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Abstract

This guidance document supports and supplements the methods for single-species toxicity

tests, published by Environment Canada.  In particular, it is intended for new laboratory

personnel.

This document provides additional guidance for statistical analysis of results from

Environment Canada tests.  It comments on desirable procedures and common pitfalls. 

Some statistical background is covered, but this document does not teach basic statistics. 

Nor does it attempt to break new ground in statistical analysis, although it points to methods

that are under development and seem promising for future use.  This document covers

methods for lethal and sublethal tests, with most emphasis on the more numerous aquatic

tests (water-column and sediment).

A detailed glossary is provided.  A design chapter emphasizes the need for consultation with

a statistician, choice of concentrations, staying with logarithm of dose, the various types of

controls, reference toxicants, randomization, replication, and transformation of data.

Choices among single-concentration tests are outlined, and the limitations imposed by

design.

A section on quantal tests outlines methods for estimating effective concentrations (ECp) and

confidence limits, and dealing with control effects.  Various analytical methods provide

similar endpoints for good data.  Probit regression is recommended if there are two partial

effects, preferably by maximum likelihood techniques.  The Spearman-Kärber method with

limited trimming is the choice if there is only one partial effect, and the binomial method if

only zero and complete effects are available.  A line should be plotted by hand to check for

errors.  Toxicity curves and analyses of effective times are beneficial.

For quantitative tests, which are usually sublethal, a point-estimate of the inhibition

concentration (ICp) by regression is the most favoured method.  Environment Canada has

recently required linear and nonlinear regression as the first choice for analysis (Section

6.5.8).  That analysis replaces the estimation of ICp by smoothing and interpolation (the

ICPIN program) which has been commonly used.  Hypothesis testing to determine a “no-

observed-effect” concentration (NOEC) is outlined in detail because it has been used so

frequently; this approach is much less desirable than point-estimates, and its use is

decreasing.

In dual-effect tests, the correlation between the two effects, and their different statistical

distributions, creates severe analytical problems.  The most expedient approach is to

separate the analysis of the quantitative component (usually sublethal) from the analysis of

the quantal effect (usually lethal).  An alternative approach that can sometimes be justified

on ecological grounds is to combine the two effects into a “biomass” analysis, an approach

that usually produces a more pronounced effect.

The statistical background includes discussion of difficulties caused by the customary

“inverse” estimation of endpoints and confidence limits.  Limited methods are described for

testing significant differences between and among endpoints, and dealing with outliers. 

Advice is given for interpreting other deviant dose-effect relationships.
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Résumé

Le présent document d’orientation étaye et complète les méthodes d’essai toxicologique monospécifique publiées

par Environnement Canada. Il s’adresse en particulier au nouveau personnel de laboratoire.

Le document fournit des indications supplémentaires sur les analyses statistiques des résultats des essais mis au

point par Environnement Canada. Il renferme des observations sur les procédures souhaitables et les pièges

courants. Il présente certaines notions statistiques, mais ne comporte pas d’éléments de formation en statistique

de base. Il ne tente pas non plus d’innover dans le domaine de l’analyse statistique, bien qu’il fasse état de

certaines méthodes qui sont en cours d’élaboration et qui semblent prometteuses. Le document décrit les

méthodes applicables aux essais de toxicité létale et sublétale, l’accent étant surtout mis sur les essais

aquatiques (colonne d’eau et sédiment), qui sont plus nombreux.

Outre un glossaire détaillé, le document renferme une section sur la conception des essais. Cette section souligne

l’importance que revêtent la consultation d’un statisticien, le choix des concentrations, le respect du logarithme

de la concentration, les divers types de témoins, les toxiques de référence, la randomisation, les répétitions, la

transformation des données.

Les essais à concentration unique parmi lesquels on peut choisir sont présentés, de même que les limites

associées à la conception de ces essais.

Une section sur les essais visant à mesurer les effets quantiques décrit les méthodes d’estimation des

concentrations efficaces et des limites de confiance, de même que la façon de tenir compte des effets observés

chez les organismes témoins. Diverses méthodes d’analyse fournissent des résultats semblables et permettent

d’obtenir de bonnes données. En présence de deux effets partiels, il est recommandé d’utiliser la méthode de

régression des probits, de préférence à l’aide de techniques du maximum de vraisemblance. La méthode de

Spearman-Kärber avec équeutage limité est à privilégier si l’on obtient un seul effet partiel, tandis que la

méthode binomiale sera utilisée si seuls des effets zéro et extrêmes sont obtenus. Il convient de tracer à la main

une courbe point par point afin de détecter toute erreur. Les courbes de toxicité et les analyses des temps

efficaces présentent des avantages.

Pour les essais visant à mesurer les effets quantitatifs, qui sont habituellement des essais de toxicité sublétale,

une estimation ponctuelle de la concentration inhibitrice (CIp) par régression constitue la méthode la plus

recommandée. Environnement Canada exige depuis peu de temps que la régression linéaire et non linéaire soit

privilégiée pour les analyses (v. 6.5.8). Cette analyse remplace l’estimation de la CIp par lissage et interpolation

(programme ICPIN) utilisée couramment jusqu’à maintenant. La vérification d’hypothèse pour déterminer la

concentration « sans effet observé » est décrite en détail du fait qu’elle a été employée très souvent; cette

approche est nettement moins souhaitable que l’estimation ponctuelle et son utilisation diminue.

Dans les essais visant à mesurer deux effets, la corrélation entre ces derniers et leurs répartitions statistiques

respectives occasionnent de graves problèmes analytiques. L’approche la plus pratique consiste à séparer

l’analyse de l’élément quantitatif (effet habituellement sublétal) de l’analyse de l’élément quantique (effet

habituellement létal). Une autre approche, qui peut parfois être justifiée d’un point de vue écologique, consiste à

combiner les deux effets dans une analyse de la « biomasse »; cette approche se traduit généralement par un

effet plus marqué.

Les notions statistiques incluent une analyse des difficultés que soulève l’habituelle estimation « inversée » des

résultats et des limites de confiance. Le présent document décrit des méthodes restreintes permettant de vérifier

les écarts significatifs entre les résultats et à l’intérieur de ceux-ci et de traiter les aberrations. Il fournit

également des conseils sur l’interprétation d’autres relations dose-effet aberrantes.



vii

Foreword

This is one of a series of supporting guidance documents published by Environment Canada

(EC), that relate to recommended or standardized biological test methods.  The tests use

single species of aquatic or terrestrial organisms under defined and controlled laboratory

conditions, to measure adverse toxic effects from samples of selected materials.  The

recommended methods have been evaluated by Environment Canada and are favoured:

C for use in EC laboratories for environmental toxicity;

C for testing which is contracted out by Environment Canada, or requested from outside

agencies or industry; or

C as a foundation for providing very explicit instructions which might be required in a

standardized regulatory or reference method.

The different types of tests in the series were selected to be suitable for the needs of

environmental protection and management programs carried out by Environment Canada. 

The reports describing the test methods are intended to guide and facilitate the use of

consistent, appropriate, and comprehensive procedures for obtaining data on toxicity to

aquatic and terrestrial organisms.  The tests are intended to be suitable for assessing simple

or complex materials that are destined for release into the environment, or are already in

some component of the environment such as sediment.

Appendix A lists the generic (universal) multi-purpose biological test methods, the

standardized reference methods, and the supporting guidance documents, which have been

published to date.  These reports, produced by Environment Canada’s Method Development

and Applications Section in Ottawa, Ont., are available from Environmental Protection

Publications, Environment Canada, Ottawa, Ont., K1A 0H3, Canada.  The guidance in the

documents is shared and applied by the Regional and Headquarters Offices of Environment

Canada (see Appendix C for contact information).
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Glossary

All definitions are given in the context of the procedures in this report, and might not be appropriate in another

context.  Words in italics, within a definition, are defined separately.

Grammatical Terms

Must is used to express an absolute requirement.

Should is used to state that the specified condition or procedure is recommended and ought to be met if possible.

May is used to mean “is (are) allowed to.”

Can is used to mean “is (are) able to.”

Might expresses a possibility that something could exist or happen.

Technical Terms

Accuracy is the closeness of the measured (or estimated) value to the “true” value.  In toxicity testing, there can

be no measure of accuracy because there is no way of knowing the “true” value of toxicity.  (See precision.)

Acute means within a short period (seconds, minutes, hours, or a few days) in relation to the life span of the test

organism.

Acute toxicity is a discernable adverse effect (lethal or sublethal) induced in the test organisms within a short

period of exposure to a test material, usually a few days for larger organisms.

Algorithm signifies a set of rules for solving a problem.  Historically, the term referred in a general way to

arithmetic systems.  Today, it is mostly used in the context of solving mathematical problems using a computer.

Alpha ( """" ) is the level of statistical significance selected for a test by the investigator.  It is usually 0.05 or one

chance in 20, signifying that a difference of the observed magnitude could occur by chance, in one out of 20

such sets of data.  Alpha is also used for a number of other purposes in statistical analysis, such as in linear

regression where it represents the intercept with the y-axis when x = zero.  Those other uses are clear in

context. (See significance level and Type I error.)

Ambient means “surrounding”, as in “ambient concentrations in the workplace were x...” meaning concentrations

in the air.  Recently, the word has often been used in a redundant fashion, and the best remedy is to delete it

(“... in the ambient environment ...”).

Analysis of covariance (ANCOVA) is a technique for evaluating data produced by an experimental design which

has both continuous and discrete independent variables.  The variable of most interest is assessed for

significant differences, by statistically holding the other variable constant.  An example could be a

simultaneous regression of percent survival (the effect) on toxicant concentration (the continuous variable), for

two species of daphnid (the discrete variable).  If the primary interest was the relationship of effect to

concentration, ANCOVA could be used to assess this by holding the effect of species constant. 
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Analysis of variance (ANOVA) is a formal mathematical procedure for determining whether a significant

difference exists among the means or variances of samples which arise from different treatments.  Common

treatments would be exposures to different toxicant concentrations including a control, or location in different

regions of a plume such as control, nearfield, and farfield.  In ANOVA, the “background” variances within

samples are used to tell whether or not an overall difference exists among the treatments, but this cannot tell

which one(s) differ from which others.  Accordingly, ANOVA is often used before a multiple-comparison test. 

(See Section 7.4.)

Angle or angular transformation is frequently used to refer to the arcsine transformation.

ANCOVA (see analysis of covariance).

ANOVA (see analysis of variance).

Arcsine transformation can be applied to data that are proportions or percentages, which tend to form a binomial

distribution.  The purpose would be to make the variances consistent and the distribution nearly normal, so that

parametric statistical analyses could be used.  The transformation is the arcsine of the proportion in question. 

Arcsine is also abbreviated to arcsin.  Its value for any proportion can be obtained from many software

programs and scientific calculators, or looked up in a table given in most statistic texts.  The transformation

was useful before the advent of modern computational aids that ease the burden of manual calculations.  Use of

arcsine transformations could well be avoided nowadays.

Asymptotic (see threshold).

Beta ( ß ) is the probability of making a Type II error (concluding a “false negative”, that there is no significant

difference when one is actually present).  Beta is related to the power of a test.  The symbol Beta is also used as

a population parameter in the formula for a regression, in which the symbol ß represents the slope.  (See also

Type 2 error and linear regression.)

Bias occurs when estimates differ in a predictable manner from their true (but unknown) value.  For example,

poor water quality could bias the results of toxicity tests towards greater apparent toxicity.  (See accuracy and

precision.)

Binary is equivalent to quantal.  Binary information is “either-or”; an observation on an individual experimental

unit must take one of two possible forms.  A seed germinates or does not germinate, etc.

Binomial distribution or binary probability distribution describes the likelihood that a binomial random variable

is represented by some specified value.  It may be thought of as a curve showing the pattern of frequencies

associated with the proportions for a positive quantal event (e.g., mortality in a toxicity test).  The frequencies

depend on the number of observations and the chance (probability, p) that the event will occur.  For sample

sizes that are moderate (say 25) or greater, with p . 0.5, the binomial distribution resembles the familiar bell-

shaped normal distribution.  In such a distribution, many of the observations would cluster near the proportion

0.5, with fewer and fewer observations as proportions diverged further towards zero or 1.0.  (See also,

probability distribution.)

Binomial variable or binomial random variable is a count of the number of individuals possessing one of the two

possible quantal/binary characteristics (e.g., death) in an experiment.

Bioassay is a test in which living organisms are used to estimate the strength or potency of a material such as a

medical drug.  In pharmacology, the potency is usually estimated by comparing with results for a standard

preparation, tested simultaneously.  “Bioassay” has also been applied to environmental tests, but toxicity test

identifies such tests and their objectives more specifically, and is the recommended term.
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Block is a sub-set (or all) of the experimental treatments.  Each block is subjected to the same experimental

treatments.  For example, a set of tests in one growth chamber could represent a block, with the purpose of

removing one source of variability, namely the possibility of different ancillary conditions within the set of

tests, as the result of conditions in different chambers.  Blocking receives little emphasis in toxicity tests of

Environment Canada, because the procedures for testing are closely described, i.e., there is emphasis on

reducing extraneous variation through experimental design and control of the test apparatus and setup.  (See

also replicate.)

Chemical is any element, compound, formulation, or mixture of a substance that might be mixed with, deposited

in, or found in association with soil, sediment, or water.

Chi-square or P2 is a test statistic that is sometimes used in assessing the fit of a model to a set of data.

Chronic means occurring during a relatively long period of exposure, usually a substantial proportion of the life

span of the organism, such as 10% or more.  The word is often distorted in environmental toxicity, to signify

“sublethal” or sometimes “life-cycle”, but such incorrect use should not occur.  “Chronic” should be used in its

standard sense as in other fields of toxicology, and the proper specific terms (“sublethal” etc.) should be used

in other situations.

Chronic toxicity refers to the long-term effects of a poison that are related to changes in basic processes such as

metabolism, growth, or reproduction.  Chronic effect might, however, be assessed by mortality or length of life.

Coding means conversion of original measurements, to numbers or symbols that have some advantage for

subsequent analysis.  Coding could use a simple arithmetic operation to produce values that are easier to work

with.  For example, a series 842, 846, 849, 845 ... could have 840 subtracted from each term, yielding 2, 6, 9, 5

...  In that example, a calculated mean value would have the same characteristic of being 840 low, compared to

the original data.  Coding could also be done to represent categories, for example, females might be coded as 1

and males coded as 2.

Coefficient of determination.  See R2.

Coefficient of variation (CV) is the standard deviation divided by the mean, usually expressed as a percentage.

Collinearity refers to correlation between independent variables.  Multicollinearity has the same meaning.  If two

independent or explanatory variables are strongly correlated, the second variable brings little additional

information to explain the effect.  Strong collinearity can inflate the variance of partial regression coefficients.  

If it is severe, it can prevent the matrix inversion that is required for estimation of parameters.  Collinearity

might be detected by (1) creating a correlation matrix of independent variables and examining it for strong

correlations, or (2) examining the signs and magnitude of regression coefficients to ensure that they make

sense.  (See also, linear regression.)

Concentration-effect.  See dose-response.

Confidence limits are so similar in magnitude to fiducial limits that they are treated as the same thing in this

document.  These limits on an EC50 or ICp represent upper and lower concentrations, within which the true

endpoint is thought to lie, for a stated level of probability.  The 95% confidence limits represent a statement

that there is a 19 out of 20 chance that the true endpoint falls within those specified limits.

Confound means that an undesired variable is influencing the experimental results in a non-random manner.  For

example, if all replicates of given concentrations were placed together in a regular and sequential pattern,

within the array of test containers, then location within the laboratory would be confounded with the

concentration being tested.
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Contaminant refers to a physico-chemical or biological material that has been added to a natural substrate such as

air, water, soil, or sediment, as the result of some direct or indirect human activity.  It is detectable through

testing, and might produce a chemical or physical change in the substrate, but might not cause adverse

biological effect.  The term is usually applied to materials that are present in low concentrations, in a situation

where adverse biological effects have not been demonstrated.  Various agencies use the term in particular

senses, and it has specific meanings under some national and international definitions or regulations. 

Contamination can refer to the process by which the material is added, or the status of the substrate or biota, in

having the foreign material present.

Control is a sample in an investigation that duplicates all the factors that might affect results, except the specific

condition or treatment being studied.  In toxicity tests, the control must duplicate all conditions in the treatment

exposure but must contain no test material (i.e., no toxicant).  The control is used as a check for apparent

toxicity resulting from basic conditions such as quality of dilution water or health and handling of organisms. 

Control is synonymous with negative control.  (See also positive control, salinity control, solvent control,

control sediment, reference sediment, and reference soil.)

