RESEARCH REPORT

Approaching Net Zero Energy in Existing Housing

CMHC—HOME TO CANADIANS

Canada Mortgage and Housing Corporation (CMHC) has been Canada's national housing agency for more than 60 years.

Together with other housing stakeholders, we help ensure that Canada maintains one of the best housing systems in the world. We are committed to helping Canadians access a wide choice of quality, affordable homes, while making vibrant, healthy communities and cities a reality across the country.

For more information, visit our website at www.cmhc.ca

You can also reach us by phone at 1-800-668-2642 or by fax at 1-800-245-9274.

Outside Canada call 613-748-2003 or fax to 613-748-2016.

Canada Mortgage and Housing Corporation supports the Government of Canada policy on access to information for people with disabilities. If you wish to obtain this publication in alternative formats, call 1-800-668-2642.

Approaching Net Zero Energy in Existing Housing

Authors:

Shawna Henderson Abri Sustainable Design & Consulting

Submitted By:

Abri Design & Consulting 583 Indian Point Road Glen Haven, NS B3Z 2T5 Phone: 1.902.489.1014

Submitted 17 Dec 2007

Chris Mattock Habitat Design + Consulting

Disclaimer

This study was conducted for Canada Mortgage and Housing Corporation (CMHC) under Part IX of the National Housing Act. The analysis, interpretations and recommendations are those of the consultant and do not necessarily reflect the views of CMHC.

Table of Contents

Lis	sclaimer st of Tables st of Acronyms and Abbreviations	iv
E	kecutive Summary/Résumé	. vi
1	Introduction	1 1 2 2
2	Goals of the Project 2.1 Methodology Used to Model Net Zero Energy Retrofits	. 5 . 5
3	Characteristics of Existing Housing Stock3.1Typical Existing Envelope Characteristics3.2Typical Existing Mechanical Systems3.3Typical Existing Base Loads	8 .10
4	Strategies for Approaching Net Zero Energy 4.1 Performance-based Construction Standards 4.2 Building Envelope 4.3 Mechanical Systems 4.4 Cooling Strategies 4.5 Secondary Energy Usage 4.6 Stand-by Energy Usage 4.7 Household Energy Monitoring 4.8 Drainwater Heat Recovery 4.9 Solar Technologies	.11 .12 .15 .16 .19 .19 .20 .20
5	Upgrades 5.1 Upgrade Targets for Envelopes 5.2 5.2 Upgrade Targets for Mechanical Systems 5.3 5.3 Upgrade Base Loads 5.4 5.4 Solar Domestic Hot Water 5.5 5.5 Photovoltaic Systems 5.6 5.6 Example Calculation 5.7 5.7 Cost Effectiveness 5.3	.26 .28 .29 .30 .30 .32
6	Energy Modelling Results	.39 .41 .43 .43 .44 .45
7	Discussion of Findings	.48 .48 .49
8	Conclusions	50
9	References, Bibliography and Web-based Resources	51

10 Appendices		57
Appendix A:	Decision Trees	
Appendix B:	Building Envelope Upgrade Options	81
Appendix C:	Base Case House Energy Use Figures	
Appendix D:	Upgrade Case Results	109
Appendix E:	Solar Hot Water Calculations for Canadian Cities	
Appendix F:	Utilization of Photovoltaic Arrays	134
Appendix G:	EGH* Rating Detailed Calculations	

List of Tables

Table 1: Benefits/Barriers to Net Zero Energy Retrofits	4
Table 2: House Types	6
Table 3: Characteristics of House Types	8
Table 4: Existing Envelope Characteristics, for all house types	9
Table 5: Base Case Mechanical Systems, for all house types	10
Table 6: Existing Base Loads, for all house types	10
Table 7: PassivHaus Standard for Central European Climate (from Saïd, 2006, 67)*	11
Table 8: Low Energy Retrofit Priorities Checklist	
Table 9: Factor 9 Home Energy Statistics	12
Table 10: Characteristics of Five Super-Insulated Homes (from Saïd, 2006, 72)	14
Table 11: HVAC Replacement Screening Checklist (Adapted for Canadian housing from Walker, 2003)	16
Table 13: High Solar Fraction Homes	22
Table 14: Modelled Envelope Upgrades, for all house types	27
Table 15: Modelled Mechanical System Upgrades for all house types	28
Table 16: Baseloads for all house types	29
Table 17: Progression of Upgrades (GJ), Vancouver Bungalow, c. 1969	33
Table 18: Overall reductions in Vancouver bungalow, c 1969, in GJ, with rooftop PV system	35
Table 19: Overall reductions in Vancouver bungalow, c 1969, in GJ, with PV system delivering 8760 kWh/yr	35
Table 20: Financing a Net Zero Energy Retrofit	
Table 21: Comparison of mortgage payment vs. reduced monthly energy costs	36
Table 22: Reductions in Design Heat Loss, W/m ²	40
Table 23: Range and Median Reductions in Space Heating Loads, by city (%)	
Table 24: Range and Median Reductions by House Type (%)	
Table 25: Reductions in Space Heating Load, in GJ, for all cities	
Table 26: Space Heating Energy Consumption(GJ), Vancouver Envelope Upgrades, selected house types	43
Table 27: Comparison of Space Heating Energy Consumption (GJ), Whitehorse Heating System Upgrades	43
Table 28: Optimal Solar Contribution to Water Heating (GJ)	
Table 29: Reductions in energy requirements for the bungalow, all cities (GJ)	45
Table 30: Comparison of EGH* Ratings	46
Table 31: Comparison of EGH* Ratings with Round 2 Upgrades	47

List of Acronyms and Abbreviations

ACEEE	American Council for an Energy Efficient Economy
AC/H	Air Change per Hour
ACI	Affordable Comfort Institute (US)
CanSIA	Canadian Solar Industries Association
CSA	Canadian Standards Association
CFL	Compact Fluorescent Lamp
CMHC	Canada Mortgage and Housing Corporation
COP	Coefficient of Performance
DHW	Domestic Hot Water
DWHR	Drainwater Heat Recovery
EBN	Environmental Building News
EDU	Environmental Design Update
EGH	EnerGuide for Houses (Canadian rating service for residential energy use)
EPA	Environmental Protection Agency (US)
GJ	Gigajoule (measurement of energy 1GJ = 0.0036 kWh)
GHG	Greenhouse Gas
GSHP	Ground Source Heat Pump
HRAI	Heating Refrigeration and Air Conditioning Institute
HRV	Heat Recovery Ventilator
HVAC	Heating Ventilation and Air Conditioning
KWp	Peak power in kW of a PV array
LED	Light Emitting Diode
NAHB	National Home Builders Association (US)
NBC	National Building Code (Canada)
NEB	Non-Energy Benefit
NZEH	Net Zero Energy Housing
NRCan	Natural Resources Canada
PV	Photovoltaic
R-value	Thermal resistance value of insulation, in Imperial units
RETScreen	Renewable Energy Technology Software (developed by NRCan)
RSI	Thermal resistance value of insulation, in SI units
SDHW	Solar Domestic Hot Water
SRC	Saskatchewan Research Council
US DoE	United States Department of Energy

Executive Summary

The term Net Zero Energy Housing (NZEH) rose out of the US Department of Energy's Zero Energy Homes research initiative, started in 2000. In 2006, Canada Housing and Mortgage Corporation's (CMHC) EQuilibrium Housing Pilot Demonstration Initiative set the challenge for Canadian homebuilders and developers (CMHC-EQ, 2007). "Net zero energy housing', as defined by CMHC, describes a home that produces as much energy as it consumes annually. This is done through a variety of means, including:

- reducing energy loads through a climate-responsive, high-performance building envelope and use of energy efficient appliances and lights throughout the house
- increased use of passive solar cooling and heating techniques
- high-efficiency mechanical systems that match the lower energy requirements of the home
- space and water heating assisted by commercially available solar thermal systems and heat pumps
- electrical use offset by grid-connected commercially available photovoltaic (PV) systems

Determining cost-effective ways to retrofit houses to meet net zero energy targets is a key element to both energy security and climate change mitigation (CMHC, 2006). To date, most NZEH initiatives have been focussed on new construction. This study looks at ways to approach net zero energy in the over 12 million existing houses in Canada. The age and style of a house as well as variations in regional and historical construction practices and materials choices all require consideration. Approaching net zero energy is more of a challenge in colder regions, yet these are the regions where homeowners can benefit most.

The following table summarizes the benefits and barriers to reaching net zero energy in existing houses.

Table 1e: Benefits/Barriers to Net Zero Energy Retrofits

Benefits

- · Radically reduces or eliminates energy costs
- Energy security
- National security
- Reduced air pollution
- Reduce or eliminate green house gas emissions and impact on climate change
- Increased thermal comfort
- Enhanced indoor air quality and occupant health
- Local job generation and use of many domestically produced products and materials

Barriers

- Initial cost / financing
- Knowledge and experience of building industry
- Knowledge and experience of building inspectors
- Knowledge and experience of financial institutions
- Regulations
- Minimum setbacks from property lines, etc.
- No guarantee of long term solar access
- Limitations on wind tower height and use of wind energy systems (WES)
- Lack of detailed local wind energy data for WES and passive cooling
- Poor utility adoption of power buyback policies
- Lack of consumer interest

The goal of the study was to determine ways to approach net zero energy in housing in the Canadian context. Several house types were modelled in HOT2000 for typical energy usage in six cities (Vancouver, Calgary, Toronto, Montreal, Halifax and Whitehorse), and then a series of upgrades was applied to each house type in each city. When all reductions and changes to the base house had been made, a specialized EnerGuide for Houses rating (developed for CMHC's EQuilibrium Housing Initiative) was calculated. This rating (designated as EGH*) takes into account the total net energy consumption, and includes baseload reductions and renewable energy generation.

In general, the modelled upgrades emphasized energy efficiency first, then add-on renewable energy systems. This meant improving the building envelope then upgrading and updating HVAC equipment, appliances and lighting. PV and solar thermal can be installed when economically feasible, or, in cases of houses where the building envelope, HVAC and/or secondary energy use cannot be improved.

As could be expected, there were differences between climatic regions that influenced the challenge of approaching net zero energy in existing houses. The region where retrofits were most likely to come close to net zero energy mainly through building envelope improvements was Vancouver.

The design heat loss indicates how much heat the house will require to maintain a comfortable inside temperature in the most severe winter conditions for a given location. In most cases, where envelope

characteristics did not restrict the level of insulation improvements, the design heat loss was reduced by more than half, in some cases by up to three-quarters of the base case house.

The heating load is the amount of energy (in GJ) that the house consumes annually. In general, there were significant reductions in heating loads in all house types, and in all cities, for an average reduction of 81%. The overall range of reductions was from 56% to 96%. House type and age; typical construction patterns; and climatic differences between cities caused the variations in reductions.

The house type that would most easily be retrofitted to net zero energy was the bungalow, where the simple form of the building allows for better results from air sealing and insulation. In addition, the long axis of the house results in a larger, unobstructed or shaded roof face than other house types. This gives the potential for the largest possible roof-mounted PV array and solar domestic hot water system, even if the 4/12 roof typically is not at optimum slope for these technologies in most Canadian regions.

It was shown in the report that retrofits in the \$30,000 and \$50,000 range was cost effective when refinancing a mortgage. In many cases, the monthly energy savings outweigh the incremental increase in a mortgage payment. This figure is over double the 'average' major renovation figure of \$12,000 reported in a CMHC study (CMHC, 2006). However, it has been the project team's experience that homeowners are willing to pay more for what they want, witness the number of \$20,000 to \$100,000 kitchen renovations.

At this time, an energy retrofit featuring solar DHW and PV cannot compete with the 'sexiness' of a major kitchen or luxury bathroom renovation. However, one aspect of whole house energy efficiency retrofits not currently addressed is the value of associated 'non-energy benefits' (NEBs). Recent studies show comfort and aesthetic benefits far outweigh energy concerns, and very few homeowners assess the economic benefits of their investments by monitoring energy bills or calculating payback times (Thorne, 2006).

Barriers to actually getting to net zero energy in existing homes include the challenge of coordinating the timing of a retrofit. Making a project cost-effective depends on some planning – for example, if the siding is to be replaced on a home, that is the time to insulate the exterior and upgrade windows. Mechanical equipment is usually replaced under emergency situations, so a change-out to a higher-efficiency, smaller output unit that coordinates with an envelope upgrade requires a clear plan and timely financing. Other barriers are based in the logistics of finding contractors willing and able to do the work required.

The technology and materials are available to reduce energy loads significantly, in existing houses, by a factor of 7 to 9. However, getting to net zero energy in existing houses is completely dependent on the cost of the add-on renewable systems that take the house to net zero energy. Solar thermal systems are market ready with a reasonable payback period, and are a more readily accepted option by homeowners. If there were financial incentives and mechanisms in place, roof-mounted solar thermal systems would become a much more commonplace sight in Canada. PV systems are currently very expensive, with long payback periods for small systems. Until there are reasonable incentives to purchase and operate these systems (tax rebates, purchase incentives, 'green power' premiums for grid-connected systems), it will be nearly impossible for homeowner to operate his or her house as a net zero energy home.

Résumé

L'expression Net Zero Energy Housing (NZEH), traduite par « Maison à consommation énergétique nette zéro » (MCENZ), est tirée de l'initiative « Zero Energy Homes » lancée en 2000 par le département de l'Énergie des États-Unis. En 2006, l'initiative de démonstration témoin de la maison EQuilibrium de la Société canadienne d'hypothèques et de logement (SCHL) invitait les constructeurs d'habitations et les promoteurs canadiens à se surpasser (SCHL-EQ, 2007). La « Maison à consommation énergétique nette zéro », tel que l'entend la SCHL, est une maison qui produit autant d'énergie qu'elle en consomme en une année. Pour y parvenir, on a recours à divers moyens, notamment :

- la réduction des charges énergétiques grâce à une enveloppe de bâtiment à haute performance adaptée au climat et à l'utilisation d'électroménagers et d'appareils d'éclairage éconergétiques partout dans la maison;
- une utilisation accrue des techniques solaires passives pour le rafraîchissement et le chauffage des • locaux:
- des installations mécaniques à haute efficacité qui vont de pair avec les besoins en énergie réduits de la maison:
- un système de chauffage de l'eau et des locaux assisté d'installations solaires thermiques et de thermopompes déjà vendues dans le commerce;
- une consommation d'électricité compensée par des panneaux photovoltaïques (PV) offerts sur le marché et raccordés au réseau de distribution.

Il est crucial, dans une optique d'approvisionnement en énergie garanti et d'atténuation des effets du changement climatique, de trouver des moyens efficients de rénover des maisons afin qu'elles offrent une consommation énergétique nette zéro (SCHL, 2006). À ce jour, la plupart des initiatives relatives à la MCENZ visaient les nouvelles constructions. Or, cette étude examine des moyens d'envisager la consommation énergétique nette zéro pour plus de 12 millions de maisons existantes au Canada. L'âge et le style d'une maison, en plus de la diversité des pratiques régionales et historiques en matière de construction et de choix des matériaux, sont des facteurs qui doivent tous être pris en considération. Il est vrai qu'il peut s'avérer difficile de parvenir à une consommation énergétique nette zéro dans les régions froides, mais n'oublions pas que ce sont les propriétaires-occupants de ces régions qui peuvent en bénéficier le plus.

Le tableau suivant résume les avantages et les obstacles inhérents à la consommation nette zéro dans les maisons existantes.

Tableau 1e : Rénovations visant une consommation énergétique nette zéro – les avantages et les obstacles

Avantages

- Réduction considérable ou élimination des frais d'énergie
- Approvisionnement en énergie garanti
- Sécurité nationale
- Diminution de la pollution de l'air
- Réduction ou élimination des émissions de gaz à effet de serre et de l'incidence sur le changement climatique
- Confort thermique accru
- Amélioration de la gualité de l'air intérieur et de la santé des occupants
- Création d'emplois à l'échelle régionale et utilisation de nombreux produits et matériaux fabriqués au pays

Obstacles

- Coûts initiaux et financement
- · Connaissances et expérience du secteur de la construction
- Connaissances et expérience des inspecteurs en bâtiment
- Connaissances et expérience des institutions financières Règlements
- Marges de recul minimales relativement aux limites de la propriété, etc.
- Aucune garantie quant à l'accès à long terme à l'énergie solaire
- · Restrictions relatives à la hauteur des tours éoliennes et à l'utilisation de systèmes éoliens
- Absence de données locales détaillées sur l'énergie éolienne pour les systèmes éoliens et le rafraîchissement passif
- · Faible taux d'adoption de politiques de rachat d'énergie par les organismes de service public
- Manque d'intérêt de la part des consommateurs

Le but de cette étude était de trouver des moyens de parvenir à des maisons à consommation énergétique nette zéro dans le contexte canadien. Plusieurs types de maisons ont été modélisés à l'aide de HOT2000 pour en connaître la consommation énergétique caractéristique dans six villes (Vancouver, Calgary, Toronto, Montréal, Halifax et Whitehorse), puis une série d'améliorations ont été apportées à chaque type de maison dans chaque ville. Lorsque toutes les réductions et modifications à la maison de référence ont été faites, une cote spéciale ÉnerGuide pour les maisons (élaborée pour l'initiative EQuilibrium de la SCHL) a été calculée. Cette cote (appelée EGM*) tient compte de la consommation d'énergie nette totale et comprend les réductions de la charge minimale requise et la production d'énergie renouvelable.

Règle générale, les améliorations modélisées privilégiaient d'abord l'efficacité énergétique, puis l'ajout de systèmes à énergie renouvelable. On devait donc perfectionner l'enveloppe du bâtiment, puis améliorer et moderniser l'installation de chauffage, ventilation et climatisation (CVC), les électroménagers et les appareils d'éclairage. Des panneaux photovoltaïques et une installation solaire thermique peuvent être mis en place lorsqu'il est économiquement possible de le faire ou dans le cas des maisons où l'enveloppe du bâtiment, l'installation de CVC ou l'utilisation de l'énergie secondaire ne peuvent être améliorés.

Comme on pouvait s'y attendre, on a constaté des différences entre les régions climatiques qui influaient sur la capacité de parvenir à une consommation énergétique nette zéro dans des maisons existantes. C'est dans la région de Vancouver que des rénovations permettraient le plus de se rapprocher d'une consommation énergétique nette zéro grâce aux seules améliorations apportées à l'enveloppe du bâtiment.

Les pertes de chaleur nominales indiquent la quantité de chaleur nécessaire pour que la maison maintienne une température intérieure confortable durant les conditions hivernales les plus rigoureuses dans un endroit donné. Dans la majorité des cas, lorsque les caractéristiques de l'enveloppe n'empêchaient pas l'ajout d'isolant, les pertes de chaleur nominales ont été réduites de plus de la moitié et, dans certains cas, jusqu'aux trois quarts par rapport à la maison de référence.

La charge de chauffage correspond à la quantité d'énergie (en GJ) que la maison consomme en une année. En général, on a constaté des réductions importantes des charges de chauffage dans tous les types de maisons et dans toutes les villes, soit une réduction moyenne de 81 %. La plage globale des réductions s'étendait de 56 % à 96 %. Les écarts dans les réductions étaient causés par le type et l'âge de la maison, les procédés de construction courants et les différences de climat entre les villes.

Le type de maison qui pourrait être le plus facilement rénové pour parvenir à une consommation énergétique nette zéro est la maison de plain-pied, dont la forme simple permet d'obtenir de meilleurs résultats grâce à l'étanchéisation à l'air et à l'isolation. En outre, la forme allongée du bâtiment procure une superficie de toit sans obstruction ni ombrage plus grande que celle des autres types de maisons. On peut donc envisager d'y installer des panneaux photovoltaïques et une installation solaire pour le chauffage de l'eau domestique de dimension optimale, même si une pente de toit de quatre pouces par pied n'est généralement pas la meilleure pour ces technologies dans la plupart des régions du Canada.

Dans le rapport, on démontre que des rénovations se situant entre 30 000 \$ et 50 000 \$ s'avèrent rentables lors du refinancement d'un prêt hypothécaire. Dans de nombreux cas, les économies d'énergie mensuelles sont plus importantes que l'augmentation des paiements hypothécaires. Ce chiffre représente plus du double des 12 000 \$ signalés dans une étude de la SCHL (SCHL, 2006) et constituent une « moyenne » pour de gros travaux de rénovation. Néanmoins, l'équipe de projet sait par expérience que les propriétaires-occupants sont prêts à payer davantage pour ce qu'ils veulent, comme en font foi les sommes de 20 000 \$ à 100 000 \$ consacrées aux travaux visant les cuisines.

Pour le moment, une rénovation éconergétique faisant appel à un chauffe-eau solaire et à des panneaux photovoltaïques ne peut concurrencer le charme d'une nouvelle cuisine ou d'une salle de bains de luxe. Toutefois, un aspect des rénovations éconergétiques n'a pas encore été abordé : la valeur des avantages non énergétiques connexes. En effet, de récentes études montrent que les avantages relatifs au confort et à l'esthétique dépassent de loin les préoccupations à l'égard de l'énergie, et très peu de propriétaires-occupants évaluent les avantages économigues de leurs investissements en faisant le suivi de

leurs factures d'énergie ou en calculant les délais de récupération (Thorne, 2006).

Parmi les obstacles à une consommation énergétique nette zéro dans les maisons existantes, notons la difficulté à coordonner le calendrier des travaux de rénovation. Pour qu'un projet soit rentable, on doit le planifier. Par exemple, si on doit remplacer le bardage d'une maison, c'est le moment tout indiqué pour isoler l'extérieur et améliorer les fenêtres. L'équipement mécanique est habituellement remplacé en situation d'urgence; donc, pour passer à un appareil plus efficace et moins puissant en même temps qu'on améliore l'enveloppe, il faut disposer d'un plan clair et d'un financement opportun. D'autres obstacles viennent de la logistique nécessaire pour trouver des entrepreneurs qui sont prêts à exécuter les travaux requis et en mesure de le faire.

La technologie et les matériaux sont disponibles pour réduire considérablement les charges énergétiques des maisons existantes par un facteur de 7 à 9. Toutefois, en arriver à une consommation énergétique nette zéro dans des maisons existantes dépend entièrement du coût des installations à énergie renouvelable qui permettent d'y parvenir. Les installations thermiques solaires vendues dans le commerce ont un délai de récupération des coûts raisonnable et constituent des options que les propriétaires-occupants acceptent plus facilement. Si on disposait d'incitatifs et de mécanismes financiers, les systèmes thermiques solaires installés sur le toit deviendraient chose courante au Canada. Les systèmes PV sont actuellement très dispendieux, et les délais de récupération sont longs pour les petites installations. Tant qu'il n'y aura pas d'incitatifs raisonnables pour l'achat et l'exploitation de ces systèmes (remboursements de taxes, incitatifs à l'achat, primes « d'énergie verte » pour les systèmes raccordés au réseau de distribution), il sera pratiquement impossible pour les propriétaires-occupants de parvenir à une consommation énergétique nette zéro.

National Office Bure

Bureau national

700 Montreal Road Ottawa ON KIA 0P7 Telephone: (613) 748-2000 700 chemin de Montréal Ottawa ON KIA 0P7 Téléphone : (613) 748-2000

Puisqu'on prévoit une demande restreinte pour ce document de recherche, seul le résumé a été traduit.

La SCHL fera traduire le document si la demande le justifie.

Pour nous aider à déterminer si la demande justifie que ce rapport soit traduit en français, veuillez remplir la partie ci-dessous et la retourner à l'adresse suivante :

> Centre canadien de documentation sur l'habitation Société canadienne d'hypothèques et de logement 700, chemin Montréal, bureau CI-200 Ottawa (Ontario) KIA 0P7

Titre du rapport: _____

Je préférerais que ce rapport soit disponible en français.

NOM		
ADRESSE		
rue		Арр.
ville	province	Code postal
No de téléphone ()	

Canada

1 Introduction

1.1 What is Net Zero Energy Housing?

The term Net Zero Energy Housing (NZEH) rose out of the US Department of Energy's Zero Energy Homes research initiative that was begun in 2000, with project teams building demonstration projects through 2002 and 2003 (Charron, 2005). In 2006, Canada Housing and Mortgage Corporation's (CMHC) EQuilibrium Housing Pilot Demonstration Initiative set the challenge of net zero energy for Canadian homebuilders and developers (CMHC-EQ, 2007). 'Net zero energy housing', as defined by CMHC and Natural Resources Canada (NRCan), essentially describes a home that produces as much energy as it consumes on an annual basis. This is accomplished through a variety of means, including:

- reducing energy loads through a climate-responsive, high-performance building envelope and use of energy efficient appliances and lights throughout the house
- increased use of passive solar cooling and heating techniques
- high-efficiency mechanical systems that match the lower energy requirements of the home
- space and water heating assisted by commercially available solar thermal systems and heat pumps
- electrical use offset by grid-connected commercially available photovoltaic (solar electric) systems

To date, most NZEH initiatives have been focussed on new construction (Charron, 2005). This study looks at ways to approach net zero energy in existing houses in Canada. Due to the fact that the majority of housing that will around for the next 50 years already exists, determining cost-effective ways to retrofit houses to meet net zero energy targets is a key element to both energy security and climate change mitigation.

1.2 NZEH and the Existing Housing Stock in Canada

Across the Canada, the existing housing stock was built with little consideration for energy efficiency. There is opportunity to significantly reduce both energy use and greenhouse gas emissions through retrofit projects. Currently, residential uses account for 17% of Canada's national energy requirements and 16 % of overall Canadian GHG emissions (CMHC, 2006).

It is much easier to build a new home to stringent energy specifications than it is to retrofit an existing house, yet new construction accounts for only 2% of the housing stock annually (CMHC, 2006). The bulk of housing that will be standing in 2050 is already built. Houses of various ages and styles pose different challenges to retrofits for energy efficiency. Some older homes have uninsulated, damp basements and structural issues that need to be addressed. These factors affect the approach taken and the cost of making these buildings meet a Net Zero Energy target. Variations in regional and historical construction practices and materials choices need to be taken into consideration. The historic value of buildings, particularly their street façade and the appearance of character-defining elements such as windows and doors have to be accommodated. Climatic differences make approaching net zero energy in existing houses more of a challenge in colder regions, yet these are the regions where homeowners can benefit most.

As could be expected with an US-based initiative such as the Zero Energy Homes research, many of the built examples are in climates that aren't relevant to the Canadian situation. Many houses built under this initiative are in regions with predominantly cooling climates. There are some examples of homes built under this program in the northern states, such as a Habitat for Humanity home in Denver, Colorado, which has been monitored since January 2006 (Norton and Christensen, 2006). In addition, there are several examples of cold-climate homes in North America that approach or attain net zero energy status that are not under the umbrella of this initiative, including some in Canada such as the Toronto Healthy House. European examples in climate regions similar to Canada's are also to be found.

There is a history of practical experience in 'deep' energy retrofitting in Canada. Work done in the late 70's and early 80's includes a 'superinsulated' retrofit on a post war bungalow done by the National Research Council (NRC) small buildings research facility in Saskatoon. In this project, wall insulation levels were raised up to R40 and the roof to R60 and a continuous air and vapour barrier was run around the whole building.¹ These techniques could easily be applied to a net zero energy retrofit today, as improving the

¹ From experience of team member Chris Mattock.

building envelope to reduce energy needs is the number one priority in all literature reviewed. Indeed, one of the twelve EQuilibrium initiative projects, the Now House[™] is exploring the net zero retrofit concept. This 60-year-old wartime house, in an established neighbourhood in Toronto, Ontario, represents hundreds of thousands of homes in Canada and is being insulated to levels similar to the Saskatoon house (CMHC-EQ, 2007).

1.3 The Net Zero Energy Retrofit Market Potential

In Canada, existing housing stock represents nearly 12 million units, of which more than thirty-five percent – over 4 million units – are in need of minor to major repairs (CMHC, 2006). Sales of existing houses are holding strong. Many of these units will undergo major renovations in the next several years, as homeowners are renovating existing homes within 3 years of purchase (CMHC, 2006). Renovation spending has more than doubled in the last decade, from \$21 billion in 1999 (Think Toronto Homes, 2006) to \$49.9 billion in 2007, with projected spending for 2008 of \$53.3 billion (Deslongchamps, 2007). In 2007, roughly half of the investment in residential construction was spent on repairs and renovations to existing homes (Conference Board of Canada, 2007). Current major renovation spending per Canadian household hovers around the \$12,000 mark. (CMHC, 2007).²

The American Council for an Energy Efficient Economy reported that additions, alterations or improvements to interiors accounted for 36% of the total spending on home improvement in the US in 1999 (Thorne, 2003). In the same year, home equipment and HVAC system replacement or upgrades accounted for 44%, and the remaining 20% was spent on other projects, including routine maintenance and repairs as well as outdoor projects and disaster repairs (Thorne, 2003). With these figures in mind, it could be assumed that 40% to 50% of the home improvement dollar is available for retrofits that focus specifically on lowering energy costs. According to analysis of US-based data, annual energy savings from common retrofit measures are as follows (Thorne, 2003)³:

20% air sealing (including insulation and window replacements)
15% duct sealing and repair
20% HVAC system upgrade
15% improved HVAC installation practices
10% lighting and appliance upgrades

For Canadian retrofits, the proportions will be somewhat different, as very little of the existing Canadian housing stock would benefit from duct sealing (which is only required when ducting is outside of the conditioned space).

1.4 The Cost of Net Zero Energy Housing Retrofit

A keynote presentation to the Affordable Comfort Institute's Summit on Carbon Neutrality in Summer 2007 estimated that existing housing in the US could see significant reductions in energy (Krigger, 2007, Parker, 2007). Four levels of retrofits were identified, moving from a 'general' energy efficient retrofit to a near zero or net zero energy retrofit as follows:

- Low hanging fruit: costs about US\$1500/home, saves 1,000 kWh and 100 therms⁴ annually
- Extensive retrofit: costs US\$10,000/home, saves 4,000 kWh and 400 therms annually
- Deep retrofit: costs US\$50,000/home, saves 7,000 kWh and 600 therms annually
- Deep retrofit + 3kW PV: costs US\$75,000/home, saves 7,000 kWh and 600 therms annually and produces an additional 4,300 kWh/yr

According the US-based presenter, the low-level audit listed above would pay for itself in 7 years in most cases. The deep retrofit with PV (near-zero or net zero, depending on occupant lifestyle) would pay for itself in less than 35 years at current costs with a 20% reduction in annual CO_2 emissions for the US. (Parker, 2007). However, there is little likelihood of homeowners taking on deep retrofits with a 3kW PV array at a

² In a recent survey by CMHC, approximately 1.5 million households in 10 major Canadian centres surveyed indicated they completed renovations in 2006, costing an average of more than \$11,000, with forty-six per cent of homeowners in this survey intending to spend an additional \$1,000 this year.

³ NB: savings are not additive. Total does not equal 100%

⁴ 1 therm = 100,000 British Thermal Units (BTUs) = 0.016 gigajoules (GJ)and is approximately 2.75 m³ natural gas.

cost of \$75,000 without support from government agencies (in the form of incentives and tax credits) and lending institutions (in the form of low-interest 'green' mortgages). As fuel prices continue to rise, the option to move towards a net zero energy retrofit will also look better.

1.5 Getting to Net Zero Energy in Existing Buildings

In the report, The Potential Impact of Zero Energy Homes (NAHB, 2006), three scenarios were developed for the adoption of Zero Energy Homes (ZEH) into the new single-family home market and the effect of each scenario on residential energy consumption through 2050. A reference scenario, where household energy use remains relatively constant from today's usage level serves as basis for comparison to a ZEH integration scenario with no incentives and the final scenario: ZEH integration + 30% tax credit. The report states that ZEH are technically feasible today and will eventually become economically competitive with conventional construction as cost trends continue, as solar and energy efficiency technologies improve and when utility costs are included in the cost of home ownership.

Although the study was specific to new construction, one of the key findings of the NAHB study was that for ZEH to succeed in the marketplace, a coordinated effort is needed to conduct research and development in order to reduce the cost of ZEH and to facilitate transformation of the home building and renovation/remodelling market. Activities would likely include outreach to consumers, builders, real estate agents, appraisers and utilities, technical training, policy development and R&D on the integration of ZEH technologies (NAHB, 2006). Although the finding was specific to new homes, the same issues are valid for existing homes, with the same type of activities required to transform the market.

With a net zero energy new home or retrofit project, lending institutions will have to look at ways of revamping their Gross Debt Service (GDS)⁵ formulas for mortgages and building loans, as energy costs are no longer a part of the picture. Systems such as EnerGuide for Houses are in place to rate and compare energy efficient retrofits, providing documentation and verification for lenders.

According to a report from the American Council for an Energy Efficient Economy (Thorne, 2003), whole house retrofits are hobbled by the following barriers:

- Up-front cost plays a major role in limiting consumer demand for many efficiency upgrades, even when short payback periods can be demonstrated.
- Limited consumer understanding of the benefits, as efficiency improvements are largely intangible and results of the investment can not be seen, nor shown off to the neighbours.
- Consumers cannot identify the work that needs to be done, nor can they determine which contractors to hire to perform the services the might need
- Timing is everything: equipment replacement is often done in an emergency situation when existing equipment fails.
- Contractors cite lack of consumer demand, but may not have appropriate marketing skills or information to successfully sell improvements or services to their clients.
- Contractors risk investing time and resources in skills upgrades or improvements, as well as in purchasing new equipment. Greater assurance is needed of a persistent market before these investments will be made on a broad scale.
- Contractors may also be reluctant to identify problems beyond their expertise or that cut into their core business (i.e., selling smaller HVAC systems).

Given these barriers and obstacles, the feedback from the builders of the first Net Zero Energy homes built during 2002-2003 under the US Department of Energy's ZEH initiative, brought three interesting points to light (Charron, 2005):

- 1. The low energy homes appreciated faster than neighbouring homes build to code
- 2. It was more profitable to include the energy upgrades as standard as opposed to as an option
- 3. The higher price of the homes with PV systems was not perceptible to the buyers

At the Affordable Comfort Institute's July 2007 summit, "Moving Existing Homes Toward Carbon Neutrality', the main focus was on 'deep energy savings', reductions of 70 to 90 percent in total energy use in existing

⁵ The Gross Debt Service ratio is the percentage of gross (or pre-tax) earnings allocated to payment of the mortgage principal and interest, property taxes and energy costs (PITE). This ratio should normally not exceed 32%. Lenders also consider the Total Debt Service (TDS) ratio, the percentage of your gross annual income required to cover fixed payments for all debts and financing obligations, including housing. This ratio must usually not exceed 40%.

single family and multifamily dwellings (Krigger, 2007, Parker, 2007). This summit invited participants to reexamine assumptions about achievable energy reductions through a combination of technical interventions and behavioural choices. Danny Parker, in his keynote address, discussed the 'Chinese restaurant menu' approach, where every meal (or house) is a different combination of choices from a long list of options (Parker 2007).

Unlike the findings of the 2006 NAHB study, which concluded that the technology is ready for early market penetration of NZEH in new construction, but it is not currently economically justifiable to construct NZEH without financial incentives, both keynote speakers at the ACI Summit indicated that deep reductions could be made economically in existing houses (Krigger, 2007, Parker, 2007). High-priced add-ons such as PV systems are seen as a final option for most homeowners. However, with a decent incentive program in place and under conservative assumptions of output and equipment life, a 2 kW PV system could represent an annual return on investment (ROI) of roughly 9% (Black, 2004).

Krigger points out that the expectations for comfort levels in a home are (and will be) a large driver of success or failure to approaching net zero energy in existing houses. North Americans have become acclimated to central heating in homes, with reasonably even heat distribution. Typical temperature swings in North American homes range from 18 to 22* C (68 to 74° F). In a Passivhaus, acceptable seasonal interior temperature swings vary dramatically from North American standards, with lows of 13 to 16* C (55 to 60° F) being acceptable, and an additional sweater being an appropriate solution to being chilly. In Japan, an annual daily temperature range of 16 to 32* C (60 to 90° F) is acceptable. With a wider variation in temperature being the 'norm', it becomes easier to meet lower energy targets and to accommodate higher levels of passive solar gain without more energy-using controls and shading devices (Krigger, 2007).⁶

"Let no one tell us that insulation, shading, air sealing, and other conservation measures are too expensive. Too expensive compared to what? Compared to what we spend on fireplaces, spas, and unnecessary light fixtures for our homes? Compared to the cost of securing our supplies of middle-east oil? C'mon we already spend \$40 billion on building renovation every year. Adding another 20 percent to our major renovation budget is probably all we need to start securing deep reductions." (Krigger, 2007)

The table below summarizes the primary benefits and barriers to reaching net zero energy targets in existing houses.

Table 1: Benefits/Barriers to Net Zero Energy Retrofits

Benefits

- Radically reduces or eliminates energy costs
- Energy security
- National security
- Reduced air pollution
- Reduce or eliminate green house gas emissions and impact on climate change
- Increased thermal comfort
- Enhanced indoor air quality and occupant health
- Local job generation and use of many domestically produced products and materials
- Reduces or eliminates peak electrical demand

Barriers

- Initial cost / financing
- Knowledge and experience of building industry
- Knowledge and experience of building inspectors
- Knowledge and experience of financial institutions
- Regulations
- Minimum setbacks from property lines and adjacent buildings
- No guarantee of long term solar access
- Limitations on wind tower height and use of wind energy systems (WES)
- Lack of detailed local wind energy data for WES and passive cooling
- Poor utility adoption of power buyback policies
- Lack of consumer interest

⁶ According to Anil Parekh, Senior Researcher, Buildings Group, CANMET Energy Centre, there is an implication of interstitial condensation in cold climates with lower setpoint temperatures. Even in well insulated/constructed houses, interior temperatures below 16° or 17°C can cause problems.

2 Goals of the Project

The goal of the study was to determine ways to approach net zero energy in housing in the Canadian context, where homes are located in predominantly heating climates. Several house types were modelled for typical energy usage in six cities, and then a series of upgrades was applied to each house type in each city. Questions explored in the study include:

- Which, if any, house types are better suited to net zero energy retrofits?
- Which, if any, locations are better suited to net zero energy retrofits?
- Where houses cannot be modified to increase insulation levels, are there options that can lead to a net zero energy home?
- How does each step impact the energy load of a house?
- What techniques can be used to enhance building envelope performance to meet the goal of net zero energy?
- What techniques can be used to enhance passive solar utilization?
- What modifications to mechanical systems are required in a net zero retrofit?
- How would the slopes of existing roofs affect the performance of solar thermal and PV systems?
- What areas of solar thermal collectors and PV arrays would be required?

2.1 Methodology Used to Model Net Zero Energy Retrofits

A number of house types were identified as being common in the Canadian housing stock. They were determined in part through Canada Mortgage and Housing Corporation's Renovating for Energy Savings Series (CMHC, 2004). This series of brochures discusses energy efficiency measures specific to eleven house types, as well as measures that are common to most existing housing. The house types include three versions of a pre World War II 2-1/2 storey house, one with removable siding, one with a brick veneer and one with a double wythe brick wall. These three subtypes offer a range of challenges in approaching net zero energy. Two common house types, a 2 storey home and a bungalow/rancher, both with full basements, were modelled in two ways. The first model was carried out using the median age for the house type, while the second model was carried out using the year 2000. This meant the house would have been built under the National Building Code (NBC) 1995, which included a requirement for mechanical ventilation, among other current residential construction practices. Upgrading from a house built under this code would have different challenges than the older version, as insulation levels in general would be higher, air leakage rates would be lower and mechanical systems would be newer and possibly more efficient.

The house types used in this study are outlined in the table below. They were modelled in Vancouver, Calgary, Toronto, Montreal, Halifax and Whitehorse using HOT2000[™] v.10.10, in the EnerGuide for Houses mode. The base house characteristics were developed from the EnerGuide for Houses archetype database, provided by Natural Resources Canada and previous work carried out for the Renovating for Energy Savings Series (CMHC, 2004). This data determined the thermal envelope and mechanical systems typical for the house type, age and location.

Table 2: House Types

House Type					Notes:
	Ave. Date of Construction	Ave. Volume (m ³)	Average Floor Area (m^2)	Average Bsmt Area (m ²)	
Pre WW II - A	1922	451	183	68	2x4 stick frame w/removable siding Roof slope = 9/12
Pre WW II - B	1922	451	183	68	2x4 stick frame w/brick veneer Roof slope = 9/12
Pre WW II - C	1922	451	183	68	2x4 double or triple wythe brick Roof slope = 9/12
Post War 1-1/2 storey	1952	471	197	70	2x4 stick frame w/removable siding Roof slope = 12/12
2 storey	1988	705	285	84	2x4 stick frame w/removable siding Post 1960 Roof slope = 4/12
	2000	770	309	103	2x6 stick frame w/removable siding NBC 1995 (from EGH Archetypes) Roof slope = 4/12
Bungalow/Rancher	1969	481	204	98	2x4 stick frame w/removable siding 1960-1979 Roof slope = 4/12
	2000	515	206	103	2x6 stick frame w/removable siding NBC 1995 (from EGH Archetypes) Roof slope = 4/12
Split Level	1985	501	203	71	2x4 stick frame w/removable siding Roof slope = 4/12
Split Entry	1980	526	210	89	2x4 stick frame w/removable siding Roof slope = 4/12
Duplex (Up and Down)	1965	563	227	57	2x4 stick frame w/removable siding Roof slope = 6/12 Montreal: flat roof
Row House	1965	563	227	57	2x4 stick frame w/removable siding Roof slope = 8/12

Notes for this table: The Pre WWII house was modelled with removable siding in all cities (A), with brick veneer in Toronto, Montreal and Halifax only (B), and as a double wythe brick wall in Toronto and Montreal only (C). The row house was not modelled in Whitehorse.

The base case house was then upgraded through the energy modelling software. All characteristics of base and upgrade cases are noted in detail in the next sections. Following is a summary of the process used to upgrade the houses. Net zero energy was determined using the protocols developed for CMHC's EQuilibrium Housing Initiative.

The first action was to improve building envelopes where possible, to a target determined through comparing EQuilibrium Housing project envelopes, work by Canadian builders, project team members' design and consulting experience, as well as European standards for low-energy homes. Upgrades to the building enveloped were followed by upgrades to mechanical systems (including increased mechanical ventilation for older homes with tighter envelopes). Where building envelopes could not be improved, other options for energy reduction were explored, such as ground source heat pumps (GSHP). Solar hot water systems were included for all houses, based on 6 m² of flat plate solar collector along with 240L of storage. The use of evacuated tube collectors were also investigated but despite higher efficiencies proved to be more costly for delivered MJ than the flat plate collector systems. The system configuration and solar contributions to water heating were determined as outlined below.

These steps produced an upgrade case with a higher EnerGuide for Houses (EGH) rating. This first upgrade rating had to be 82 or more on the EGH scale, using standard mechanical equipment and with no renewable energy.

To further reduce water heating energy use, a drainwater heat recovery unit was added to the model, with an estimated 20% reduction to overall water heating needs.

Photovoltaics were included as the final step. An annual base electrical load of 31.5 GJ (8670 kWh) was required by the EQuilibrium Housing Initiative specifications. This was used as the stepping-off point for the PV system requirements. The resulting area required for the array was larger than the potentially available roof face area on most of the house types, so the system was downsized to fit the roof, with an average kWh/m² figure determined from the initial analysis. This downsized PV array also had a lower annual electrical contribution, so the annual electrical base load was dropped to 13.1 GJ (3638 kWh) by improving the efficiency of appliances, lighting and other loads.

When all reductions and changes to the base house had been made, a specialized EnerGuide for Houses rating was calculated. This specialized rating (designated as EGH*) takes into consideration the total net energy consumption. In the EQuilibrium Housing Initiative, designs that did not reach and EGH* rating of 90 or more were not eligible to be included. The non-linear nature of the EGH* scoring scale reflects the fact that improving the EGH* rating becomes more difficult the closer to 100. The modified EGH rating allows for reductions in base load electricity and hot water use. See Appendix G for the detailed equations for the EGH* rating

The EGH* rating is defined as

EGH* rating = 100 - ((Annual Estimated Energy Consumption) * 20)

Reference Energy Consumption

The reference Energy Consumption = space heating benchmark + DHW benchmark + baseload benchmark + air conditioning energy

3 Characterization of Existing Housing Stock in Canada

The table below shows the house types and the cities in which they were modelled. Not all cities have a significant number of every house type. The following table shows the general envelope characteristics of each house type, regardless of city. Average insulation levels for each house type vary with the city they are built in, with Calgary and Whitehorse having higher average levels than the other four cities. The third table shows general mechanical system characteristics for all house types. These characteristics were determined using the EnerGuide for Houses archetypes from Natural Resources Canada, Buildings Group.

All of the houses were modelled with the front of the house facing North. Typically, this puts a large proportion of the glazing out of passive solar gain, giving a 'worst case' scenario for the space heating requirements for the house.

	Ave. Date of	Ave. Volume	Ave. Floor Area	Ave. Bsmt Area		ANCOUVER	CALGARY	roronto	MONTEAL	HALIFAX	WHITEHORSE
House Type Pre WW II 2-1/2	Const. 1922	(m ³) 451	(m ²) 183	(m ²) 68	construction type and/or period	>	õ	Ĕ	Ž	Ŧ	\geq
storey	1922	451	183	68	stick frame w/ removable siding Roof slope = 9/12	x	Х	Х	Х	Х	Х
					stick frame w/brick veneer Roof slope = 9/12			х	х	x	
					double or triple wythe brick Roof slope = 9/12			х	х		
Post War 1-1/2 storey	1952	471	197	70	Roof slope = 12/12	x	х	х	х	х	х
2 storey	1988	705	285	84	Post 1960 Roof slope = 4/12	х	х	х	х	х	х
	2000	770	309	103	Meets NBC 1995 Roof slope = 4/12	х	х	х	х	x	x
Bungalow	1969	481	204	98	1960-1979 Roof slope = 4/12	x	х	х	х	х	х
	2000	515	206	103	Meets NBC 1995 Roof slope = 4/12	x	х	х	х	х	х
Split Level	1985	501	203	71	Roof slope = 4/12	Х	Х	Х	Х	Х	Х
Split Entry	1980	526	210	89	Roof slope = 4/12	Х	Х	Х	Х	Х	Х
Duplex (Up and Down)	1965	563	227	57	Roof slope = 6/12 Montreal: flat roof			х	х		
Row House	1965	563	227	57	Roof slope = 8/12	Х	Х	Х	Х	Х	

Table 3: Characteristics of House Types

3.1 Typical Existing Envelope Characteristics

The existing envelope characteristics on the following page were taken from the database of housing archetypes provided by NRCan. The AC/H@50 column indicates the number of times the volume of air in the house is exchanged per hour, under standardized test conditions. The insulation levels are shown in RSIunits. The database did not include U-values for windows. These were modelled from within HOT2000[™] by inputting the window type, based on the Table 3 inputs.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4.8 6.0 2 2.6 2.4 $3.$ 1.6 1.9 1.4 2.6 1.4 4.5 4.2 4.6 3.9 6.4 6.3 2.2 2.7 2.8 3.1 3.0 3 1.5 2.4 1.9 2.2 1.8 5.0 4.7 4.2 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 1.9 2.2 1.8 5.0 4.7 4.2 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 1.9 2.2 1.4 4.8 5.0 4.7 4.2 6.4 6.3 2.2 2.7 2.8 3.1 3.0 1.5 2.4 1.9 1.7 4.8 5.0 4.7 4.2 4.6 3.9 6.4 6.3 2.2 2.4 2.9 1.9 1.7 4.8 5.0 4.7 4.2 4.6 3.9 3.9 3.4
3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 1 1.3 0.8 1.4 0.9 1.8 3.6 3 2.7 2.8 6.4 6.3 2.2 2.8 3.1 3.0 3 1.5 2.4 1.9 2.2 1.4 4.8 5.0 4.7 4.2 4.8 6.0 2 2.6 3.0 1 2.3 1.6 1.9 2.6 1.4 4.8 5.0 4.7 4.2 4.8 6.0 2 2.6 2.0 1.7 2.9 2.6 1.7 4.2 4.6 3.9 4.8 6.0 2 2.6 2.0 1.7 4.9 5.7 4.6 3.9 3.6 4.8 6.0 2 2.6 2.6 1.6 1.4 4.5 4.5 4.6 3.6 3.6 4.8 6.0 2.1 2.0 2.4 1.6 1.4 1.8
4.8 6.0 2 2.6 2.4 2.9 2.6 3.0 1 2.3 1.6 1.9 1.4 2.6 1.4 4.5 4.5 4.5 4.5 4.6 3.9 4 5.7 1.9 2.0 2.1 2.6 2.4 2.8 1 1.6 1.4 1.8 1.3 2.5 1.6 3.9 3.5 3.6 3.4 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 1 1.3 0.8 1.4 0.9 1.8 1.6 3.1 3.6 3.4 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 1 1.3 0.8 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 0.98 1.3 0.8 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3.5 4.9 1.7 1.9 1.8 2.1 <
4 5.7 1.9 2.0 2.1 2.6 2.4 2.8 1 1.6 1.4 1.8 1.3 2.5 1.6 3.5 3.6 3.5 3.5 3.5 3.5 3.6 1.4 1.8 1.3 2.5 1.6 3.5 4.4 4.9 1.7 1.9 1.8 2.1 2.0 2.4 0.98 1.3 0.5 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3.5 4.9 1.7 1.9
3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 1 1.3 0.8 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 0.98 1.3 0.8 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3 3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 0.98 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3
3.5 4.9 1.7 1.9 1.8 2.1 2.0 2.4 0.98 1.3 0.8 1.4 0.9 1.8 1.6 3.1 3 2.7 2.4 3.

Note for this table: RSI is (m⁺K)/W, all whole numbers indicate rounded figures.

6

3.2 Typical Existing Mechanical Systems

Assumptions:

- Space Heating HOT2000 [™] defaults were used to model the performance of the system Medium temperature rise allowed (2.8°C)
- Water Heating HOT2000 [™] defaults were used to model the performance of the system Water T = 55°C

No tank insulation added to the electric water heaters, no pipe insulation added to the gas/oil fired systems.

 Ventilation - Whole house ventilation is not provided in any house types except for houses built under NBC 1995, which requires ventilation system to be designed around CSA F-326. Assumed these houses have a low-efficiency HRV installed (default performance values in HOT2000 [™] energy modelling software). Not all homes will have HRVs installed. Other mechanical ventilation systems installed in new homes include supply air ducted into the return air plenum of the furnace, controlled by a central dehumidistat-operated fan.

	Space Heating	Water Heating			
Vancouver	Mid-efficiency gas fired furnace	Gas-fired conventional tank w/continuous pilot (Energy			
	(78% steady state efficiency)	factor = 0.55)			
Calgary	Mid-efficiency gas fired furnace	Gas-fired conventional tank w/continuous pilot (Energy			
	(78% steady state efficiency)	factor = 0.55)			
Toronto	Mid-efficiency gas fired furnace	Gas-fired conventional tank w/continuous pilot			
	(78% steady state efficiency)	(Energy factor = 0.55)			
Montreal	Electric furnace (100)	Conventional electric water tank (Energy factor = 0.82)			
Halifax	Mid-efficiency oil-fired furnace	Conventional electric water tank			
	(71% steady state efficiency)	(Energy factor = 0.82)			
Whitehorse	Mid-efficiency oil-fired furnace	Conventional oil-fired water tank			
	(71% steady state efficiency)	(Energy factor = 0.53)			

Table 5: Base Case Mechanical Systems, for All House Types

3.3 Typical Existing Base Loads

Typical base loads include all major appliances, lighting and electronics

Table 6: Existing Base Loads, 1	for All House Types
---------------------------------	---------------------

	kWh/day	kWh/yr
Appliances	14	5110
Lighting	3	1095
Other (electronics etc)	3	1095
Exterior Loads	4	1460
Total base load (kWh)	24	8760
Total annual base load (GJ) (converte	31.5	

4 Strategies for Approaching Net Zero Energy

The following strategies build on each other to improve the overall performance of a house. The first strategy – performance-based construction standards -- creates a set of energy-related targets that can be met in various ways, giving homeowners, builders and designers a broad menu of options to choose from.

4.1 Performance-based Construction Standards

There are several existing standards for new construction that can bring houses to a near zero or net zero energy state. Of special interest is the Passivhaus standard, as it is a performance-based, as opposed to a prescriptive standard, developed for cold-climate housing. This standard is being used in Germany, the UK and Ireland. 'Minergie-P' is the name of a similar Swiss standard⁷. Existing housing is more challenging than new housing in terms of energy efficiency measures because of the variables between house types, and even between two houses of the same type, not to mention the variations in lifestyle and energy use patterns of the occupants (Parker, 2007). Performance-based models for NZEH would be more viable than a prescriptive standard or code for existing homes, and, for that matter, new construction.

The Passivhaus Standard was developed in Germany in 1996 by an independent private research institution with a focus on research and development of highly energy efficient buildings and systems. From 1997 to 2002, the European Commission funded the development of the Passive House Energy Standard as a leading standard for energy efficient design and construction (Feist, 2005, Saïd, 2006, 66-67, Krigger, 2007). The Passivhaus program, with over 5,000 houses built prior to 2005, has created an industry niche in Austria and Germany, developing and producing components such as low capacity compact HVAC units, windows and doors and innovative building systems (Krigger, 2007).

Passivhaus standards for new construction are as follows: no more than 10 Watts of heating capacity per meter squared of conditioned space, with no more than 15 kWh of heating energy used per meter squared annually, and a total on-site consumption of less than 120 kWh per meter squared annually. This heating load is so low that 30 cfm per person of ventilation air can distribute the heat throughout the house. (Feist, 2005, Krigger, 2007). Whether these buildings perform as well as they are modelled is yet to be seen. Below is a table outlining a Passivhaus energy load for a 100 m² house in a Central European climate.

Requirement	Per unit requirement	100 m ² house
Maximum annual heating requirement	15 kWh/m ² (4,755 Btu/s.f)	1,500 kWh (5.4 GJ)
Maximum combined annual energy use	120 kWh/m ² (38,000 Btu/s.f)	12,000 kWh (43.2 GJ)
Maximum heating load	10 W/m ² (3.2 Btu/s.f)	1,000W (3414Btu)
Minimum R-value for walls and doors	RSI 6.7 (R 38)	
Air tightness Standard	Maximum 0.6 AC/H @ 50 Pa	
Minimum window R-value	RSI 1.2 (R 7)	
Typical glazing	Triple pane, gas-filled with 2 low-e coatings	
Minimum HRV efficiency	80%	
Blower Door Testing	Required for every house	

Table 7: Passivhaus Standard for Central European Climate (from Saïd, 2006, 67)*

* Based on 4000 heating degree days (HDD) at base 18°C, accessed at ec.europa.eu/energy/res/publications/doc2/EN/HANNO_EN.PDF

⁷ retrieved December 10, 2007 from en.wikipedia.org/wiki/Passive_house

4.2 Building Envelope

Approaching net zero energy in both new and existing housing puts emphasis on energy efficiency first, then add-on renewable energy systems. Improving the building envelope remains the most cost-effective way of reducing overall energy loads, followed closely by upgrading and updating HVAC equipment, appliances and lighting (Forsthoefel, 2001, Henderson, 2004, Parker, 2007, Pettit, 2007a, Thorne, 2003, USDOE, 2004, USHUD1, 2002, USHUD2, 2003, Saïd, 2006, Wilson and Wendt, 2007). PV and solar thermal are add-ons that can be installed when economically feasible, or, in cases of houses where the building envelope, HVAC and/or secondary energy use cannot be improved. For homes with inefficient building envelopes that cannot be improved, such as older homes with heritage construction techniques and features such as double or triple wythe brick envelopes, one option to approach net zero energy would be a ground source heat pump.

Air sealing is the first line of defense in cold-climate energy reduction. Industry stakeholder recommendations indicate that products and/or best practice installation techniques that better address the need to maintain a tight envelope are needed. For example, the energy savings potential for improving air leakage performance on recessed lighting is high: one conventional recessed fixture can be responsible for an annual loss of between \$5 and \$30 worth of energy. Ten or more fixtures represent over 10% of the total air leakage through the envelope (as measured by a blower door test). Sealing these units, or installing well-sealed units, can account for 5 to 10% of heating and cooling loads (Plympton et al, 2007). The July 2007 issue of Environmental Building News includes a priority checklist for low-energy retrofits. The following is derived from that checklist, focussing on cold climate priorities.

Building Envelope	Mechanical Systems	House Interior	
Air seal foundations and attic	Tune HVAC systems	Replace incandescent lights	
Fix moisture problems and insulate basement walls	Insulate water heater	Upgrade appliances	
Air seal around the house	Reduce hot water demand	Turn off the TV & computer	
Add insulation to attic	Install set-back thermostats	Turn off cable modems and routers	
When replacing siding or roofing, insulate walls and roof at exterior w/rigid foam	Replace furnace or boiler	Practice a low-energy lifestyle	
Upgrade windows	Install mechanical ventilation		

Table 8: Energy Efficiency Retrofit Priorities Checklist

The literature review of Building Envelope, Heating and Ventilating Practices and Technologies for Extreme Climates (Saïd, 2006) is part of a four-year project to develop durable, energy efficient building envelope assemblies to meet the challenges of environmental conditions in Northern Canada as well as northern coastal regions. Of value to this project are the discussions of temperature and moisture effects on Canadian houses generally and northern houses in particular. As well, the summaries of five super-insulated houses, including their energy budgets are significant (see table below). Although the case studies are all new construction, several types of wall assemblies are discussed, including double stud, stand off, rigid core panel and structural insulated pane systems, all of which can be options for improving the thermal envelope of existing houses.

In addition to the examples in the Saïd paper, there are several Canadian projects of note, houses that approach net zero through energy efficiency first. The Factor 9 Home in Regina, instigated by Communities of Tomorrow and carried out by the Saskatchewan Research Council (SRC) with the participation of the homeowners, is a demonstration project completed in early 2007. This house aims to reduce greenhouse gas emissions by up to 90% of that of a typical Regina home through energy efficiency and environmental performance measures (Henderson, 2007).

The Factor 9 energy target for this house resulted from multiplying several factors dealing with energy consumption, greenhouse gas emissions and material consumption per capita. The home is projected to use 9 times less energy per square meter of floor area than the average existing home in Saskatchewan, for an average annual purchased energy rate of 27.5 kWh/m². This figure is well below the Passivhaus standard of combined annual energy use of 120 kWh/m². To achieve these goals, the house features a super-insulated envelope, a combination solar thermal space and water heating system and drainwater heat recovery. The house is also PV ready. A wood-burning appliance provides supplementary heat.

