9 87	0 88	3 27	0 34	0 50	9%	13,391	8,695	6 0
	1921-45	3 26	9 69	0 79	3 36	0 34	0 48	9%	13,746	8,297	6 8
	1946-60	3 82	9 87	0 95	3 22	0 35	0 48	10%	13,728	16,148	
	196 1 -70	3 36	9 86	1 08	3 07	0 35	0 48			9,237	
	1971-80	3 62	9 52	1 35	2 93	0 34	0 48	11%	13,434	10,311	8 6
	>1981	5 85	9 38	1 78	2 87	0 39	0 49	10%	9,162_	6,541	6 3
	Total:								Total:	59,229	
	Average:	3 79	9 70	1 14	3 12	0 35	0 49	10%	\$12,845		7 2

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

Based on: Houses from STAR1 xls database

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls (embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det)

Retrofit rules: HIGH scenario (Increase 30% over MID), using Rule0 xls

Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

Main floor Basement Interior finish: Exterior finish: strip retain Simulations using REES version 1 20

DHW:

Utilities:

Impact: minimize Cost

20%

Cutoff for retrofit:

\$12.00 /GJ equiv

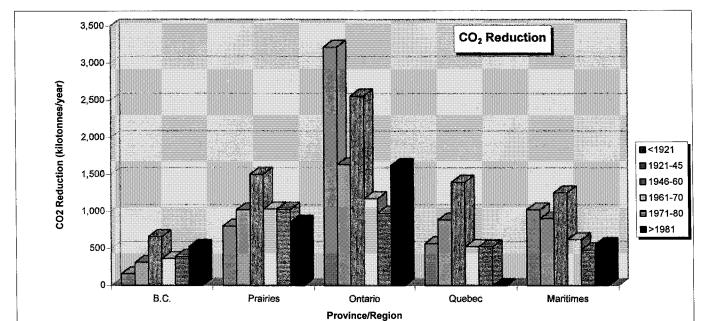
Run ID: H12C01

reduction 20% reduction* Base

Min. upgrade: RSI 0 50 Walls Windows 0.10 added Max. Exterior (urban) 3 00 RSI added

Mechanical systems:

*(except with combustion heating & hydroelectric utilities)


Space heating: upgrade

Ventilation control: iaq_opt no ventilation in summer Domestic hot water: upgrade

PJ = PetaJoule (= one million GJ or 278 million kWh) Note:

	Housing		CO₂ red	uction - O	peration on	ily		CO ₂	CH4	co	NOx
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction	Reduction	Reduction	Reduction
	1 1		(1	(ilotonnes/yr)			(kilotonnes/yr)		(kilotonnes/yr)	(kilotonnes/yr)	(kilotonnes/yr)
<1921	666,980	159	801	3,218	567	1,026	5,772	60%	0.04	0.54	45.1
1921-45	684,173	311	1,023	1,637	888	902	4,761	60%	0.04	0.10	38.2
1946-60	1,356,041	657	1,504	2,561	1,397	1,257	7,377	53%	0.07	0.28	51.7
1961-70	875,044	363	1,034	1,178	526	620	3,720	46%	0.04	0.26	21.5
1971-80	1,156,834	392	1,031	983	525	482	3,412	39%	0.05	0.34	12.3
>1981	919,050	524	859	1,624	1	550	3,558	43%	0.07	0 40	4 8
Total	5,658,122	2,406	6,252	11,201	3,904	4,837	28,600	51%	0.31	1.92	173.6

1989

	Housing	RE.	TROFIT EN	IBODIED:	POLLUTAN	ITS				RETROFIT EN	ERGY
Age	Stock	CO2	payback	CH4	payback	CO	payback	NOx	payback	Used	Payback
	1	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(PJ)	(years)
<1921	666,980	1,689	0.3	0.04	0.9	2.3	4.3	4.7	0.1	43.7	0.5
1921-45	684,173	1,550	0.3	0.03	0.9	2.3	23.1	4.3	0.1	39.2	0.5
1946-60	1,356,041	3,132	0.4	0.06	0.9	3.8	13.7	8.3	0.2	81.4	0,6
1961-70	875,044	1,832	0.5	0.04	0.9	2.1	8.1	4.9	0.2	48.1	0.7
1971-80	1,156,834	2,120	0.6	0.04	0.9	2.3	6.8	5.6	0.5	55.4	0.8
>1981	919,050	1,605	05	0 03	0 5	2 1	52	4 1	0 8	43 8	06
Total	5,658,122	11,927	0.4	0.25	8.0	14.9	7.8	31.9	0.2	312	0.6

Houses from STAR1 xls database Based on:

Retrofit rules:

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls

(embodied factors use X-Canada elect source breakdown) Housing statistics: Statistics Canada (Urban + Rural, single det)

1989 HIGH scenario (Increase 30% over MID), using Rule0 xls

Upgrade level selection based on space heating fuel type & location Attic type ceilings assumed

Main floor Basement Interior finish: strip strip

Exterior finish: strip retain Simulations using REES version 1 20

DHW:

Impact: minimize Cost

20%

20%

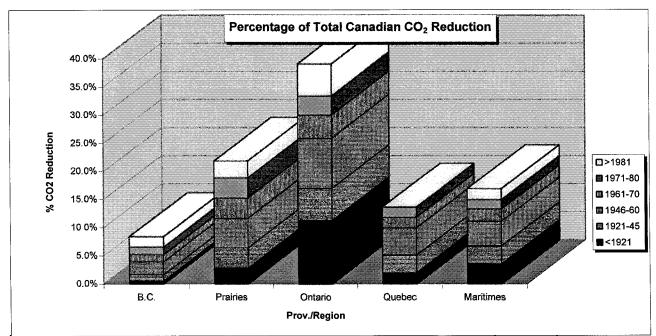
reduction

Cutoff for retrofit: \$12.00 /GJ equiv Run ID: H12C01

*(except with combustion heating & hydroelectric utilities)

Min. upgrade: Walls 0.50 Max. Exterior (urban) 3 00 RSI

0 10 Windows

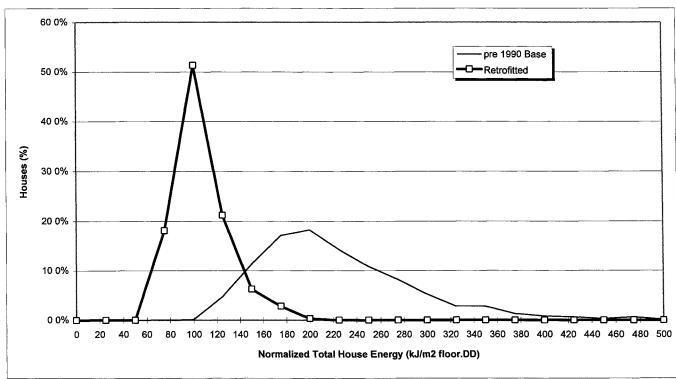

Mechanical systems:

Space heating: upgrade Ventilation control: iaq_opt Domestic hot water: upgrade no ventilation in summe

PJ = PetaJoule (= one million GJ or 278 million kWh) Note:

	Housing	% of To	tal Canadi	an CO₂ red	uction - Op	peration only		CO₂		Energy	
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction		Savings	
								(kilotonnes/yr)	(%)	(PJ/year)	(%)
<1921	666,980	0.6%	2.8%	11.3%	2.0%	3.6%	20.2%	5,772	60%	96.7	56%
1921-45	684,173	1.1%	3.6%	5.7%	3.1%	3.2%	16.6%	4,761	60%	76.7	54%
1946-60	1,356,041	2.3%	5.3%	9.0%	4.9%	4.4%	25.8%	7,377	53%	128.6	48%
1961-70	875,044	1.3%	3.6%	4.1%	1.8%	2.2%	13.0%	3,720	46%	69.7	41%
1971-80	1,156,834	1.4%	3.6%	3.4%	1.8%	1.7%	11.9%	3,412	39%	72.7	35%
>1981	919,050	1 8%	3 0%	5 7%	0 0%	1 9%	12.4%	3,558	43%	68 6	37%
Total	5,658,122	8.4%	21.9%	39.2%	13.6%	16.9%	100.0%	28,600	51%	513.0	45%

2-Apr-93


	Housing		E	NERGY RE	LATED RET	ROFIT COS	STS		Canada
Age	Stock	Retrofit (%)	B.C. (10 ⁶ \$)	Prairies (10 ⁶ \$)	Ontario (10 ⁶ \$)	Quebec (10 ⁶ \$)	Maritimes (10 ⁶ \$)	Canada (10 ⁶ \$)	Total Cost (10 ⁶ \$)
<1921	666,980	96%	394	1,406	4,144	1,562	1,189	8,695	16,825
1921-45	684,173	86%	837	2,150	2,815	1,484	1,012	8,297	15,931
1946-60	1,356,041	88%	1,819	3,429	6,086	3,159	1,654	16,148	32,672
1961-70	875,044	79%	1,194	2,130	3,282	1,556	1,075	9,237	19,249
1971-80	1,156,834	70%	1,086	3,113	3,203	1,699	1,209	10,311	21,332
>1981	919,050	71%	1,199	1,000	3,782	95	465	6,541	16,301
Total	5,658,122	81%	6,530	13,228	23,311	9,555	6,604	59,229	122,310

Normalized Total Energy Use (Existing Single-Detached Houses) for HIGH Scenario

Base

Impact: minimize Cost Base Retrofitted Run ID: H12C01 Cutoff for retrofit: \$12.00 /GJ equiv 94 kJ/m²DD 211 Average Note: kJ/m²DD Houses retrofitted: 81% of total 53 Minimum 93 Results are for 608 houses Energy reduction: 45% of total source use Maximum 553 189 kJ/m²DD (unweighted by region or age)

Base Single-D	Detached					Retrofitted	Single-De	tached			
Energy use	Cumulat	tive houses	Normalized			Energy use	Cumulati	ve houses	Normalized		
Threshold	less that	n threshold	Energy use	Ho	ouses	Threshold	less than	threshold	Energy use	Ηοι	ises
kJ/m²DD	no.	%	kJ/m ² DD	no.	%	kJ/m ² DD	no.	%	kJ/m²DD	no.	% _
0	0	0 0%	0	0	0 0%	0	0	0 0%	0	0	0 0%
25	0	0 0%	0 to 25	0	0 0%	25	0	0 0%	0 to 25	0	0 0%
50	0	0 0%	25 to 50	0	0 0%	50	0	0 0%	25 to 50	0	0 0%
75	0	0 0%	50 to 75	0	0 0%	75	110	18 1%	50 to 75	110	18 1%
100	1	0 2%	75 to 100	1	0 2%	100	422	69 4%	75 to 100	312	51 3%
125	30	4 9%	100 to 125	29	4 8%	125	551	90 6%	100 to 125	129	21 2%
150	99	16 3%	125 to 150	69	11 3%	150	589	96 9%	125 to 150	38	6 3%
175	203	33 4%	150 to 175	104	17 1%	175	606	99 7%	150 to 175	17	2 8%
200	314	51 6%	175 to 200	111	18 3%	200	608	100 0%	175 to 200	2	0 3%
225	401	66 0%	200 to 225	87	14 3%	225	608	100 0%	200 to 225	0	0 0%
250	467	76 8%	225 to 250	66	10 9%	250	608	100 0%	225 to 250	0	0 0%
275	517	85 0%	250 to 275	50	8 2%	275	608	100 0%	250 to 275	0	0 0%
300	549	90 3%	275 to 300	32	5 3%	300	608	100 0%	275 to 300	0	0 0%
325	566	93 1%	300 to 325	17	2 8%	325	608	100 0%	300 to 325	0	0 0%
350	583	95 9%	325 to350	17	2 8%	350	608	100 0%	325 to350	0	0 0%
375	591	97 2%	350 to 375	8	1 3%	375	608	100 0%	350 to 375	0	0 0%
400	596	98 0%	375 to 400	5	0 8%	400	608	100 0%	375 to 400	0	0 0%
425	600	98 7%	400 to 425	4	0 7%	425	608	100 0%	400 to 425	0	0 0%
450	602	99 0%	425 to 450	2	0 3%	450	608	100 0%	425 to 450	0	0 0%
475	606	99 7%	450 to 475	4	0 7%	475	608	100 0%	450 to 475	0	0 0%
500	607	99 8%	475 to 500	1	0 2%	500	608	100 0%	475 to 500	0	0 0%
525	607	99 8%	500 to 525	0	0 0%	525	608	100 0%	500 to 525	0	0 0%
550	607	99 8%	525 to 550	0	0 0%	550	608	100 0%	525 to 550	0	0 0%
575	608	100 0%	550 to 575	1	0 2%	575	608	100 0%	550 to 575	0	0 0%
600	608	100 0%	575 to 600 _	0	_ 0 0%	600	608	100 0%	575 to 600	0	0 0%
			Total	608					Total	608	_

Cutoff for retrofit:

Simulations using REES version 1 20

Retrofit of Canadian Houses: HIGH Scenario

i voti Oiit v		nan mous I houses on		000					minimize Cost	1120	\$12.00	/GJ equiv	
	Main floor	Basement	ıy		Machan	ilaal avatama.	,		minimize Cost		Run ID: H1	-	
Interior Sciele					-	ical systems:	_	perations:	200/	and water	Continuous)
Interior finish:	strip	strip			Space heating:	upgrade		DHW: Utilities:	20% 20%	reduction	Continuous	S Idii	/
Exterior finish:	strip	retain		Dom	estic hot water:	upgrade	ntrol: continuous		20%	reduction Interior retro	ofite:	1	
		Number		Floor area	Natural air		Total air cha		Ventilation	Ventilation	Jilia.	Walls	
		of Houses	Volume	(incl bsmt)	Base	Upgrade	Base	Upgrade	more than	less than	% of	L .	Upgrade
Region	Age	Retrofitted	(m ³)	(m ²)	ac/h	ac/h	ac/h	ac/h	0.4 ac/h	0.25 ac/h**		RSI	RSI
B C	<1921	9	478	186	0 70	0 32	0 70	0 48	90%	0%			3 24
	1921-45	12	458	182	0 60	0 31	0 60	0 47	50%	0%		1	3 29
	1946-60	19	441	164	0 53	0 34	0 53	0 51	49%	0%		1	3 27
	1961-70	15	514	188	0 44	0 27	0 44	0 43	41%	0%		1	3 25
	1971-80	6	553	181	0 39	0 31	0 39	0 47	31%	0%			3 27
	>1981	18	687	268	0 21	0 17	0 53	0 35		0%		1	3 24
	- 1501	10	007	200	021	0 17	0 00	0 00	070	""	0,0	1 200	021
Prairies	<1921	11	407	150	0 54	0 21	0 54	0 40	36%	0%	9%	2 06	3 64
	1921-45	16	369	136	0 47	0 19	0 47	0 39	31%	0%	13%	2 10	4 13
	1946-60	39	417	156	0 31	0 19	0 31	0 38		0%	7%	1 98	3 74
	1961-70	42	495	180		0 17	0 27	0 37	10%	0%	8%	2 12	3 74
	1971-80	30	485	187	0 20	0 15	0 20	0 36	7%	0%	2%	2 33	4 08
	>1981	40	593	226	0 22	0 13	0 44	0 35	3%	0%	0%	3 62	3 64
Ontario	<1921	14	520	186	0 78	0 37	0 78	0 56	100%	0%	100%	1 43	3 23
	1921-45	19	416	150	0 61	0 30	0 61	0 48	95%	0%	100%	1 49	3 19
	1946-60	43	507	195	0 37	0 22	0 37	0 40	25%	0%	0%	1 71	3 22
	1961-70	20	529	205	0 33	0 21	0 33	0 39	14%	0%	0%	2 05	3 76
	1971-80	11	475	168	0 28	0 21	0 28	0 38	4%	0%	4%	2 21	4 10
	>1981	37	847	308	0 19	0 17	0 24	0 36	7%	0%	0%	2 55	3 31
		_									4.404	0.70	2.04
Quebec	<1921	6	506	187		0 22		0 40				1	6 01
	1921-45	11	442	163		0 20		0 40					6 51
	1946-60	41	476	172		0 19		0 39		1			6 13 5 95
	1961-70	17	451	178		0 18		0 38		1		1	
	1971-80	11	441	162		0 17		0 38		1		1	6 14 4 62
	>1981	1	471	214	0 15	0 21	0 15	0 37	0%	0%	0 0%	3 04	4 02
Maritimes	<1921	3	367	138	0 79	0 35	0 79	0 51	100%	0%	0%	2 50	3 60
	1921-45	5	338	127		0 34	0 89	0 50	80%	. 0%	0%	2 08	4 84
	1946-60	11	433	157		0 26		0 44		1		6 190	5 66
	1961-70	13	470	163		0 23		0 42		1			6 07
	1971-80	22	463	176				0 38	12%	0%	6%	6 2 25	5 33
	>1981	10	625	239				0 34				6 3 70	4 78
CANADA	<1921	43	455	16				0 47		l .		1	
	1921-45	63	405	15				0 45					
	1946-60	153	455	16				0 42		1		L .	
	1961-70	107	492	18				0 40		1		1	
	1971-80	80	483	17				0 39		1		1	
	>1981	106	644	25	1 0 19	0 17	0 36	0 35	5 4%	5 09	6 09	6 3 17	3 92
	Total									.]			
	Average:	*	489	18	3 0 43	0 23	0 46	0 41	30%	09	6 16%	6 2 20	4 30

Notes:

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

^{**} percentages less than 0 25 ac/h apply to interior retrofits only (next column)

Cutoff for retrofit: \$12.00 /GJ equiv

Continuous fan

		0.15			.				Energy Related		Life cycle
	,	Ceiling		ove grade		Windows (so	•	Window	Retrofit	Total	Unit Energy
D		Base	Upgrade	Base	Upgrade	Base	. •	/floor area	Unit Cost	Cost (10 ⁶ \$)	Cost
Region	Age	RSI	RSI	RSI	RSI	RSI	RSI	%	\$		(\$/GJ/30y)
ВС	<1921	1 88	9 42	0 91	3 31	0 26	0 42		14,310	388	7 94
	1921-45	3 05	8 00	0 84	3 21	0 26	0 38		14,110	824	9 28
	1946-60	3 72	8 68	1 13	3 07	0 28	0 38		14,356	1,455	9 34
	1961-70	3 41	9 38	1 37	3 07	0 28	0 43		13,236	914	9 78
	1971-80	3 53	8 23	1 35	3 00	0 29	0 40		13,462	1,068	8 38
	>1981	4 60	7 64	1 17	2 78	0 36	0 36	12%	10,767	1,199	7 4
									Subtotal:	5,849	
Prairies	<1921	3 38	9 41	0 64	3 39	0 37	0 66		12,454	1,382	6 03
	1921-45	3 62	9 51	0 56	3 44	0 36	0 59		12,537	2,113	7 30
	1946-60	3 98	9 13	0 95	3 22	0 37	0 58		12,353	3,220	7 77
	1961-70	3 24	8 45	0 95	3 02	0 35	0 52		12,057	1,930	7 60
	1971-80	3 58	8 86	1 35	2 84	0 36	0 56		13,289	2,558	9 10
	>1981	6 96	8 32	1 88	2 85	0 49	0 62	7%	6,489_	989	4 74
									Subtotal:	12,192	
Ontario	<1921	3 37	9 47	0 65	3 52	0 35	0 48		•	4,081	5 24
	1921-45	4 24	8 97	0 72	3 30	0 36	0 48		11,313	2,762	6 96
	1946-60	4 11	8 60	0 75	3 22	0 37	0 47		12,887	5,275	9 0
	1961-70	3 62	8 53	0 91	3 14	0 37	0 47		13,506	2,815	9 7
	1971-80	3 98	8 30	1 35	2 86	0 35	0 49		•	1,679	10 1
	>1981	5 69	7 54	1 44	2 45	0 36	0 49	8%	· -	3,239	8 00
									Subtotal:	19,851	
Quebec	<1921	2 94	11 70	0 99	3 20	0 38	0 46			1,538	8 3
	1921-45	3 68	11 70	0 90	3 49	0 38	0 48		,	1,464	7 3
	1946-60	4 23	11 70	1 07	3 20	0 37	0 47			2,921	7 8
	1961-70	3 67	11 70	1 31	2 99	0 37	0 48		•	1,437	9 0
	1971-80	3 77	11 49	1 39	3 00	0 37	0 48		•	1,261	9 0
	>1981	5 84	11 70	1 92	3 49	0 39	0 48	12%	· -	55	. 10 8
									Subtotal:	8,676	
Maritimes	<1921	2 54	9 36	1 19	2 95	0 33	0 47		•	1,167	5 6
	1921-45	1 73	10 30	0 92	3 39	0 35	0 49			996	5 8
	1946-60	3 07	11 06	0 82	3 42	0 35	0 48			1,630	5 9
	1961-70	2 89	11 52	0 89	3 37	0 36	0 48			981	6 8
	1971-80	3 27	10 96	1 33	3 15	0 35	0 49		,	1,085	
	>1981	6 14	11 70	2 50	3 13	0 37	0 52	8%	8,245_	464	
									Subtotal:	6,323	
CANADA	<1921	2 82	9 87	0 88	3 27	0 34	0 50			8,556	
	1921-45	3 26	9 69	0 79	3 36	0 34	0 48		•	8,159	
	1946-60	3 82	9 84	0 95	3 23	0 35	0 48		,	14,500	
	1961-70	3 36	9 91	1 08	3 12	0 35	0 48			8,077	
	1971-80	3 62	9 57	1 35	2 97	0 34	0 48		•	7,651	8 9
	>1981	5 85	9 38	1 78	2 94	0 39	0 49	9%	_	5,946	-
	Total:								Total:	52,891	
	Average:	3 79	9 71	1 14	3 15	0 35	0 49	10%	\$12,731		7 8

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

Based on: Houses from STAR1 xls database

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls 2-Apr-93 (embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det)

Retrofit rules: HIGH scenario (Increase 30% over MID), using Rule0 xls

Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

	Main floor	Basement	
Interior finish:	strip	strip	_
Exterior finish:	strip	retain	

Simulations using REES version 1 20

DHW:

Utilities:

Impact: minimize Cost

20%

20%

reduction reduction* Cutoff for retrofit: \$12.00 /GJ equiv

Run ID: H12C02 Continuous fan

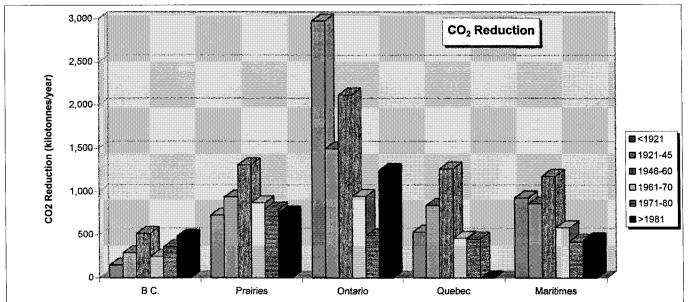
*(except with combustion heating & hydroelectric utilities)

 Min. upgrade:
 RSI
 Max. Exterior (urban)

 Walls
 0.50
 added
 3.00
 RSI added

 Windows
 0.10
 added
 3.00
 RSI added

Mechanical systems:


Space heating: upgrade Ventilation control: continuous

Domestic hot water: upgrade no ventilation in summer

Note: PJ = PetaJoule (= one million GJ or 278 million kWh)

11016.	10-161000016 (
	Housing		CO₂ red	uction - O	peration or	ıly		CO₂	CH4	co	NOx
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction	Reduction	Reduction	Reduction
			(i	kilotonnes/yr)			(kilotonnes/yr)		(kilotonnes/yr)	(kilotonnes/yr)	(kilotonnes/yr)
<1921	666,980	150	730	2,976	533	931	5,319	55%	0.04	0.42	42.1
1921-45	684,173	293	938	1,496	842	863	4,433	55%	0.03	0.03	36.0
1946-60	1,356,041	516	1,310	2,119	1,262	1,179	6,385	46%	0.06	0.11	46.1
1961-70	875,044	250	872	947	462	585	3,116	39%	0.03	0.17	19.1
1971-80	1,156,834	359	797	491	453	425	2,525	28%	0.04	0.26	9.7
>1981	919,050	485	752	1,246	1	445	2,929	35%	0.06	0 25	3 8
Total	5,658,122	2,053	5,399	9,273	3,553	4,428	24,706	44%	0.26	1.24	156.8

1989

Province/Region

	Housing	RE'	TROFIT EN	IBODIED: I	POLLUTAN	ITS	.,			RETROFIT EN	ERGY
Age	Stock	CO2	payback	CH4	payback	co	payback	NOx	payback	Used	Payback
		(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(PJ)	(years)
<1921	666,980	1,689	0.3	0.04	0.9	2.3	5.4	4.7	0.1	43.7	0.5
1921-45	684,173	1,549	0.3	0.03	1.0	2.3	71.3	4.3	0.1	39.2	0.6
1946-60	1,356,041	2,845	0.4	0.06	1.0	3.4	30.7	7.6	0.2	73.7	0.7
1961-70	875,044	1,618	0.5	0.03	1.0	1.9	11.5	4.3	0.2	42.4	0.7
1971-80	1,156,834	1,588	0.6	0.03	0.9	1.7	6.6	4.2	0.4	41.3	0.8
>1981	919,050	1,454	05	0 03	0.5	19	76	37	10	39 5	07
Total	5,658,122	10,742	0.4	0.22	0.9	13.5	10.9	28.8	0.2	280	0.6

Houses from STAR1 xls database Based on:

Retrofit rules:

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls

(embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det)

HIGH scenario (Increase 30% over MID), using Rule0 xls Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

Main floor Basement Interior finish: strip strip Exterior finish: strip retain

Simulations using REES version 1 20

Impact: minimize Cost 20% DHW:

20%

reduction reduction* Cutoff for retrofit: \$12.00 /GJ equiv Run ID: H12C02 Continuous fan

*(except with combustion heating & hydroelectric utilities)

Min. upgrade: RSI Walls 0 50 Max. Exterior (urban) 3 00 RSI

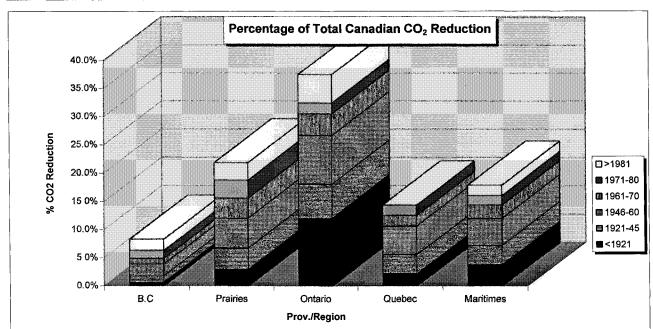
Windows

Utilities:

0 10 Mechanical systems:

Space heating: upgrade

Ventilation control: continuous Domestic hot water: upgrade


no ventilation in summer

PJ = PetaJoule (= one million GJ or 278 million kWh) Note:

	Housing	% of To	tal Canadi	an CO ₂ red	uction - O	peration only		CO2		Energy	
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction		Savings	
_	1							(kilotonnes/yr)	(%)	(PJ/year)	(%)
<1921	666,980	0.6%	3.0%	12.0%	2.2%	3.8%	21.5%	5,319	55%	88.3	51%
1921-45	684,173	1.2%	3.8%	6.1%	3.4%	3.5%	17.9%	4,433	55%	70.9	50%
1946-60	1,356,041	2.1%	5.3%	8.6%	5.1%	4.8%	25.8%	6,385	46%	110.1	41%
1961-70	875,044	1.0%	3.5%	3.8%	1.9%	2.4%	12.6%	3,116	39%	57.8	34%
1971-80	1,156,834	1.5%	3.2%	2.0%	1.8%	1.7%	10.2%	2,525	28%	53.0	25%
>1981	919,050	2 0%	3 0%	5 0%	0 0%	1 8%	11.9%	2,929	35%	56 2	31%
Total	5,658,122	8.3%	21.9%	37.5%	14.4%	17.9%	100.0%	24,706	44%	436.4	38%

2-Apr-93

1989

	Housing		E	NERGY RE	LATED RET	ROFIT COS	STS		Canada
Age	Stock	Retrofit (%)	B.C. (10 ⁶ \$)	Prairies (10 ⁶ \$)	Ontario (10 ⁶ \$)	Quebec (10 ⁶ \$)	Maritimes (10 ⁶ \$)	Canada (10 ⁶ \$)	Total Cost (10 ⁶ \$)
<1921	666,980	96%	388	1,382	4,081	1,538	1,167	8,556	16,617
1921-45	684,173	86%	824	2,113	2,762	1,464	996	8,159	15,725
1946-60	1,356,041	79%	1,455	3,220	5,275	2,921	1,630	14,500	29,357
1961-70	875,044	71%	914	1,930	2,815	1,437	981	8,077	16,850
1971-80	1,156,834	54%	1,068	2,558	1,679	1,261	1,085	7,651	15,704
>1981	919,050	68%	1,199	989	3,239	55	464	5,946	14,746
Total	5,658,122	74%	5,849	12,192	19,851	8,676	6,323	52,891	108,999

Normalized Total Energy Use (Existing Single-Detached Houses) for HIGH Scenario

Base Retrofitted

215 104 kJ/m²DD

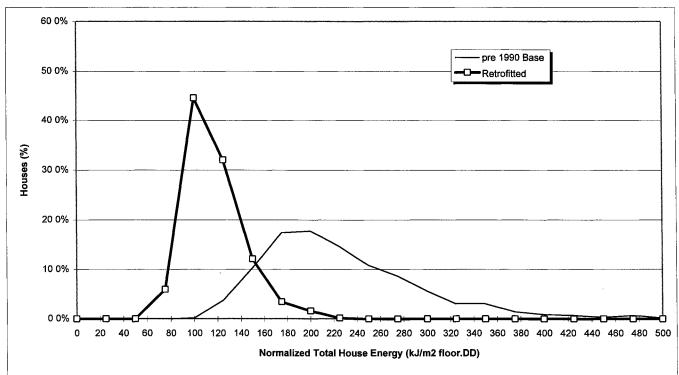
61

203

kJ/m²DD

kJ/m²DD

Continuous fan Run ID: H12C02


Cutoff for retrofit: Houses retrofitted: Energy reduction: \$12.00 /GJ equiv 74% of total 38% of total source use

Impact: minimize Cost

Average 215
Minimum 93
Maximum 553

Results are for 552 houses (unweighted by region or age)

Base Single-I	Detached					Retrofitted	Single-De	tached			
Energy use	Cumulati	ve houses	Normalized			Energy use	Cumulati	ve houses	Normalized		
Threshold	less than	threshold	Energy use	Ho	uses	Threshold	less than	threshold	Energy use	Hou	ses
kJ/m ² DD	no.	%	kJ/m ² DD	no.	%	kJ/m ² DD	no.	%	kJ/m ² DD	no.	%
0	0	0 0%	0	0	0 0%	0	0	0 0%	0	0	0 0%
25	0	0 0%	0 to 25	0	0 0%	25	0	0 0%	0 to 25	0	0 0%
50	0	0 0%	25 to 50	0	0 0%	50	0	0 0%	25 to 50	0	0 0%
75	0	0 0%	50 to 75	0	0 0%	75	33	6 0%	50 to 75	33	6 0%
100	1	0 2%	75 to 100	1	0 2%	100	279	50 5%	75 to 100	246	44 6%
125	22	4 0%	100 to 125	21	3 8%	125	456	82 6%	100 to 125	177	32 1%
150	79	14 3%	125 to 150	57	10 3%	150	523	94 7%	125 to 150	67	12 1%
175	175	31 7%	150 to 175	96	17 4%	175	542	98 2%	150 to 175	19	3 4%
200	273	49 5%	175 to 200	98	17 8%	200	551	99 8%	175 to 200	9	1 6%
225	354	64 1%	200 to 225	81	14 7%	225	552	100 0%	200 to 225	1	0 2%
250	414	75 0%	225 to 250	60	10 9%	250	552	100 0%	225 to 250	0	0 0%
275	462	83 7%	250 to 275	48	8 7%	275	552	100 0%	250 to 275	0	0 0%
300	493	89 3%	275 to 300	31	5 6%	300	552	100 0%	275 to 300	0	0 0%
325	510	92 4%	300 to 325	17	3 1%	325	552	100 0%	300 to 325	0	0 0%
350	527	95 5%	325 to350	17	3 1%	350	552	100 0%	325 to350	0	0 0%
375	535	96 9%	350 to 375	8	1 4%	375	552	100 0%	350 to 375	0	0 0%
400	540	97 8%	375 to 400	5	0 9%	400	552	100 0%	375 to 400	0	0 0%
425	544	98 6%	400 to 425	4	0 7%	425	552	100 0%	400 to 425	0	0 0%
450	546	98 9%	425 to 450	2	0 4%	450	552	100 0%	425 to 450	0	0 0%
475	550	99 6%	450 to 475	4	0 7%	475	552	100 0%	450 to 475	0	0 0%
500	551	99 8%	475 to 500	1	0 2%	500	552	100 0%	475 to 500	0	0 0%
525	551	99 8%	500 to 525	0	0 0%	525	552	100 0%	500 to 525	0	0 0%
550	551	99 8%	525 to 550	0	0 0%	550	552	100 0%	525 to 550	0	0 0%
575	552	100 0%	550 to 575	1	0 2%	575	552	100 0%	550 to 575	0	0 0%
600	552	100 0%	575 to 600	0	0 0%	600	552	100 0%	575 to 600	0	0 0%
			Total	552	_				Total	552	

years

/GJ equiv.

Canadian Single Detached Residential Retrofit Program **Assumptions:**

Retrofit Goal: MID ()

Impact: minimize Cost

Main floor Basement Mechanical systems: Interior finish: strip strip Space heating upgrade Exterior finish: retain strip

Domestic hot water: upgrade Ventilation control:

Max. Exterior wall (urban)

Run ID: M12C01

Description: Description:

30

18.0

\$12.00

(energy retrofit cost/life-cycle net energy)

iaq_opt no ventilation in summer 3.00 RSI added

10%

Canadian Single Detached Housing Projections:

reduction

reduction*

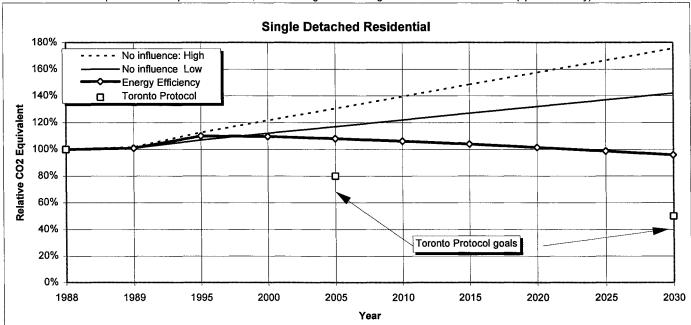
Demolition rate = 8 % of new housing

Amortization period:

Retrofit if less than:

Present Worth Factor:

New housing are all houses built after 1989; Old housing are not retrofitted pre-1989; Retrofits are accumulated totals to date.


					Year				
	1989	1995	2000	2005	2010	2015	2020	2025	2030
Old housing	5,658,122	5,612,310	4,941,807	4,273,225	3,605,889	2,939,258	2,272,758	1,606,258	939,705
Retrofits	0	0	638,042	1,276,299	1,914,692	2,553,149	3,191,595	3,830,012	4,468,390
New Housing	0	545,032	927,472	1,281,787	1,616,794	1,939,932	2,258,948	2,576,003	2,892,128
Total Housing	5,658,122	6,157,342	6,507,320	6,831,311	7,137,375	7,432,339	7,723,301	8,012,272	8,300,223
New Housing	energy use a	and pollutant	generation b	ased on 1989	housing valu	es, m <u>ultipli</u> ed	by:		
Relative to 1989:	100%	90%	81%	_ 73%	66%	59%	53%	48%	43%

Results:

Water consumption:

Utilities consumption:

82.1% of original (1989) housing stock had potential for retrofit, however only 78.4% of original stock were actually retrofitted With full implementation of potential retrofits, 1989 housing stock would generate 61 1% as much CO2 (operations only)

	Energy Effic	iency Optio	n:						No Influence (Options:
	Energy	Total	Pollutant Ge	neration due	to Operation	& Retrofits		Toronto	Low est.	High est.
ļ	Retrofit	energy					CO2	Protocol	CO2	CO2
1	Costs	(source)	CO2	CO	NOx	CH4	Equivalent	Goals	Equivalent	Equivalent
Year	(\$ 10 ⁶ /yr)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1988	0	100%	100%	100%	100%	100%	100%	100%	100%	100%
1989	0	101%	101%	101%	101%	101%	101%		101%	102%
1995	0	116%	109%	117%	104%	115%	110%		107%	113%
2000	919	116%	109%	122%	98%	117%	110%		112%	122%
2005	919	115%	107%	125%	92%	118%	108%	80%	117%	131%
2010	920	113%	105%	128%	86%	119%	106%		122%	140%
2015	920	112%	103%	130%	79%	119%	104%		127%	149%
2020	920	110%	100%	132%	73%	118%	101%		132%	158%
2025	920	108%	97%	134%	66%	117%	99%		137%	167%
2030	920	105%	94%	135%	59%	116%	96%	50%	142%	176%
2030		67%	62%	94%	48%	67%	68%	< Existing hou	sing stock only	

Note: Energy Efficiency Option values calculated on basis of 1989 values, then adjusted by estimated increases from 1988 to 1989

^{10%} *(except with combustion heating & hydroelectric utilities)

Cutoff for retrofit:

Retrofit of Canadian Houses: MID Scenario

		ilali nous		Scenari	•		•		sing REES version	1120	Cuton for re		
		l houses on	ly						minimize Cost			/GJ equiv	
	Main floor	Basement			_	ical systems:		Operations:			Run ID: M1	2C01	
Interior finish:	strip	strip			Space heating:	upgrade		DHW:	10%	reduction	Base		
Exterior finish:	strip	retain		Dome	estic hot water:	upgrade		Utilities:	10%	reduction		,	
							ntrol: iaq_opt			Interior retro	ofits:		
		Number	Valuesa	Floor area	Natural air	•	Total air ch	-	Ventilation	Ventilation	0/ -5	Walls	Hammada
		of Houses	Volume	(incl bsmt)	Base	Upgrade		Upgrade	more than	less than			Upgrade
	Age	Retrofitted	(m³)	(m ²)	ac/h	ac/h	ac/h	ac/h	0.4 ac/h	0.25 ac/h**		RSI	RSI
	<1921	9	478	186	0 70	0 34		0 36	20%	0%		I	3 11
	1921-45	18	458	170	0 60	0 44	0 60	0 45	41%	0%		B .	2 78
	1946-60	24	441	166	0 53	0 39		0 41	26%	0%			2 94
	1961-70	20	514	189	0 44	0 34		0 36	17%	0%			3 00
	1971-80	10	553	202	0 39	0 34		0 36	19%	0%			2 85
	>1981	20	687	267	0 21	0 21	0 53	0 27	0%	0%	0%	2 35	2 48
Prairies	<1921	11	407	153	0 54	0 24	0 54	0 29	0%	0%	0%	2 06	3 28
	1921-45	16	369	138	0 47	0 24	0 47	0 30	6%	0%	0%	2 10	3 21
	1946-60	41	417	157	0 31	0 19	0 31	0 28	2%	0%	0%	1 98	3 27
	1961-70	43	495	183	0 27	0 18	0 27	0 27	2%	0%	0%	2 12	3 24
	1971-80	27	485	188	0 20	0 16	0 20	0 27	0%	0%	0%	2 33	3 35
	>1981	38	593	223	0 22	0 14	0 44	0 26	0%	0%	0%	3 62	3 65
Ontario	<1921	14	520	188	0 78	0 38	0 78	0 41	43%	0%	100%	1 43	3 02
	1921-45	19	416	152	0 61	0 32	0 61	0 35	11%	0%	95%	1 49	2 82
	1946-60	52	507	191	0 37	0 26	0 37	0 31	11%	0%	0%	1 71	2 77
	1961-70	24	529	199	0 33	0 24	0 33	0 29	4%	0%	0%	2 05	3 10
	1971-80	17	475	183	0 28	0 28	0 28	0 32	0%	0%	0%	2 21	2 83
	>1981	34	847	305		0 17		0 26		L		2 55	3 32
Quebec	<1921	7	506	192	0 60	0 32	9 0 60	0 34	14%	0%	0%	2 72	3 71
	1921-45	11	442	167	0 54	0 28	0 54	0 31		1	0%	2 01	3 23
	1946-60	46	476	180	0 40	0 24	0 40	0 29	4%	0%	0%	1 96	3 13
	1961-70	23	451	180		0 20		0 26		1		2 28	3 43
	1971-80	18	441	164	0 28	0 19	0 28	0 26	0%	0%	0%	2 43	3 50
	>1981	2	471	193	0 15	0 20	0 15	0 27	0%	0%	5 0%	3 64	5 09
Maritimes	<1921	3	367	139	0 79	0 57	0 79	0 58	33%	0%	5 0%	2 50	3 23
	1921-45	5	338	127		0 64		0 65				1	3 08
	1946-60	11	433	163		0 38		0 40				1 90	
	1961-70	14	470	177		0 27		0 30		L .		6 1 79	3 28
	1971-80	29	463	178	0 37	0 23	0 37	0 28	3%	. 0%	6 09	2 25	3 37
	>1981	10	625	239		0 16		0 25		1		1	
CANADA	<1921	44	455	17:	2 068	0 37	7 068	0 40	28%	. 0%	6 449	6 200	3 27
	1921-45	69	405	15				0 41		L.			
	1946-60	174	455	17		0 29		0 34	11%	09	6 09	6 187	3 06
	1961-70	124	492	18				0 30					
	1971-80	101	483	18				0 30		1		6 2 28	3 18
	>1981	104	644	24				0 26		1		1	
	Total												
	Average:	*	489	18	5 0 43	0 28	3 0 46	0 33	3 10%	6 09	6 99	6 2 20	3 24

Simulations using REES version 1 20

Notes:

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

^{**} percentages less than 0 25 ac/h apply to interior retrofits only (next column)

Cutoff for retrofit: \$12.00 /GJ equiv

Base

									Energy Related		Life cycle
		Ceiling		ove grade		ndows (sou	•	indow	Retrofit	Total	Unit Energy
		Base	Upgrade	Base	Upgrade	Base	Upgrade /flo		Unit Cost	Cost	Cost
Region	Age	RSI	RSI	RSI	RSI	RSI	RSI	%	\$	(10 ⁶ \$)	(\$/GJ/30y)
ВС	<1921	1 88	7 24	0 91	2 98	0 26	0 37	9%	11,615	315	6 67
	1921-45	3 05	6 44	0 84	3 07	0 26	0 35	10%	8,924	782	8 23
	1946-60	3 72	6 89	1 13	2 89	0 28	0 35	14%	10,156	1,300	8 06
	1961-70	3 41	7 07	1 37	2 83	0 28	0 37	13%	9,712	894	8 71
	1971-80	3 53	6 61	1 35	2 77	0 29	0 38	14%	9,143	1,209	8 60
	>1981	4 60	6 10	1 17	2 71	0 36	0 36	12%	4,618	571	4 41
Daniel	11001	0.00	7.05	0.04	0.40	0.07	0.40	00/	Subtotal:	5,073	F 00
Prairies	<1921	3 38	7 25	0 64	3 13	0 37	0 42	8%	8,895	987	5 00
	1921-45	3 62	7 32	0 56	3 22	0 36	0 42	8%	8,555	1,442	5 98
	1946-60	3 98	7 16	0 95	3 02	0 37	0 42	8%	8,578	2,351	6 77
	1961-70	3 24	6 59	0 95	2 94	0 35	0 40	8%	8,094	1,327	6 84
	1971-80	3 58	6 93 7 06	1 35	2 79	0 36	0 42	9%	9,071	1,571	8 17
	>1981	6 96	7 06	1 88	2 88	0 49	0 50	7%	2,406_	349	2 70
0-4:-	14004	0.07	7.00	0.05	0.40	0.05	0.40	00/	Subtotal:	8,026	
Ontario	<1921	3 37	7 29	0 65	3 19	0 35	0 40	9%	10,857	3,187	4 11
	1921-45	4 24	7 12	0 72	3 05	0 36	0 40	10%	7,925	1,935	5 28
	1946-60	4 11	6 74	0 75	3 03	0 37	0 40	10%	8,306	4,111	7 54
	1961-70	3 62	6 74	0 91	2 96	0 37	0 40	11%	8,696	2,175	8 40
	1971-80	3 98	6 26	1 35	2 82	0 35	0 38	11%	6,362	1,276	8 13
	>1981	5 69	5 91	1 44	2 45	0 36	0 38	8%	5,604_	1,653	6 79
Ob	-4004	0.04	0.00	0.00	0.00	0.00	0.00	00/	Subtotal:	14,337	7.46
Quebec	<1921	2 94	9 00 9 00	0 99 0 90	2 83	0 38	0 39	6%	8,625	1,103	7 13
	1921-45 1946-60	3 68 4 23	9 00	1 07	3 11	0 38	0 40	8%	9,158	849	5 09
	1946-60	4 23 3 67	9 00	1 31	2 93 2 71	0 37 0 37	0 39 0 39	9% 11%	9,108	2,055	6 27 8 37
	1971-80	3 77	8 90	1 39	271	0 37	0 39	11%	9,536	1,309 1,327	8 72
	>1971-60	5 84	9 00	1 92	2 7 2	0 37	0 39	14%	9,067 7,725	76	
	× 1301	3 04	3 00	1 32	201	0 33	0.57	14 /0	Subtotal:	6,720	-
Maritimes	<1921	2 54	7 20	1 19	2 71	0 33	0 43	11%	7,441	777	4 50
Manumes	1921-45	1 73	7 92	0 92	3 01	0 35	0 37	9%	8,096	580	4 64
	1946-60	3 07	8 51	0 82	3 03	0 35	0 38	9%	9,010	1,048	
	1961-70	2 89	8 87	0 89	2 95	0 36	0 38	9%	8,961	698	
	1971-80	3 27	8 57	1 33	2 78	0 35	0 39	10%		995	
	>1981	6 14	9 00	2 50	3 03	0 37	0 38	8%		112	
	- 1001	0 14	3 00	2 00	0 00	0 01	0 00	070	Subtotal:	4,211	-
CANADA	<1921	2 82	7 60	0 88	2 97	0 34	0 40	9%		6,369	
0, 11, 10, 1	1921-45	3 26	7 56	0 79	3 09	0 34	0 39	9%	•	5,588	
	1946-60	3 82	7 66	0 95	2 98	0 35	0 39	10%	•	10,865	
	1961-70	3 36	7 65	1 08	2 88	0 35	0 39	11%		6,403	
	1971-80	3 62	7 45	1 35	2 78	0 34	0 39	11%	•	6,379	
	>1981	5 85	7 41	1 78	2 79	0 39	0 40	10%	•	2,761	
	Total:					2 20	2 .3	. 370	Total:	38,366	•
	Average:		7 56	1 14	2 91	0 35	0 39	10%		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6 4
Notes	_	0.0				0.00	0.00		(unweighted)		

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

RSI added

Retrofit of Canadian Houses: MID Scenario

Houses from STAR1 xis database

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls 2-Apr-93 (embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det) 1989

Retrofit rules: MID scenario (), using Rule0 xls

Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

Main floor Basement Interior finish: Exterior finish: strip retain

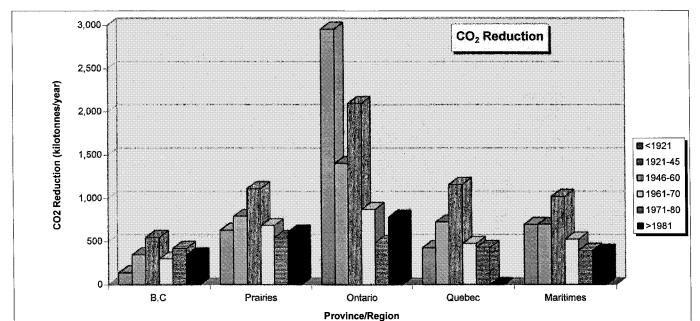
Simulations using REES version 1 20

Cutoff for retrofit:

\$12.00 /GJ equiv

Impact: minimize Cost Run ID: M12C01 reduction

Utilities: 10% reduction* *(except with combustion heating & hydroelectric utilities)


Max. Exterior (urban) Min. upgrade: Walls 0 50 added 3 00 Windows

0 10 added Mechanical systems:

Space heating: upgrade Ventilation control: iaq_opt Domestic hot water: upgrade no ventilation in summer

PJ = PetaJoule (= one million GJ or 278 million kWh) Note:

	Housing		CO₂ red	uction - O	peration on	ily		CO ₂	CH4	co	NOx
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction	Reduction	Reduction	Reduction
	1		(I	kilotonnes/yr)			(kilotonnes/yr)		(kilotonnes/yr)	(kilotonnes/yr)	(kilotonnes/yr)
<1921	666,980	142	631	2,955	428	697	4,853	51%	0.03	0.33	40.2
1921-45	684,173	351	791	1,404	724	697	3,967	50%	0.03	-0.03	32.9
1946-60	1,356,041	549	1,111	2,095	1,157	1,021	5,933	43%	0.05	-0.01	44.9
1961-70	875,044	302	685	872	477	527	2,862	36%	0.03	0.10	18.3
1971-80	1,156,834	420	545	487	430	397	2,279	26%	0.03	0.19	9.5
>1981	919,050	346	608	781	1	384	2,120	26%	0 04	0 20	28
Total	5,658,122	2,109	4,371	8,595	3,217	3,723	22,014	39%	0.22	0.79	148.6

	Housing	RE	TROFIT EN	IBODIED: I	POLLUTAN	ITS				RETROFIT EN	ERGY
Age	Stock	CO₂	payback	CH4	payback	co	payback	NOx	payback	Used	Payback
]	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(PJ)	(years)
<1921	666,980	1,245	0.3	0.03	0.8	2.0	6.1	3.4	0.1	34.7	0.4
1921-45	684,173	1,084	0.3	0.02	0.8	2.0	neg.	2.9	0.1	30.5	0.5
1946-60	1,356,041	2,181	0.4	0.04	0.8	3.2	neg.	5.3	0.1	63.5	0.6
1961-70	875,044	1,291	0.5	0.03	0.8	1.9	17.8	3.2	0.2	37.9	0.7
1971-80	1,156,834	1,299	0.6	0.03	0.8	1.8	9.9	3.2	0.3	36.6	0.7
>1981	919,050	714	03	0 01	03	16	80	18	0.6	20.9	0 5
Total	5,658,122	7,814	0.4	0.16	0.7	12.5	15.9	19.9	0.1	224	0.6

Based on: Houses from STAR1 xls database

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls

(embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det) 1989

Retrofit rules: MID scenario (), using Rule0 xls

Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

	Main floor	Basement	
Interior finish:	strip	strip	
Exterior finish:	strip	retain	

Simulations using REES version 1 20

Impact: minimize Cost

*(except with combustion heating & hydroelectric utilities)