Control sediment is clean sediment, which could be taken from an uncontaminated site, or could be formulated

(reconstituted).  For cultured organisms, it could be a sample of sediment identical to that used for the culture. 

This sediment must contain no added test substance and must enable an acceptable rate of survival or

performance of the test organisms, as specified in the method.  (Contrast with reference sediment.)

Convergence is the tendency of a series of numbers to move towards a definite limit or common point.

Correlation means that the magnitude of one variable tends to change proportionally with the magnitude of

another variable.  One variable does not necessarily cause the change in the other.  (See also regression.)

Correlation coefficient is properly called multiple correlation coefficient.  (See R.)

Criteria are defined by CCREM (1987) as scientific data, evaluated to derive the recommended limits of water

quality for particular uses.  The singular is criterion.  See also quality guideline.  More common usage, in the

USA and elsewhere, gives criterion the meaning that is assigned to guideline in this glossary.  For example,

Rand (1995) defines a water quality criterion as “an estimate, based on scientific judgments, of the

concentration of a chemical or other constituent in water which, if not exceeded, will protect an organism, an

organism community, or a prescribed water use or quality with an adequate degree of safety”.  These

descriptions for water apply equally to other substrates such as soil.

Crossed refers to an experimental design in which all possible combinations of factors exist.  For example, with

two factors, gender of the test organism and concentration of toxicant, and a measured effect of toxicant

residue in the tissues, it is possible to design an experiment in which each gender is exposed to each

concentration.  (See nested.)

Datum is a numerical fact, observation, or item of numerical information.  The plural is data.

Degrees of freedom is a characteristic of a given set of data that is being analyzed statistically.  It is a statistical

concept that refers to the freedom with which a value can be specified.  For example with “n” observations and

a fixed mean, any values may be chosen for “n-1” observations.  The last observation, however, is fixed by the

mean and the values of the first n-1 observations.  The degrees of freedom are n-1.  Degrees of freedom are

often used when estimating an “average variance” or mean square error.

Dependent variable (see variable.)
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Derivative (see partial derivative.)

Discrete variable (see variable.)

Distribution refers to the way in which a particular characteristic is spread over members of a class, often

represented graphically by a curve.  As commonly used, distribution is synonymous with probability

distribution.  It is the relative frequency for the values that a variable can have.  For example, in the daphnid

reproductive test, an average number of neonates is usually in the range of 18 to 22 per adult.  The relative

frequency of values in that range is much higher than for a value of, say, 35.  The probability distribution

describes these relative frequencies.  It can be used to determine how probable it is for an observation, or range

of observations, to occur, for a given distribution.

Dose is the amount of a chemical or toxicant that has entered a test organism.  The dose is unknown for most

tests of environmental toxicity, which assess the effect of concentrations in the medium.  See also dose-

response.

Dose-response is an adjectival expression, used to refer to classical concepts of pharmacology or toxicology such

as “dose-response relationships”, the distribution of observed changes in organisms as related to the amount of

drug or toxicant.  The expression is used in very general ways in environmental toxicology, although

concentration-effect would usually be more appropriate.  As mentioned previously, most tests of environmental

toxicity deal with ambient concentrations, rather than the doses within the organisms.  Similarly, the word

“response” is suitable for use in medicine or pharmacology, where the human or other organism can show an

improvement from a dose of a curative drug, while in toxicology, the organism is not so much responding to the

toxicant, as suffering an effect of it.

EC50 is the median effective concentration.  It is the concentration of material in water (e.g., mg/L), soil or

sediment (e.g., mg/kg) that is estimated to cause a specified toxic effect to 50% of the test organisms.  In most

instances the EC50 and its 95% confidence limits are statistically derived by analyzing the percentages of

organisms showing the specified effect at various test concentrations, after a fixed period of exposure.  The

duration of exposure must be specified (e.g., 72-h EC50).  The EC50 describes quantal effects, lethal or

sublethal, and is not applicable to quantitative effects (see ICp).  Other percentages could be used, see ECp.

ECp has the same meaning as EC50, except that “p” can represent any percentage, and is to be specified for any

particular test or circumstance.  Some investigators and agencies, particularly European and international, have

mistakenly used ECp to mean ICp, but the distinction is important and should be maintained.

Ecotoxicology has the same general meaning as environmental toxicology.

ED50 is the median effective dose.  The meaning is similar to EC50 except that it refers to a toxic dose.

Effect, in toxicology, means a measurable biological change.  The change could be structural, physiological,

behavioural, etc.  In a toxicity test, the biological change should be assessed against a background of

measurements on the organisms in the control.  The statistical analysis generally considers the degrees of effect

that are beyond the control measurements, and are therefore presumed to result from exposure to toxic

components of the material being tested.

Effective concentration, see EC50.

Effluent is any liquid waste (e.g., industrial, municipal) discharged to the environment.  There is no need to use

the expression “whole effluent”.
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Elutriate is an aqueous solution obtained after adding water to a solid material (e.g., soil, sediment, tailings,

drilling mud, dredge spoil), shaking the mixture, then reclaiming the liquid by centrifuging it, filtering it, or

decanting the supernatant.

Endpoint is the statistic that is estimated as the result of a test.  The endpoint is used to characterize the results of

the test (e.g., the ICp or the LC50).  It is not recommended to also use this term to mean the effect on an

organism, or the variable being observed, such as size of an organism at the end of the test, although that usage

might be encountered (OECD, 2004).

Environmental toxicology has the same general definition as toxicology, since it is a branch of that science. 

However, the focus is on effects towards wild living organisms and natural communities, without excluding the

safety of humans as part of the ecosystems.

Error.  Pairwise error rate or comparison-wise error rate is the ratio of the number of incorrect inferences, to

the total number of inferences made.  Experiment-wise error rate is the probability of encountering at least one

Type I error during the course of making all the comparisons (for a given effect) in the experiment.  For

example, in the context of a survey of toxicity in sediments, the comparisons would be between the mean effect

for each of the locations with the mean for the control.  The “experiment” would be the entire survey.  This

error rate would not include comparisons of any other biological effects.  (See also Type I and Type II errors.)

Experiment-wise error (see Error).

Experimental error (see precision).

Experimental unit is the smallest independent unit or element in a toxicity test, to which a treatment is applied. 

The experimental unit shows an effect which is measured and becomes a datum.  An example is one container

of organisms in a toxicity test.  (The organisms within the container would be sampling units.)  If there were

two or more containers exposed to one treatment, each container would be an experimental unit and it would

also be a replicate.  (See also sampling unit and block.)

Exponent, in mathematics, is the superscripted symbol denoting the number of times that a quantity is to be

multiplied by itself, as 52 = 5 x 5 = 25.  (See also logarithm.)

Fiducial limits (see confidence limits).

Field replicate (see replicate and replicate samples).

Flow-through describes tests in which solutions in test vessels are renewed continuously by the constant inflow

of a fresh solution, or by a frequent intermittent inflow.

General linear model (GLM) does not refer to a specific mathematical technique, but describes a class of models

with similar characteristics and approach.  There is a single dependent variable (possibly with multiple

measurements on an experimental unit) which is a function of an independent variable or variables.  The GLM

framework includes simple linear regression, analysis of variance, analysis of covariance, repeated measures,

and others.

Generalized linear model (GLIM, GLiM, or generalized linear interactive model) is a further generalization of

the approach used for the general linear model.  This unified approach estimates the parameters of models in

which the effect is normally distributed, and also when effects belong to any member of the exponential family

of distributions, including binomial, logistic, Poisson, and log-normal.  In toxicology, a researcher could use

GLIMs to assess the dependence of a quantal or quantitative effect on a single independent variable such as 
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concentration (by regression), or a more complicated structure of independent variables such as group

treatment (ANOVA), or treatments and covariates (ANCOVA).  The GLIM is not well defined nor

circumscribed for understanding by non-statisticians.

Geometric series, or geometric progression, signifies that each successive number in the series is greater than the

preceding number by a factor that is constant through the series (e.g., 3, 6, 12, 24 ...).  The numbers are also in

a logarithmic series.

Geometric mean is a measure of central tendency for a set of observations.  It can be useful because it is less

influenced by extreme values than is the more familiar arithmetic mean.  For n values in a set, the geometric

mean is the nth root of the product of all the values (i.e., multiplied).  It can also be calculated as the

antilogarithm of the arithmetic mean of the logarithms of the values.

GLIM (see generalized linear model).

GLM (see general linear model).

Gompertz distribution (see Weibull.)

Good Laboratory Practice (GLP) is a set of standards governing the experimental design, collection of data, and

conduct of scientific and technical studies in the laboratory.  The Standards Council of Canada and

Environment Canada (EC) have GLP programs.  Standards are also promulgated by the Organisation for

Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency

(USEPA).

Goodness of fit is a statistical statement or index of how well observations conform to a theoretical or estimated

distribution.  Measurement of chi-square is the usual index, and is used as the example here.  Chi-square

measures how well the observed frequencies fit the theoretical frequencies.  The degree of fit (the “goodness”)

is expressed by the numerical value of chi-square.  [Zar (1999) points out that “poorness of fit” might have

been a better name, since higher and higher values of chi-square indicate increasingly worse agreement of

observations with the theoretical pattern.]  A value of zero for an index would indicate a perfect fit, and a value

of infinity could theoretically result from a bad enough fit, but an index cannot have a negative value. 

Graded effect (see quantitative).

Guideline (see Quality guideline).

Heteroscedasticity refers herein to data showing heterogeneity of the residuals within a scatter plot (see Figures

O.2B and O.2C in Appendix O). This term applies when the variability of the residuals changes significantly

with that of the independent variables (i.e., the test concentrations or treatment levels).  When performing

statistical analyses and assessing residuals (e.g., using Levine’s test), for test data demonstrating

heteroscedasticity (i.e., non-homogeneity of residuals), there is a significant difference in the variance of

residuals across concentrations or treatment levels.  (See also homoscedasticity and residuals.)

Homoscedasticity refers herein to data showing homogeneity of the residuals within a scatter plot (see Figure

O.2A in Appendix O). This term applies when the variability of the residuals does not change significantly with

that of the independent variables (i.e., the test concentrations or treatment levels).  When performing statistical

analyses and assessing residuals (e.g., using Levine’s test), for test data demonstrating homoscedasticity (i.e.,

homogeneity of residuals), there is no significant difference in the variance of residuals across concentrations

or treatment levels.  (See also heteroscedasticity and residuals.)
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Hormesis is an effect in which low concentrations of the test material act as a stimulant for performance of the

test organisms compared to the control organisms (“better” than the control).  At higher concentrations,

deleterious effects are seen.  A more general category of “low-dose stimulation” would include other possible

causes of stimulation, such as solvent effects, experimental error, or “sufficient challenge” among laboratory

organisms.

ICp is the inhibiting concentration for a (specified) percent effect.  It represents a point estimate of a

concentration of test material that is estimated to cause a designated percent impairment in a quantitative

biological function such as the size attained by organisms during a growth period.  For example, an IC25 for

weight would be the concentration estimated to result in organisms having a dry weight 25% lower than that

attained by control organisms.  This term should be used for any toxicological test which measures a

quantitative effect or change in rate, such as attained size, reproductive performance, or respiration.  The term

EC50 is incorrect for these quantitative tests (see median effective concentration).  The ICp may be estimated

by regression or, if necessary, by the procedure of smoothing and interpolation using the computer program

ICPIN.

Incipient as in incipient LC50 or incipient EC50 for acute quantal effects, is that stimulus intensity (i.e.,

concentration) at which an effect can be expected in (just) 50% of the test organisms after indefinitely long

exposure.  The rationale is that this represents the concentration that would just be sufficient to affect the

median organism (the “typical” or “average” organism).  The original, more general, and still useful term is

incipient lethal level (Fry, 1947).  Equivalent terms are threshold EC50, time-independent EC50, and

asymptotic EC50, all referring to the toxicity curve becoming parallel to the time axis.  The term incipient has

roots in environmental physiology and avoids conflicting connotations of the word “threshold”.  The definition

of “incipient” becomes more arbitrary and difficult for sublethal quantitative effects, which lack the obvious

and customary criterion of median effect, as used for quantal tests.  For quantitative tests, incipient might best

be defined as the lowest concentration at which there was a significant deleterious change in the effect being

assessed (such as growth).  In practice, such an estimate for a quantitative effect would vary with the design

and precision of the test.

Independent variable (see variable).

Interquartile range (see quartile).

Iteration is a mathematical process used to estimate the parameters of a regression (i.e., to “fit a line”).  It

involves successive approximations to the estimates by cycles of calculation, each cycle building on the

previous approximation and improving the estimates.

Laboratory replicates (see replicate and replicate samples).

Leachate is water or wastewater that has percolated through soil or solid waste.

Least squares is a method of fitting a line to a set of data.  It minimizes the sum of squares of deviations of the

observed values from the respective predicted values.

Lethal means causing death by direct action.  Death is usually defined as the cessation of all visible signs of

movement or other activity, and failure to show such signs upon gentle external stimulation.

Lethal concentration, see LC50.

LC50 is the median lethal concentration, i.e., the concentration of material in water, soil, or sediment that is

estimated to be lethal to 50% of the test organisms.  The LC50 and its 95% confidence limits are usually 
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derived by statistical analysis of percent mortalities in several test concentrations, after a fixed period of

exposure.  The duration of exposure must be specified (e.g., 48-h LC50).  Other percentages could be specified,

such as LC20.

LD50 is the median effective dose.  Definition as LC50 except that it is expressed in terms of the dose.

Life-cycle test is one in which the organisms are observed from a life stage in one generation to at least the same

life stage in the next generation.

Linear regression is a statistical procedure for estimating the parameters of a model that describes the

relationship between an effect or  response (the dependent variable) and a set of explanatory variables [the

independent variable(s)].  “Linear” does not refer to the shape of the line but to the nature of the equation

describing it.  Linear models are relatively simple, in that their parameters (a, b, etc.) can be estimated by

evaluating a single formula.   The phrase “simple linear regression” is often used when only one explanatory

variable is used.  A simple linear model would be the familiar equation for a line, Y = a + bX in which Y is the

dependent variable, X is the independent variable, and a and b are parameters.  However, linear regression can 

include curved lines as well as straight ones, for example a quadratic model could be included (Y = a + bX +

cX2).  Statisticians use the term “linear” to describe models in which the partial derivatives of the model with 

respect to a parameter are independent of any other parameters.  See also partial derivative, regression, and

nonlinear regression.

LOEC is the lowest-observed-effect concentration.  This is the lowest tested concentration of a material which

has an effect that is different from the control, according to the statistical test used for analysis.  See also,

NOEC.   (The O does not signify “observable”, a grammatical mistake sometimes seen.  The LOEC is

associated with an effect that the investigator actually noted (observed).  An effect at an even lower

concentration might have been observable, given a more powerful experiment, more time spent in scrutinizing

the organisms, a better microscope, etc.  Nor should the word “harmful” be incorporated into the name of the

endpoint (NOHEC).  It should be left to the experimenter to designate the kind of effect that is included,

without imposing some outside definition of “harmful”.)

Log is an abbreviation for logarithm to the base 10.

Logarithm is a method of mathematical coding.  Here, logarithm (“common logarithm” or “log”) is the power to

which a fixed “base” of 10 must be raised, to produce the number represented by the logarithm.  Thus a

logarithm of 2 would represent 102 = 100, i.e., log to the base 10 of 100 = 2, or log10 100 = 2.  Some examples

provide insight: log10 700 = 2.84510, log10 70 = 1.84510, log10 7 = 0.84510, log10 0.7 = -0.15410 (or 9.84510 -

10).  Adding (subtracting) logarithms is equivalent to multiplying (dividing) the numbers they represent.  See

also exponent; in 102 = 100, the exponent is 2, thus related to logarithms.  Natural or napierian logarithms, (or

ln as in ln 100 = 4.60517) use the base “e”, which has a value of 2.71828...  Either type of logarithm can be

used in toxicological work as long as the usage is consistent throughout a set of calculations.  The base “e” is

important in mathematical concepts such as compound interest, exponential function, probability theory,

growth equations, etc.

Logarithmic, as in logarithmic series, signifies that the logarithm of each number in a series is greater by a

constant amount, than the logarithm of the preceding number.  The numbers themselves could also be said to be

in a geometric series, since each would be greater than the preceding by a constant multiplier.

Logit is the logistic equivalent deviate.  It is a specific transformation of data that can be applied to the

proportions of organisms affected in a quantal toxicity test, usually resulting in a straightening of the sigmoid

curve of effect.  To obtain logits, the proportion of organisms affected ( p ) at a given concentration is divided
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by (1 - p).  The logarithm of the result is taken, and that is the logit.  See also Section 4.5.1 and probit, with

further discussion in Appendix J.  Logits also provide a useful way of fitting a regression to quantitative data. 