Annual purchased energy	27.5 kWh/m ²
Annual Space and Water Heating	17.5 kWh/m ²
Annual lighting and appliances	10 kWh/m ²

It should be noted that a wood energy source makes it impossible to gauge the actual energy produced. Moisture content of individual pieces of firewood, a range of potential heat energy from the different species, the competence of the firebuilder and the efficiency of the wood-burning appliance under various conditions are just a few of the variables included in determining the energy produced by wood. As a result, efforts to properly track energy use and attain net zero energy use in a house are skewed by including a wood energy source. It is not known if the table above includes wood energy in the annual space and water heating statistics.

Eagle 2003)	Eagle Lake House (CMHC, 2003)	Saskatoon House (Dumont, 2000)	Alberta Sust. Home (Rieger & Byrne, 1996)	Hanover House (EBN, 1998)	Klingenberg House (EDU, 2004-2)
Ň	wood I joist	400 mm (16") Double 2x4 walls	325 mm (12") Double 2x4 walls	290 mm (11.5") Double 2x4 walls	300 mm (12") wood I joist
RS dry	RSI 8.8 (R 50) c/w double drywall (heat sink)	RSI 10.6 (R 60) blown-in cellulose	RSI 8.8 (R 50) blown-in cellulose	RSI 7 (R 40) blown dense- pack cellulose	10.6 (60) 300 mm (12") blown f/g with 100 mm (4") rigid polystyrene
RSI fibe	RSI 10.6 (R 60) blown-in fiberglass	RSI 14.1 (R 80) blown-in cellulose	RSI 13 (R 74) blown in cellulose	RSI 10.6 (R 60) blown-in cellulose	10.6 (60) blown-in flibreglass
RS sty	RSI 5.3 (R 30) three layers of styrofoam	RSI 6.2 (R 35)	Rigid foam under slab c/w horiz. skirt (no values listed)	N/a	10.0 (56) expanded polystyrene foam under slab
N/A	4	10.6 (60) blown-in cellulose	N/A	RSI 1.9 (R 11) f/g@ inside Headers = 7 (40)	4.2 (24) expanded polystyrene @ outside
Tri pro sul	Triple glazed, low-e casement provide cross-ventilation for summer	RSI 0.9 (R 5) triple glazed, two low-e coatings, argon gas fill, low conductivity spacers,	RSI 3 (R 17) five glazings (two glass, three heat mirror film) Krypton fill, insulating spacers	RSI 1.2 and 1.6 (R 6.7 and 9), insulated f/g frames, 3/4 of glazing on S side	1.26 (7.14) triple glazed, argon fill, low-e coating
Ň	Not listed	0.47	Not listed	0.37	Not measured
ਤੁੱਧ ਕੁ ਸ਼ੁ	Uses a 90% efficient EcoNomad® (c/w 6 k/V diesel generator) combined heating and utilities unit for heat.	High passive solar gain. 15.6 m ² (168 s.f) active solar hot water system w/5300 L (1400 gal) water storage tank for space and water heating via	High passive solar gain. GSHP. Wood-fired masonry unit for b/up space and water heating as well as cooking and baking.	High passive solar gain. Drain-back solar thermal (33 m ² (360 s.f.) collector and 4500 L (1200 gal) storage)	A 1000W electric resistance element in the HRV supplies space heating to the house. An instantaneous electric water heater
E P Va	electricity, drinkable water and wastewater management for a family of 5. Electricity backup PV = 300 W Wind= 500 W	water-to-air heat exchanger in forced air furnace. Additional heat by 5 electric baseboards.	A 360 L(80 US gallon) hot water tank has heat exchange coils for the fireplace, solar thermal system and in-floor radiant heat	w/52 gai electric water tank for b/up space and water heating. A water-to-air heat exchanger supplies forced air delivery.	provides DHW.
Ab en	About 40% reduction in overall energy savings	46.9 kWh/m ² vs. 200 kWh/m ² for conventionally built home in Saskatchewan		Total average electric consumption = 29 kWh/m ² (2.7 kWh/s.f.) Space and water heating Supplemental =	House does not typically need heat: Jan/04 (two cloudy weeks and temps as low as -23°C) total electrical consumption for all
				10.7 KWN/M ⁻ (0.99 KWN/S.T.)	nousenoid uses (including neating) was 240 kWh.

Table 10: Characteristics of Five Super-Insulated Homes (from Saïd, 2006, 72)

Note to this table: All insulation values are shown as RSI (R), where RSI is (m²K)/W and R is h-ft²F/Btu

4.3 Mechanical Systems

Typically, mechanical equipment is replaced when it fails. This is quite often an emergency situation, where no time is available for deliberation and research on the part of homeowners. The energy savings possible due to correct operation, installation and sizing of the HVAC system are typically among the largest of the energy efficiency measures that can be taken in the home. In the US, such measures as sealing ducts that run through unconditioned spaces can lead to 20% reduction in heating energy consumption alone for homes with forced air systems (LBL 2005). Duct sealing is not such a priority for Canadian houses, where typical practice is to run ductwork through conditioned spaces. Other significant measures that can be taken with HVAC systems include downsizing heating and cooling plants to match loads, insulating any exposed ductwork and installing programmable thermostats. The "Best Practices Guide for residential HVAC Retrofits" (Walker, 2003) recognizes the reality that most HVAC replacement occurs in emergency situations and provides the tools (Including a screening tool) for a contractor to make quick informed decisions that enhance the thermal and energy performance of HVAC systems.

Air handlers are often a major source of air leakage in a forced air distribution system. As air handlers can be located in unconditioned or dusty, damp or unused spaces such as garages, attics, crawlspaces and basements, they can also pose a health risk and contribute to moisture damage. Industry stakeholders point to improvements in furnace and air-handling cabinets to result in near zero air leakage, along with opportunities to improve energy performance of heating and cooling systems through improved fan blade design, more efficient motors and the design of the housing around the fan (Plympton et al, 2007). They also point to smart HVAC controls with on-board fault detection systems to save energy caused by HVAC faults and improper operation, and note that additional potential benefits include increased life of the HVAC system and reduced maintenance costs. With these types of installations attention must also be paid to air sealing penetrations of the air barrier.

Stand-alone and whole-building dehumidifiers are other areas where industry stakeholders have noted the potential for significant energy savings: dehumidifiers typically consume as much electricity as an average refrigerator. In addition, dehumidifiers generate heat when they are running, typically during the cooling season. The simultaneous use of dehumidifiers and air conditioners results in one system fighting the other to maintain acceptable interior comfort. Preliminary energy savings estimates suggest that integrated systems can save 20% (650 kWh/yr) of typical cooling and dehumidification energy usage (Plympton et al, 2007).

Table 11: HVAC Replacement Screening Checklist (Adapted for Canadian housing from Walker, 2003)

Measurement/ Observation	Potential Target value	Potential Retrofit Action
Duct insulation	RSI 1 (R6) to(RSI 1.4R8)	Add insulation to all ducts outside conditioned space
Air flows at registers	Compare to ACCA manual J or HRAI standard	Replace registers, open/close dampers, reduce system flow resistance by straightening existing ducts or replacing them with straight runs.
Air handler flow	Cooling: >400 >350 cfm/ton Heating: 12.5 cfm/kBtu/h	Replace filters, fix duct restrictions, change fan speed, replace fan with high efficient unit, add extra returns in restricted systems
Filter Condition	Clean and at least MERV 6 ⁸	Replace with MERV 6 or better. Use 50 or 100 mm (2 or 4 inch) filters.
Thermostat Setting also include night setback	Heating: 20°C (68°F) Cooling: 25°C (78°F)	Thermostat raised in summer and lowered in winter to account for better distribution, mixing and envelope improvements. Replace older units w/electronic, programmable thermostats
Spot Ventilation	24L/s (50 cfm) bath, 47 L/s (100 cfm) kitchen	Replace fans, fix restrictive ducting
Spot Ventilation Power	1.2 L/s/W (2.5 cfm/W). (See HVI directory)	Replace with higher efficiency unit, remove/reduce duct flow restrictions, clean fan and ducting
Equipment capacity/efficiency	CSA-F280 [°] or CMHC's furnace billing sizing method ¹⁰ , or ASHRAE Manual S ¹¹	Replace heating and/or cooling equipment with correct size, eliminate chimney w/direct vent unit, integrate space and water heating equipment, use high efficiency fans
Refrigerant charge	Use superheat or subcooling tests	Add/subtract cooling system refrigerant
Age and Condition of HVAC system	Clean and undamaged.	Clean the system, repair damage or replace if +15 years old, eliminate chimney w/high efficiency direct vent unit, integrate space and water heating equipment
Location of equipment and ducts	Inside conditioned space	Seal and insulate duct locations to make them more like conditioned space, or move system location.
Window A/C units	EnergyStar compliant	Replace with central unit or improved distribution
Multiple systems/zoning	System and controls in good working order	Ensure correct damper operation, check capacity system/zone matches a CSA F-280 (or ASHRAE Manual J) load calculation
Envelope leakage	Normalized Leakage Area = 0.35	Insulate envelope, seal windows/doors/other openings
Moisture testing	No moisture problems	Source control – better kitchen and bath venting, fix flashing/detailing, seal crawlspaces, replace windows, add insulation
House insulation	Insulation levels vary with region	Add insulation as required. Floor or slab depends on local codes.
Windows	Double-or tripled-glazed, low-e, units with insulating spacers	Replace windows.
Window shading	South and/or west facing windows	Add exterior shading to reduce solar loads
Evaluate energy bills	(if available)	
Occupant survey/ Energy Audit	No problems	Moisture removal strategies, new windows, improve air mixing/remove drafts, add envelope insulation, etc.

4.4 Cooling Strategies

An increasing number of homes in Canada have mechanical cooling systems installed, increasing the capital cost of the home and its operating costs as well as greenhouse gas emissions associated with more energy use. Cooling loads can be significantly reduced without adding mechanical cooling. In some cases, particularly in coastal and mountainous regions, the need for mechanical cooling can be eliminated altogether. However southern Manitoba, Ontario and Quebec experience hot humid summers that require mechanical cooling for comfort and dehumidification. In those climates, cooling loads should be minimized, and the most efficient, properly sized ENERGY STAR® rated mechanical cooling equipment should be used.

⁸ MERV is an industry standard rating system for air filters, it stands for Minimum Efficiency Report Value determined using ASHRAE Standard 52.2

⁹ CSA Standard F-280 "Determining the Required Capacity of Residential Space Heating and Cooling Systems"

¹⁰ details on this method can be found at www.cmhc-schl.gc.ca/publications/en/rh-pr/tech/03-109-e.html

¹¹ American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.

Properly oriented glazing and well-designed shading will help reduce solar heat gains in summer. When outdoor air temperatures are 30°C or less, whole house ventilation driven by wind speeds of 1 to 2 meters per second can remove unwanted heat generated by lighting and household appliances, as well as heat given off by the occupants during normal activities. Natural ventilation does this without consuming energy. Mechanical ventilation in the form of large low-pressure fans can also be used as a supplement to natural ventilation, particularly on hot, windless days. Non-mechanical cooling measures are described in detail in CMHC's Tap the Sun publication.

Building Envelope Measures

WINDOW SHADING

For south-facing windows, horizontal overhangs provide effective shading and limit heat gains in the spring, summer and fall. They are less effective on east- or west-facing windows because of the low angle of the sun, unless the projections are very wide, such as a carport or porch. Overhangs can be louvered, or fabric awnings as well as solid.

WINDOW TREATMENTS

There are a variety of add-on window treatments, including blinds, shutters, screens and drapes. Some treatments, such as window tinting and films, are integral parts of the glazing system. However, tints and films can cause a reduction of solar gains during the heating season. Internal shades can be adjusted to control summer heat gains and avoid the reduction of heat gains during the winter.

LOW E COATINGS FOR CONTROLLING SOLAR HEAT GAIN

'Low-e' refers to a coating that is applied to glass to block the absorption of heat energy. High-solar gain (hard coat) low-e coatings are typically used in Canadian climates to keep heat in, but low-solar gain (soft coat) low-e coatings, when applied to the inside face of the outer sheet of glass, reject solar gain thereby reducing cooling loads. Use hard coat low-e for the south and east orientations and the soft coat on north and west orientations.

ROOF ATTIC AND CEILING TREATMENTS TO REDUCE COOLING LOADS

The position of the sun means the roof is the home's major receiving surface for solar heat gain in the summer. Heat gain through roofs and ceilings can be reduced through radiant barriers, increased attic insulation and proper attic ventilation. "High albedo" roof finishes reduce cooling loads by reflecting solar radiation. These types of roof finishes also tend to last longer because the thermal expansion and contraction caused by heating and cooling of the roof is reduced.

REDUCING INTERNAL HEAT GAINS

Heat generated by lighting, appliances and people during the summer will contribute to the cooling load. By minimizing the use of electric lighting, particularly incandescent and halogen lighting, cooling loads are reduced. High efficiency, low energy consuming appliances save operating costs and tend to produce less waste heat than conventional appliances. Domestic water tanks and boilers should also be well insulated to reduce losses of unwanted heat to the house in summer.

Natural Ventilation

Operable windows equal to between 2 and 4 percent of the floor area should provide sufficient natural cooling, except on hot, humid, windless days. The following are ways to enhance natural ventilation.

- Cross-ventilation is best obtained by locating operable windows on opposite walls facing the upwind and downwind of the prevailing summer winds
- Casement windows are the best option as they provide the largest area of window opening
- The leeward (downwind) opening windows should be 50 to 100% larger than the windward windows
- Cross ventilation to work best, the depth of the home should be less than 5 times the ceiling height
- Adopt open-plan designs that have minimum restrictions to air movement

Using tall casement windows or locating operable windows with as much vertical separation as possible can also use the stack effect to induce air movement. Awning windows located close to the floor can work in conjunction with opening clerestory windows, cupolas or vents in the roof to maximize this effect.

WHOLE HOUSE FAN DRIVEN VENTILATION

In summer, it is better to ventilate the whole house with a supplementary fan than to use the furnace fan with modified ductwork that draws in outside air. The supplementary fan should change the inside air about 10 times an hour. It should be located at the highest point in the house, where it can vent the warmest air and allow cooler outside air to be drawn in through open windows below. Whole-house fans should be controlled by a cooling action thermostat or, better still, by an indoor-outdoor thermostat that keeps the fan from operating if the outdoor temperature equals or exceeds the indoor temperature.

CEILING FANS

By generating air movement of between 0.50 and 0.75 m/s, ceiling fans can provide a level of comfort equal to 2°C cooler in still air. High efficiency ceiling fans are now on the market that, due to their blade design, use less energy to move the required quantity of air. Some are also available that use photovoltaics and a DC motor, eliminating the use of purchased electricity.

THERMAL MASS

Thermal mass delays a dwelling's response to rising temperatures, keeping it cool except during prolonged hot spells. If cooler night air flows over heavy elements, such as concrete or masonry, it will help remove heat that has been stored there during the day and lower the temperature for the next day.

EVAPORATIVE COOLING

Air can be cooled, if it is relatively dry, through the evaporation of water. This has been done historically in gardens through the use of fountains and in buildings through the use of cooling towers.

High Efficiency Air Conditioning

Only after cooling loads have been minimized and other cooling methods described above have been used or eliminated from consideration should mechanical air conditioning be used. When a conventional air conditioner is used only units with a Seasonal Energy Efficiency Ratio (SEER) of 14 or higher should be considered. Air conditioning equipment should be sized for 80% of peak capacity for reasons of economy and operating efficiency. Using a cooling thermostat set point of 24 or 25° C will also reduce the energy consumption for cooling.

For higher efficiency cooling and backup space and domestic water heating a ground source heat pump can be used. These can be up to two to three times more efficient than conventional air source heat pump / air conditioner but at a higher capital cost.

4.5 Secondary Energy Usage

Secondary energy use includes appliances, lighting and miscellaneous electric loads such as electronics, fans and gadgets. Appliances are similar to HVAC equipment, in that they are commonly replaced when they fail, in situations where necessity takes precedence over a deliberate decision. In addition, the loads associated with secondary energy uses are highly variable, being based in occupant lifestyle and product choices.

In a recent Building America report, it was noted that secondary energy uses (lighting, appliances and miscellaneous electric loads) are all heavily dependent on occupant behavior and product choices. ENERGY STAR® qualified appliances, lighting, electronics and fans are commonly included in energy efficient plans. The paper by Norton and Christensen notes that using EnerGuide or ENERGY STAR® qualified product label information, which is based on test conditions, lacks the level of detail and location specific information required that would help size PV systems for net zero energy homes. The paper goes on to outlines a prototype procedure for comparing appliance models in greater detail. This includes disaggrating machine electrical energy and hot water consumption as well as accounting for variability in incoming water temperatures for clothes and dish washers, modelling the interaction of clothes washers and dryers for any combination of these appliances, and accounting for a varying number of cycles per year.

An EPA document on high efficiency lighting offers a potential savings of 50% per light bulb switched to an occupancy sensor (Plympton et al, 2007). Energy efficient compact fluorescent lamps (CFLs) have been on the market for several years. The reductions in power demand and savings in lighting energy use due to CFLs are established benefits in retail and commercial settings; however, residential use of lighting is different from retail and commercial settings, with more selective use based on occupant needs.

Cost saving claims are typically based on the power consumption difference between CFLs and comparable incandescent bulbs, with no accounting for the 'systems' effect on space heating and cooling. A recent research document from Natural Resources Canada on compact fluorescent lights (CFLs) shows that during the heating season, CFLs can increase the space heating energy use, because of the corresponding loss in internal gains from incandescent bulbs. During the cooling season, the CFL reduces the space cooling demand and energy requirements. However, the overall there is a net energy saving in most cases, however the savings are reduced because of the interaction between heating systems and internal gains (NRCan, 2005). Looking at the bigger picture if the electricity is produced by a fossil fuel fired power plant the heat gains from lighting are equivalent to a 33% efficient furnace at best.

4.6 Stand-by Energy Usage

Stand-by energy usage has increased several times over in the last few decades, as electronic equipment has proliferated. Standby energy losses account for on average 4 to 11% of annual domestic electrical power consumption (Plympton et al, 2007). An effective low cost strategy for dealing with this problem is to plug appliances in a common power bar in each room that can be easily switched off. Legislation is already in place in California (as of January 2006) for maximum 1 Watt standing losses, and Australia has had voluntary regulations in place since 2000, with a target date of 2012 for all new products to have less than 1 Watt of stand-by energy use (EIU, 2006),

In addition, the standing losses of electric water tanks can be reduced significantly through measures such as insulation blankets. Set back controls could save between 5 and 8% in electrical energy on electric water heaters (Plympton et al, 2007).

4.7 Household Energy Monitoring

Financial benefits of net zero energy retrofits can be brought to the forefront by home energy monitoring systems (Plympton et al, 2007, Parker, 2007, Kinney, 2007). Not only do home energy monitors point out the energy use (and financial costs) of a household, but pilot projects and demonstrations have shown that energy monitors can modify energy use patterns. Results have shown 10 to 25% reductions in energy loads (Plympton et al, 2007), and 12% reductions in greenhouse gas emissions (Thompson, 2006). Blueline Innovations of St. John's Newfoundland, the manufacturer of the units used in Ontario's Hydro One pilot project, indicates energy savings of 10 to 20% with their real-time monitors (EBM, 2007). Other options, such as dynamic pricing programs, could generate an average reduction of 4% in yearly electrical consumption and around 10% with effective feedback programs (Plympton et al, 2007).

Barriers to home energy monitoring systems have been twofold: few products are available that bundle controls for systems together in one product to display the information to homeowners in a useful manner, and the lack of communications standards for the various devices. Wireless technology and the emergence of national wireless standards for networking communication protocols may make it possible to incorporate customized energy monitoring and automation solutions in both new and existing homes. Scalable and modular, these systems would allow homeowners to make changes to the system in response to the changing needs of the household (Plympton et al, 2007). There are some issues with wireless systems and exposure to electromagnetic fields (EMFs) in the house (Fauteux, 2007).

4.8 Drainwater Heat Recovery

Drainwater heat recovery (DWHR) is a simple technology to reduce water heat demand. Drainwater heat recovery units take advantage of the fact that water clings to the sides of a vertical drainpipe due to surface tension, allowing heat to be recovered from the drainwater. Typical DWHR units are a length of copper drainpipe wrapped with a small diameter copper tube. Cold water circulates through the smaller tube to recover heat from shower drainwater. These units have been shown to reduce hot water energy requirements significantly. An energy-savings calculator for a variety of DWHR units was developed by Natural Resources Canada from the performance modelling and testing carried out during 2005 and early 2007. The calculator is due to be mounted on the Office of Energy Efficiency website.¹²

4.9 Solar Technologies

Solar Technologies can be broken out into three distinct streams: passive solar, solar thermal and photovoltaics (PV). Zero Energy Home documentation notes that solar technologies do not save energy, but should be considered an investment in an energy production that replaces conventional forms of energy. When solar technologies are added to homes that have undergone energy efficiency measures, the value of the investment is magnified (Merrigan, 2001). As a home's energy efficiency increases, solar options can offset more of the utility bills. The lower the load, the more the solar energy accommodates the overall energy requirements of a home. However, as a home becomes more highly insulated it is more prone to over heating and can accommodate less south glass with the same mass level. A less efficient home with a larger heating load can utilize more solar energy (in absolute terms) although the more efficient home with a smaller solar contribution will use less total energy. More solar energy can be utilized if additional effective thermal mass is added. (See table below). Up-front costs for solar thermal and PV systems can seem daunting, but in many cases, the costs are recouped over time on energy bills.

There are site-specific challenges associated with all solar technologies: orientation to the sun and shading taking precedence for all three streams (Henderson, 2006, USDOE, 2007, Kinney, 2006, Parker, 2007).

4.9.1 Passive Solar Design

Passive solar is the most difficult to include as a 'standard' technology. Passive solar cooling and heating are dependent on solar exposure, the level of energy efficiency attainable in the building envelope, window area, window technology and shading placement, the availability of thermal mass and effectiveness of

¹² From an unpublished research highlight carried out by Shawna Henderson for CMHC and Natural Resources Canada.

controls and destratification to reduce overheating. As such, it is not treated very clearly or profoundly in the literature reviewed.

Passive solar design includes using the building components to regulate temperature and optimize performance while avoiding such problems as overheating and glare. New construction offers the greatest opportunity for maximizing passive solar design, but any renovation or addition also offers opportunities for integration of passive solar heating or cooling. As is the case with new construction, it is important to include passive solar strategies as early as possible in the planning of any addition or renovation.

There are a few levels of solar planning and design. "Sun tempering" uses windows of a size and orientation to admit a moderate amount of solar heat in winter without special measures for heat storage. "Direct gain" or "high solar fraction" has more south-facing glass in occupied spaces and adequate thermal mass to smooth out temperature fluctuations. A sunspace addition keeps the glass and mass separate from the occupied space but allows for the transfer of useful heat into the building by convection or a common mass wall; temperatures in a sunspace are allowed to fluctuate outside of the comfort range.

Sun tempered designs in which the window area is correctly sized for the insulation levels of the home and the mass only consists of conventional wood frame construction solar contribution of up to 20% of the annual space heating can be expected. Where the mass level of the home is increased with effective thermal mass (masonry or concrete between 50 mm and 100 mm (2" to 4") in thickness up to 40% solar contribution can be obtained. The two tables below show the window area to heated floor area ratios for 'sun tempered' and high-mass homes. The tables are from CMHC's Tap the Sun publication (2007 revision).

	Building Envelope Energy Efficiency			
Location	Nat. Bldg. Code	R-2000	Superinsulated	
Vancouver	6.5%	4.4%	3.2%	
Edmonton	5.5%	3.4%	2.2%	
Calgary	5.5%	3.4%	2.2%	
Saskatoon	5.5%	3.4%	2.2%	
Winnipeg	5.5%	3.4%	2.2%	
Toronto	6.0%	3.9%	2.7%	
Ottawa	6.0%	3.9%	2.7%	
Montreal	6.0%	3.9%	2.7%	
Quebec	5.5%	3.4%	2.2%	
Moncton	6.5%	4.4%	3.2%	
Halifax	6.5%	4.4%	3.2%	
St. John's	6.5%	4.4%	3.2%	

Table 12: Sun Tempered Home, Maximum South Facing Window Area as Percentage of Heated Floor Area

Table 13: High Solar Fraction Homes, Maximum Window Area as Percentage of Heated Floor Area Based on Double Glazed Clear Glass Window

	Building En	Building Envelope Energy Efficiency					
Location	Nat. Bldg.	it. Bldg. Code		R-2000		Superinsulated	
Mass level	Medium	High	Medium	High	Medium	High	
Vancouver	8.0%	10.5%	5.6%	7.5%	4.1%	5.70%	
Edmonton	7.0%	9.5%	4.6%	6.5%	3.1%	4.70%	
Calgary	7.0%	9.5%	4.6%	6.5%	3.1%	4.70%	
Saskatoon	7.0%	9.5%	4.6%	6.5%	3.1%	4.70%	
Winnipeg	7.0%	9.5%	4.6%	6.5%	3.1%	4.70%	
Toronto	7.6%	10.0%	5.1%	7.0%	3.6%	5.20%	
Ottawa	7.6%	10.0%	5.1%	7.0%	3.6%	5.20%	
Montreal	7.6%	10.0%	5.1%	7.0%	3.6%	5.20%	
Quebec	7.0%	9.5%	4.6%	6.5%	3.1%	4.70%	
Moncton	8.0%	10.5%	5.6%	7.5%	4.1%	5.70%	
Halifax	8.0%	10.5%	5.6%	7.5%	4.1%	5.70%	
St. John's	8.0%	10.5%	5.6%	7.5%	4.1%	5.70%	

Medium mass level: Double layer of drywall + 38mm (1-1/2") concrete floor topping High mass level: Extensive brick and concrete

For retrofit projects, consider:

- Daylighting strategies, such as adding clerestories, sunpipes or interior windows
- Heat control techniques, such as adding exterior shades or overhangs, or seasonal shading such as hops or other fast-growing deciduous vine
- Using passive solar heating strategies (including long-term storage) to reduce overall heating loads
- Using passive solar cooling strategies such as solar chimneys to reduce or eliminate air conditioning needs

The synergy of different building components and systems need to be considered in passive solar design. Some questions to consider include:

• Can natural daylighting reduce the need for electric light?

- If less electric light generates less heat, will there be a lower cooling load?
- If the cooling load is lower, can fans or blowers be smaller?
- Will natural ventilation allow fans and other cooling equipment to be turned off at times?

4.9.2 Solar Thermal Systems

This section focuses on solar domestic hot water systems, as space and water combination systems are beyond the scope of this project. As the heating loads are reduced dramatically in zero energy homes, the cost-effectiveness of larger solar thermal systems drops in comparison to fuel-fired alternatives. However, it would be worthwhile to look further into combination systems where a fan coil uses the solar DHW return to augment an existing air handling system. Two examples of this type of approach are the Hanover House in New Hampshire, (solar DHW fan coil through a forced air furnace) or the Klingenberg Passivhaus in Illinois (a 100W electric resistance heater through high efficiency HRV) (Said, 2006). Several of CMHC's EQuilibrium House projects are also incorporating space and water combination systems that utilize solar thermal (CMHC-EQ, 2007).

In the Habitat for Humanity ZEH project in Denver, a 9 m² (96 s.f.) collector with 760L (200 gal.) of water storage was modelled. The results showed the system offered an 88% annual solar savings fraction (including pump energy use). The backup to the solar system is a natural gas tankless water heater that uses no heating energy when the solar water tank is at or above 46°C (115°F) hot water delivery temperature (electricity may be used in standby mode) (Norton and Christensen, 2006). The Hanover House (Hanover New Hampshire) includes a drainback system that acts as both a DHW system and a backup to the space heating system. The home designer notes that using more energy efficient motors in the solar system would save between 250 and 300 kWh annually (Saïd, 2006). Other methods of reducing solar DHW system electrical consumption are to use a PV powered pump or to use a thermosyphon system. Both of these approaches require the use of antifreeze solution in the solar collector and double walled heat exchangers.

There are several configurations of solar DWH systems, all of which include readily available manufactured components and/or packages. In Canada, these systems can reduce water heating loads by 50 to 60 percent on average (Henderson, 2006). With judicial load management, this percentage could be increased. To gain market acceptance, it is imperative to use a standardized system that is seen by both homeowners and builders as reliable, meeting standards and that has a comprehensive warrantee. Site-built units increase costs and reduce homeowners faith in the quality and durability of the systems (Henderson, 2006, Kinney, 2006, Norton and Christensen, 2006, Parker, 2007, USDOE, 2007). Optimizing the systems for location and occupant loads can be done through Canada's RETScreen software, among other methods and options.

Solar air heaters are usually used in conjunction with other solar thermal systems. Currently, solar air heating is available as room-by-room heaters and to pre-heat ventilation air, but applications are available to supply heat to the whole house. Slightly less efficient than solar water heaters, they are cost effective and popular in climates that remain cool for much of the year and have at least partial sunshine. Solar air heating systems don't freeze, making them an excellent option for colder climates (EERE, 2007). The RETScreen Solar Air Heating Project Model can be used to evaluate the energy production (or savings), life-cycle costs and greenhouse gas emissions reduction for ventilation air heating using transpired-plate solar collectors.

4.9.3 Photovoltaic Systems

Case studies of thirteen net zero energy homes in the US show PV systems to be between 2 and 5 kW capacity (USDOE, 2007). These homes are at lower latitudes than Canadian homes, resulting in higher power production due to higher insolation levels.¹³ Canadian surveys and case studies of homes with grid-connected PV systems show a capacity range of 100W to 5 kW, with an average range of 1 to 2.5 kW. It should be noted that in general, these systems were not designed to create a net zero home, but were included in new home construction or in a renovation because of homeowner interest in reducing environmental impacts as well as reducing energy loads (Henderson and Bell, 2003, Henderson, 2004a). However, they do show that PV works in a Canadian setting to offset electricity loads.

Optimizing the size of a PV system includes reducing lighting, appliance and miscellaneous loads significantly, and then relying on occupant behavior to ensure that energy use is minimized. Miscellaneous

¹³ Insolation refers to the average number of kilowatt-hours per square meter per day. The closer to the equator, the higher the level of insolation. For the weather and latitudes of the United States and Europe, typical insolation ranges from 4 kWh/m²/day in northern climes to 6.5 kWh/m²/day in the sunniest southerly regions.

loads are highly unpredictable and vary substantially from household to household (Norton and Christensen, 2006). Because of these factors, a PV system must be designed around an unknown largest load. To get around this, assumptions are based on the best available results from energy use studies, resulting in a system that is sized for a 'typical' household. If the household or weather is atypical, the home may not reach zero energy, or may be a net producer (Norton and Christensen, 2006).

4.9.4 Solar Ready

A solar ready home includes pre-planning for both solar thermal and PV systems. Plumbing, wiring and appropriate utility space for controls are included in the design phase. In a retrofit situation, this is trickier than a new home in the pre-construction phase, but where major renovations are taking place, the opportunity to include a low-cost rough-in for solar thermal and PV should be taken up. Where homeowners may not be able to include these systems in a deep retrofit due to costs, they may be able to afford them at a later date. Folding the cost of a solar thermal system into a re-financed mortgage has been shown to be one of the most cost-effective ways of affording this type of system: the slight increase in mortgage payments is offset by the savings in the energy use (Henderson, 2006).

5 Upgrades

In an ideal situation, with perfect solar potential and no budgetary restrictions, any of the house types included in this study could become a Net Zero House. However, that description fits only a few homes in Canada. What has been modelled for each house type is a highly insulated, well-sealed envelope and high-efficiency space and water heating systems that have the same delivery system as typically exists in these house types on a regional basis. High-efficiency motors, drainwater heat recovery, high-efficiency appliances and lighting, and reductions in stand-by power use round out the mix of energy efficiency measures included in the upgrade model. The contributions of the solar hot water and PV systems are added separately.

The upgrades were modelled based on the EQuilibrium Homes Initiative technical requirements¹⁴. This shows the method by which an enhanced EnerGuide for Houses rating can be reached.¹⁵ This enhanced rating (designated as EGH*) allows for reductions in baseload electricity and hot water use as well as air conditioning and includes a credit for energy generation.

There are several different aspects to consider when carrying out a retrofit of this sort. Using the 'house as a system' metaphor, any change to one element of the house will affect how all other elements of the house perform. As well, there are considerations to take in terms of best practices, logical and cost-effective sequences and future planning. In many cases, homeowners will carry out these retrofit measures piecemeal, upgrading as they can afford to do so. A series of decision trees to use as an aid in planning a Net Zero Retrofit can be found at Appendix A. These decision trees start with the building envelope (foundations, walls, ceilings and windows) and end with mechanical systems. This sequence is crucial to a Net Zero retrofit, as the key to reducing energy costs effectively is to first limit the amount of energy required to operate the house. This translates into creating a highly insulated, well-sealed envelope that is durable, weatherproof and sustainable. This also makes sense in terms of extending the usable life of existing houses: the investment is put into the longest-lived components of the home, not into mechanical systems, which have a much shorter useful life. While it is better to upgrade the envelope from a long-term perspective, in many cases the quickest, easiest and least expensive way to reduce energy consumption is through upgrading the efficiency of the heating plant.

A well-managed building envelope retrofit can result in the need for much smaller heating equipment, so a high-efficiency unit can be considered when the existing unit is due for replacement. It must be noted that an improved envelope will often lead to lowered performance of an existing space heating system, as the change in load results in 'short cycling', where the unit cycles on and off quickly and cannot reach an efficient firing temperature. Heating contractors can offer interim solutions such as reducing nozzle sizes in oil-fired appliances.

Cooling equipment was included in the base case energy model for all house types in Toronto and Montreal. With the upgrades, the criterion for including cooling equipment was the benchmark from the EQuilibrium Housing Initiative: air conditioning was required only when the sum of the sensible load and latent load was greater than 1,500 megajoules (MJ) or 417 kWh. This sum, the annual cooling load, was not met in many of the upgrade models, so cooling equipment was not included in most of the calculations.

¹⁴ as laid out in Appendix C of the Request for Proposals (RFP) for that project, dated 29 Nov 06. See www.cmhc-schl.gc.ca/en/inpr/su/eqho/index.cfm

¹⁵ EnerGuide for Houses is a rating system for energy efficiency in Canadian houses. A rating of 0 being the worst case and 100 being a house that produces as much energy as it consumes in a year (a net zero house). This rating system can be used for both existing houses and new houses. Visit www. for more information on the program.

5.1 Upgrade Targets for Envelopes

The envelope insulation levels were determined for each city/region through discussion between team members and the advisory committee. The insulation levels for each city were based on experience; research into other low/net zero housing projects and the insulation levels that were used in the successful EQuilibrium House projects. The modelling was fairly generic; to show that the nominal insulation levels proposed could do the job. Proposed upgrades for a variety of ceiling and wall assemblies that would meet the upgrade targets listed below can be found in Appendix B and C. These include walls insulated from the exterior, walls insulated from the interior, a flat roof and a gabled roof.

AIR SEALING

Each of these upgrades includes a 50% reduction in air leakage rates, except for houses in Vancouver, where air leakage rates were highest. The air leakage rates in these houses were reduced by up to 70%, but not lower than 3.57 air changes per hour (AC/H) at 50 Pa pressure, which is considered the standard for conventional new construction. The other exceptions were all the houses built after 1995, in which case, the air leakage rate was brought down to the R2000 standard of 1.5 AC/H.

FOUNDATION FLOOR

Foundation floors were modelled as if a concrete slab was in place and insulation was added to the interior surface then covered with a subfloor and strapping. It was assumed that there is a limit to the amount of insulation that can be placed on top of a slab, as most basements have been, or will be, turned into living spaces, where homeowners desire the maximum ceiling height possible. If it were necessary to replace a slab or cover up a dirt floor, the basement could be excavated and a higher insulation value of up to RSI 4.6 (R 26) could be added to the foundation floor under the new slab.

FOUNDATION WALL

It was estimated that RSI 7 (R40) would work for most foundation wall applications. This was added in the model as interior wall insulation (assuming an unfinished basement). This would equate to 140mm (5.5 in) of foil-faced polyisocyranurate board, which would result in minimal loss of square footage for a finished basement. Full-height exterior rigid board insulation (approved for below-grade applications) could be added to enhance waterproofing if drainage work and regrading was being performed on a house.

RIM JOISTS/HEADERS

Rim joists and headers were modelled with the same insulation values as the above grade walls. In practice, they should be well sealed and insulated to *at least* the same level as above grade walls.

ABOVE GRADE WALLS

Above grade walls were modelled with spray polyurethane foam in a 2x4 or 2x6 cavity, with high-insulation value polyisocyranurate board to the exterior to make up the requisite insulation levels. Alternate wall assemblies can be found at Appendix B and C

EXPOSED FLOORS

Exposed floors were modelled with the same insulation level as above grade walls.

ROOFS / ATTICS

Three types of roofs were modelled in the upgrades: attics with flat ceilings (stick framed and manufactured trusses), sloped ceilings with no attic and 2x6 or 2x8 rafters, flat roofs with no attics and 2x6 or 2x8 roof joists. Insulation values were increased to suit the location. Sloped ceilings and flat roofs had rigid board insulation added on the interior and/or the exterior as required.

WINDOWS

All windows were upgraded to triple glazed units with low-e coatings. Where applicable, selective glazing was used, specifically heat mirror units (the same weight as double glazed units, with two panes of glass

and one film between with low-e coatings). Regardless of glazing type, the window upgrades also included argon fill and insulating spacers in extruded fibreglass frames.

DOORS

Doors were all upgraded to metal doors with polyurethane cores bearing an ENERGY STAR® qualified mark.

all insulation values are RSI (R)	Ceiling	Above Grade Walls	Exposed Floors	Below Grade Walls	Slab	Doors	Windows
Vancouver	8.8	4.6	4.6	4.6	1.8	insulated	triple, 12mm low-e,
	(50)	(26)	(26)	(26)	(10)	metal	argon fill, ins. spacers
Calgary	14.4 (80)	10.6 (60)	10.6 (60)	7 (40)	1.8 (10)	insulated metal	triple, 12mm low-e, argon fill, ins. spacers
Toronto	10.6	7	7	7	1.8	insulated	triple, 12mm low-e,
	(60)	(40)	(40)	(40)	(10)	metal	argon fill, ins. spacers
Montreal	14.4	10.6	10.6	7	1.8	insulated	triple, 12mm low-e,
	(80)	(60)	(60)	(40)	(10)	metal	argon fill, ins. spacers
Halifax	10.6	7	7	7	1.8	insulated	triple, 12mm low-e,
	(60)	(40)	(40)	(40)	(10)	metal	argon fill, ins. spacers
Whitehorse	14.4 (80)	10.6 (60)	10.6 (60)	7 (40)	1.8 (10)	insulated metal	triple, 12mm low-e, argon fill, ins. spacers

Table 14: Modelled Envelope Upgrades, for All House Types

5.2 Upgrade Targets for Mechanical Systems

SPACE HEATING

The systems chosen for modelling purposes require only a change of equipment, not delivery system. All units proposed are readily available. With improved building envelope, smaller heating loads offset the premium on the purchase price of a higher-efficiency heating unit. As all upgrades for fuel-fired furnaces include direct vent units, the flues can be blocked off. This helps improve air leakage levels significantly, as the 'chimney effect' will be lost. The heating load and the design heat loss may be reduced to the point where fuel-fired equipment cannot be found that is small enough to be properly sized for the house.

Where electric forced air systems are in place, such as in Montreal, an air-to-air heat pump was used to improve the performance of the heating system. In some cases where possible envelope improvements were minimal (such as in a pre-WWII, double-wythe brick home), a ground-source heat pump was used to decrease the overall energy load. Where heat pumps were specified, they also provide water heating.

Wood heating was not been considered in the upgrades, as there are too many variables involved to make an accurate model of the energy contribution from this source. Cooling was not required in most upgrade situations (as per the Equilibrium Housing Initiative benchmark of 1,500 MJ (417 kWh) cooling load).

WATER HEATING

Hot water was modelled as high-efficiency units augmented by closed-loop solar systems. The two systems considered in the upgrades –flat plate collector and evacuated tube collector -- are standard 'off the shelf' packages for domestic hot water that available across the country from various manufacturers and dealers. Solar hot water can be used in combination space and water heating systems with good results, but the systems are not consistent in their components or capacity across the country. Determining the energy contributions from these types of combination systems was not possible for this study.

VENTILATION

There are several ways to accomplish whole-house mechanical ventilation, as required by the National Building Code of Canada. The modelled upgrade meets the CSA F-326 room count model¹⁶ with a heat recovery ventilator (HRV). This system preheats fresh air supply by recovering heat from stale exhaust air while keeping the two streams of air separate. High efficiency HRVs can recover up to 80% of the heat being exhausted from a building.

UPGRADE ASSUMPTIONS

- Space Heating High temperature rise (5.5°C/9.9°F) ('normal' temperature rise = 2.8°/5.5°F)
 High efficiency motors and pumps included for all new equipment
- Space Cooling: capacity was determined by HOT2000[™], with a SEER of 14
- Water Heating Daily load = 150 L/person, 4 occupants (Base case daily load of 225 L/person, 4 occupants)
 Electric tank and solar storage tank (where applicable) have insulating tank blanket
 Oil/Gas fired systems have pipe insulation
 1.0 m (3.3 ft) drainwater heat recovery unit installed for 20% overall reduction in water heating load
- Ventilation –More efficient HRVs were chosen than the default HRV settings in HOT2000[™], which are: 125 W @ 0°C, 55% sensible heat recovery 125 W @ -25°C, 45% sensible efficiency

Table 15: Modelled Mechanical System Upgrades for All House Types

Space Heating	Water Heating	Whole House Ventilation	Add-On Renewables
furnace (90% steady state		A high- efficiency HRV was added to each house. Model	SOLAR HOT WATER

¹⁶To meet F-326, the mechanical ventilation capacity is based on specific air flows in liters per second or cubic feet per minute to each room or living area.

Toronto	Condensing gas fired furnace (90% steady state efficiency) If no envelope upgrade, then 20kW (6T) GSHP COP = 4.9	Condensing gas fired tank (86% steady state efficiency) or off HP w/COP 1.91	and energy use dependent on house size and room count as per CSA F-326.	6m ² evacuated tube OR 12m ² flat plate collector
Montreal	10.5 kW (3T) Air-to-Air heat pump HSPF = 8.3 If no envelope upgrade, then 20kW (6T) GSHP COP = 4.9	Off either type of HP w/COP 1.91	Most houses were serviced by a model that supplied 50 to 55 L/s, with the following energy use: $0^{\circ}C = 117W$,	WITH 240L storage
Halifax And Whitehorse	Direct vent oil-fired furnace (87% steady state efficiency)	energy factor)	1	PHOTOVOLTAICS
	Whitehorse #2 upgrade: 10.5 kW gshp COP = 4.9	Whitehorse #2 upgrade: off HP COP = 1.91	80% sensible efficiency	Array size ranges with available roof area.
			The larger house types (PreWWII 2-1/2 storey and 2storey w/basement) required a bigger model HRV to supply 65L/s, with the following energy use:	Range of potential energy generation in kWh per m ² roof area:
			0°C = 150W,	Vancouver: 116 to 151 Calgary: 137 to 185
			79% sensible heat recovery -25°C = 156W,	Toronto: 126 to 158
			75% sensible efficiency	Montreal:128 to 160
				Halifax:123 to 159 Whitehorse: 106 to 145

5.3 Upgrade Base Loads

The typical baseload in any house type as modelled in this study can be reduced by more than 60%, from 24 kWh/day to 10 kWh/day.

LIGHTING:

Increased daylighting through increased reflection from ceilings and walls (use semi-gloss/gloss white paint to bounce the light into the room). Other measures include adding reflective exterior surfaces (white stones or light coloured gravel under ground floor windows), skylights, clerestory windows and light shelves. Lighting controls can allow zoning of artificial light to complement daylighting.

APPLIANCES

Minimize or eliminate electric or gas dryer with clothesline or solar air collector dryer. Use electrical switching to reduce standby power consumption

Assumptions:

- Compact fluorescent and/or LED bulbs are used in all fixtures
- ENERGY STAR® qualified products brings the appliance load down to 4 kWh/day
- Standby losses can be reduced significantly through controllers.

Table 16: Baseloads for All House Types

Lighting1365Other (electronics etc)1.5550Exterior Loads31095		• •	
Lighting 1 365 Other (electronics etc) 1.5 550 Exterior Loads 3 1095 Total base load (kWh) 10 3650		kWh/day	kWh/yr
Other (electronics etc) 1.5 550 Exterior Loads 3 1095 Total base load (kWh) 10 3650	Appliances	4.5	1640
Exterior Loads 3 1095 Total base load (kWh) 10 3650	Lighting	1	365
Total base load (kWh) 10 3650	Other (electronics etc)	1.5	550
	Exterior Loads	3	1095
Total annual base load (GJ) (converted from kWh) 13.1	Total base load (kWh)	10	3650
	Total annual base load (GJ) (converted	from kWh)	13.1

5.4 Solar Domestic Hot Water

A study of the performance of solar water heating systems that could be applied to the roofs and walls of existing homes across Canada was carried out using RETScreen SWH ver 3. The EQuilibrium technical requirements for hot water consumption of 225 liters per day @ 55°C were assumed. Systems were modelled based on the following variables. For each combination of variables the percent annual solar contribution and renewable energy in GJ was calculated. In addition the collector area and storage capacity required for systems to provide 100% solar was also calculated. A complete analysis of solar domestic hot water is included at Appendix F.

The most representative system of those typically installed today (2007) consist of 6 m² of collector and a 240 liter storage tank. In cloudy marine climates these systems are predicted to contribute between 38 and 48% of the annual hot water requirements for systems using flat plate collectors and between 59 and 62% for systems using evacuated tube collectors. In sunnier continental climates these systems are predicted to contribute between to contribute 53% for systems using flat plate collectors and between 69 and 71% for systems using evacuated tube collectors.

HOT WATER CONSERVATION

The amount of hot water consumed in the home has a significant effect the total percent of the hot water the solar system can supply. The initial assumption used in modelling was that 225 liters per day at 55°C hot water would be used; this is based on the EQuilibrium program requirements. If this consumption can be reduced to 150 liter per day the same sized solar DHW system can contribute between 8 to 12% more of the total annual hot water requirements depending on orientation. Water conservation of course carries other benefits for the water supply system and the wastewater treatment system that service the home. In addition as water metering becomes more common water conservation will translate into direct economic benefits for the homeowner.

COMBINATION SYSTEMS

With larger collector arrays and larger storage systems the use of these systems to provide a portion of the annual space heating requirements in addition to domestic water heating presents itself particularly in the spring and fall. The modelling of the performance of these combination systems is beyond the capabilities of RETScreen at this time and therefore was not pursued but should be investigated at a later time for use in net zero buildings.

5.5 Photovoltaic Systems

An important component of net zero housing is the use of grid connected PV arrays mounted on the roof or wall of the home and/or on an auxiliary building. By sizing the PV array to generate as much electrical power on an annual basis as the house consumes and using the electrical grid in effect as a battery, net zero electrical energy consumption can be attained.

Case studies of thirteen net zero energy homes in the US show PV systems to be between 2 and 5 kW capacity (USDOE, 2007). These homes are at lower latitudes than Canadian homes, resulting in higher power production due to higher insolation levels.¹⁷ Canadian surveys and case studies of homes with grid-connected PV system show a capacity range of 100W to 5 kW, with an average range of 1 to 2.5 kW. It should be noted that in general, these systems were not designed to create a net zero home, but were included in new home construction or in a renovation because of homeowner interest in reducing environmental impacts as well as reducing energy loads (Henderson and Bell, 2003, Henderson, 2004a). However, they do show that PV works in a Canadian setting to offset electricity loads.

Optimizing the size of a PV system includes reducing lighting, appliance and miscellaneous loads significantly, and then relying on occupant behaviour to ensure that energy use is minimized. Miscellaneous loads are highly unpredictable and vary substantially from household to household (Norton and Christensen, 2006). Because of these factors, a PV system must be designed around an unknown largest load. To get around this, assumptions are based on the best available results from energy use studies, resulting in a system that is sized for a 'typical' household. If the household or weather is atypical, the home may not reach zero energy, or may be a net producer (Norton and Christensen, 2006).

¹⁷ Insolation refers to the average number of kilowatt-hours per square meter per day. The closer to the equator, the higher the level of insolation. For the weather and latitudes of the United States and Europe, typical insolation ranges from 4 kWh/m²/day in northern climes to 6.5 kWh/m²/day in the sunniest southerly regions.

Using RETScreen ver. P3, PV systems were analyzed in 14 Canadian cities (see Appendix G for detailed analysis). The kW peak (kWp) power ratings and areas for PV arrays were calculated for typical roof slopes and orientations. The arrays were sized according to kWp capacity and area to meet the electrical energy budget of 8760 kWh/yr.¹⁸

Systems sized to meet this load are, for the most part, too large for any of the available roof surfaces. Baseload reductions included in the energy upgrades indicate that the electrical energy consumption can be dropped to less than 4000 kWh/yr, with a corresponding reduction in the size of the PV system, to the point where most systems can be accommodated on a single, unobstructed roof face. The actual annual electrical energy consumption of any given household will vary with the efficiency of appliances, number and types of appliances, type of lighting and number of lighting fixtures as well as assumptions about the periods of operation.

¹⁸ This an annual electrical energy budget was based on that developed for the NZEHH Pilot Demonstration Initiative (now called EQuilibrium Housing) technical requirements.

5.6 Example Calculation

The 1969 bungalow, located in Vancouver, is shown here as an example of how the various upgrades impact on a house. The following table shows more details, the main improvements are summarized below.

- Upgrading the insulation levels throughout the house dropped the design heat loss by nearly one-half, from 68.4 W/m² to 36.6 W/m², and improved the standard EGH rating from 53 to 72.
- Dropping the air change rate from 9.9 to 2.0 AC/H at 50 Pa dropped the design heat loss a further 3.3 W/m² and the EGH rating to 74.
- Installing high-performance windows reduced the design heat loss to 18.8 W/m² and improved the EGH rating to 80. At this point, the house has no ventilation system (but requires one) and still has the midefficiency gas furnace and water heater in place.
- Installing an HRV doesn't change the design heat loss but improved the EGH rating to 82.
- A high efficiency hot water system reduced the design heat loss another 0.6 W/m², and increased the EGH rating to 83.
- Taking out the mid-efficiency gas furnace and installing 4 kW of baseboard heaters brought the house to a 74% reduction in the design heat loss, from 68.4 to 17.6 W/m². The EGH rating improved to 86.
- From this point, the EGH* rating was used. The baseload was reduced, a drainwater heat recovery unit, a solar DHW system and a rooftop PV system were installed. These result in an EGH* rating of 94.
- Increasing the size of the PV system to produce the initial baseload of 8760 kWh/year brings the EGH* rating to 102, with an average surplus of 18.4 GJ, or 5111 kWh

The estimated annual space heating energy consumption for this upgrade was 4.3 GJ (1,184 kWh-e). The base case space heating estimate was 127.7 GJ (35,500 kWh-e with a 66.8% efficient gas furnace). It is known that an oversized mid-efficiency furnace leads to inefficient energy use, as the unit 'short cycles' and does not come up to steady state efficiency. A high-efficiency furnace for this upgrade would be sized as follows for this house:

Design Heat Loss * Heated Area * 1.4 sizing factor = Required Furnace Output

Therefore: $17.6 \text{ W/m}^2 \times 204 \text{ m}^2 \times 1.4 = 5,025 \text{ W} (17,210 \text{ Btu}) \text{ required furnace output.}^{19}$

A quick scan of available high efficiency gas furnaces available in Canada shows models starting at 50,000 Btu output, nearly three times the size required for the house. High efficiency gas furnaces are not adversely affected by oversizing, but they do come with a premium price. The drastic reduction in space heating needs meant that instead of installing an expensive high-efficiency gas furnace, the existing mid-efficiency heating system could be replaced by 4.0 kW (based on a 1.25 sizing factor) of electric baseboard for 'backup' heat during the harshest days of the winter. This allows more of the retrofit budget to go to envelope improvements and renewable energy systems.

¹⁹ The design temperature is based on the 97.5 percentile hourly temperature for a particular location based on historical weather data. In other words 97.5 % of all hours have a warmer temperature than this and 2.5% of all hours have temperature colder than this. CAN/CSA F280-M90 (R1998) specifies that the heating system shall be no more than 40 per cent larger than the heat required for the house at that design temperature. The 40 per cent allowance provides some margin for error in the calculation and also permits some oversizing to bring a house back up to temperature. Basically, this sizing calculation will recommend a furnace that runs at least 35-40 minutes every hour on the coldest day of the year.

, in GJ
.⊆
', c. 1969, in GJ
ပ
alow
er Bung
uver
for Vancouver
?
g
ssion of Upgrades
4
of
ogression of Upgrades
: Prog
5
Table 17: Progressi

ase Case House EGH = 53

Base Case House EGH = 53	iouse EGH =	= 53													
Design Heat	Space Conditioning	ining		Water Heating	ating		Baseloads					Energy Load	pe	Red. @ up;	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
68.4	127.8		127.8	27.9		27.9	18.4	3.9	3.9	5.3	31.5	187.2	100%	-	
Upgrade # 1	Jpgrade # 1: Increase basement insu	sement		ation (RSI 7	7 walls, R	RSI 2 Floors) EGH = 68	rs) EGH	= 68							
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	pe	Red. @ upi	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total		Light.	Other	Ext Use	Total	GJ	% base case		% due to u/g
45.4	71.7		117.1									176.5	64%	10.7	8%
Upgrade # 2	Jpgrade # 2: Upgrade envelope (RSI	velope (7 walls, RSI	10.6 clg)	10.6 clg) AC/H stays at 9.9 EGH	ays at 9.6	. = HD∃ 6	72						
Design Heat	Space Conditioning	ning	.	Water Heating	ating		Baseloads					Energy Load	be	Red. @ up;	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total		Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
36.6	53.8		90.5									149.9	%08	26.6	21%
Upgrade # 3.	Jpgrade # 3. Carry out air sealing wor	ir sealing	÷	C/H = 2	0, at this	point ver	ntilation c	capacity (of 24.8L/	AC/H = 2.0, at this point ventilation capacity of 24.8L/s is required EGH = 74	ed EGH	= 74			
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	pe	Red. @ up;	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
30.8	45.0	0.5	45.5									104.9	26%	45.0	35%
Upgrade # 4	Jpgrade # 4: Replace windows: triple	ndows: t	riple glaz	zed, low-	e, argon	fill units v	v/ insulat	ing spac	ers and i	glazed, low-e, argon fill units w/ insulating spacers and fibreglass frames EGH =	frames E	EGH = 80			
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	pe	Red. @ upi	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
18.3	22.4	0.5	22.9									82.3	44%	22.6	18%
Upgrade # 5	Upgrade # 5: Add HRV to carry ventilation needs EGH =	o carry v	entilatior	needs E	EGH = 82	~									
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	pe	Red. @ up;	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
18.3	16.5	1.3	17.8									77.2	41%	5.1	4%
Upgrade # 6	Jpgrade # 6: Replace water heater w/	iter heat		densing	unit (gas	condensing unit (gas-fired, 87% eff) EGH = 83	% eff) EC	3H = 83							
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	þe	Red. @ upgrade	grade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl. I	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
18.2	17.8	1.3	19.1	18.6		18.6						69.2	37%	8.0	29%
Upgrade # 7	Jpgrade # 7: Replace gas furnace wit	s furnac	e with 4k	(W of ele	ctric bas	h 4kW of electric baseboard heaters EGH =	eaters E(GH = 86							
Design Heat	Space Conditioning	ning		Water Heating	ating		loads					Energy Load	pe	Red. @ up;	upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl. I	Light.	Other	Ext Use	Total		% base case	GJ	% due to u/g
17.6	4.3	0.8	5.1									55.3	30%	14.0	73%
l		l	ŀ		ŀ	ļ		1	1		l	1			

Upgrade # 8:	Jpgrade # 8: Add drainwater heat re-	ater hea	10	y, reduc	e water h	overy, reduce water heating costs by 20%	osts by 2	50%							
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	bad	Red. @ upgrade	ograde
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
				14.9		14.9						51.5	29%	3.7	25%
Upgrade # 9: reduce hot water use fro	reduce hot	water us	e from 2	25/L day	/ to 150/L	om 225/L day to 150/L day per person (4 occupants)	person ((4 occup	ants)						
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	bad	Red. @ upgrade	ograde
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	G	% base case	G	% due to u/g
				10.0		10.0						46.6	25%	4.9	33%
Upgrade # 1(Ipgrade # 10: Add Solar Domestic H	Domest	ic Hot Water	ater											
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	bad	Red. @ upgrade	ograde
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	G	% base case	G	% due to u/g
				10.0	-6.1	3.9						40.5	22%	6.1	61%
Upgrade # 1'	Jpgrade # 11: Replace appliances ar	ppliance	p	lighting, dr	op base	drop base loads overall	erall						_		
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	bad	Red. @ upgrade	ograde
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case		% due to u/g
							5.9	1.3	2.0	3.9	13.1	22.1	12%	18.4	58%
Upgrade # 12	Jpgrade # 12: Add PV array (39m ² *1	ray (39n		Whm ² /yr)) = 5889	51 kWhm ² /yr) = 5889 kWh/yr or 21.1 GJ/yr) EGH* = 94	r 21.1 G	J/yr) EG	H* = 94						
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	bad	Red. @ up	@ upgrade
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
									-21.2		-8.1	6.0	1%	21.2	161%
Upgrade # 12	Jpgrade # 12a: Increase PV to produ	PV to pi		760 kWh	ı/year (3 ⁻	1.5GJ) E($GH^* = 10$	02. Net e	inergy pr	oducer (s	urplus of	18.4 GJ	ce 8760 kWh/year (31.5GJ) EGH* = 102. Net energy producer (surplus of 18.4 GJ = 5111 kWh)		
Design Heat	Space Conditioning	ning		Water Heating	ating		Baseloads					Energy Load	bad	Red. @ upgrade	ograde
Loss	Htg/Cool	Vent.	Total	Gas	Solar	Total	Appl.	Light.	Other	Ext Use	Total	GJ	% base case	GJ	% due to u/g
									-31.5		-18.4	-18.4	-10%	31.5	240%
Notes for this table:	s table:														

Space conditioning includes heating and cooling as well as ventilation energy use. Water heating: 'solar' is a negative number as it is on-site energy generation, replacing purchased fuel. Base loads: PV is a negative number as it is on-site energy generation, replacing purchased fuel. Under 'Energy Load' column, GJ refers to the overall house load, and is additive (i.e., each measure reduces the overall load). The % of base case indicates the drop of the overall

energy load due to the upgrades Under 'Reduction due to upgrade', GJ refers to the amount of energy saved by the specific upgrade. % Due to upgrade indicates the amount of energy not required due to the specific upgrade, and represents the drop in energy use by category, not by overall house load. Categories are space conditioning, water heating and baseloads.