Cutoff for retrofit: \$12.00 /GJ equiv

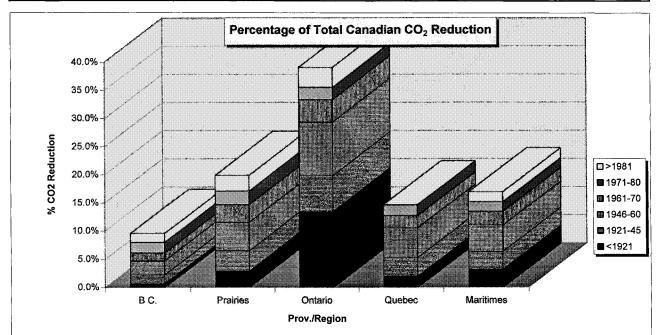
\$12.00 |/GJ eq Run ID: M12C01

DHW: 10% reduction Run ID
Utilities: 10% reduction* Base

 Min. upgrade:
 RSI
 Max. Exterior (urban)

 Walls
 0.50
 3.00
 RSI

 Windows
 0.10


Mechanical systems:

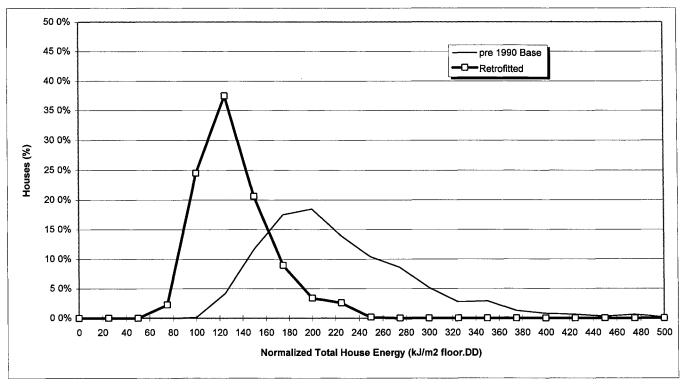
Space heating:	upgrade	Ventilation control: iaq_opt
Domestic hot water:	upgrade	no ventilation in summer

Note: PJ = PetaJoule (= one million GJ or 278 million kWh)

	Housing	% of To	tal Canadi	an CO₂ red	uction - O	peration only		CO ₂	-	Energy	
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction		Savings	
								(kilotonnes/yr)	(%)	(PJ/year)	(%)
<1921	666,980	0.6%	2.9%	13.4%	1.9%	3.2%	22.0%	4,853	51%	80.8	46%
1921-45	684,173	1.6%	3.6%	6.4%	3.3%	3.2%	18.0%	3,967	50%	62.7	44%
1946-60	1,356,041	2.5%	5.0%	9.5%	5.3%	4.6%	26.9%	5,933	43%	100.5	38%
1961-70	875,044	1.4%	3.1%	4.0%	2.2%	2.4%	13.0%	2,862	36%	53.3	32%
1971-80	1,156,834	1.9%	2.5%	2.2%	2.0%	1.8%	10.4%	2,279	26%	50.8	24%
>1981	919,050	1 6%	2 8%	3.5%	0.0%	1.7%	9.6%	2,120	26%	413	22%
Total	5,658,122	9.6%	19.9%	39.0%	14.6%	16.9%	100.0%	22,014	39%	389.3	34%

2-Apr-93

	Housing		E	NERGY RE	LATED RE	FROFIT COS	STS		Canada
Age	Stock	Retrofit (%)	B.C. (10 ⁶ \$)	Prairies (10 ⁶ \$)	Ontario (10 ⁶ \$)	Quebec (10 ⁶ \$)	Maritimes (10 ⁶ \$)	Canada (10 ⁶ \$)	Total Cost (10 ⁶ \$)
<1921	666,980	98%	315	987	3,187	1,103	777	6,369	12,492
1921-45	684,173	95%	782	1,442	1,935	849	580	5,588	11,692
1946-60	1,356,041	90%	1,300	2,351	4,111	2,055	1,048	10,865	23,786
1961-70	875,044	82%	894	1,327	2,175	1,309	698	6,403	14,084
1971-80	1,156,834	69%	1,209	1,571	1,276	1,327	995	6,379	13,705
>1981	919,050	67%	571	349	1,653	76	112	2,761	7,365
Total	5,658,122	82%	5,073	8,026	14,337	6,720	4,211	38,366	83,124


Normalized Total Energy Use (Existing Single-Detached Houses) for MID Scenario

Base

Run ID: M12C01

impaci. in	iminize C	osi		base	Retrolltte	J	Run ID: M12CU
Cutoff for retrofit:	\$12.00	/GJ equiv	Average	211	120	kJ/m ² DD	Note:
Houses retrofitted:	82%	of total	Minimum	93	62	kJ/m ² DD	Results are for 616 houses
Energy reduction:	34%	of total source use	Maximum	553	247	kJ/m ² DD	(unweighted by region or age)

Base Single-D	Detached					Retrofitted	Single-De	tached			
Energy use	Cumulati	ive houses	Normalized			Energy use	Cumulati	ve houses	Normalized		
Threshold	less than	threshold	Energy use	Ho	uses	Threshold	less than	threshold	Energy use	Hou	ises
kJ/m ² DD	no.	%	kJ/m ² DD	no.	%	kJ/m ² DD	no.	%	kJ/m²DD	no.	%
0	0	0 0%	0	0	0 0%	0	0	0 0%	0	0	0 0%
25	0	0 0%	0 to 25	0	0 0%	25	0	0 0%	0 to 25	0	0 0%
50	0	0 0%	25 to 50	0	0 0%	50	0	0 0%	25 to 50	0	0 0%
75	0	0 0%	50 to 75	0	0 0%	75	14	2 3%	50 to 75	14	2 3%
100	1	0 2%	75 to 100	1	0 2%	100	165	26 8%	75 to 100	151	24 5%
125	27	4 4%	100 to 125	26	4 2%	125	396	64 3%	100 to 125	231	37 5%
150	99	16 1%	125 to 150	72	11 7%	150	523	84 9%	125 to 150	127	20 6%
175	207	33 6%	150 to 175	108	17 5%	175	578	93 8%	150 to 175	55	8 9%
200	321	52 1%	175 to 200	114	18 5%	200	599	97 2%	175 to 200	21	3 4%
225	407	66 1%	200 to 225	86	14 0%	225	615	99 8%	200 to 225	16	2 6%
250	471	76 5%	225 to 250	64	10 4%	250	616	100 0%	225 to 250	1	0 2%
275	524	85 1%	250 to 275	53	8 6%	275	616	100 0%	250 to 275	0	0 0%
300	556	90 3%	275 to 300	32	5 2%	300	616	100 0%	275 to 300	0	0 0%
325	573	93 0%	300 to 325	17	2 8%	325	616	100 0%	300 to 325	0	0 0%
350	591	95 9%	325 to350	18	2 9%	350	616	100 0%	325 to350	0	0 0%
375	599	97 2%	350 to 375	8	1 3%	375	616	100 0%	350 to 375	0	0 0%
400	604	98 1%	375 to 400	5	0 8%	400	616	100 0%	375 to 400	0	0 0%
425	608	98 7%	400 to 425	4	0 6%	425	616	100 0%	400 to 425	0	0 0%
450	610	99 0%	425 to 450	2	0 3%	450	616	100 0%	425 to 450	0	0 0%
475	614	99 7%	450 to 475	4	0 6%	475	616	100 0%	450 to 475	0	0 0%
500	615	99 8%	475 to 500	1	0 2%	500	616	100 0%	475 to 500	0	0 0%
525	615	99 8%	500 to 525	0	0 0%	525	616	100 0%	500 to 525	0	0 0%
550	615	99 8%	525 to 550	0	0 0%	550	616	100 0%	525 to 550	0	0 0%
575	616	100 0%	550 to 575	1	0 2%	575	616	100 0%	550 to 575	0	0 0%
600	616	100 0%	575 to 600	0	0 0%	600	616	100 0%	575 to 600	0	0 0%
		,	Total	616	_			•	Total	616	•

Canadian Single Detached Residential Retrofit Program **Assumptions:**

strip

retain

reduction

reduction*

Retrofit Goal: LOW

Impact: minimize Cost Main floor Basement

Mechanical systems: Space heating:

upgrade upgrade iaq_opt

no ventilation in summer

Present Worth Factor: Retrofit if less than:

Amortization period:

\$12.00

18.0

/GJ equiv

years

(energy retrofit cost/life-cycle net energy)

Max. Exterior wall (urban) 3.00 RSI added

30

Run ID: L12C01

Description: Description:

strip

strip

Canadian Single Detached Housing Projections:

Demolition rate = 8.% of new housing

New housing are all houses built after 1989; Old housing are not retrofitted pre-1989; Retrofits are accumulated totals to date.

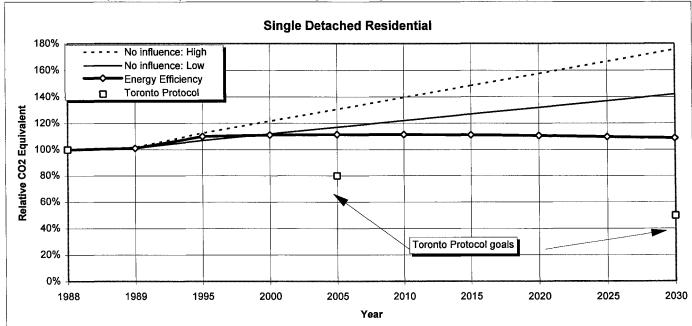
Domestic hot water:

Ventilation control:

					Year				
	1989	1995	2000	2005	2010	2015	2020	2025	2030
Old housing	5,658,122	5,612,310	4,894,341	4,178,277	3,463,449	2,749,321	2,035,324	1,321,330	607,286
Retrofits	0	0	685,508	1,371,248	2,057,132	2,743,086	3,429,029	4,114,939	4,800,809
New Housing	0	545,032	927,472	1,281,787	1,616,794	1,939,932	2,258,948	2,576,003	2,892,128
Total Housing	5,658,122	6,157,342	6,507,320	6,831,311	7,137,375	7,432,339	7,723,301	8,012,272	8,300,223
Now Housing	anaray usa s	and pollutant	generation b	ased on 1989	housing valu	ies multiplied	l hv:		

53% 48% 43% Relative to 1989: 100% 73%

Results:


Interior finish:

Exterior finish:

Water consumption:

Utilities consumption:

88.6% of original (1989) housing stock had potential for retrofit, however only 84.6% of original stock were actually retrofitted With full implementation of potential retrofits, 1989 housing stock would generate 75 5% as much CO2 (operations only)

	Energy Effic	iency Optio	n:						No Influence C	Options:
	Energy	Total	Pollutant Ge	neration due	to Operation	& Retrofits		Toronto	Low est.	High est.
l	Retrofit	energy					CO2	Protocol	CO2	CO2
	Costs	(source)	CO2	co	NOx	CH4	Equivalent	Goals	Equivalent	Equivalent
Year	(\$ 10 ⁶ /yr)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1988	0	100%	100%	100%	100%	100%	100%	100%	100%	100%
1989	0	101%	101%	101%	101%	101%	101%		101%	102%
1995	0	116%	109%	117%	104%	115%	110%		107%	113%
2000	395	117%	110%	123%	100%	118%	111%		112%	122%
2005	395	118%	111%	127%	97%	120%	111%	80%	117%	131%
2010	395	118%	110%	131%	93%	122%	111%		122%	140%
2015	395	118%	110%	135%	89%	123%	111%		127%	149%
2020	395	117%	109%	138%	86%	123%	111%		132%	158%
2025	395	117%	108%	141%	82%	124%	110%		137%	167%
2030	395	116%	106%	144%	78%	123%	109%	50%	142%	176%
2030		77%	74%	103%	66%	75%	80%	< Existing hou	sing stock only	

Note: Energy Efficiency Option values calculated on basis of 1989 values, then adjusted by estimated increases from 1988 to 1989

^{0%} 0% *(except with combustion heating & hydroelectric utilities)

Cutoff for retrofit:

Simulations using REES version 1 20

Retrofit of Canadian Houses: LOW Scenario

				W Scellai	10		,		sing REES version	1120	Cuton for re		
		i houses on	ly						minimize Cost		\$12.00		
	Main floor	Basement			-	ical systems:	<u>-</u>	Operations:			Run ID: L1:	2C01	
Interior finish:	strip	strip			Space heating:	upgrade		DHW:		reduction	Base		
Exterior finish:	strip	retain		Dome	stic hot water:	upgrade		Utilities:	0%	reduction	***	1	
		M				Ventilation con				Interior retro	ofits:	\ A f = U =	
		Number	\	Floor area	Natural air	-	Total air ch	•	Ventilation	Ventilation	0/ - 5	Walls	11
		of Houses	Volume	(incl bsmt)	Base	Upgrade	Base	Upgrade	more than	less than	% of	1	Upgrade
	Age	Retrofitted	(m ³)	(m²)	ac/h	ac/h	ac/h	ac/h	0.4 ac/h	0.25 ac/h**	stock	RSI	RSI
	<1921	9	478	186	0 70	0 59	0 70	0 59	90%	0%	0%		2 14
	1921-45	20	458	172	0 60	0 55	0 60	0 56	86%	0%	0%		2 22
	1946-60	26	441	160	0 53	0 58	0 53	0 58	66%	0%	0%	1	2 20
	1961-70	21	514	191	0 44	0 49	0 44	0 49	72%	0%	0%		2 18
	1971-80	12	553	202	0 39	0 46	0 39	0 46	56%	0%	0%		2 18
	>1981	21	687	263	0 21	0 23	0 53	0 27	5%	0%	0%	2 35	2 36
Prairies	<1921	11	407	153	0 54	0 52	0 54	0 52	55%	0%	0%	2 06	2 28
	1921-45	16	369	138	0 47	0 52	0 47	0 52	69%	0%	0%	2 10	2 25
	1946-60	43	417	154	0 31	0 35	0 31	0 35	48%	0%	0%	1 98	2 20
	1961-70	47	495	183	0 27	0 30	0 27	0 30	12%	0%	0%	2 12	2 22
	1971-80	36	485	183	0 20	0 21	0 20	0 21	5%	0%			2 36
	>1981	40	593	226	0 22	0 14	0 44	0 22	0%	0%	0%	3 62	3 62
Ontario	<1921	14	520	196	0 78	0 74	0 78	0 74	100%	0%	0%	1 43	1 51
	1921-45	17	416	159	0 61	0 59	0 61	0 59	89%	0%	0%	1 49	1 73
	1946-60	52	507	191	0 37	0 40	0 37	0 40	51%	0%	0%	1 71	1 86
	1961-70	25	529	196	0 33	0 38	0 33	0 38	32%	0%	0%	2 05	2 18
	1971-80	20	475	185	0 28	0 33	0 28	0 33	11%	0%	0%	2 21	2 39
	>1981	42	847	324	0 19	0 19	0 24	0 20	0%	0%	0%	2 55	2 55
Quebec	<1921	7	506	192	0 60	0 62	0 60	0 62	100%	0%	0%	2 72	2 77
	1921-45	11	442	167	0 54	0 59	0 54	0 59	100%	0%	0%	2 01	2 13
	1946-60	47	476	180	0 40	0 42	0 40	0 42	46%	0%	0%	1 96	2 08
	1961-70	25	451	174	0 32	0 35	0 32	0 35	10%	0%	0%	2 28	2 37
	1971-80	22	441	163	0 28	0 30	0 28	0 30	0%	0%	0%	2 43	2 47
	>1981	13	471	177	0 15	0 15	0 15	0 15	0%	0%	0%	3 64	3 92
Maritimes	<1921	3	367	139	0 79	0 86	0 79	0 86	100%	0%	0%	2 50	2 50
	1921-45	5	338	127	0 89	0 91	0 89	0 91	100%	0%	0%	2 08	2 42
	1946-60	10	433	157	0 60	0 58	0 60	0 58		1	0%	6 190	2 20
	1961-70	13	470	173	0 49	0 48	0 49	0 48	79%	. 0%	0%	6 1 79	2 18
	1971-80	30	463	177	0 37	0 38	0 37	0 38	24%	0%	0%	6 2 25	23
	>1981	13	625	237	0 17	0 16	0 44	0 25	0%	0%	. 0%	3 70	3 7:
CANADA	<1921	44	455	173	3 068	0 67	0 68	0 67	92%	. 0%	5 0%	6 200	2 2
	1921-45	69	405	153		0 63	0 62	0 63	86%	0%	09	6 183	2 1
	1946-60	178	455	168		0 46	0 44	0 47				6 187	2 1
	1961-70	131	492	183		0 40	0 37	0 40				6 2 04	2 2
	1971-80	120	483	182	2 0 30	0 33	0 30	0 34	17%	0%	6 09	6 2 28	2 3
	>1981	129	644	24	5 0 19	0 17	0 36	0 22	! 1%	0%	b 0%	6 3 17	3 2
	Total	: 671											
	Average:	*	489	184	4 0 43	0 45	0 46	0 45	43%	09/	6 09	6 2 20	23

Notes:

^{*} Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

^{**} percentages less than 0 25 ac/h apply to interior retrofits only (next column)

Cutoff for retrofit: \$12.00 /GJ equiv

Base

		Caillean	Δ.	h	Damet	\A6-d (.46	A S Consultance	Energy Related		Life cycle
		Ceiling Base	Upgrade	bove grade Base		Windows (so: Base	,	Window	Retrofit Unit Cost	Total Cost	Unit Energy Cost
Bosion	۸۵۵	RSI	RSI	RSI	Upgrade RSI	RSI	RSI	/floor area %	\$	(10 ⁶ \$)	(\$/GJ/30y)
Region B C	Age <1921	1 88	7 00	0 91	2 98	0 26	0 36	9%	6,965	189	(\$/G3/30y) 5 39
ьс	1921-45	3 05	7 04	0 84	3 02	0 26	0 35	10%	6,231	607	7 04
	1946-60	3 72	7 10	1 13	2 86	0 28	0 35	15%	6,172	856	6 84
	1961-70	3 41	7 04	1 37	2 89	0 28	0 36	14%	5,155	498	6 91
	1971-80	3 53	7 18	1 35	2 77	0 29	0 36	13%	4,862	772	7 01
	>1981	4 60	7 00	1 17	272	0 36	0 36	12%	2,765	359	3 47
	× 130 1	4 00	7 00	1 17	212	0 30	0 30	12/0	Subtotal:	3,281	, 34,
Prairies	<1921	3 38	6 58	0 64	3 13	0 37	0 38	8%	3,177	353	3 11
FIAIRICS	1921-45	3 62	6 25	0 56	3 22	0 36	0 38	8%	3,177	531	3 86
	1946-60	3 98	6 51	0 95	2 98	0 30	0 38	8%	3,100	891	4 60
	1940-00	3 24	6 23	0 95	2 91	0 35	0 36	8%	3,056	548	4 95
	1971-80	3 58	6 41	1 35	2.77	0 36	0 36	9%	3,121	721	5 58
	>1971-00	6 96	7 05	1 88	2.77	0 49	0 49	7%	824	126	0.7
	- 1301	0.50	7 00	1 00	2 04	0 43	0 43	1 70	Subtotal:	3,169	. "
Ontario	<1921	3 37	5 88	0 65	3 19	0 35	0 37	8%	3,559	1,044	3 69
Ontano	1921-45	4 24	6 20	0 72	3 13		0 37	9%	2,810	614	4 14
	1946-60	4 11	5 97	0 72	3 05		0 38	10%	3,468	1,717	5 99
	1946-60	3 62	5 96	0 73	2 94		0 38	12%	3,493	910	6 8
	1971-80	3 98	5 80	1 35	2 80		0 36	11%	3,389	800	6 8
	>1971-00	5 69	5 89	1 44	2 45		0 36	8%	1,238	451	2 3
	>1901	3 09	3 03	1	2 40	0.30	0.30	0 70	Subtotal:	5,535	-
Quebec	<1921	2 94	5 80	0 99	2 83	0 38	0 38	6%	2,428	3,333	
Quebec	1921-45	3 68	5 83	0 90	3 11	0 38	0 38	8%	3,076	285	
	1946-60	4 23	5 97	1 07	2 92		0 37	9%	2,982	687	
	1961-70	3 67	5 80	1 31	2 68		0 38	11%	3,211	479	
	1971-80	3 77	5 92	1 39	2 69		0 37	11%		497	
	>1971-00	5 84	6 38	1 92	2 34		0 40	11%	•	47	
	- 1001	0 04	0 00	, 02	204	0 00	0 40	1170	Subtotal:	2,306	
Maritimes	<1921	2 54	7 20	1 19	2 71	0 33	0 38	11%		324	
Marianco	1921-45	1 73	7 20	0 92	3 01		0 35	9%	•	299	
	1946-60	3 07	7 20	0 82	3 11		0 35	9%	•	497	
	1961-70	2 89	7 20	0 89	3 01		0 36	9%	•	270	
	1971-80	3 27	7 20	1 33	2 79		0 36	10%	•	360	
	>1981	6 14	7 20	2 50	3 05		0 37	9%	•	93	
	- 1001	0 14	, 20	2 00	0.00	001	00,	0 70	Subtotal:	1,845	•
CANADA	<1921	2 82	6 49	0 88	2 97	0 34	0 37	8%		2,221	
0/110/10/1	1921-45	3 26	6 50	0 79	3 10		0 37	9%	•	2,336	
	1946-60	3 82	6 55	0 95	2 98		0 37	10%	•	4,649	
	1961-70	3 36	6 45	1 08	2 89		0 37	11%	,	2,705	
	1971-80	3 62	6 50	1 35			0 36	11%	•	3,149	
	>1981	5 85	6 70	1 78			0 39	9%		1,076	
	Total		5,5		2,00		0 00	J 70	Total:	16,136	_
	Average		6 53	1 14	2 90	0 35	0 37	10%			46
Notes	_	. 575	0.00	1 17	2 30	. 000	0 01	1070	(unweighted)		40

* Cross-Canada statistics are not weighted by region or age category, except for percentages (ventilation and window/floor area)

Based on:

Houses from STAR1 xls database

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls 2-Apr-93

(embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det)

Retrofit rules: LOW scenario (), using Rule0 xls

Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

Main floor Basement Interior finish: strip strip Exterior finish: strip retain Simulations using REES version 1 20

DHW:

Impact: minimize Cost

0%

Cutoff for retrofit:

\$12.00 /GJ equiv

Run ID: L12C01

Utilities: 0% reduction* *(except with combustion heating & hydroelectric utilities)

reduction

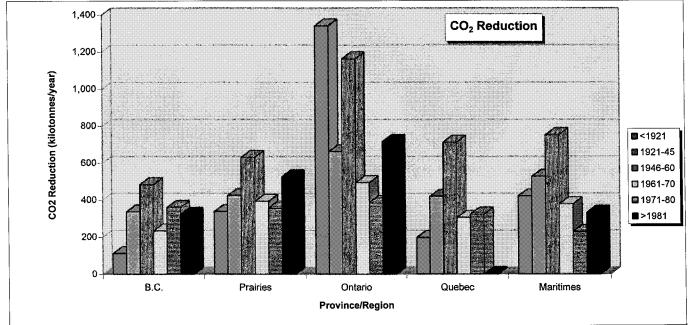
Min. upgrade: RSI Walls 0 50 Windows

Max. Exterior (urban)

3 00 RSI added

0 10

Mechanical systems: Space heating: upgrade Ventilation control: iaq_opt


Domestic hot water: upgrade

no ventilation in summer

PJ = PetaJoule (= one million GJ or 278 million kWh) Note:

	Housing		CO ₂ red	uction - O	peration on	ıly		CO ₂	CH4	co	NOx
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction	Reduction	Reduction	Reduction
	1 1		(1	diotonnes/yr)			(kilotonnes/yr)		(kilotonnes/yr)	(kilotonnes/yr)	(kilotonnes/yr)
<1921	666,980	112	338	1,341	198	423	2,412	25%	0.02	-0.08	20.5
1921-45	684,173	338	425	663	420	529	2,374	30%	0.02	-0.20	21.5
1946-60	1,356,041	484	631	1,163	713	753	3,744	27%	0.03	-0.33	30.2
1961-70	875,044	235	393	495	305	379	1,807	23%	0.02	-0.14	12.1
1971-80	1,156,834	360	357	386	324	229	1,657	19%	0.03	-0.04	6.6
>1981	919,050	323	527	717	2	333	1,902	23%	0 04	0.05	2 3
Total	5,658,122	1,852	2,672	4,766	1,961	2,646	13,897	25%	0.15	-0.74	93.3

1989

	Housing	RE	TROFIT EN	BODIED:	POLLUTAN	RETROFIT EMBODIED: POLLUTANTS											
Age	Stock	CO2	payback	CH4	payback	co	payback	NOx	payback	Used	Payback						
		(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(kilotonnes)	(years)	(PJ)	(years)						
<1921	666,980	339	0.1	0.01	0.4	8.0	neg.	0.9	0.0	8.8	0.2						
1921-45	684,173	361	0.2	0.01	0.5	1.1	neg.	1.0	0.0	9.5	0.3						
1946-60	1,356,041	670	0.2	0.01	0.4	1.9	neg.	1.9	0.1	18.0	0.3						
1961-70	875,044	381	0.2	0.01	. 0.4	1.1	neg.	1.1	0.1	10.5	0.3						
1971-80	1,156,834	504	0.3	0.01	0.4	1.1	neg.	1.4	0.2	13.3	0.4						
>1981	919,050	172	0 1	0 00	01	10	18 9	06	0 2	61	02						
Total	5,658,122	2,428	0.2	0.05	0.3	7.0	neg.	6.9	0.1	66	0.3						

Houses from STAR1 xls database Based on:

(single detached houses only; bsmt temp > 10C; ceiling area > 0)

Pollutant factors based on MatProp0 xls

(embodied factors use X-Canada elect source breakdown)