Results are formulated as the proportions of organisms which attained specified values of the measured effect. 

Examples are given in Section 6.5.8 with further details in Appendix O.

Logistic distribution is a statistical distribution function which has been found to be of value in quantal assays

and in regressions of quantitative data. (See logit.)

Lowest-observed-effect concentration (see LOEC).

LT50 is the median lethal time, i.e., the exposure time that is estimated to be lethal to 50% of the test organisms

for a given concentration of test material.  Successive observations of mortality in each of a series of

concentrations can allow an estimate of LT50 for each concentration, sometimes advantageous in providing a

more revealing toxicity curve.  The usual statistical techniques for LC50 are not valid for LT50.

MATC is the maximum acceptable toxicant concentration.  It has been defined in various disparate ways but is

now generally considered to be synonymous with TOEC; the latter term is recommended here.

Matrix is used, particularly in work with sediment and soils, to refer to the background physical and chemical

nature of a sample.  Accordingly, matrix effect refers to the action of these background characteristics on test

organisms.  This is intended to refer only to the background effects, without those caused by any contaminants

present.

Material is the sum of all the substances which it contains.  A material has more or less uniform characteristics. 

Soil, sediment, or surface water are materials.

Maximum likelihood estimation is a mathematical method for obtaining estimates of parameters in a relationship

of interest.  Maximum likelihood estimates (MLE) attempt to estimate the values of the parameters that would

result in the highest likelihood of observing the data actually collected (SPSS, 1996).  For example, the

parameters might be the mean and variance of a distribution of data.  “The likelihood that a set of parameters

should have any particular values is defined to be a quantity proportional to the probability that, if these be the

parameters, the totality of observations should be the data recorded” (Finney, 1978, p. 58).  This is not the same

concept as least squares, nor minimum chi-square.

Mean or arithmetic mean is the most widely used measure of central tendency in a set of data.  It is the sum of all

the observations, divided by the number of observations.  Because it considers the numerical value of each

observation, the mean  can be thought of as the “centre of gravity” for a set of data.

Median is the middle measurement in a set of data that has been ordered from small to large or large to small.  It

is the number of items in the series that is being divided, not the arithmetic values of those items.  If there were

an odd number of items in the series, the median would be the middle item.  If there were an even number of

items, the median would usually be the average of the numerical values of the two middle items.  If it were

more complicated, such that more than two items at or near the middle had the same numerical value, the

median would be interpolated under an assumption that the middle values were evenly ranged across the

middle interval; statistics textbooks provide proper formulae.  The median expresses less information than the

mean because it does not take into account the actual value of each measurement.  However, it can be a good

choice to describe central tendency in a skewed population, because extremely high (or low) measurements will

not affect the median as much as the mean (Zar, 1999).  See also quartile.

Median effective concentration/dose (see EC50/ED50).

Median lethal concentration/time/dose (see LC50/LT50/LD50).
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Medium, in toxicity testing, is the material that surrounds or carries the organisms.  Examples include the culture

medium for bacteria (the nutritive broth or substrate), the water in which fish are swimming, or the soil

surrounding earthworms.  The plural is media (“The bacteria were cultured in a medium that ...” or “We tested

several media to determine...”).

Minimum Significant Difference (MSD) is the magnitude of difference in measured results that would have to

exist between the control and a test concentration, in order to conclude that there was a significant effect at that

concentration, according to the statistical test being used.

MLE (see maximum likelihood estimation).

Monotonic is a sequence of numbers in which each value is either (a) greater than or equal to the preceding one,

or (b) less than or equal to the preceding one.

Multicollinearity. (See collinearity.)

Multiple-comparison test is a statistical procedure which can be used to distinguish how mean effects differ

statistically from each other in an experiment that has more than two treatments.  Sometimes called multiple-

range tests.  (See Section 7.5.)

Multiple correlation coefficient.  (See R.)

Multiple regression is a relationship in which the magnitude of a dependent variable is governed by two or more

independent variables.  For example, Y = """" + ß1X + ß2X + ß3X.  (See also polynomial.)

Natural logarithm (see logarithm).

NEC is the No-effect concentration, the level of a toxicant that is thought to have no effect whatsoever on a

specified organism.  The NEC is somewhat of an idealized concept, and must be predicted or estimated by

modelling or extrapolation.  It is analogous to a parameter of a population.  From the results of any given

toxicity test, the NEC must be deduced rather than observed, because more tests or different kinds of tests

might reveal effects at lower concentrations.

Negative control has the same meaning as control.

Nested refers to an experimental design in which all possible combinations of a factor cannot exist (compare

crossed).  If a test involves the factors gender of the organism and concentration of toxicant, with triplicate

measurements of toxicant residue in the tissues, it is not possible to design an experiment in which each animal

is found at each combination of factors.  The triplicate measurements of residue are subsamples and are nested

within the factor “animal”.

NOEC is the no-observed-effect concentration.  This concentration is the next lower from the LOEC, among

those concentrations tested.  (Almost always, the NOEC is also the highest tested concentration whose effect

on test organisms is not different from the control, according to the statistical test used for analysis.  It is

possible, however, that irregular response could result in no significant effect at a concentration higher than the

LOEC.  That situation is avoided by the definition given for NOEC.)

Nonlinear regression is similar to linear regression, but the partial derivatives of a parameter are not

independent of other parameters.  The term does not refer to the shape of the line showing this relationship. 

The dependent variable cannot be expressed as a linear combination of parameter values multiplied by values

of the independent variable (SPSS, 1996).  The formula describing the regression might be multiplicative, e.g., 
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Y = """" ß X  which is the formula for exponential growth (Zar, 1999).  An iterative approach is required to

estimate the model parameters.  (See also linear regression and regression.)

Nonparametric analysis is a statistical technique that does not assume any underlying distribution for the data. 

The technique does not make use of the parameters (such as mean and variance) of the population from which

the samples were drawn.  Nonparametric testing draws inferences about the population but not about the

parameters of the population.  (See also parametric analysis.)

No-observed-effect concentration (see NOEC.)

Normal distribution (or normal probability distribution) is a symmetric bell-shaped array of observations.  The

array relates frequency of occurrence to the magnitude of the item being measured.  In a normal distribution,

most observations will cluster near the mean value, with progressively fewer observations toward the extremes

of the range of values.  The shape is determined by the mean and standard deviation, with 68.3%, 95.4%, and

99.7% of the observations included within plus or minus one, two, and three standard deviations of the mean,

respectively.  Not all bell-shaped curves are normal, and normality is defined by a particular and complex 

equation which includes the mean and standard deviation, and also the constants B (3.14159) and Q (the base of 

natural logarithms).  The normal distribution plays a central role in statistical theory because of its

mathematical properties.  It is also central in biological sciences because many biological phenomena follow

the pattern.  Many statistical tests assume that data are normally distributed, and therefore it can be necessary

to test whether that is true for a given set of data.

Normal equivalent deviate (NED) is the standard deviation from the mean of a normal distribution, associated

with a particular probability.  In other words it is a unit of divergence from the mean of a normal distribution,

expressed in terms of the standard deviation of that distribution.  One NED is one standard deviation out from

the mean.  A probit is simply an NED, with 5 added to avoid negative values on one side of the distribution.

Observation.  (See variable.)

One-tailed test is a statistical test designed and appropriate for the situation in which the investigator is interested

in whether a variable differs in only one direction, from the base of comparison (e.g., is the variable greater

than the base?).  In a Two-tailed test, the investigator wishes to determine whether the variable differs in either

direction from the base of comparison, i.e., is it significantly different?

Outlier is an extreme observation, a measurement that does not seem to fit the other values from a test.

Pairwise error (see Error.)

Parameter is a word with several connotations.  In mathematics it is a property or characteristic of a population,

such as the mean or the median.  For any one population, the parameter has a value that is constant.  If a sample

were taken from the population, the mean or median of that sample would not be a parameter, but would be

called a statistic.  The statistic would almost certainly vary among different samples taken from the same

population.  A toxicity test uses a sample of test organisms, so the endpoint is a statistic, which is regarded as

an estimate of the true value (the parameter for the total population of organisms).  In biostatistics, it is a

convention to use Greek letters to represent population parameters, and Latin letters to represent sample

statistics.  In common usage, parameter has somewhat uncertain meanings, but usually signifies limits,

boundaries, guidelines, or restrictions (Burchfield, 1996).  “Parameter” is often misused, even in government

publications, in places where the correct word would be variable.  A very common misuse is in lists or tables

of chemical measurements, in which the chemicals being measured are said to be “parameters”; they are not,

they are variables, and investigators should avoid that mistake.
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Parametric analysis uses a biostatistical method that considers the parameters of the population from which the

samples were drawn.  Usually, this means that if two sets of samples are being compared, the two populations

from which they were drawn must have normal distributions and equal variances.  The samples being subjected

to the analysis must conform to the characteristics assumed for the population. (See also nonparametric

analysis.)

Partial derivative has reference to the independent variables of a function.  A derivative can be explained in

terms of a very simple function such as Y = aX.  The “Y” is the dependent variable, “X” is the independent

variable and “a” is a parameter.  The derivative is the change in Y relative to the change in X (i.e., the slope). 

Hence the derivative is *Y/*X = a.  Now if the function has two or more independent variables, the derivative

must be taken with respect to each of them, in order to describe the slope.  For example, if the function is Y =

aX1 + bX2, there are two partial derivatives, namely *Y/*X1 = a, and *Y/*X2 = b.

Partial effect means that some of the test organisms in a container showed the effect, and some did not.  This

could be applied to lethal effects, as in partial mortality, which would mean that some organisms died and

some did not.

Partial mortality (see partial effect.)

Point estimate is a single numerical value that has been calculated or judged to represent a set of toxicity data,

e.g., EC50 or IC25.

Poisson distribution is one involving counts of random occurrence of an item, either in space or time.  An

example would be counts of algal cells in the squares of a grid.  If the probability was small (but constant), and

the number of observations large, the Poisson would be similar to the binomial distribution.

Polynomial refers to an equation of a multiple regression in which some of the terms have exponents.   For

example, Y = """" + ß1X + ß2X
2 + ß3X

3.

Pollutant is the substance, material, or form of energy which causes pollution, or is capable of causing pollution

if discharged to the environment in sufficient quantities.  (See pollution and contaminant.)

Pollution is the addition of a material or a form of energy such as heat, to some component of the environment, in

such an amount as to cause a detectable change which is deleterious to some organism or to some human use of

the environment.  Some regional, national, and international agencies have formal definitions of pollution,

which should be honoured in the appropriate contexts.

Population, in mathematics, is the collection of all possible values of a variable (such as the lengths of all

individual fish in a lake).  Or the word could represent all the individuals in the group of interest (such as the

fish in a lake).  Universe is used synonymously in mathematics.  (See also sample.)

Porewater is the water occupying space between sediment particles.  The amount of porewater is expressed as

percent of the wet sediment, by weight.

Positive control is a toxicity test with a reference toxicant, used to assess the sensitivity of the organisms at the

time that a test material is evaluated, and also to assess the precision of results obtained by the laboratory for

the reference chemical.

Power is, loosely, the probability of correctly concluding that there is a difference between the variables being

tested.  Formally, it is “the probability of rejecting the null hypothesis when it is in fact false and should be

rejected”.  In effect, it is the opposite of making a Type II error, in which an investigator accepts the null 
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hypothesis when there is actually a difference.  The probability of making that Type II error is called ß, and

power is represented by (1 - ß).  Power cannot be directly and precisely set by the investigator, before doing a

toxicity test.  Power can be increased, however, by strengthening the toxicity test (more organisms, more

replicates, etc.).  Calculating power at the end of a test is rather complex, but power is related to Minimum

Significant Difference, which can be estimated by standard procedures in many statistical tests which operate

on quantitative data.

Precision is the closeness of repeated measurements to each other, and is often assessed by the variance or

standard deviation.  A group of measurements could be very precise, but have poor accuracy.  Measurements

might be both precise and accurate but still have bias.  If measurements are made on each of several organisms

(sampling units) from each of two or more containers (experimental units) at a given concentration (treatment),

the variation among containers is the experimental error and determines the precision of the mean value of

measurements at that concentration.  The variation among measurements of individual organisms within a

container is sampling error.  In quantal tests, the proportion affected in a container is the observation on the

experimental unit, while the effect shown by an individual organism (affected or not affected) is an observation

on a sampling unit; the precision is a function of the number of organisms in a container.  In the usual methods

of analysis for quantal tests, the data from replicates are pooled, so the variation within concentrations cannot

be used directly.

Probability is the likelihood of an event, measured by the ratio of the favourable cases to the whole number of

cases possible.

Probability distribution is a function describing the probability that a random variable is equal to or less than

some unspecified value.  A familiar example is the bell-shaped normal distribution.  If the random variable is

equal to 1.645, the probability of being less than 1.645 is 95%.  (See also distribution.)

Probit is a unit of divergence from the mean of a normal distribution, expressed in terms of the standard

deviation of the distribution.  It is the normal equivalent deviate, with 5.0 added to avoid the confusion of

negative values on one side of the distribution (a step that is convenient for understanding, but not actually

necessary in these days of computer analysis).  The practical use of probits, in estimating an LC50 or EC50, is

to straighten the sigmoid curve of the accumulated normal distribution, which shows percent effect as a

function of log concentration.  (See also probit scale.)

Probit scale has a central value of 5.0, representing the expected median effect in a quantal toxicity test (an

expected 50% of the organisms would be affected).  For most practical purposes, the scale from 3 to 7 probits

would be adequate.  Probit 2 would represent an expected effect on 0.1% of test organisms, probit 3 would be

2.3% of organisms, probit 4 would be 16%, probit 6 = 84%, probit 7 = 97.7%, and probit 8 = 99.9%.  (See

probit, normal equivalent deviate, and Section 4.5.1.)

Probit regression (often called probit analysis) measures the relationship between the strength of a stimulus and

the proportion of cases that exhibit a selected effect caused by the stimulus (after SPSS, 1996).  Regression

would normally use maximum likelihood estimation or iterative reweighted least squares, to estimate the ECp

and the relationship of probit of effect to logarithm of concentration.  The effect being analyzed is quantal.

Protocol is an explicit set of procedures for a test or experiment, formally agreed upon by the parties involved,

and described precisely in a written document.

Pseudoreplicate is a false replicate.  A common example in toxicity testing would be mistakenly calling the

organisms within a test vessel “replicates”.  Using pseudoreplicates as replicates in a statistical test would be a

gross error.

Quadratic refers to a type of equation for a regression, which contains a third parameter and X2.



xxxii

Quality Assurance (QA) is a program within a laboratory, intended to provide precise and accurate results in

scientific and technical work.  It includes selection of proper procedures, sample collection, selection of limits,

evaluation of data, quality control, and qualifications and training of personnel.

Quality Control (QC) consists of specific actions within the program of quality assurance.  It includes

standardization, calibration, replication, control samples, and statistical estimates of limits for the data.

Quality guideline is a scientifically based numerical concentration limit or narrative statement recommended to

support and maintain a designated use of a medium such as soil, air, or water (“soil quality guideline”, etc.).  A

quality objective has the same definition as guideline except that it applies to a specific site.  Some provinces

have established lists of water quality objectives, and they reflect “officially desired conditions”.  A quality

standard is an objective that is recognized in enforceable environmental control laws or regulations,

promulgated by a government.

Quantal is an adjective as in quantal data, quantal test, etc.  A quantal effect is one for which each test organism

either shows the effect of interest or does not show it.  For example, an animal might either live or die, or it 

might either develop normally or abnormally.  Such data usually fit a binomial distribution.  The term

dichotomous means the same, is now more frequent in statistical literature, and is more easily understood.  (See

also binary, binomial variable, discrete, and quantitative.)

Quantitative is an adjective, as in quantitative data, quantitative test, etc.  A quantitative effect is one in which the

measured effect can take any whole or fractional value on a numerical scale.  An example would be the weights

attained by individual organisms at the end of a test.  Such data usually fit a normal distribution.  Continuous

can be a synonym and is commonly used by statisticians concerned with toxicology, especially in Europe. 

Graded was used to mean the same thing in this context, by the early giants of toxicology (Gaddum, 1953), but

is no longer considered an appropriate term.   (See also quantal.)

Quartile identifies one of the three values in a ranked series of numbers, which divide the series into four equal

parts.  It is the number of items in the series that is being divided, not the arithmetic values of those items. 

One-fourth of all the ranked numbers in the series would occur before the first quartile, and three-quarters

would occur after it.  Three-fourths of the numbers would occur, in the series, before the third quartile, and

one-fourth after it.  The second quartile is called the median, and half of the items in the ranked series come

before it, and half after it (see median).  The interquartile range is the absolute value of the difference between

first and third quartiles.  Usually it is easy enough to pick the quartiles and median by inspecting the series. 