Table 18: Summary of Overall rReductions in Vancouver Bungalow, c 1969, in GJ (with rooftop PV system)

	Base	Upgrade	Energy Requirement
	GJ	GJ	GJ
Space Conditioning	127.78	123.32	4.45
Water Heating	27.87	16.50	11.37
Baseloads	31.54	18.40	13.14
Solar DHW Contribution			6.13
PV Electrical Energy Contribution			21.20
-			17.50
Electricity Use: space cond. + baseloads			17.59
Less PV energy contribution			-21.20
Energy into the grid:			3.61
Water Heating Requirement (gas)			10.0
Less SDHW contribution			-6.13
Gas-fired energy for water heating:			3.9
Energy Deficit: difference between energy into g	grid and DHW	/ load	0.29

Table 19: Summary of Overall Reductions in Vancouver Bungalow, c 1969, in GJ, (with PV system delivering 8760 kWh/annually)

	Base	Upgrade	Energy requirement
	GJ	GJ	GJ
Space Conditioning	127.78	123.32	4.45
Water Heating	27.87	16.50	11.37
Baseloads	31.54	18.40	13.14
Solar DHW Contribution			6.13
PV Electrical Energy Eontribution			21.20
Electricity Use: space conditioning + baseloads			17.59
Less PV energy contribution			-31.40
Energy into the grid:			13.8
Water heating requirement (gas)			10.0
Less SDHW contribution			-6.13
Gas-fired energy for water heating:			3.9
Energy Surplus: difference between energy into g	rid and DHV	/	17.7

5.7 Cost Effectiveness

This retrofit project is cost effective if the envelope and mechanical system upgrades, including the solar hot water system, can be carried out for \$30,000 (assuming no rebates or incentives are in place). Repairs and maintenance costs for mechanical and solar hot water systems are not included in the following calculation. Adding this amount to a \$150,000 mortgage has the following results:

\$30,000 investment in retrofit measures (includes Solar DHW)	Increase in monthly payment	Decrease in monthly energy costs*	Difference
Vancouver			
Standard mortgage: 6% over 40 years	\$163	\$152	-\$9/month
'Green' mortgage: 4% over 40 years	\$124	\$152	\$28/month
Calgary			
Standard mortgage: 6% over 40 years	\$163	\$128	-\$37/month
'Green' mortgage: 4% over 40 years	\$124	\$128	\$4/month
Toronto			
Standard mortgage: 6% over 40 years	\$163	\$122	-\$41/month
'Green' mortgage: 4% over 40 years	\$124	\$122	-\$2/month
Montreal			
Standard mortgage: 6% over 40 years	\$163	\$121	-\$42/month
'Green' mortgage: 4% over 40 years	\$124	\$121	-\$3/month
Halifax			
Standard mortgage: 6% over 40 years	\$163	\$175	\$12/month
'Green' mortgage: 4% over 40 years	\$124	\$175	\$51/month
Whitehorse (with high efficiency oil fired heating			
system)			
Standard mortgage: 6% over 40 years	\$163	\$163	\$0/month
'Green' mortgage: 4% over 40 years	\$124	\$163	\$39/month

Table 20: Financing a Net Zero Energy Retrofit with Solar DHW

Note: the Whitehorse bungalow energy savings can be increased to \$230/month if the envelope is fully upgraded and a 10.5 kW GSHP is installed. However, this would cost more than \$30,000.

*based on prices retrieved from various utility websites in December 2007

Adding the PV system into the mix is more of a financial challenge. To reach the initial baseload of 31.5 GJ (8760 kWh) in Vancouver, the bungalow needs a system that is between 7.77 and 9.77 kW (peak capacity). As the baseload has been brought down substantially to 13.1 GJ (3638 kWh), the system can be resized as well. The roof area can accommodate an array of up to 5.2 kW (peak capacity) array, which would provide about 21.1 GJ (6040 kWh) of electricity. This 5.2 kW array would offset all annual electrical loads, and have an annual overall surplus of 3.6 GJ (1000 kWh). This surplus, which represents about 50% of the gas requirement for water heating in the Vancouver area, could result in an annual income/credit to the homeowner if a 'green power' incentive were in place.

Current prices for grid-tied PV systems in Canada run between \$10 and \$15 per installed Watt. A \$20,000 investment results in a system sized between 1.3 and 2.0 kWp. Assuming the lower price can be met, a 2 kWp system would net approximately 8.34 GJ (2314 kWh). The baseload was reduced to 13.1 GJ (3650 kWh). This is not enough to bring the house to net zero electrical use: an additional 4.8 GJ would be required. However, PV systems are modular in nature and a further bank of panels can be added to the array in the future to complete the transformation to net zero. There is an increase in the monthly costs, although the additional cost for adding this size system onto this house would not be too daunting to add into a household budget, given that the additional cost is an investment in the long term, as opposed to ongoing (and increaseing) operating costs. As PV prices come down, and/or incentives are put in place for green power production, this option will become more viable. Repairs and maintenance costs for mechanical, solar hot water and PV systems are not included in the following calculation.

\$50,000 investment in retrofit measures	Increase in	Decrease in monthly	Difference
(includes Solar DHW and 2kW PV system)	monthly payment	energy costs*	
Vancouver			
Standard mortgage: 6% over 40 years	\$272	\$169	-\$103/month
'Green' mortgage: 4% over 40 years	\$223	\$169	-\$54/month
Calgary			

Table 21: Financing a Net Zero Energy Retrofit with Solar DHW and 2kW PV

Standard mortgage: 6% over 40 years	\$272	\$149	-\$123/month
'Green' mortgage: 4% over 40 years	\$223	\$149	-\$74/month
Toronto			
Standard mortgage: 6% over 40 years	\$272	\$139	-\$133/month
'Green' mortgage: 4% over 40 years	\$223	\$139	-\$84/month
Montreal			
Standard mortgage: 6% over 40 years	\$272	\$132	-\$140/month
'Green' mortgage: 4% over 40 years	\$223	\$132	-\$91/month
Halifax			
Standard mortgage: 6% over 40 years	\$272	\$196	-\$76/month
'Green' mortgage: 4% over 40 years	\$223	\$196	-\$27/month
Whitehorse (with high efficiency oil fired heating			
system)			
Standard mortgage: 6% over 40 years	\$272	\$189	-\$83/month
'Green' mortgage: 4% over 40 years	\$223	\$189	-\$34/month

The underlying assumption is, of course, that the total cost of the energy ugprade and the solar DHW system and the PV comes to the dollar figures in the example above. This figure is over double the 'average' renovation figure of \$12,000 reported by CMHC's study of renovation projects. However, it has been the project team's experience that homeowners are willing to pay more for what they want, witness the number of \$20,000 to \$100,000 kitchen renovations. At this time, an energy retrofit featuring solar DHW and PV on the rooftop cannot compete with the 'sexiness' of a major kitchen or luxury bathroom renovation.

AIR SEALING

This is the most inexpensive portion of the whole retrofit, and can often translate into energy savings out of proportion to the cost of carrying out the air sealing work. It should be done in conjunction with an energy audit and a blower door test to get an effective air-sealing job. A documented energy audit can also lead to a rebate from applicable incentive programs. Although a handy homeowner can do air sealing, most would be better off having it done by an experienced contractor. A 30% reduction in air change rate is about the best that can be expected in older houses without resorting to measures such as wrapping the existing shell with house wrap or polyethylene, or by using blown-in foam insulation. The retrofit upgrades included here have estimated a 50% reduction, based on these measures.

INSULATION

Insulation upgrades are more complicated in a Net Zero Energy Retrofit than a typical retrofit, and will prove to be higher cost, regardless of the assembly chosen (in most cases). Upgrading walls and ceilings to the proposed Net Zero levels will most likely be beyond the capabilities of the average homeowner. That being said, the energy savings will be higher than a typical retrofit as well.

Practically speaking, there are several opportunities for homeowners to reduce the costs associated with a Net Zero retrofit. A good example of this is when a house needs to have the siding replaced. This increase in wall insulation should correspond with upgraded windows.

As the exterior of the house is going to be stripped, insulation levels can be increased in several ways. Blown or sprayed insulation can be added to the wall cavities if necessary. The exterior of the house can be covered with one or more layers of insulating sheathing, or a 'Larsen Truss' can be constructed to create another deep cavity to be filled with insulation.

MECHANICAL SYSTEMS

Mechanical systems are often disregarded until they break down, and then the homeowner has to make a quick, usually uninformed, decision about replacing a furnace, boiler or hot water system. Getting past this 'crisis management' approach to a calculated and informed decision is probably the biggest challenge to reducing energy costs in an existing home. Higher efficiency units cost more to purchase, but operating costs are lower over the long term. If the replacement of a heating unit (furnace, boiler, etc) can be held until the building envelope has been upgraded, then the higher-efficiency unit can also be a smaller unit, therefore offsetting any premium on the improved performance. In some instances, envelope improvements will render a full-size heating system redundant, and a few well-placed electric baseboard heaters will suffice to carry the house through the harshest of winters. Another option is a direct vent gas fireplace to heat the main living space, with a baseboard in each of the bedrooms and bathrooms.

In the case of a heritage home or a home with a permanent cladding such as brick, there are very few upgrades that can be carried out on the envelope without compromising heritage value or aesthetics. In this case, a high-efficiency earth-energy system (such as a ground source heat pump, GSHP) can prove to

reduce energy requirements significantly. Site conditions may allow the piping to be run vertically below the cellar of an older urban home, reducing the amount of land required to take advantage of such a system.

APPLIANCES

The cost-benefit of purchasing energy efficient appliances is well documented. The most cost-effective way of reducing base load electricity is to replace old appliances with new. The premium on the purchase price is more than balanced out by the savings in operating costs. The challenge for homeowners is, again, to be able to make the purchase price.

6 Energy Modelling Results

Sections 6.1 to 6.3 show reductions in both absolute numbers and percentages specific to space heating in each house type. Section 6.4 shows the solar contribution to the water heating. Section 6.5 shows an example of the calculation and Section 6.6 compares EGH* ratings for all houses in all cities.

6.1 Design Heat Loss

The following table shows the reduction in the design heat loss rates for each house type, as calculated by the HOT2000[™] software. The design heat loss (here in W/m²)²⁰ indicates how much heat the house will require to maintain a comfortable inside temperature in the most severe winter conditions for a given location.²¹ For the sake of comparison, the table below also indicates a modified Passivhaus design heat loss standard for each city, based on heating degree days (HDD) under 18° C for each city.²²

In most cases, where envelope characteristics did not limit insulation improvements, the heat loss was reduced by more than half, in some cases by up to three-quarters, of the base case house. Note that these figures are for an idealized situation using a hypothetical 'average' house, actual results will vary.

When looking at the modified Passivhaus standard, no house type upgrades in Vancouver met the 6.5 W/m² heat loss. As could be expected, in cities with colder climates, the modified Passivhaus standard was more likely to be met (4 house types in Calgary, 3 in Halifax and 4 in Whitehorse). Seven of the twelve house types in Vancouver were under 10 W/m², but only the older two-storey house upgrades in Calgary and Halifax were under the 10 W/m² target.

Three houses are of note in this table: the older two-storey home and both older and newer bungalows in Vancouver. Although they do not meet the modified Passivhaus heat loss target of 6.5 W/m^2 , they do meet the 10W/m^2 target. Heat will only be required in these homes at the very coldest times of the year. For the better part of any given heating season, these buildings will carry themselves. In these three houses, the Vancouver envelope upgrades were boosted to the same levels as Toronto and Halifax (RSI 7 walls and RSI 0.6, RSI 7 below grade wall). As houses in Vancouver have higher air leakage rates than most houses in the rest of the country²³ the air change rate was dropped significantly, from 50 % of the base case AC/H rate (from 9 to 4.5 AC/H) to 2 AC/H or less.²⁴ In contrast, the two-storey house built to the National Building Code 1995 standard was modelled with RSI 4.6 walls and RSI 8.8 ceiling insulation and only a 50% drop in the base case AC/H rate. This shows the difference in the performance of the building envelope due to a well-sealed envelope with higher insulation levels.

 $^{^{20}}$ 1 W/m² = 3.4 Btu/s.f.

²¹ The January design temperature for any major city or town in Canada is listed in the National Building Code under Appendix C: Climatic Conditions. It is defined as the lowest temperature at or below which only a certain small percentage (1% or 2.5%, depending on the application) of the hourly outside air temperatures in January occur.

²² The standard Passivhaus design heat loss of 10 W/m² is based on Central European climatic conditions with up to 4000 HDD under 18° C.

²³ Based on house archetype information supplied by Natural Resources Canada, Vancouver houses had a median AC/H rate of 9.65 AC/H @ 50 Pa versus a national median of 6.6 AC/H @ 50 Pa

²⁴ The R-2000 standard for air leakage is 1.5 AC/H @ 50 Pa, the PassivHaus standard for air leakage is 0.6 AC/H @ 50 Pa

		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2 wood siding	Base	32.4	45.8				45.7
	Upgrade	7.5	17.0	-	17.3	13.8	19.8
	Difference	24.9	28.8				25.9
PWW2 brick veneer	Base			37.7		39.2	
	Upgrade			12.6	-	12.1	
	Difference			25.0	-	27.2	
PWW2 double brick	Base			40.7	38.5		
	Upgrade			22.7	26.8		
	Difference			18.0	11.7		
1-1/2 storey	Base	28.1	33.5		28.5	29.5	39.8
	Upgrade	11.8	14.1		16.8	11.5	19.8
	Difference	16.3	19.4	-	-	18.1	19.9
2 Storey 1988	Base	16.2	25.4	19.6	20.9	19.0	31.6
	Upgrade	7.1	8.3	3 15.7	14.2	9.9	16.0
	Difference	9.1	17.1	3.8	6.6	9.1	15.6
2 Storey 2000	Base	14.0	23.9) 17.7	21.4	17.3	30.7
-	Upgrade	9.1	12.5	5 10.2	11.5	10.2	15.6
	Difference	4.9	11.4	7.5	9.9	7.1	15.1
Bung 1969	Base	29.0	29.3	3 24.0	25.0	23.2	34.0
	Upgrade	8.2	13.8	3 11.1	12.5	10.7	19.9
	Difference	20.8	15.5	5 12.9	12.5	12.5	14.1
Bung 2000	Base	14.2	19.4		19.7	16.5	31.9
3	Upgrade	8.3	12.8			10.1	16.4
	Difference	5.9	6.5		8.2	6.5	15.5
Split Level	Base	22.3	33.9	-	27.7	25.1	37.5
	Upgrade	11.0	17.8		14.7	13.7	21.5
	Difference	11.3	16.1			11.5	16.0
Split Entry	Base	19.3	30.8			-	33.5
	Upgrade	9.2	15.3			11.7	18.7
	Difference	10.1	15.5		10.9	9.6	14.8
Up/Down	Base	24.2	37.7				26.3
00,2011	Upgrade	11.3	18.2			14.3	12.6
	Difference	11.0	10.2			14.3	12.0
Rowhouse	Upgrade	20.3	31.9		-	_	10.7
	Upgrade	9.5	15.7				
	Difference	10.8	16.2			11.4	
Passivhaus standard adapted to	Local HDD	2950	5200		4550	4100	6900
local HDD18° C	Max htg load	6.5	13		4330		17.3

Table 22: Reductions in Design Heat Loss, W/m²

Notes for this table:

The figures in column one indicate the average heated area in square meters for each house type. The Passivhaus standard for heat loss design (bottom row of table) is based on 10 W/m2 in a central European climate with no more than 4000 heating degree days (HDD) at base 18° C. Upgrades shown reflect changes in the heat loss design due to improvements in the building envelope. Heating systems

would be sized base on these figures, with an oversizing factor based on the system specified.

6.2 Reductions in Space Heating Loads

In general, the upgrades resulted in significant reductions in heating loads in all house types, and in all cities, for an average reduction of 81% from the base house heating load (see Table 22). The overall range of reductions was from 56% to 96%. House type and age; typical construction patterns; and climatic differences between cities were all factors in causing variations in the reductions.

Across the country, the modelled reductions were highest in Vancouver, and lowest in Halifax, when GSHPs were included in Whitehorse. Where high-efficiency oil space heating equipment was used in Whitehorse, the reductions dropped below the Halifax figures.

	•			•	•	• • • •
	Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
Min	73%	74%	66%	57%	64%	56%
Max	96%	87%	90%	89%	95%	95%
Median	85%	81%	81%	84%	72%	75%

Table 23: Range and Median Reductions in Space Heating Loads, by City (%)

As shown in Table 23, the widest range of reductions by house type was found in the 1969 bungalow, where anywhere from 56% to 96% reductions were shown. This has to do with regional differences in construction and insulation levels, as well as climatic differences. The oldest homes showed the biggest reductions possible, based on an 'ideal' retrofit, where insulation and air sealing work could be carried out to the levels specified, and where the house was starting from the base case assumptions.

The percentage reduction does not show absolute reductions, in that a 90% median reduction in energy use for the Pre WWII house still results in higher space heating loads for this house type than in the bungalow, for example. This is not true in the case where GSHPs were included in the Whitehorse houses, where the higher efficiencies result in significantly lower heating loads. See Table 24 for complete listing of space heating loads for all house types in all cities, in absolute numbers and percentage reduction.

	min	max	median
PWWII: wood siding	84%	96%	90%
PWWII: brick veneer	83%	86%	84%
PWWII: double brick	83%	90%	87%
1 - 1/2 storey	72%	87%	83%
2 storey 1988	72%	93%	84%
2 storey 2000	68%	95%	75%
Bungalow 1969	56%	96%	83%
Bungalow 2000	57%	92%	70%
Split Level	62%	86%	77%
Split Entry	65%	87%	82%
Up/Down Duplex	70%	87%	76%
Row House	70%	89%	80%

Table 24: Range and Median Reductions by House Type (%)

All Cities
GJ, for /
GĴ,
.⊆
I Load, in (
Heating I
Space
sin
uction
Redu
5:
Table 25:

	Vancouver	ver		Calgary			Toronto			Montreal			Halifax			Whitehorse	irse	
	Base Case	Net Zero	% Red.															
PWWII: wood siding	174.4	6.2	96%	195.9	28.0	86%	187.9	29.5	84%	109.0	16.9	85%	204.6	9.7	95%	195.7	12.7	94%
PWWII: brick veneer							186.6	25.5	86%	106.7	16.6	84%	201.7	34.7	83%			
PWWII: double brick							208.7	20.4	%06	130.3	21.6	83%						
1 - 1/2 storey	117.9	15.9	87%	116.7	14.6	87%	121.2	20.5	83%	74.7	13.2	82%	110.9	22.5	80%	143.8	41.0	72%
2 storey 1988	87.6	7.8	91%	119.1	15.8	87%	101.5	18.9	81%	71.0	15.8	78%	100.6	28.3	72%	163.2	12.0	93%
2 storey 2000	62.8	17.2	73%	95.0	22.5	76%	73.9	19.7	73%	76.8	12.0	84%	102.2	33.1	68%	295.2	13.8	95%
Bungalow 1969	126.2	5.1	%96	102.6	17.8	83%	89.8	15.2	83%	64.7	8.2	87%	87.9	22.0	75%	123.2	54.5	56%
Bungalow 2000	32.4	7.3	77%	47.0	12.0	74%	37.3	12.8	66%	40.4	17.3	57%	49.1	17.5	64%	108.9	8.8	92%
Split Level	97.3	17.4	82%	130.5	30.3	77%	110.7	24.5	78%	80.6	11.1	86%	101.5	34.2	66%	154.7	59.4	62%
Split Entry	79.0	10.6	87%	113.7	19.9	82%	89.9	16.8	81%	62.6	7.9	87%	77.7	24.6	68%	124.9	44.2	65%
Up/Down Duplex	84.5	19.1	77%	128.1	29.0	77%	114.5	34.4	%02	91.0	11.7	87%	122.6	36.8	20%	107.3	27.1	75%
Row House	64.5	10.8	83%	95.2	19.2	80%	86.2	25.5	%02	69.4	7.8	89%	94.3	26.5	72%			

6.3 Climatic Differences

Table 25 shows the difference in terms of energy consumption between the initial envelope upgrade and the second envelope upgrade retrofits in Vancouver, as well as the unchanged upgrade for the 2 storey house built to NBC 1995. It can be seen that the newer house, because of existing insulation values and air leakage rates, has a smaller percent reduction than other houses, although the overall reduction in energy consumption in GJ puts it in the same range as the other primary upgrades for houses in this area.

Table 26: Space Heating Energy Consumption (GJ), Vancouver Envelope Upgrades
(selected house types)

		er #1 valls, RSI H reductio		Vancouve RSI 7 wa 1.5 or les	lls, RSI 10).6 clg,
	Base Case	Upgrade 1	% Red.	Base Case	Upgrade 2	% Red.
PWWII -wood siding	174.4	15.0	91%	174.4	6.2	96%
1 - 1/2 storey	117.9	24.0	80%	117.9	15.9	87%
2 storey 1988	87.6	12.7	86%	87.6	7.8	91%
2 storey 2000	62.8	23.1	63%			
Bungalow 1969	126.2	11.1	91%	126.2	6.5	95%

Note that the figures shown are for energy consumption (Gigajoule, GJ), not design heat loss (W/m²)

It was found that, regardless of the high insulation values, most houses in Whitehorse did not come close to meeting the target EGH* 90 rating or higher with an improved envelope and higher efficiency heating system. A change in mechanical systems brought selected houses to a higher EGH* rating. In the houses listed in the table below, the oil-fired forced air system was changed to a 10.5 kW ground source heat pump with a COP of 4.9²⁵ Insulation levels stayed the same as for the initial upgrade. Following are four house types with this second upgrade.

Table 27: Comparison of Space Heating Energy Consumption (GJ), Whitehorse Heating System Upgrades

		se #1 walls, RS H reductio	U ,	Whitehors RSI 10.6 50% AC/I	walls, RS	l 14.4 clg,
	Base Case	Net Zero	% Red.	Base Case	Net Zero	% Red.
PREWWII wood siding	195.7	59.8	69	195.7	12.7	94%
2 storey 1988	163.2	62.6	62%	163.2	12.0	93%
2 storey 2000	195.2	58.9	70%	195.2	13.8	93%
Bungalow 2000	108.9	38.7	64%	108.9	8.8	92%

6.4 Solar Contribution to Water Heating

The solar contribution to water heating was modelled as if there was a clear south facing roof area. In Appendix F, calculations are shown for solar contribution for east or west facing roofs, with the acknowledgement that there will be a reduction in the efficiency of a system mounted on a roof with either of these orientations. The figures below show optimal solar contribution for south and east or west facing roofs,

²⁵ that GSHPs typically operate with a COP of 2.5 to 3.9. The higher COP used here is based on the US DoE website indicating best available high-efficiency heating systems. Actual performance may be lower because of climatic conditions.

taking into consideration the roof slope typical for each house type as indicated in Table 2. The solar contribution was subtracted from the total space and water heating loads of each upgrade. See Appendix D for tables showing final space and water heating loads.

	Vanc	ouver	Cal	gary	Tor	onto	Mon	treal	Halifax		White	horse
	South	W/E	South	W/E	South	W/E	South	W/E	South	W/E	South	W/E
PREWW II	6.5	5.5	9.9	7.4	8.3	6.8	8.2	6.5	8.2	6.6	7.7	6.2
1 -1/2 Storey	6.6	5.4	10.1	7.4	8.5	6.7	8.2	6.4	8.3	6.5	7.9	6.2
2 Storey	6.1	5.6	8.8	7.2	7.8	6.8	7.6	6.6	7.7	6.7	6.9	6.0
Bungalow	6.1	5.6	8.8	7.2	7.8	6.8	7.6	6.6	7.7	6.7	6.9	6.0
Split Level	6.1	5.6	8.8	7.2	7.8	6.8	7.6	6.6	7.7	6.7	6.9	6.0
Split Entry	6.1	5.6	8.8	7.2	7.8	6.8	7.6	6.6	7.7	6.7	6.9	6.0
Up/Down Duplex	6.3	5.6	9.4	7.3	8.1	6.8	7.9	6.6	8.0	6.7	7.2	6.1
Row House	6.5	5.5	9.7	7.4	8.3	6.8	8.1	6.5	8.2	6.6	7.4	6.0

Table 28: Optimal Solar Contribution to Water Heating (GJ)

6.5 Base Loads

Base loads were dropped as noted in section 5. See Appendix D for tables showing total base loads compared to overall energy loads. Reducing baseloads further could happen on a household-by-household basis, but the variation in baseloads due to lifestyle has to be kept in mind.

6.6 Best Case Example: The Bungalow

In general, the bungalow house type has the best characteristics for a net zero energy upgrade. This is because of the typically simple structure and shape.

The single storey structure means that heat loss at rim joist/header areas is at a minimum, compared to other house types, and that in older bungalows with unfinished basements, these areas are easily reached. The simple 'box with a lid' shape of these houses means fewer corners and other difficult areas to insulate. Unlike with an older home, such as the Pre-WWII types, there is little chance that there will be an issue with changing the exterior of the building, as few of these houses will have exterior heritage value, or double-wythe brick walls. There may be brick veneer on the front elevation, in which case a mix of interior and exterior insulation improvements could take place. If the brick veneer is in poor condition due to spalling or other damage, it could be replaced, with an increased exterior insulation layer below the new cladding.

These houses have a long and narrow profile, resulting in a potentially larger single, unobstructed roof face for solar add-ons such as hot water and PV systems. The limitation with the bungalow house type is orientation. The long axis of the house would have to face the southern quadrant to optimize the solar potential. However, the calculations in the appendices show that east and west exposures also warrant analysis when looking at solar hot water and PV installations.

The table below shows the overall energy reductions and possible GHG reductions for a bungalow in the various cities.

			•••								-	
	Vancou	ver	Calgary		Toronto		Montrea	ıl	Halifax		Whiteh	orse
	BASE	NET ZERO	BASE	NET ZERO	-	NET ZERO	BASE	NET ZERO	BASE	NET ZERO	BASE	NET ZERO
space & DHW	154.1	16.9	132.9	30.8	117.8	27.7	85.6	14.1	128.5	35.3	143.7	15.3
Reduction	137.1	GJ	102.1	GJ	90.1	GJ	71.5	GJ	93.2	GJ	128.5	GJ
	38078	kWh-e	28360	kWh-e	25029	kWh-e	19862	kWh-e	25897	kWh-e	35682	kWh-e
Appliance	33.1	13.7	33.1	13.7	32.8	13.7	32.1	13.7	33.0	13.7	33.6	13.7
Reduction	19.4	GJ	19.4	GJ	19.2	GJ	18.4	GJ	19.3	GJ	19.9	GJ
	5400	kWh-e	5401	kWh-e	5320	kWh-e	5109.6	kWh-e	5368	kWh-e	5530	kWh-e
GHG Emissions, To	onnes, CO	D ₂										1
Base Case	12.7	6.6	11.6	7.1	10.8	6.9	17.6	7.3	14.3	8.7	22.5	13.9
Reduction	6.0		4.5	5	4.0		10.3		5.6		8.7	

Table 29: Reductions in Energy Requirements for the Bungalow, All Cities (GJ)

6.7 Comparison of EGH Ratings

The EGH* ratings for three variations are shown below. The first column shows the EGH* rating with only solar DHW added to the upgraded house types. The second column shows the 'full' PV array, one that will supply 8760 kWh/ annually to the house in a given location. The third column shows the rating resulting from a solar DHW system with a smaller rooftop PV array, which varies in size according to the potential roof area available from each house type. The annual energy generated by the PV systems as calculated through RETScreen was subtracted from the total energy use as calculated by HOT2000[™].

It can be see that only houses with the 'full' PV array actually get to EGH* 100 with the typical upgrades. Looking at the Whitehorse column, it can be seen that only one of the house types (an up/down duplex with a full PV array) comes close to the EQuilibrium House Initiative threshold of EGH*90. Very few of the houses in all cities come to the EGH*90 threshold with solar DHW only, but they do fare better with both solar DHW and a smaller PV system. The next table shows the EGH* ratings for Vancouver and Whitehorse, with the second round of upgrades in place, namely more insulation and a lower air leakage rate in Vancouver, and a ground source heat pump in place of a high-efficiency oil-fired forced air system in Whitehorse.

	Va	ancouv	ver	0	Calgar	y	Toro	nto		Mont	real		Halifa	ax		White	ehors	Э
	SDHW ONLY	PV ONLY	PV + SDHW	SDHW ONLY	PV ONLY	PV + SDHW	SDHW ONLY	PV ONLY	PV + SDHW	SDHW ONLY	PV ONLY	PV + SDHW	SDHW ONLY	PV ONLY	PV + SDHW	SDHW ONLY	PV ONLY	PV + SDHW
PREWWII A	89	97	90	86	93	88	84	92	86	89	98	91	93	101	95	74	81	75
PREWWII B							86	93	87	89	98	91	83	90	84			
PREWWII C							90	97	91	87	96	89						
1 - 1/2 storey	86	94	88	90	97	92	87	94	89	90	99	93	87	94	89	81	88	83
2 storey 1988	89	98	92	90	97	93	88	96	90	89	98	92	85	92	87	74	82	77
2 storey 2000	86	94	88	87	94	90	87	95	90	91	100	94	83	91	86	75	83	78
Bungalow 1969	90	98	92	89	96	91	89	97	91	92	101	95	87	94	89	77	84	79
Bungalow 2000	95	100	93	90	98	93	90	98	92	89	98	91	88	96	90	82	89	83
Split Level	88	96	90	85	92	87	86	94	88	91	100	93	83	90	85	75	83	77
Split Entry	90	98	91	88	95	90	88	96	90	92	102	94	86	93	87	80	87	81
Up/Down Duplex	87	96	88	85	92	87	83	90	84	91	100	92	82	90	83	86	93	87
Row House	90	98	91	89	95	90	86	93	87	92	102	94	85	93	86			

Table 30: Comparison of EGH* Ratings

Notes for this table:

The EGH* rating includes space and water heating, reduced hot water and base electrical loads.

Any EGH* rating of 100 shows a net zero energy house, over 100 shows a net energy producer.

Any EGH* rating under 90 would not have qualified for the CMHC EQuilibrium Housing Initiative. Column 1 under each city shows the EGH* rating with a standard solar DHW system installed.

Column 2 shows the EGH* rating with a PV array that will produce 8760 kWh/annually

Column 3 shows the EGH* rating with solar DHW and a PV array sized to the roof area for each house type

It can be seen in this table that nearly all of these houses crack the EGH*90 threshold with solar DHW only (with the exception of the 1 - 1/2 storey in Vancouver, which comes in at EGH*88). However, none of them really come close to net zero as defined by the EQuilibrium Housing Initiative (EGH*100) without the addition of a PV system that is larger than the rooftop area available for the average size of each house type. However, several house types do get a rating over EGH*100, most notably the newer bungalow, with EGH*106. Ratings above 100 mean that the house could be a net energy producer, especially in years with mild winters in Vancouver. The GSHP does well for the Whitehorse houses, bringing them well above the EGH*90 mark in general.

	Vancouver				Whitehorse	Э		
	SDHW	PV PV	RooftopPV + SDHW	Full PV + SDHW	SDHW	PV PV	RooftopPV+ SDHW	Full PV + SDHW
PREWWII A	89→93	97 →100	90→93	102	74→92	81 →100	75→93	102
1 - 1/2 storey	86→88	94→97	88→90	99				
2 storey 1988	89→91	98→99	92→93	101	74→92	82 →100	77→95	102
2 storey 2000					75→92	84→99	78→94	101
Bungalow 1969	90→92	98 →100	92→94	102	77→93	84 →101	79→95	103
Bungalow 2000	95→91	100→104	93→97	106	82→93	89 →101	83→95	103

Table 31: Comparison of EGH* Ratings with Round 2 Upgrades (Vancouver envelope and Whitehorse heating system)

Notes for this table:

The EGH* rating includes space and water heating, reduced hot water and base electrical loads.

Any EGH* rating includes space and water heating, reduced not water and base electrical loads. Any EGH* rating of 100 shows a net zero energy use model, over 100 shows a model that is a net energy producer. Any EGH* rating under 90 would not have qualified for the CMHC EQuilibrium Housing Initiative. Column One under each city shows the EGH* rating with a standard solar DHW system installed. Column Two shows the EGH* rating with a PV array that will produce 8760 kWh/annually Column Three shows the EGH* rating with solar DHW and a PV array sized to the available roof area for each house type

7 Discussion of Findings

7.1 Envelope Changes

Changing the building envelope has repercussions on how both the building and the mechanical systems perform. The improved building envelope results in much smaller heating loads. This means that both passive solar and internal gains represent a larger portion of the total heating supply. While the usable proportion of passive solar and internal gains increased significantly with the envelope improvements, the absolute value of each, as measured in GJ, actually decreased in most houses. This is explained by the lower solar heat gain co-efficient of high-performance windows with no corresponding increase in window area, and by less heat being generated by appliances and lighting. The range of usable passive solar gain doubled, starting at 5 to 12% and increasing to 10.5 to 23%, while the percentage of usable internal gains in some cases tripled, from 19% to 59%.

The improved levels of useable passive solar and internal heat gains have a significant impact on the sizing of the heating system and are also affected by measures taken to reduce baseload electricity use. Replacing old appliances with ENERGY STAR® qualified products, and substituting compact fluorescent bulbs for incandescent bulbs will reduce baseloads, but will also reduce the amount of energy these fixtures contribute to internal gains. Determining the impact that baseload reduction measures have on internal gains is not as easily quantified as the impact of envelope improvements on overall energy loads. The EGH* rating allows for reductions in baseloads and hot water use, but does not quantify the change in the internal gain fraction.

Reductions in air leakage rates (i.e., tighter envelope) will result in the need for additional mechanical ventilation in most houses. Existing heating systems become oversized as the heating load is dropped significantly, reducing the efficiency of the existing equipment without any alterations to nozzle size.

The reductions in the design heat loss show that even with these sizable upgrades, most house types modelled do not meet the Passivhaus standard or the modified standard for Canadian cities shown in Table 22. This can be attributed in part to a pair of envelope factors: the air leakage rate and the insulation levels at the foundation. The air leakage rate is probably the more significant of the two.

Most upgrade models dropped the air leakage rate by 50%. Table 4 (page 31) shows the average air changes per hour at 50 Pa in Canadian house types, with the maximums ranging from 8.4 to 12.3, and the minimums ranging from 2.9 to 9.65. With a median AC/H rate of 6.6 at 50 Pascals, this 50% reduction resulted in upgraded air leakage rates well above the R-2000 standard of 1.5 AC/H at 50 Pascals, let alone the air change rate of 0.6 at 50 Pascals as required by the Passivhaus standard. As the modelled figures are assuming that a high-quality level of air sealing work was done, these reductions could be seen as being optimistic.

Some Passivhaus projects have insulation values in the foundation slab and the foundation walls that well surpassed the modelled insulation in the upgrades. For instance, the Minnesota Passivhaus (a dormitory on the Concordia University campus) has RSI 9.43 (R 54) under the slab and RSI 10.9 (R63) walls, while a duplex in Oslo, Norway has RSI 12.2 (R 70) under the slab and RSI 9.1 (R 52) walls. The slab and basement wall upgrades modelled in this study were limited to RSI 1.8 (R 10) and RSI 7 (R 40) respectively.²⁶

7.2 Mechanical Systems

In several houses in Vancouver, the heating system requirements are so low that there is no equipment available that can be properly sized for the house. Where space heating will be required for only a small fraction of the year, appropriate approaches might be to fit the house with inexpensive baseboard heaters or a heating coil in the HRV supply duct and run an energy deficit in harsh winters, and a surplus in mild winters. The heating coil could be electric or hydronic, drawing from the domestic hot water tank.

²⁶Information on the Minnesota and Oslo houses was retrieved on December 17, 2007 from www.passivhausprojekte.de/projekte.php?search=2. This site houses a database of certified and registered Passivhaus projects throughout the world.

Conversely, the Whitehorse houses performed the poorest for space heating reductions. Higher insulation levels might improve this somewhat. Changing from an oil-fired system to a ground source heat pump may be the best solution, but will not work in all areas due to site-specific requirements (enough land, proper hydrology, etc.). Looking at the bigger picture, the actual coefficient of performance (COP) of the ground source heat pump can be linked to the source of the electricity used. For example, if the electricity to power the GSHP is from a fuel-fired source such as a diesel generator, the maximum efficiency of the conversion from diesel to electricity is 33% and delivered efficiency will be lower, about 25 to 30%. In this scenario, a GSHP with a COP of 3 is ends up performing like a high efficiency furnace or boiler but at a much greater capital cost.

In-floor radiant heat is an extremely popular choice for new housing, and can work in retrofit situations. It was not modelled in this study primarily because the 'standard' heating systems in Canada for several decades have been forced-air, baseboard hydronics and electric baseboard. Thus, most of the existing housing stock has been set up to run these systems. In determining cost-effective ways of getting to net zero energy in this study, it was felt that revamping the heat delivery system was not part of the equation. That being said, low-temperature in-floor heat is a very efficient and effective heat delivery system, with more versatility than a dedicated forced-air system, as it can use many different fuel sources singly or in combination. It is a choice that should be looked into when planning a retrofit. In-floor heating can be in direct conflict with passive solar heating, so where the use of passive solar is desired this must be accounted for.

7.3 Materials and Product Selection Considerations

When making choices about products and assemblies that revolve around sustainable housing some of the following issues should be taken into consideration:

- Embodied energy and embodied pollution (how much energy is used and how much pollution is created by the material or assembly from the mining or harvesting stage through manufacturing, transport and delivery to the demolition and disposal/recovery of the material or assembly).
- Sustainably harvested wood or plant material. Look for local sources as well. Start within 100 miles of your site and move out from there.
- High post consumer recycled material content
- Material / product service life
- · Potential for future recycling of material when service life completed
- Assembly service life

7.4 Valuing Non-Energy Benefits

One aspect of whole house (or 'deep') energy efficiency retrofits that is not currently addressed is the value of the associated 'non-energy benefits' (NEBs). In general, energy saving programs ignore these benefits, or do not use a comprehensive methodology for determining them. According to Thorne, comfort and aesthetic benefits far outweigh energy concerns, and very few homeowners assess the economic benefits of their investments by monitoring energy bills or calculating payback times (Thorne, 2006). Besides comfort and aesthetics, identified non-energy benefits include health and safety, noise reduction, education-related and convenience (automatic thermostats, easier maintenance). Other benefits include greater control over energy use, reduced sick days, ease of selling home, enhanced pride and prestige, improved sense of environmental responsibility and enhanced peace of mind and responsibility for family well-being (Thorne, 2006). In a study carried out by CMHC, participants indicated top priorities in home upgrades were improving comfort and lowering operating costs. Reduced environmental impact and improved indoor air quality were lower priorities (Thompson, 2006). All of these NEBs should be taken into consideration in a Net Zero Energy Retrofit program.

8 Conclusions

The modelling in the study is based on best-case scenarios all around: well-done air sealing and insulation work, ease of access to all parts of the house, reducing labour costs, unobstructed south faces on roofs for PV and solar DHW systems and homeowners who can carry out both the hot water usage and baseload reductions indicated in the study. Homeowner behaviour and lifestyles drive these last two aspects, making them difficult to quantify accurately. That being said, there are some conclusions to be made:

As could be expected, there were differences between climatic regions that influenced the challenge of approaching net zero energy in existing houses. The other factor that was clearly a challenge was the house type itself, where the age, styles of construction and ease of upgrading the envelope came into play. The climatic region where retrofits were most likely to come close to net zero energy mainly through building envelope improvements was Vancouver and environs. Whitehorse, even with significant increases to the envelope, required a high-efficiency GSHP to approach net zero energy in any house type. The other cities and climatic regions fell into the range between Vancouver and Whitehorse.

The house type that would most easily be retrofitted to net zero energy could be the bungalow, where the simple form of the building allows for better results from air sealing and insulation work. In addition, the long axis of the house gives the potential for a larger, unobstructed or shaded south-facing roof area than would be possible for other house types. This gives the potential for the largest possible roof-mounted PV array and solar domestic hot water system, even if the roof typically is not at optimum slope for these technologies in most Canadian regions. Other houses, such as the pre-World War II house, with a 9/12 pitch, which is much better for solar optimization, have a smaller potential south-facing roof that most likely has a dormer or other shading obstacle on it. A possible future topic for research could be analyzing various Canadian cities for the solar potential of the housing stock.

Barriers to actually getting to net zero energy in existing homes include the challenge of coordinating the timing of a retrofit. Making a project cost-effective depends on some planning – for example, if the siding is to be replaced on a home, that is the time to insulate the exterior and upgrade windows. Mechanical equipment is usually replaced under emergency situations, so a change-out to a higher-efficiency, smaller output unit that coordinates with an envelope upgrade requires a clear plan and timely financing. Other barriers are based in the logistics of finding contractors willing and able to do the work required.

The technology and materials are available to reduce energy loads significantly, in existing houses, by a factor of 7 to 9. However, getting to net zero energy in existing houses is completely dependent on the cost of the add-on renewable systems that take the house to net zero energy. Solar thermal systems are market ready and can be proven to have a reasonable payback period, and are more readily accepted as an option by homeowners. If there were financial incentives and mechanisms in place, roof mounted solar thermal systems are currently very expensive, with very long payback periods for small systems. Until there are reasonable incentives to purchase and operate these systems (tax rebates, purchase incentives, 'green power' premiums for grid-connected systems), it will be very expensive for any householder to create a net zero energy home from his or her existing dwelling.

9 References, Bibliography and Web-based Resources

References and Bibliography

2030 Challenge, 2006. 2030 Challenge Targets. Retrieved August 10, 2007 from Architecture 2030: www.architecture2030.org/

- Anderson, R., Christensen, C., Horowitz, S., 2006a. Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes. NREL/CP-550-38170. University of Colorado. Golden, CO: National Renewable Energy Laboratory.
- Anderson, R., Christensen, C., Horowitz, S., 2006b. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand. NREL/CP-550-39821. University of Colorado. Golden, CO: National Renewable Energy Laboratory.
- Black, A.J., 2004. *Why is a Solar Electric Home Worth More?* Presentation to Solar 2004, Portland, OR. Retrieved July 2005 from www.millionsolarroofs.org/articles/static/1/binaries/BlackASES.pdf
- Canada Mortgage and Housing Corporation (CMHC), 2005a. *About Your House Series: Renovating for Energy Savings*. Eleven Consumer Brochures showing energy saving renovations for various housing types. Retrieved August 20, 2007 from Canada Mortgage and Housing Corporation: http://cmhc.ca/en/co/renoho/reensa/index.cfm
- Canada Mortgage and Housing Corporation (CMHC), 2005b. *Renovator's Technical Guide*. Publication #61946. Ottawa: CMHC.
- Canada Mortgage and Housing Corporation (CMHC), 2006. *Canadian Housing Observer 2006*, Table 11, page A-14, Table 12, A-15. Ottawa: CMHC.
- Canada Mortgage and Housing Corporation (CMHC), 2007. *On Average, Households Across Ten Major Centres Spent More Than \$11,000 on Renovations in 2006.* Retrieved on September 5, 2007 from CMHC www.cmhc.ca/en/corp/nero/nere/2007/2007-06-14-0815.cfm

Canada Mortgage and Housing Corporation (CMHC), 2007a. *EQuilibrium Housing Initiative*. Retrieved on September 5, 2007 from CMHC www.cmhc.ca/en/

Canadian Broadcasting Corporation (CBC), 2007. "Budget surplus to top forecasts, federal government says" Retreived August 29. 2007 from CBC news: <u>http://www.cbc.ca/money/story/2007/08/24/surplus.html</u> viewed Aug 29

- Charron, R., 2005 A Review Of Low And Net-Zero Energy Solar Home Initiatives. CANMET Energy Technology Centre-Varennes, NRCan.
- Conference Board of Canada, 2007. Canadian Industrial Outlook: Canada's Residential Construction Industry -- Summer 2007. Ottawa
- Denholm, P., 2007. *The Technical Potential of Solar Water Heating to Reduce Fossil Fuel use and Greenhouse Gas Emissions in the United States*. Technical Report, NREL/TP-640-41157. Golden, CO: National Renewable Energy Laboratory.
- Deslongchamps, A., 2007. Retrieved 5 September, 2007 from Bloomberg.com: www.bloomberg.com/apps/news?pid=20601082&sid=avCD6IAYNN7E&refer=canada
- Drumheller, S.C., and Wiehagan, J., 2004. *Strategies for Energy-Efficient Remodelling: SEER 2003 Case Study Report.* Upper Marlboro, MD:NAHB Research Center, Inc.
- Eastment, M., Hendron, R., 2005. *Method for Evaluating Energy Use of Dishwashers, Clothes Washers and Clothes Dryers*. NREL Document number unavailable. Golden, CO: National Renewable Energy Laboratory.
- Eastment, M., Hendron, R., 2006. *Development of an Energy-Saving Calculation Method for Residential Miscellaneous Electrical Loads* (preprint). Conference Paper NREL 550-39661. Golden, CO: National Renewable Energy Laboratory.
- Economist Intelligence Update, EIU, 2006. *Pulling the plug on standby power*. Retrieved December 11, 2007 from globaltechforum.eiu.com/

- Electrical Business Magazine, 2007. A Simple Tool for Reducing Energy Consumption. Electrical Business Magazine (8, Vol. 43, Issue 3). Retrieved August 28, 2007 from Blue Line Innovations: www.bluelineinnovations.com/mediacoverage.php
- EERE, 2007. Active Solar Heating. US Department of Energy Energy Efficiency and Renewable Energy Retrieved on 17 December 2007 from www.eere.energy.gov/consumer/vour home/space heating cooling/index.cfm/mvtopic=12510
- Farhar, B.C. and Coburn, T.C., 2004. Large-Production Home Builder Experience with Zero Energy Homes. NREL/CP-550-35913. Abilene Christian University. Golden, CO: National Renewable Energy Laboratory.
- Fauteux, André, 2007. *Dangers of EMF*. Retrieved 17 December 2007 from www.greenlivingonline.com/Energy/dangers-of-emf/
- Feist, Dr. W, 2005. CEPHEUS-Project Information No. 36 Final Technical Report. Passivhaus Institut, Rheinstr. 44-46, D-64283 Darmstadt, Germany.
- Forsthoefel, A., 2001. *Remodelling a Home Using the Principles of Sustainability: An Action-Based Thesis.* Thesis Paper, Presented to Antioch University in Partial Fulfillment of the Requirements for the Masters of Arts Degree.
- Fugler, D., Thompson, J., 2007. Reduction in GHG in Middle Class Homes. Presentation at the Affordable Comfort Institute Conference, April 2007. Retrieved August 10, 2007 from Affordable Comfort Institute: www.affordablecomfort.org
- Fung, A.S., Aydinalp, M., Ugursal, V. I., Farahbakhsh, H. Undated. A Residential End-Use Energy Consumption Model For Canada. Canadian Residential Energy End-use Data and Analysis Centre. Halifax, NS: Department of Mechanical Engineering Dalhousie University.
- Henderson, S. and Bell, J., 2003. *Small scale Renewable Energy Systems, Grid-connection and Net Metering: an Overview of the Canadian Experience in 2003.* Ottawa: Canada Mortage and Housing Corporation.
- Henderson, S., 2004a. Case Studies of Grid-Connected PV Projects In Canada. Otttawa: Canadian Solar Industries Association.
- Henderson, S., 2004b. *Greenhouse Gas Reductions in Suburban Settings.* Unpublished paper. Ottawa: Canada Mortgage and Housing Corporation.
- Henderson, S., 2006. Alternate Energy Ready Homes. Unpublished paper. Sustainable Buildings Group, Natural Resources Canada.
- Henderson, S., 2007. *Study of Low-Impact Housing.* Paper in progess for Canada Mortgage and Housing Corporation (CMHC-EQ). Ottawa.
- Hendron, R., 2006. *Building America Performance Analysis Procedures for Existing Homes*. Technical Report NREL/TP 550-38238. Golden, CO: National Renewable Energy Laboratory.
- Hendron, R., 2006. *Whole-House Energy Analysis Procedures for Existing Homes* (Preprint). Conference Paper NREL/CP-550-39560. Golden, CO: National Renewable Energy Laboratory.
- Insurance Canada, 2007. *Building Permits and Intentions Set New Record: StatsCan.* Retrieved September 5, 2007 from Insurance Canada: www.insurance-canada.ca/market/canada/2007/StatsCan-Building-Permits-702.php
- Kammen, D.M., 2006. The Rise of Renewable Energy. Retrieved 15 August 2007 from Scientific American: www.sciam.com
- Kats, G., Alevantis, L. et al, 2003. *The Costs and Financial Benefits of Green Buildings: A Report to California's Sustainable Building Task Force.* Retrieved August 10, 2007 from California Integrated Waste Management Board: www.ciwmb.ca.gov/greenbuilding/design/CostBenefit/Report.pdf
- Kinney, L., 2006. *Practical Innovations for Low-Energy Housing: Zero Energy Home Workshop.* (Presentation to the Boulder Green Building Council). Retrieved August 15, 2007 from Synertech Systems Corp: www.synertechsystemscorp.com/
- Klingenberg, K., 2004. An Illinois Passivhaus. (pp 1-5, *Energy Design Update*, Vol. 24, No. 5). Aspen, CO: Aspen Publishers Inc.

Krigger, 2007. *Toward Carbon Neutrality.* Keynote speaker addresses and presentations from the Open Plenary Session, Thursday, July 12, 2007. Retrieved August 16, 2007 from Affordable Comfort Institute:

www.affordablecomfort.org/event/aci_summit_moving_existing_homes_toward_carbon_neutrality/h andouts

- Lstiburek, J., Brennan, T. Undated. *Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing.* Asthma Regional Coordinating Council of New England and US DOE Build America Program.
- Madison Area Builders Association. Green Built Home Program (MABA), 2006. *Green Building Checklist: Remodelled Home*. Retrieved July 10, 2007 from Green Built Home: www.greenbuilthome.org
- Margolis, R., Zuboy, J., 2006. *Non-Technical Barriers to Solar Energy Use: Review of Recent Literature*. Technical Report NREL/TP 520-40116. Golden, CO: National Renewable Energy Laboratory.
- Merrigan, T., 2001. *On The Path to Zero Energy Homes.* Solar Buildings Program. Golden, CO: National Renewable Energy Laboratory.
- Merrigan, T., 2003. *Moving Toward Zero Energy Homes* Solar Buildings Program. Golden, CO: National Renewable Energy Laboratory.
- National Association of Home Builders (NAHB) Research Centre Inc., 2006. *The Potential Impact of Zero Energy Homes*. Golden, CO: National Renewable Energy Laboratory.
- Natural Resources Canada (NRCan), 2005. *Benchmarking of Energy Savings Associated with Energy Efficint Lighting in Houses*. Ottawa: Natural Resources Canada.
- Natural Resources Canada (NRCan), 2006. *Energy Use Data Handbook 1990 and 1998 to 2004*. Ottawa: Natural Resources Canada.
- Norton, P., Christensen, C.,2006. A Cold-Climate Case Study for Affordable Zero Energy Homes. Conference Paper. Golden, CO: National Renewable Energy Laboratory.
- Parker, 2007. A New Manhattan: the Challenge to Transform Existing Housing in America. Keynote speaker addresses and presentations from the Open Plenary Session, Thursday, July 12, 2007. Retrieved August 16, 2007 from Affordable Comfort Institute: www.affordablecomfort.org/event/aci_summit_moving_existing_homes_toward_carbon_neutrality/h andouts
- Pettit, B., 2007a. *Designing Home with (Zero) Energy in Mind: The Top Ten Design Elements of High Performance Homes* NAHB Conference Presentation. Retrieved July 10, 2007 from Affordable Comfort Institute: www.affordablecomfort.org/resources links.php?PageID=21
- Pettit, B., 2007b. *Towards Zero Energy Projects*. Building Science Corporation presentation to the ACI Home Performance Conference April 2007, Cleveland OH. Retrieved July 10, 2007 from Affordable Comfort Institute: www.affordablecomfort.org/resources_links.php?PageID=21
- Plympton, P., Dagher, L. and Zwack, B., 2007. Industry Stakeholders Recommendations for the Department of Energy's RD&D for Increasing Energy Efficiency in Existing Homes. Technical Report, NREL/TP-710-41705. Golden, CO: National Renewable Energy Laboratory.
- Prindle, B, Eldridge, Eckhardt, M. and Frederick, A., 2007. *The Twin Pillars of Sustainable Energy:* Synergies between Energy Efficiency and Renewable Energy Technology and Policy. Report # E074. Retrieved August 20, 2007 from American Council for an Energy-Efficient Economy (ACEEE): www.aceee.org

Renovation Roadmap, undated. Retrieved Sep 5, 2007 from www.myhomereno.com/

- Saïd, M.N.A., 2006. *Task 2: Literature Review: Building Envelope, Heating and Ventilating Practices and Technologies for Extreme Climates*. National Research Council of Canada, Institute for Research in Construction.
- Saskatchewan Research Council (SRC), 2003. *Case Studies of Major Home Energy Retrofits*. Research Highlight, Technical Series 03-115, Ottawa: CMHC.
- Think Toronto Homes, 2006. *Renovation Spending Increases While Housing Starts Decline*. Retrieved September 5, 2007 from www.thinktorontohomes.com/blog/2006/8/20/renovation-spending-increases-while-housing-starts-decline.html.

- Thompson, J., 2006. Household Environmental Monitoring A Strategy to Help Homeowners Reduce Their Environmental Impact. Research Highlight, Technical Series 06-104, Ottawa: CMHC.
- Thorne Amman, J., 2003. *Residential Retrofits: Directions in Market Transformation*. Report # A038. Retrieved August 20, 2007 from American Council for an Energy-Efficient Economy (ACEEE): www.aceee.org
- Thorne Amman, J., 2006. Valuation of Non-Energy Benefits to Determine Cost-Effectiveness of Whole House Retrofits Programs: A Literature Review. Report # A061. Retrieved August 20, 2007 from American Council for an Energy-Efficient Economy (ACEEE): www.aceee.org
- Torcellini P., Pless, S., and M. Deru, M., 2006. *Zero Energy Buildings: A Critical Look at the Definition*. Golden, CO: National Renewable Energy Laboratory.
- Ueno, K., 2007. What We Know About Basement Insulation, Eh? Building Science Corporation presentation to the ACI Home Performance Conference April 2007, Cleveland OH. Retrieved July 10, 2007 from Affordable Comfort Institute: www.affordablecomfort.org/resources_links.php?PageID=21
- United States Department of Energy (USDOE), 2004. Building America: Strategies for Energy Efficient Remodelling: SEER 2003 Case Study Report. Golden, CO: National Renewable Energy Laboratory.
- United States Department of Energy (USDOE), 2005. *Energy-Efficient Appliances: Selection and maintenance guidelines for major home appliances*. Office of Building Technology, State and Community Programs, Energy Efficiency and Renewable Energy.
- United States Department of Energy (USDOE), 2006a. *Building America: Residential System Research Results: Achieving 30% Whole House Energy Savings in Cold Climates*. NREL/SR-550-38793. Golden, CO: National Renewable Energy Laboratory.
- United States Department of Energy (USDOE), 2006b. *Building America: Residential System Research Results: Achieving 30% Whole House Energy Savings in Marine Climates.* Golden, CO: National Renewable Energy Laboratory.
- United States Department of Energy (USDOE), 2007. *Building America Best Practice for High Performance Homes: Solar Thermal and Photovoltaics*. NRELTP-550-41085. Golden, CO: National Renewable Energy Laboratory.
- United States Housing and Urban Development (USHUD)1, 2002. *PATH: Technology Roadmap: Energy Efficiency in Existing Homes Vol. 1: Technology Brainstorming.* Washington: Partnership for Advancing Technology in Housing.
- United States Housing and Urban Development (USHUD)2, 2002. *PATH: Technology Roadmap: Energy Efficiency in Existing Homes Vol. 2: Strategies Defined.* Washington: Partnership for Advancing Technology in Housing.
- Walker, I.S., 2003. Best practices guide for residential HVAC Retrofits. Lawrence Berkeley National Laboratory. Paper LBNL-53592. Retrieved August 10, 2007 from Lawrence Berkeley National Laboratory: <u>http://repositories.cdlib.org/lbnl/LBNL-53592</u>.
- Wilson, A. And Wendt, A., 2007. The Challenge of Existing Homes: Retrofitting for Dramatic Energy Savings. Pp 1-19, Environmental Building News, Volume 17, No. 7. Brattleboro, VT: Building Green, Inc.