Housing statistics: Statistics Canada (Urban + Rural, single det) 1989

LOW scenario (), using Rule0 xls Retrofit rules:

Upgrade level selection based on space heating fuel type & location

Attic type ceilings assumed

Main floor Basement Interior finish: strip strip Exterior finish: strip retain

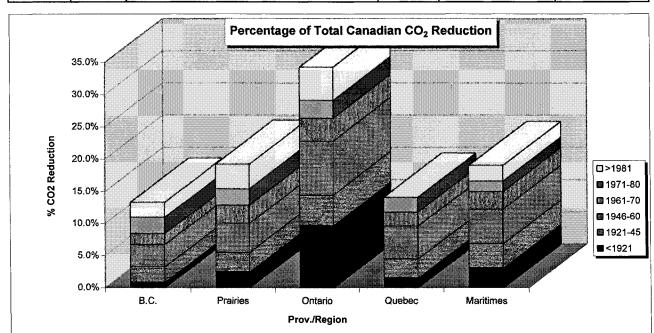
Simulations using REES version 1 20

Impact: minimize Cost DHW: 0% reduction Cutoff for retrofit: **\$12.00** /GJ equiv

Run ID: L12C01

Base Utilities: 0% reduction* *(except with combustion heating & hydroelectric utilities)

RSI Min. upgrade: 0 50 Max. Exterior (urban) 3 00


Windows 0 10

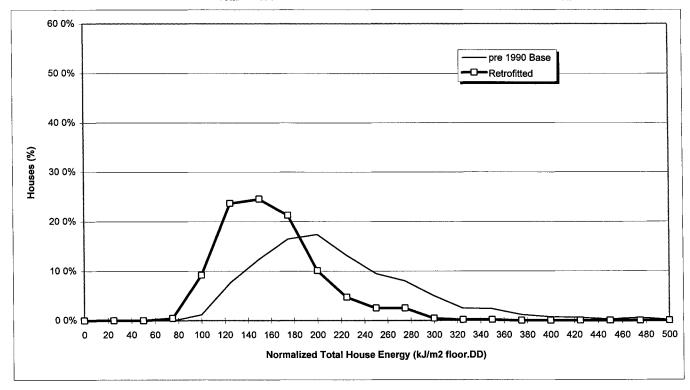
Mechanical systems:

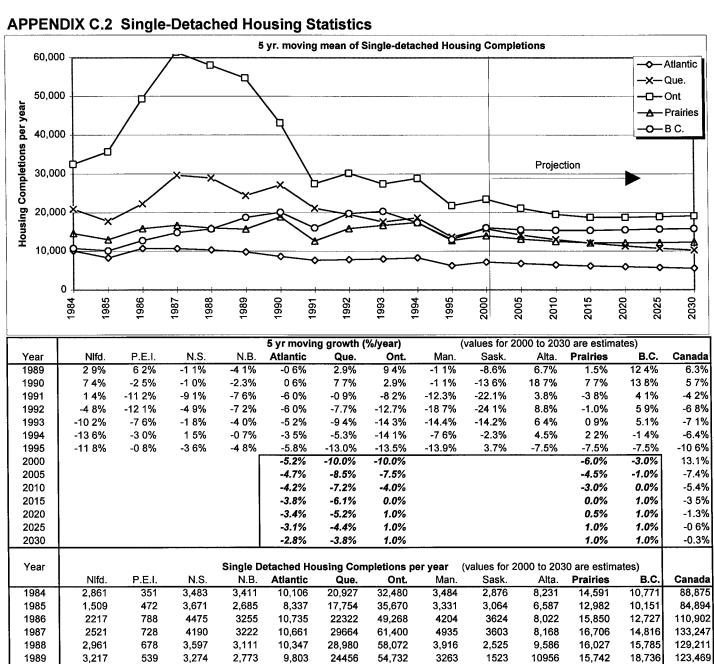
Space heating: Ventilation control: iaq_opt upgrade Domestic hot water: upgrade no ventilation in summer

Note:	Housing	% of To	tal Canadia	an CO ₂ red	uction - O	CO ₂		Energy			
Age	Stock	B.C.	Prairies	Ontario	Quebec	Maritimes	Canada	Reduction		Savings	
	1 1							(kilotonnes/yr)	(%)	(PJ/year)	(%)
<1921	666,980	0.8%	2.4%	9.7%	1.4%	3.0%	17.4%	2,412	25%	38.7	22%
1921-45	684,173	2.4%	3.1%	4.8%	3.0%	3.8%	17.1%	2,374	30%	35.7	25%
1946-60	1,356,041	3.5%	4.5%	8.4%	5.1%	5.4%	26.9%	3,744	27%	59.9	22%
1961-70	875,044	1.7%	2.8%	3.6%	2.2%	2.7%	13.0%	1,807	23%	32.3	19%
1971-80	1,156,834	2.6%	2.6%	2.8%	2.3%	1.7%	11.9%	1,657	19%	36.5	18%
>1981	919,050	2 3%	3 8%	5 2%	0 0%	2 4%	13.7%	1,902	23%	37 3	20%
Total	5,658,122	13.3%	19.2%	34.3%	14.1%	19.0%	100.0%	13,897	25%	240.4	21%

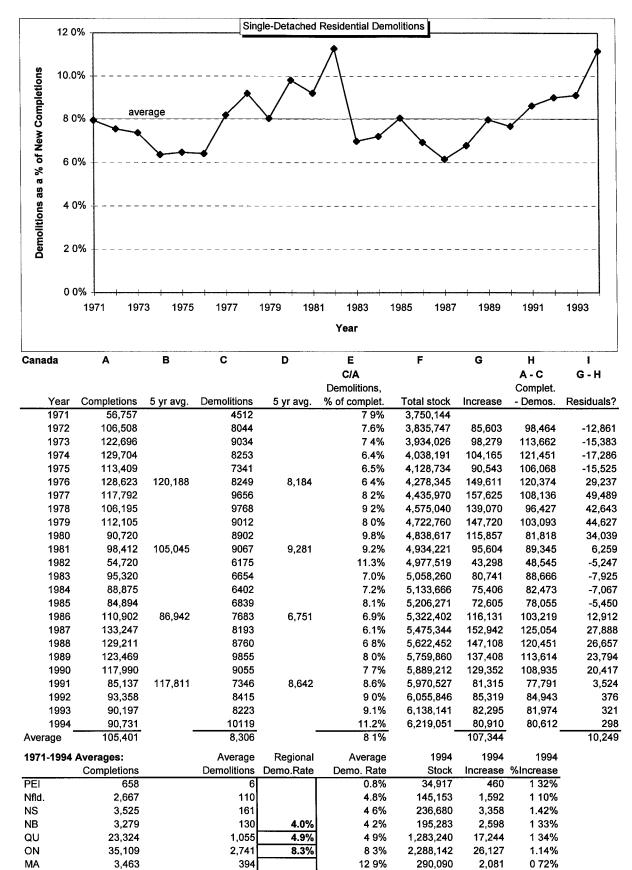
2-Apr-93

	Housing		E	NERGY RE	LATED RET	FROFIT COS	STS		Canada
Age	Stock	Retrofit (%)	B.C. (10 ⁶ \$)	Prairies (10 ⁶ \$)	Ontario (10 ⁶ \$)	Quebec (10 ⁶ \$)	Maritimes (10 ⁶ \$)	Canada (10 ⁶ \$)	Total Cost (10 ⁵ \$)
<1921	666,980	98%	189	353	1,044	310	324	2,221	4,648
1921-45	684,173	95%	607	531	614	285	299	2,336	5,219
1946-60	1,356,041	92%	856	891	1,717	687	497	4,649	10,362
1961-70	875,044	87%	498	548	910	479	270	2,705	6,099
1971-80	1,156,834	82%	772	721	800	497	360	3,149	7,016
>1981	919,050	83%	359	126	451	47	93	1,076	3,122
Total	5,658,122	89%	3,281	3,169	5,535	2,306	1,845	16,136	36,467


Normalized Total Energy Use (Existing Single-Detached Houses) for LOW Scenario


Base

Run ID: L12C01


Impact: m	inimize C	ost		Base	Retrofitted		Run ID: L12C0
Cutoff for retrofit:	\$12.00	/GJ equiv	Average	204	148	kJ/m ² DD	Note:
Houses retrofitted:	89%	of total	Minimum	76	71	kJ/m ² DD	Results are for 671 houses
Energy reduction:	21%	of total source use	Maximum	553	340	kJ/m ² DD	(unweighted by region or age)

Base Single-D	etached					Retrofitted	Single-De	tached			
Energy use	Cumulat	tive houses	Normalized			Energy use	Cumulati	ve houses	Normalized		
Threshold	less tha	n threshold	Energy use	Ho	uses	Threshold	less than	threshold	Energy use	Hou	ises
kJ/m²DD	no.	%	kJ/m²DD	no.	%	kJ/m ² DD	no.	%	kJ/m ² DD	no.	%
0	0	0 0%	0	0	0 0%	0	0	0 0%	0	0	0 0%
25	0	0 0%	0 to 25	0	0 0%	25	0	0 0%	0 to 25	0	0 0%
50	0	0 0%	25 to 50	0	0 0%	50	0	0 0%	25 to 50	0	0 0%
75	0	0 0%	50 to 75	0	0 0%	75	3	0 4%	50 to 75	3	0 4%
100	8	1 2%	75 to 100	8	1 2%	100	65	9 7%	75 to 100	62	9 2%
125	60	8 9%	100 to 125	52	7 7%	125	224	33 4%	100 to 125	159	23 7%
150	144	21 5%	125 to 150	84	12 5%	150	389	58 0%	125 to 150	165	24 6%
175	255	38 0%	150 to 175	111	16 5%	175	532	79 3%	150 to 175	143	21 3%
200	372	55 4%	175 to 200	117	17 4%	200	600	89 4%	175 to 200	68	10 1%
225	461	68 7%	200 to 225	89	13 3%	225	632	94 2%	200 to 225	32	4 8%
250	525	78 2%	225 to 250	64	9 5%	250	649	96 7%	225 to 250	17	2 5%
275	579	86 3%	250 to 275	54	8 0%	275	666	99 3%	250 to 275	17	2 5%
300	613	91 4%	275 to 300	34	5 1%	300	669	99 7%	275 to 300	3	0 4%
325	630	93 9%	300 to 325	17	2 5%	325	670	99 9%	300 to 325	1	0 1%
350	646	96 3%	325 to350	16	2 4%	350	671	100 0%	325 to350	1	0 1%
375	654	97 5%	350 to 375	8	1 2%	375	671	100 0%	350 to 375	0	0 0%
400	659	98 2%	375 to 400	5	0 7%	400	671	100 0%	375 to 400	0	0 0%
425	663	98 8%	400 to 425	4	0 6%	425	671	100 0%	400 to 425	0	0 0%
450	665	99 1%	425 to 450	2	0 3%	450	671	100 0%	425 to 450	0	0 0%
475	669	99 7%	450 to 475	4	0 6%	475	671	100 0%	450 to 475	0	0 0%
500	670	99 9%	475 to 500	1	0 1%	500	671	100 0%	475 to 500	0	0 0%
525	670	99 9%	500 to 525	0	0 0%	525	671	100 0%	500 to 525	0	0 0%
550	670	99 9%	525 to 550	0	0 0%	550	671	100 0%	525 to 550	0	0 0%
575	671	100 0%	550 to 575	1	0 1%	575	671	100 0%	550 to 575	0	0 0%
600	671	100 0%	575 to 600	0	0 0%	600	671	100 0%	575 to 600	0	0 0%
		·	Total _	671	_			-	Total	671	-

Year				Single D	etached Ho	using Com	pletions pe	eryear (values for 2	2000 to 203	0 are estim	ates)	
	NIfd.	P.E.I.	N.S.	N.B.	Atlantic	Que.	Ont.	Man.	Sask.	Alta.	Prairies	B.C.	Canada
1984	2,861	351	3,483	3,411	10,106	20,927	32,480	3,484	2,876	8,231	14,591	10,771	88,875
1985	1,509	472	3,671	2,685	8,337	17,754	35,670	3,331	3,064	6,587	12,982	10,151	84,894
1986	2217	788	4475	3255	10,735	22322	49,268	4204	3624	8,022	15,850	12,727	110,902
1987	2521	728	4190	3222	10,661	29664	61,400	4935	3603	8,168	16,706	14,816	133,247
1988	2,961	678	3,597	3,111	10,347	28,980	58,072	3,916	2,525	9,586	16,027	15,785	129,211
1989	3,217	539	3,274	2,773	9,803	24456	54,732	3263	1523	10956	15,742	18,736	123,469
1990	2,434	391	3,473	2,332	8,630	27199	43,130	3109	1112	14699	18,920	20,111	117,990
1991	2402	438	2739	2136	7,715	21,190	27,499	1,810	884	9,967	12,661	16,072	85,137
1992	1869	392	3340	2244	7,845	19,590	30,193	1,744	1278	12873	15895	19,835	93,358
1993	1,647	493	3,302	2,602	8,044	17,618	27,470	1,925	1487	13295	16707	20,358	90,197
1994	1,649	471	3,517	2,690	8,327	18,675	28,876	2,365	1,377	13,728	17,470	17,383	90,731
1995	1,255	374	2,890	1,751	6,270	13,654	21,855	1,588	1,341	9,857	12,786	13,054	67,619
2000					7,196	15,788	23,500				13,969	16,035	76,488
2005					6,819	14,209	21,150				13,131	15,554	70,863
2010					6,497	13,002	19,563				12,540	15,399	67,001
2015					6,222	12,062	18,781				12,164	15,399	64,628
2020					5,984	11,322	18,781				12,164	15,553	63,803
2025					5,779	10,731	18,969				12,225	15,708	63,411
2030					5,600	10,254	19,158				12,347	15,865	63,225
average:													
1984-95	2,212	510	3,496	2,684	8,902	21,836	39,220	2,973	2,058	10,497	15,528	15,817	101,303
1991-95	1,764	434	3,158	2,285	7,640	18,145	27,179	1,886	1,273	11,944	15,104	17,340	85,408