However, in short series it can be questionable to decide on quartiles which divide the series appropriately, and

various sources differ on precise definitions and methods of calculation (see Appendix R).

R is the multiple correlation coefficient.  It is the square root of the coefficient of determination (see R2).  It

estimates the multiple correlation coefficient (D or rho) in the population that was sampled.  R is also equal to

the Pearson product moment correlation (usually designated as r) between the predicted and observed values in

a regression analysis (see linear regression).

R2 is the coefficient of determination or coefficient of multiple determination, often referred to as the “R2 value. 

It is the ratio of the sums of squares accounted for by a regression model, to the total sums of squares about the

mean.  In a regression context, the coefficient of determination measures the proportion of variability in the

effect measured, that is explained by the regression model (see also R).

Random sample is a selection of individuals (or items or elements) from a population, in which each individual

has an equal probability of being included in the selection.  For most statistical techniques, random sampling is

required to make valid inferences.



xxxiii

Range is the difference between the highest and lowest values in a set of data.  It is usually called “the range” and

is often given as the actual high and low values.

Receiving water is surface water (e.g., in a river, lake, or bay) that has received a discharged waste, or else is

about to receive such a waste (e.g., it is in a flowing river just upstream from the discharge point).  Description

must be provided to indicate the meaning intended.

Reference method is a procedure for testing toxicity, which has an explicit set of instructions and conditions

described precisely in a written document.  Unlike other multi-purpose (generic) biological test methods

published by Environment Canada, the use of a reference method is usually triggered by the testing

requirements of specific regulations.

Reference sediment is a field-collected sample of presumably clean sediment that has properties (e.g., particle

size, compactness, total organic content) closely matching those of the sample(s) of test sediment except for the

degree of chemical contamination.  It is often selected from a site uninfluenced by the source(s) of 

contamination but within the general vicinity of the survey stations where samples of test sediment are

collected.  It is used to describe matrix effects in the test, and may also be used as a control and as a diluent to

prepare concentrations of the test sediment.  (See also, control sediment.)

Reference soil is a field-collected sample of presumably clean soil that has properties (e.g., texture, structure, pH,

organic content) as similar as possible to those of the sample(s) of test soil, except that it is free from the

chemical contamination being assessed.  It is often selected from a site uninfluenced by the source(s) of

contamination, but within the general vicinity of test samples, and thus might be subject to pollutional

influences other than the one(s) being studied.  It is used to describe matrix effects in the test, and may also be

used as a control and as a diluent to prepare concentrations of the test soil.

Reference toxicant is a standard chemical used to measure the sensitivity of the test organisms, and to assist in

establishing validity of the toxicity data obtained for a test material.  In most instances, a toxicity test with a

reference toxicant is performed to assess (a) the sensitivity of the organisms at the time the test material is

evaluated, and (b) the precision of results obtained by the laboratory over a period of time which includes

several or many tests of that reference toxicant.

Regression, as a statistical technique, determines the relationship between two or more variables.  The term refers

to the activity of estimating, or to the relationship after it has been calculated.  The magnitude of a dependent

variable (such as size) is a function of the magnitude of another variable or variables, the independent

variable(s) (such as concentration).  The reverse is not true.  This can be called simple regression if there are

only two variables.  (See also linear regression, nonlinear regression and correlation.)

Repeated measure refers to making more than one numerical observation over time, on the same experimental

unit.  “Repeated measures analysis” is a separate category of statistical methods for these types of observations,

a category not covered in this document.

Replicate is a repetition of a treatment ( = experimental unit).  (See also block and replication.)

Replication is the repetition of sets of treatments in groups.  (See also replicate.)  A replicate (as a noun) is a

single test chamber containing a prescribed number of organisms ( = sampling units), either in one

concentration ( = treatment) of test material, or in a control.  In a toxicity test with five test concentrations and

a control, using three replicates, 18 test chambers would be used, i.e., three chambers for each treatment.  A

replicate must be an independent test unit, and therefore the test material in a chamber must not have a

connection to the test material in another chamber.  Any transfer of organisms or test material from one

replicate to another would invalidate a statistical analysis based on the replication.  As a verb, to replicate is to

repeat a treatment or experimental unit.  Experimental error (the random variation among the experimental 
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units)  is estimated from the replicates.  (See also block, replicate samples, experimental unit, pseudoreplicate,

sampling unit, and treatment.)

Replicate samples are separate samples of soil, sediment, etc., collected in the field, using identical methods, and

at the same sampling station.  By definition each replicate is subject to the same treatment.  The purpose is to

provide a more representative appraisal of the quality of the sampled substrate, and to allow the variation in

that quality and/or the variation in sampling the substrate to be estimated.  The replicate samples must be stored

in separate containers.  The replicate samples might be used to set up replicates within each treatment in a

toxicity test; that is often recommended in tests with soils or sediments.  These replicates in the test would be

true field replicates, so the test would assess variation in the test material and in sampling it, as well as any

variation between replicates created by conditions in the laboratory.  Laboratory replicates in a test would be

two or more replicates for each treatment in a test, created by splitting or taking a subsample of the sample of

test material.  Such a test would merely indicate variation due to conditions in the laboratory, and must not be

construed to indicate the variation in the test material (say, sediment in a lake) or in sampling that material.  

Laboratory replicates are usually pointless in a toxicity test, and are not recommended unless for convenience

in size of containers or some similar reason.  They could, however, be of some use in regression, for

differentiating between the error of measuring an effect, and the actual deviation of an effect from the fitted

line.  For chemical analysis, laboratory replicates could be taken to assess precision of chemical measurements.

Residuals, in regressions, are the differences between each observed value and the value predicted for it by the

equation.  

Resistance is a characteristic of an organism, describing its ability to delay the manifestation of designated effects

of a toxicant or other environmental identity for a period of time which is a function of the level of the identity. 

Ultimately, the organism will succumb (after Fry, 1947).  (Contrast with tolerance.)

Response, in this document, is considered a synonym of effect.  The latter term is preferred in toxicology, because

damage to the test organism by the toxic substance is not so much a case of the organism responding, as it is a

consequence of the toxicant's action.  Although the term dose-response is often used in a general way to

describe relationships in toxicity tests or bioassays, “concentration-effect” would usually be more specific in

environmental toxicology.   In any case, the effect or response is almost always the dependent or “y” variable in

a statistical model.

“Safe” concentration is that concentration of the test substance estimated to allow normal life history and

reproduction of organisms within their natural habitat.  The “safe” concentration is a biological concept, not a

statistical endpoint from an experiment, and is usually given quotation marks to indicate the uncertainty about

whether it is completely safe.  (See also NEC.)

Salinity has traditionally referred to measurements of the total mass of dissolved salts in a given mass of solution,

described in terms of g/kg or “parts per thousand” (‰).  Today it is empirically measured from standard

relationships of density or conductivity, and results are unitless (APHA et al., 1992).

Salinity control is a separate control chamber or set of chambers in a toxicity test with marine organisms.  It

serves the purpose of a normal control, and also assesses any effect of less-than-optimal salinities in the test

chambers.  The term would not be relevant to tests in which all treatments were adjusted to a standard optimal

salinity; such tests would simply have a “control” with the same salinity as test concentrations.  (That is the

case for marine tests under the Environmental Effects Monitoring Program of Environment Canada, which also

has special controls related to the technique used for adjusting salinity; see Section 2.7).  If salinity adjustment

was not done in the test concentrations, there should be a control at favourable salinity, and in addition, an

extra set of salinity controls duplicating the test salinities.  The purpose would be to indicate deleterious effects

of low (or high) salinity acting alone.  However, if there was some deleterious interaction of the divergent

salinity with toxicity of the test material, the extra set of salinity controls would not indicate that interaction.
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Sample is a part of a population, selected by an investigator.  Usually, the intention is to use information from the

sample to make inferences about a population.  Accordingly, it is important to clearly define the population of

interest and to obtain a representative sample from that population; this is often done by random sampling.

Sampling error.  (See precision.)

Sampling unit is an observational unit within an experimental unit.  An example would be one organism in a

container of organisms exposed to a given treatment.  (See also replicate.)

Sediment is a natural particulate material that has been transported to, and deposited at, the bottom of a body of

water.  The term can also describe a substrate that has been experimentally prepared.

Serial dilution is a series of test concentrations in which each lower concentration differs from the preceding one

by a constant factor (dilution), such as 100, 50, 25, 12.5%.  Such a series can be obtained by successive

dilutions of a given waste, stock solution, or stock material.

Sigma ( 3 ) is mostly used to mean “the sum of ...”.  Lower-case sigma ( F ) is mostly used to signify the standard

deviation of a population.

Significance or significant refers, in this document, to differences between or among groups, that cannot be

ascribed to chance alone.  The distinction is made on the basis of a formal statistical test.  Unless otherwise

stated, a 5% level of probability is assumed, i.e., the difference would not be expected to occur by chance more

than 5% of the time, if the experiment or test were repeated many times.

Significance level is defined statistically as the probability of rejecting the null hypothesis when it is true.  In

other words, it is the probability of erroneously concluding that a treatment (such as a toxicant concentration)

had a significant effect, when in fact, it did not.  Toxicity investigators might also use the words as follows:

 “... there is a difference at a significance level of 5%”.  (See also Type I error and Power.)

Simple regression (see regression).

Skew means asymmetry.  Here, it refers to asymmetry in a plotted frequency curve for a given distribution of

data.  The plot of a classical normal curve is symmetrical, that is the left and right sides of the curve will be

mirror images about the mean, and the median will have the same value as the mean.  In a curve that is skewed

to the right, the curve looks asymmetric with the right tail stretched out, and the mean is higher than the

median.  If that curve is cumulated, it will be noticeable that the upper part of the curve is stretched out to the

right in a sweeping curve.  (See Section 9.1 and Appendix H.1.)

Soil elutriate (see elutriate).

Solvent control is a special type of control that might be necessary in a toxicity test, most likely an aquatic test.  It

is appropriate for any toxicity test in which a solvent is used to obtain the desired concentrations of a poorly

soluble chemical that is being tested.  A solvent control must be run simultaneously with the standard

control(s).  Usually the solvent control must duplicate the conditions in the standard control, except that it must

contain the highest concentration of solvent that is found elsewhere in the test.  For a satisfactory result, the

performance of organisms in the solvent control must not be “worse” than performance in the regular control. 

(See Section 2.7.2.)

Spiking refers to the addition of a known amount of chemical or substance to a soil or sediment.  The substance is

usually added to a clean or control soil/sediment, but sometimes to a contaminated one.  The substance added

would usually be a single chemical, but might be a test soil/sediment.  After the addition, the soil/sediment is

mixed thoroughly.
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Standard is an enforceable, defined level of quality (see Quality guideline).

Standard deviation describes the divergence of individual observations in a sample, from the mean value for that

sample.  It is the square root of the variance, and by definition, it can only be a positive number.  The symbol

“SD” is used in this document, in keeping with common practice of biologists and some other recognition (Zar,

1974); mathematicians would use the symbol “s”.

Standard error is the usual abbreviation for the standard error of the mean.  It is represented by the symbol “SE”

(or “s” with subscript x-bar, as commonly used by mathematicians).  Standard error can be calculated for any

statistic, for example the estimate of a slope in a linear regression has a standard error.  However, the most

common use in toxicology is for the SE of a sample mean.  The SE of a sample mean is calculated as the

standard deviation of the sample, divided by the square root of the number of observations in the sample.  That

calculated SE is an estimate of the divergence that would be shown among a number of mean values, if those

means represented a number of samples taken from the same population.  The standard error for a group of

means, therefore, is the equivalent of the standard deviation for a group of observations in a single sample.  In

practice, the standard error is estimated from a single sample, as indicated previously.

Static describes aquatic toxicity tests in which test solutions are not renewed during the test.

Static-renewal describes aquatic toxicity tests in which test solutions are renewed (replaced) periodically during

the test, usually at the beginning of each 24-h period of testing.  Synonymous terms are “renewal”, “batch

replacement” and “semi-static”.

Statistic is a quantity or measurement that characterizes some property of a sample.  (See population).

Sublethal means detrimental to the organism, but below the level that directly causes death within the test period.

Subsample is part of a single sample.  In statistical terms, subsamples are multiple observations of a given

characteristic on one experimental unit.  A subsample must represent a single time of collection.  If collected

over time, the observations would fall in the category of repeated measures.

Substance is a particular kind of material having uniform properties; often the term would apply to a chemical

compound.

Threshold as in threshold EC50, see incipient EC50.

TOEC is the threshold-observed-effect concentration.  Its true value lies somewhere between the NOEC and

LOEC; it is estimated as the geometric mean of those two concentrations, for the convenience of having a

single endpoint.

Tolerance is a characteristic of an organism, and in environmental toxicology it means the ability to withstand

specified levels of an environmental identity for an unlimited time.  It was originally defined in lethal

temperature work with fish, using the description “the zone of tolerance in which the animal will never die

from the effects of that particular identity alone” (Fry, 1947).  (See also tolerance distribution and resistance.)

Tolerance distribution is used by statisticians to mean the pattern (distribution) of effects among organisms

exposed to a single concentration of a toxic agent.  The usage can be illustrated by an example of growth

shown in a group of organisms exposed to a given concentration of toxicant.  Individual organisms will exhibit

a range of effects.  There will be a mean growth effect, with individuals showing some dispersion around that

mean.  That distribution around the mean is the tolerance distribution.  If another group is exposed to a

different concentration, the mean effect will change, but it is assumed that the tolerance distribution will 
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remain the same, i.e., the same variance.  The statistical use differs from the established definition of tolerance

in biology and toxicity work.  “Tolerance distribution” has been avoided in this document.

Toxic is an adjective or adverb meaning that a chemical, substance, or material is present at a location, in

sufficient quantity to cause adverse effects on living organisms, or that the material could fulfil that role.

Toxicant is a chemical, substance, or material that can cause adverse effects on living organisms (i.e., a poison).

Toxicity is the inherent potential or capacity of a material to cause adverse effects on living organisms.

Toxicity curve is a graph of successive endpoints of a test or tests, with concentration plotted against time, both

on logarithmic scales (e.g., log LC50 versus log exposure-time).  The curve can indicate whether a threshold of 

toxicity was reached during the test, i.e., a time-independent asymptote of concentration, an important item of

knowledge for any toxic chemical (see incipient LC50).  A toxicity curve is usually for lethal effects, since for

most sublethal tests, definitive observations of effect are available only at the end of the test.

Toxicity test is a determination of the effect of a material on a group of selected organisms under defined

conditions.  An environmental toxicity test usually measures either (a) the proportions of organisms affected

(quantal) or (b) the degree of effect shown (quantitative) after exposure to specific concentrations of chemical,

effluent, elutriate, leachate, receiving water, sediment, or soil.

Toxicology in its broad sense, is the science that defines limits of safety of chemical agents.  There is no

limitation on the scientific disciplines that may be used, on whether the tools are in the laboratory or field, or

whether the studies are at the molecular or ecosystem level.  The scientific studies must, however, be designed

with a goal of defining limits of safety.  (See also environmental toxicology.)

Toxic unit (TU) is an expression of the toxic potency of a waste material, or of a substance contained in a medium

such as soil, sediment, water, or air.  Potency of the waste material or substance is expressed as a multiple of 

(= fraction of) a standard endpoint of toxicity.  Toxic units of a waste material such as an effluent would be

calculated as 100% (i.e., the strength of the effluent) divided by the endpoint as a percentage (e.g., an effluent

with an LC50 of 10% would have 100/10 = 10 lethal toxic units).  For a toxic substance contained in a

substrate or medium, the example of a chemical dissolved in water may be taken.  Its  lethal toxic units would

be calculated as the actual concentration of the chemical in the water, divided by the LC50 of that chemical. 

Sublethal toxic units would be calculated by using a defined sublethal endpoint (such as IC25) as the

denominator.  For example, if a chemical was present in water at 5 mg/L and the IC25 of that chemical was 

10 mg/L, there would be 5/10 = 0.5 sublethal TU present, i.e., half of the sublethal effect-level.  Toxic units are

unitless in terms of chemical concentration.  They are conceptually convenient since their numerical value

increases as the potency increases. 

Toxin is a poisonous substance, especially a protein, produced by living cells or organisms and capable of causing

disease or other deleterious effects when introduced into an organism.  A toxin is also capable of stimulating

production of an antitoxin.  An example would be paralytic shellfish poison produced by marine dinoflagellates

(“red tide”).  News media and careless environmental activists have almost ruined the meaning of this word by

using it for all kinds of toxicants.