Web-based Resources

Architecture 2030 A voluntary challenge to architects and the building industry to reduce energy requirements in new buildings by 30% by 2030. www.architecture2030.org/ Viewed Aug 19, 2007

Affordable Comfort Institute ACI hosts an annual conference and has an extensive list of resources www.affordablecomfort.org Viewed Aug 10, 2007

Building America http://www.eere.energy.gov/buildings/building_america/ Covers projects and publications produced as part of the Building America Project Viewed Aug 17, 2007

Cost Efficient Passive Houses as European Standards Conference and limited technical information on passive house concept for new and renovated buildings http://www.cepheus.de/eng/index.html Viewed Aug 21, 2007

Houses without Heating Systems, 20 low energy terrace houses in Göteborg http://www2.ebd.lth.se/avd%20ebd/main/Gothenburg/Folder_Lindas_EN.pdf Viewed Aug 21, 2007

International Energy Agency (IEA) Solar Heating and Cooling Programme http://www.iea-shc.org/ Viewed Aug 17, 2007

International Energy Agency (IEA) Energy Conservation In Buildings And Community Systems Vast array of publications and information on IEA sponsored activities related to energy conservation in buildings http://www.ecbcs.org/ Viewed Aug 17, 2007

International Energy Agency (IEA) TASK 28 - SUSTAINABLE SOLAR HOUSING Provides summaries of numerous passive solar single and multifamily homes constructed in Europe. http://www.iea-shc.org/task28/index.html Viewed Aug 21, 2007

International Energy Agency Task 37 - Advanced Housing Renovation with Solar and Conservation The results of the Task will be brochures and technical reports describing: Housing segments with the the greatest multiplication and energy saving potentials [A] Design and performance of exemplary renovation projects, describing benefits, process and motivations [B] Packages of technically and economically robust concepts for housing renovation which could be applied in concrete projects [C] Innovative future solutions with great potential of primary energy reduction [C] A "basics" on sustainable renovation including principles for the design and realisation of renovation projects, connecting the technical point of view at the project scale to factors of a larger scale (environment and resources, infrastructure and equipment, health and well-being) [D] *Strategies for increased market penetration of housing renovation* [A]

http://www.iea-shc.org/task37/ Viewed Aug 21, 2007

Low Impact Housing A database of over 200 international low impact housing projects, ranging from single-family homes to complete city plans. Primarily cold-climate construction. www.lowimpacthousing.org Viewed Aug 28, 2007

National Affordable Housing Network http://nahn.com/ US non profit devoted to providing information on affordable housing, provides house plans emphasizing energy efficiency Viewed Aug 17, 2007

The Renovation Roadmap Site associated with the Canada Home Builders Association (www.chba.ca) www.myhomereno.com/english/makeyourhomeenergy/ Viewed Sep 5, 2007

Scandinavian Homes Ltd. Scandinavian highly insulated wood frame houses utilizing passive solar heating and SDW constructed in Ireland http://www.scanhome.ie/passive.php

Solar Today Magazine May / June 2005 The Near Zero Energy House http://www.solartoday.org/2005/may_june05/ZEH.htm Viewed Aug 21, 2007

10 Appendices

Appendix A: Decision Trees

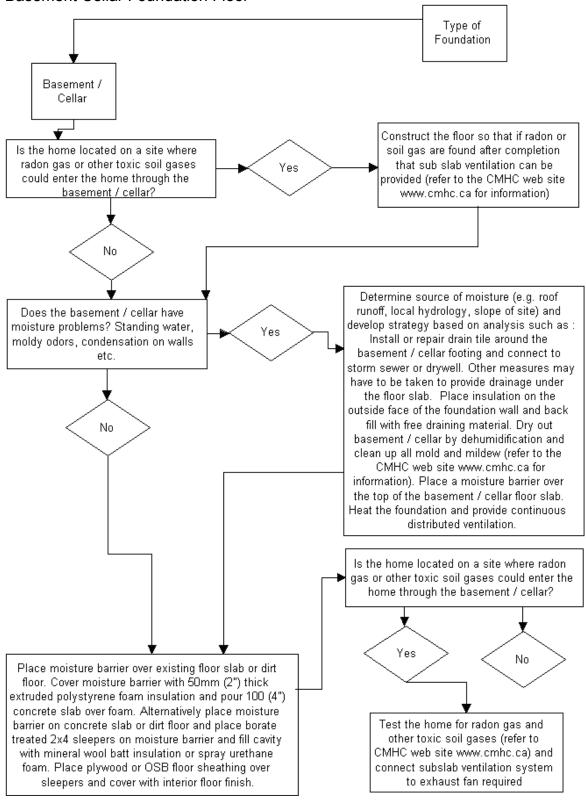
The following decision trees are laid out in an order that would produce an optimal Net Zero Energy Retrofit, starting with the building envelope from the foundation up, and then turning to the mechanical systems. A decision tree (or tree diagram) is a tool that graphically models decisions and their possible consequences. A decision tree is used to identify the strategy most likely to reach a goal, in this case, a whole-house Net Zero Energy Retrofit, although they have been broken into major sections as below.

Below Grade Retrofits

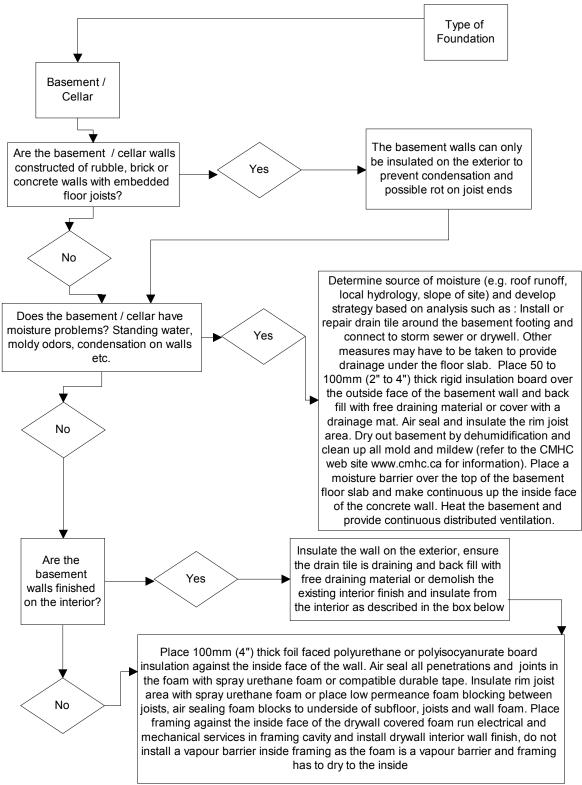
- Basement Cellar Foundation Floor
- Basement Cellar Foundation Walls
- Preserve Interior Finish Basement Walls
- Crawlspace
- Slab on Grade

Above Grade Retrofits

- Walls No Heritage Value
- Preserve Exterior Wall Finish
- Preserve Interior Wall Finish
- Preserve Interior and Exterior Wall Finish
- Windows
- Roofs
- Preserve Exterior Roof Form and Finish
- Preserving Interior Ceiling Finish
- Passive Solar Space Heating

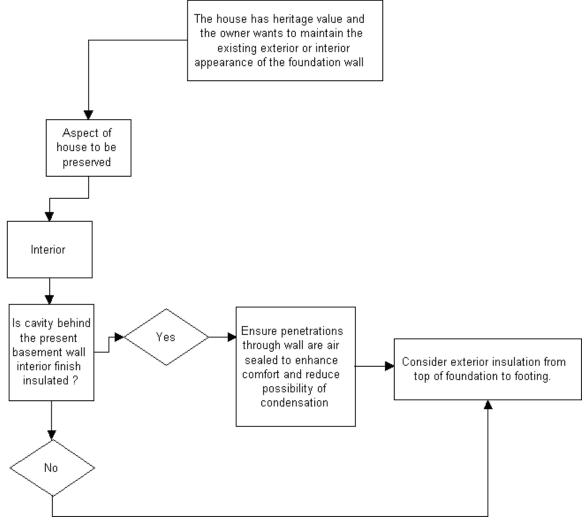

Space Heating Systems

- Heating Systems
- High Efficiency Furnace or Boiler
- Gas Furnace
- Ground Source Heat Pump

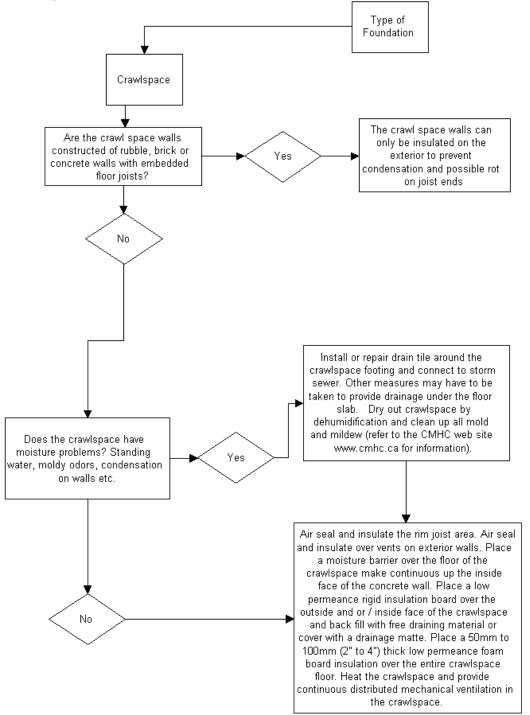

Ventilation Systems

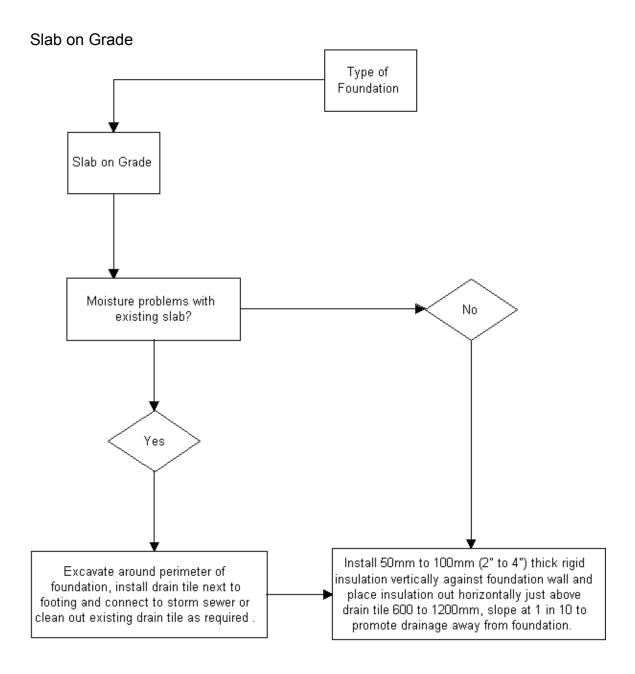
Water Heating Systems

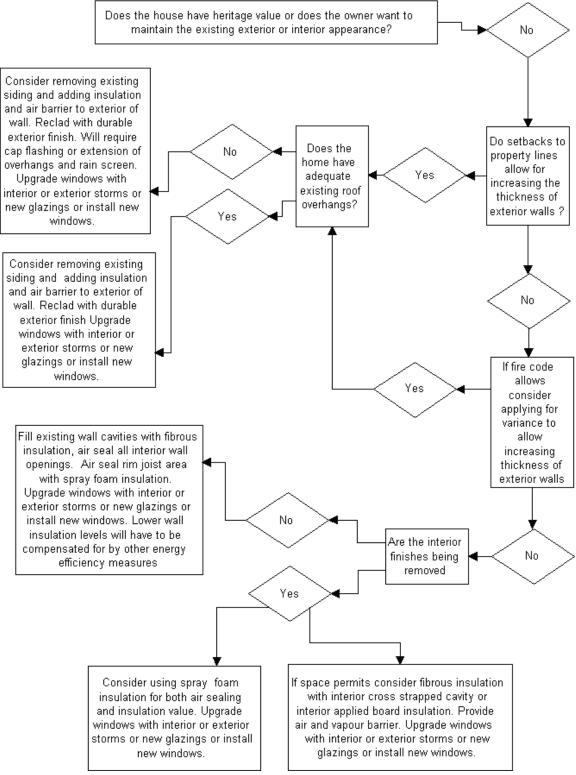
- Gas Domestic Water Heating System
- Oil Domestic Water Heating System
- Electric Domestic Water Heating System

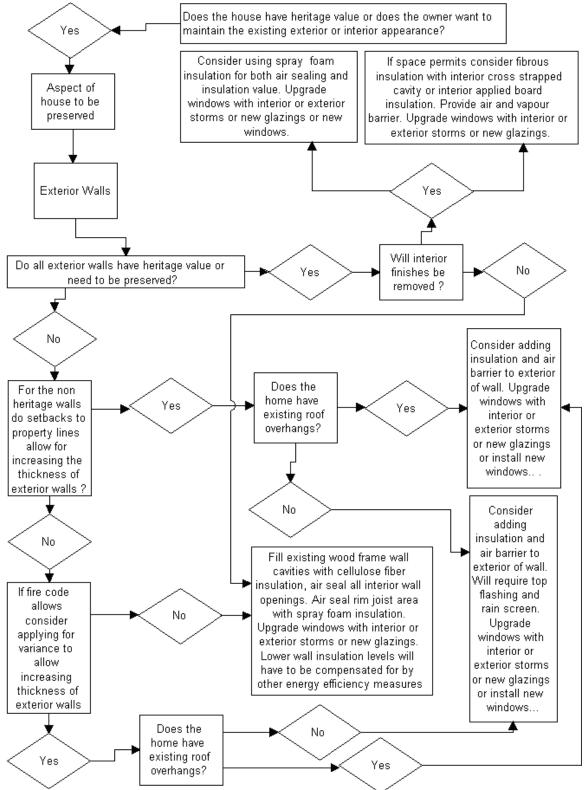


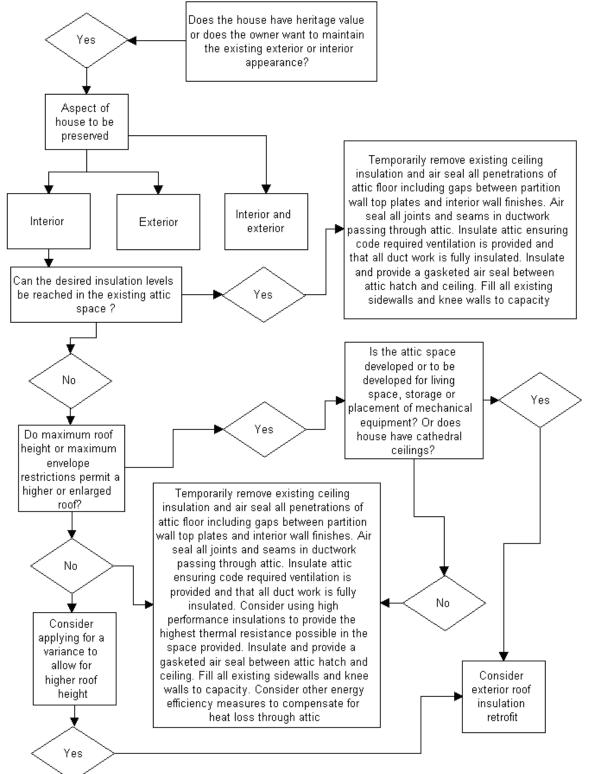
Basement Cellar Foundation Floor

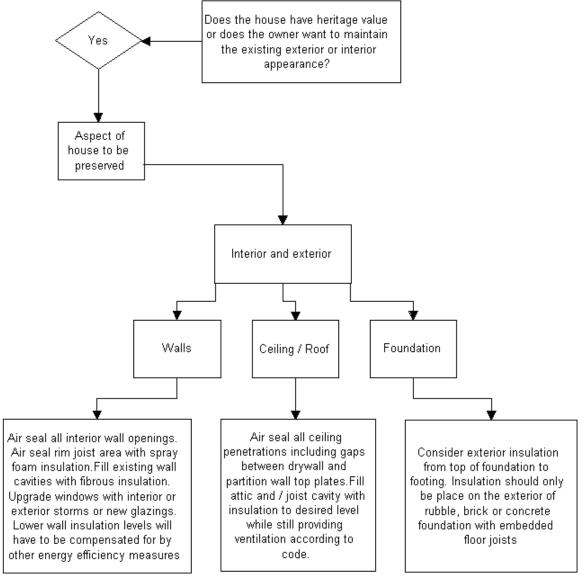



Basement Cellar Foundation Walls

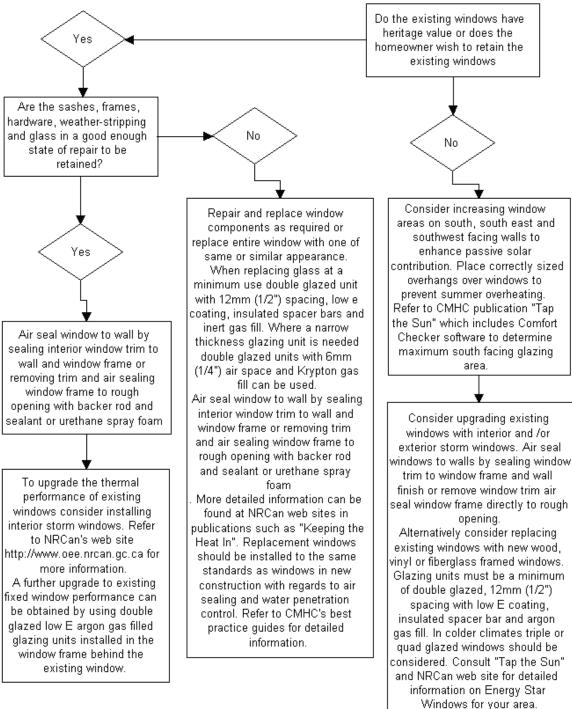



Crawlspace

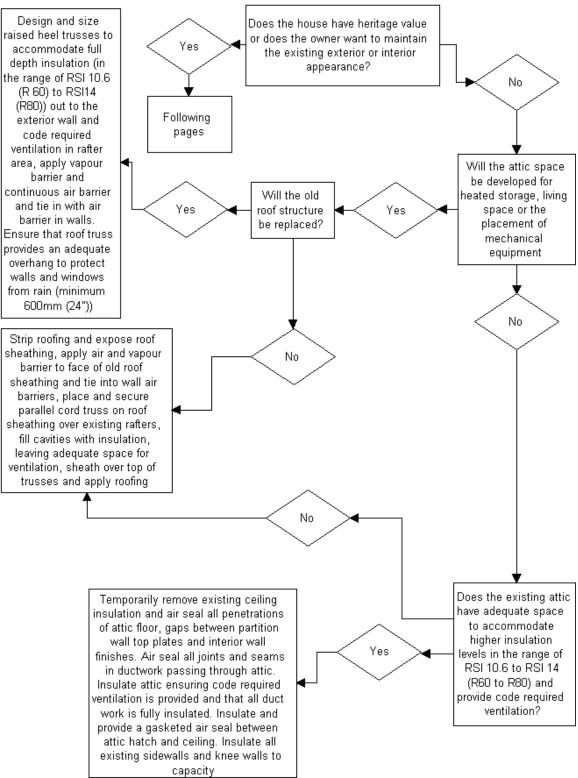


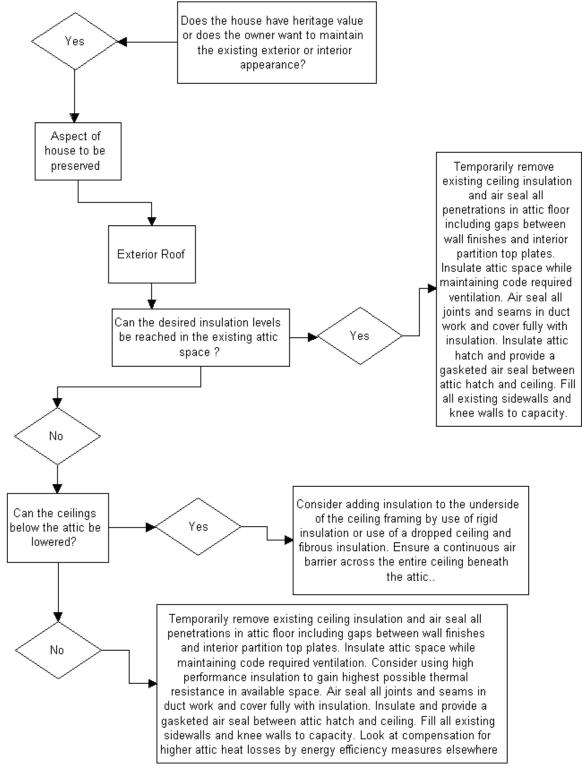

Walls No Heritage Value

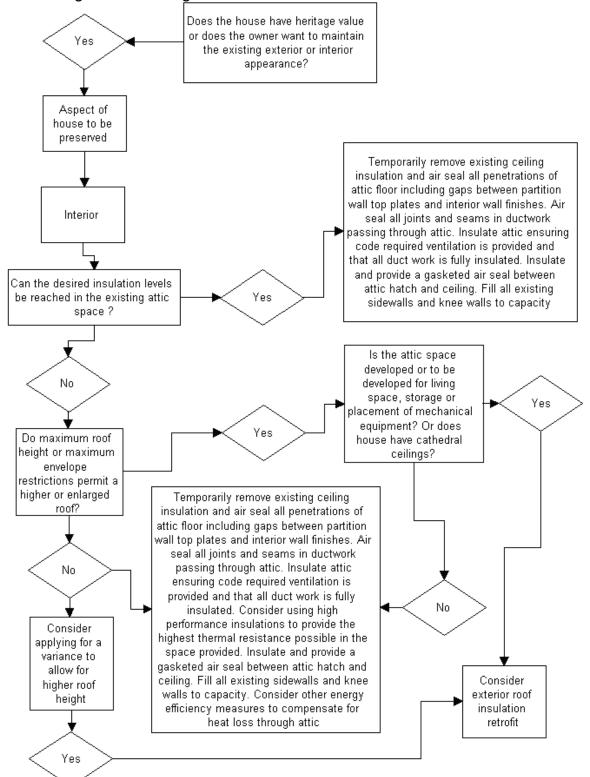
Preserve Exterior Wall Finish

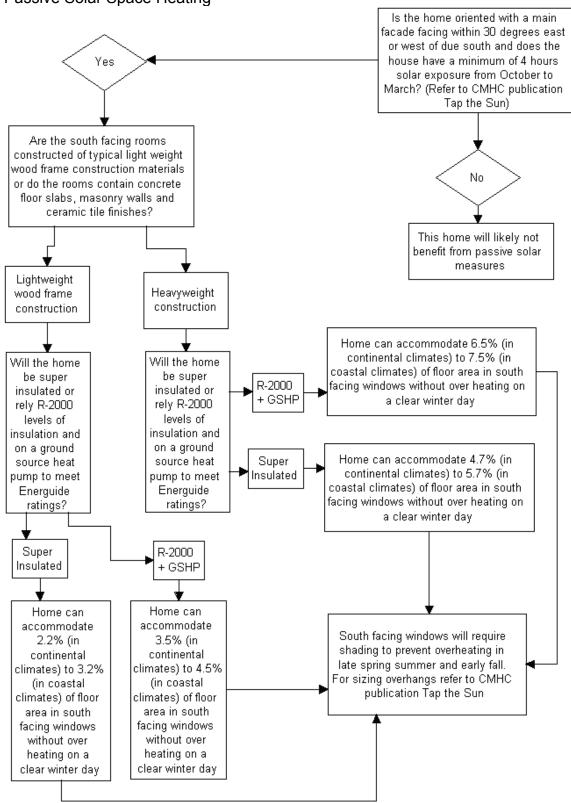


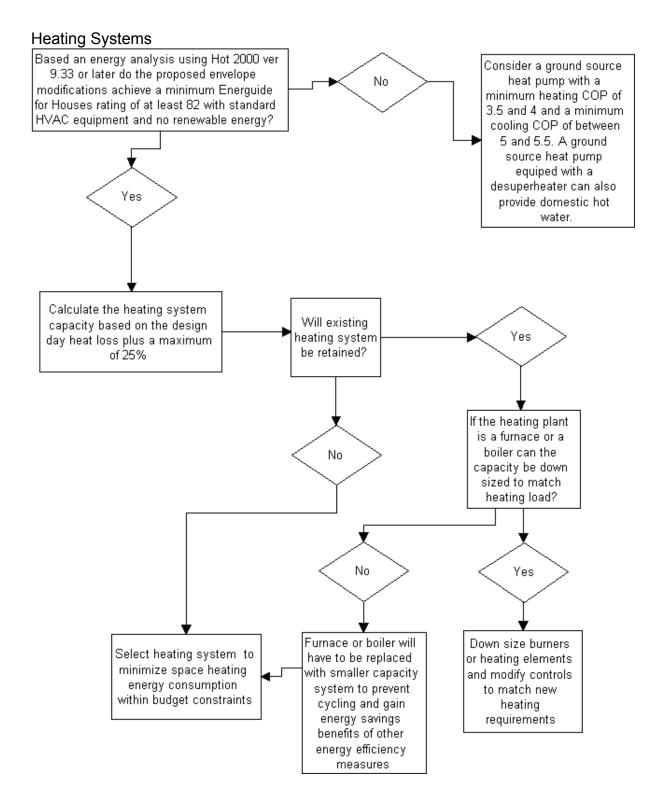
Preserve Interior Wall Finish

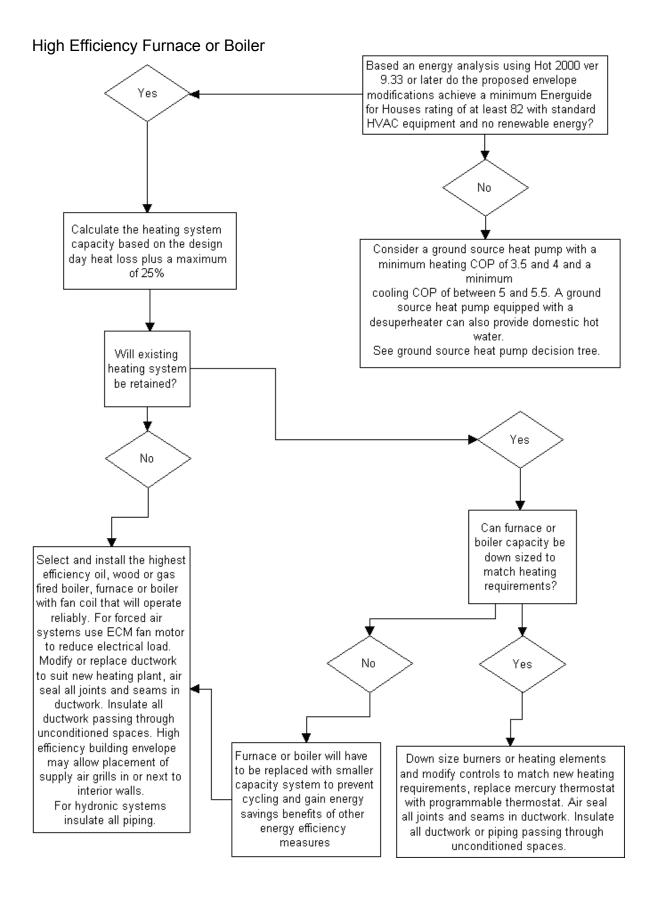


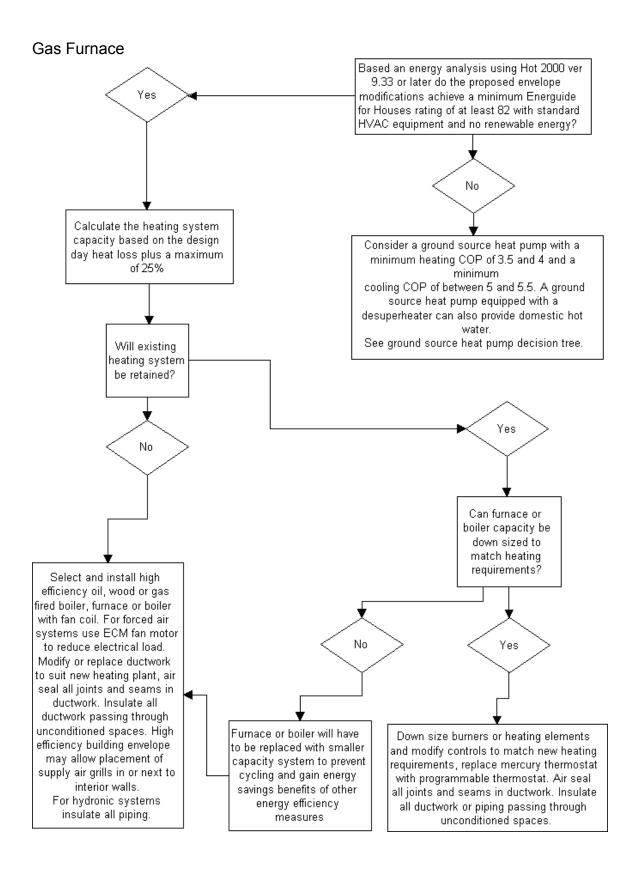

Preserve Interior and Exterior Wall Finish

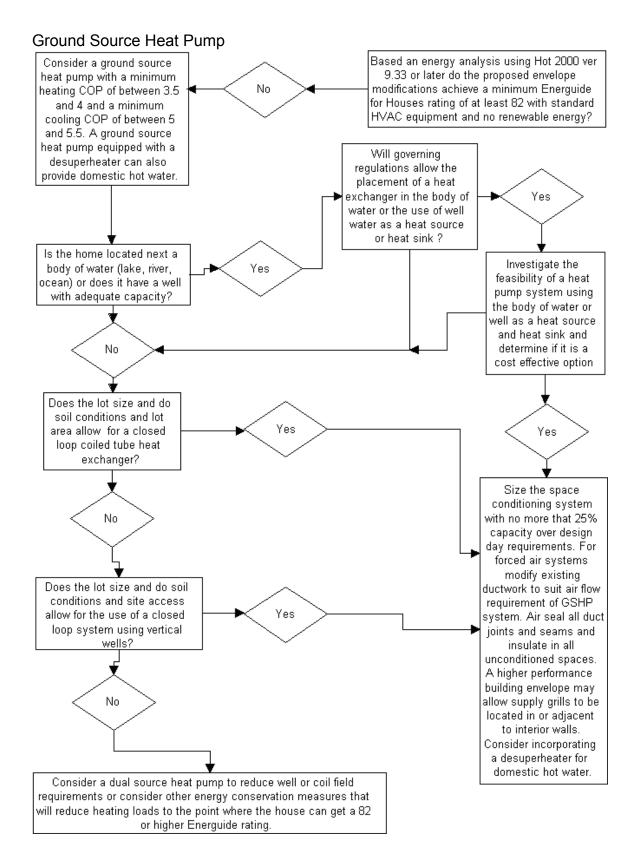




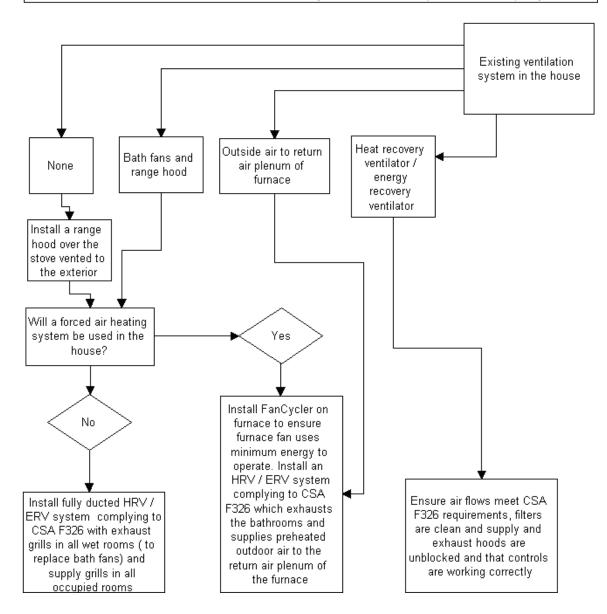

Preserve Exterior Roof Form and Finish

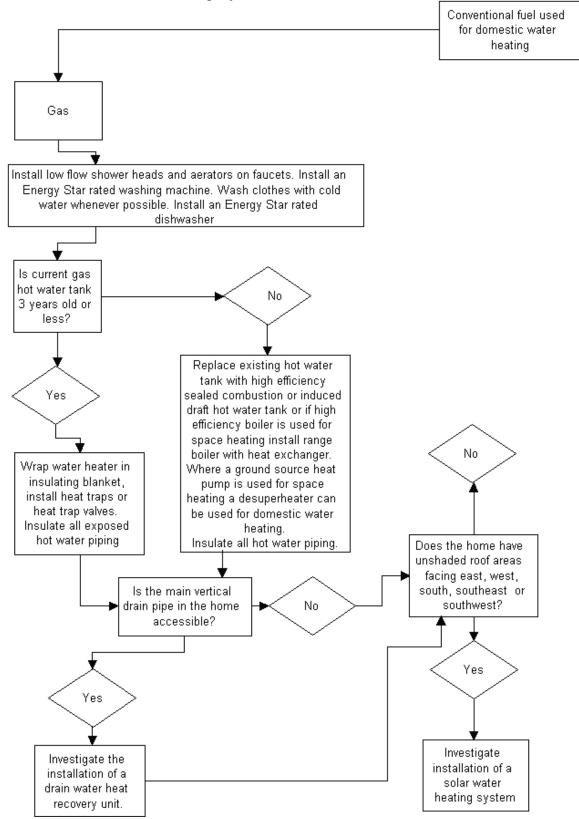


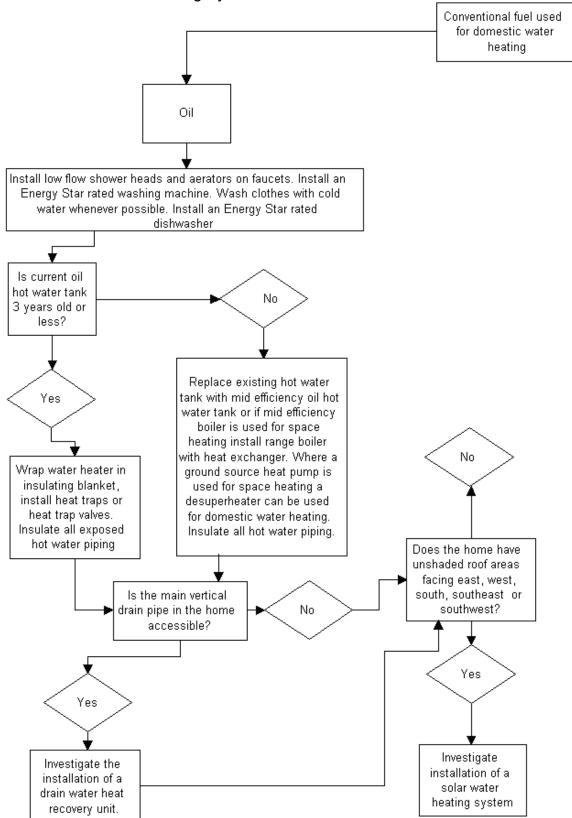

Preserving Interior Ceiling Finish



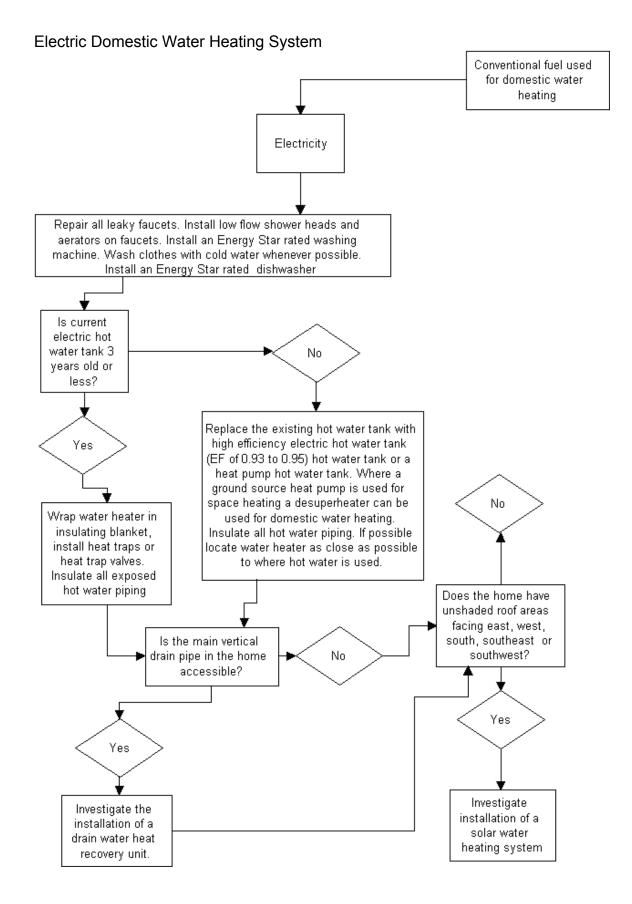
Passive Solar Space Heating





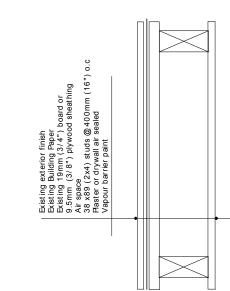

Ventilation

Air sealing or incorporation of a new continuous air barrier is necessary to protect the home's structure from moisture accumulation due to air leakage. Air sealing is also necessary because air leakage through the building envelope can account for up to 30% of the total heat loss. Building envelope airtightness then leads to the need for a distributed mechanical ventilation system to ensure acceptable indoor air quality



Gas Domestic Water Heating System

Oil Domestic Water Heating System

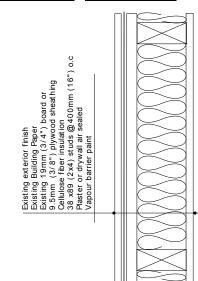

80

Appendix B: Building Envelope Upgrade Options

The first section of this appendix shows a selected series of upgrade assemblies for walls and ceilings with precise insulation value analysis. The second section is a list of potential assemblies, with only nominal insulation figures given.

Approaching Net Zero Energy in Existing Housing

Wall: Base Case Uninsulated


		Thickness		R /in	RSI/mm	К	RSI	D	ISN
		Ë	mm			h'ft2F/Btu	(m ^{2.} K)/W	Btu/ h·ff ² F	W/(m ^{2.} K)
	Cavity section								
	Exterior Air Film					0.20	0.04	5.00	28.39
	Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
	Building Paper					0.20	0.04	5.00	28.39
	19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
	Air space					1.00	0.18	1.00	5.68
	12 mm plaster					0.10	0.02	10.00	56.78
	Interior Air Film					0.70	0.12	1.43	8.11
					Totals	3.98	0.70	0.25	1.43
	Stud Section								
,	Exterior Air Film					0.20	0.04	5.00	28.39
— I.	Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
_	Building Paper					0.20	0.04	5.00	28.39
	19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
	89mm (3 1/2") thick stud	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25
	12 mm plaster					0.10	0.02	10.00	56.78
_	Interior Air Film					0.70	0.12	1.43	8.11
,					Totals	7.53	1.33	0.13	0.75
		100010							

Percentage of wall in cavity Percentage of wall in framing

81.00% 19.00%

	ISN	1.30
Total composite values	D	0.23
Total compo	RSI	0.77
	Я	4.37

Wall: Base Case Insulated

	Thickness		R /in	RSI/mm	Я	RSI	⊃	ISN
Cavity section	.Ľ	mm			h'ft2F/Btu	(m ^{z.} K)/W	Btu/ h ^{.ft^zF}	W/(m ^{z.} K)
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Building Paper					0.20	0.04	5.00	28.39
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Cellulose fiber insulation	3.5	89	3.6	0.025	12.60	2.22	0.08	0.45
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
				Totals	15.58	2.74	0.06	0.36
Stud Section								
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Building Paper					0.20	0.04	5.00	28.39
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
89mm (3 1/2") thick stud	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
				Totals	7.53	1.33	0.13	0.75

Percentage of wall in cavity Percentage of wall in framing

81.00% 19.00%

1	Total compo	Fotal composite values	
R	RSI	5	ISI
12.94	2.28	0.08	0.44

_
ing
ISN
운
ğ
ŝ
iž.
іП
~
erg)
õ
ш
Zero Ei
T N
Ve:
g
i
acl
ğ
pproaching I
A

ISU	W/(m ^{z.} K)	28.39	7.10	5.68	0.76		5.82	0.45	56.78	8.11	0.24		28.39	7.10	5.82	0.76		5.82	1.25	56.78	8.11	0.36			
5	Btu/ h.ft ² F W/(I	5.00	1.25	1.00	0.13		1.03	0.08	10.00	1.43	0.04		5.00	1.25	1.03	0.13		1.03	0.22	10.00	1.43	0.06			
RSI	(m ^{z.} K)/W B	0.04	0.14	0.18	1.32	00.00	0.17	2.22	0.02	0.12	4.20		0.04	0.14	0.17	1.32	0.00	0.17	0.80	0.02	0.12	2.78			
к	h'ft2F/Btu (0.20	0.80	1.00	7.50	0.00	0.98	12.60	0.10	0.70	23.88		0.20	0.80	0.98	7.50	0.00	0.98	4.55	0.10	0.70	15.80			
RSI/mm					0.034		0.0087	0.025			Totals				0.0087	0.034		0.0087	0.0087			Totals		ISN	0.26
R /in					5		1.3	3.6							1.3	5		1.3	1.3					nes U	0.05
Thickness	mm			19	38	0.15	19	89							19	38	0.15	19	68				composito vo		3.87
Thick	.u			0.75	1.5	0.006	0.75	3.5							0.75	1.5	0.006	0.75	3.5			83.00%		R	21.97
'.5") foam board	Cavity section	Exterior Air Film	Cladding (1/2" x 8" bevel)	Air Space	38mm (1 1/2") foam board	House wrap	19mm (3/4") board sheathing	Cellulose fiber insulation	12 mm plaster	Interior Air Film		Stud Section	Exterior Air Film	Cladding (1/2" x 8" bevel)	19 x 89 (1x4) vertical stapping	38mm (1 1/2") foam board	House wrap	19mm (3/4") board sheathing	89mm (3 1/2") thick stud	12 mm plaster	Interior Air Film	Percentage of wall in cavity			
Wall: Base case insulated with 38mm (1.5") foam board (isocyanurate or XPS)		Exterior cladding	19 mm air space drainage plane Preservative treated 19 x89 (1x4) vertical stranning	39mm extruded polystyrene or polyisocyanurate	foam insulation	trouse wigh search at an joints and penetrations to form air barrier	19 mm board or 9.5mm (3/8") plywood sheathing	38 x 89mm (2x4) studs @400mm (16") o.c. Cellulose fiber insulation	Existing interior finish	Vapour barrier paint								<u> </u>							

Housing
Existing
1
Energy
Zero
Vet
Approaching I

W/(m^{2.}K)

ISN

7.10 5.68 0.57

5.82 0.45 56.78 8.11 **0.10** 7.10 7.10 5.82 0.57

rece inculated with 50 mm /2") from hoord N/oll- Doco

∍	W/(m ^{z.} K)	28.39	1.25	1.00	0.10		1.03	0.08	10.00	1.43	0.04	5.00	1.25	1.03	0.10		1.03	0.22	10.00	1.43	0.05		
RSI	Btu/ h ^{.ft²F}	5.00	0.14	0.18	1.76	00.0	0.17	2.22	0.02	0.12	9.61	0.04	0.14	0.17	1.76	00.0	0.17	0.80	0.02	0.12	3.22		
ж	(m ^{2.K})/W	0.04	0.80	1.00	10.00	0.00	0.98	12.60	0.10	0.70	26.21	0.20	0.80	0.98	10.00	00.0	0.98	4.55	0.10	0.70	18.30		
RSI/mm	h'ft2F/Btu	0.20			0.034		0.0087	0.025			Totals			0.0087	0.034		0.0087	0.0087			Totals		
R /in					5		1.3	3.6						1.3	5		1.3	1.3				_	
ness	mm			19	38	0.15	19	89						19	38	0.15	19	89					
Thickness	in			0.75	2	0.006	0.75	3.5						0.75	2	0.006	0.75	3.5			83.00%	17.00%	
mm (2") foam board	Cavity section	Exterior Air Film	Cladding (1/2" x 8" bevel)	Air Space	50mm (2") foam board	House wrap	19mm (3/4") board sheathing	Cellulose fiber insulation	12 mm plaster	Interior Air Film		Exterior Air Film	Cladding (1/2" x 8" bevel)	19 x 89 (1x4) vertical stapping	50mm (2") foam board	House wrap	19mm (3/4") board sheathing	89mm (3 1/2") thick stud	12 mm plaster	Interior Air Film	Percentage of wall in cavity	Percentage of wall in framing	
Wall: Base case insulated with 50 mm (isocyanurate or XPS)		Exterior cladding	19 mm air space drainage plane Preservative treated 19 x89 (1x4) vertical strapping	50mm extruded polystyrene or polyisocyanurate	foam insulation House wrap sealed at all joints and penetrations	to form air barrier	19 mm board or 9.5mm (3/8") plywood sheathing 38 × 80mm /2×4) stude の400mm /16") or	Cellulose fiber insulation	Existing interior finish												_		

0.31

USI 0.14

Total composite values RSI U 7.19 0.04

R 24.42

5.82 1.25 56.78 8.11

85

Wall: Base case insulated with 100mm (4") foam board (isocyanurate or XPS)

(isocyalialate of VI o)		
	Cavity section	in
	Exterior Air Film	
	Cladding (1/2" x 8" bevel)	
Exterior cladding 19 mm air soace drainage plane	Air Space	0.75
Preservative treated 19 x89 (1 x4) vertical strapping	100mm (4") foam board	4
50mm extruded polystyrene or polyisocyanurate foam insulation	House wrap	0.00
50mm (2") deep vertical shear blocks @16" o.c.	19mm (3/4") board sheathing	0.75
secured to studs through sheathing 50mm extruded polystyrene or polyisocyanurate	Cellulose fiber insulation	3.5
foam insulation	12 mm plaster	
House wrap sealed at all joints and penetrations to form air barrier	Interior Air Film	
19 mm board or 9.5mm (3/8") plywood sheathing		
38 x 89mm (2x4) studs @ 400mm (16") o.c. Cellulose fiber insulation	Stud Section	
Existing interior finish	Exterior Air Film	
Vapour barrier paint	Cladding (1/2" x 8" bevel)	
	19 x 89 (1x4) vertical strapping	0.75
	50mm (2") foam board	2
	38mm vertical shear block	1.75
	House wrap	0.00
	19mm (3/4") board sheathing	0.75
	89mm (3 1/2") thick stud	3.5
	12 mm plaster	
	Interior Air Film	
		00 00
	Percentage of wall in cavity	2

n (4") foam board	Thic	Thickness	R /in	RSI/mm	ы	RSI	∩	ISN
Cavity section	Ë	шш			h ft2F/Btu	(m ^{2.} K)/W	Btu/ h·ft ² F	W/(m ^{z.} K)
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Air Space	0.75	19			1.00	0.18	1.00	5.68
100mm (4") foam board	4	38	5	0.034	20.00	3.52	0.05	0.28
House wrap	0.006	0.15			00.0	0.00		
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Cellulose fiber insulation	3.5	89	3.6	0.025	12.60	2.22	0.08	0.45
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
				Totals	36.38	6.41	0.03	0.16
Stud Section								
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
19 x 89 (1x4) vertical strapping	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
50mm (2") foam board	2	38	5	0.034	10.00	1.76	0.10	0.57
38mm vertical shear block	1.75	38	1.3	0.0087	2.28	0.40	0.44	2.50
House wrap	0.006	0.15			0.00	0.00		
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
89mm (3 1/2") thick stud	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
Percentage of wall in cavity Percentage of wall in framing	83.00% 17.00%			Totals	20.58	3.62	0.05	0.28
		Total compo	Total composite values					
	R	RSI	D	ISN				
	32.17	5.67	0.03	0.18				

١SN

⊃

RSI

۲

RSI/mm

R /in

Thickness

Wall: Base case insulated with 76mm (3") of closed cell urethane sprav foam insulation

urethane													3	°° °									
urethane spray foam insulation		Exterior cladding	12mm (1/2") air space drainage plane Vertical 38x38mm (2x2)	Galvanized steel angle brackets	75mm thick sprayed urethane toam insulation and air harrier	19 mm board or 9.5mm (3/8") plywood sheat	38 x 89mm (2x4) studs @ 400mm (16") o.c.	Existing interior finish	Vapour barrier paint				°° °°	0° 0°								_	
	Cavity section	Exterior Air Film	Cladding (1/2" x 8" bevel)	Air Space		19mm (3/4") board sheathing	Cellulose fiber insulation	12 mm plaster	Interior Air Film		Stud Section	Exterior Air Film	Cladding (1/2" x 8" bevel)	38mm vertical shear block	67.5mm (2.5") closed cell spray urethane foam	House wrap	19mm (3/4") board sheathing	89mm (3 1/2") thick stud	12 mm plaster	Interior Air Film	Percentage of wall in cavity	Percentage of wall in framing	
	Li			0.75	3	0.75	3.5							1.75	2.5	0.006	0.75	3.5			83.00%	17.00%	
	mm			19	75	19	89							38	67.5	0.15	19	89					
					9	1.3	3.6							1.3	9		1.3	1.3					
					0.041	0.0087	0.025			Totals				0.0087	0.041		0.0087	0.0087			Totals		
	h'ft2F/Btu	0.20	08.0	1.00	18.00	86'0	12.60	0.10	02'0	34.38		0.20	0.80	2.28	15.00	00'0	86'0	4.55	0.10	02'0	24.60		
	(m ² .K)/W	0.04	0.14	0.18	3.17	0.17	2.22	0.02	0.12	6.05		0.04	0.14	0.40	2.64	00.0	0.17	0.80	0.02	0.12	4.33		
	Btu/ hift ² F	5.00	1.25	1.00	0.06	1.03	0.08	10.00	1.43	0.03		5.00	1.25	0.44	0.07		1.03	0.22	10.00	1.43	0.04		
	W/(m ^{2.} K)	28.39	7.10	5.68	0.32	5.82	0.45	56.78	8.11	0.17		28.39	7.10	2.50	0.38		5.82	1.25	56.78	8.11	0.23		

ISN

ite valu

RSI

R 32.20

N/(m^{2:}K) 28.39 7.10

3tu/ h ft^zF

5.00 1.25 00.1

ISN

⊃

RSI

۲

RSI/mm

R /in

Thickness

5.68 0.19 5.82 0.45 56.78 8.11

> 0.03 1.03 0.08

28.39

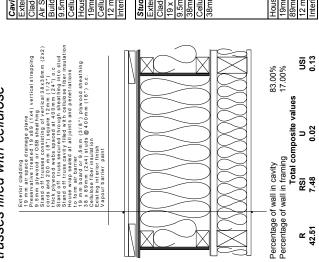
2.50 0.21

5.00 1.25 0.04

0.12

0.02

5.82 1.25


56.78 8.11 0.16

1.03 0.22 1.43 0.03

Wall: Base case insulated with 127mm (5") of closed cell

Wall: Base case insulated with 203 mm (8") deep stand off trusses filled with cellulose

mm (8") deep stand off	Thick	Thickness	R /in	RSI/mm	Я	RSI	D	ISN
Cavity section	.⊑	mm			h'ft2F/Btu	(m ^{2.} K)/W	Btu/ h [.] ft ² F	W/(m ^{2.} K)
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Air Space	0.75	19			1.00	0.18	1.00	5.68
Building paper					0.20	0.03	5.00	33.33
9.5mm (3/8") plywood sheathing	0.375	9.5	1.3	0.0087	0.49	0.09	2.05	11.65
Cellulose fiber insulation	80	200	3.6	0.025	28.80	5.07	0.03	0.20
House wrap	0.006	0.15			0.00	0.00		
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Cellulose fiber insulation	3.5	68	3.6	0.025	12.60	2.22	0.08	0.45
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
				Totals	45.86	8.07	0.02	0.12
Stud Section								
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
19 x 89 (1x4) vertical strapping	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
9.5mm (3/8") plywood sheathing	0.375	9.6	1.3	0.0087	0.49	60.0	2.05	11.65
38mm truss cord	1.75	38	1.3	0.0087	2.28	0.40	0.44	2.50
Cellulose fiber insulation	5	125	3.6	0.025	18.00	3.17	0.06	0.32
38mm truss cord	1.75	38	1.3	0.0087	2.28	0.40	0.44	2.50
House suran	0,006	0.15				000		
10mm (3/4") hoard sheathing	0.75	0.5	¢ 7	0.0087	0.00	0.00	1 03	5 82
89mm (3 1/2") thick stud	3.5	89	5. 5.1	0.0087	4.55	0.80	0.22	1.25
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
				Totals	31.34	5.52	0.03	0.18

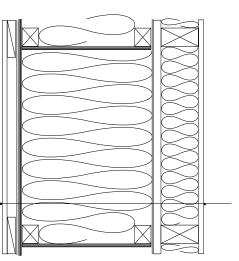
ISN

⊃

RSI

Ъ

RSI/mm


R /in

Thickness

Wall: Base case insulated with 305 mm (12") deep stand off trusses filled with cellulose

Exterior cladding 19 mm ar space drainage plane 9.5mm mar space or 0.583 (11,41) vertical strapping 9.5mm piywood or 0.583 snath 11,22) stand of frusses consisting of vertical 38,38 mm (2,22) codes and 300 mm (1/2) square 12 mm (1/2) tokk piywood webs spaced at 400 mm (2,41) o.c stand of fruss cavity filled with cellulose fiber insulation those webs spaced at all joint s and penetrations stand of fruss cavity filled with cellulose fiber insulation toom are partier 10 mm are barrier 10 mm are barrier 24 studs @ 400 mm (16⁵) o.c.. Cellose fiber insulation 38 x 88 mm (2,43) studs @ 400 mm (16⁵) o.c.. Cellose fiber insulation Existing interior finish Vapour barrier paint

Cavity section	in	mm			h'ft2F/Btu	(m ^{2.} K)/W	Btu/hft ² F	W/(m ^{2.} K)
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Air Space	0.75	19			1.00	0.18	1.00	5.68
Building paper					0.20	0.03	5.00	33.33
9.5mm (3/8") plywood sheathing	0.375	9.5	1.3	0.0087	0.49	0.09	2.05	11.65
Cellulose fiber insulation	12	300	3.6	0.025	43.20	7.61	0.02	0.13
House wrap	0.006	0.15			00.0	00.0		
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Cellulose fiber insulation	3.5	89	3.6	0.025	12.60	2.22	0.08	0.45
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					02.0	0.12	1.43	8.11
				Totals	60.26	10.61	0.02	0.09
Stud Section								
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
19 x 89 (1x4) vertical strapping	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
9.5mm (3/8") plywood sheathing	0.375	9.5	1.3	0.0087	0.49	0.09	2.05	11.65
38mm truss cord	1.75	38	1.3	0.0087	2.28	0.40	0.44	2.50
Cellulose fiber insulation	6	228	3.6	0.025	32.40	5.71	0.03	0.18
38mm truss cord	1.75	38	1.3	0.0087	2.28	0.40	0.44	2.50
House wrap	0.006	0.15			0.00	00.00		
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
89mm (3 1/2") thick stud	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					02.0	0.12	1.43	8.11
Percentage of wall in cavity	83.00%			Totals	45.74	8.06	0.02	0.12
Percentage of wall in framing	17.00%							
		Total com	Total composite values	5				
	Я	RSI	5	ISN				
	57.18	10.07	0.02	0.10				

C	_
ć	5

ISU

⊃

RSI

≌

RSI/mm

R /in

Thickness

Wall: Base case uninsulated with 305 mm (12") deep stand off trusses filled with cellulose insulation

mm mm hrit2FBtu m ⁴ KJW Btu/hrit7 W/m ⁴ KJ 19 0.80 0.14 1.25 7.1 9.5 0.30 0.14 1.25 7.1 9.5 1.3 0.0087 0.20 233 9.5 1.3 0.0087 0.14 1.25 7.1 9.5 1.3 0.0087 0.20 0.03 5.00 333 9.5 1.3 0.0087 0.03 5.00 367 0.1 0.15 1.3 0.0087 0.01 0.00 5.60 367 9.5 1.3 0.0087 0.01 0.02 205 0.1 89 1.3 0.0087 0.36 0.17 1.03 5.60 81 1.3 0.0087 0.80 0.17 1.03 5.60 83 1.3 0.0087 0.81 0.77 1.03 5.60 2.16 9.5 1.3 0.0087 0.28 0.17			_	_	_		_	_	_		_	_				 							 	 		 _						-											Derrentarie of wall in cavity 83 00%								//////////////////////////////////////							38mm trues cord 17E	auditori i			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Cladding (1/2" x 8" bevel)			Exterior Air Film		Stud Section	Cturd Contion		Vapour barrier paint	Existing interior finish	Interior Air Film		38 X 89 mm (2 X4) Stuas @ 400 mm (10) 0.C.			Air snace			119mm (3/4") board sheathing	4 Owners /0/41/ hoozed oboothing		House wran				Stand off trues secured through sheathing into stud			0 375 0 375			Stand off trusses consisting of vertical 38x38mm (2x2)			a 5 m m h/wood or OSR sheat hind	
nf12F/Blu (m ⁴ K)/W Blu/hf ^F 0.20 0.14 1.25 0.80 0.14 1.25 0.80 0.14 1.25 0.0087 0.20 0.03 5.00 0.0087 0.30 0.14 1.25 0.0087 0.30 0.14 1.25 0.0087 0.30 0.14 1.25 0.0087 0.30 0.14 1.25 0.0087 0.30 0.14 1.25 0.0087 0.30 0.17 1.00 0.0087 0.30 0.14 1.00 0.0087 0.49 0.02 0.02 0.0087 0.38 0.17 1.03 0.0087 0.38 0.17 1.03 0.0087 0.38 0.14 1.03 0.0087 0.38 0.17 1.03 0.0087 0.38 0.17 1.03 0.0087 0.38 0.17 1.03 0.0087 0.38		 	 			 				 		 			 	 			 						 			 												Fotal composite valu				-											0.15	1 4 0	20	20														_			_							D C	80					2.5	0,15	140				_	<u>ح.</u> 0	, 100					0	6	C
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		 	 			 				 		 			 	 			 						 _		_	 						 1.5	0.12		201	-	200	100			Totals																																	Totals																											
Bttu/ hft [*] Btu/ hft [*] 1.25 1.20 1.00 1.00 1.00 0.02 1.43 1.1.03 0.02 0.02 1.43 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0																																										++	45 74		0.70	0 7 0		0.10	010	00.t	4 55	0.30	000	0	00.00		2.20	200	01:10	32 40	2.20	2 C C	0.43	010	0.90	000	~~~~	0 80		0.40	0.00			_	>>>>	48.66	 0.70	0 70	0.10	010			001		0.00	0.98		0.00				04.01	43.20	00.01	 0.43	0 40	••••	0.20	0 20	0000	00.1	00.1	00
																																										2.20	8 06		0.14	0 10	1	0.02	000	0.00	0 80	 0.17	17	000	00.00	0000	U.4U	070		571	0.40	070	0.03	0000	0.1/	111		0 14		0.04	0.04				0.0	8.57	 0.12	0 10	0.04	000	000	2.0	0.18	010	0.17	0.17	1	 0.00				0.1	761	2	 0.03	000		0.00	000	0000	00	0.18	010
																																										40.0	000		04.1	1 13		10.0U	10.00	77.0	0 22	1.03	, 00				0.44	77 0	0.00	0 03	0.44	777	CU.2	100	1.03	1 00	~	1 25	10	0.00	200	1		-	0.01	0.02	 04.1	1 43	00.01	10.00	0000	222	1 00			1.03	50.7				1	40.0	002	0000	 CU.2	2 05		0.00	200	00		00.	00 1
n ^{1,} K) 7,10 7,10 7,10 1,165 1,100 1,165 1,165 1,165 1,165 1,165 1,100 1,255 1,165 1,175 1,165 1,175 1,1																																										4	0 12		0. I I	α		00./0	EE 70	N7.1	1 25	20.0	207				DC.2	2 50	0.10	0 18	2.30	2 EO	CO.I I	LUVV	70.C	50		7 10	1	20.02	28.30					0.12	0.1	8 11	01.00	56 78		0.00	5 68	200	20.0	28.6	50					2.0	0,10	010	 CO.11	1165		00.00	23.3.3.3	0000	0.00	5.68	200