8.5%

14.3%

17 1%

6 2%

14 3%

291,281

626,251

809,742

1,141

13,257

12,754

0 39%

2.12%

1.58%

480

821

2,396

SA

ΑB

BC

3,675

12,865

16,849

APPENDIX D Comparison with HOT-2000 (ver. 7)

			Design		S	pace Heat				W	ater Heat	
			Loss To	otal Load	internal	Solar	Demand	Fuel	Efficiency	Load	Fuel Et	fficiency
			W	GJ/y	GJ/y	GJ/y	GJ/y	GJ/y	1	GJ/y	GJ/y	-
BC0020B	Pre 1920 archetype	HOT2000	13456	114 4	26 7	12 3	74 0	111 8	65%	97	21 3	46%
	Vancouver, B C	REES	11721	108.8	24.2	14.3	72.3	109.5	66%	9.1	16.9	54%
		Difference	-13%	-5%	-9%	16%	-2%	-2%		-7%	-21%	
BC0020U	Upgraded pre 1920 arch	HOT2000	6730	56 1	23 9	7 5	22 2	23 6	92%	7 8	10 5	74%
	Vancouver, B C	REES	6106	55.9	25.3	6.4	24.2	27.5	88%	7.3	8.3	88%
		Difference	-9%	0%	6%	-15%	9%	16%		-7%	-21%	
	Savings	HOT2000						88 1			108	
		REES						82.1			8.6	
		Difference						-7%			-21%	
BC8089B	1981-1989 archetype	HOT2000	11860	138 6	28 2	24 3	84 9	124 7	67%	16 2	28 6	56%
	Vancouver, B C	REES	10472	134.5	32.1	21.0	81.4	123.4	66%	15.1	27.9	54%
		Difference	-12%	-3%	13%	-14%	-4%	-1%		-7%	-2%	
BC8989U	Upgraded 1981-1989 arch	HOT2000	7186	84 0	28 7	18 2	35 7	38 0	92%	12 9	15 3	84%
	Vancouver, B C	REES	6922	84 5	30 9	15 9	37 7	42 9	88%	12 1	15 9	88%
		Difference	-4%	1%	8%	-13%	6%	13%		-7%	3%	
	Savings	HOT2000						86 7			13 3	
		REES			_			80.5			12.1	
		Difference						-7%		L	-9%	
PR0020B	Pre 1920 prairies archetype	HOT2000	14466	146 1	30 2	13 5	101 9	147 8	68%	12 9	25 2	51%
	Edmonton, AB	REES	12465	132.4	26.9	11.2	94.3	142.9	66%	12.1	22.4	54%
		Difference	-14%	-9%	-11%	-18%	-7%	-3%		-6%	-11%	
PR0020U	Upgraded pre 1920 arch	HOT2000	8621	87 8	20 8	11 7	54 9	58 5	92%	10 3	12 9	80%
	Edmonton, AB	REES	7700	82 2	26 4	8 8	47 0	53 4	88%	97	8 8	88%
		Difference	-11%	-6%	27%	-24%	-14%	-9%		-6%	-32%	
	Savings	HOT2000						89 3		1	12 3	
		REES						89.5			13.6	
		Difference						0%]		11%	

Appendix E Outside Temperature Controlled (OTC) Ventilation

The critical periods, from an indoor air quality point of view, are usually in the spring and fall when the house is still closed up, since space heating is still required for most hours, however the temperature difference driven infiltration forces are relatively small. Therefore, natural infiltration is often very low and indoor pollutant concentrations (building and occupant generated) can rise above tolerable levels unless some form of ventilation is provided.

The following is a summary of a set of seven runs carried out on retrofitted houses in four of the climate zones.

For each OTC run, the difference between inside temperature and outside temperature (deltaT) above which the fans would be turned on was specified. The REES program calculated the number of hours and average outside temperature above and below the control set-point, then calculated total ventilation and energy use above the set-point (fans on) and below the set-point (fans off).

The following table compares several ventilation control scenarios, and shows house database row number, house ID, location, annual heating degree days, ventilation control, October to April average and minimum monthly total ventilation (including infiltration), OTC temperature difference (where applicable), house air-tightness, operating annual carbon dioxide production, annual space heating energy use, and life-cycle net energy cost (LCEC).

Five different ventilation systems were simulated for each house - continuous fans (with HRV), optimal control (with and without HRV), and OTC. The optimal control maintained approximately constant total air change for each month from October to April. The OTCavg case matched October to April average total air changes to the optimal case, while OTCmin matched the minimal monthly total air changes to the minimal monthly for the optimal case.

In all cases, the OTC runs resulted in operating carbon dioxide generation and space heat fuel use that was within -3% to +10% of the optimum (iaq_opt). The OTCavg usually had the lowest LCEC - indicating the most economic option, however minimum monthly total air change dropped to as low as 0.16 ac/h in some cases. These houses were sufficiently air-tight that the natural infiltration during cold months (fan off) was inadequate to maintain good air quality. A control that provides a constant minimum ventilation plus OTC may be necessary to avoid too low ventilation in tight houses.

				Degree	Ventilation	Avg. ACH	Min ACH	HRV?	deltaT	Wall	Air-tight.	Operating	SpHt.Fuel	Net Energy
DB	House	Construction	on	Days	Control	Oct-Apr	Oct-Apr		OTC	Retrofit		CO2	·	Cost
umber	ID	Date	Location	DD18C		(ac/h)	(ac/h)		(C)	Type	(ac/h 50Pa)		(GJ/y)	(\$/GJ/30y)
10	V8056.v2	1966	Kamloops, BC	3,756	continuous	0.46	0.37	Yes	` ,	Exterior	6.81	1,616	42.89	8.12
			1		iaq_optHRV	0.32	0.26	Yes				1,414	35.37	7.17
					iaq_opt	0.32	0.26					1,512	39.87	7.10
					OTCavg	0.31	0.26		11.0			1,503	39.31	6.98
					OTCmin	0.31	0.26		11.0			1,503	39.31	6.98
739	BC10	1989	Vancouver, BC	3,007	continuous	0.32	0.31	Yes		Exterior	2.86	3,649	48.27	7.17
			,		iaq_optHRV	0.24	0.23	Yes		-		3,376	43.23	6.77
					iag opt	0.24	0.23			İ		3,768	51,45	6.52
					OTCavg	0.25	0.17		16.0	1		3,737	50.79	6.39
					OTCmin	0.33	0.22		19.0			4,004	56.04	6.89
383	L4367.v2	1965	Toronto, ON	4,082	continuous	0.37	0.30	Yes		Exterior	4.66	4,576	42.30	8.86
			, , , , , , , , , , , , , , , , , , , ,	.,	iaq_optHRV	0.26	0.23	Yes			1	4,066	34.01	7.98
					iaq_opt	0.26	0.23	1				4,452	42.45	7.92
					OTCavg	0.26	0.21		18.0			4,383	41.02	7.73
					OTCmin	0.32	0.23		22.0			4,577	44.60	8.10
683	RCD05	1989	Toronto, ON	4,082	continuous	0.34	0.30	Yes		Exterior	2.66	5,949	66.44	9.57
	KODOO	1000	10101110, 014	1,002	iaq_optHRV	0.25	0.24	Yes		- LACOTTO!	2.00	5,301	55.58	8.15
			-		iaq_opt	0.25	0.24	1				6,005	71.28	8.86
-					OTCavg	0.26	0.16	-	22.0			5,852	68.12	8.39
					OTCmin	0.34	0.24		28.0			6,406	78.60	9.98
568	A1045.v2	1962	Saint John's, NF	4.804	continuous	0.45	0.37	Yes		Interior	4.68	3.946	40.32	4.44
			-		iaq_optHRV	0.32	0.27	Yes				3,368	32.70	4.27
					iaq_opt	0.32	0.27	1				3,913	40.21	4.06
					OTCavg	0.32	0.24	1	15.0			3,822	38.98	4.00
					OTCmin	0.36	0.27		18.0			3,963	40.88	4.05
683	S6076.v2	1946	Regina, SA	5,920	continuous	0.39	0.31	Yes		Exterior	5.19	7,894	40.22	5.26
	23070.72	,,,,,,	gilla, or .	0,023	iaq_optHRV	0.28	0.23	Yes				7,463	34.79	5.00
-	1				iaq opt	0.28	0.23	1			1	7,645	39.12	4.52
		 	1		OTCavg	0.29	0.23		22.0	 		7,635	38.77	4.45
					OTCmin	0.29	0.23		22.0			7,635	38.77	4.45
765	WPG19	1989	Winnipeg, MA	5,889	continuous	0.32	0.30	Yes		Exterior	1.36	3,890	60.60	4.68
	1 0.0	+		,	iaq optHRV	0.27	0.26	Yes			1	3,578	54.39	4.56
	1		+		iaq_opt	0.27	0.26	1				4,419	71.44	4,60
	l	<u> </u>	-		OTCavg	0.29	0.19	1	42.0	+	+	4,435	71.74	4.57
	ļ	-			OTCmin	0.32	0.26	1	46.0	+	 	4,643	75.93	4.71
-	<u> </u>		nt monthly total air c							+		+ .,	1	+

97

Appendix F Retrofit Rules

The factors and tables in the Rule.xls sheet determine the upgrade path for each house in the database. Other rule sheets could be generated to determine alternate retrofit paths.

In addition to the rules, certain factors were left as variables to allow for different scenarios. These variables include:

- retrofit level (LOW, MID, HIGH),
- whether to retain interior or exterior finishes (if not retained, the rules would determine whether or not to retrofit, based on other criteria),
- maximum added wall RSI (typically 3.0) a factor in urban environments with limited side-yard space,
- whether or not to upgrade mechanical systems,
- ventilation factors -
 - · whether to allow HRVs (to allow comparisons with and without HRV),
 - · ventilation control (continuous, IAQ optimal and OTC),
 - whether to continue operation during the summer (May September)
- Economic criteria to cancel retrofit on a specific house (based on LCEC, \$/GJ)

Once these variables had been specified, a run could commence by loading the first house in the database. Based on retrofit level, region (and NECH zone within the region), and space heating fuel type, the program would look up goal RSI values for walls, basements, heated crawlspaces, ceilings and overhanging floors (and ER values for windows).

The program would then match a retrofit section from the database of building sections that would, if possible, meet the goal requirements. In some cases, other rules specified limitations on available choices, for example:

- if the city location matched a list of high density urban centres, then the program would invoke the maximum added wall RSI input, and if exceeded, would force an interior retrofit, or if that were not allowed would limit the exterior retrofit to the maximum,
- pre-1945 houses in Ontario were assumed to be masonry finish and the program used interior retrofits only.

Only whole-house retrofits were considered, primarily because of the limited amount of information on the air-tightening effects of retrofits - most of which was concerned with whole-house retrofits.

Air-tightness data was used if it existed for the base house, otherwise an NLA value was looked up, based on the region and age of house. The degree of air-tightening accomplished with the retrofit was linked to new house air-tightness in the region (construction industry capabilities), and the level of retrofit - specifically the selected wall retrofit (other portions of the house were assumed to be retrofitted to a similar degree).

Space and water heating systems were retrofitted according to a schedule based on level of retrofit and energy source (for example, electric and wood heating were not changed, while gas and oil systems were upgraded to mid-efficiency at the LOW and MID levels, and to integrated condensing systems at the HIGH level of retrofit). Note that heat pumps were not specified as an upgrade for electric systems - primarily because of limitations in the simulation model.

Ventilation systems were sized on the basis of a comparison with a specified ventilation requirement (selected as 0.30 ac/h) and April/October total ventilation (forced plus natural). In addition, ventilation on-time was calculated for each month for IAQ optimal and OTC systems.

The utilities base load was reduced according to a schedule, based on the level of retrofit (no change for LOW, 10% reduction for MID, and 20% reduction for HIGH). The base load was not reduced, however, in houses with combustion space heating systems if they were in regions dominated by hydro-electric generation, as reducing electrical utilities consumption in these house would increase carbon dioxide generation due to space heating.