Treatment is, in general, an intervention or procedure whose effect on a sampling unit is to be measured.  More

specifically, in toxicity testing, it is a condition or procedure applied to the test organisms by an investigator,

with the intention of measuring the effects on those organisms.  Usually, the treatment would be a

concentration of a potentially toxic material.  The treatment might include several containers at the same

concentration, each of them an experimental unit and also a replicate.  In the testing of sediments and soils, 



xxxviii

treatment means a specific material being tested (e.g., site sediment, site soil, reference soil, or negative control

soil) from a particular sampling station.  (See also sampling unit.)

Two-tailed test (see one-tailed test).

Type I error, commonly designated as """" (alpha), occurs when an investigator rejects a null hypothesis that is

true.  In other words, the investigator concludes that there is a significant difference, but actually, there is none.

Type II error, commonly designated as ß (beta) occurs when an investigator fails to reject the null hypothesis

when it is false (concludes that there is no significant difference, but actually there is).

(A) Variable is a characteristic which differs from individual to individual, case to case, or observation to

observation.  Thus, the variable is a characteristic of the individuals or cases in a population of individuals or

cases.  A variable could be the concentration of a chemical, the height of plants, the number of progeny, or 

similar items.  The value measured or recorded for the variable is an observation.  The variable can be

continuous, taking any value of a spectrum within the possible range (such as concentration of a chemical or

the weight of a midge larva).  Or, the variable can be discrete, signifying that it can take on any positive or

negative  values such as 0, 1, 2, 3, e.g., the number of leaves on a plant.  The two designations correspond,

respectively, to quantitative and quantal data.  An independent variable, in an analysis, would be the one that is

fixed, usually by the investigator, and is being used to predict the corresponding value of the dependent

variable.  The value of the latter is governed by the choice of the independent variable.  In a toxicity test,

concentrations would be the independent variable, and effect would be the dependent variable.  (See also

binomial variable and parameter.)

Variance is a measurement which describes the divergence of individual observations in a sample from the mean

value for that sample.  It is calculated by (a) subtracting the mean from each observation, (b) squaring each

result from step (a), (c) adding together the values from step (b), and (d) dividing the result of step (c) by one

less than the number of observations.  The symbol for variance is s2.  [The variance for the theoretical

population from which the sample was drawn would use the symbol F2, and would be estimated from a sample

by the method described, except step (d) would divide by the number of observations.]  The units of a variance

are usually omitted; if given, they would be squares of the original units, and might not make sense.  (See also

standard deviation.)

(A) Warning chart is a graph used to follow changes over time, in the endpoints which measure toxicity of a

reference toxicant.  The date of the test is on the horizontal axis and the effect-concentration is plotted on the

vertical logarithmic scale.

Warning limits allow an investigator to evaluate the variation in toxicity tests with a reference toxicant.  The

limits are plus and minus two standard deviations, calculated logarithmically, from the historic geometric mean

of the test endpoints.

(The) Weibull distribution is a generalized version of an exponential model.  It can be used for empirical fits to

dose-effect data.  The distribution is sigmoidal, but allows the shape of the curve to differ above and below the

inflection point, an advantage over probit or logit distributions.  The Gompertz model is essentially equivalent

to the Weibull, and is useful for nonlinear regression (see Section 6.5.8).

Weighting is adding “arithmetic emphasis” to certain values in a series, so that those values have greater

influence on whatever calculation is being carried out.  The purpose is to compensate for some perceived

irregularity or deficiency in a set of data.  A particular value might be weighted to indicate that it deserved

greater emphasis because it was based on a large sample, or represented a group of observations with a small

variance.
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Whole sediment is the entire intact sediment that has had minimal manipulation following collection or

formulation.  It is not a form or derivative of the sediment such as an elutriate or a resuspended sediment.

Whole soil is the entire intact soil that has had minimal manipulation following collection or formulation.  It is

not a form or derivative of the soil such as an elutriate or a leachate.
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Section 1

Introduction

Toxicity tests are powerful tools for investigating

and resolving problems of environmental

contamination and pollution.  However, data from

the tests must be analyzed properly to obtain valid

estimates of endpoints.  This document is intended

to assist in making proper choices for statistical

analysis of tests in environmental toxicology.  In

particular, it is intended for use with more than 20

toxicity test methods published by Environment

Canada, for microbes, aquatic and terrestrial plants

and invertebrates, and fish (EC, 1990a–c; 1992a–f;

1997a,b; 1998a,b; 1999b; 2000a,b; 2001a; 2002a;

2004a–c;  see listing in Appendix A).  This

document focuses on mathematical and statistical

methods for analysis of results; another guidance

document deals with general approaches and

interpretations in environmental toxicology (EC,

1999a).

1.1 Purposes and Objectives of this

Document

Key Guidance

• The primary goal of this document is to help

establish good statistical practices at

Canadian laboratories which do toxicity

testing within programs of Environment

Canada.

• Statistical tests in current use are discussed,

with indications of preferred methods, and

others which hold promise.  Some examples

are worked.

• Explanations are aimed primarily at new

laboratory personnel.  The focus is on

standard testing rather than research

projects.

• Advice is provided on recognizing and

dealing with “difficult” types of data.  Some

common mistakes are explained.

Simply expressed, this document is intended to offer

information in three areas.

   (a) Additional guidance to users of Environment

Canada's single-species toxicity tests.  The

orientation is aimed at new laboratory

personnel, rather than experienced

investigators.

   (b) Some explanation of the statistical reasons

behind the procedures in toxicity tests.  This

document, however, does not teach basic

statistics.

   (c) Comments on existing statistical tests and

some profitable approaches that might become

available in the future.

The basic objectives of this document were defined

by a Statistical Advisory Committee and other

interested parties who met following the 20th

Annual Aquatic Toxicity Workshop in Quebec City

in 1993 (Miller et al., 1993).  These objectives are

to provide:

   (1) guidance on the statistical methods for

biological tests, thereby leading to a more

standardized approach for calculating toxicity

test endpoints;

   (2) background information on the characteristics,

strengths, and weaknesses of various

statistical procedures, and on the importance

of their assumptions;

   (3) methods for assessing whether the results of

an experiment provide definitive answers to

the initial questions that were posed;

   (4) examples of applying statistical methods and

interpreting their results; and

   (5) guidance on recognizing and dealing with

“difficult” data.

Background papers were presented at the meeting in

Quebec, and discussion of nine topics resulted in the

specific recommendations acted upon in relevant

parts of this document.  Objectives (3) and (4) are

dealt with as relevant throughout the document,

when particular procedures are described. 
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The glossary has been extended into examples and

explanations allowing investigators to relate their

general knowledge to the particular applications in

toxicity testing for environmental purposes.

Some examples accompany the information in the

document, along with mention of pitfalls and

deficiencies.  Experienced investigators might feel

that there is too much emphasis on common

mistakes, but this is important.  Some data collected

in national regulatory programs have shown

relatively low-grade but common mistakes in

procedure.  Perhaps this results from a lack of

knowledgeable or experienced laboratory personnel. 

There is no need for the next group of personnel to

repeat mundane mistakes. 

Accordingly, this document is largely concerned

with current, established methods in environmental

toxicology, and does not attempt to plough new

ground.  Although it points to new and advanced

techniques which appear to be in the forefront of

methods development, it can only give limited

coverage of their developing analytical procedures. 

Some of the new methods will no doubt become

advantageous standards, while others will fall by the

wayside.  Generally, such new methods are being

proposed by specialists, or teams which already

have good statistical input.  Similarly, it seems that

Canadian studies of complex local problems of

toxicity and pollution generally receive the direct

expert statistical advice that they need.

This document is not designed to provide advice for

programs of basic research.  Researchers, and those

applying advanced statistical techniques, might find

useful guidance in Sections 4 and 6 herein, in an

international document (OECD,  2004), and in the

references listed in the following paragraphs.

General guidance in statistics may be obtained from

textbooks such as Snedecor and Cochran (1980),

Steel et al. (1997), Zar (1999), and Wardlaw (1985),

the last reference being written in a style that is

particularly friendly to biologists.  Statistical

background directly related to toxicology and other

environmental studies can be obtained from

Newman (1995), Gad (1999), Manly (2000), and

Millard and Neerchal (2000).  More specialized and

classical toxicological topics are described by

Finney (1971; 1978), Ashton (1972), Hewlett and

Plackett (1979), or Hubert (1992).  Collett (1991)

and Fleiss (1981) offer advice on analysis of binary

data and proportions, the basis of quantal effects. 

Broader philosophical education on major ideas of

applied statistics is provided in a pleasant anecdotal

book called “The lady tasting tea ...” (Salsburg,

2001).  Some other compendia with apparently

relevant titles might not be of immediate assistance

in statistical analysis of tests (OECD, 1995; Grothe

et al., 1996).  Finally, there are tremendous sources

of information (and sometimes misinformation), at

the ever-changing web sites on the Internet.  Some

are useful for general concepts or particular

statistical techniques.  Some excellent sites are

equivalent to chapters in textbooks or to lecture

notes.

1.2 How to Use this Document

A person carrying out a toxicity test would usually

start with a test method described in a document

published by Environment Canada or another

organization.  Each document tells the statistical

methods to be used, with descriptions that are

adequate for most purposes.

If further explanation is desired, an investigator

could consult one of Sections 3 to 8 herein, dealing

with different types of tests and analyses.  Those

sections start at the level of an individual method

document, and provide additional advice on

analysis, avoiding pitfalls, and some of the reasons

behind a choice of methods.  The specific test

procedures described in each method document

published by Environment Canada are definitive,

and should be followed in programs of Environment

Canada.  The present document does not supersede

any of the specific test methods.

New investigators might wish to scan Sections 2, 9,

and 10.  Section 2 deals with aspects of test design,

some common mistakes, and offers background

information.  Section 9 is more general, provides

some statistical background, and covers methods of

testing for differences.  Section 10 gives advice on

certain difficult kinds of results, including outliers

and stimulation at low concentrations of toxicant. 

Readers can check out “key guidance” at the start of

sub-sections, to decide which parts might be useful. 

As mentioned, the glossary is detailed, to provide

additional orientation.
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Appendices constitute a second part of the

document.  They provide some technical or detailed

background for assertions in the main part of the

document, for readers wishing such coverage.

1.3 Main Categories of Tests

Key Guidance

• Two primary categories are: (a) single-

concentration tests to compare a material

with a control or reference material; and (b)

multi-concentration tests intended to

estimate an ECp, ICp, or NOEC.

• The multi-concentration category may be

subdivided into: (a) quantal variables (each

organism either reacts or fails to react); or

(b) quantitative or continuous variables (e.g.,

weight of individuals).

• Dual-effect tests often have quantal and

quantitative measurements, which at this

time, are best analyzed separately.

A primary division in types of tests, is between

those using a single concentration of the test

material, and those using several concentrations.

Single-concentration tests compare toxic effects in a

sample to the performance in a control (or to a

reference material or some other special sample,

location, or condition).  For example, a single

sample of sediment might be compared to a

reference sediment.  These “single-concentration

tests” are shown on the left of Figure 1.  Variations

might include just one test sample, or a number of

samples from different locations, tested

simultaneously with a control or reference.  They

might or might not involve replication.  These types

of tests are described in Section 3.

Multi-concentration tests use several fixed

concentrations and a control, designed to estimate

an ECp,  ICp, or NOEC.  This kind of test is shown

in the middle and on the right of Figure 1, which

provides a general overview of the types of tests.

Both single- and multi-concentration tests might

make observations of a quantal effect or a

quantitative one (Figure 1).  In quantal tests, a direct

count of exposed organisms classifies them as either

affected or not, i.e., binary or dichotomous data. 

Results are best fitted to a binomial distribution and

analyzed by statistical techniques appropriate to

such a distribution (e.g., the chi-square test). 

However, most quantal tests in environmental

toxicology are lethal tests.  Analysis is customarily

by probit or logit regression or a substitute method. 

The usual endpoint is the median lethal

concentration (LC50), or median effective

concentration (EC50), a more general term that also

covers sublethal effects.  Quantal tests are described

in Section 4.

Quantitative tests measure some continuously

variable effect such as size of the organism. 

Historically, they were once called “graded tests”

(Gaddum, 1953), a term which no longer seems

appropriate.  The data provided by such tests can be

called “continuous” data.  The usual endpoint is the

Inhibiting Concentration for a specified percent

decrease in performance (ICp).  For example, the

IC25 could represent 25% lower weight of

organisms than in the control groups.  The pattern of

results often follows the familiar normal curve

(actually a cumulated normal curve).  Ideally,

endpoints would be estimated by regression, and

methods for regression have recently been

prescribed in some standard tests published by

Environment Canada (Section 6.5.8).  The

alternative but less favoured approach is to use

hypothesis testing to estimate the NOEC and LOEC,

as described in Section 7.

Some tests have dual effects and they usually

involve a quantal effect such as mortality, and a

quantitative effect such as weight or reproduction. 

At this time, results of dual-effect tests should be

analyzed separately (central stream of Figure 1),

because a technique has not been developed for

handling the correlated effects.  The analysis

showing the lower effect-concentration is usually

adopted as the endpoint for the test.  Dual-effect

tests are described in Section 8.
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Single-concentration
test with control

Figure 1 A flow-sheet of the main categories of environmental toxicity tests covered in this document.
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Section 2

General Design and Analysis

The best statistical procedures cannot remedy a

poorly designed experiment.  Environment Canada's

Biological Test Methods include advice on design,

and it should be followed to obtain data that are

valid for statistical analysis.  In particular,

investigators should never disregard instructions on

randomization, replication, or controls (see Sections

2.4, 2.5, and 2.7).  Other important components of

design are covered in Sections 2.1, 2.2, and 2.3.

The variability of results can sometimes be reduced

by judicious use of more than the minimum

specified numbers of organisms, replicates, or

concentrations.  Such improvement would be

especially desirable in tests that will be used for

registration of new chemicals or in legal

proceedings.

2.1 Participation of a Statistician

It is a truism that a statistician should be involved at

all stages of a test, including the design, analysis,

and statement of findings.  Often that is easier said

than done, especially for small laboratories or

commercial testing; however, the principle remains. 

In these days of modern communication, it should

be possible to work out some system of consultation

that is rapid and economical.  The remedy might be

occasional broad sessions of advice on desirable

approaches and remedies for situations likely to be

encountered.  In part, the present document intends

to help orient investigators, to gain more benefit

when a statistician is contacted.

Sometimes the advice from a statistician might

simply be to proceed with a standard toxicity test. 

The design and methods of analysis should be

agreed on, and the statistician might alert the

investigator to potential difficulties.  If there is any

reason to expect an irregular distribution of data,

that should be considered at the design stage of the

test.  If an effect is likely among control organisms,

that also needs to be considered during design.

At the same time, the investigator who might be a

biologist, should keep in mind her/his priorities, and

balance these with the advice from a statistician.  If

asked about narrowing the limits of error, a

statistician can scarcely avoid recommending more

test concentrations, more organisms, etc.  The

investigator must make difficult decisions to balance

those recommendations with practical matters of

cost, time, facilities, and work priorities.  (For the

mathematically minded, Bayesian mathematics

allows the notions of probability and cost to be

combined, to determine the cost-effectiveness of

obtaining additional information.  An introduction to

the topic is found in Morissette (2002); it focuses on

sampling contaminated sediments but is of wider

relevance.)

2.2 Selecting Concentrations

Key Guidance

• Choice of concentrations is an important

and difficult aspect of test design.  If

results could be foreseen, an ideal design

would have several concentrations

causing a middle range of effects, and

others spread equally above and below

with a span from negligible to strong

effects.

• The most common problem is choosing

concentrations that are too close

together.  All of them might turn out to

be either too high or else too low,

spoiling the test.

• Choosing widely separated

concentrations runs a risk of failing to

obtain “partial” or middle-range effects,

but this is less serious.

• Useful remedies would be a preliminary

range-finding test, and/or a relatively

large number of concentrations in the

definitive test.

• For any choice of concentrations, good

design calls for a consistent geometric

series.
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In a multi-concentration test, the choice of

appropriate concentrations is the most important

aspect of test design.  Inappropriate choice is the

most common cause of “difficult” sets of results. 

The most frequent mistake is choosing

concentrations that are too close together.  An

investigator might guess (wrongly) at the anticipated

endpoint, and make an inappropriate and

unfortunate choice of concentrations.  That choice

might lead to a worst possible situation, of severe

effects in all concentrations, or else feeble effects in

all concentrations.  The test would be a failure,

particularly if it had been done on a field sample

that could not be duplicated.  Some examples are

given in Section 10.4.

To determine an ECp or an ICp, the aim should

always be to have concentrations that are both above

and below the endpoint.  Lacking one of those

ranges, extrapolation to estimate the endpoint is

always undesirable, and often impossible. 