ISN

⊃

RSI

۲

RSI/mm

R /in

Thickness

Wall: Base case insulated with closed cell spray urethane foam

	Cavity section	i	шш			h ft2F/Btu	(m ^{2.} K)/W	Btu/ h ^{.ft²F}	W/(m ^{2.} K)
Existing exterior finish	Exterior Air Film					0.20	0.04	5.00	28.39
Existing Building Paper	Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Existing 19mm (3/4") board or	Building Paper					0.20	0.04	5.00	28.39
9.3000 (37.6.) piywood sheatning Cellulose fiber insulation	19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
38 x89 (2x4) studs @ 400mm (16") o.c	Spray in place closed cell polyurethane	Э	68	9	0.041	18.00	3.17	0.06	0.32
76mm (3") spray uret hane foam insulation	12 mm plaster					0.10	0.02	10.00	56.78
and air barrier	Interior Air Film					02.0	0.12	1.43	8.11
12mm (1/2") drywall					Totals	20.98	3.69	0.05	0.27
Vapour barrier paint	Stud Section								
	Exterior Air Film					0.20	0.04	5.00	28.39
	Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
	Building Paper					0.20	0.04	5.00	28.39
	19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
	89mm (3 1/2") thick stud	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25
	12 mm plaster					0.10	0.02	10.00	56.78
	Interior Air Film					02.0	0.12	1.43	8.11
	Percentage of wall in cavity	81.00%			Totals	7.53	1.33	0.13	0.75
	Percentage of wall in framing	19.00%							
			Total comp	Total composite values					
		R	ISA	n	ISN				
		15.66	2.76	90.0	0.36				

ISN

⊃

RSI

۲

RSI/mm

R /in

Thickness

Wall: Base case insulated cavity with 50 x 76 mm (2 x 3) interior cross strapping filled with fiber glass insulation

ping	oing filled with fiber glass insulation										
		Cavity section	in	mm			h ft2F/Btu	(m ^{2.} K)/W	Btu/ h ^{.ft²F}	W/(m ²⁻ K)	
	Existing exterior finish	Exterior Air Film					0.20	0.04	5.00	28.39	r
	Existing Building Paper	Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10	1
	Existing 19mm (3/4") board or	Building Paper					0.20	0.04	5.00	28.39	r
	e.stittit (s/ o) piywood siteattittig Cellulose fiber insulation	19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82	r
	38 x89 (2x4) studs @ 400mm (16") o.c	Cellulose fiber insulation	3.5	89	3.6	0.025	12.60	2.22	0.08	0.45	r
	Existing plaster or drywall	12 mm plaster					0.10	0.02	10.00	56.78	r
	Polyethylene air / vapour barrier	Fiberglass insulation	2.5	63.5	3.2	0.022	8.00	1.41	0.13	0.71	r
	38 x64 (2x3) horizontal strapping	12 mm plaster					0.10	0.02	10.00	56.78	r
	ridel glass batt insulation 12mm (1/2") drywall	Interior Air Film					0.70	0.12	1.43	8.11	r
T						Totals	23.68	4.17	0.04	0.24	r
		Stud Section									r
		Exterior Air Film					0.20	0.04	5.00	28.39	
		Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10	
		Building Paper					0.20	0.04	5.00	28.39	1
\geq		19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82	
<		89mm (3 1/2") thick stud	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25	r
$\langle \rangle$		12 mm plaster					0.10	0.02	10.00	56.78	
		63.5mm (2 1/2") cross strapping	2.5	63.5	1.3	0.0087	3.25	0.57	0.31	1.75	
$\left \right $		12 mm plaster					0.10	0.02	10.00	56.78	
		Interior Air Film					0.70	0.12	1.43	8.11	r
\leq		Percentage of wall in cavity	81.00%			Totals	10.88	1.92	0.09	0.52	
\geq		Percentage of wall in framing	19.00%								
1				Total composite values	site values						
			R	RSI	n	ISN					
			19.35	3.41	0.05	0.29					
							1				

Wall: Base case uninsulated with 50 mm (2") foam board and 50 x 50 mm (2 x 2) cross strapping wiring chase

Existing exterior finish Existing Building Paper Existing 19mm (3.4.*) board or 9.5mm (3/8") plywood sheathing Celulose the risuation 388 98 (2.4.*) studs @400 mm (16") o.c	Existing plaster or drywal 50 to 100 mm thick foam board insulation seated at all joint's and penetrations 38x38 (220, horizatal strapping for wing Vapour barrier paint	<u>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</u>	

am board and 50 x 50	Thickness		R /in	RSI/mm	к	RSI	D	ISN
Cavity section	. <u>e</u>	mm			h.ft2F/Btu	(m2.K)/W	Btu/ h.ft2F	W/(m2.K)
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Building Paper					0.20	0.04	5.00	28.39
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Cellulose fiber insulation	3.5	89	3.6	0.025	12.60	2.22	0.08	0.45
12 mm plaster					0.10	0.02	10.00	56.78
Isocyanurate foam board	2	63.5	5	0.022	10.00	1.76	0.10	0.57
Air space					1.00	0.18	1.00	5.68
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
				Totals	26.68	4.70	0.04	0.21
Stud Section								
Exterior Air Film					0.20	0.04	5.00	28.39
Cladding (1/2" x 8" bevel)					0.80	0.14	1.25	7.10
Building Paper					0.20	0.04	5.00	28.39
19mm (3/4") board sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
89mm (3 1/2") thick stud	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25
12 mm plaster					0.10	0.02	10.00	56.78
Isocyanurate foam board	2.5	63.5	2	0.0087	12.50	2.20	0.08	0.45
63.5mm (2 1/2") cross strapping	2.5	63.5	1.3	0.0087	3.25	0.57	0.31	1.75
12 mm plaster					0.10	0.02	10.00	56.78
Interior Air Film					0.70	0.12	1.43	8.11
Percentage of wall in cavity	81.00%			Totals	23.38	4.12	0.04	0.24
Percentage of wall in framing	19.00%							
		Total comp	Fotal composite values					
	ц	RSI	∍	ISN				
	25.98	4.58	0.04	0.22				

ISN

RSI

¥

RSI/mm

R /in

Thickness

Wall: Base case insulated cavity with 50 x 75 mm (2 x 3) interior cross strapping filled with closed cell polyurethane

hft2F/Btu (m [*] K)W Btu/ hft [*] 0.20 0.04 5.00 0.20 0.14 1.25 0.80 0.14 1.25 0.41 1.27 10.3 0.041 2.10 0.08 0.041 2.10 0.08 0.041 2.10 0.08 0.041 2.10 0.08 0.041 12.00 2.11 0.08 0.041 12.00 2.11 0.08 0.10 0.12 10.00 0.03 0.03 0.10 0.12 143 Totals 35.98 6.34 0.03 0.087 0.20 0.04 5.00 0.087 0.39 0.14 1.25 0.087 0.36 0.14 1.25 0.087 0.36 0.17 1.03 0.087 0.36 0.14 1.03 0.087 0.36 0.17 1.03 0.13 0.10 0.02		B 20 20 20 20 20 20 20 20 20 20 20 20 20	in 0.75 3.5 2 2.5 3.5 2.5 2.5 2.5 19.00%	Cavity section Exterior Air Film Exterior Air Film Cladding (1/2" × 8" bevel) Bundiding Paper 19mm diang Paper Spray in place closed cell polyurethane Spray in place closed cell polyurethane 12 mm plaster Interior Air Film Cladding (1/2" x 8" bevel) Building Paper Interior Air Film Cladding (1/2" x 8" bevel) Building Paper 19mm (3.4") board sheathing 83.5mm (2.1/2") thick stud 63.5mm (2.1/2") thick stud Percentage of wall in cavity Percentage of wall in framing	Strapping filled with closed cell polyurethane Existing exterior finish Existing Building Paper Existing Building Paper Existing 19mm (3.4*) board or 9.5mm (2.4*) studs @ 400mm (16*) o.c 88 md air barrier 38 x 64 (2x3) horizontal cross strapping 50mm (2*) spray urethane foam insulation 12mm (1/2*) drywall Vapour barrier paint 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
USI	_	RSI	ĸ		
31		RSI	R		
SI		RSI	R		
2		RSI	2		
	site values	Total composite values			
				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			19.00%	Percentage of wall in framing	
10.78			81.00%	Percentage of wall in cavity	
				Interior Air Film	
		_			
				12 mm plaster	
3.25		03.5	C.2	03.5mm (2 1/2) cross strapping	×
30 0		2 2 2	ц С	EO Emm (0.4 /0") aross atransing	
4.55		89	3.5	89mm (3 1/2") thick stud	
0.30		2	C/.N		
				Building Paper	
				Cladding (1/2" x 8" bevel)	
				Exterior Air Film	
				Stud Section	
					Vapour barrier paint
35.98	Tot				[12mm (1/2") drywall
				Interior Air Film	50 mm (2") spray urethane foam insulation
				12 mm plaster	38 x 64 (2x3) horizontal cross strapping
12.00		50	2	Spray in place closed cell polyurethane	and air barrier
21.00		89	3.5	Spray in place closed cell polyurethane	80 mm (3 1/2") snave (2 + 2000 mm (10) 9:0
					20 × 200 / 2×1 / c+ inde @ 100mm / 16" / c
0.98		19	0.75	19mm (3/4") board sheathing	9.5 mm (3/8") plywood sheat hing
				Building Paper	Existing 19mm (3/4") board or
				Cladding (1/2" x 8" bevel)	Existing Building Paper
				Exterior Air Film	Evicting exterior finish
(m ² :K)/W		mm	in	Cavity section	
					strapping filled with closed cell polvurethane

Housing
n Existing
Energy ir
Net Zero
Approaching

Thickness Wall: Original cavity + new interior framed wall 140 mm (5.5") stand \ulcorner

ISI

⊃

W/(m²K) 28.39 7.10 28.39 5.82 0.45 0.29

Btu/ h ft²F 5.00 5.00 5.00 1.25 0.03 0.08 0.46 56.78 8.11 0.12

0.08 10.00 1.43 0.02 28.39 7.10 28.39 5.82 1.25 0.29

5.00 5.00 5.00 0.22 0.05

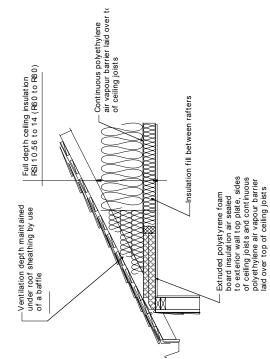
	В	_	_		_				_		_		_	_	_	_	_			_	_		_	_
RSI	(M/(M ^{.2} m)	0.04	0.14	0.04	0.17	2.22	3.49	00.00	2.16	0.02	0.12	8.39		0.04	0.14	0.04	0.17	0.80	3.49	0.00	0.80	0.02	0.12	5.61
ж	h ft2F/Btu	0.20	0.80	0.20	0.98	12.60	19.80	0.00	12.25	0.10	0.70	47.63		0.20	0.80	0.20	0.98	4.55	19.80	0.00	4.55	0.10	0.70	31.88
RSI/mm					0.0087	0.024	0.024	0	0.024			Totals					0.0087	0.0087	0.024	0	0.0087			Totals
R /in					1.3	3.6	3.6	0	3.5								1.3	1.3	3.6	0	1.3			
ness	mm				19	89	140	0.15	89								19	89	140	0.15	89			
Thickness	.u				0.75	3.5	5.5	0.006	3.5								0.75	3.5	5.5	0.006	3.5			
ed wall 140 mm (5.5")	Cavity section	Exterior Air Film	Cladding (1/2" x 8" bevel)	Building Paper	19mm (3/4") board sheathing	Cellulose fiber insulation	Cellulose fiber insulation	Polyethylene air / vapour barrie	Cellulose fiber insulation	12 mm plaster	Interior Air Film		Stud Section	Exterior Air Film	Cladding (1/2" x 8" bevel)	Building Paper	19mm (3/4") board sheathing	89mm (3 1/2") thick stud	Cellulose fiber insulation	Polyethylene air / vapour barrie	89mm (3 1/2") thick stud	12 mm plaster	Interior Air Film	
Wall: Original cavity + new interior framed wall 140 mm (5.5") standoff, cellulose	Existing exterior finish	Existing 19mm (3/4") board or	9.5mm (3/8") plywood sheathing 38 x89 (2x4) studs @ 400mm (16") o.c	229mm (9*) thick cellulose fiber insulation 0.15mm polyethylene air / vapour barrier	38 x89 (2x4) studs @ 600 m (24") o.c 89m m (3 1/2") thick cellulose fiber insulation	12mm (1/2") drywall														Percentage of wall in cavity 83.00%		Total composite values		_
Wall												\times		\geq	<	~	5	E	Ņ	Percent	Percent			4

1.25 56.78 8.11 0.18

0.22 10.00 1.43 0.03 ISN

⊃

RSI

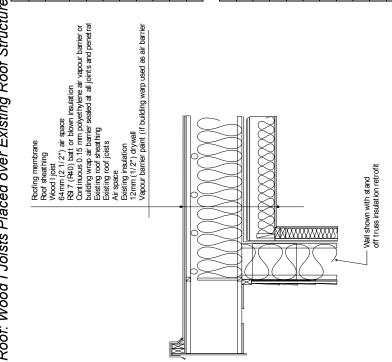

Ъ

RSI/mm

R /in

Thickness

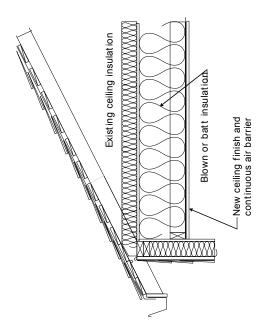
Roof: Existing attic upgrade



Cavity section	'n	шш			h'ft2F/Btu	(m ² .K)/W	Btu/ h [.] ft ² F	W/(m ^{2.} K)	
Exterior Air Film					0.60	0.11	1.67	9.46	
Roofing					0:50	60.0	2.00	11.36	
Sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82	
Air Space					06'0	0.15	1.11	6.67	
Batt or blown insulation above top of joists	12	300	3.6	0.025	43.20	7.61	0.02	0.13	
Batt or blown insulation between joists	3.5	68	3.6	0.025	12.60	2.22	0.08	0.45	
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78	
Interior Air Film					09.0	0.11	1.67	60.6	
				Totals	59.48	10.47	0.02	0.10	
Framed section									
Exterior Air Film					09.0	0.11	1.67	9.46	
Roofing					0.50	0.09	2.00	11.36	
Sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82	
38 x 89 (2x4) rafters	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25	
Air Space					06.0	0.15	1.11	6.67	
Batt or blown insulation above top of joists	12	300	3.6	0.025	43.20	7.61	0.02	0.13	
38 x 89 (2x4) ceiling joists	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25	
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78	
Interior Air Film					09.0	0.11	1.67	60.6	
Percentage of roof in cavity	83.00%			Totals	55.98	9.85	0.02	0.10	
Percentage of roof in framing	17.00%								_
Attic space at perimeter 74mm (29")			Total comp	Total composite values		_			

Attic space at perimeter 74mm (29")

	Total comp	Fotal composite values	
ĸ	RSI	D	ISN
58.85	10.36	0.02	01.0


Roof: Wood I Joists Placed over Existing Roof Structure

ð	Thickness	ness	R /in	RSI/mm	ц	RSI	∍	ISN
Cavity section	.Ľ	шш			h'ft2F/Btu	(m ^{2.} K)/W	Btu/ h ^{.ft²} F	W/(m ^{2.} K)
Exterior Air Film					09.0	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.375	19	1.3	0.0087	0.49	0.09	2.05	11.65
Air Space					09.0	0.11	1.67	9.46
Batt or blown insulation between I joists	12	300	3.6	0.025	43.20	7.61	0.02	0.13
Roof sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Air space					06.0	0.16	1.11	6.31
Batt or blown existing attic insulation	5.5	68	3.6	0.025	19.80	3.49	0.05	0.29
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Interior Air Film					09.0	0.11	1.67	60'6
				Totals	67.76	11.94	0.01	0.08
Framed section								
Exterior Air Film					09.0	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.375	19	1.3	0.0087	0.49	0.09	2.05	11.65
l joists	16	300	1.3	0.0087	20.80	3.66	0.05	0.27
Roof sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
38 x 89 (2x4) rafters	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25
Air space					06.0	0.16	1.11	6.31
Batt or blown existing attic insulation	2.5	89	3.6	0.025	9.00	1.59	0.11	0.63
38 x 89 (2x4) ceiling joists	3.5	68	1.3	0.0087	4.55	0.80	0.22	1.25
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Interior Air Film					09.0	0.11	1.67	60.6
Percentage of roof in cavity	83.00%			Totals	43.06	7.59	0.02	0.13
Percentage of roof in framing	17.00%		_					

	·	
sen	ISN	1.61
Total composite values	n	0.02
Total cor	RSI	0.62
	R	61.74

Roof: Attic Roof with Dropped Ceiling

	Thickness		R /in	RSI/mm	R	RSI	∍	ISN
Cavity section	. 	mm			h'ft2F/Btu	(m ^{2.} K)/W	Btu/ h [.] ft ² F	W/(m ^{2.} K)
Exterior Air Film					09.0	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
Air Space					06.0	0.15	1.11	6.67
Existing batt or blown insulation	5.5	300	3.6	0.025	19.80	3.49	0.05	0.29
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Batt or blown insulation	12	89	3.6	0.025	43.20	7.61	0.02	0.13
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Interior Air Film					0.60	0.11	1.67	60.6
				Totals	66.78	11.76	0.01	0.09
Framed section								
Exterior Air Film					09.0	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.75	19	1.3	0.0087	0.98	0.17	1.03	5.82
38 x 89 (2x4) rafters	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25
Air Space					06.0	0.15	1.11	6.67
Batt or blown insulation above top of joists	2	300	3.6	0.025	7.20	1.27	0.14	0.79
38 x 89 (2x4) ceiling joists	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Insulation over top of ceiling joists	8.5	216	3.6	0.025	30.60	5.39	0.03	0.19
38 x 89 (2x4) ceiling joists	3.5	89	1.3	0.0087	4.55	0.80	0.22	1.25
Interior Air Film					09.0	0.11	1.67	60.6
Percentage of roof in cavity	83.00%			Totals	55.13	9.70	0.02	0.10
Percentage of roof in framing	17.00%							
		Total composite values	site values					

100

USI 0.09

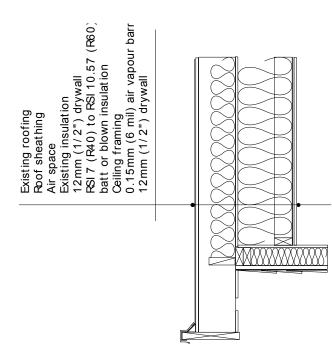
U 0.02

RSI 11.35

R 64.46 ISN

⊃

RSI


К

RSI/mm

R /in

Thickness

Roof: Flat Roof with Dropped Ceiling

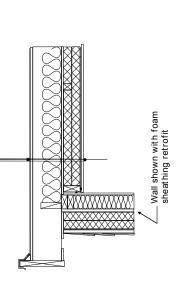
Cavity section	.L	mm			h'ft2F/Btu	(m².K)/W	Btu/ h'ft²F	W/(m ^{2.} K)
Exterior Air Film					09.0	0.11	1.67	9.46
Roofing					0.50	60.0	2.00	11.36
Sheathing	0.375	19	1.3	0.0087	0.49	60.0	2.05	11.65
Air Space					0.90	0.15	1.11	6.67
Existing batt or blown insulation	5.5	300	3.6	0.025	19.80	3.49	0.05	0.29
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Batt or blown insulation	12	89	3.6	0.025	43.20	7.61	0.02	0.13
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Interior Air Film					0.60	0.11	1.67	9.09
				Totals	66.29	11.67	0.02	0.09
Framed section								
Exterior Air Film					0.60	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.375	19	1.3	0.0087	0.49	0.09	2.05	11.65
38 x 184 (2x8) joists	7.25	184	1.3	0.0087	9.43	1.66	0.11	0.60
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Insulation over top of ceiling joists	8.5	216	3.6	0.025	30.60	5.39	0.03	0.19
38 x 89 (2x4) ceiling joists	3.5	89	1.3	2800.0	4.55	08.0	0.22	1.25
Interior Air Film					0.60	0.11	1.67	9.09
Percentage of roof in cavity	83.00%			Totals	46.86	8.26	0.02	0.12
Percentage of roof in framing	17.00%							

r	—	
	ISN	0.09
Total composite values	ŋ	0.02
Total compo	RSI	10.90
	ĸ	61.92

ISN

⊃

RSI


۲

R /in RSI/mm

Thickness

Roof : Flat Roof with Shallow Dropped Ceiling

Roofing membrane
Existing roof sheat hing
Existing roof joists
Air space
Existing insulation
12mm (1/2") drywall
Two layers of 50mm (2") thick extruded polyst)
polyisocyanurate or urethane foam board insulat
applied with between cross strapping
0.15mm (6mil) poly air/vapour barrier or
airtight drywall air barrier and vapour barrier pail

Cavity section	ui	шш			h'ft2F/Btu	(m ^{2.} K)/W	Btu/ h ^{.ft²} F	W/(m ^{2.} K)
Exterior Air Film					0.60	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.375	19	1.3	0.0087	0.49	0.09	2.05	11.65
Air Space					0.90	0.15	1.11	6.67
Existing batt or blown insulation	5.5	300	3.6	0.025	19.80	3.49	0.05	0.29
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Foam board insulation	4	100	ى ك	0.025	20.00	3.52	0.05	0.28
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Interior Air Film					0.60	0.11	1.67	9.09
				Totals	43.09	7.58	0.02	0.13
Framed section								
Exterior Air Film					0.60	0.11	1.67	9.46
Roofing					0.50	0.09	2.00	11.36
Sheathing	0.375	19	1.3	0.0087	0.49	0.09	2.05	11.65
38 x 184 (2x8) joists	7.25	184	1.3	0.0087	9.43	1.66	0.11	0.60
12 mm plaster	0.5	12	0.2	0.0014	0.10	0.02	10.00	56.78
Insulation over top of ceiling joists	2	216	5	0.025	10.00	1.76	0.10	0.57
38 x 38 (2x2) ceiling strapping	1.75	44.5	1.3	0.0087	2.28	0.40	0.44	2.50
Interior Air Film					0.60	0.11	1.67	60.6
Percentage of roof in cavity	83.00%			Totals	23.99	4.23	0.04	0.24
Percentage of roof in framing	17.00%		_					
		Total comp	Total composite values					

USI 0.15

U 0.03

R 37.95

RSI 6.68

Other Suggested Assemblies for Meeting Upgrade Targets

Assumptions about insulating materials quoted: blown cellulose = RSI 0.0253/mm (R 3.5/in), f/g batts= RSI 0.0220 (R 3.2/in) polyisocyanurate board = RSI 0.0420/mm (R 6 to R 7/in), polyurethane foam = RSI 0.0420/mm (R 6 to R 7/in), SIPS panel insulation quoted from product mfr. All given values are nominal and do not include remainder of wall assembly.

Ceili	nas
1	Add f/g batts or blown cell w/eave ventilation to attic, high R-value rigid board at eaves to improve thermal weak spot.
2	For sloped clg, create 'hot roof': completely fill rafter cavity w/densepack blown cell, add rigid insulation to interior clg 25 to 50 mm (1"- 2") of various product to reach target. Thicker boards than indicated = challenge w/fasteners and installation of sheathing or interior finish.
3	If re-roofing sloped ceiling, add rigid to exterior to target, see note w/interior application.
4	Use spray polyurethane foam insulation in roof rafter cavity (RSI 6/R 33 for 38*140 (2x6) rafter, RSI 8.3/R 45 for 38*190 (2x8) rafter). High R-value, but question @ 'green' product no capacity for dismantle/reuse of product or framing.
Wall	S
	Where some walls will never make the upgrade target (ie, heritage solid brick home), other options need to be explored, such as going to a high-efficiency GSHP and a Solar DHW system to compensate for energy use. This type of solution will also benefit from PV installation in getting closer to Net Zero, if there is little or no thermal resistance use in the house.
RSI	4.6 (R 26)
1	fill 38*89 (2x4) exterior wall cavities w/RSI 2.1 (R 12) densepack blown cell, add 50mm(2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to exterior or interior. Can be done when residing or when renovating interior.
	If not already insulated, fill 38*89 (2x4) exterior wall cavities w/RSI 2.1 (R12) densepack blown cell, add 100mm (4") SIPS panel to exterior RSI 2.8 (R16). Total insulation = RSI 4.93 (R28).
2	If not already insulated, fill 38*89 (2x4) exterior wall cavities w/RSI 2.1 (R12) densepack blown cell, strap off wall 2x3 and add 64mm (2.5") f/g w/RSI 1.4 (R8) to interior. Gives approximately RSI 3.5 (R20). Exterior = add 25mm (1") polyiso board under replacement siding
3	When residing 38*140 (2x6) exterior walls, ensure cavity is completely filled (RSI 3.5/R 20) with f/g batts or dense- pack blown cell, add 25mm (1") polyiso board (RSI 1.05-1.23/R 6 to R 7)
4	Brick veneer walls w/38*89 (2x4) cavity: same as option 1 RSI 4.2 (R 24) or 2 (without the exterior board installation) Gives RSI 3.87 (R 22)
5	Brick veneer walls w/38*140 (2x6) cavity: ensure cavity is completely filled (RSI 3.5/R 20) with f/g batts or dense-pack blown cell, add 25mm (1") polyiso board (RSI 1.05-1.23/R 6 to R 7) to interior
6	Solid brick walls from interior: add 50mm (2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to interior, or strap off wall 2x4 and add 64mm (3.5") blown-in polyurethane foam RSI 3.7 to 4.3 (R 21 to 24.5)
7	Solid brick walls from exterior: if brick is in need of repair or facelift, cover with 75mm (3") polyiso foam RSI 3.17 to 3.7 (R 18 to R 21) and finish with stucco (appropriate rainscreen/drainage plane required)

RSI	7/R 40
1	From exterior of 38*89 (2x4) wall assembly: add 200mm (8") standoff 'truss' wall with RSI 4.9 (R28) densepack blown cell or 230mm (9") standoff 'truss' wall with RSI 4.9 (R 28) f/g batts to exterior wall cavities w/RSI 2.1 (R 12) densepack blown cell. Can be done when residing.
2	From exterior of 38*89 (2x4) wall assembly: add 50mm (2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to exterior wall cavities w/RSI 2.1 (R 12) densepack blown cell. Add 50mm (2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to interior wall. Total insulation = RSI 6.3(R 36 to 38). Where 64mm (2.5") board is available, would be a better choice for exterior.
3	From exterior of 38*140 (2x6) wall assembly: add 50mm (2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to exterior wall cavities w/RSI 3.5 (R 20) densepack blown cell. Can be done when residing. Interior: strap off wall 2x3 and add 64mm (2.5") f/g w/RSI 1.4 (R 8). Total insulation = RSI 7 to7.4 (R 40 to 42).
4	From exterior of 38*140 (2x6) wall assembly: add 38mm (1.5") polyiso board RSI 1.58 to 1.85 (R 9 to 10.5) to exterior wall cavities w/RSI 3.5 (R 20) densepack blown cell. Can be done when residing. Interior: add 38mm (1.5") polyiso board RSI 1.6 to 1.9 (R 9 to 10.5). Total insulation = RSI 6.7 to7.2 (R 38 to 41).
5	Brick veneer walls w/38*89 (2x4) cavity: fill 38*89 (2x4) exterior wall cavities w/RSI 2.1 (R 12) densepack blown cell, add 50mm(2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to exterior or interior. Can be done when residing or when renovating interior. If exterior needs facelift, add either 75mm (3") polyiso foam RSI 3.17 to 3.7 (R 18 to R21) and finish with stucco (appropriate rainscreen/drainage plane required), or 100mm (4") SIPS panel to exterior RSI 2.8 (R 16). Total insulation with exterior facelift = RSI 7 to 7.4 (R 40 to R 41)
6	Brick veneer walls w/38*140 (2x6) cavity: ensure cavity is completely filled (RSI 3.5/R 20) with f/g batts or dense-pack blown cell, strap out interior 38*89 (2x4) wall and fill w/spray on polyurethane foam RSI 3.7 to 4.3 (R 21to 24.5). Total insulation= RSI 7.22 to 7.84 (R 41 to 44.5)
7	Solid brick walls: add 50mm (2") polyiso board RSI 2.1 to 2.5 (R 12 to 14) to interior, or strap off wall 2x4 and add 64mm (3.5") blown-in polyurethane foam RSI 3.7 to 4.3 (R 21 to 24.5). If brick is in need of repair or facelift, cover with 75mm (3") polyiso foam RSI 3.17 to 3.7 (R 18 to R21) and finish with stucco (appropriate rainscreen/drainage plane required. Total insulation = RSI 5.63 to 8.01 (R 32 to 45.5)

RSI	10.6/R 60
1	From exterior of 38*89 (2x4) wall assembly: add 64mm (1.5") polyiso board sheathing RSI 1.59 to 1.85 (R 9 to 10.5) to 200mm (12") standoff 'truss' wall with RSI 7.4 (R42) densepack blown cell or RSI 6.7 (R 38) f/g batts to exterior wall cavities w/RSI 2.1 (R 12) densepack blown cell. Insulation total = RSI 10.4 to 11.36 (R 59 to 64.5) Can be done when residing. If using densepack cell in the standoff wall, the sheathing thickness could be reduced to 25mm (1").
2	From exterior of 38*140 (2x6) wall assembly: add to 200mm (12") standoff 'truss' wall with RSI 7.4 (R 42) densepack blown cell or RSI 6.7 (R 38) f/g batts to exterior wall exterior wall cavities w/ RSI 3.5 (R 20) densepack blown cell. Can be done when residing. Total insulation = RSI 10.2 to10.9 (R 58 to 62).
3	From exterior of 38*89 (2x4) wall assembly: standoff wall is reduced to 200mm (8") if standoff cavity is blown in polyurethane foam insulation at RSI 0.041/mm (R 6/inch) and stud wall cavity is filled to RSI 2.11 (R 12).
4	From exterior of 38*140 (2x6) wall assembly: standoff wall is reduced to 180mm (7") if standoff cavity is blown in polyurethane foam insulation at RSI 0.041/mm (R 6/inch) and stud wall cavity is filled to RSI 3.5 (R 20).
5	Brick veneer walls w/38*140 (2x6) cavity: ensure cavity is completely filled (RSI 3.5/R 20) with f/g batts or dense-pack blown cell, strap out interior 38*89 (2x4) wall and fill w/spray on polyurethane foam RSI 3.7 to 4.3 (R 21to 24.5). If brick is in need of repair or facelift, cover with 75mm (3") polyiso foam RSI 3.17 to 3.7 (R 18 to R21) and finish with stucco (appropriate rainscreen/drainage plane required. Alternately, a 100mm (4") SIPS panel can be used on exterior RSI 2.82 (R 16). Total insulation= RSI 10.04 to 11.53 (R 57 to 65.5).
6	Brick veneer walls from interior w/38*140 (2x6) cavity: strip of cavity existing insulation, strap out interior 38*89 (2x4) wall and fill 230mm (9') cavity w/spray on polyurethane foam RSI 3.7 to 4.3 (R 54 to 63).

RSI	14.4/R 80
1	From exterior of 38*89 (2x4) wall assembly: add 50mm (2") polyiso board sheathing RSI 2.11 to 2.46 (R 12 to 14) to 200mm (16") standoff 'truss' wall with RSI 9.9 (R 56) densepack blown cell or RSI 9 (R 51.2) f/g batts to exterior wall cavities w/RSI 2.1 (R 12) densepack blown cell. Insulation total = RSI 13.24 to 14.44 (R 75.2 to 82) Can be done when re-siding.
2	From exterior of 38*140 (2x6) wall assembly: add 64mm (1.5") polyiso board sheathing RSI 1.59 to 1.85 (R 9 to 10.5) to 200mm (16") standoff 'truss' wall with RSI 9.9 (R 56) densepack blown cell or RSI 9 (R 51.2) f/g batts to exterior wall cavities w/RSI 3.5 (R 20) densepack blown cell. Insulation total = RSI 14.1 to 15.23 (R8 0.2 to 86.5) Can be done when residing. If using densepack cell in the standoff wall, the sheathing thickness could be reduced to 25mm (1").
3	From exterior of 38*89 (2x4) wall. Standoff wall is reduced to 300mm (12") if standoff cavity is blown in polyurethane foam insulation at RSI 0.041/mm (R 6/inch) and stud wall cavity is filled to RSI 2.11 (R 12).
4	From exterior of 38*140 (2x6) wall. Standoff wall is reduced to 250mm (10") if standoff cavity is blown in polyurethane foam insulation at RSI 0.041/mm (R 6/inch) and stud wall cavity is filled to RSI 3.5 (R 20).
5	Brick veneer walls from interior w/38*140 (2x6) cavity: strip of cavity existing insulation, strap out interior 38*89 (2x4) wall and fill 230mm (9') cavity w/spray on polyurethane foam RSI 3.7 to 4.3 (R 54 to 63). If brick is in need of repair or facelift, cover with 75mm (3") polyiso foam RSI 3.17 to 3.7 (R 18 to R21) and finish with stucco (appropriate rainscreen/drainage plane required. Alternately, a 100mm (4") SIPS panel can be used on exterior RSI 2.82(R 16). Total insulation= RSI 12.33 to 14.79 (R 70 to 84).

Hea	ders
1	Air sealing techniques as per Keeping the Heat In (caulk baseboards, clg penetrations etc.)
2	When gutting a building, seal at rim joist and fill rim joist cavity to at least wall insulation levels
Exp	osed Floors
1	Retrofit from exterior w/polyiso, use as exterior air/vapour barrier
2	Spray urethane foam into cavity and seal from ext with polyiso board to match wall insulation value. See note above at clgs
Bas	ement Walls
1	RSI 3.5 (R 26) stand-off interior wall if non-finished basement, keep any framing off conc. wall. 50mm(2") polyiso board (RSI 2.1/R 12) with 39x89 (2x4) stud wall (RSI 2.1/R 12). Gives RSI 4.2/R 24 nominal. 50mm (2") board is easier to find than 64mm (2.5") board, but the thicker board would be RSI 2.64(R 15), bringing the nominal insulation up to RSI 4.74(R 27).
2	Combination of exterior and interior insulation if non-finished basement, standoff wall above plus 50mm (2") polyiso RSI 2.11 to 2.5 (R 12 to 14). Total insulation = 6.69 to 7.04(R 38 to 40)
3	If finished basement (with or without interior insulation), add rigid board to exterior to maximum thickness possible to come close to or meet target).
Slab	
1	If unfinished, add RSI 1.4 to 1.8 (R 8 to 10) to slab, top w/finished floor
Doo	rs
	Unless heritage value is affected, replace w/insulated metal doors c/w magnetic weatherstripping.
Win	dows
	Replace units w/appropriate high-performance window
	Add inserts to existing windows for permanent solution
	Add seasonal films for temporary solution

Appendix C: Base Case House Energy Use Figures

Overall Energy Reduction (GJ), without solar add-on systems

	_	Vancouver	Calgary		Toronto		Montreal		Halifax		Whitehors	Ð
PWW2A	space & dhw Appliance	202.3 33.8		225.8 34.1		215.7 34.0		129.4 31.5		235.1 34.7		227.2 34.1
	TOTAL	236.1		259.9		249.7		160.9		269.7		261.3
PWW2B	space & dhw Appliance					214.3 34.0		127.1 31.5		232.2 34.6		
	TOTAL					248.3	-	158.7		266.8		
PWW2C	space & dhw Appliance					236.4 34.3		150.7 31.5				
(TOTAL					270.7		182.2				
1.5STOREY	space & dhw Appliance	145.8 33.0)	146.8 33.1		148.9 33.1		95.0 31.8		141.3 33.2		164.2 33.7
	TOTAL	178.8		179.9		182.1		126.8		174.6		197.9
2STOREY60	space & dhw	115.4		149.2		129.4		91.9		120.3		183.7
	Appliance	32.6	5	33.2		33.0		32.0		33.2		34.1
	TOTAL	148.0		182.4		162.4		123.9		153.5		217.8
2STOREY95	space & dhw	91.0		125.5		101.4		98.1		132.8		229.2
	Appliance	32.9)	35.8		33.4		32.4		33.2		34.2
	TOTAL	123.9		161.3		134.7		130.5		166.0		263.4
BUNG60	space & dhw	154.0		132.9		117.8		85.6		128.5		143.7
	Appliance	33.1		33.1		32.8		32.1		33.0		33.6
	TOTAL	187.2		166.0		150.6		117.7		161.5		177.3
BUNG95	space & dhw	60.6		76.9		65.0		61.6		67.8		129.4
	Appliance	32.4		32.7		32.9	-	32.3		32.9		33.4
	TOTAL	93.0		109.6		97.9		93.9		100.6		162.8
SPLITLEVEL	space & dhw Appliance	125.0 32.7		160.7 33.4		138.6 33.1		101.5 33.6		121.4 33.4		177.0 34.3
	TOTAL	157.7		194.1		171.7		135.1		154.8		211.3
SPLITENTRY	space & dhw	106.7		143.9		117.9		83.5		108.2		158.8
	Appliance	32.5		33.1		32.8		33.2		32.9		33.7
	TOTAL	139.2		177.0		150.7		116.7		141.1		192.4
UP/DOWN	space & dhw	116.1		158.3		142.4		111.8		152.9		137.8
	Appliance	32.9		33.8		33.4		33.7		33.6		33.5
	TOTAL	149.0		192.1		175.8		145.4		186.5		171.3
ROWHOUSE	space & dhw	92.1		125.4		114.0		90.1		124.5		
	Appliance	32.5		33.3		33.0		33.2		33.1		
	TOTAL	124.6	_	158.6		147.0		123.4		157.6		

Appendix D: Upgrade Case Results

EGH ratings (without baseload or hot water use reductions)

			i	1		1	[
		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2A	EGHBASE	44.0	51.0	45.0	62.0	47.0	54.0
	EGHUPGRADE	87.0	84.0	83.0	87.0	88 (GSHP)	90.0
PWW2B	EGHBASE			45.0	63.0	48.0	
	EGHUPGRADE			83.0	87.0	83.0	
PWW2C	EGHBASE			40.0	57.0		
	EGHUPGRADE			85	85		
				(GSHP)	(GSHP)		
1.5STOREY	EGHBASE	55.0	64.0	58.0	69.0	64.0	66.0
	EGHUPGRADE	83.0	87.0	83.0	87.0	84.0	84.0
2STOREY60	EGHBASE	67.0	69.0	67.0	73.0	70.0	69.0
	EGHUPGRADE	87.0	85.0	86.0	88.0	85.0	91.0
2STOREY95	EGHBASE	73.0	74.0	73.0	73.0	71.0	65.0
	EGHUPGRADE	84.0	88.0	85.0	89.0	85.0	91.0
BUNG60	EGHBASE	53.0	67.0	65.0	71.0	67.0	69.0
	EGHUPGRADE	86.0	86.0	85.0	88.0	84.0	82.0
BUNG95	EGHBASE	77.0	77.0	78.0	77.0	77.0	72.0
	EGHUPGRADE	86.0	87.0	85.0	88.0	85.0	85.0
SPLITLEVEL	EGHBASE	61.0	62.0	61.0	68.0	66.0	65.0
	EGHUPGRADE	83.0	84.0	83.0	87.0	82.0	81.0
SPLITENTRY	EGHBASE	66.0	66.0	66.0	72.0	72.0	70.0
	EGHUPGRADE	85.0	86.0	85.0	88.0	84.0	84.0
UP/DOWN	EGHBASE	64.0	63.0	66.0	60.0	65.0	62.0
	EGHUPGRADE	83.0	84.0	81.0	87.0	81.0	83.0
ROWHOUSE	EGHBASE	69.0	68.0	66.0	70.0	67.0	
E	GHUPGRADE	85.0	86.0	82.0	88.0	83.0	

		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2A	ENERGY LOAD	40.6	54.7	55.1	36.5	29.1	88.6
	SDHW SOUTH	6.5	9.9	8.3	8.2	8.2	7.7
	TOTAL (MJ)	34.1	44.8	46.8	28.4	20.9	80.9
	EGH*	88.6	85.8	84.4	88.9	93.2	73.7
PWW2B	ENERGY LOAD			51.1	36.2	61.6	
	SDHW SOUTH			8.4	8.2	8.2	
	TOTAL (MJ)	0.0	0.0	42.7	28.0	53.3	0.0
	EGH*			85.7	89.1	82.7	
PWW2C	ENERGY LOAD			39.5	41.3		
	SDHW SOUTH			8.4	8.2		
	TOTAL (MJ)	0.0	0.0	31.1	33.0	0.0	0.0
	EGH*			89.6	87.1		
1.5STOREY	ENERGY LOAD	49.6	41.4	48.5	32.8	49.4	69.7
	SDHW SOUTH	6.6	10.1	8.5	8.2	8.3	7.9
	TOTAL (MJ)	43.0	31.3	40.0	24.6	41.1	61.8
	EGH*	85.6	90.1	86.6	90.4	86.6	81.2
2STOREY60	ENERGY LOAD	38.2	41.4	44.5	35.4	55.2	91.3
	SDHW SOUTH	6.1	8.8	7.8	7.6	7.7	6.9
	TOTAL (MJ)	32.1	32.6	36.7	27.9	47.5	84.4
	EGH*	89.3	89.7	87.8	89.1	84.6	74.3
2STOREY95	ENERGY LOAD	48.7	49.3	45.4	31.6	60.0	87.7
2STOREY95	SDHW SOUTH	6.1	8.8	7.8	7.7	7.7	6.9
	TOTAL (MJ)	42.5	40.4	37.5	24.0	52.3	80.8
	EGH*	85.8	87.2	87.5	90.6	83.0	75.4
BUNG60	ENERGY LOAD	36.6	44.5	41.4	27.8	48.9	83.3
2011000	SDHW SOUTH	6.1	8.8	7.8	7.6	7.7	6.9
	TOTAL (MJ)	30.5	35.7	33.6	20.2	41.2	76.4
	EGH*	89.8	88.7	88.8	92.1	86.6	76.8
BUNG95	ENERGY LOAD	21.0	38.7	38.5	36.9	44.4	67.4
DONOSS	SDHW SOUTH	6.1	8.8	7.8	7.7	7.7	6.9
	TOTAL (MJ)	14.9	29.9	30.7	29.3	36.7	60.5
	EGH*	95.0	90.5	89.8	88.6	88.1	81.6
SPLITLEVEL	EGH ENERGY LOAD	42.9	<u>90.3</u> 57.0	50.1	30.8	61.2	88.2
SFLIILEVEL	SDHW SOUTH	42.9 6.1	8.8	7.8	30.8 7.6	01.2 7.7	6.9
	TOTAL (MJ)	36.8	48.2	42.3	23.2	53.4	81.3
SPLITENTRY	EGH* ENERGY LOAD	87.7 36.1	84.7 46.7	85.9 42.4	90.9 27.6	82.6 51.6	75.3 72.9
SFLITENTRI	SDHW SOUTH	6.1	40.7 8.8	42.4 7.8	7.6	7.7	6.9
		30.0	37.8	34.6	20.0	43.8	66.0
	TOTAL (MJ)						
UP/DOWN	EGH* ENERGY LOAD	90.0 44.7	88.0 55.7	88.4 60.0	<u>92.2</u> 31.3	85.8 63.7	79.9 54.0
	SDHW SOUTH	6.3	9.4	8.1	7.9	8.0	7.2
		38.4	9.4 46.4		23.4	55.7	
	TOTAL (MJ)			51.9			46.8
	EGH*	87.2	85.3	82.7	90.8	81.9	85.8
ROWHOUSE	ENERGY LOAD	36.3	45.9 0.7	51.2	27.5	53.4 ° 2	
	SDHW SOUTH	6.5	9.7	8.3	8.1	8.2	
	TOTAL (MJ)	29.9	36.1	42.9	19.4	45.2	
	EGH*	90.0	88.5	85.7	92.4	85.3	

EGH* Rating, with Solar Domestic Hot Water (south facing)

		Vancouver Calg	ary Toror	nto Mor	itreal Halif	ax Whit	ehorse
PWW2A	ENERGY LOAD	40.6	54.7	55.1	36.5	29.1	88.6
	SDHW E-W	5.5	7.4	6.8	6.5	6.6	6.2
	TOTAL (MJ)	35.1	47.3	48.3	30.0	22.5	82.4
	EGH*	88	85	84	88	93	73
PWW2B	ENERGY LOAD			51.1	36.2	61.6	
	SDHW E-W			6.8	6.5	6.6	
	TOTAL (MJ)			44.3	29.7	55.0	
	EGH*			85	88	82	
PWW2C	ENERGY LOAD			39.5	41.3		
	SDHW E-W			6.8	6.5		
	TOTAL (MJ)			32.7	34.8		
	EGH*			89	86		
1.5STOREY	ENERGY LOAD	49.6	41.4	48.5	32.8	49.4	69.7
	SDHW E-W	5.4	7.4	6.7	6.4	6.5	6.2
	TOTAL (MJ)	44.2	34.0	41.8	26.4	42.9	63.5
	EGH*	85	89	86	90	86	81
2STOREY60	ENERGY LOAD	38.2	41.4	44.5	35.4	55.2	91.3
	SDHW E-W	5.6	7.2	6.8	6.6	6.7	6.0
2STOREY95	TOTAL (MJ)	32.7	34.2	37.7	28.9	48.5	85.3
	EGH*	89	89	87	89	84	74
2STOREY95	ENERGY LOAD	48.7	49.3	45.4	31.6	60.0	87.7
	SDHW E-W	5.6	7.2	6.8	6.6	6.7	6.0
	TOTAL (MJ)	43.1	42.1	38.5	25.1	53.4	81.7
	EGH*	86	87	87	90	83	75
BUNG60	ENERGY LOAD	36.6	44.5	41.4	27.8	48.9	83.3
	SDHW E-W	5.6	7.2	6.8	6.6	6.7	6.0
BUNG60	TOTAL (MJ)	31.1	37.3	34.6	21.2	42.3	77.3
	EGH*	90	88	88	92	86	77
BUNG95	ENERGY LOAD	21.0	38.7	38.5	36.9	44.4	67.4
	SDHW E-W	5.6	7.2	6.8	6.6	6.7	6.0
	TOTAL (MJ)	15.4	31.5	31.7	30.4	37.7	61.4
	EGH*	95	90	89	88	88	81
SPLITLEVEL	ENERGY LOAD	42.9	57.0	50.1	30.8	61.2	88.2
SFLIILLVLL	SDHW E-W	42.9	7.2	6.8	6.6	6.7	6.0
	TOTAL (MJ)	37.4	49.8	43.3	24.2	54.5	82.2
	EGH*	87	84	43.3 86	91	82	75
	ENERGY LOAD						
SPLIIENIRY	SDHW E-W	36.1 5.6	46.7 7.2	42.4 6.8	27.6 6.6	51.6 6.7	72.9 6.0
	TOTAL (MJ)	30.6	39.4	35.6	21.0	44.9	66.9
	EGH*	90	87	88	92	85	80
UP/DOWN		44.7	55.7	60.0	31.3	63.7	54.0
	SDHW E-W	5.6	7.3	6.8	6.6	6.7	6.1
	TOTAL (MJ)	39.1	48.4	53.2	24.8	57.0	48.0
DOM#12112=	EGH*	87	85	82	90	81	85
ROWHOUSE		36.3	45.9	51.2	27.5	53.4	
	SDHW E-W	5.5	7.4	6.8	6.5	6.6	
	TOTAL (MJ)	30.8	38.5	44.4	21.0	46.7	
	EGH*	90	88	85	92	85	

EGH* Rating, with Solar Domestic Hot Water (east or west facing)

				r	-	r	r
		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2A	space & dhw	18.1		41.4	22.9	15.4	19.2
	Appliance	13.7		13.7	13.7	13.7	13.7
	TOTAL	31.8	54.7	55.1	36.5	29.1	32.9
PWW2B	space & dhw	0.0		37.4	22.6	47.9	
	Appliance		13.7	13.7	13.7	13.7	
	TOTAL			51.1	36.2	61.6	
PWW2C	space & dhw		0.0	25.8	27.6		
	Appliance		13.7	13.7	13.7		
	TOTAL			39.5	41.3		
1.5STOREY	space & dhw	27.8	27.7	34.8	19.2	35.7	56.0
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	41.5	41.4	48.5	32.8	49.4	69.7
2STOREY60	space & dhw	19.7	27.7	30.8	21.7	41.5	18.5
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	33.4	41.4	44.5	35.4	55.2	32.2
2STOREY95	space & dhw	29.1	35.6	31.7	17.9	46.4	20.3
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	42.8	49.3	45.4	31.6	60.1	34.0
BUNG60	space & dhw	17.0	30.8	27.7	14.1	35.3	15.3
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	30.7	44.5	41.4	27.8	49.0	29.0
BUNG95	space & dhw	19.2	25.1	24.8	23.3	30.7	15.3
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	32.9	38.7	38.5	36.9	44.4	29.0
SPLITLEVEL	space & dhw	29.3	43.3	36.4	17.1	47.5	74.5
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	43.0	57.0	50.1	30.8	61.2	88.2
SPLITENTRY	space & dhw	22.5	33.0	28.7	13.9	37.9	59.2
	Appliance	13.7	13.7	13.7	13.7	13.7	13.7
	TOTAL	36.2	46.7	42.4	27.6	51.6	72.9
UP/DOWN	space & dhw	31.0		46.3	17.6	50.0	40.4
	Appliance	13.7		13.7	13.7	13.7	13.7
	TOTAL	44.7	55.7	60.0	31.3	63.7	54.1
ROWHOUSE	space & dhw	22.7	32.2	37.5	13.8	39.7	
	Appliance	13.7	13.7	13.7	13.7	13.7	
	TOTAL	36.4	45.9	51.2	27.5	53.4	

Overall Energy Use Upgraded Envelope, Without Renewables

		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2A	Energy Load	31.8	54.7	55.1	36.5	29.1	32.9
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	0.3	23.2	23.6	5.0	-2.4	1.3
	EGH*	100	93	92	98	101	100
PWW2B	Energy Load			51.1	36.2	61.6	
	PV contribution			31.5	31.5	31.5	
	TOTAL (GJ)			19.5	4.7	30.1	
	EGH*			93	98	90	
PWW2C	Energy Load			39.5	41.3		
-	PV contribution			31.5	31.5		
	TOTAL (GJ)			7.9	9.7		
	EGH*			97	96		
1.5STOREY	Energy Load	41.5	41.4	48.5	32.8	49.4	69.7
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	10.0	9.9	16.9	1.3	17.9	38.2
	EGH*	97	97	94	99	94	88
2STOREY60	Energy Load	33.4	41.4	44.5	35.4	55.2	32.2
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	1.8	9.8	13.0	3.9	23.7	0.7
	EGH*	99	97	96	98	92	100
2STOREY95	Energy Load	42.8	49.3	45.4	31.6	60.0	34.0
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	11.2	17.7	13.8	0.1	28.5	2.4
	EGH*	96	94	95	100	91	99
BUNG60	Energy Load	30.7	44.5	41.4	27.8	48.9	29.0
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	-0.9	13.0	9.8	-3.8	17.4	-2.6
	EGH*	100	96	97	101	94	101
BUNG95	Energy Load	32.9	38.7	38.5	36.9	44.4	29.0
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	1.4	7.2	6.9	5.4	12.9	-2.6
	EGH*	100	98	98	98	96	101
SPLITLEVEL	Energy Load	43.0	57.0	50.1	30.8	61.2	88.2
0. 1	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	11.4	25.5	18.6	-0.7	29.6	56.6
	EGH*	96	92	94	100	90	83
SPLITENTRY	Energy Load	36.2	46.7	42.4		51.6	72.9
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	4.6	15.1	10.9	-3.9	20.0	41.4
	EGH*	98	95	96	102	93	87
UP/DOWN	Energy Load	44.7	55.7	60.0	31.3	63.7	54.0
	PV contribution	31.5	31.5	31.5	31.5	31.5	31.5
	TOTAL (GJ)	13.2	24.2	28.5	-0.2	32.1	22.5
	EGH*	96	92	90	100	90	93
ROWHOUSE	Energy Load	36.4	45.9	51.2	27.5	53.4	
	PV contribution	31.5	31.5	31.5	31.5	31.5	
	TOTAL (GJ)	4.8	14.3	19.6	-4.0	21.8	
	EGH*	98	95	93	102	93	

Upgraded Envelope With 'Full' PV array (8760 kWh contribution annually)

opgraded Em	elope Willi Solar F			1001100	r v an	uy	
		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2A	Energy Load	31.8	54.7	55.1	36.5	29.1	32.9
, .	SDHW+PV	11.3					12.3
	TOTAL (GJ)	20.5					
	EGH*	93		86			
PWW2B	Energy Load	30	00	51.1			
FVVVZD	SDHW+PV	1		13.4			
	TOTAL (GJ)			37.6			
	EGH*						
				87	91		
PWW2C	Energy Load	1		39.5			
	SDHW+PV	-		13.4			
	TOTAL (GJ)			26.0			
(EGH*			91	89		
1.5STOREY	Energy Load	41.5					
	SDHW+PV	12.6					
	TOTAL (GJ)	28.9		33.5			
-	EGH*	90		89			
2STOREY60	Energy Load	33.4					32.2
	SDHW+PV	13.7					14.2
	TOTAL (GJ)	19.7				39.5	
	EGH*	93					95
2STOREY95	Energy Load	42.8	49.3	45.4	31.6	60.0	34.0
	SDHW+PV	13.7	18.1	15.7	15.6	15.7	14.2
	TOTAL (GJ)	29.1	31.2	29.6		44.4	19.8
	EGH*	90	90	90	94	86	94
BUNG60	Energy Load	30.7	44.5	41.4	27.8	48.9	29.0
	SDHW+PV	12.1	16.1	14.0	13.8	14.0	12.6
	TOTAL (GJ)	18.6	28.4	27.4	13.9	35.0	16.4
	EGH*	94	91	91	95	89	95
BUNG95	Energy Load	32.9	38.7	38.5	36.9	44.4	29.0
	SDHW+PV	12.2					12.7
	TOTAL (GJ)	20.7					
	EGH*	93			91		95
SPLITLEVEL	Energy Load	43.0					
	SDHW+PV	11.6					
	TOTAL (GJ)	31.4					
	EGH*	89		88			77
SPLITENTRY	Energy Load	36.2		42.4			72.9
	SDHW+PV	10.2					10.8
	TOTAL (GJ)	26.0		30.3		39.5	62.1
	EGH*	91	90	90	94		81
UP/DOWN	Energy Load	44.7	55.7	60.0			54.0
	SDHW+PV	9.7		11.6			10.4
	TOTAL (GJ)	35.1	42.3	48.4	19.9		43.6
	EGH*	88		40.4	92		43.0
ROWHOUSE	Energy Load	36.4					
	SDHW+PV	9.6					
	TOTAL (GJ)	26.7					
	EGH*	91	90	87	94	86	

Upgraded Envelope	With Solar	Hot Wa	ater and	Rooftop P	V arrav

Opgraueu Liiv	elope with Solar Ho	i vvalci	anu	10	411 F V 7	- <i>iiiay</i> (0	700 KM	
		Vancouver	Calgary		Toronto	Montreal	Halifax	Whitehors e
PWW2A	Energy Load	32		55	55	37	29	33
	SDHW+FULL PV	38		41	40	-		39
	TOTAL (GJ)	-6		13	15			-6
	EGH*	102		96	95			
PWW2B		102		30				102
PVVVZD	Energy Load				51	36		
	SDHW+FULL PV				40	40		
	TOTAL (GJ)				11	-4		
	EGH*				96		93	
PWW2C	Energy Load				39	41		
	SDHW+FULL PV				40	40		
	TOTAL (GJ)				0	2		
	EGH*				100	99		
1.5STOREY	Energy Load	42		41	48	33	49	70
	SDHW+FULL PV	38		42	40			39
	TOTAL (GJ)	3		0	8			30
	EGH*	99		100	97	103		91
2STOREY60	Energy Load	33		41	44	35		32
ZSTURETOU								
	SDHW+FULL PV	38		40	39	39		38
	TOTAL (GJ)	-4		1	5	-4		-6
	EGH*	101		100	98		1	102
2STOREY95	Energy Load	43		49	45			34
	SDHW+FULL PV	38		40	39	39	39	38
	TOTAL (GJ)	5		9	6	-7	21	-4
	EGH*	98		97	98	103	93	101
BUNG60	Energy Load	31		44	41	28		29
	SDHW+FULL PV	38		40	39	39		38
	TOTAL (GJ)	-7		4	2	-11	1	-9
	EGH*	102		99	99		-	103
DUNCOF								
BUNG95	Energy Load	33		39	38			29
	SDHW+FULL PV	38		40	39	39		38
	TOTAL (GJ)	-5		-2	-1			
	EGH*	102		101	100	101		103
SPLITLEVEL	Energy Load	43		57	50	31		88
	SDHW+FULL PV	38		40	39	39	39	38
	TOTAL (GJ)	5		17	11	-8	22	50
	EGH*	98		95	96	103	93	85
SPLITENTRY	Energy Load	36		47	42	28		73
	SDHW+FULL PV	38		40	39	39		
	TOTAL (GJ)	-2		6	3			34
	EGH*	101		98	99	104		
UP/DOWN	Energy Load	45		56	60			54
	SDHW+FULL PV	38		40	39			
	TOTAL (GJ)	7		15	21	-8	-	16
	EGH*	98		95	93			95
ROWHOUSE	Energy Load	36		46	51	28		
1			1	40	20	39	39	
	SDHW+FULL PV	38		40	39	39	59	
	SDHW+FULL PV TOTAL (GJ) EGH*	-1		40 5			1	

Upgraded Envelope with Solar Hot Water and 'Full' PV Array (8760 kWh)

Change in Internal Gain

		Usab	le Inter	nal Ga (%)	ins Fra	action	
		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehors e
PWW2A	Base gains	19.2	17.5	16.6	17.2	15.1	17.2
	Upgrade gains	59.1	38.4	35.4	33.1	31.0	31.9
	Increase	39.9	20.9	18.8	15.9	15.9	14.7
PWW2B	Base gains			16.7	17.4	15.2	
	Upgrade gains			37.7	30.5	35.5	
	Increase			21.0	13.1	20.3	
PWW2C	Base gains			15.4	15.2		
	Upgrade gains			20.6	19.2		
	Increase			5.2	4.0		
1.5STOREY	Base gains	26.5	26.9	22.9	22.6	22.8	18.1
	Upgrade gains	44.1	50.9	44.0	35.7	45.2	37.0
	Increase	17.6	24.0	21.1	13.1	22.4	18.9
2STOREY60	Base gains	28.9	24.3	24.1	21.1	21.3	15.3
	Upgrade gains	56.7	33.7	40.7	30.0	38.5	30.0
	Increase	27.8	9.4	16.6	8.9	17.2	14.7
2STOREY95	Base gains	29.8	23.5	22.6	19.8	23.7	16.7
	Upgrade gains	44.2	40.4	38.4	35.1	35.0	29.0
	Increase	14.4	16.9	15.8	15.3	11.3	12.3
BUNG60	Base gains	25.2	29.2	27.3	23.9	23.2	20.4
	Upgrade gains	61.5	48.5	47.6	43.5	37.0	32.7
	Increase	36.3	19.3	20.3	19.6	13.8	12.3
BUNG95	Base gains	43.2	36.7	34.5	31.4	33.8	21.9
	Upgrade gains	64.1	54.2	51.4	48.2	50.9	38.8
	Increase	20.9	17.5	16.9	16.8	17.1	16.9
SPLITLEVEL	Base gains	29.3	22.8	25.3	22.0	22.1	16.5
	Upgrade gains	53.9	41.4	42.3	41.0	39.1	30.3
	Increase	24.6	18.6	17.0	19.0	17.0	13.8
SPLITENTRY	Base gains	33.3	25.2	25.5	23.8	26.2	21.1
	Upgrade gains	54.9	44.0	44.2	43.0	41.5	34.2
	Increase	21.6	18.8	18.7	19.2	15.3	13.1
UP/DOWN	Base gains	25.0	18.9	19.7	18.3	19.5	21.2
	Upgrade gains	45.1	38.3	31.3	34.8	32.2	37.0
	Increase	20.1	19.4	11.6	16.5	12.7	15.8
ROWHOUSE	Base gains	30.3	22.7	22.3	22.7	22.8	
	Upgrade gains	50.8	44.6	34.0	40.2	36.7	
	Increase	20.5	21.9	11.7	17.5	13.9	

Change in Passive Solar Gains

		Usable Solar Gains Fraction								
		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehors e			
PWW2A	Base gains	12.1	13.7	9.9	12.4	10.1	13.9			
	Upgrade gains	15.9	19.2	15.1	19.4	15.6	13.6			
	Increase	3.8	5.5	5.2	7.0	5.5	-0.3			
PWW2B	Base gains			9.9	12.5	10.2				
	Upgrade gains			15.9	20.2	17.2				
	Increase	0.0	0.0	6.0	7.7	7.0	0.0			
PWW2C	Base gains			9.3	11.2					
	Upgrade gains			10.6	11.0					
	Increase	0.0	0.0	1.3	-0.2	0.0	0.0			
1.5STOREY	Base gains	10.3	11.6	8.4	11.0	9.3	8.1			
	Upgrade gains	16.6	14.9	10.8	16.7	13.4	10.0			
	Increase	6.3	3.3	2.4	5.7	4.1	1.9			
2STOREY60	Base gains	16.8	20.2	24.1	19.3	16.8	14.3			
	Upgrade gains	18.4	26.9	19.7	26.1	20.8	16.9			
	Increase	1.6	6.7	-4.4	6.8	4.0	2.6			
2STOREY95	Base gains	20.0	23.5	19.4	21.1	21.1	15.9			
	Upgrade gains	25.4	25.5	20.9	23.9	22.0	17.7			
	Increase	5.4	2.0	1.5	2.8	0.9	1.8			
BUNG60	Base gains	10.2	13.3	10.7	12.9	11.6	8.8			
	Upgrade gains	13.0	15.8	13.8	16.5	16.7	9.3			
	Increase	2.8	2.5	3.1	3.6	5.1	0.5			
BUNG95	Base gains	12.9	16.3	12.9	14.7	13.5	10.8			
	Upgrade gains	10.9	15.7	12.6	15.0	12.9	11.1			
	Increase	-2.0	-0.6	-0.3	0.3	-0.6	0.3			
SPLITLEVEL	Base gains	14.2	17.1	14.1	15.5	15.4	12.5			
	Upgrade gains	14.6	18.3	15.9	17.6	17.1	13.5			
	Increase	0.4	1.2	1.8	2.1	1.7	1.0			
SPLITENTRY	Base gains	15.2	17.7	14.6	16.5	15.8				
	Upgrade gains	14.2	19.2	16.3	18.7	17.4	13.8			
	Increase	-1.0	1.5	1.7	2.2	1.6	0.8			
UP/DOWN	Base gains	19.6	22.6	18.7	21.0	19.9	21.0			
	Upgrade gains	20.8	25.9	21.0	25.0	23.4	24.8			
	Increase	1.2	3.3	2.3	4.0	3.5	3.8			
ROWHOUSE	Base gains	21.1	24.5	20.5	22.0	20.1				
	Upgrade gains	20.9	26.9	22.6	26.6	24.8				
	Increase	-0.2	2.4	2.1	4.6	4.7				

GHG emission reductions

		Vancouver	Calgary	Toronto	Montreal	Halifax	Whitehorse
PWW2A	Base GHG	15.2	16.4	15.9	24.2	22.2	21.6
	Upgrade GHG	6.6	7.3	7.2	9.2	7.5	14.1
	TOTAL	8.6	9.1	8.7	15.1	14.8	7.5
PWW2B	Base GHG			15.8	23.9	22.0	21.6
	Upgrade GHG			7.0	8.6		
	TOTAL			8.8	15.3	13.2	
PWW2C	Base GHG			16.9	27.4		
	Upgrade GHG			9.0	9.3		
	TOTAL			7.9	18.1		
1.5STOREY	Base GHG	12.2	12.3	12.4	12.4	15.3	24.1
	Upgrade GHG	8.0	6.6	6.9	8.1	7.9	12.8
	TOTAL	4.2	5.7	5.5	4.3	7.4	11.3
2STOREY60	Base GHG	10.7	12.4	11.4	18.6	15.2	25.6
	Upgrade GHG	6.8	6.5	7.6	8.5		13.9
	TOTAL	3.9	5.9	3.8	10.1	6.9	11.7
2STOREY95	Base GHG	9.5	11.3	10.0	19.5	14.6	25.3
	Upgrade GHG	8.2	7.1	7.0	7.9	8.8	14.3
	TOTAL	1.2	4.2	3.0	11.6	5.8	10.9
BUNG60	Base GHG	12.7	11.6	10.8	17.6	14.3	22.5
	Upgrade GHG	6.6	7.1	6.9	7.3	8.7	13.9
	TOTAL	6.0	4.5	4.0	10.3		8.7
BUNG95	Base GHG	7.9	9.4	8.2	14.0	11.2	21.4
	Upgrade GHG	6.4	6.5	6.4	7.1	7.6	12.7
	TOTAL	1.5	2.9	1.7	6.9	3.6	8.8
SPLITLEVEL	Base GHG	11.2	13.0	11.9	20.8	16.6	15.5
	Upgrade GHG	6.6	7.4	7.0	7.8	8.8	14.2
	TOTAL	4.6	5.6	4.9	13.1	7.8	1.3
SPLITENTRY	Base GHG	10.2	12.1	10.8	17.2	12.8	20.0
	Upgrade GHG	6.3	6.9	6.6	7.3	8.1	13.1
	TOTAL	4.0	5.3	4.2	9.9	4.7	6.9
UP/DOWN	Base GHG	10.7	12.9	12.1	21.6	16.1	15.0
	Upgrade GHG	6.7	7.3	7.5	7.8	9.0	8.3
	TOTAL	4.1	5.6	4.6	13.7	7.2	6.7
ROWHOUSE	Base GHG	9.5	11.2	10.6	18.3	14.0	
	Upgrade GHG	6.3	6.8	7.0	7.3	8.2	
	TOTAL	3.2	4.4	3.6	11.0	5.8	

Appendix E: Solar Hot Water Calculations for Canadian Cities

A study of the performance of solar water heating systems that could be applied to the roofs and walls of existing homes across Canada was carried out using RETScreen SWH ver 3. The EQuilibrium technical requirements for hot water consumption of 225 liters per day @ 55°C were assumed. Systems were modelled based on the following variables

Variables in Solar DHW modelling

Orientations	South, Southeast, Southwest, East and West
Slopes	1 in 12 to 12 in 12 and vertical (4°, 9.5°, 14°, 18.5°, 22.5°,
	26.5°, 30.5°, 33.75°, 37°, 40°, 42.5°, 45°, 90° from the
	horizontal)
Collector areas	6 m ² , 12 m ² , 18 m ² , 24 m ²
Ratio of water storage to collector area	40 liters / m^2
Pumping energy	0 watts assuming photovoltaic powered pump or
	thermosyphon system
Collector types	Flat plate (Thermodynamics G 32P), evacuated tube
	(Thermax TMA)
Heat exchanger efficiency	85%
Desired water temperature	55 C
Locations	Vancouver, Whitehorse, Calgary, Edmonton, Saskatoon,
	Winnipeg, Yellow knife, Toronto, Ottawa, Montreal,
	Quebec, Fredricton, Charlottetown, Halifax and St, John's

For each combination of variables the percent annual solar contribution and renewable energy in GJ was calculated. In addition the collector area and storage capacity required for systems to provide 100% solar was also calculated.

General Observations

Based on the product data, weather data and the algorithms used in RETScreen and the input assumptions it appears that solar water heating systems can provide between 40% and 100% of the annual requirements in all locations modelled. The actual ability of a system to provide 100% hot water demand in all future years will be affected by variability in climate that could vary significantly from the historic weather patterns on which the weather data in RETScreen is based.

- The solar system efficiency the percentage of incident solar energy that is converted into useful heat is also calculated by RETScreen.
- Systems with smaller areas of collectors offer higher system efficiencies with highest system efficiencies
 occurring with evacuated tube systems of 6m² in clear continental climates.
- While smaller systems offer a greater bang for the buck like any system supplying less than 100% they require full capacity conventional backup water heating systems.
- To reach the goal of net zero any fuel consumed for the backup system has to be compensated for with onsite renewable energy, this would require the use of sustainably harvested biomass or electricity produced by wind, small scale hydro or photovoltaics.
- Systems with vertically mounted collectors are likely to operate even better than predicted by RETScreen due to the fact that no snow would cover the collectors during the winter and reflection from snow ground cover would increase the amount of solar radiation received.
- Vertically mounted collectors are also less prone to overheating in the summer a problem that has been in encountered particularly with evacuated tube systems.
- Vertical arrays may also be easier to retrofit as they are wall mounted and the collectors will be typically
 closer to the storage tank than a roof mounted system and the piping does not need to be routed
 through an unheated attic space.
- The annual performance of smaller flat plate collector arrays could be improved by adjusting collector slope over the year from vertical in the winter to 30 to 45 degrees in the summer.
- Due to the capital costs of the solar domestic water heat systems the most likely scenario is that smaller systems using between 1 and 4 collectors will be used most widely with a 2 collector system with a collector area of 60 m2 being the most common.

East and West Facing Systems

For east and west facing systems there was little variation in the percent annual solar contribution to domestic water heating with change in collector slope. The exception to this being for vertically mounted collectors which are 7 to 12% less effective for the systems with $6m^2$ of collectors and between 6 and 0% less effective for systems with $24 m^2$ of collectors. Although systems that used evacuated tube collectors performed significantly better for systems that have small collector areas this difference was much less pronounced for the larger systems. This presumably is due to the fact that the larger systems with larger storage capacities operate for longer periods of time at lower collector inlet temperatures than the smaller systems.

The most representative system of those typically installed today (2007) consist of 6m² of collector and a 240 liter storage tank. In cloudy marine climates these systems are predicted to contribute between 38 and 48% of the annual hot water requirements for systems using flat plate collectors and between 59 and 62% for systems using evacuated tube collectors. In sunnier continental climates these systems are predicted to contribute 53% for systems using flat plate collectors and between 69 and 71% for systems using evacuated tube collectors.

An issue that is not addressed by RETScreen is variation in availability of solar radiation over the day. RETScreen assumes that east and west facing surfaces receive identical levels of radiation. This maybe the case in continental climates but based on observations in Vancouver, east facing surfaces see lower solar radiation levels than west facing surfaces due to early morning cloud cover which often burns off by late morning resulting in higher solar radiation levels on west facing surfaces in the afternoon. In addition afternoon temperatures tend to be higher than morning temperatures resulting in lower heat losses for the solar collector and therefore higher system performance.

Southeast and Southwest Systems

Southeast and Southwest facing systems collect more solar radiation per square meter than east and west facing systems for the same slope. Systems consisting of 6m² of collector and a 240 liter storage tank in cloudy marine climates are predicted to contribute between 42 and 51% of the annual hot water requirements for systems using flat plate collectors and between 59 and 70% for systems using evacuated tube collectors. In sunnier continental climates these systems are predicted to contribute 55 and 68% for systems using flat plate collectors and between 71 and 86% for systems using evacuated tube collectors.

South Facing Systems

As would be expected south facing roof mounted systems with slopes in the range of 30 to 45 degrees produced the most energy per square meter of collector area although this is less pronounced in cloudy maritime climates and more pronounced in clearer continental climates. Systems consisting of 6m² of collector and a 240 liter storage tank in cloudy marine climates are predicted to contribute between 42 and 53% of the annual hot water requirements for systems using flat plate collectors and between 62 and 73% for systems using evacuated tube collectors. In sunnier continental climates these systems are predicted to contribute 55 and 73% for systems using flat plate collectors and between 74 and 93% for systems using evacuated tube collectors.

Snow

The effect of snow cover in winter on the performance of solar collectors has not been accounted for as no method appears to have been developed to predict the effect of snow cover on solar collector performance. For this reason values given for sloped arrays will be higher than actual performance. As noted elsewhere vertical system performance will likely be higher than predicted due to increase solar radiation reflected from snow ground cover.

Combination Systems

With larger collector arrays and larger storage systems the use of these systems to provide a portion of the annual space heating requirements in addition to domestic water heating presents itself particularly in the spring and fall. The modelling of the performance of these combi systems is beyond the capabilities of RETScreen at this time and therefore was not pursued but should be investigated at a later time for use in net zero buildings.

Vertical evacuated collector array as part of a solar combination system

Sample tables showing all results of the RETScreen runs for Vancouver and Calgary for both flat plate and evacuated tube systems are displayed on the following pages. The tables after that summarize results for flat plate and evacuated tube systems in 15 cities across the country.

Vancouver 225 liters per day @ 55 $^\circ\mathrm{C}$ Thermodynamics G 32P Flat Plate Collector	day @ 55 °C	Thermody	/namics (G 32P Fla	t Plate Collec	stor	v	40 liters /	40 liters / m ^z storage	Ø							
					% Solar	Renewable			% Solar	Renewable			% Solar	Renewable		-	% Solar
					Fraction of	Energy			Fraction	Energy			Fraction	Energy		_	Fraction
	Slope Rise				Annual	Delivered in			of Annual			-	of Annual	Delivered in		0	of Annual
	and Run	Slope	Collec	Collector Area	DHW	GJ	Collector Area	or Area	DHW	G	Collector Area	nr Area	DHW	G	Collector Area		DHW
Direction	Inches	Degrees	m²	ft ²			, u	ft≤			ъ	ff ^z			m²	ft ^z	
East / West	1 in 12	4	9	65	47%	7.26	12	129	%85	9.08	18	194	68%	10.64	24	258	83%
	2 in 12	9.5	9	65	47%	7.26	12	129	%89	9.08	18	194	68%	10.64	24	258	83%
	3 in 12	14	9	65	46%	7.15	12	129	%85	9.08	18	194	68%	10.64	24	258	83%
	4 in 12	18.5	9	65	46%	7.15	12	129	%85	9.08	18	194	%69	10.66	24	258	83%
	5 in 12	22.5	9	65	46%	7.15	12	129	58%	9.08	18	194	69%	10.66	24	258	83%
	6 in 12	26.5	9	65	46%	7.15	12	129	58%	9.08	18	194	69%	10.66	24	258	83%
	7 in 12	30.5	9	65	46%	7.10	12	129	58%	9.07	18	194	%69	10.65	24	258	83%
	8 in 12	33.75	9	65	45%	7.06	12	129	28%	90.6	18	194	68%	10.64	24	258	83%
	9 in 12	37	9	65	45%	7.02	12	129	%85	9.04	18	194	68%	10.62	24	258	83%
	10 in 12	40	9	65	45%	6.97	12	129	%89	9.02	18	194	68%	10.60	24	258	83%
	11 in 12	42.5	9	65	44%	6.92	12	129	%85	00.6	18	194	68%	10.58	24	258	83%
	12 in 12	45	9	65	44%	6.87	12	129	28%	8.97	18	194	68%	10.55	24	258	83%
	Vertical Wal	06	9	65	32%	4.99	12	129	48%	7.42	18	194	%09	9.34	24	258	77%
					% Solar	Renewable			% Solar	Renewable			% Solar	_			% Solar
					Fraction of	Energy			Fraction	Fraction Energy			Fraction	Energy		-	Fraction
	Slope Rise				Annual	Delivered in			of Annual	Delivered in			of Annual	-			f Annual
i	and Run	Slope	Collec	Collector Area	DHW	/ C	Collecto	Collector Area	DHW	G	Collector Area		DHW	6	Collector Area		MHQ

Renewable Energy Delivered in GJ	7.40	7.56	7.67
% Solar Fraction of Annual DHW	48%	49%	49%
Collector Area m ² ft ²	65	92	92
Collec m ²	6	9	9
Slope Degrees	4	9.5	14
Slope Rise and Run Inches	1 in 12	2 in 12	3 in 12
Direction	Southeast / Southwest		

84% 86% /000 87%

24 24

10.89 11.18 1.39

70% 72%

194 194 194 ò

18 8 18

9.26 9.46 9.60

61% 59% 62% 7029

129 129 129 120

258 258 258

Collector Area m² ft²

Collector Area m² ft²

Collector Area m² ft²

88%	89%	89%	%06	%06	91%	91%	91%	91%	89%	% Solar Fraction of Annual DHW
258	258	258	258	258	258	258	258	258	258	Collector Area
24	24	24	24	24	24	24	24	24	24	Collec
11.57	11.71	11.83	11.94	12.01	12.07	12.12	12.15	12.18	11.20	Renewable Energy Delivered in GJ
74%	75%	%92	%11	%11	%82	%82	%82	%82	72%	% Solar Fraction of Annual DHW
194	194	194	194	194	194	194	194	194	194	Collector Area
18	18	18	18	18	18	18	18	18	18	Collect
9.76	9.88	9.98	10.08	10.15	10.21	10.25	10.28	10.30	8.54	Renewable Energy Delivered in GJ
63%	63%	64%	65%	65%	%99	%99	%99	%99	25%	% Solar Fraction of Annual [DHW
129	129	129	129	129	129	129	129	129	129	Collector Area
12	12	12	12	12	12	12	12	12	12	Collect
7.76	7.83	7.88	7.91	7.93	7.92	7.91	7.88	7.85	5.59	Renewable Energy Delivered in GJ
20%	20%	51%	51%	51%	51%	51%	51%	20%	36%	% Solar Fraction of Annual DHW
65	65	65	65	65	65	65	65	65	65	Collector Area
9	9	9	9	9	9	9	9	9	9	Collect
18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06	Slope
4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall	Slope Rise and Run

Direction South

	85%	87%	88%	%06	91%	92%	92%	63%	93%	94%	94%	94%	94%
ft²	258	258	258	258	258	258	258	258	258	258	258	258	258
m2	24	24	24	24	24	24	24	24	24	24	24	24	24
	10.99	11.39	11.67	11.92	12.11	12.28	12.43	12.53	12.63	12.70	12.75	12.80	11.73
	71%	73%	75%	77%	78%	29%	80%	81%	81%	82%	82%	82%	75%
ft²	194	194	194	194	194	194	194	194	194	194	194	194	194
a2	18	18	18	18	18	18	18	18	18	18	18	18	18
	9.32	9.60	9.84	10.07	10.27	10.44	10.60	10.70	10.71	10.87	10.91	10.95	8.86
	%09	62%	63%	65%	%99	%29	68%	%69	%69	%02	%0 <i>L</i>	%02	57%
ft ²	129	129	129	129	129	129	129	129	129	129	129	129	129
m²	12	12	12	12	12	12	12	12	12	12	12	12	12
	7.45	7.67	7.82	7.97	8.07	8.15	8.22	8.25	8.27	8.27	8.26	8.24	5.48
	48%	49%	50%	51%	52%	52%	53%	53%	53%	53%	53%	53%	35%
ft²	65	65	65	65	65	65	65	65	65	65	65	65	65
m²	9	9	9	9	9	9	9	9	9	9	9	9	9
Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall

Vancouver 225 liters per day @ 55 °C Thermax TMA Evacuated Tube Collector

0.000										
5 liters per (day @ 55 °C	Thermax	5 liters per day @ 55 °C Thermax TMA Evacuated Tube Collector	ube Collector		40 liters / m ² storage	s / m ^z sto	orage		
				% Solar	% Solar Renewable			% Solar	% Solar Renewable	
				Fraction of Energy	Energy			Fraction	Energy	
	Slope Rise			Annual	Annual Delivered in Collect	Collect	-	of Annual	of Annual Delivered in Colle	Colle
	and Run	Slope	and Run Slope Collector Area	DHW	GJ or Area	or Area		DHW	GJ	or Are

Renewable % Solar	Energy	Delivered in Collect of Annual	GJ or Area DHW	m ⁴ ft ²	12.22 24 258 82.00%	12.23 24 258 82.00%	12.24 24 258 82.00%	12.25 24 258 82.00%	12.25 24 258 82.00%	12.26 24 258 82.00%	12.26 24 258 82.00%	12.25 24 258 82.00%	12.25 24 258 82.00%	12.23 24 258 82.00%	12.22 24 258 82.00%	12.21 24 258 82.00%	11.24 24 258 76.00%
% Solar Re	Fraction E	of Annual Del	DHW		%62	%62	%6 <i>L</i>	%62	%62	%62	%6 <i>L</i>	%62	%62	%62	%62	78%	72%
				ft₂	194	194	194	194	194	194	194	194	194	194	194	194	194
		n Collect	or Area	m∠	18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable	Energy	Delivered in Collect	GJ		11.42	11.42	11.43	11.44	11.44	11.44	11.44	11.43	11.42	11.41	11.39	11.37	10.36
% Solar	Fraction	of Annual	DHW		73.00%	73.00%	73.00%	74.00%	74.00%	74.00%	74.00%	74.00%	73.00%	73.00%	73.00%	73.00%	67.00%
				ft ²	129	129	129	129	129	129	129	129	129	129	129	129	129
		Collect	or Area	m²	12	12	12	12	12	12	12	12	12	12	12	12	12
Renewable	Energy	Delivered in	G		9.65	9.65	9.65	9.65	9.65	9.64	9.63	9.61	9.59	9.57	9.55	9.52	7.89
% Solar	Fraction of	Annual	DHW		62.00%	62.00%	62.00%	62.00%	62.00%	62.00%	62.00%	62.00%	62.00%	62.00%	61.00%	61.00%	51.00%
			ector Area	ŧt _z	65	65	65	65	65	65	65	65	65	65	65	65	65
			Collect	m²	9	9	9	9	9	9	9	9	9	9	9	9	9
			Slope	Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
		Slope Rise	and Run	Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall
				Direction	East / West												

% Solar Fraction of Annual DHW		83%	85%	86%	87%	88%	89%	%68	%06	%06	%06	%06	91%	89%
	ft^2	258	258	258	258	258	258	258	258	258	258	258	258	258
Collect or Area	m ²	24	24	24	24	24	24	24	24	24	24	24	24	24
Renewable Energy Delivered in Collect G.I or Area		12.43	12.70	12.89	13.06	13.19	13.29	13.38	13.44	13.49	13.54	13.57	13.59	13 21
% Solar % Fraction of Annual E		80%	82%	83%	84%	85%	85%	%98	86%	87%	87%	87%	%28	85%
	ft²	194	194	194	194	194	194	194	194	194	194	194	194	194
Collect or Area	m ²	18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable Energy Delivered in Collect G.I or Area	2	11.63	11.90	12.08	12.24	12.36	12.47	12.56	12.63	12.69	12.73	12.76	12.79	13.23
% Solar Fraction of Annual 1 DHW		75%	%92	%82	%62	%62	80%	81%	81%	82%	82%	82%	82%	%62
	ft²	129	129	129	129	129	129	129	129	129	129	129	129	129
Collect or Area	m ²	12	12	12	12	12	12	12	12	12	12	12	12	12
Renewable Energy Delivered in	3	9.84	10.07	10.24	10.39	10.51	10.61	10.69	10.75	10.79	10.82	10.84	10.85	911
% Solar Fraction of Annual DHW		63.00%	65.00%	66.00%	67.00%	68.00%	68.00%	%00.69	69.00%	%00.69	%00.07	%00.07	%00.07	29 00%
or Area	ft ²	65	65	65	65	65	65	65	65	65	65	65	65	65
Collect	m ²	9	9	9	9	9	9	9	9	9	9	9	9	9
enologi	Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
Slope Rise and Run	Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall

Direction Southeast / Southwest

% Solar Eraction	of Annual	DHW		84%	%98	%88	%68	%06	91%	92%	92%	%86	%86	63%	%86	63%
			ft²	258	258	258	258	258	258	258	258	258	258	258	258	258
	Collect	or Area	m²	24	24	24	24	24	24	24	24	24	24	24	24	24
Renewable	Delivered in Collect	GJ		12.52	12.89	13.15	13.36	13.52	13.66	13.79	13.88	13.96	14.02	14.07	14.11	14.01
	of Annual	DHW		80%	83%	85%	86%	87%	88%	%68	%68	%06	%06	%06	91%	%06
			ft²	194	194	194	194	194	194	194	194	194	194	194	194	194
	Collect	or Area	m^2	18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable Energy	Delivered in	GJ		11.72	12.08	12.32	12.54	12.72	12.87	13.01	13.11	13.20	13.27	13.32	13.36	13.10
% Solar Eraction	_	DHW		<u>75%</u>	%82	%62	81%	82%	83%	84%	84%	85%	%58	85%	85%	84%
			ft^2	129	129	129	129	129	129	129	129	129	129	129	129	129
	Collect	or Area	m²	12	12	12	12	12	12	12	12	12	12	12	12	12
Renewable	Delivered in Collect	GJ		9.91	10.24	10.48	10.69	10.85	11.00	11.12	11.21	11.28	11.33	11.37	11.40	9.12
% Solar Eraction of	Annual	DHW		64.00%	66.00%	67.00%	%00.69	70.00%	71.00%	71.00%	72.00%	72.00%	73.00%	73.00%	73.00%	59.00%
		or Area	ft²	65	65	65	65	65	65	65	65	65	65	65	65	65
		Collect	m²	9	9	9	9	9	9	9	9	9	9	9	9	9
		Slope	Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
	Slope Rise	and Run	Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall

Direction South

	% Solar Fraction	of Annual		ft²	258 87%	258 87%	258 87%	258 88%	258 88%	258 89%	258 89%	258 90%	258 90%	258 90%	258 90%	258 90%	258 90%	% Solar	Fraction	of Annual	
			Collector Area	m²	24	24	24	24	24	24	24	24	24	24	24	24	24				Collector Area
	% Solar Renewable Fraction Energy	Delivered	in GJ		13.27	13.33	13.39	13.48	13.56	13.64	13.71	13.77	13.83	13.88	13.92	13.95	13.59	Renewable	Fraction Energy	Delivered	
	% Solar Fraction	of Annual	DHW		%92	26%	%92	%LL	77%	78%	78%	26%	%62	%62	%62	%08	78%	% Solar	Fraction	of Annual	
			Collector Area	ft²	194	194	194	194	194	194	194	194	194	194	194	194	194				Collector Area
			Collect	щ	18	18	18	18	18	18	18	18	18	18	18	18	18				
	ar Renewable of Enerav	Delivered in	GJ		11.67	11.72	11.79	11.86	11.93	12.01	12.08	12.13	12.18	12.22	12.25	12.28	11.41	Renewable	Energy	Delivered in	Ċ
40 liters / m ^² storage	% Solar Fraction of	Annual	MHQ		%19	67%	%19	68%	68%	%69	%69	%69	%02	%02	%02	%02	65%	% Solar	Fraction of	Annual	14410
40 liters / I			Collector Area	ft²	129	129	129	129	129	129	129	129	129	129	129	129	129				
			Collect	a ^z	12	12	12	12	12	12	12	12	12	12	12	12	12				
ctor	Renewable Enerav	Delivered	in GJ		9.28	9.29	9.31	9.33	9.35	9.36	9.36	9.37	9.36	9.36	9.34	9.32	7.63	Renewable	Energy	Delivered	- -
t Plate Colle	% Solar Fraction of	Annual	DHW		53%	53%	53%	53%	53%	53%	53%	53%	53%	53%	53%	53%	44%	% Solar	Fraction of	Annual	
G 32P Fla			tor Area	ft²	65	65	65	65	65	65	65	65	65	65	65	65	65				V
/namics (Collector	a ^z	9	9	9	9	9	9	9	9	9	9	9	9	9				
Thermody			Slope	Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06				2
lay @ 55 °C		Slope Rise	and Run	Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall			Slope Rise	
Calgary 225 liters per day @ 55 °C Thermodynamics G 32P Flat Plate Collector				Direction	East / West	·		·	·	·		·	·								

% Solar Fraction of Annual DHW	89%	92%	94%	%96	67%	67%	67%	86 %	68%	86 %	%66	%66	100%
Collector Area m²	258	258	258	258	258	258	258	258	258	258	258	258	258
Collect m²	24	24	24	24	24	24	24	24	24	24	24	24	24
Renewable Energy Delivered in GJ	13.79	14.41	14.82	15.18	15.46	15.56	15.76	15.91	16.04	16.15	16.22	16.29	16.18
% Solar Fraction of Annual DHW	29%	82%	85%	%28	88%	%68	%06	91%	92%	92%	63%	63%	92%
r Area ft²	194	194	194	194	194	194	194	194	194	194	194	194	194
Collector Area m² ft²	18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable Energy Delivered in GJ	12.17	12.80	13.26	13.67	13.98	14.27	14.41	14.59	14.75	14.88	14.98	15.06	14.36
% Solar Fraction of Annual DHW	%69	73%	%92	%82	%08	81%	82%	83%	84%	85%	%98	%98	82%
Collector Area m ² ft ²	129	129	129	129	129	129	129	129	129	129	129	129	129
Collect m ²	12	12	12	12	12	12	12	12	12	12	12	12	12
Renewable Energy Delivered in GJ	9.63	10.16	10.55	10.91	11.19	11.43	11.42	11.56	11.68	11.76	11.82	11.86	9.98
% Solar Fraction of Annual DHW	55%	58%	%09	62%	64%	65%	65%	%99	67%	67%	67%	68%	57%
or Area ft ²	65	65	65	65	65	65	65	65	65	65	65	65	65
Collecto m ²	9	9	9	9	9	9	9	9	9	9	9	9	9
Slope Collector Degrees m ²	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
Slope Rise and Run Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall
Direction	Southeast / Southwest												

_														
% Solar Fraction of Annual	DHW	89%	63%	%96	%26	%86	%66	%66	%66	100%	100%	100%	100%	%66
	Collector Area	п 258	258	258	258	258	258	258	258	258	258	258	258	258
	Collect	24 24	24	24	24	24	24	24	24	24	24	24	24	24
Renewable Energy Delivered	in GJ	13.82	14.64	15.17	15.61	15.93	16.21	16.42	16.57	16.69	16.78	16.85	16.91	16.54
% Solar Fraction of Annual	DHW	79%	84%	85%	89%	91%	93%	94%	95%	65%	%96	%96	67%	94%
	Area	н 194	194	194	194	194	194	194	194	194	194	194	194	194
	Collector Area	18 18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable Energy Delivered in	GJ	12.27	13.12	13.71	14.23	14.62	14.97	15.27	15.48	15.67	15.82	15.93	16.03	14.86
% Solar Fraction of Annual	DHW	%02	75%	78%	81%	83%	85%	87%	88%	89%	%06	91%	92%	85%
	Collector Area	п 129	129	129	129	129	129	129	129	129	129	129	129	129
	Collec ²	e ₽	12	12	12	12	12	12	12	12	12	12	12	12
Renewable Energy Delivered	in GJ	9.62	10.34	10.86	11.31	11.67	11.98	12.24	12.42	12.56	12.67	12.74		10.55
% Solar Fraction of Annual	DHW	55%	29%	62%	65%	67%	68%	%02	71%	72%	72%	73%	73%	60%
	Collector Area	ц 65	65	65	65	65	65	65	65	65	65	65	65	65
	Collec	e 9	9	9	9	9	9	9	9	9	9	9	9	9
	Slope	Legrees 4	9.6	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
Slope Rise	and Run	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall

Calgary 225 liters pe

Direction South

ber d	ay @ 55 °C	Thermax 7	TMA Eva	scuated T	per day @ 55 °C Thermax TMA Evacuated Tube Collector	_	40 lite	40 liters / m ² storage	orage								
					% Solar Fraction of	-			% Solar Fraction of	Renewable Energy			% Solar Fraction	% Solar Renewable Fraction Energy			% Solar Fraction
	Slope Rise				Annual	Delivered			Annual	-			of Annual	Delivered			of Annual
	and Run	Slope	Collect	Collector Area	DHW		Collect	Collector Area	DHW	GJ	Collector Area		DHW	in GJ	Collect	Collector Area	DHW
	Inches	Degrees	a ^z	ff²			a ^z	ft²			т ^z	ft²			a ^z	ft²	
st	1 in 12	4	9	65	%69	12.06	12	129	82%	14.36	18	194	87%	15.30	24	258	91%
·	2 in 12	9.5	9	65	%69	12.10	12	129	82%	14.41	18	194	88%	15.35	24	258	91%
<u>#</u>	3 in 12	14	9	65	%69	12.14	12	129	83%	14.47	18	194	88%	15.41	24	258	91%
<u>1</u>	4 in 12	18.5	9	65	%02	12.20	12	129	83%	14.55	18	194	88%	15.49	24	258	92%
·	5 in 12	22.5	9	65	%02	12.25	12	129	83%	14.62	18	194	89%	15.56	24	258	92%
·	6 in 12	26.5	9	65	%02	12.30	12	129	84%	14.69	18	194	89%	15.63	24	258	92%
	7 in 12	30.5	9	65	%02	12.35	12	129	84%	14.76	18	194	89%	15.70	24	258	93%
·	8 in 12	33.75	9	65	%02	12.38	12	129	85%	14.82	18	194	%06	15.76	24	258	93%
·	9 in 12	37	9	65	71%	12.42	12	129	85%	14.82	18	194	%06	15.82	24	258	93%
·	10 in 12	40	9	65	71%	12.44	12	129	85%	14.92	18	194	91%	15.87	24	258	93%
·	11 in 12	42.5	9	65	71%	12.46	12	129	85%	14.96	18	194	91%	15.90	24	258	93%
·	12 in 12	45	9	65	71%	12.47	12	129	86%	14.99	18	194	91%	15.94	24	258	94%
	Vertical Wall	06	9	65	64%	11.29	12	129	85%	14.95	18	194	92%	16.03	24	258	94%

% Solar Fraction of Annual DHW	93%	95%	97%	98%	%66	%66	%66	100%	100%	100%	100%	100%	100%
or Area ft ²	258	258	258	258	258	258	258	258	258	258	258	258	258
Collector Area m ^ź ft ^ź	24	24	24	24	24	24	24	24	24	24	24	24	24
Renewable Energy Delivered in GJ	15.73	16.21	16.51	16.77	16.96	17.13	17.25	17.32	17.38	17.41	17.43	17.45	17.52
% Solar F Fraction of Annual DHW	%06	63%	94%	%96	67%	%86	68%	%66	%66	%66	100%	100%	100%
	194	194	194	194	194	194	194	194	194	194	194	194	194
Collector Area m²	18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable Energy Delivered in GJ	14.81	15.35	15.70	16.02	16.27	16.46	16.62	16.74	16.85	16.94	17.01	17.07	17.32
% Solar F Fraction of Annual C DHW	85%	88%	%06	91%	63%	94%	65%	%96	%96	%26	%26	%26	%66
or Area ft ²	129	129	129	129	129	129	129	129	129	129	129	129	129
Collector Area m ² ft ²	12	12	12	12	12	12	12	12	12	12	12	12	12
Renewable Energy Delivered in GJ	12.47	13.01	13.39	13.74	14.02	14.28	14.51	14.67	14.82	14.94	15.03	15.12	13.98
% Solar F Fraction of Annual I DHW	71%	74%	%92	78%	80%	82%	83%	84%	85%	85%	86%	86%	80%
Collector Area m ² ft ²	65	65	65	65	65	65	65	65	65	65	65	65	65
Collect m ²	6	9	9	9	9	9	9	9	9	9	9	9	9
Slope Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
Slope Rise and Run Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall

1		1													
% Solar Fraction of Annual	DHW		%26	%96	%86	%66	100%	100%	100%	100%	100%	100%	100%	100%	100%
	Collector Area	ft ⁴	258	258	258	258	258	258	258	258	258	258	258	258	258
	Collect	m^	24	24	24	24	24	24	24	24	24	24	24	24	24
Renewable Energy Delivered	in GJ		15.89	16.49	16.86	17.16	17.33	17.42	17.49	17.52	17.52	17.52	17.52	17.52	17.52
% Solar 1 Fraction of Annual			91%	94%	%96	%86	%66	%66	100%	100%	100%	100%	100%	100%	100%
	Area	ft⁺	194	194	194	194	194	194	194	194	194	194	194	194	194
	Collector Area	m^	18	18	18	18	18	18	18	18	18	18	18	18	18
Renewable Energy Delivered in	GJ		14.99	15.68	16.15	16.50	16.76	16.98	17.17	17.17	17.37	17.41	17.44	17.46	17.52
% Solar Fraction of Annual	DHW		86%	%06	92%	94%	%96	67%	98%	%66	%66	%66	100%	100%	100%
	Collector Area	ft*	129	129	129	129	129	129	129	129	129	129	129	129	129
	Collec	m^	12	12	12	12	12	12	12	12	12	12	12	12	12
Renewable Energy Delivered	in GJ		12.64	13.36	13.87	14.34	14.7	15.02	15.31	15.52	15.72	15.88	16.00	16.11	14.56
% Solar Fraction of Annual	DHW		72%	%92	%62	82%	84%	86%	87%	89%	%06	91%	91%	92%	83%
	or Area	ft ⁴	65	65	65	65	65	65	65	65	65	65	65	65	65
	Collector Are	m ²	9	9	9	9	9	9	9	9	9	9	9	9	9
	Slope	Degrees	4	9.5	14	18.5	22.5	26.5	30.5	33.75	37	40	42.5	45	06
Slope Rise	and Run	Inches	1 in 12	2 in 12	3 in 12	4 in 12	5 in 12	6 in 12	7 in 12	8 in 12	9 in 12	10 in 12	11 in 12	12 in 12	Vertical Wall

Calgary 225 liters per

Direction East / West

Direction Southeast / Southwest

Direction South

Housing
Existing
Energy in
Net Zero I
Approaching

S
ິລິ
27 (0)
٩ ک
l/da
225 I/day
e 225
ň
Stora
S
ľ
ģ
or 2
llector
Ī
ar C
Solar
lat Plate
Ε
/ Flat I
≥
Н
olar
Sol
<u> </u>
lesults fo
sul
Re
of
ev
Ś
Š
0

				Danace of Annual Color Contribution to Domostic Meter Hooting in 97 For closed Ain12 to 12/nd	or Contributio	to Domoctiv	itoon nototo	lo rot Dor of	choid dind of the	10:010		ſ
						Orien	Orientation			711171		
		E/	E / W			SE /	SE / SW			0,	S	
						Collector ,	Collector Area in m ²					
City	9	12	18	24	9	12	18	24	9	12	18	24
Vancouver	44 to 47%	58%	68%	83%	48 to 51%	59 to 66%	70 to 78%	84 to 91%	48 to 53%	60 to 70%	71 to 82%	85 to 94%
Clagary	53%	67 to 70%	76 to 80%	87 to 90%	55 to 68%	69 to 86%	79 to 93%	89 to 99%	55 to 73%	70 to 92%	79 to 97%	93 to 100%
Edmonton	49 to 50%	63 to 66%	70 to 75%	82 to 87%	51 to 65%	65 to 83%	74 to 91%	85 to 98%	51 to 70%	66 to 89%	85 to 95%	86 to 100%
W hitehorse	38 to 39%	50 to 52%	56 to 58%	62 to 65%	38 to 46%	51 to 61%	58 to 69%	64 to 80%	32 to 49%	52 to 66%	58 to 74%	65 to 86%
Saskatoon	53 to 54%	65 to 69%	74 to 79%	87 to 91%	55 to 70%	67 to 86%	77 to 93%	89 to 100%	55 to 75%	69 to 91%	79 to 97%	91 to 100%
Winnipeg	20%	63 to 66%	73 to 76%	86 to 89%	52 to 63%	65 to 80%	76 to 90%	88 to 98%	52 to67%	66 to 86%	77 to 94%	89 to 100%
Yellowknife	41to 42%	51 to 54%	57 to 60%	66 to 70%	42 to 51%	53 to 63%	59 to 74%	68 to 87%	42 to 52%	53 to 69%	60 to 80%	69 to 92%
Toronto	51 to 53%	68%	79 to 80%	91 to 92%	55 to 61%	70 to 80%	81 to 90%	93 to 99%	55 to 64%	71 to 84%	83 to 93 %	93 to 99%
Ottawa	51 to 53%	68%	79 to 80%	91 to 92%	55 to 61%	70 to 80%	81 to 90%	93 to 99%	55 to 64%	71 to 84%	82 to 93 %	93 to 100%
Montreal	46 to 48%	64%	75%	87 to 88%	50 to 56%	68 to 76%	76 to 87%	89 to 96%	50 to 59%	67 to 81 %	77% to 90%	89 to 99%
Quebec	49 to 50%	67 to 68%	76 to 78%	88 to 90%	52 to 61%	69 to 82%	78 to 90%	90 to 98%	53 to 65%	70 to 88%	79 to 94%	91 to 100%
Fredricton	46 to 48%	65%	75 to 76%	85 to 88%	49 to 56%	67 to 78%	77 to 88%	89 to 97%	50 to 60 %	66 to 83%	78 to 92%	89 to 99%
Charlottetown	46 to 48%	64 to 65%	74 to 75%	86 to 87%	50 to 57%	66 to 78%	76 to 87%	88 to 96%	50 to 60 %	67 to 82%	77 to 91%	88 to 98%
Halifax	45 to 48%	65 to 66%	76 to 77%	89%	49 to 56%	68 to78%	78 to 88%	90 to 97%	50 to 59%	69 to 82%	79 to 92%	91 to 99%
Saint John's	38 to 41%	56 to 57%	67%	79%	42 to 46%	59 to 67%	69 to 78%	80 to 89%	42 to 49%	59 to 71%	69 to 83%	81 to 93%
						/ 0	- - 0 14 - 74	0/				
		Allina					76 FUL VEHICAL CONTECTOR ALLAY (CHOULD REHECTION HOL ACCOUNTED FUL)		חמוומ עפוופרווי		ILEA LOI)	
		L										
		E /	E / W				SE / SW			,,,	n	
						Collector	Collector Area m⁻					
City	6	12	18	24	6	12	18	24	6	12	18	24
Vancouver	32%	48%	60%	77%	36%	55%	72%	89%	35%	57%	75%	94%
Clagary	44%	65%	78%	%06	27%	82%	92%	100%	%09	85%	94%	86%
Edmonton	41%	62%	74%	87%	55%	80%	91%	%66	59%	84%	94%	99%
W hitehorse	31%	48%	56%	64%	37%	57%	69%	83%	39%	61%	75%	89%
Saskatoon	45%	66%	78%	91%	%09	85%	94%	100%	64%	88%	97%	100%
Winnipeg	40%	61%	74%	88%	52%	%92	89%	%86	54%	79%	91%	86%
Yellowknife	37%	53%	%09	71%	44%	64%	77%	%06	47%	70%	84%	95%
Toronto	37%	58%	72%	%68	45%	%69	84%	98%	45%	20%	85%	98%
Ottawa	37%	28%	72%	%68	45%	%69	84%	%86	45%	%02	85%	98%
Montreal	35%	54%	68%	84%	42%	%59	80%	%96	43%	67%	82%	%96
Quebec	38%	59%	73%	87%	48%	73%	86%	97%	50%	74%	87%	96%
Fredricton	34%	54%	%69	84%	43%	%29	81%	95%	32%	68%	83%	96%
Charlottetown	35%	54%	68%	83%	43%	%29	81%	94%	44%	68%	83%	95%
Halifax	33%	53%	68%	85%	41%	65%	80%	95%	42%	66%	81%	95%
Saint John's	27%	44%	57%	72%	33%	54%	69%	84%	34%	56%	72%	87%

Approaching Net Zero Energy in Existing Housing

			Ranges	Ranges of Annual Solar Contribution to Domestic Water Heating in % For slopes 1in12 to 12in12	lar Contributic	on to Domestic	: Water Heatin	ng in % For sl	opes 1in12 to	12in12		
						Orientation	tation					
		E /	E / W			SE / SW	SW				S	
						Collector /	Collector Area in m ²					
City	9	12	18	24	9	12	18	24	9	12	18	24
Vancouver	61 to 62%	73%	78 to 79%	82%	63 to 70%	75 to 82%	80 to 87%	83 to 91%	64 to 73%	75 to 85%	80 to 91%	84 to 93%
Clagary	69 to 71%	82 to 86%	87 to 91%	91 to 94%	71 to 86%	85 to 97%	90 to 100%	93 to 100%	74 to 93%	87 to 100%	92 to 100%	95 to 100%
Edmonton	65 to 69%	78 to 82%	83 to 85%	86 to 91%	68 to 84%	81 to 95%	86 to 99%	89 to 99%	69 to 89%	82 to 99%	87 to 100%	90 to 100%
W hitehorse	51 to 53%	61 to 64%	65 to 68%	68 to 70%	52 to 83%	63 to 75%	67 to 80%	69 to 84%	53 to 68 %	63 to 80%	68 to 86%	70 to 89%
Saskatoon	68 to 71%	80 to 84%	86 to 90%	89 to 93%	70 to 87%	83 to 97%	88 to 99%	91 to 100%	71 to 92%	84 to 100%	89 to 100%	92 to 100%
Winnipeg	67 to 68%	79 to 82%	85 to 88%	89 to 91%	68 to 81%	81 to 94%	87 to 98%	91 to 99%	69 to 87%	82 to 98%	88 to 100%	91 to 100%
Yellowknife	52 to 55%	61 to 64%	65 to 67%	66 to 69%	54 to 66%	62 to 77%	66 to 82%	68 to 86%	54 to 71%	63 to 83%	66 to 88%	68 to 91%
Toronto	71%	85%	90 to 91%	93 to 94%	%59	86 to 94%	92 to 98%	94 to 99%	73 to 85%	87 to 97%	92 to 99%	95 to 100%
Ottawa	%89	82 to 83%	88 to 89%	91 to 92%	69 to 78%	83 to 92%	89 to 96%	92 to 98%	70 to 82%	84 to 95%	90 to 98%	92 to 99%
Montreal	67%	81 to 82%	87 to 88%	90 to 91%	69 to 77%	83 to 92%	89 to 96%	92 to 98%	69 to 81%	83 to 95%	89 to 98%	92 to 99%
Quebec	69 to 70%	83 to 85%	89 to 91%	92 to 94%	71 to 82%	85 to 95%	91 to 99%	93 to 100%	72 to 87%	85 to 98%	91 to 100%	94 to 100%
Fredricton	%29	82 to 84%	88 to 90%	92 to 93%	69 to 78%	84 to 94%	90 to 97%	93 to 99%	70 to 82%	85 to 96%	90 to 99%	93 to 100%
Charlottetown	%29	82 to 83%	88 to 89%	91 to 92%	69 to 78%	84 to 93%	89 to 97%	92 to 98%	70 to 82%	84 to 96%	90 to 99%	93 to 100%
Halifax	67 to 69%	84 to 85%	90 to 91%	63%	70 to 78%	85 to 94%	91 to 98%	94 to 99%	71 to 82%	86 to 97%	92 to 99%	94 to 100%
Saint John's	59 to 60%	76 to 77%	82 to 83%	86 to 87%	62 to 68%	78 to 87%	84 to 93%	88 to 95%	62 to 81%	78 to 91%	85 to 95%	88 to 98
		Annual 5	Annual Solar Contribu	bution to Domestic Water Heating in % For Vertical Collector Array (Ground Reflection Not Accounted For	tic Water Hea	iting in % For	Vertical Colle	ctor Array (Gr	ound Reflection	on Not Accou	nted For)	
						Orientation	tation					
		E /	E / W			SE / SW	SW				S	
						Collector	Collector Area m ²					
City	9	12	18	24	9	12	18	24	9	12	18	24
Vancouver	51%	67%	72%	76%	%65	%62	85%	%68	%65	84%	%06	93%
Clagary	64%	85%	92%	94%	80%	%66	100%	100%	83%	100%	100%	100%
Edmonton	62%	82%	88%	92%	78%	67%	%66	100%	82%	100%	100%	100%

Overview of Results for Solar DHW Evacuated Tube Solar Collector 40 l/m² Storage 225 l/day @ 55°C

		Annual S	Solar Contribu	ition to Domes	stic Water Hea	Annual Solar Contribution to Domestic Water Heating in % For Vertical Collector Array (Ground Reflection Not Accounted For)	Vertical Colle	ctor Array (Gr	ound Reflectic	on Not Accour	nted For)	
						Orientation	tation					
		E /	E / W			SE / SW	SW			S	~	
						Collector Area m	Area m ²					
City	9	12	18	24	9	12	18	24	9	12	18	24
Vancouver	51%	%29	72%	%92	29%	%62	%28	89%	%69	%†8	%06	93%
Clagary	64%	85%	92%	94%	80%	%66	100%	100%	%83	100%	100%	100%
Edmonton	62%	82%	88%	92%	%82	%26	%66	100%	82%	100%	100%	100%
W hitehorse	47%	63%	68%	%02	57%	%22	%83	87%	%09	84%	%06	92%
Saskatoon	%29	85%	91%	64%	83%	%66	100%	100%	%98	100%	100%	100%
Winnipeg	62%	81%	87%	91%	74%	95%	%66	100%	%11	%66	100%	100%
Yellowknife	52%	64%	68%	%02	64%	%08	%98	%06	%89	%28	92%	95%
Toronto	%09	81%	88%	91%	%69	%86	%26	98%	%69	%26	%66	100%
Ottawa	21%	80%	86%	%68	%99	91%	%96	67%	%29	%96	68%	%66
Montreal	26%	%62	86%	%68	65%	91%	%96	67%	%99	%76	68%	%66
Quebec	%09	82%	89%	92%	71%	94%	%86	%66	%22	%86	100%	100%
Fredricton	26%	80%	87%	91%	%99	63%	%26	98%	%29	%96	%66	100%
Charlottetown	26%	80%	86%	%06	%99	92%	%26	98%	%29	%96	%66	100%
Halifax	25%	80%	88%	91%	64%	92%	%26	98%	%29	%96	%66	100%
Saint John's	47%	71%	80%	84%	54%	83%	91%	94%	25%	%98	%96	98%

Potential for Solar Contribution and Domestic Hot Water Use

The following tables summarize the range of solar energy contributions to annual water heating requirements that are possible with a typical system of 6 m^2 of flat plate collector and 240 liters of storage for typical existing housing types across Canada assuming the collectors are mounted on the roof at the existing roof slope.

The amount of hot water consumed in the home has a significant effect the total percent of the hot water the solar system can supply. The initial assumption used in modelling was that 225 liters per day at 55°C hot water would be used; this is based on the EQuilibrium program requirements. If this consumption can be reduced to 150 liter per day the same sized solar dhw system can contribute between 8 to 12% more of the total annual hot water requirements depending on orientation. Water conservation of course carries other benefits for the water supply system and the waste water treatment system that service the home. In addition as water metering becomes more common water conservation will translate into direct economic benefits for the home owner. For this reason these tables include predicted annual solar contribution based on both 225 and 150 liters per day.