Unfortunately, a perfect choice of concentrations

could only be made if the outcome of the test were

known in advance, so an investigator is forced to use

judgement.  This judgement can be greatly improved

by running a preliminary range-finding test, even a

relatively crude one.  Following that, the design of

the actual toxicity test can be most improved by

increasing the number of concentrations to be tested,

and spacing them widely enough.

Whatever the purpose and general design of the test,

it is important to select a regular geometric series of

concentrations.  Each concentration must show a

constant proportional increase over the preceding

one, for example, a two-fold increase could yield the

series 4, 8, 16, 32, 64, etc.  At first glance, the gap

appears large between 32 and 64, but to the test

organism the increase represents exactly the same

doubling of chemical stimulation as between 4 and

8.  Or, it represents exactly the same doubling that

would occur  in a series which is lower by an order

of magnitude, i.e., between 3.2 and 6.4.  Whichever

region of the series turns out to be the important

range, the same proportional increase will prevail. 

This helps to obtain a balanced distribution of

results, and the choice is basic to all later

calculations (see Section 2.3 for more detail).

2.2.1 Opposing Influences

The precision and confidence limits of a toxicity

endpoint depend upon some or all of the following: 

(a) the number of concentrations with “middle” or

partial effects; 

(b) the spread of concentrations about the endpoint;

(c) the number of replicates; 

(d) the number of organisms per replicate or

concentration; 

(e) the variation (scatter) of data-points; and for

some methods of analysis, and the slope of the

regression.  

The investigator can attempt to create favourable

conditions for (a) to (d).  Item (a) is discussed in this

section.

If an ideal test design could be anticipated, it would

have several concentrations in the “middle” range of

effects, with an equal spread of concentrations

above and below that range.  In trying to select such 

concentrations, an investigator is pulled in two

directions:

(1) make the concentrations close together in order

to get a good selection of “middle” or partial

effects; and

(2) spread the concentrations widely, to guarantee

both low and high effects.

By far the most common problem results from the

first influence.  The investigator is motivated to

choose concentrations that are relatively close, but

the endpoint occurs elsewhere than expected.  As

indicated previously, that might result in failure to

obtain an endpoint in a regulatory or monitoring

program.

Thus, an investigator should avoid the temptation of

choosing concentrations that are too closely spaced,

and should pay much more attention than might be

thought necessary, to the second influence listed. 

To inspire confidence, a set of results should include

a low concentration that elicits an effect similar to

the control, and a high concentration that achieves a

nearly maximal effect.  This design is supported by

the OECD (2004), which states that the “intuitive
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idea of concentrating dose levels around the ECx is

not optimal.  Designs that include ... sufficiently

different response levels compared to the controls...

perform better.”

On the other hand, obeying the second influence,

runs the risk of failing to obtain effects in the

“middle ground”, effects that bracket the defined

endpoint, and govern the confidence limits.  This is

the lesser evil; at least the endpoint would be known

to lie in a given range, which is preferable to an

answer of  “greater than a concentration of x” (or

less than ... x).  If regression is used for analysis, the

more widely spread data are favourable.  A

regression can do little with data that encompass

only part of the  distribution of effects.  It is

important to fix the tails of the distribution -- once

they are established, the middle follows because the

shape of the regression was usually fixed by

choosing a model.

The difficulty in choosing could usually be reduced

by starting with extra groups of organisms at

suitable intervals of concentration, six to eight as

recommended in some methods published by

Environment Canada, or even more.  If necessary,

fewer organisms could be used per concentration, as

long as there were enough to meet minimum

requirements of Environment Canada.  Statistically,

it is preferable to have more concentrations (partial

or “middle” effects), each with fewer organisms,

rather than having more organisms in fewer

concentrations.  As mentioned elsewhere, a case has

been made that using seven fish instead of 10 at

appropriate concentrations does not seriously affect

the precision of the endpoint (Douglas et al., 1986).

Enough additional concentrations could achieve not

only a wider spread, but perhaps also the desirable

small intervals between concentrations.

2.2.2 Specific Types of Tests

Quantal tests fit the pattern outlined previously. 

The ideal set of results would have mostly partial

effects (neither 0% nor 100% effect), centred on the

EC50 and bracketing it.  The recommended method

of analysis by probit regression has an absolute

requirement for two partial effects in the series. 

Effects near 50% carry the most weight in

estimating an EC50, and help narrow the confidence

limits.

However, if spreading the concentrations resulted in

only one partial effect, a secondary method of

analysis can be used (Section 4.5.6).  Even with no

partial effect, an estimate of EC50 can be made.  In

that case, the 0% and 100% effects would be at

successive concentrations in the series, probably

indicating an endpoint within reasonably narrow

limits (Section 4.5.7).

Regression analysis might be used for analysis of

quantitative sublethal tests.  Making sure that

observations spanned the region from low to high

effect would once again be a very important aspect

of experimental design.  A fitted model would best

describe three “phases”: an initial non-effect or low

effect, then a region of increasing effect, terminated

by a region of complete effect, or a near-asymptote

of little or no further change.  It would be highly

desirable to obtain data for each of the phases

(Sections 4.4 and 4.7).  For quantitative sublethal

tests, some examples in Section 10.4 (“difficult

results”) show the uncertainties that arise if a test

design does not cover a wide enough range of

concentrations.

For regression analysis, it is generally more

advantageous to increase the number of

concentrations rather than add replicates.  Although

this might add to the cost of setting up a test, it

might not increase the total number of organisms,

and might even reduce them.

Regulatory tests usually provide less challenge in

choosing suitable concentrations.  In routine testing

of liquid effluents, there would often be a

requirement to include a 100% concentration, which

would obviously fix the upper end of the series. 

Most interest would probably lie within the 1–100%

concentration range.  Accordingly, a common and

adequate series in effluent tests is 100%, 50%, 25%,

12.5%, and 6.25%.  Usually, the regulatory test

would specify a minimum number of test organisms.

Research or investigatory tests, such as

determining the toxicity of a new chemical, might

require additional effort in choosing concentrations. 

A preliminary range-finding test would be an

effective tactic, as long as the test materials were

stable in comparison to the length of the test.  This

would establish profitable concentrations to be used 
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in a definitive test.  The range-finder could be quite

exploratory in its design, with only a few organisms

or concentrations, and short exposure.

2.3 Logarithms of Concentration

In setting up a test, it is almost automatic to choose

concentrations with a constant multiplier between

successive concentrations.  That provides a

geometric or logarithmic series.  The reasons for this

default are biological, and do not have their origin in

statistical considerations.  This is apparently the way

the test organisms “see” the concentration scale, and

almost universally, this is the way that exposures are

done.  To do otherwise is to lose efficiency and

power in a test 1.  A geometric series with any

desired ratio could be used, e.g., a simple series with

a ratio of 2, producing concentrations like 2, 4, 8,

16, etc.  Or, dividing the desired range of

concentrations by the desired number of test

containers might lead to a more unusual ratio, say

1.6 (concentrations of 2, 3.2, 5.1, 8.2, etc.).  Any

such series with a constant multiplier would have

equal logarithmic intervals.  For analysis, it is

customary to express the concentrations as

logarithms to the base 10, but natural logarithms

could be used with equal suitability, as long as there

was consistency within a test.  

Key Guidance

• A geometric (= logarithmic) series of

exposure concentrations is standard in

toxicity tests, for good reasons.  Once

adopted, it remains the default, as a point

of good scientific method.  After statistical

analysis is complete, endpoints and

confidence limits are customarily

converted to arithmetic values for ease of

understanding.  However, any subsequent

mathematical treatments such as means

and ANOVA should use the default

logarithms unless they are

demonstrated to be unsuitable.

• Commercial computer programs

currently available for analysis of

sublethal results usually violate

the above principle, and they

default to calculations with

arithmetic values of

concentration.  Investigators must

understand how the program

behaves.  In some cases the only

solution is to enter the

concentrations as logarithms.

• Endpoints calculated with

arithmetic concentrations become

more erroneous as the data-sets

become more variable.

• Exposure-time is also logarithmic

in nature and log time must be

used for calculations.

Most people have an intuitive understanding of the

reasons for setting up tests that way, and a common-

sense illustration of the rationale can be developed. 

Using an arithmetic series might possibly be

acceptable at low concentrations (e.g., 1, 2, 3, 4, and

5 mg/L), but there would probably be little

agreement to retain an arithmetic interval of unity at

higher concentrations (e.g., 11, 12, 13, 14, 15 mg/L). 

At still higher concentrations, the interval becomes

ludicrous; would anybody use 101, 102, 103, 104 ...

mg/L? ... or 1001, 1002, 1003 ... mg/L?  It would

probably be impossible to detect a difference in

effect on a test organism, between concentrations of

101 and 102, let alone 1001 and 1002.  The

principle of larger intervals at higher concentrations

becomes self-evident, e.g., 1, 2, 4, 8 ... , or 100, 200,

400, or 1000, 2000, 4000, etc.

Thus the change in effects on test organisms is

related to the proportional increase in concentration,

not the absolute increase.  Although an increase of

10 units from 10 to 20 mg/L is a doubling of the

concentration, the same arithmetic change from 100

to 110 mg/L is only a 10% increase, equivalent to a

change from 10 to 11 mg/L.  A doubling of toxic

strength in the higher range would be from 100 to

200 mg/L.  If the preceding argument fails to

1   
For example, Robertson et al. (1984) found that precise

tests to determine LC50 required concentrations to be

equally spaced on a log scale, particularly for those

concentrations yielding effects from 25 to 75%.  They

were conducting specific studies of the needs for an

effective toxicity test, using insects for the trial tests.
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convince, one might consider it as a question of the

units of concentration.  The series 1, 2, 4, 8 mg/L is

identical to the series 1000,  2000, 4000, 8000 µg/L,

even though the absolute changes appear to be

vastly different at first glance.

Accordingly, use of the logarithm of concentration

reflects a biological phenomenon, fits toxicological

exposure, and is not a transformation adopted

primarily for statistical convenience.

Sometimes, investigators who normally use a

geometric series of concentrations, but wish to have

more detailed information in a particular limited

range within the total series, have been known to

abandon the geometric principle and use an

arithmetic series.  For example, they might cover a

range of particular interest from 30 to 60 with the

concentrations 30, 40, 50, and 60.  The same

principle applies, that this should have been a

geometric series.  The intervals are uneven, that

from 30 to 40 being a 33% increase, while that from

50 to 60 is only a 20% increase.  Usually, it would

have been more appropriate to have divided the

entire range of the test, including the section of most

interest, into finer equal intervals.

There are a few exceptions to logarithmic

transformation of dose.  One would be pH which is

already logarithmic.  Another would be temperature,

which is a special case, and for biotic interpretations

has nothing equivalent to the zero of the

concentration scale of a toxicant.

2.3.1 Maintaining Logs

Although Canadian investigators seem to easily

adopt a geometric series of concentrations for

exposure, they are often reluctant and sometimes

actively hostile to the idea of continuing with

logarithms for statistical analysis.  The reason is not

clear, but might have to do with the increased

arithmetic complexity, and/or lack of familiarity

with logarithms (see Section 2.3.5 on

familiarization).  It is a common mistake to conduct

statistical analyses using arithmetic values of

concentration.  If the results seem satisfactory,

investigators see “no need” to use logarithms, and

they proceed with arithmetic values.  As described

in the following text, that approach is backwards

because it abandons the initial scale without

showing cause.  The proper procedure is to start the

analysis with log concentrations.   If the

requirements of the procedure are satisfied, and

results are satisfactory, the scale of concentrations is

retained.

It is simply good science for an investigator, having

adopted the geometric/logarithmic scale for testing,

and thereby having rejected an arithmetic model, to

retain that scale throughout the investigation and

analysis, unless it is proven wrong.  Adopting the

scale is akin to adopting a hypothesis -- one sticks

with it until it is demonstrated to be incorrect, in

which case one looks for a better hypothesis (or in

this case, a better scale of concentrations).  This is

not primarily a matter of toxicology, or of statistics,

but of science and the scientific method.  The

geometric series of concentrations has a

fundamental “truth” in its use, (see opening

paragraphs of Section 2.3), and statistical analysis

should retain that fundamentality if the effects are to

be interpreted without distortion.  Even statisticians

might occasionally overlook this basic reason for

maintaining logarithms of concentration in analyses

of results, and biologists or toxicologists should be

prepared to support the concept.  Published

statements from statisticians acknowledge that the

model for analysis should follow “underlying

scientific reason”, which is interpreted here as the

rationale for adopting a geometric series for

exposure (e.g., Collett, 1991, p. 94) 2.  

Dropping the geometric scale part way through an

investigation is common, unfortunately.  It might

help if an investigator asked him/herself: why were

the initial exposures laid out in logarithmic series? 

Whatever reason that was, remains valid throughout

statistical analyses, until proven to be incorrect.

If formal statistical testing showed that the model

did not fit the data satisfactorily, then it is possible

2   Collett writes of whether or not to use logarithms for

probit or logit analysis.  “In the absence of any underlying

scientific reason for using transformed values of an

explanatory variable in the model, the choice between

alternative models will rest on statistical grounds alone

and the model which best fits the available data would be

adopted.” [Italics added]  Although at first glance, this

statement might seem to give primacy to statistical

considerations, that would only be so if there were no

scientific (biological) reason to adopt a particular model.
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that the logarithmic scale might be unsuitable.3  The

fit could be tested for an arithmetic or some

alternative transformation of concentration, to seek a

suitable fit (Section 2.9).  If the alternative scale of

concentration was shown to be superior, then the

test should really have used that series for the

exposure concentrations.  However, at the risk of

repetition, it is the logarithmic values of

concentration that represent the default, and

arithmetic values must not be taken as the default

and tested first for suitability.

Retaining logarithms of concentration means that all

subsequent mathematical manipulations of the data

should be logarithmic (Sections 2.3.2 to 2.3.4).

2.3.2 Logs in Computer Programs

Investigators using a computer program designed for

toxicological testing must satisfy themselves that log

concentration is used in calculations.

Most or all of the available computer programs

assume that exposures are done using a logarithmic

series of concentrations, as seen in their example

sets of data.  Most programs automatically retain

logarithms for probit regression, but not necessarily

for other types of data analyses.  The programs

differ, and it might not be easy to discern what scale

of concentration is used.  Unaccountably, one older

commercial program apparently had arithmetic

concentration as the default; a trial of TOXSTAT

3.5 indicated that this was so, even for probit

regression.  There was an option to choose log

concentration, but the investigator had to

immediately enter another command, “RUN”,

otherwise the instruction was ignored.  If all else

fails with a commercial program, the investigator

should enter the concentrations as logarithms.  Any

spreadsheet will provide the logarithms, but many of

the commercial programs for toxicity analysis

require that each item from the set of data is entered

(tediously) into a particular segment of the program. 

Surprisingly, the program ICPIN fails to use

logarithmic concentrations for “linear interpolation”

to estimate the ICp in sublethal quantitative tests

(Section 6.4; Norberg-King, 1993).  The procedures

in the program were initially set up by personnel

from the USEPA, and are now incorporated into

commonly used commercial programs.

Computer programs for the newer approach of

nonlinear regression are general-purpose, and not

designed for toxicology.  These programs have no

automatic provision to use log concentration, and

some authors using nonlinear regression have failed

to change the arithmetic values (Section 6.5.7). 

Although nonlinear regression can fit almost any

shape of curve, there will probably be a penalty of

requiring more parameters, with loss of power for

the fit (see Section 6.5.5).  Usually, a model with

logarithmic concentration and/or time will have a

less complex relationship.  The model can fit a

simpler curve or straight-line relationship, with

fewer parameters to estimate, and fewer degrees of

freedom lost, resulting in a more powerful analysis. 

In addition, arithmetic effect-curves and graphs

could be misleading (Section 5.3).

2.3.3 Logs in Further Calculations

Once calculated, endpoints with their confidence

limits are often converted to arithmetic values for

ease of comprehension.  However, before any

further mathematical manipulations are made with

these arithmetic versions of the endpoints,

confidence limits, or associated variables, they must

be changed back to logarithms.  (This is the “dose

metameter” of Finney, 1971.)  

A common mistake is to calculate an average of the

arithmetic values of two or more EC50s, ICps, or

other endpoint.  One must remember that the C in

EC50 and ICp represents concentration.  The test

endpoint should be thought of as a logarithm,

sometimes temporarily transformed into an

arithmetic value.  Proper procedure is to average the

logarithmic values of the endpoints, then if desired,

take the anti-log of the result (a geometric mean) 4.
3   The investigator must bear in mind that a failure of the

model to fit the data might not be attributable to the

transformation of the independent variable (the

concentration), but instead, to one or more of the

following causes.  (a) Transformation of the effect is

necessary.  (b) The tolerance distribution (see glossary) is

not normal.  (c) The tolerance distribution has different

scales (variances) at different concentrations.  (d) The

choice of model is incorrect for the data.

4   
An excellent example of the extensive averaging of

endpoints, and other manipulations of data using the

proper logarithmic methods, is provided by the USEPA in

the document for developing water quality criteria

(Stephan et al., 1985).
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In assessing reports of toxicity studies, it continues

to be necessary to check for this type of error.

2.3.4 Does it Matter?

Some investigators protest the use of logarithms,

because results are similar with arithmetic values of

concentration.  Although reasonably true for some

“good” sets of data, there can be appreciable

differences for the irregularities often seen in

environmental toxicology.

If logarithms give a truer estimate for irregular data,

the principle is established that the correct

procedure is to use logs for all sets of data.  The

question is not “does it make much difference?”,

“but which is correct?”  Canadian investigators

should use the correct way.

Two examples that give credence to the use of

logarithms are provided in Appendix D.  The first

example is simply a comparison of arithmetic and

geometric averages for some sets of endpoint

concentrations.  For consistent (“good”) data, there

was little difference between arithmetic and

geometric means.  However, the two types of means

diverged more and more as the sets of data became

more irregular.  In an extreme case the arithmetic

mean was 5.4 times higher, and not representative of

most values in the set.

In the second example, EC50s were calculated for

the four data-sets A to D in Table 2.  Running the

probit regression with arithmetic concentrations

yielded EC50s that averaged 1.2 times the proper

values.  The confidence limits were also raised to

generally higher spans.  Another example with a

similar magnitude of error is shown for improper

calculation of warning limits of reference toxicants

(Section 2.8).

Elaborate mathematics might minimize this type of

error, but can never eliminate the fundamental flaw

in approach.

Similar errors could apply to subsequent

manipulations which failed to use the logarithmic

version of endpoints (e.g., means, trends with time,

comparisons of potency, ANOVA, etc.).  This might

lead to false classification into pass/fail categories,

or actions taken on differences which were not real. 

An incorrect toxicity curve could lead to a false

conclusion of a threshold of effect, as shown by an

example in Section 5.2.

2.3.5 Familiarization and Techniques

Because electronic calculators and computers have

been easily available for several decades, modern

investigators are often unfamiliar with logarithms

and their structure.  It can be beneficial to spend a

little time studying the nature of logarithms. 

Exploration using a hand calculator with a

logarithmic/antilog key will provide rapid insight. 

Of particular interest would be study of arithmetic

manipulations versus their logarithmic equivalents:

     • multiplication/division equals

addition/subtraction of logarithms

     • square roots and other roots can be done by

division of logarithms.

The glossary gives some additional insight with

examples of the format of logarithms.

Investigators who are uneasy with use of a

logarithmic scale should consider that hydrogen-ion

concentration in water is customarily described as

pH, a logarithm, and seems easily accepted by most

people.

There are some difficulties and inconveniences in

using logarithms, but they can be circumvented. 

There can be a problem of entering the

concentration for control data, because zero

concentration does not have a logarithm.  This could

raise difficulties in estimating ICp by the currently

available program ICPIN, which requires a

concentration to be entered for the control 5.  The

remedy is to enter the logarithm for some very low

concentration in relation to the tested concentration

(say 0.001 mg/L).  A program such as ICPIN does

not actually use that value, but identifies the control

effect by its position in the table of data, so no harm

is done to analytical procedures.

5  The ICPIN program fails to convert concentrations to

logarithms, so Canadian investigators must enter the

logarithms of all concentrations.  That includes entering

the logarithm of a very low concentration for the control

in the second row of the table of data.
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Concentrations less than unity (1.0) have negative

logarithms and tend to be disorienting.  For

toxicologists, the best remedy is to change the units

of concentration.  If test concentrations run down to,

say, 0.1 mg/kg, the use of micrograms per kilogram

will change the values to 100 and up, yielding

positive logarithms.  If the troublesome values were

percent concentrations, the scale could be changed

to parts per thousand, or parts per ten thousand. 

After the calculations, the results could be converted

to arithmetic values for ease of comprehension, and

the units could be modified back to whatever was

desired.  Modern computer programs have no

problem handling negative logarithms, but there

have been older or “local” computer programs that

could not.  Therefore, a cautious stance would be to

enter only positive logarithms into computer

programs.

2.3.6 Log Time

In environmental toxicology, time is usually part of

the dose as well as part of the effect or response, and

must also be considered in terms of log time.  The

geometric/logarithmic nature of time is not so self-

evident, but the rationale parallels that for

concentrations.  It is not the absolute change in time

that governs a change in effect, but the proportional

increase in time.  In a toxicity test, an increase in

exposure from one hour to two hours would

represent a doubling of exposure, perhaps with a

major change in effect.  An increase of one hour

from 96 to 97 hours would represent a trivial

increase, probably not detectable as any change in

effect.  Accordingly, logarithms of time should be

considered during test design and used in any

analysis involving times.

There is some recognition of this, in that

investigators are likely to make frequent inspections

of a test at the beginning, then gradually lengthen

the intervals of observation.  This is a tacit

acknowledgment that an hour at the beginning of a

test is more important than an hour at the end of a

one-week exposure.  Psychologists note that

humans' perception of passed time is logarithmic, to

some extent (Cohen, 1964).  An early aquatic

toxicologist (Wilber, 1962) described the situation

as follows.

“Biological Time

When long-term studies are made in which

toxicants are used in sublethal

concentrations it is important to recognize

that biological time is a logarithmic

phenomenon [Du Nouy, 1936].  This 

fact has been called to mind by others

[Gaddum, 1953].  It may partly explain why

dose-response curves in which time is an

element are of a logarithmic nature.

The logarithmic character of biological time

must be kept in mind when one interprets

long-term experiments with water toxicants. 

It is evident that the biological value and

significance of a given time interval will not

be the same at the beginning of a chronic

exposure as it will be near the termination. 

Such a consideration might well be

important in modifying one's conclusions.” 6

The use of time in toxicity analyses is primarily in

toxicity curves (Section 5), but for quantal effects

there are advantages in estimating times to 50%

effect (ET50, Section 5.1).

2.3.7 Logarithm of Effect?

The independent variable in toxicity tests can

sometimes have a logarithmic nature, and should be

analyzed as such.  This could arise when measuring

quantitative effects.  For example, when calculating

an ICp for weight changes in organisms, the changes

are assessed as proportions of the weight of the

organisms.  The ICp itself is calculated as a

designated percent impairment, i.e., a proportional

reduction from the control.  In other words, the ICp

deals in ratios, so the intervals are geometric or

logarithmic.

Most of the arguments presented in this section,

about using logarithms as the default for the

independent variable (concentration), would also

seem to apply to quantitative dependent variables

which are proportional by their nature (e.g., weight). 

However, the concept is commonly applied in only

one situation, i.e., in transformation of effects data

to achieve conformity with requirements of

6   Du Nouy, cited in this quotation from Wilber, wrote a

book on biological time, and Gaddum was one of the early

giants in pharmacological toxicology.  (See Reference

list.)
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normality and homogeneity of variance (see Section

2.9).

Aside from that kind of transformation when

needed, day-to-day work in environmental

toxicology shows little recognition of the concept of

a proportional scale of effects.  Perhaps the topic

will emerge as new methods are developed in the

future.  One of the most advanced toxicological

statisticians (Slob, 2002) has adopted this approach

in modelling quantitative data.  Slob (2002)

describes his assumptions in nonlinear regression:

“As a default, it is assumed that the measurements

are lognormally distributed.  Consequently, the

dose-response model is fitted on the log-scale, i.e.,

both the model and the data are log-transformed. ...

Therefore, the group means are not arithmetic but

geometric means ...”

2.4 Randomization

Randomization is somewhat analogous to insurance,

in that it is a precaution against disturbances that

may or may not occur, and that may or may not be

serious if they do occur.  Cochran and Cox (1957)

Key Guidance

• Statistical tests assume that all ancillary

variables in a toxicity test are random. 

Randomization should, therefore, prevail

in all aspects of design and procedures. 

This includes randomization of containers

for different concentrations, position of

containers in an array, and placing

organisms into containers.

• Another possibility of bias can be

removed if the observer does not know the

identity of the test containers.

• Practical methods of randomization are

shown in Appendix E.

In toxicity tests as in other experimental work,

randomization is of critical importance for statistical

inference.  It makes the test assumptions valid by

destroying any potential correlation among the

experimental units.  The independence of

observations allows unbiased estimates of treatment

effects and variances.  Davis et al. (1998) concluded

that “nonrandom allocation of organisms can

produce significant bias in estimates of lethal

concentration”.  Any reasonable attempt at

randomization removed the bias, but the least

variance for the result was obtained by completely

random allocation.

Randomization should prevail in all aspects of the

design and procedures for a toxicity test.  Any

statistical test assumes that all variables contributing

to the data are random, except the variable being

investigated, which in this case would be the toxic

agent(s).  If one of the ancillary variables is not

deliberately randomized, there is automatically a

question about the validity of statistical treatment. 

By failing to randomize an item, the investigator is

assuming that the item will not bias the results or

invalidate the statistical tests, which could be true. 

However, if it did cause bias or invalidation, there is

usually no way of ascertaining that after the test. 

The only way to avoid the uncertainty is to

randomize all the possible contributing factors, aside

from the levels of concentration and exposure time

that are selected to be part of the “dose”.

If an Environment Canada test method has a “must”

requirement for randomization, a deviation from that

procedure must be reported, and might invalidate the

test.  For regulatory tests which might be used in

legal proceedings, suitable randomization removes

one avenue for criticism of the test (and the

investigator) by any outside organization that

wished to cast doubt on the results.

Elements that should be randomized include the

following list.

• Randomization of containers used for

concentrations is seldom done, but should be.  If a

container had been used in a previous test, it is

possible that a toxicant might carry over, even

with cleaning, and influence the new effect

observed in that container.  Even new containers

could conceivably have some occasional flaw or

component that would affect a test in an irregular

way.

• Random placement of containers within the room,

incubator, etc. is specified in most test methods

published by Environment Canada.  There could
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be differences in ancillary conditions according to

the particular area.  Sometimes there is resistance

to this procedure because an irregular array of

concentrations and replicates could cause errors in

recording data (see below).

• Random placement of test organisms into

containers can be important.  Often it is not done

because it can be tedious, and sometimes difficult

to keep track of how many organisms have been

put into a given container.  Formal randomization

can be done, or even a system like dealing out

cards can be satisfactory.

• “Blind” tests, in which the observer does not

know the treatments means that the containers

must be identified by some code, rather than being

labelled with their concentration.  A blind test

represents a high degree of care in avoiding

observer bias, and would contribute to an

unassailable test result.

The worst situation would be a systematic bias

because of failure to randomize.  For example, if the

test organisms captured from the colony were used

to fill the concentrations in the order that they were 

captured, the most-easily caught organisms might go

to the lowest concentrations; possibly they might be

weaker and more sensitive to toxicants, resulting in

an exaggerated effect at low concentrations. 

Similarly, if the test containers were lined up in

order of concentration, results might be biased by a

gradient of temperature, light, or disturbance which

was present in the laboratory.  For example,

proximity to a heater in an incubator could influence

test temperatures, and hence toxicity.  Algal tests

can be particularly susceptible to variation because

growth falls off steeply at reduced levels of light,

which might be found at the edges or corners of an

array being tested.  Even with excellent

randomization, unrecognized outside conditions

might influence toxicity in certain test containers,

but that would merely increase the general variation

of the test result, without a systematic bias.

A complicated procedure for randomization could

contribute to a definite risk of operator error in

assigning exposures or recording data.  Certainly it

could result in extra time and trouble.  Even

statistical experts from the  OECD (2004) recognize

that in “some circumstances it may be difficult, or

expensive, to randomize at every stage in an

experiment.”  If some randomization must be

omitted, they recommend a separate examination of

the potential effect on the test results.  For these

reasons, some tests in Canada are probably deficient

in randomization, and investigators should realize

that their results could be biased.  If randomization

procedures are deliberately compromised for good

reason, it should be done in such a way that only the

total variation of the test is likely to be affected, by

attempting to minimize the possibility of a

systematic, concentration-related bias.  Usually, the

only way to be completely sure of avoiding that

systematic bias is complete randomization in each

step of the test.

Some helpful procedures are given in Appendix E,

for putting organisms into containers, and containers

into positions.  Most statistical texts offer advice

and methods (e.g., Fleiss, 1981).

2.5 Replication and Numbers of Organisms

Key Guidance

• Replication allows the variation within

each concentration to be evaluated,

which, in turn, can be used to decide on

significant differences among

concentrations.

• In a given test, a replicate must be an

independent test chamber containing one

or more organisms, with no connection to

another chamber through the test medium.

• A treatment includes all the replicates at a

given concentration, and all the

organisms within each of those replicates.

• Correct understanding and use of

terminology is important, otherwise

statistical tests could be used in ways that

are invalid.

• The number of organisms per

concentration or replicate is an important

factor in design.  Practical limitations in

the laboratory can prevent the use of

enough organisms to achieve statistical

ideals.  Replicates could be an

advantageous way of providing suitable
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conditions for test organisms, or security

in case of accident with one container.

• When a quantal test is analyzed by probit

regression, any replicates would be

pooled.  Replicates are beneficial,

however, when using more sophisticated

statistical tools.

• If regression is used for a point estimate

with quantitative data, replication allows

testing the goodness of fit, and the

divergence of the model from the data. 

Point estimates by smoothing and

interpolation can be done without

replication, but the commonly used ICPIN

program requires two replicates, and

preferably five, to assess significance. 

Replication is an essential part of

hypothesis testing.

• When samples are collected for testing,

field replicates (true replicates) are

separate samples of sediment, water, etc.

from the same time and general location. 

They are excellent replicates in a toxicity

test, to incorporate the variation in the

substrate being assessed.  Subsamples of

one sample (“laboratory replicates”)

assess variation in laboratory technique

and homogeneity of the sample, but do not

provide any information for distinguishing

field locations.

2.5.1 Terminology

Using the correct terminology in toxicity tests can

be important.  Incorrect usage might cause a

statistical test to be applied incorrectly, resulting in

conclusions that are invalid.

A replicate in a toxicity test is a single test chamber

containing one or more organisms, and it is one of

two or more such chambers exposed to the same

treatment, i.e., exposed to the same concentration of

test material (or the control condition) 7.  Thus

replicates are repetitions of the experimental unit,

the smallest independent element in a toxicity test,

to which a treatment is applied.  These terms are

further explained in the following text, and in the

Glossary.

There could be only one organism in a test chamber,

and that would still be a replicate and also an

experimental unit.  An example is provided by

Environment Canada's test of survival and

reproduction of Ceriodaphnia (EC, 1992a).  Each of

the 10 parent organisms in a treatment is a replicate

and also an experimental unit because it is in a

separate test vessel.  The test counts the number of

young produced by each organism.

However, since individuals show differing

sensitivity, a single organism in a replicate means

that the replicates are just as variable as the

organisms (hence the large number of ten replicates

in the test with Ceriodaphnia).  Several organisms

per vessel are normally used to improve the

precision.  The organisms in a chamber are sampling

units providing data that contribute to the result for

the replicate.

A replicate must be independent.  The separate

chambers which are replicates must have no

connection between them through the test water,

sediment, or soil.  Thus, if several permeable

chambers in an aquatic test were exposed by

suspending them in one tank of test solution, the

chambers would not be replicates.  Similarly, test

material which has contacted one replicate chamber

must not be transferred into contact with another

chamber.  Nor can there be any transfer of

organisms between chambers, once the test has

started.  Failure to meet these requirements would

invalidate a statistical analysis based on replication.

There is some variation in terminology used in

environmental toxicology.  The term “replicate

treatment” has been used in some methods

documents published by Environment Canada to

mean the same as expressed here by replicate. 

“Replicate treatment” is confusing since it combines

two levels of a hierarchy (see following text), and

replicate is recommended instead.  Statisticians

sometimes use the term replication as a noun

representing one test chamber (Snedecor and

Cochran, 1980), thus they could speak of several

7   The examples of treatment in this section are all

associated with concentrations, but that need not be so.  A

sample of sediment collected from the field would also be

a treatment, when it was tested.
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“replications” for a given concentration, meaning

several chambers given the same treatment.  This

word seems better used as a general noun

representing the practice of creating replicates.