				225 liters per day	consumption (D 550C			0 liters per day c		
Location	Age / Description	Typical Roof Slope	East	/ West		South		East	/ West	S	outh
Vancouver			% Annual Solar Contribution	Annual Energy Deliovered in GJ	% Annual Solar Contribution	Annual Energy Collected in GJ	% Anr Solar Contri	nual bution	Annual Energy Deliovered in GJ	% Annual Solar Contribution	Annual Energy Collected in G
Valicouvei	Pre War	0 in 10	45%	7.02	53%	8.27		53%	E 40	620/	6.5
		9 in 12	45%	6.87	53%	8.24		53% 52%	5.49 5.42	63% 63%	6.5 6.55
	Post War One and Half Storey 1960 - 1970	12 in 12	44%			7.97		52% 54%			
		4 in 12	46%	7.15 7.15	51% 51%	7.97		54%	5.57 5.57	59% 59%	6.13 6.13
	Post 60's	4 in 12	46%		51%	7.97		54%	5.57		
	Split Level	4 in 12	46%	7.15 7.15	51%	7.97		54%	5.57	59% 59%	6.13 6.13
	Split Entry	4 in 12	46%	7.15	52%			54%	5.55	61%	6.33
	Up - Down Duplex	6 in 12	46%	7.15	52%	8.15 7.97		54%	5.55	59%	6.13
	Row House	4 in 12 8 in 12	40%	7.15	53%	8.25		53%	5.52	62%	6.46
	Post 1995	4 in 12	45%	7.15	51%	7.97		53% 54%	5.57	59%	6.13
Whitehorse	F0St 1995	4 111 12	40 %	7.15	51%	1.91		J4 %	5.57	59%	0.15
willenuise	Pre War	9 in 12	42%	7.81	53%	9.75		50%	6.17	62%	7.65
	Post War One and Half Storey	12 in 12	42%	7.84	54%	10.04		50%	6.24	64%	7.92
	1960 - 1970	4 in 12	42%	7.64	48%	8.89		48%	5.98	56%	6.91
	Post 60's	4 in 12	41%	7.64	48%	8.89		48%	5.98	56%	6.91
	Split Level	4 in 12	41%	7.64	48%	8.89		48%	5.98	56%	6.91
	Split Entry	4 in 12 4 in 12	41%	7.64	48%	8.89		48%	5.98	56%	6.91
	Up - Down Duplex	6 in 12	42%	7.72	50%	9.34		49%	6.05	58%	7.24
	Row House	4 in 12	41%	7.64	48%	8.89		48%	5.98	56%	6.91
	Row House	8 in 12	42%	7.79	52%	9.63		50%	6.13	61%	7.51
	Post 1995	4 in 12	41%	7.64	48%	8.89		48%	5.98	56%	6.91
Clagary	1 031 1999	7 111 12	4170	7.04	4070	0.03	_	10 /0	5.50	5070	0.51
Olagaiy	Pre War	9 in 12	53%	9.36	72%	12.56	F	63%	7.37	84%	9.85
	Post War One and Half Storey	12 in 12	53%	9.32	73%	12.74		53%	7.4	87%	10.11
	1960 - 1970	4 in 12	53%	9.33	65%	11.31		52%	7.21	76%	8.83
	Post 60's	4 in 12	53%	9.33	65%	11.31		52%	7.21	76%	8.83
	Split Level	4 in 12	53%	9.33	65%	11.31		62%	7.21	76%	8.83
	Split Entry	4 in 12	53%	9.33	65%	11.31		52%	7.21	76%	8.83
	Up - Down Duplex	6 in 12	53%	9.36	68%	11.98		62%	7.29	80%	9.35
	Row House	4 in 12	53%	9.33	65%	11.31		62%	7.21	76%	8.83
	Row House	8 in 12	53%	9.37	71%	12.42		63%	7.35	83%	9.71
	Post 1995	4 in 12	53%	9.33	65%	11.31		62%	7.21	76%	8.83
Edmonton					1	1 1	`		1	1	1
	Pre War	9 in 12	50%	8.82	68%	12.19	6	60%	7.12	81%	9.65
	Post War One and Half Storey	12 in 12	49%	8.8	70%	12.46		60%	7.17	84%	9.95
	1960 - 1970	4 in 12	49%	8.77	61%	10.83		59%	6.95	72%	8.55
	Post 60's	4 in 12	49%	8.77	61%	10.83		59%	6.95	72%	8.55
	Split Level	4 in 12	49%	8.77	61%	10.83		59%	6.95	72%	8.55
	Split Entry	4 in 12	49%	8.77	61%	10.83		59%	6.95	72%	8.55
	Up - Down Duplex	6 in 12	49%	8.8	65%	11.54		59%	7.02	77%	9.11
	Row House	4 in 12	49%	8.77	61%	10.83		59%	6.95	72%	8.55
	Row House	8 in 12	50%	8.81	68%	12.02		60%	7.09	80%	9.5
	Post 1995	4 in 12	49%	8.77	61%	10.83		59%	6.95	72%	8.55

6 m² flat palte solar collector array with 240 liter storage tank

Location		Turning Drof Oli		225 liters per day	consumption (0 liters per day c		
Location	Age / Description	Typical Roof Slope	East	/ West		South	East	/ West	S	outh
			% Annual Solar	Annual Energy Deliovered in	% Annual Solar	Annual Energy	% Annual Solar	Annual Energy Deliovered in	% Annual Solar	Annual Energy
			Contribution	GJ	Contribution	Collected in GJ	Contribution	GJ	Contribution	Collected in G.
Saskatoon									1	
	Pre War	9 in 12	54%	9.52	74%	13.07	63%	7.39	84%	9.95
	Post War One and Half Storey	12 in 12	54%	9.5	75%	13.35	63%	7.45	87%	10.24
	1960 - 1970	4 in 12	54%	9.52	66%	11.61	61%	7.21	75%	8.87
	Post 60's	4 in 12	53%	9.39	66%	11.61	61%	7.21	75%	8.87
	Split Level	4 in 12	53%	9.39	66%	11.61	61%	7.21	75%	8.87
	Split Entry Up - Down Duplex	4 in 12 6 in 12	53% 53%	9.39 9.47	66% 70%	11.61 12.37	61% 62%	7.21	75% 80%	8.87 9.41
	Row House	4 in 12	53%	9.39	66%	11.61	61%	7.29	75%	8.87
	Row House	8 in 12	54%	9.52	73%	12.9	62%	7.36	83%	9.8
	Post 1995	4 in 12	53%	9.39	66%	11.61	61%	7.21	75%	8.87
Winnipeg										
	Pre War	9 in 12	50%	8.83	66%	11.68	60%	7.02	78%	9.18
	Post War One and Half Storey	12 in 12	50%	8.75	67%	11.85	60%	7.03	80%	9.42
	1960 - 1970	4 in 12	50%	8.85	60%	10.62	59%	6.91	70%	8.27
	Post 60's	4 in 12	50%	8.85	60%	10.62	59%	6.91	70%	8.27
	Split Level	4 in 12	50%	8.85	60%	10.62	59%	6.91	70%	8.27
	Split Entry	4 in 12	50%	8.85	60%	10.62	59%	6.91	70%	8.27
	Up - Down Duplex	6 in 12	50%	8.86	64%	11.19	59%	6.96	74%	8.73
	Row House	4 in 12	50%	8.85	60% 66%	10.62	59%	6.91	70%	8.27
	Row House Post 1995	8 in 12 4 in 12	50% 50%	8.84 8.85	60%	11.56 10.62	60% 59%	7 6.91	77% 70%	9.06 8.27
Toronto	F05(1995	4 111 12	50%	0.00	00%	10.02	39%	0.91	70%	0.27
TOTOTILO	Pre War	9 in 12	52%	8.43	64%	10.51	62%	6.77	77%	8.39
	Post War One and Half Storey	12 in 12	51%	8.27	64%	10.5	61%	6.7	78%	8.47
	1960 - 1970	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Post 60's	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Split Level	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Split Entry	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Up - Down Duplex	6 in 12	52%	8.58	63%	10.31	62%	6.8	74%	8.12
	Row House	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Row House	8 in 12	52%	8.49	64%	10.48	62%	6.79	76%	8.32
Ottown	Post 1995	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
Ottawa	Pre War	9 in 12	52%	8.43	64%	10.51	62%	6.77	77%	8.39
	Post War One and Half Storey	12 in 12	51%	8.27	64%	10.51	61%	6.7	78%	8.47
	1960 - 1970	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Post 60's	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Split Level	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Split Entry	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Up - Down Duplex	6 in 12	52%	8.58	63%	10.31	62%	6.8	74%	8.12
	Row House	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
	Row House	8 in 12	52%	8.49	64%	10.48	62%	6.79	76%	8.32
	Post 1995	4 in 12	53%	8.64	61%	9.98	62%	6.81	72%	7.82
Montreal		<u>.</u>	1=0/		5001		500/			
	Pre War	9 in 12	47%	7.93	59%	9.97	58%	6.5	73%	8.15
	Post War One and Half Storey	12 in 12	46% 48%	7.78 8.12	59%	9.98 9.38	57% 58%	6.44	73%	8.22
	1960 - 1970 Post 60's	4 in 12 4 in 12	48%	8.12	56% 56%	9.38	58%	6.56 6.56	67% 67%	7.58 7.58
	Split Level	4 in 12 4 in 12	48%	8.12	56%	9.38	58%	6.56	67%	7.58
	Split Entry	4 in 12	48%	8.12	56%	9.38	58%	6.56	67%	7.58
	Up - Down Duplex	6 in 12	48%	8.06	58%	9.73	58%	6.55	70%	7.88
	Row House	4 in 12	48%	8.12	56%	9.38	58%	6.56	67%	7.58
	Row House	8 in 12	47%	7.98	59%	9.92	58%	6.52	72%	8.08
	Post 1995	4 in 12	48%	8.12	56%	9.38	58%	6.56	67%	7.58
Quebec										
	Pre War	9 in 12	50%	8.63	65%	11.23	61%	7.12	79%	9.12
	Post War One and Half Storey	12 in 12	49%	8.51	65%	11.31	61%	7.09	80%	9.25
	1960 - 1970	4 in 12	50%	8.72	60%	10.4	61%	7.09	72%	8.37
	Post 60's	4 in 12	50%	8.72	60%	10.4	61%	7.09	72%	8.37
	Split Level	4 in 12	50%	8.72	60%	10.4	61%	7.09	72%	8.37
	Split Entry	4 in 12	50%	8.72	60%	10.4	61%	7.09	72%	8.37
1	Up - Down Duplex	6 in 12	50%	8.7	63%	10.87	61%	7.12	76%	8.76
	Row House	4 in 12 8 in 12	50% 50%	8.72 8.66	60% 64%	10.4 11.14	61% 61%	7.09 7.12	72% 78%	8.37 9.03

6 m² flat palte solar collector array with 240 liter storage tank

			2	225 liters per day	consumption (@ 55oC	150) liters per day c	onsumption @	55oC
ocation	Age / Description	Typical Roof Slope	East	/ West		South	East	/ West	S	outh
			% Annual Solar Contribution	Annual Energy Deliovered in GJ	% Annual Solar Contribution	Annual Energy Collected in GJ	% Annual Solar Contribution	Annual Energy Deliovered in GJ	% Annual Solar Contribution	Annual Energ Collected in G
Fredricton										
	Pre War	9 in 12	47%	7.98	60%	10.23	58%	6.65	74%	8.43
	Post War One and Half Storey	12 in 12	46%	7.83	60%	10.27	58%	6.58	75%	8.51
	1960 - 1970	4 in 12	48%	8.16	56%	9.58	59%	6.68	69%	7.82
	Post 60's	4 in 12	48%	8.16	56%	9.58	59%	6.68	69%	7.82
	Split Level	4 in 12	48%	8.16	56%	9.58	59%	6.68	69%	7.82
	Split Entry	4 in 12	48%	8.16	56%	9.58	59%	6.68	69%	7.82
	Up - Down Duplex	6 in 12	47%	8.11	58%	996	59%	6.67	72%	8.15
	Row House	4 in 12	48%	8.16	56%	9.58	59%	6.68	69%	7.82
	Row House	8 in 12	47%	8.03	60%	10.17	58%	6.66	73%	8.37
	Post 1995	4 in 12	48%	8.16	56%	9.58	59%	6.68	69%	7.82
Charlottetown									- 10/	
	Pre War	9 in 12	47%	8.08	60%	10.27	58%	6.68	74%	8.44
	Post War One and Half Storey	12 in 12	46%	7.93	60%	10.31	58%	6.62	75%	8.52
	1960 - 1970	4 in 12	48%	8.25	56%	9.63	59%	6.72	68%	7.83
	Post 60's	4 in 12	48%	8.25	56%	9.63	59%	6.72	68%	7.83
	Split Level	4 in 12	48%	8.25	56%	9.63	59%	6.72	68%	7.83
	Split Entry	4 in 12	48%	8.25	56%	9.63	59%	6.72	68%	7.83
	Up - Down Duplex	6 in 12	48%	8.2	58%	10.01 9.63	59%	6.71	71%	8.15
	Row House	4 in 12	48% 47%	8.25 8.12	56% 60%	9.63	59% 59%	6.72 6.69	68% 73%	7.83 8.37
	Row House	8 in 12								
1-114	Post 1995	4 in 12	48%	8.25	56%	9.63	59%	6.72	68%	7.83
Halifax	Dro W/or	0 in 10	460/	7.01	E00/	0.05	500/	6.57	700/	0.04
	Pre War Post War One and Half Storey	9 in 12 12 in 12	46% 45%	7.81 7.64	59% 59%	9.95 9.95	58% 58%	6.57 6.47	73% 74%	8.24 8.28
	1960 - 1970	4 in 12	45%	8.02	59%	9.95	59%	6.65	69%	7.73
	Post 60's	4 in 12	48%	8.02	56%	9.38	59%	6.65	69%	7.73
	Split Level	4 in 12	48%	8.02	56%	9.38	59%	6.65	69%	7.73
	Split Entry	4 in 12	48%	8.02	56%	9.38	59%	6.65	69%	7.73
	Up - Down Duplex	6 in 12	48%	7.95	58%	9.72	59%	6.64	71%	8.03
	Row House	4 in 12	48%	8.02	56%	9.38	59%	6.65	69%	7.73
	Row House	8 in 12	47%	7.86	59%	9.91	59%	6.6	73%	8.2
	Post 1995	4 in 12	48%	8.02	56%	9.38	59%	6.65	69%	7.73
St. John's	1 031 1555	7 111 12	4070	0.02	3070	5.50	5570	0.00	0370	1.15
51. 501113	Pre War	9 in 12	39%	6.77	49%	8.47	50%	5.76	62%	7.18
	Post War One and Half Storey	12 in 12	38%	6.61	49%	8.46	49%	5.65	62%	7.21
	1960 - 1970	4 in 12	40%	6.97	46%	8.01	51%	5.88	58%	6.74
	Post 60's	4 in 12	40%	6.97	46%	8.01	51%	5.88	58%	6.74
	Split Level	4 in 12	40%	6.97	46%	8.01	51%	5.88	58%	6.74
	Split Entry	4 in 12	40%	6.97	46%	8.01	51%	5.88	58%	6.74
	Up - Down Duplex	6 in 12	40%	6.91	48%	8.29	51%	5.85	61%	7
	Row House	4 in 12	40%	6.97	46%	8.01	51%	5.88	58%	6.74
	Row House	8 in 12	39%	6.82	49%	8.44	50%	5.79	62%	7.15
	Post 1995	4 in 12	40%	6.97	46%	8.01	51%	5.88	58%	6.74

6 m² flat palte solar collector array with 240 liter storage tank

Solar DHW System Costing

In discussions with the solar water heater installation industry the following rules of thumb for pricing for installed systems have been derived for the systems analyzed. Prices include controls, pumps, piping and tank.

Flat	Plate Collector Systems			\$ / m ²	Total System Cost
6	m ² collector system w/	240	liter tank	\$1,200.00	\$7,200.00
12	m ² collector system w/	480	liter tank	\$1,100.00	\$13,200.00
18	m ² collector system w/	720	liter tank	\$1,000.00	\$18,000.00
24	m ² collector system w/	960	liter tank	\$900.00	\$21,600.00
27	m ² collector system w/	1080	liter tank	\$900.00	\$24,300.00
30	m ² collector system w/	1200	liter tank	\$800.00	\$24,000.00
33	m ² collector system w/	1320	liter tank	\$800.00	\$26,400.00
36	m ² collector system w/	1440	liter tank	\$800.00	\$28,800.00
39	m ² collector system w/	1560	liter tank	\$800.00	\$31,200.00
42	m ² collector system w/	1680	liter tank	\$800.00	\$33,600.00

Eva	cuated Tube Collector System	ns		\$ / m ²	Total System Cost
6	m ² collector system w/	480	liter tank	\$2,600.00	\$15,600.00
12	m ² collector system w/	960	liter tank	\$2,600.00	\$31,200.00
18	m ² collector system w/	1440	liter tank	\$2,400.00	\$43,200.00
24	m ² collector system w/	1920	liter tank	\$2,200.00	\$52,800.00
27	m ² collector system w/	2160	liter tank	\$2,000.00	\$54,000.00
30	m ² collector system w/	2400	liter tank	\$1,800.00	\$54,000.00
33	m ² collector system w/	2640	liter tank	\$1,800.00	\$59,400.00
36	m ² collector system w/	2880	liter tank	\$1,800.00	\$64,800.00
39	m ² collector system w/	3120	liter tank	\$1,800.00	\$70,200.00
42	m ² collector system w/	3360	liter tank	\$1,800.00	\$75,600.00

Economic Viability of Solar DHW Systems

Using the cost analysis and financial summary tabs in RETScreen the economic viability of solar domestic water heating systems was analyzed for the most typical type of system that would be installed consisting of 6m² of flat plate solar collector with 240 liters of storage. Analysis was carried out for 15 locations with collector slopes of 4 in 12 (18.5°) and 12 in 12 (45°) and hot water consumption of 225 liters per day and 150 liters per day. Roof slopes of 4 in 12 and 12 in 12 represent the typical lowest and slope and steepest slope for roofs in the existing Canadian housing stock.

Approaching Net Zero Energy in Existing Housing

									150 Liters / Day	225 Liters / Day
City	Solar Water Heating System Type	Total System Cost	Eco Energy Grant	Net Cost to Purchaser	Conventional Fuel Displaced	Conventional Fuels Cost / GJ	Fuel Cost Inflation Rate	Discount Rate	Consumption Years to Positive Cash Flow	Consumption Years to Positive Cash Flow
JevilopaeV	6 m ² Flate Plate	00C 2\$	\$1 800	\$5 400	536	50 FU	10%	7001	9.06	18 3
	6 m ² Flate Plate)	0		202	0.04	0.02
W hitehorse	Collector	\$7,200	\$1,800	\$5,400	Oil	\$26.74	10%	10%	10.6	9.2
Calgary	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$4.73	10%	10%	22.7	20.3
Edmonton	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$4 [.] 73	10%	10%	23	20.7
Saskatoon	6 m ² Flate Plate Collector	\$7.200	\$1.800	\$5.400	Gas	\$7.00	10%	10%	16.9	14.6
Winnipeg	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$7.76	10%	10%	18.6	16.4
Yellowknife	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	lio	\$24.66	10%	10%	10.8	9.1
Toronto	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$10.70	10%	10%	20.1	17.9
Ottawa	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$10.70	10%	10%	20.2	18.1
Montreal	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Electricity	\$19.53	10%	10%	11.8	10.3
Quebec	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Electricity	\$19.53	10%	10%	1.11	9.6
Fredricton	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	lio	\$20.77	10%	10%	1.11	2.6
Charlottetown	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	lio	\$20.77	10%	10%	11.1	9.7
Halifax	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	lio	\$20.77	10%	10%	11.2	6.6
St. John's	6 m ^z Flate Plate Collector	\$7,200	\$1,800	\$5,400	Oil	\$22.07	10%	10%	12.2	10.9

 6 m^2 flat plate solar collector array with 240 liter storage tank hot water supplied at 55°C south facing 4 in 12 slope

Approaching Net Zero Energy in Existing Housing

	Solar Water Heating	Total	Eco Energy	Net Cost to	Conventional	Conventional	Fuel Cost		150 Liters / Day Consumption Years to	225 Liters / Day Consumption Years to
City	System Type	System Cost		Purchaser	Fuel Displaced	Fuels Cost / GJ	Inflation Rate	Discount Rate	Positive Cash Flow	
200 NOC 200	6 m ² Flate Plate	000 24	000	¢E 100	°°U	\$0 E0	108/	100/	cc	ç
varicouver		007' I¢	\$1,000	\$0,400	Cds	00.0¢	0.01	10.70	20	0
Whitehorse	6 m⁺ Flate Plate Collector	\$7,200	\$1,800	\$5,400	Oil	\$26.74	10%	10%	9.8	8.6
Calgary	6 m ² Flate Plate Collector	\$7,200	\$1.800	\$5.400	Gas	\$4.73	10%	10%	21.4	19.2
	6 m ² Flate Plate									
Edmonton	Collector	\$7,200	\$1,800	\$5,400	Gas	\$4.73	10%	10%	21.5	19.4
Saskatoon	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$7.00	10%	10%	15.7	13.5
Winninea	6 m ² Flate Plate Collector	200	\$1,800	\$5.400	Seb	\$7.76	10%	10%	17 5	15.5
	6 m ² Flate Plate					-				
Yellowknife	Collector	\$7,200	\$1,800	\$5,400	Oil	\$24.66	10%	10%	9.9	8.4
Toronto	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Gas	\$10.70	10%	10%	19.4	17.4
	6 m ² Flate Plate				(
Ottawa	Collector	\$7,200	\$1,800	\$5,400	Gas	\$10.70	10%	10%	19.4	16.92
Montreal	6 m ² Flate Plate Collector	\$7,200	\$1,800	\$5,400	Electricity	\$19.53	10%	10%	11.2	6.6
	6 m ² Flate Plate				:					
Quebec		\$1,200	\$1,800	\$5,4UU	Electricity	\$19.53	%0L	10%	10.4	9.1
Fredricton	6 m⁺ Flate Plate Collector	\$7,200	\$1,800	\$5,400	io	\$20.77	10%	10%	10.5	9.3
Charlottetown	6 m ² Flate Plate Collector	\$7 200	\$1.800	\$5.400	ē	\$20.77	10%	10%	10 تە	с С
	6 m ² Flate Plate									
Halifax	Collector	\$7,200	\$1,800	\$5,400	οi	\$20.77	10%	10%	10.7	9.5
St. John's	6 m [∠] Flate Plate Collector	\$7,200	\$1,800	\$5,400	liO	\$22.07	10%	10%	11.7	10.6

 $6 \, m^2$ flat plate solar collector array with 240 liter storage tank hot water supplied at 55° C south facing 12 in 12 slope

Appendix F: Utilization of Photovoltaic Arrays

An important component of net zero housing is the use of grid connected PV arrays mounted on the roof or wall of the home and/or on an auxiliary building. By sizing the PV array to generate as much electrical power on an annual basis as the house consumes and using the electrical grid in effect as a battery net zero electrical energy consumption can be attained.

Due to the current costs of PV systems it is necessary to minimize the electrical load of the house. For the purposes of this analysis an annual electrical energy budget was used based on that developed for the NZEHH Pilot Demonstration Initiative (now called EQuilibrium Housing) technical requirements of 8760 kWh/yr. The actual annual electrical energy consumption of course will vary with the efficiency of appliances, number and types of appliances, type of lighting and number of lighting fixtures as well as assumptions about the periods of operation.

Following are the assumed PV system characteristics:

- The PV system is central grid connected
- PV energy absorption rate 100%
- PV module type mono-Si
- Nominal PV efficiency 13%
- Nominal Operating Cell Temperature 45 °C
- PV temperature coefficient 0.40 % / °C
- Average inverter efficiency 90%

Using RETScreen ver. P3 the performance of PV systems were analyzed in the cities of Vancouver, Whitehorse, Calgary, Edmonton, Saskatoon, Winnipeg, Yellowknife, Toronto, Montreal, Quebec, Fredericton, Charlottetown, Halifax and Saint Johns. The kW peak (kWp) power ratings and areas for PV arrays were calculated for 12 typical roof slopes (1 in 12 to 12 in 12) and vertical facing 5 orientations of South, Southeast, Southwest, East and West. The arrays were sized according to kWp capacity and area to meet the electrical energy budget of 8760 kWh/yr.

For aesthetic reasons and for simplicity of construction it is desirable although not necessary to mount the PV array on the same slope as the roof. Where the roofing tile incorporates the PV cells the PV array slope will be that of the roof. Another consideration is shading of the PV array due to adjacent buildings and vegetation and coverage of the PV array by snow. A low sloping PV array is less likely to be shaded by adjacent buildings and vegetation but is more likely to be covered in snow. One reference²⁷ found in Minnesota that measured PV power production was reduced by 70% in the winter for an array sloped at 23° and that a 40% reduction in power production was measured for an array in the same location sloped at 40°. Vertical arrays were assumed to be unaffected by snow cover. No credit was given to vertical arrays for reflection from ground snow cover. To gain an understanding of the minimum (kWp) capacity of the PV arrays the basic analysis that was carried out assuming that the arrays are unshaded and not affected by snow cover.

To get a rough approximation of the effect of snow on PV arrays calculations for Calgary and Halifax were also run in which solar radiation levels for November, December, January and February were set at the following.

- For slopes from 1 in12 (4°) to 6 in 12 (26.5°) solar radiation was assumed to be reduced by 70%
- For slopes from 7 in12 (30.5°) to 8 in12 (33.75°) solar radiation was assumed to be reduced by 55%
- For slopes from 9 in12 (37°) to 12 in12 (45°) solar radiation was assumed to be reduced by 40%

For Calgary, a sunny continental climate the kWp capacity required for south facing roof mounted PV arrays increased between 12 and 18%. The kWp capacity of East and West facing roof mounted PV arrays increased between 12 and 16%. The kWp capacity of SE and SW facing roof mounted PV arrays increased between 12 and 16%.

For Halifax, a colder maritime climate the kWp capacity required for south facing roof mounted PV arrays to meet the annual electrical energy budget of 8760 kWh increased between 14 and 17%. The kWp capacity of

²⁷ PV Watts Changing System Parameters: <u>http://rredc.nrel.gov/solar/codes_algs/PVWATTS/system.html</u> viewed July 12, 2007

East and West facing roof mounted PV arrays increased between 8 and 13%. The kWp capacity of SE and SW facing roof mounted PV arrays increased between 12 and 16%.

So it would appear for all climates except Vancouver that kWp capacities (or areas) of PV arrays except for vertical arrays should be increased in the range of 12 to 18% to compensate for snow cover in winter.

The calculations assume a PV array configuration that would allow the array to shed the snow off the end of the roof. If the array is located in a way in which snow can accumulate or drift over the array, array areas would have to be larger. The results of the RETScreen runs for various slopes and orientations of PV arrays are contained in Appendix G and are summarized below. These will represent minimum values and do not account for snow cover or shading.

Vancouver

Roof Mounted PV array range of capacities to meet 8760 kWh/yr	7.77 to 9.77 kWp
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slopes of 7 in 12 to 9 in 12 (30.5 to 37 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	58m ² (644 ft ²) to 75.2 m ² (809 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 11.07 kWp 85.2m ² (917 ft ²)
mono-Si panels	East / West 13.47 kWp 103.6 m ² (1115 ft ²)
	SE / SW 11.4 kWp 87.7 m ² (944 ft ²)

Whitehorse

Roof Mounted PV array range of capacities to meet 8760 kWh/yr	7.82 to 10.68 kWp
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slopes of 12 in 12 (45 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	60.2m ² (648 ft ²) to 82.2 m ² (884.8 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.36 kWp 72m ² (775 ft ²)
mono-Si panels	East / West 13.23 kWp 101.8 m ² (1096 ft ²)
	SE / SW 10.18 kWp 78.3 m ² (843 ft ²)

Calgary

Cargary	
Roof Mounted PV array range of capacities to meet 8760	5.75 to 8.07 kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 12 in 12 (45 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	44.2m ² (476 ft ²) to 62.1 m ² (668 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 6.99 kWp 53.8m ² (579 ft ²)
mono-Si panels	East / West 10.19 kWp 78.4 m ² (844 ft ²)
	SE / SW 7.69 kWp 59.2 m ² (637 ft ²)

Edmonton

Zamenten	
Roof Mounted PV array range of capacities to meet 8760	5.88 to 8.37 kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 12 in 12 (45 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	45m ² (484 ft ²) to 64.4 m ² (668 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 6.92 kWp 53.2m ² (573 ft ²)
mono-Si panels	East / West 10.31 kWp 79.3 m ² (854 ft ²)
	SE / SW 7.66 kWp 58.9 m ² (634 ft ²)

Winnipeg

Roof Mounted PV array range of capacities to meet 8760	6.12 to 8.29 kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 12 in 12 (45 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	47.1m ² (505 ft ²) to 63.8 m ² (687 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 7.57 kWp 58.2m ² (626 ft ²)
mono-Si panels	East / West 10.42 kWp 80.2 m ² (863 ft ²)
	SE / SW 8.16 kWp 62.8 m ² (676 ft ²)

Yellowknife

Roof Mounted PV array range of capacities to meet 8760	7.82 to 10.68 kWp

kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 12 in 12 (45 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	60.2 m ² (648 ft ²) to 82.2 m ² (885 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.36 kWp 72m ² (775 ft ²)
mono-Si panels	East / West 13.22 kWp 101.7 m ² (1095 ft ²)
	SE / SW 10.18 kWp 78.3 m ² (843 ft ²)

Toronto

Roof Mounted PV array range of capacities to meet 8760	7.20 to 8.99 kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 7 in 12 (30.5 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	55.4m ² (596 ft ²) to 69.2 m ² (745 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 10.18 kWp 78.3m ² (843 ft ²)
mono-Si panels	East / West 12.23 kWp 94.1 m ² (1013 ft ²)
	SE / SW 10.46 kWp 80.5 m ² (867 ft ²)

Ottawa

Olland	
Roof Mounted PV array range of capacities to meet 8760	7.10 to 8.86 kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 9 in 12 (37 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	53.2m ² (588 ft ²) to 68.2 m ² (734 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.2 kWp 70.8m ² (762 ft ²)
mono-Si panels	East / West 11.7 kWp 90 m ² (969 ft ²)
	SE / SW 9.67 kWp 74.4 m ² (801 ft ²)

Montreal

Roof Mounted PV array range of capacities to meet 8760 kWh/yr	7.10 to 9.02 kWp
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 9 in 12 (37 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	54.6m ² (588 ft ²) to 68.2 m ² (734 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.45 kWp 72.7m ² (783 ft ²)
mono-Si panels	East / West 12.06 kWp 92.8 m ² (999 ft ²)
	SE / SW 9.96 kWp 76.6 m ² (825 ft ²)

Quebec

Q	
Roof Mounted PV array range of capacities to meet 8760	6.43 to 8.55 kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 11 in 12 (42.5 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	49.5m ² (533 ft ²) to 65.8 m ² (708ft ²)
Wall mounted array capacities and areas for 13% efficient	South 8.15 kWp 62.7m ² (675 ft ²)
mono-Si panels	East / West 10.98 kWp 84.5 m ² (910 ft ²)
	SE / SW 8.55 kWp 65.8 m ² (708 ft ²)

Fredericton

Roof Mounted PV array range of capacities to meet 8760	7.02 to 9.12kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 11 in 12 (42.5 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	54m ² (581 ft ²) to 70.2 m ² (761 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.19 kWp 70.7m ² (675 ft ²)
mono-Si panels	East / West 12.05 kWp 92.7 m ² (998 ft ²)
	SE / SW 9.77 kWp 75.2 m ² (809 ft ²)

Charlottetown

Roof Mounted PV array range of capacities to meet 8760	6.98 to 9.03kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 10 in 12 (40 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	53.7m ² (578 ft ²) to 69.5 m ² (778 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.15 kWp 70.4m ² (758 ft ²)
mono-Si panels	East / West 10.5 kWp 80.8 m ² (870 ft ²)
	SE / SW 9.68 kWp 74.5 m ² (802 ft ²)

Halifax

Roof Mounted PV array range of capacities to meet 8760	7.18 to 9.24kWp
kWh/yr	
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 10 in 12 (40 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	55.2m ² (594 ft ²) to 71.1 m ² (765 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.49 kWp 73m ² (786 ft ²)
mono-Si panels	East / West 12.32 kWp 94.8m ² (1020 ft ²)
	SE / SW 10.07 kWp 77.5 m ² (834 ft ²)

St. John's

Roof Mounted PV array range of capacities to meet 8760 kWh/yr	8.23 to 10.45kWp
Lowest PV array capacity to meet 8760 kWh/yr	South facing roof slope of 9 in 12 (37 degrees)
Highest PV array capacity to meet 8760 kWh/yr	East / West facing roofs with slopes of 12 in 12 (45°)
For 13% efficient mono-Si panels the array areas ranges	63.3 (681 ft ²) to 80.4 m ² (865 ft ²)
Wall mounted array capacities and areas for 13% efficient	South 9.49 kWp 73m ² (786 ft ²)
mono-Si panels	East / West 12.32 kWp 94.8m ² (1020 ft ²)
	SE / SW 11.05 kWp 85 m ² (915 ft ²)

Potential for Power Generation by PV's in the Existing Housing Stock

The following tables summarize the range of sizes of grid connected PV arrays needed for solar energy to supply an annual electricity requirement of 8760 kWh for typical existing housing types across Canada assuming the collectors are mounted on the roof at the existing roof slope. The PV arrays are sized for roofs facing East or West and South. The effect of snow cover on PV array size is also estimated based on the approach described previously. In the cases where the array areas would prove too large for the roof areas available the following strategies could be taken:

Reduce electrical loads further through use of more efficient appliances and lighting

Place all appliances that have parasitic loads on power bars that are only switched on when the appliance is used.

Use roofs of auxiliary buildings such as garages for mounting a portion of the PV array

Use deck covers and porch roofs to support PV arrays.

Use power-cost monitors to give occupants real time information on electrical consumption to encourage demand side load management

Housing
n Existing
Energy ir
Net Zero En
Approaching I

Photovoltaic Location	Photovoltaic Array kWp capacity and area to meet 8760 kWh/ yr Location Age / Description Typical Roof Slope	Typical Roof Slope			East	/ West					Š	South		
				Without Snow Cover		With Sn	With Snow Cover Over Winter	er Winter	Wit	Without Snow Cover	Cover	With Sn	With Snow Cover Over Winter	ver Winter
			Estimated C Req	Estimated Collector Area Required	Nominal PV Array Power	Estimated Collector Area Required	ollector Area lired	Nominal PV Array Power	Estimated Area Re	Estimated Collector Area Required	Nominal PV Array Power	Estimated Collector Area Required	Collector equired	Nominal PV Array Power
Vancouver			m²	ft²	kWp	m ²	ft^2	kwp	m²		kWp		ft ²	kWp
	Pre War	9 in 12	72.6	781	9.44	72.6	781	9.44	59.8	644	7.77	59.8	644	7.77
	Post War One and Half Storev	12 in 12	75.2	608	6.77	75.2	809	6.77	9.08	652	7.88	60.6	652	7.88
	1960 - 1970	4 in 12	68.5	737	8.90	68.5	737	8.90	60.9	656	7.92	60.9	656	7.92
	Post 60's	4 in 12	68.5	737	8.90	68.5	737	8.90	60.9	656	7.92	60.9	656	7.92
	Split Level	4 in 12	68.5	737	8.90	68.5	737	8.90	60.9	656	7.92	60.9	656	7.92
	Split Entry	4 in 12	68.5	737	8.90	68.5	737	8.90	60.9	656	7.92	60.9	656	7.92
	Up - Down Duplex	6 in 12	20	753	9.10	20	753	9.10	09	646	7.80	60.0	646	7.80
	Row House	4 in 12	68.5	737	8.90	68.5	737	8.90	6.03	656	7.92	60.9	656	7.92
	Row House	8 in 12	71.7	772	9.32	71.7	772	9.32	8.63	644	7.77	59.8	644	7.77
	Post 1995	4 in 12	68.5	737	8.90	68.5	737	8.90	60.9	656	7.92	60.9	656	7.92
Whitehorse														
	Pre War	9 in 12	80.8	870	10.50	89.3	961	11.61	60.9	656	7.92	70.0	754	9.10
	Post War One and Half Storey	12 in 12	82.2	885	10.68	8.06	978	11.81	60.2	648	7.82	69.2	745	9.00
	1960 - 1970	4 in 12	78.7	847	10.23	87.0	936	11.30	65.8	708	8.55	75.7	815	9.84
	Post 60's	4 in 12	78.7	847	10.23	87.0	936	11.30	65.8	708	8.55	75.7	815	9.84
	Split Level	4 in 12	78.7	847	10.23	87.0	936	11.30	65.8	708	8.55	75.7	815	9.84
	Split Entry	4 in 12	78.7	847	10.23	87.0	936	11.30	65.8	708	8.55	75.7	815	9.84
	Up - Down Duplex	6 in 12	79.5	856	10.33	87.8	946	11.42	63.1	679	8.20	72.6	781	9.43
	Row House	4 in 12	78.7	847	10.23	87.0	936	11.30	65.8	708	8.55	75.7	815	9.84
	Row House	8 in 12	80.5	867	10.46	89.0	958	11.56	61.4	661	7.98	70.6	760	9.18
	Post 1995	4 in 12	78.7	847	10.23	87.0	936	11.30	65.8	708	8.55	75.7	815	9.84
Clagary														
	Pre War	9 in 12	60.8	654	7.90	70.5	759	9.17	44.8	482	5.82	52.9	569	6.87
	Post War One and			000				000	0			0	, L	
	Half Storey	12 IN 12	62.1 50 F	668 620	8.07	12.0	9// 9//	9.36	44.2	4/6	6.75 6.00	52.2	561 24 F	6.78
		4 11 12	0.0 1 1	000	00.7	97.9 07.0	007	0.02	40.4	170	0.29	1.10	10	1.42
		4 IN 12	2.20.7 7.07	630	7.60	67.0	/30	8.82	48.4	129	6.29	1.7d	615 645	7.42
		4 11 12	C.0C.	020	00.7	6-0 0-0	00/	0.02	40.4	170	0.29	1.70	10	1.42
	Split Entry	4 in 12	58.5	630	7.60	67.9	730	8.82	48.4	521	6.29	57.1	615	7.42
	Up - Down Duplex	6 in 12	59.3	638	7.71	68.8	740	8.94	46.4	499	6.03	54.8	589	7.12
	Row House	4 in 12	58.5	630	7.60	67.9	730	8.82	48.4	521	6.29	57.1	615	7.42
	Row House	8 in 12	60.2	648	7.82	69.8	752	9.08	45.2	487	5.88	53.3	574	6.93
	Post 1995	4 in 12	58.5	630	7.60	67.9	730	8.82	48.4	521	6.29	57.1	615	7.42

139

Housing
Existing
Energy in
Net Zero I
Approaching

Photovoltaic. Location	Photovoltaic Array kWp capacity and area to meet 8760 kWh/ yr Location A de / Description Tvpical Roof Slope	nd area to meet 8760 Tvpical Roof Slope	0 kWh/ yr		East	East / West					Sc	South		
	-			Without Snow Cover		With Sr	With Snow Cover Over Winter	er Winter	Witł	Without Snow Cover		With Sn	With Snow Cover Over Winter	ver Winter
			Ectimated C	Ectimated Collector Area		∏ c+iv	Ectimated Collector Area		Totional Collocias		Nominal DV	Ectimated Collector		Mominal DV
			Req	su collector Area Required	Array Power		Required	AT:	Area Required		Array Power	Area Required	collector	Array Power
Edmonton			m²	ft²	kWp	m²	ft ²	kWp	m²		kWp	m²	ft ²	kWp
	Pre War	9 in 12	63.2	680	8.21	73.3	789	9.53	45.8	493	5.95	54.0	582	7.02
	Post War One and													
	Half Storey	12 in 12	64.4	693	8.37	74.7	804	9.71	45.2	487	5.88	53.3	574	6.93
	1960 - 1970	4 in 12	61.3	660	7.97	71.1	765	9.24	50.2	540	6.53	59.2	638	7.70
	Post 60's	4 in 12	61.3	660	7.97	71.1	765	9.24	50.2	540	6.53	59.2	638	7.70
	Split Level	4 in 12	61.3	099	7.97	71.1	765	9.24	50.2	540	6.53	59.2	638	7.70
	Split Entry	4 in 12	61.3	660	7.97	71.1	765	9.24	50.2	540	6.53	59.2	638	7.70
	Up - Down Duplex	6 in 12	62.1	668	8.07	72.0	775	9.36	47.8	515	6.21	56.4	607	7.33
	Row House	4 in 12	61.3	660	7.97	71.1	765	9.24	50.2	540	6.53	59.2	638	7.70
	Row House	8 in 12	62.8	676	8.16	72.8	784	9.47	46.4	499	6.03	54.8	589	7.12
	Post 1995	4 in 12	61.3	660	7.97	71.1	765	9.24	50.2	540	6.53	59.2	638	7.70
										T				
Saskatoon	Pre War	9 in 12	58.5	630	7.60	67.9	730	8.82	42.5	457	5.52	50.2	540	6.52
	Post War One and	1	2.22	200	222	5		10.0	2.4	ē	10:0	1.00	2	1000
	Half Storey	12 in 12	59.6	642	7.75	69.1	744	8.99	41.8	450	5.43	49.3	531	6.41
	1960 - 1970	4 in 12	56.7	610	7.37	65.8	708	8.55	46.5	501	6.04	54.9	591	7.13
	Post 60's	4 in 12	56.7	610	7.37	65.8	708	8.55	46.5	501	6.04	54.9	591	7.13
	Split Level	4 in 12	56.7	610	7.37	65.8	708	8.55	46.5	501	6.04	54.9	591	7.13
	Split Entry	4 in 12	56.7	610	7.37	65.8	708	8.55	46.5	501	6.04	54.9	591	7.13
	Up - Down Duplex	6 in 12	57.4	618	7.46	66.6	717	8.65	44.2	476	5.75	52.2	561	6.78
	Row House	4 in 12	56.7	610	7.37	65.8	708	8.55	46.5	501	6.04	54.9	591	7.13
	Row House	8 in 12	58.1	625	7.55	67.4	725	8.76	42.9	462	5.58	50.6	545	6.58
	Post 1995	4 in 12	56.7	610	7.37	65.8	708	8.55	46.5	501	6.04	54.9	591	7.13
Winnipeg														
	Pre War	9 in 12	62.4	672	8.11	72.4	779	9.41	47.4	510	6.16	55.9	602	7.27
	Post War One and Half Storey	10 in 10	63.8	687	8 20	0 12	707	0 67	171	507	R 10	55 G	508	7 22
	1960 - 1970	4 in 12	59.9	645	7.79	69.5	748	9.03	50.6	545	6.58	59.7	643	7.76
	Post 60's	4 in 12	59.9	645	7.79	69.5	748	9.03	50.6	545	6.58	59.7	643	7.76
	Split Level	4 in 12	59.9	645	7.79	69.5	748	9.03	50.6	545	6.58	59.7	643	7.76
	Split Entry	4 in 12	59.9	645	7.79	69.5	748	9.03	50.6	545	6.58	59.7	643	7.76
	Up - Down Duplex	6 in 12	60.8	654	7.90	70.5	759	9.17	48.8	525	6.34	57.6	620	7.48
	Row House	4 in 12	59.9	645	7.79	69.5	748	9.03	50.6	545	6.58	59.7	643	7.76
	Row House	8 in 12	61.8	665	8.03	71.7	772	9.32	47.8	515	6.21	56.4	607	7.33
	Post 1995	4 in 12	59.9	645	7.79	69.5	748	9.03	50.6	545	6.58	59.7	643	7.76

Housing
Existing
Energy in
Net Zero E
Approaching

Y	
voltaic Array kWp capacity and area to meet 8760 kWh/ y	
760	
it 8	ā
nee	300
ō	2
irea t	A and / Description T and Deef Plane
nd a	ŕ
y a	5
acit	10
cap	
۷p	Ċ
X	4
Array	<
ic /	
olta	,
ž	Ċ

Photovoltaic Location	Photovoltaic Array kWp capacity and area to meet 8760 kWh/ yr Location Age / Description Typical Roof Slope	nd area to meet 8760 Typical Roof Slope	KWV N/ YF		East /	East / West					So	South		
			M	Without Snow Cover	over	With Sn	With Snow Cover Over Winter	er Winter	Wit	Without Snow Cover	Cover	With Sn	With Snow Cover Over Winter	ver Winter
			Estimated C Reqi	Estimated Collector Area Required	Nominal PV Array Power	Estimated Collector Area Required	ollector Area iired	Nominal PV Array Power	Estimated Collector Area Required		Nominal PV Array Power	Estimated Collector Area Required	Collector equired	Nominal PV Array Power
Yellowknife			m ²	ft²	kWp	m ²	ft ²	kWp	m²		kWp	m ²	ft ²	kWp
	Pre War	9 in 12	80.8	870	10.50	90.5	974	11.76	60.9	656	7.92	69.4	747	9.02
	Post War Une and Half Storev	12 in 12	82.2	885	10.68	92 1	991	11 97	60.2	648	7 82	68.6	739	8.92
	1960 - 1970	4 in 12	78.7	847	10.23	88.1	949	11.46	65.8	708	8.55	75.0	807	9.75
	Post 60's	4 in 12	78.7	847	10.23	88.1	949	11.46	65.8	708	8.55	75.0	807	9.75
	Split Level	4 in 12	78.7	847	10.23	88.1	949	11.46	65.8	708	8.55	75.0	807	9.75
	Split Entry	4 in 12	78.7	847	10.23	88.1	949	11.46	65.8	708	8.55	75.0	807	9.75
	Up - Down Duplex	6 in 12	79.5	856	10.33	89.0	958	11.57	63.1	679	8.20	71.9	774	9.35
	Row House	4 in 12	78.7	847	10.23	88.1	949	11.46	65.8	708	8.55	75.0	807	9.75
	Row House	8 in 12	5.08	298	10.46	90.2	971	11.72	61.4	661	7.98	70.0	753	9.10
	Post 1995	4 in 12	7.87	847	10.23	88.1	949	11.46	65.8	708	8.55	75.0	807	9.75
Toronto														
	Pre War	9 in 12	66.8	719	8.68	74.8	805	9.72	55.5	597	7.21	63.3	681	8.22
	Post War One and													
	Half Storey	12 in 12	69.2	745	8.99	77.5	834	10.07	56.2	605	7.31	64.1	690	8.33
	1960 - 1970	4 in 12	62.9	677	8.18	70.4	758	9.16	56.3	606	7.32	64.2	691	8.34
	Post 60's	4 in 12	62.9	677	8.18	70.4	758	9.16	56.3	606	7.32	64.2	691	8.34
	Split Level	4 in 12	62.9	677	8.18	70.4	758	9.16	56.3	606	7.32	64.2	691	8.34
	Split Entry	4 in 12	62.9	677	8.18	70.4	758	9.16	56.3	606	7.32	64.2	691	8.34
	Up - Down Duplex	6 in 12	64.4	693	8.37	72.1	776	9.38	55.5	597	7.21	63.3	681	8.22
	Row House	4 in 12	62.9	677	8.18	70.4	758	9.16	56.3	606	7.32	64.2	691	8.34
	Row House	8 in 12	66	710	8.58	73.9	796	9.61	55.4	596	7.20	63.2	680	8.21
	Post 1995	4 in 12	62.9	677	8.18	70.4	758	9.16	56.3	606	7.32	64.2	691	8.34
Ottawa														
	Pre War	9 in 12	66	710	8.58	73.9	796	9.61	53.2	573	6.92	60.6	653	7.88
	Post War One and Half Storev	12 in 12	68.2	734	8.86	76 4	822	0 03	53.5	576	6 95	610	657	7 93
	1960 - 1970	4 in 12	62.5	673	8.12	70.07	753	9.10	54.9	591	7.14	62.6	674	8.14
	Post 60's	4 in 12	62.5	673	8.12	70.0	753	9.10	54.9	591	7.14	62.6	674	8.14
	Split Level	4 in 12	62.5	673	8.12	70.0	753	9.10	54.9	591	7.14	62.6	674	8.14
	Split Entry	4 in 12	62.5	673	8.12	70.0	753	9.10	54.9	591	7.14	62.6	674	8.14
	Up - Down Duplex	6 in 12	63.8	687	8.29	71.5	769	9.29	53.8	579	6.99	61.3	660	7.97
	Row House	4 in 12	62.5	673	8.12	70.0	753	9.10	54.9	591	7.14	62.6	674	8.14
	Row House	8 in 12		0	0.00	0.0	0	0.00	53.2	573	6.92	60.6	653	7.88
	Post 1995	4 in 12	62.5	673	8.12	70.0	753	9.10	54.9	591	7.14	62.6	674	8.14

Housing
n Existing
Energy ir
Net Zero En
Approaching I

Photovoltaic Location	Photovoltaic Array kWp capacity and area to meet 8760 kWh/ yr Location Age / Description Typical Roof Slope	Typical Roof Slope			East /	East / West					SC	South		
				Without Snow Cover		With Sn	With Snow Cover Over Winter	er Winter	Wit	Without Snow Cover		With Sn	With Snow Cover Over Winter	ver Winter
					_									
			Estimated C Req	Estimated Collector Area Required	Nominal PV Array Power	Estimated Collector Area Required	ollector Area iired	Nominal PV Array Power	Estimated Collector Area Required		Nominal PV Array Power	Estimated Collector Area Required	Collector equired	Nominal PV Array Power
Montreal			m²	ft²	kWp	m²	ft^2	kWp	m²		kWp	m²	ft ²	kWp
	Pre War	9 in 12	67.8	730	8.81	75.9	817	9.87	54.6	588	7.10	62.2	670	8.09
	Post War One and		, I	L		L C I	L			, L	Ì	0.00		
	1000 1070	ZI. UI ZI.	70.1	CC /	9.11	G.8/	845	10.21	04.9 10.1	1.60	7.14	07.0	6/4 000	8.14 0.07
	0/61 - 19/0	4 IN 12	04.Z	691	8.34	9.17	774	9.35	50.5 7 7 7	808	7.04	04.4	693 600	8.37
	Colit Lovel	4 IN 12	04:Z	691 604	8.34 0.24	9.17	774	9.35	0.0C	008	7.34	04.4 64.4	093 603	8.37
	Split Entry	4 IN 12 1 in 12	04:Z	601	0.34 8.34	71.0	77/	9.35	20.0 26 E	808	7 34	64.4 64.4	093 603	0.37 8 37
		4 1 1 4 1 0	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	904	10.0	201	+	9.30	00.00	000	101		660	0.00
		0 IN 12	0.00	100	0.03 0.04	0.57	191	9.00	7.00	504 204	7.04	6.20	//0	0.10 0.27
	Pow House	4 III 12 8 in 12	04:Z	190	0.04 0.70	75.7	800	9.00 77 0	20.00	2000	7 14	04.4	090 671	10.0
	Doct 1005	4 in 12	- 70	504 804	21.0	71.0	800	9.11	-+-C	600	1.1	1.70	- 10	0.27
Oliahar		4 12	4 5	160	40.0	6.17	t	e.e	0.00	000	+0. ~	t. 1	080	10.0
Non-on-on-on-on-on-on-on-on-on-on-on-on-o	Pre War	9 in 12	64	689	8.32	717	772	932	49.7	535	6 46	56.7	610	7 36
	Post War One and		;				1							
	Half Storey	12 in 12	65.8	708	8.55	73.7	793	9.58	49.6	534	6.45	56.5	609	7.35
	1960 - 1970	4 in 12	61.1	658	7.94	68.4	737	8.89	52.4	564	6.81	59.7	643	7.76
	Post 60's	4 in 12	61.1	658	7.94	68.4	737	8.89	52.4	564	6.81	59.7	643	7.76
	Split Level	4 in 12	61.1	658	7.94	68.4	737	8.89	52.4	564	6.81	59.7	643	7.76
	Split Entry	4 in 12	61.1	658	7.94	68.4	737	8.89	52.4	564	6.81	59.7	643	7.76
	Up - Down Duplex	6 in 12	62.2	670	8.08	69.7	750	9.06	50.8	547	6.60	57.9	623	7.53
	Row House	4 in 12	61.1	658	7.94	68.4	737	8.89	52.4	564	6.81	59.7	643	7.76
	Row House	8 in 12	63.5	684	8.25	71.1	766	9.24	49.9	537	6.49	56.9	612	7.39
	Post 1995	4 in 12	61.1	658	7.94	68.4	737	8.89	52.4	564	6.81	59.7	643	7.76
Fredricton														
	Pre War	9 in 12	68.1	733	8.85	75.3	810	9.78	54	581	7.02	62.1	668	8.07
	Post War One and	07	0			1	100	00.07		0		0.00	10	0
	1060 1070	21 11 21 21 11 21	2.01	00.7	3.12	71.0	797	0.01	14.10 2.4.12	200	10.7	07:0 9 V 9	0/ I 606	0.10
	Dist 60's	4 in 12	с т г	604	0.00 8,38	21.3	767	9.20	56.2	605 605	10.7	0.40 64.6	080 606	0.40
	Solit Level	4 in 12	64 5 5	694	8.38	71.3	767	9.26	56.2	605	7.31	64.6	696	8.40
	Split Entry	4 in 12	64.5	694	8.38	71.3	767	9.26	56.2	605	7.31	64.6	696	8.40
	Up - Down Duplex	6 in 12	65.8	708	8.55	72.7	783	9.45	54.8	590	7.12	63.0	678	8.19
	Row House	4 in 12	64.5	694	8.38	71.3	767	9.26	56.2	605	7.31	64.6	969	8.40
	Row House	8 in 12	67.3	724	8.75	74.4	801	9.67	54.2	583	7.05	62.3	671	8.10
	Post 1995	4 in 12	64.5	694	8.38	71.3	767	9.26	56.2	605	7.31	64.6	696	8.40

Housing
in Existing
Energy
Net Zero I
Approaching

Nominal PV Array Power кWр 8.03 Over Winter 8.34 8.34 8.34 8.34 8.34 8.15 8.25 8.04 8.34 8.04 8.34 8.28 8.54 8.54 8.54 8.54 8.31 8.31 8.54 9.46 $\begin{array}{c} 9.54\\ 9.72\\ 9.72\\ 9.72\\ 9.54\\ 9.46\\ 9.72\\ 9.72\\ 9.72\\ 9.72\end{array}$ 8.25 With Snow Cover Estimated Collector 683 666 691 691 691 691 691 691 691 691 686 707 707 707 707 688 683 683 707 707 784 790 805 805 805 805 790 805 805 805 805 665 Area Required f² m[^] 61.8 61.9 63.5 73.4 74.8 74.8 74.8 74.8 73.4 74.8 74.8 74.8 64.2 64.2 64.2 64.2 62.7 61.9 64.2 $\begin{array}{c} 63.7\\ 65.7\\$ 72.8 64.2 South Nominal PV Array Power кWр 6.98 6.99 7.25 6.99 7.25 7.18 7.20 7.42 7.42 7.42 7.42 7.23 7.42 8.29 8.45 8.45 8.45 8.45 8.45 8.45 8.29 8.23 8.23 8.23 8.23 7.25 7.25 7.25 7.25 7.08 7.42 8.23 7.18 Without Snow Cover Estimated Collector 687 700 687 687 687 700 681 700 596 615 615 615 615 598 615 594 615 578 579 579 601 594 Area Required 601 601 587 587 601 681 ff2 54.5 53.8 55.8 55.2 55.6 57.1 63.3
 63.8
 65
 65

 65
 65
 65
 65

 63.3
 65
 65
 65
 65

 65
 65
 65
 65
 65

 63.3
 63.3
 65
 65
 65
 m² 53.7 53.8 55.8 55.8 55.8 55.8 55.8 55.4 57.1 57.1 55.2 57.1 57.1 57.1 Nominal PV Array Power 4Wp 9.68
 11.55

 10.54

 10.54

 10.54

 10.54

 10.54

 10.54

 10.54
 11.16 9.98 9.18 9.18 9.18 9.36 9.36 9.85 10.21 9.36 9.36 9.36 9.36 9.36 9.37 9.57 9.18 9.36 With Snow Cover Over Winter Estimated Collector Area Required 827 760 760 7760 792 792 792 846 776 776 776 791 776 809 776 816 802 924 ₽ 78.6 72.0 72.0 72.0 72.0 75.1 74.5 70.6 70.6 70.6 70.6 70.6 73.6 70.6 75.8 72.0 85.9 88.8 82.9 81.1 81.1 81.1 76.8 81.1 81.1 81.1 81.1 Ľ East / West Nominal PV Array Power КWр 8.76 10.10 10.45 $\begin{array}{c} 9.54\\ 9.54\\ 9.54\\ 9.54\\ 9.54\\ 9.98\\ 9.54\\ 9.54\end{array}$ 8.66 8.31 8.92 9.24 8.47 8.47 8.47 8.47 8.64 8.47 8.84 8.31 8.31 8.31 8.47 9.03 8.31 8.47 8.31 Nithout Snow Cover Estimated Collector Area 738 865 790 790 790 790 790 790 790 726 836 Ŧ Required 67.4 63.9 63.9 63.9 65.2 63.9 63.9 63.9 68.6 71.1 65.2 65.2 65.2 65.2 65.2 65.2 80.4 73.4 73.4 73.4 75 73.4 75.8 73.4 73.4 69.5 65.2 Photovoltaic Array kWp capacity and area to meet 8760 kWh/ yr 77.7 Ľ 68 Typical Roof Slope 12 in 12 4 in 12 4 in 12 12 in 12 4 in 12 4 in 12 6 in 12 4 in 12 4 in 12 6 in 12 4 in 12 8 in 12 4 in 12 4 in 12 4 in 12 4 in 12 6 in 12 4 in 12 8 in 12 4 in 12 4 in 12 4 in 12 8 in 12 4 in 12 9 in 12 9 in 12 12 in 12 9 in 12 4 in 12 4 in 12 Up - Down Duplex Row House Row House Post 1995 Split Level Split Entry Up - Down Duplex Up - Down Duplex Row House Row House Pre War Post War One and Post War One and Post War One and Age / Description 1960 - 1970 Post 60's Split Level Split Entry Row House Post 1995 Half Storey 1960 - 1970 Post 60's Split Level Split Entry Half Storey 1960 - 1970 Row House Half Storey Post 1995 Post 60's Pre War Pre War Charlottetown St. John's ocation łalifax

General Conclusions

For the roof slopes calculated using RETScreen the optimum south facing roof slope to provide the 8760 kWh/yr varies between 7 in 12 (30.5 degrees) and 12 and 12 (45 degrees). Steeper slope are better suited to climates with more clear winter days and the lower slope are better suited to climates with cloudier winter weather because the summer solar radiation contributes a larger percentage of the annual PV electrical power supply.

Vertical south facing PV arrays are more effective the further north the building is located this is due to the lower sun angles experienced at northerly latitudes. The required areas for vertical PV arrays are always larger than those required for sloped arrays. The power produced from a vertical PV array will be affected by the reflectivity of the horizontal surfaces to the south of the array so actual power production would have to be analyzed on a case by case basis.

For optimum roof slopes the PV array areas for the 13% efficient mono-Si panels range from 44 to 63m² (475 to 680ft²). An additional 12 to 18% increase in PV array areas will likely be needed to compensate for periods of snow cover.

These roof areas could occur on homes with foot prints of in the range of 93 m² to 150 m² (1000 to 1600 ft²). Although many more homes will have appropriate roof areas for PV arrays when the areas required for the arrays are reduced. At this time (2007) the maximum conversion efficiency from solar radiation into electricity for mass produced PV's is in the range of 13 to 16.5 %. As further R&D is carried out into PV technologies efficiencies will increase and costs decrease. It is conceivable in a decade that mass produced PV efficiencies could be double what they are today cutting the roof areas required by PV's in half (refer to fig 1 below).

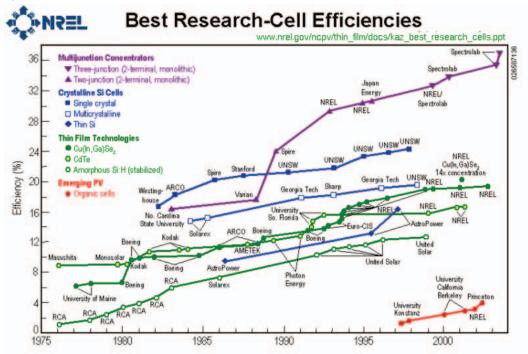
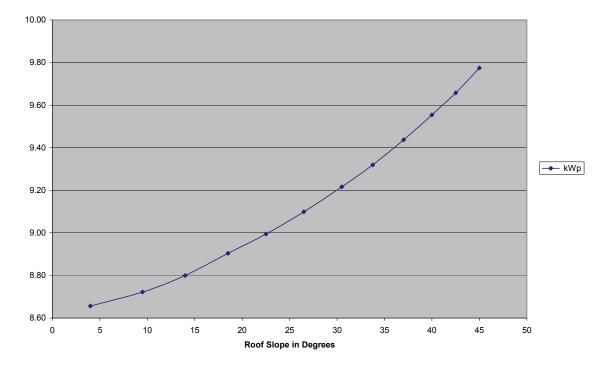
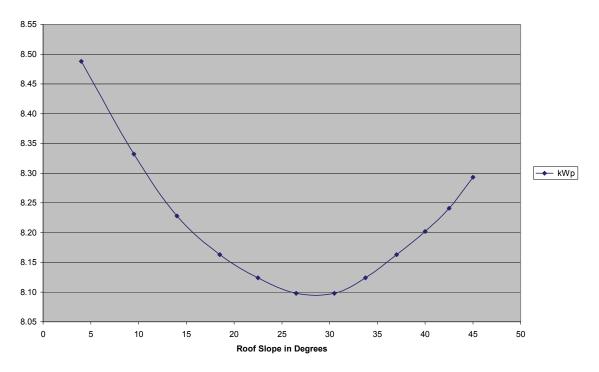
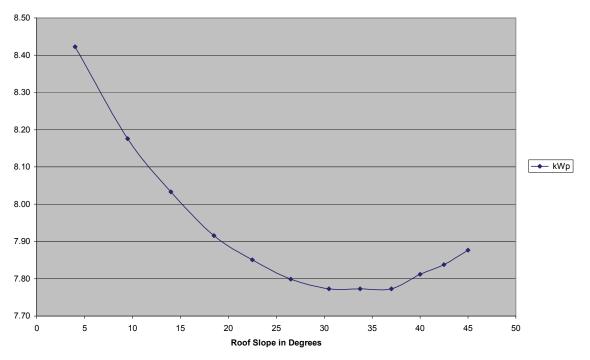
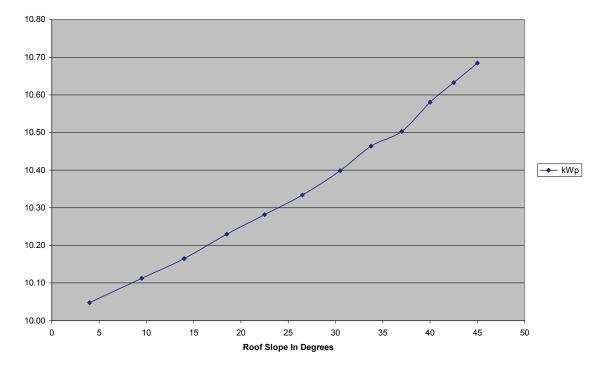



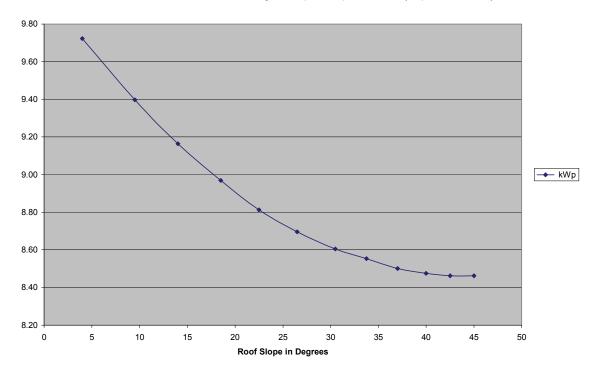
Figure 1: Best research photovoltaic cell efficiencies as of 2003

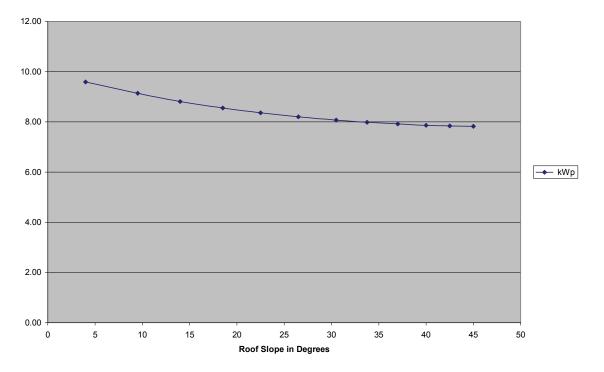

Characteristics of Photovoltaic Arrays to meet Annual Electrical Energy Budget of 8760 *kWh*


	Slope Rise and Run	Slope	Estimated Collect	tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	66.6	717	8.66
	2 in 12	9.5	67.1	722	8.72
	3 in 12	14	67.7	729	8.80
	4 in 12	18.5	68.5	737	8.90
	5 in 12	22.5	69.2	745	8.99
	6 in 12	26.5	70	753	9.10
	7 in 12	30.5	70.9	763	9.22
	8 in 12	33.75	70.9	703	9.32
	9 in 12	37	72.6	781	9.44
	10 in 12	40	73.5	791	9.55
	11 in 12	42.5	74.3	800	9.66
	12 in 12	45	75.2	809	9.77
	Vertical Wall	90	103.6	1115	13.47
	Slope Rise and Run	Slope			Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	65.3	703	8.49
	2 in 12	9.5	64.1	690	8.33
	3 in 12	14	63.3	681	8.23
	4 in 12	18.5	62.8	676	8.16
	5 in 12	22.5	62.5	673	8.12
	6 in 12	26.5	62.3	671	8.10
	7 in 12	30.5	62.3	671	8.10
	8 in 12	33.75	62.5	673	8.12
	9 in 12	37	62.8	676	8.16
	10 in 12	40	63.1	679	8.20
	11 in 12	42.5	63.4	682	8.24
	12 in 12	42.5		687	
	Vertical Wall	45 90	63.8 87.7	944	8.29 11.40
	Slope Rise and Run	Slope	Estimated Collec	tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	64.8	698	8.42
	2 in 12	9.5	62.9	677	8.18
	3 in 12	14	61.8	665	8.03
	4 in 12	18.5	60.9	656	7.92
	5 in 12	22.5	60.4	650	7.85
	6 in 12	26.5	60	646	7.80
	7 in 12	30.5	59.8	644	7.77
	8 in 12	33.75	59.8	644	7.77
	9 in 12	37	59.8	644	7.77
	10 in 12	40	60.1	647	7.81
	11 in 12	42.5	60.3	649	7.84
	12 in 12	45	60.6	652	7.88

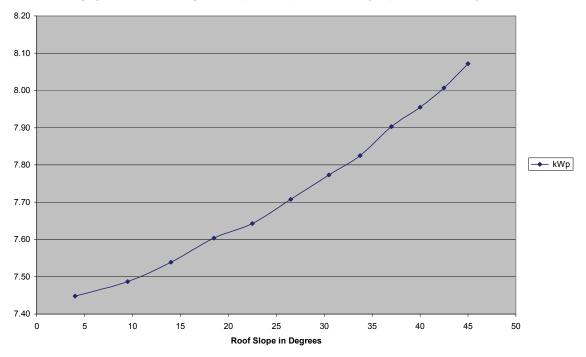
Vancouver East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

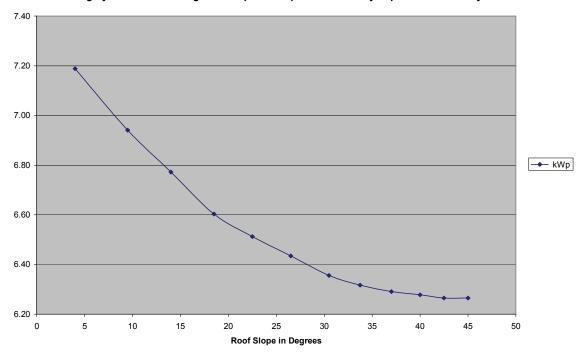

Vancouver SE and SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

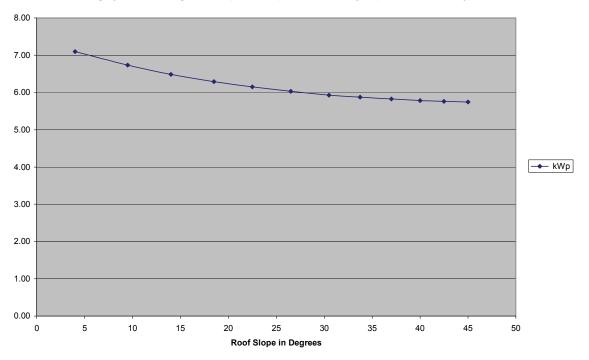

Vancouver South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Whitehorse Annual power productior	a of 9760 kW/b/ur		system mono-Si 13%	(officiona)	
Annual power production	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	•	m ²	ft ²	,
		Degrees			kWp
East / West	1 in 12	4	77.3	832	10.05
	2 in 12	9.5	77.8	837	10.11
	3 in 12	14	78.2	842	10.16
	4 in 12	18.5	78.7	847	10.23
	5 in 12	22.5	79.1	851	10.28
	6 in 12	26.5	79.5	856	10.33
	7 in 12	30.5	80	861	10.40
	8 in 12	33.75	80.5	867	10.46
	9 in 12	37	80.8	870	10.50
	10 in 12	40	81.4	876	10.58
	11 in 12	42.5	81.8	881	10.63
	12 in 12	45	82.2	885	10.68
	Vertical wall	90	101.8	1096	13.23
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	74.8	805	9.72
	2 in 12	9.5	72.3	778	9.40
	3 in 12	14	70.5	759	9.16
	4 in 12	18.5	69	743	8.97
	5 in 12	22.5	67.8	730	8.81
	6 in 12	26.5	66.9	720	8.70
	7 in 12	30.5	66.2	713	8.60
	8 in 12	33.75	65.8	708	8.55
	9 in 12	37	65.4	704	8.50
	10 in 12	40	65.2	702	8.47
	11 in 12	42.5	65.1	701	8.46
	12 in 12	45	65.1	701	8.46
	Vertical wall	90	78.3	843	10.18
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	73.8	794	9.59
	2 in 12	9.5	70.3	757	9.14
	3 in 12	14	67.8	730	8.81
	4 in 12	18.5	65.8	708	8.55
	5 in 12	22.5	64.3	692	8.36
	6 in 12	26.5	63.1	679	8.20
	7 in 12	30.5	62.1	668	8.07
	8 in 12	33.75	61.4	661	7.98
	9 in 12	37	60.9	656	7.92
	10 in 12	40	60.5	651	7.86
	11 in 12	42.5	60.3	649	7.84
	12 in 12	45	60.2	648	7.82
	Vertical wall	90	72	775	9.36

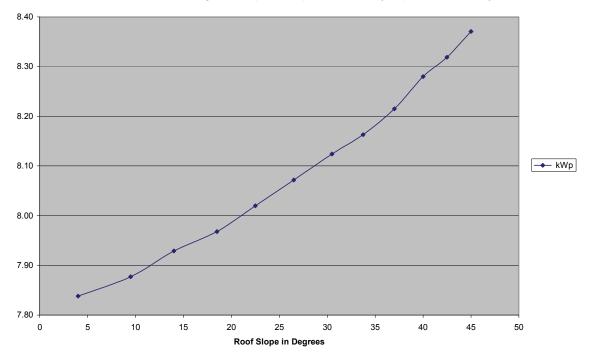
Whitehorse East Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

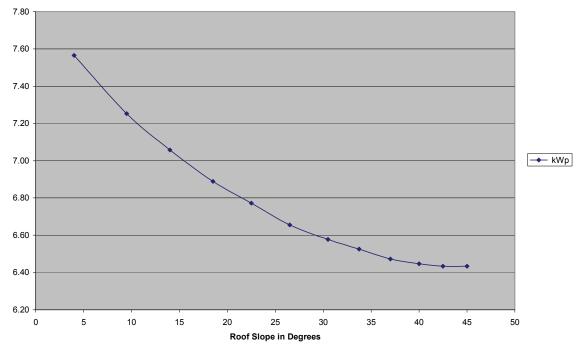

Whitehorse Southeast and Southwest Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

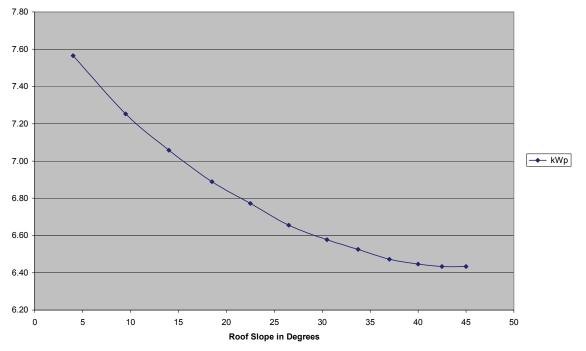

Whitehorse South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Annual power production	n of 8760 kWh/yr Slope Rise and Run	Grid connected Slope	system mono-Si 13% Estimated Collecto		Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
East / West	1 in 12	4	57.3	617	7.45
East / West	2 in 12	4 9.5	57.6	620	7.49
	3 in 12	9.5 14	58	624	7.54
			58.5	630	7.60
	4 in 12	18.5			
	5 in 12	22.5	58.8	633	7.64
	6 in 12	26.5	59.3	638	7.71
	7 in 12	30.5	59.8	644	7.77
	8 in 12	33.75	60.2	648	7.82
	9 in 12	37	60.8	654	7.90
	10 in 12	40	61.2	659	7.95
	11 in 12	42.5	61.6	663	8.01
	12 in 12	45	62.1	668	8.07
	Vertical Wall	90	78.4	844	10.19
	Slope Rise and Run	Slope	Estimated Collecto		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	55.3	595	7.19
	2 in 12	9.5	53.4	575	6.94
	3 in 12	14	52.1	561	6.77
	4 in 12	18.5	50.8	547	6.60
	5 in 12	22.5	50.1	539	6.51
	6 in 12	26.5	49.5	533	6.43
	7 in 12	30.5	48.9	526	6.36
	8 in 12	33.75	48.6	523	6.32
	9 in 12	37	48.4	521	6.29
	10 in 12	40	48.3	520	6.28
	11 in 12	42.5	48.2	519	6.27
	12 in 12	45	48.2	519	6.27
	Vertical Wall	90	59.2	637	7.69
	Slope Rise and Run	Slope	Estimated Collecto	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
South	1 in 12	4	54.6	588	7.10
	2 in 12	9.5	51.8	558	6.73
	3 in 12	14	49.9	537	6.49
	4 in 12	18.5	48.4	521	6.29
	5 in 12	22.5	47.3	509	6.15
	6 in 12	26.5	46.4	499	6.03
	7 in 12	30.5	45.6	491	5.93
	8 in 12	33.75	45.2	487	5.88
	9 in 12	37	44.8	482	5.82
	10 in 12	40	44.5	479	5.78
	11 in 12	42.5	44.3	477	5.76
	12 in 12	45	44.2	476	5.75
	Vertical Wall	90	53.8	579	6.99
	vertical vvali	00	00.0	010	0.00

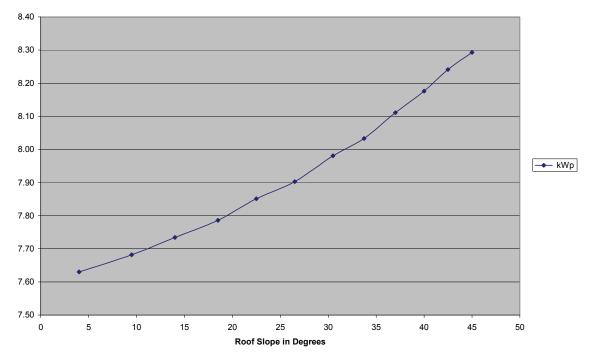
Calgary East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

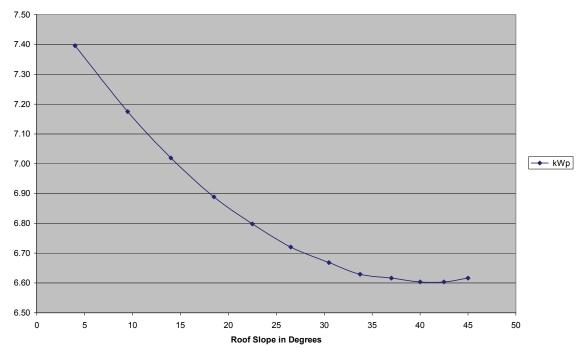

Calgary SE and SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

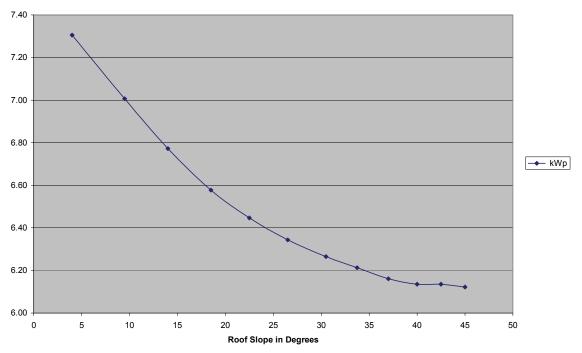

Calgary South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


	Slope Rise and Run	Slope	system mono-Si 13% Estimated Collector		Nominal PV Array Powe
Direction	Inches	Degrees	m ²	ft ²	kWp
East / West	1 in 12	4	60.3	649	7.84
	2 in 12	9.5	60.6	652	7.88
	3 in 12	14	61	657	7.93
	4 in 12	18.5	61.3	660	7.97
	5 in 12	22.5	61.7	664	8.02
	6 in 12	22.5	62.1	668	8.02
	7 in 12	30.5	62.5	673	8.12
	8 in 12	33.75	62.8	676	8.16
	9 in 12	37	63.2	680	8.21
	10 in 12	40	63.7	686	8.28
	11 in 12	42.5	64	689	8.32
	12 in 12	45	64.4	693	8.37
	Vertical Wall	90	79.3	854	10.31
	Slope Rise and Run	Slope	Estimated Collector		Nominal PV Array Powe
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	58.2	626	7.57
	2 in 12	9.5	55.8	601	7.25
	3 in 12	14	54.3	584	7.06
	4 in 12	18.5	53	571	6.89
	5 in 12	22.5	52.1	561	6.77
	6 in 12	26.5	51.2	551	6.66
	7 in 12	30.5	50.6	545	6.58
	8 in 12	33.75	50.2	540	6.53
	9 in 12	37	49.8	536	6.47
	10 in 12	40	49.6	534	6.45
	11 in 12	42.5	49.5	533	6.43
	12 in 12	45	49.5	533	6.43
	Vertical Wall	90	58.9	634	7.66
	Slope Rise and Run	Slope	Estimated Collector	Area Required	Nominal PV Array Powe
Direction	Inches		m ²	ft ²	•
South	1 in 12	Degrees 4	57.3	617	kWp 7.45
South					
	2 in 12	9.5	54.2	583	7.05
	3 in 12	14	52	560	6.76
	4 in 12	18.5	50.2	540	6.53
	5 in 12	22.5	49.1	529	6.38
	6 in 12	26.5	47.8	515	6.21
	7 in 12	30.5	46.9	505	6.10
	8 in 12	33.75	46.4	499	6.03
	9 in 12	37	45.8	493	5.95
	10 in 12	40	45.5	490	5.91
	11 in 12	42.5	45.3	488	5.89
	12 in 12	45	45.2	487	5.88
	Vertical Wall	90	53.2	573	6.92

Edmonton East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

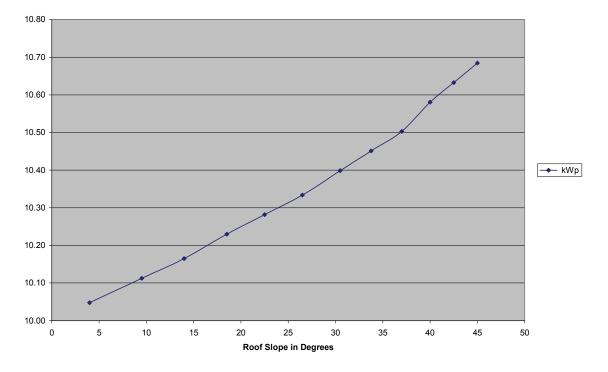



Edmonton SE & SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

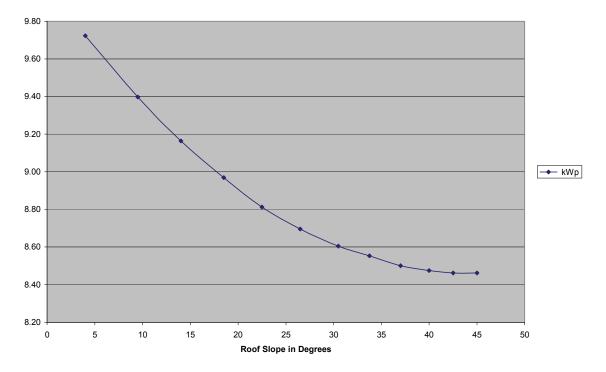

Annual power production	on of 8760 kWh/yr	Grid connected	system mono-Si 13%	6 efficiency	
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	58.7	632	7.63
	2 in 12	9.5	59.1	636	7.68
	3 in 12	14	59.5	640	7.73
	4 in 12	18.5	59.9	645	7.79
	5 in 12	22.5	60.4	650	7.85
	6 in 12	26.5	60.8	654	7.90
	7 in 12	30.5	61.4	661	7.98
	8 in 12	33.75	61.8	665	8.03
	9 in 12	37	62.4	672	8.11
	10 in 12	40	62.9	677	8.18
	11 in 12	42.5	63.4	682	8.24
	12 in 12	45	63.8	687	8.29
	Vertical Wall	90	80.2	863	10.42
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	56.9	612	7.40
	2 in 12	9.5	55.2	594	7.18
	3 in 12	14	54	581	7.02
	4 in 12	18.5	53	571	6.89
	5 in 12	22.5	52.3	563	6.80
	6 in 12	26.5	51.7	557	6.72
	7 in 12	30.5	51.3	552	6.67
	8 in 12	33.75	51	549	6.63
	9 in 12	37	50.9	548	6.62
	10 in 12	40	50.8	547	6.60
	11 in 12	42.5	50.8	547	6.60
	12 in 12	45	50.9	548	6.62
	Vertical Wall	90	62.8	676	8.16
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	56.2	605	7.31
	2 in 12	9.5	53.9	580	7.01
	3 in 12	14	52.1	561	6.77
	4 in 12	18.5	50.6	545	6.58
	5 in 12	22.5	49.6	534	6.45
	6 in 12	26.5	48.8	525	6.34
	7 in 12	30.5	48.2	519	6.27
	8 in 12	33.75	47.8	515	6.21
	9 in 12	37	47.4	510	6.16
	10 in 12	40	47.2	508	6.14
	11 in 12	42.5	47.2	508	6.14
	12 in 12	45	47.1	507	6.12
	Vertical Wall	90	58.2	626	7.57

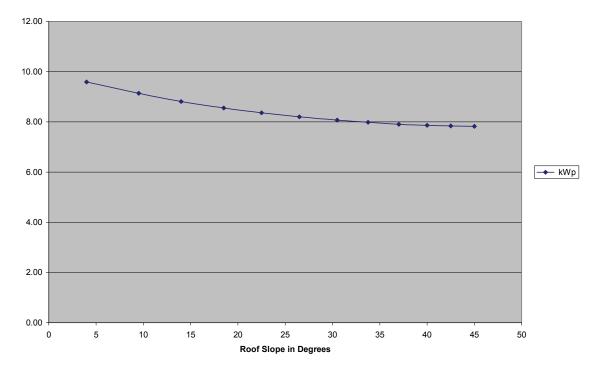
Winnipeg East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Winnipeg SE & SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr



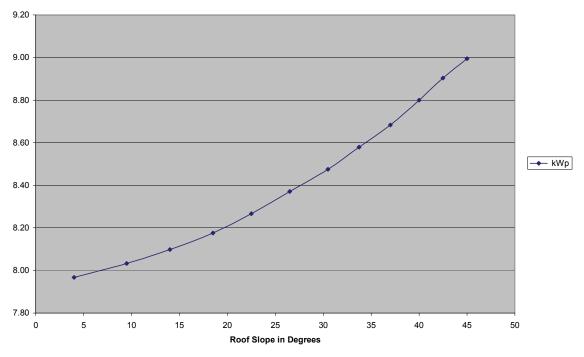
Winnipeg South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Annual power production	n of 8760 k\Wh/yr	Grid connected	system mono-Si 139	% efficiency	
Annual power production	Slope Rise and Run	Slope	•	tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
East / West	1 in 12	d Degrees	77.3	832	10.05
East / West	2 in 12	4 9.5	77.8	837	10.05
	3 in 12	9.5 14	78.2	842	10.16
	4 in 12	14	78.7	847	10.10
		22.5	79.1	851	10.28
	5 in 12				
	6 in 12	26.5	79.5	856	10.33
	7 in 12	30.5	80	861	10.40
	8 in 12	33.75	80.4	865	10.45
	9 in 12	37	80.8	870	10.50
	10 in 12	40	81.4	876	10.58
	11 in 12	42.5	81.8	881	10.63
	12 in 12	45	82.2	885	10.68
	Vertical wall	90	101.7	1095	13.22
	Slope Rise and Run	Slope		tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	74.8	805	9.72
	2 in 12	9.5	72.3	778	9.40
	3 in 12	14	70.5	759	9.16
	4 in 12	18.5	69	743	8.97
	5 in 12	22.5	67.8	730	8.81
	6 in 12	26.5	66.9	720	8.70
	7 in 12	30.5	66.2	713	8.60
	8 in 12	33.75	65.8	708	8.55
	9 in 12	37	65.4	704	8.50
	10 in 12	40	65.2	702	8.47
	11 in 12	42.5	65.1	701	8.46
	12 in 12	45	65.1	701	8.46
	Vertical wall	90	78.3	843	10.18
	Slope Rise and Run	Slope	Estimated Collect	tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	73.8	794	9.59
	2 in 12	9.5	70.3	757	9.14
	3 in 12	14	67.8	730	8.81
	4 in 12	18.5	65.8	708	8.55
	5 in 12	22.5	64.3	692	8.36
	6 in 12	26.5	63.1	679	8.20
	7 in 12	30.5	62.1	668	8.07
	8 in 12	33.75	61.4	661	7.98
	9 in 12	37	60.8	654	7.90
	10 in 12	40	60.5	651	7.86
	11 in 12	42.5	60.3	649	7.84
	12 in 12	45	60.2	648	7.82
	Vertical wall	90	72	775	9.36

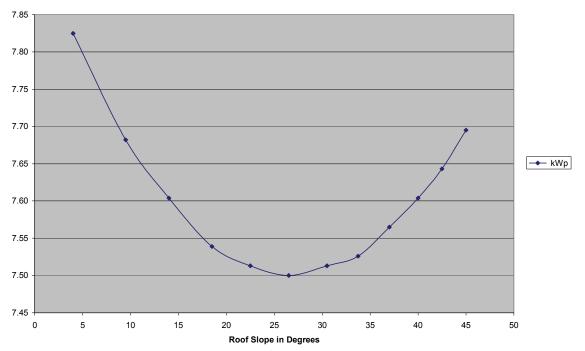

Yellowknife

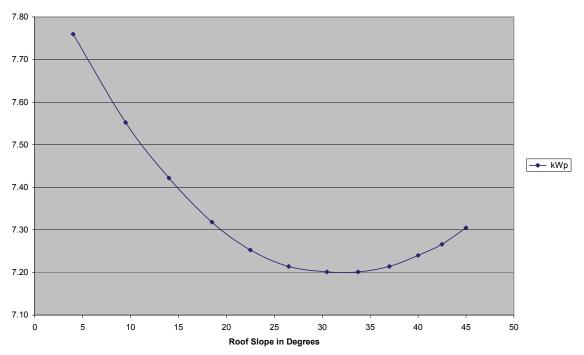
Yellowknife East / West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Yellowknife Southeast and Southwest Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

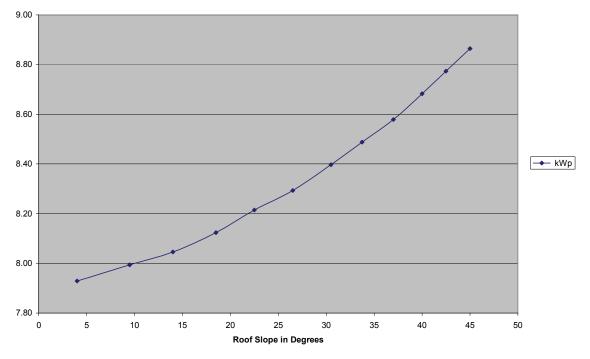


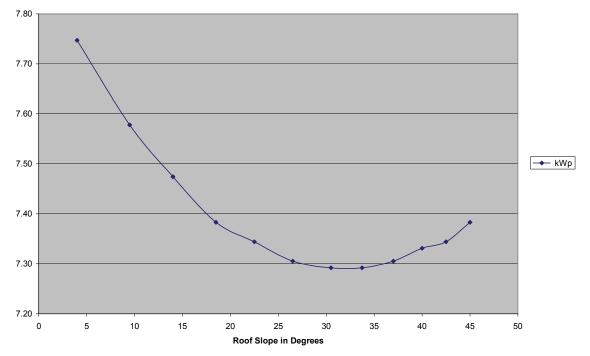
Yellowknife SouthFacing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Annual power production			system mono-Si 13%		
	Slope Rise and Run	Slope	Estimated Collecto		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	61.3	660	7.97
	2 in 12	9.5	61.8	665	8.03
	3 in 12	14	62.3	671	8.10
	4 in 12	18.5	62.9	677	8.18
	5 in 12	22.5	63.6	685	8.27
	6 in 12	26.5	64.4	693	8.37
	7 in 12	30.5	65.2	702	8.47
	8 in 12	33.75	66	710	8.58
	9 in 12	37	66.8	719	8.68
	10 in 12	40	67.7	729	8.80
	11 in 12	42.5	68.5	737	8.90
	12 in 12	45	69.2	745	8.99
	Vertical Wall	90	94.1	1013	12.23
	Slope Rise and Run	Slope	Estimated Collected		Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
Southeast / Southwest	1 in 12	4	60.2	648	7.82
	2 in 12	9.5	59.1	636	7.68
	3 in 12	14	58.5	630	7.60
	4 in 12	18.5	58	624	7.54
	5 in 12	22.5	57.8	622	7.51
	6 in 12	26.5	57.7	621	7.50
	7 in 12	30.5	57.8	622	7.51
	8 in 12	33.75	57.9	623	7.53
	9 in 12	37	58.2	626	7.57
	10 in 12	40	58.5	630	7.60
	11 in 12	42.5	58.8	633	7.64
	12 in 12	45	59.2	637	7.69
	Vertical Wall	90	80.5	867	10.46
	Slope Rise and Run	Slope	Estimated Collector	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
South	1 in 12	4	59.7	643	7.76
	2 in 12	9.5	58.1	625	7.55
	3 in 12	14	57.1	615	7.42
	4 in 12	18.5	56.3	606	7.32
	5 in 12	22.5	55.8	601	7.25
	6 in 12	26.5	55.5	597	7.21
	7 in 12	30.5	55.4	596	7.20
	8 in 12	33.75	55.4	596	7.20
	9 in 12	37	55.5	597	7.21
	10 in 12	40	55.7	600	7.24
	11 in 12	42.5	55.9	602	7.27
	12 in 12	45	56.2	605	7.31
	Vertical Wall	90	78.3	843	10.18

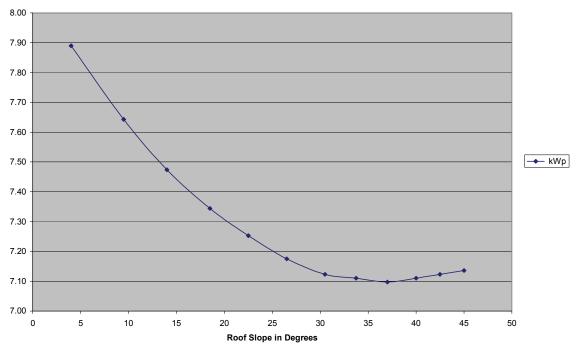

Toronto

Toronto East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr



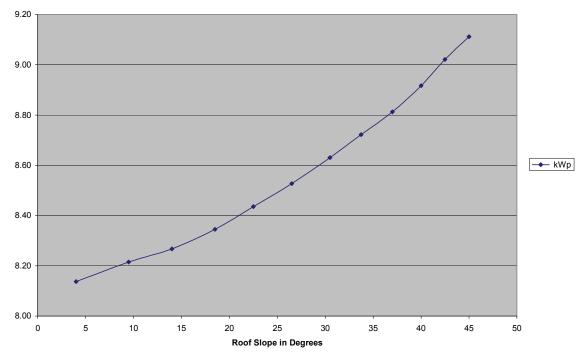

Toronto South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Annual power productio	n of 8760 kWh/vr	Grid connected	system mono-Si 13	% efficiency	
	Slope Rise and Run	Slope		tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	61	656.62	7.93
	2 in 12	9.5	61.5	662.00	7.99
	3 in 12	14	61.9	666.31	8.05
	4 in 12	18.5	62.5	672.77	8.12
	5 in 12	22.5	63.2	680.30	8.21
	6 in 12	26.5	63.8	686.76	8.29
	7 in 12	30.5	64.6	695.37	8.40
	8 in 12	33.75	65.3	702.91	8.49
	9 in 12	37	66	710.44	8.58
	10 in 12	40	66.8	719.05	8.68
	11 in 12	42.5	67.5	726.59	8.77
	12 in 12	45	68.2	734.12	8.86
	Vertical Wall	90	90	968.78	11.70
		30	50	300.70	11.70
	Slope Rise and Run	Slope		tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	59.6	641.55	7.75
	2 in 12	9.5	58.3	627.56	7.58
	3 in 12	14	57.5	618.95	7.47
	4 in 12	18.5	56.8	611.41	7.38
	5 in 12	22.5	56.5	608.18	7.34
	6 in 12	26.5	56.2	604.95	7.31
	7 in 12	30.5	56.1	603.88	7.29
	8 in 12	33.75	56.1	603.88	7.29
	9 in 12	37	56.2	604.95	7.31
	10 in 12	40	56.4	607.10	7.33
	11 in 12	42.5	56.5	608.18	7.34
	12 in 12	45	56.8	611.41	7.38
	Vertical Wall	90	74.4	800.86	9.67
	Slope Rise and Run	Slope		tor Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	59.2	653.39	7.89
	2 in 12	9.5	57.2	632.94	7.64
	3 in 12	14	56.5	618.95	7.47
	4 in 12	18.5	54.9	608.18	7.34
	5 in 12	22.5	54.2	600.65	7.25
	6 in 12	26.5	53.8	594.19	7.18
	7 in 12	30.5	53.4	589.88	7.12
	8 in 12	33.75	53.2	588.81	7.11
	9 in 12	37	53.2	587.73	7.10
	10 in 12	40	53.2	588.81	7.11
	11 in 12	42.5	53.3	589.88	7.12
	12 in 12	45	53.5	590.96	7.14
	Vertical Wall	90	70.8	762.11	9.20

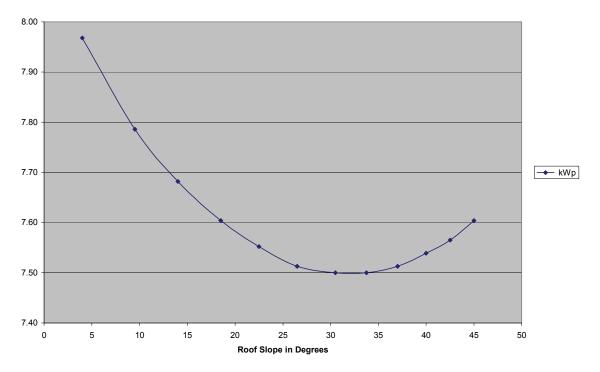


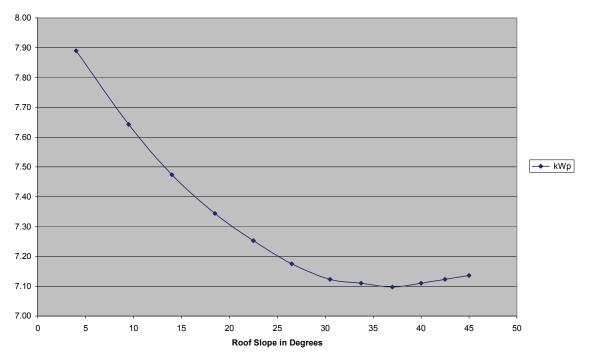
Ottawa East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Ottawa SE and SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

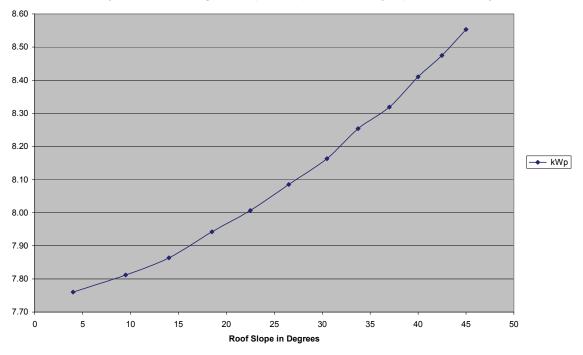


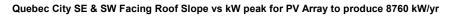
167

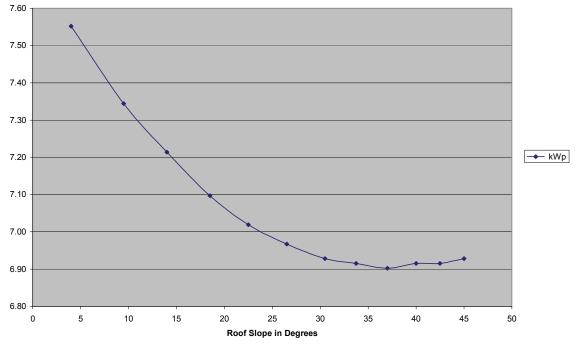

Ottawa South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

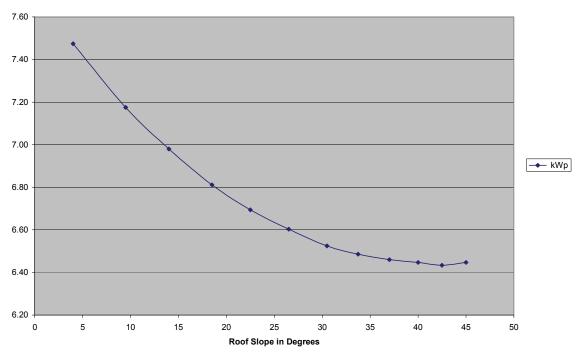

Annual power production	•		system mono-Si 13%		
	Slope Rise and Run	Slope	Estimated Collecto		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	62.6	674	8.14
	2 in 12	9.5	63.2	680	8.21
	3 in 12	14	63.6	685	8.27
	4 in 12	18.5	64.2	691	8.34
	5 in 12	22.5	64.9	699	8.44
	6 in 12	26.5	65.6	706	8.53
	7 in 12	30.5	66.4	715	8.63
	8 in 12	33.75	67.1	722	8.72
	9 in 12	37	67.8	730	8.81
	10 in 12	40	68.6	738	8.92
	11 in 12	42.5	69.4	747	9.02
	12 in 12	45	70.1	755	9.11
	Vertical Wall	90	92.8	999	12.06
	Slope Rise and Run	Slope	Estimated Collecto	r Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
Southeast / Southwest	1 in 12	4	61.3	660	7.97
	2 in 12	9.5	59.9	645	7.79
	3 in 12	14	59.1	636	7.68
	4 in 12	18.5	58.5	630	7.60
	5 in 12	22.5	58.1	625	7.55
	6 in 12	26.5	57.8	622	7.51
	7 in 12	30.5	57.7	621	7.50
	8 in 12	33.75	57.7	621	7.50
	9 in 12	37	57.8	622	7.51
	10 in 12	40	58	624	7.54
	11 in 12	42.5	58.2	626	7.57
	12 in 12	45	58.5	630	7.60
	Vertical Wall	90	76.6	825	9.96
	Slope Rise and Run	Slope	Estimated Collecto	r Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	60.7	653	7.89
	2 in 12	9.5	58.8	633	7.64
	3 in 12	14	57.5	619	7.47
	4 in 12	18.5	56.5	608	7.34
	5 in 12	22.5	55.8	601	7.25
	6 in 12	26.5	55.2	594	7.18
	7 in 12	30.5	54.8	590	7.12
	8 in 12	33.75	54.7	589	7.12
	9 in 12	37	54.6	588	7.10
	0 11 12		54.7	589	7.10
	10 in 12	40			
	10 in 12 11 in 12	40 42 5			
	10 in 12 11 in 12 12 in 12	40 42.5 45	54.7 54.8 54.9	590 591	7.11 7.12 7.14

Montreal East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

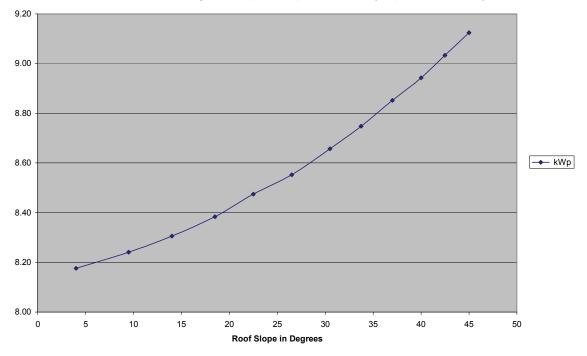


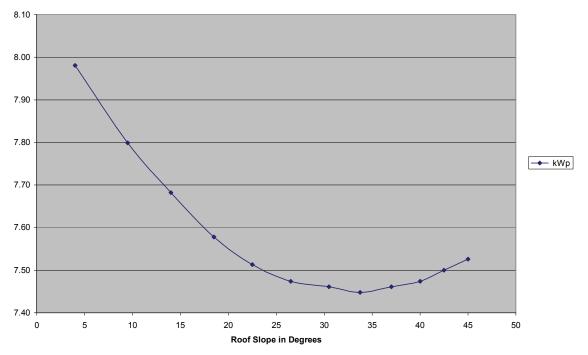

Montreal South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

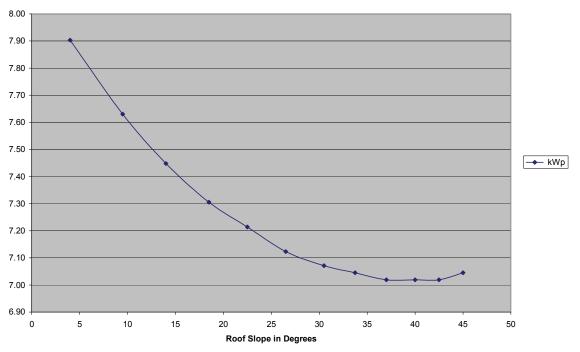

Quebec	n of 9760 WMb/ur	Crid connected	avatam mana Si 120	(officione)	
Annual power productio	Slope Rise and Run		system mono-Si 13% Estimated Collect	•	Nominal PV Array Bower
Discation	•	Slope	m ²	ft ²	Nominal PV Array Power
Direction	Inches	Degrees			kWp
East / West	1 in 12	4	59.7	643	7.76
	2 in 12	9.5	60.1	647	7.81
	3 in 12	14	60.5	651	7.86
	4 in 12	18.5	61.1	658	7.94
	5 in 12	22.5	61.6	663	8.01
	6 in 12	26.5	62.2	670	8.08
	7 in 12	30.5	62.8	676	8.16
	8 in 12	33.75	63.5	684	8.25
	9 in 12	37	64	689	8.32
	10 in 12	40	64.7	696	8.41
	11 in 12	42.5	65.2	702	8.47
	12 in 12	45	65.8	708	8.55
	Vertical wall	90	84.5	910	10.98
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
Southeast / Soutwest	1 in 12	4	58.1	625	7.55
	2 in 12	9.5	56.5	608	7.34
	3 in 12	14	55.5	597	7.21
	4 in 12	18.5	54.6	588	7.10
	5 in 12	22.5	54	581	7.02
	6 in 12	26.5	53.6	577	6.97
	7 in 12	30.5	53.3	574	6.93
	8 in 12	33.75	53.2	573	6.92
	9 in 12	37	53.1	572	6.90
	10 in 12	40	53.2	573	6.92
	11 in 12	42.5	53.2	573	6.92
	12 in 12	45	53.3	574	6.93
	Vertical wall	90	65.8	708	8.55
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
South	1 in 12	4	57.5	619	7.47
	2 in 12	9.5	55.2	594	7.18
	3 in 12	14	53.7	578	6.98
	4 in 12	18.5	52.4	564	6.81
	5 in 12	22.5	51.5	554	6.69
	6 in 12	26.5	50.8	547	6.60
	7 in 12	30.5	50.2	540	6.53
	8 in 12	33.75	49.9	537	6.49
	9 in 12	37	49.7	535	6.46
	10 in 12	40	49.6	534	6.45
	11 in 12	42.5	49.5	533	6.43
	12 in 12	45	49.6	534	6.45
	Vertical wall	90	62.7	675	8.15


Quebec

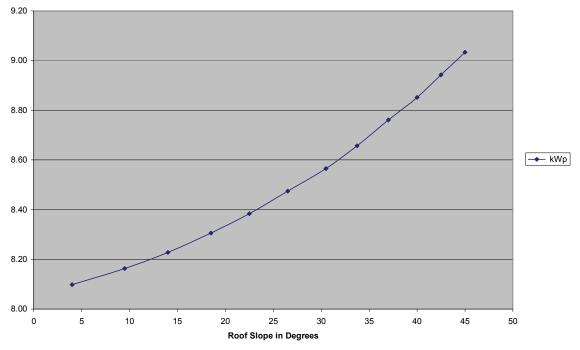
Quebec City East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

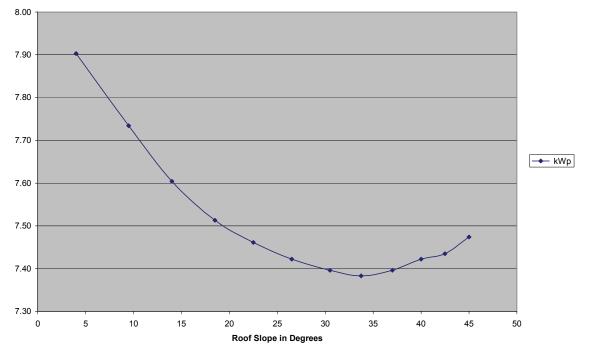


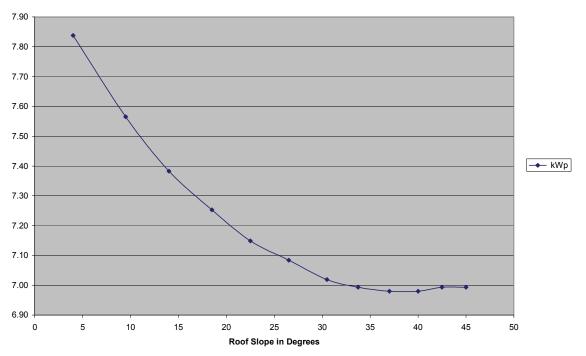

Quebec City South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Fredricton					
Annual power production			system mono-Si 13%		
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	62.9	677	8.18
	2 in 12	9.5	63.4	682	8.24
	3 in 12	14	63.9	688	8.31
	4 in 12	18.5	64.5	694	8.38
	5 in 12	22.5	65.2	702	8.47
	6 in 12	26.5	65.8	708	8.55
	7 in 12	30.5	66.6	717	8.66
	8 in 12	33.75	67.3	724	8.75
	9 in 12	37	68.1	733	8.85
	10 in 12	40	68.8	741	8.94
	11 in 12	42.5	69.5	748	9.03
	12 in 12	45	70.2	756	9.12
	Vertical wall	90	92.7	998	12.05
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	61.4	661	7.98
	2 in 12	9.5	60	646	7.80
	3 in 12	14	59.1	636	7.68
	4 in 12	18.5	58.3	628	7.58
	5 in 12	22.5	57.8	622	7.51
	6 in 12	26.5	57.5	619	7.47
	7 in 12	30.5	57.4	618	7.46
	8 in 12	33.75	57.3	617	7.45
	9 in 12	37	57.4	618	7.46
	10 in 12	40	57.5	619	7.47
	11 in 12	42.5	57.7	621	7.50
	12 in 12	45	57.9	623	7.53
	Vertical wall	90	75.2	809	9.77
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	60.8	654	7.90
	2 in 12	9.5	58.7	632	7.63
	3 in 12	14	57.3	617	7.45
	4 in 12	18.5	56.2	605	7.31
	5 in 12	22.5	55.5	597	7.21
	6 in 12	26.5	54.8	590	7.12
	7 in 12	30.5	54.4	586	7.07
	8 in 12	33.75	54.2	583	7.05
	9 in 12	37	54	581	7.02
	10 in 12	40	54	581	7.02
	11 in 12	42.5	54	581	7.02
	12 in 12	45	54.2	583	7.05
	Vertical wall	90	70.7	761	9.19

Fredricton East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

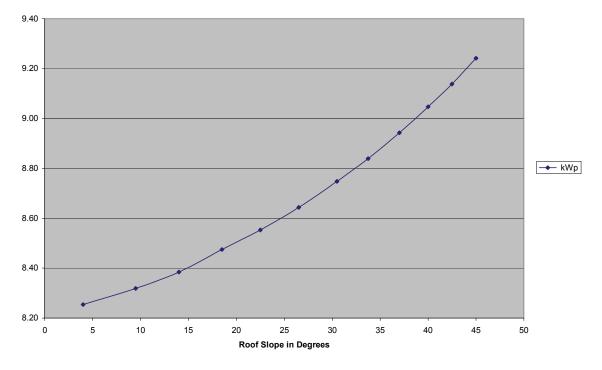

Fredricton SE & SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Fredricton South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr


Annual power productio	on of 8760 kWh/yr	Grid connected	system mono-Si 13%	% efficiency	
	Slope Rise and Run	Slope		or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
East / West	1 in 12	4	62.3	671	8.10
	2 in 12	9.5	62.8	676	8.16
	3 in 12	14	63.3	681	8.23
	4 in 12	18.5	63.9	688	8.31
	5 in 12	22.5	64.5	694	8.38
	6 in 12	26.5	65.2	702	8.47
	7 in 12	30.5	65.9	709	8.57
	8 in 12	33.75	66.6	717	8.66
	9 in 12	37	67.4	726	8.76
	10 in 12	40	68.1	733	8.85
	11 in 12	42.5	68.8	741	8.94
	12 in 12	45	69.5	748	9.03
	Vertical wall	90	80.8	870	10.50
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
Southeast / Southwest	1 in 12	4	60.8	654	7.90
	2 in 12	9.5	59.5	640	7.73
	3 in 12	14	58.5	630	7.60
	4 in 12	18.5	57.8	622	7.51
	5 in 12	22.5	57.4	618	7.46
	6 in 12	26.5	57.1	615	7.42
	7 in 12	30.5	56.9	612	7.40
	8 in 12	33.75	56.8	611	7.38
	9 in 12	37	56.9	612	7.40
	10 in 12	40	57.1	615	7.42
	11 in 12	42.5	57.2	616	7.44
	12 in 12	45	57.5	619	7.47
	Vertical wall	90	74.5	802	9.68
	Slope Rise and Run	Slope		or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
South	1 in 12	4	60.3	649	7.84
	2 in 12	9.5	58.2	626	7.57
	3 in 12	14	56.8	611	7.38
	4 in 12	18.5	55.8	601	7.25
	5 in 12	22.5	55	592	7.15
	6 in 12	26.5	54.5	587	7.08
	7 in 12	30.5	54	581	7.02
	8 in 12	33.75	53.8	579	6.99
	9 in 12	37	53.7	578	6.98
	10 in 12	40	53.7	578	6.98
	11 in 12	42.5	53.8	579	6.99
	12 in 12	45	53.8	579	6.99
	Vertical wall	90	70.4	758	9.15

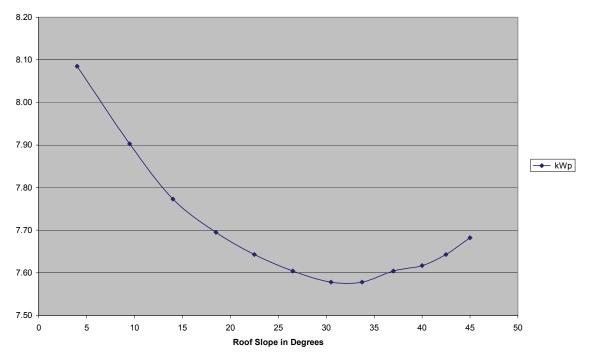
Charlottetown East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

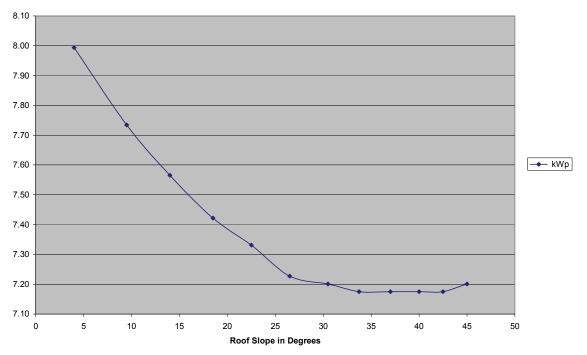
Charlottetown SE & SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr



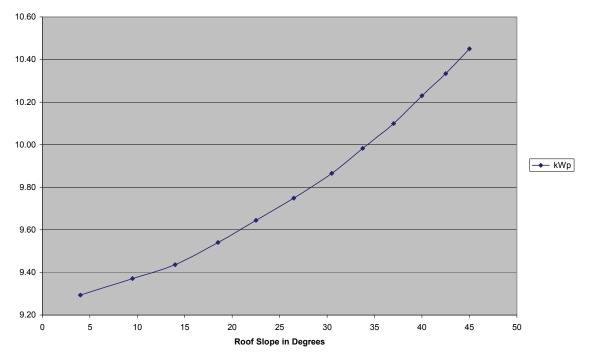
Charlottetown South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Annual power production	on of 8760 kWh/yr	Grid connected system mono-Si 13% efficiency				
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power	
Direction	Inches	Degrees	m ²	ft ²	kWp	
East / West	1 in 12	4	63.5	684	8.25	
	2 in 12	9.5	64	689	8.32	
	3 in 12	14	64.5	694	8.38	
	4 in 12	18.5	65.2	702	8.47	
	5 in 12	22.5	65.8	708	8.55	
	6 in 12	26.5	66.5	716	8.64	
	7 in 12	30.5	67.3	724	8.75	
	8 in 12	33.75	68	732	8.84	
	9 in 12	37	68.8	741	8.94	
	10 in 12	40	69.6	749	9.05	
	11 in 12	42.5	70.3	757	9.14	
	12 in 12	45	71.1	765	9.24	
	Vertical wall	90	94.8	1020	12.32	
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power	
Direction	Inches	Degrees	m²	ft ²	kWp	
Southeast /Southwest	1 in 12	4	62.2	670	8.08	
	2 in 12	9.5	60.8	654	7.90	
	3 in 12	14	59.8	644	7.77	
	4 in 12	18.5	59.2	637	7.69	
	5 in 12	22.5	58.8	633	7.64	
	6 in 12	26.5	58.5	630	7.60	
	7 in 12	30.5	58.3	628	7.58	
	8 in 12	33.75	58.3	628	7.58	
	9 in 12	37	58.5	630	7.60	
	10 in 12	40	58.6	631	7.62	
	11 in 12	42.5	58.8	633	7.64	
	12 in 12	45	59.1	636	7.68	
	Vertical wall	90	77.5	834	10.07	
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power	
Direction	Inches	Degrees	m²	ft ²	kWp	
South	1 in 12	4	61.5	662	7.99	
	2 in 12	9.5	59.5	640	7.73	
	3 in 12	14	58.2	626	7.57	
	4 in 12	18.5	57.1	615	7.42	
	5 in 12	22.5	56.4	607	7.33	
	6 in 12	26.5	55.6	598	7.23	
	7 in 12	30.5	55.4	596	7.20	
	8 in 12	33.75	55.2	594	7.18	
	9 in 12	37	55.2	594	7.18	
	10 in 12	40	55.2	594	7.18	
	11 in 12	42.5	55.2	594	7.18	
	12 in 12	45	55.4	596	7.20	
	Vertical wall	90	73	786	9.49	


Halifax

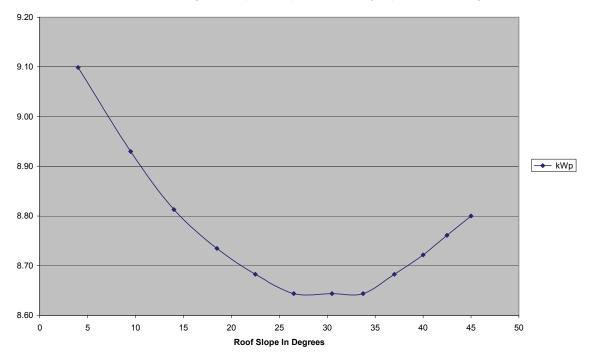

Annual power production of 8760 kWh/yr Grid connected system mono-Si 13% efficiency

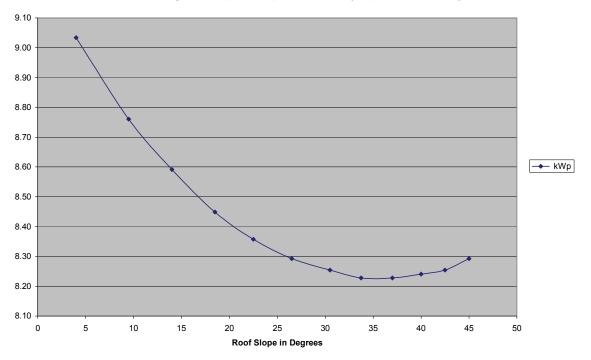
Halifax East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr



Halifax South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Annual power production of 8760 kWh/yr Grid connected system mono-Si 13% efficiency					
	Slope Rise and Run	Slope	Estimated Collect		Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
East / West	1 in 12	4	71.5	770	9.29
	2 in 12	9.5	72.1	776	9.37
	3 in 12	14	72.6	781	9.44
	4 in 12	18.5	73.4	790	9.54
	5 in 12	22.5	74.2	799	9.64
	6 in 12	26.5	75	807	9.75
	7 in 12	30.5	75.9	817	9.87
	8 in 12	33.75	76.8	827	9.98
	9 in 12	37	77.7	836	10.10
	10 in 12	40	78.7	847	10.23
	11 in 12	42.5	79.5	856	10.33
	12 in 12	45	80.4	865	10.45
	Vertical wall	90	108.3	1166	14.08
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m²	ft ²	kWp
Southeast / Southwest	1 in 12	4	70	753	9.10
	2 in 12	9.5	68.7	740	8.93
	3 in 12	14	67.8	730	8.81
	4 in 12	18.5	67.2	723	8.73
	5 in 12	22.5	66.8	719	8.68
	6 in 12	26.5	66.5	716	8.64
	7 in 12	30.5	66.5	716	8.64
	8 in 12	33.75	66.5	716	8.64
	9 in 12	37	66.8	719	8.68
	10 in 12	40	67.1	722	8.72
	11 in 12	42.5	67.4	726	8.76
	12 in 12	45	67.7	729	8.80
	Vertical wall	90	89.8	967	11.67
	Slope Rise and Run	Slope	Estimated Collect	or Area Required	Nominal PV Array Power
Direction	Inches	Degrees	m ²	ft ²	kWp
South	1 in 12	4	69.5	748	9.03
Coddin	2 in 12	9.5	67.4	726	8.76
	3 in 12	14	66.1	712	8.59
	4 in 12	18.5	65	700	8.45
	5 in 12	22.5	64.3	692	8.36
	6 in 12	26.5	63.8	687	8.29
	7 in 12	30.5	63.5	684	8.25
	8 in 12	33.75	63.3	681	8.23
	9 in 12	37	63.3	681	8.23
	10 in 12	40	63.4	682	8.24
	11 in 12	42.5	63.5	684	8.25
	12 in 12	45	63.8	687	8.29
	Vertical wall	90	85	915	11.05
	ronioa. nam			0.0	


St. John's


duction of 8760 kWb/vr Grid connected system mono-Si 13% efficie

St. John's East & West Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

St. John's SE & SW Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

St. John's South Facing Roof Slope vs kW peak for PV Array to produce 8760 kW/yr

Appendix G: EGH* Rating Detailed Calculations

The EGH* rating is defined as

EGH* rating = 100 – ((Annual Estimated Energy Consumption) * 20)

It is calculated in two steps

1. Determine the Reference Energy Consumption from the following equation:

Reference Energy Consumption = Space Heating Benchmark + DHW Benchmark + Baseload Benchmark + Air Conditioning Energy

Space Heating Benchmark = S* $\left(\frac{49 * \text{Degree Days}}{6000}\right) * \left(40 + \frac{\text{V}}{2.5}\right)$

Where S = 4.5 megajoules (MJ) for fuel fired space heating systems or S= 3.6 megajoules (MJ) for electric space heating systems

DD = Celsius heating degree-days for the locality (18°C base) (Available from the HOT2000 weather file) V= Interior heated volume, including the basement, in cubic meters.

DHW Benchmark = 47445 * W * (55-Tw)/(55-9.5)

Where:

Tw = local water mains temperature. From the HOT2000 weather file (average deep ground temperature) W = 6.19 megioules for fuel fired DHW systems or

W = 3.87 megajoules (MJ) for electric DHW systems

Baseload benchmark = 31,536 MJ

Air Conditioning Energy = Space Cooling Electricity in MJ from HOT2000 run.

2. Determine Annual Estimated Energy Consumption

- For all designs the Annual Estimated Energy Consumption is equal to the Total House Energy Use in the HOT2000 run, with deductions for DHW and base load reductions.
- Subtract Solar DHW from Total House Energy Use (in the EQuilibrium Housing Initiative, this was calculated within HOT2000, in this study, the Solar DHW contribution was more precisely calculated in RETScreen, and those values were subtracted from the Total House Energy Use)
- Subtract the PV system contribution (as modelled in RETScreen) from the Total House Energy Use.

Visit our website at www.cmhc.ca