Investigators should be alert for any mistakes in the

instructions for computer software, which have

occasionally referred to individual organisms in a

chamber as “replicates”.  They are not, and

pretending that they are would be one form of

pseudoreplication.  Such organisms are sampling

units or subsamples contributing to one replicate.  In

common parlance, information from an organism

might be called a “measurement” or “observation”,

for example, “the ten measurements in the first

replicate were ...”.  Some additional comments on

this mistake follow under “Hypothesis testing” (see

also, Section 7.2.1).

The appropriate use of terms can be illustrated by an

example of an ordinary sublethal aquatic toxicity

test.

4 test concentrations = 5 treatments

and a control

2 isolated test chambers = 2 replicates per

for each concentration treatment

6 fish in each chamber = 6 sampling units

 per replicate

Overall: 5 treatments 

with 2 replicates = 10 experimental units

Accordingly, an experiment can have three levels of

variation in the measurements: 

• among individual organisms in a container (the

sampling units); 

• between individual containers at the same

concentration (replicates); and 

• among concentrations (treatments).  

Clearly an investigator must understand the

differences, particularly when doing an ANOVA.

2.5.2 Replication in Various Kinds of Tests

Replication of test chambers can be a powerful way

of improving the output from some toxicity tests.  It

allows an assessment of the variation or “noise”

within each concentration, and it allows a statistical

test for lack of fit.  Hurlbert (1984) is a highly

recommended paper on replication.

Replicates in quantal tests.  Replicates at each

concentration are usually not necessary, because all

the results for each concentration are combined,

before estimating the LC50 or EC50 by the classical

methods such as probit regression commonly used

today.  Replicates are sometimes convenient or

useful, however, for handling and providing suitable

conditions for test organisms.  For example,

dividing the total number of organisms at a given

concentration into several replicates would be a

suitable way of providing the required volume of

test material in a container of convenient size.

Also, there could be a real benefit of “insurance”  in

a test, in case of accidental damage to one chamber,

loss, or disease.  If one replicate suffered such

misfortune, the others would usually be suitable for

use in analysis of results.  As an example of this,

Environment Canada requires three replicates in the

sublethal/lethal test with early life stages of rainbow

trout (EC, 1998a).  The test would not seem to

require replicates, because it emphasizes the quantal

endpoints EC50 and EC25 for non-viability and

development.  The reason is an appreciable risk of

damage or disease in working with the delicate eggs

and young stages of trout, and the replicates increase

the likelihood of getting suitable data at each

concentration 8.

Replication is beneficial if more sophisticated

statistical programs are applied to quantal tests; such

programs might become available in the future for

general use.

Numbers of organisms in non-replicated quantal

tests.  Increasing the number of test organisms can

improve precision in a test, thus achieving narrower

confidence limits on the endpoint.  In quantal tests,

the ratio between confidence limit and EC50 could

8   Replicates are required for other tests with quantal

endpoints such as the test using fathead minnows (EC,

1992b).  Because the tests are dual-nature, with lethal and

sublethal components, replicates are required for the

latter. 
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be cut in half by using 30 organisms per test

chamber instead of 10 organisms (Hodson et al.,

1977).  A similar improvement had been quantified

by Jensen (1972), who found major decreases in

variance of the LC50 as the number of test

organisms increased from 1 to 10 per treatment. 

There was a further decrease of 29% in standard

error when organisms increased from 10 to 20, a

decrease of 13% as test organisms increased from 20

to 30, then only an 8% improvement for a change

from 30 to 40 organisms.  Improvements were small

for more than 30 test organisms per treatment, in

these tests of lethal temperatures.  Of course, the

exact results for comparisons like these will depend

on the spacing of concentrations around the LC50.

Statisticians urge an increase in numbers to improve

precision, but other factors also affect the choice of

number of organisms, e.g., economy, size of tanks,

available volume of test sample, and animal rights

legislation.  In tests with fish, there is a current trend

towards using fewer per chamber, partly to reduce

the destruction of living organisms.  Douglas et al.

(1986) indicated little loss in precision by a 44%

reduction in number of test organisms, achieved by

using seven animals at each of four concentrations,

instead of ten at each of five concentrations. 

However, the reduced number of concentrations

leads to danger of missing the important effect range

(Section 2.2), and beyond doubt, there is some loss

of precision if the number of test organisms is

decreased to less than 10 per treatment, as indicated

in the preceding paragraph.

Point estimates by regression.  In the current trend

towards regression for estimating endpoints of

quantitative sublethal effect (Section 6.5), it can be

beneficial to use additional concentrations that are

more closely spaced (Moore, 1996; Section 6.2.3). 

Accordingly, there is some pressure to use resources

for more concentrations, rather than more replicates. 

Indeed, conventional regression analysis requires,

strictly speaking, only one measurement at each

concentration.  At its simplest, regression analysis

describes the linear relationship between an

observation such as size, and an independent

continuous variable such as the logarithm of

concentration.  After the relationship is defined

mathematically, it is used to calculate the endpoint. 

Confidence limits on the endpoint can be obtained

with or without replicates.

Nevertheless there are major reasons for having

substantial levels of replication.  Environment

Canada has recommended 3 to 10 replicates or

more, in recently published test methods which

require regression techniques (EC, 2004a–c and

Appendix O).  The primary reason is that replicates

are essential for assessing the fit of a regression 9. 

Without replicates, there is no way of distinguishing

the error derived from the scatter of observations at

the same concentration (call it pure error), from a

real divergence of the data from the pattern of the

model (call it lack of fit error) 10.

Smoothing and Interpolation.  If the ICPIN

method (Section 6.4) is to be used for estimating the

ICp, then at least two replicates are required to

calculate the confidence limits.  Each replicate

contributes one measurement, for example, the

average weight of organisms in that replicate.  Five

or more measurements (replicates) per concentration

would reduce the width of the confidence interval.

Hypothesis testing.  Replication is essential for

analyzing results by hypothesis testing, once a

favoured approach (Section 7).  Larger numbers of

replicates are beneficial for analysis of variance,

allowing greater certainty in distinguishing the

NOEC from the LOEC.  If an investigator intends to

carry out hypothesis testing as well as making a

point estimate, more replicates could be added in the

9   In some earlier methods published by  Environment

Canada, testing the goodness of fit was not a firm

requirement.  It would be a decision of the investigator,

who might wish to document that the regression model

was a suitable fit.

10   An important benefit of replication is to distinguish

between two categories of variation in a given test.  The

pure error would be the apparently random scatter, caused

by the different sensitivities of individual organisms at the

same concentration.  The other category would be lack of

fit error, a consistent pattern of divergence from the

chosen regression model.  Replication is necessary to

separate those two categories of variation.

An example of a lack of fit error would be when a

straight-line pattern had been adopted as the supposed

pattern of concentration-effect, but the data represented a

convex curve that increasingly diverged from linearity at

higher concentrations.
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design of the test.  Environment Canada requires at

least four replicates if NOEC/LOEC is to be

estimated in the sublethal test with young stages of

rainbow trout (EC, 1998a).  Those four replicates

might be essential if parametric analysis were

invalid and nonparametric methods were required.

Hypothesis testing has a particular danger from

pseudoreplication (see Section 2.5.1).  It is not

difficult to imagine the gross errors in conclusions

that could arise if the organisms in a container were

mistakenly entered as replicates into an ANOVA.  If

there were, for example, 10 worms in each

container, the statistical test would mistakenly treat

this as a powerful experiment indeed.  Random

differences might emerge from the analysis as if

they were significant (“real”).

2.5.3 Inter-relationships with Field Sampling

When samples collected in the field are tested in the

laboratory, there are some relationships between the

test procedures, and interpretation of results back to

the field.  This would be especially relevant when

samples of sediment or soil (“substrate”) were

brought into the laboratory, but might sometimes

apply to water samples 11.

In particular, there is a very important difference

between test replicates based on separate samples of

the test material, and replicates based on

subsampling of a single sample.  Samples that were

field replicates would be separate samples of soil,

sediment, etc., collected in the field by identical

methods and at the same sampling station.  The

purpose would be to allow the investigator to

evaluate the variation in quality (or qualities) of the

sampled substrate at that station.  This kind of

sample is sometimes also called a true replicate or a

replicate sample.  The field replicates must be

stored in separate containers and, as often

recommended for tests of soils or sediments, each

can be used to set up a replicate in each treatment of

a toxicity test.  The procedure would incorporate

into the toxicity test, (a) the variation in the

sediment or soil at a given station (and variation in

sampling it), combined with (b) any variation

created by conditions or procedures in the

laboratory.

Subsamples could be created in the laboratory by

dividing a single sample of substrate.  These are also

called laboratory replicates, but “subsample”

conveys their nature.  If such subsamples were used

as replicates in a toxicity test, the results would

assess the homogeneity of each sample and the

11   This document does not offer guidance on field work,

but some further comment on sampling is relevant to

setting up and interpreting toxicity tests.  Sometimes there

can be considerable uncertainty in deciding what

represents a replicate in field sampling, for example in

evaluating the sediment of a bay.  The general principle is

that replicate samples should adequately cover the area

considered to be uniform, which the investigator wishes to

characterize.  If the entire bay is to be characterized as a

single unit, then samples collected at a number of points

around the bay would be field replicates (true replicates or

replicate samples).  Under these circumstances, if a

number of samples were collected at one point in a bay,

they would not really be field replicates representing the

variation in the entire bay, but subsamples at a particular

location within the bay.

On the other hand, if the investigator wished to assess the

effects of pollution in different parts of a bay, there would

be a rather different sampling strategy and a different

outlook on replication.  There might be a set of samples at

one sampling station at the head of the bay, near a point-

source of pollution.  Another set might be at a station in

the northerly outer part of the bay, to assess the effect of

dilution as the effluent was carried outwards by a current

circulating around the bay.  A third set of samples might

be taken at a station in the southerly outer part of the bay

where incoming new water was expected to be clean.  If

several samples of sediment were taken at each place, the

samples at a station would be replicates.  The purpose

would be to determine if the three stations had differences

in pollutional status, differences which were significant

against the background of variation measured by the

replication at each station.

Clearly, valid conclusions from the toxicity study would

require the field sampling to be based on good

understanding of physical factors in the habitat of interest. 

For example, in the bay used above as an example, there

might be different water movements in deep and shallow

water.  In any plan for sampling sediments, the two depths

would need to be treated as different areas, in addition to

the areas represented by horizontal location about the bay.

Such distinctions in replication are relevant to Canadian

programs of Environmental Effects Monitoring, in which

the field surveys are tied into toxicity tests in the

laboratory.
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variation due to testing procedure, and that might be

an appropriate feature of the design.  However,

subsamples would show nothing about variation of

the substrate in the field (e.g., sediment in a lake,

see Section 3.1.3).  Depending on the purpose of the

investigation, effort devoted to preparation and

analysis of subsamples might be more profitably

spent in obtaining field replicates.  Accordingly,

laboratory subsamples are not usually recommended

here, unless they facilitate handling of the test

organisms (fewer per chamber), make it easier to set

up the tests (e.g., smaller containers), satisfy a need

to assess homogeneity of the sample and variation in

laboratory technique, or are required by a particular

test method.

Environment Canada (1994) is an excellent

guidance document on replication of sediments. 

2.6 Weighting

Key Guidance

• “Weighting” certain observations gives

them more influence on the results of

subsequent calculations.

• A value is weighted because it is thought

to be more valuable for one of several

reasons: (a) it is close to the endpoint of

interest; (b) it represents many organisms

or measurements; or (c) it represents

measurements with a small variation.

The Glossary indicates that weighting of a certain

value within a series, means that an arithmetic

manipulation is applied to that value, to change its

influence on whatever calculation is being carried

out with the series.  Common reasons for weighting

would be unequal numbers of measurements in the

groups of a series, or unequal variances within a

series.  The following paragraphs expand on the

uses of weighting.

One example of weighting is provided in Section

4.2.3, on using a hand-drawn graph to estimate an

EC50.  The advice is that in “fitting a probit line by

eye, ... the points should be mentally weighted. 

Those closest to 50% effect should be given the

most weight ...”.  From a practical point of view, the

central points are weighted because that portion of

the data-set is closest to the endpoint of interest, and

most likely to estimate it accurately.  Informal

weighting of this kind is subjective, to say the least,

but is better than ignoring the relative value of

points on the graph.

The concept of formal weighting might be

introduced by a simplistic example of

mathematically fitting a line.  If the values thought

to be most valuable were entered twice into the data-

set, they would have more influence on the fit, i.e.,

they would carry more weight.  (It need scarcely be

said that this is in no way an allowable procedure,

and is merely used to convey the idea of weighting.) 

Formal weighting is often quite sophisticated, as in

probit regression (Section 4.5), where it is based on

expected probit and has continuously variable

magnitude.

A common use of weighting is to compensate for the

number of measurements which contribute to a

given value in a series.  If each value in the series

was the mean of measurements on a sample of

organisms, a particular mean might be weighted

because it was based on a large sample of

organisms.  This would be done before the analysis

was carried out.  The adjusting factor might be as

simple as the number of organisms.

The mean of a group of observations might also be

weighted because it was derived from observations

which showed a small variance, therefore making

the mean appear to be an especially valuable

estimate in a series.  If the group of observations

itself was being used in analysis, weighting could be

applied directly.  This kind of weighting is essential

when fitting a model to data in which some groups

are more variable than others.  The model will

almost certainly require equal variances.  The

observations can be weighted in a clever

mathematical way so that the assumption of equality

of variances is restored; usually the computer

program of a model handles this step.

Specific reference to weighting follows: Sections

4.2.2, 4.2.3 and 4.5.1 to 4.5.3 (various aspects of

probit regression); Section 4.5.6 (Spearman-Kärber

estimates); Section 4.7 (nonlinear models for

quantal data and smoothing for kernel methods);
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Section 6.4 (ICp by smoothing and interpolation);

Section 6.5.4 (inverse of variance, for nonlinear

regression); and Section 8.2.3 (unequal numbers of

replicates in dual-effect tests).

2.7 Controls

Controls in a toxicity test represent a treatment that

duplicates all the physical, chemical, and biotic

factors that might affect the results of the test,

except for the specific condition being studied. 

None of the material being tested for toxicity is

added to the control.  The control is used as a

baseline of experimental effects resulting from

conditions such as the quality of dilution water or

health and handling of organisms.  Control is

synonymous with negative control.

A particular test method might require replication of

each test concentration.  In that case, there must be

the same replication of each type of control.  Some

test methods specify different numbers of replicates

for toxicant and control (Appendix O, Table O.1).

Key Guidance

• A control must be identical to test

concentrations in every way except that it

has none of the material being tested for

toxicity (i.e., a zero treatment or the null

treatment).  It provides a baseline for

observed effects.

• If a solvent is used to get a test chemical

into solution, then a solvent control must

be used, containing solvent at the highest

concentration used elsewhere in the test. 

This solvent control must not cause

greater effect than the standard control.

• If salinities are unadjusted in a marine

test, there should be salinity controls

matching the salt content of the various

treatments.  If test waters are adjusted to

a favourable salinity (30‰), the control is

also at that salinity.  Extra salinity

controls are needed if test waters are

adjusted by methods (dry salt or brine)

that differ from the method for the control.

• Tests with sediments and soils use

controls that follow the same

principles as those for other tests. 

Comparison of test results is

normally with a reference

sediment/soil, collected in the

field and thought to be clean.  A

control sediment/soil is also run

to judge the overall quality of the

test; it is manufactured or taken

from a different and clean site. 

2.7.1 Ordinary Controls

Controls must be set up in exactly the same way as

the test concentrations.  Selection of organisms must

be done at the same time and in the same way.  The

containers must be of the same type, and the dilution

water, control sediment, or other substrate must be

uniform throughout all the containers.  Controls

must be randomly arranged among the other

containers.  Only in this way can there be an

unbiased assessment of whether there is an effect

caused by something other than the test material or

treatment.

The controls serve as a baseline, but the methods

documents published by Environment Canada insist

that the baseline must indicate satisfactory

conditions and procedures.  The specific

requirements for control performance vary with the

type of test, but some examples can be given.  In the

test for growth and survival of polychaete worms,

there must be at least 90% average survival in the

controls (EC, 2001a).  For larval growth of fathead

minnows, no more than 20% of the control larvae

can be moribund or show atypical swimming at the

end of the test, and they must also attain an average

dry weight of 250 µg (EC, 1992b).  When testing

embryos of salmonids (EC, 1998a), the average

percentage of nonviable control eggs must be no

greater than 30%.  With duckweed, the number of

fronds must have increased by at least eight-fold in

the controls (EC, 1999b).

2.7.2 Solvent Controls

Sometimes a chemical that is being tested for

toxicity is only sparingly soluble in water.  A

solvent could assist in getting the higher

concentrations needed for a strong effect in the test. 
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Usually, this would be relevant for aquatic toxicity

tests (fish, algae, etc.), or sediment tests in which a

chemical was being “spiked” into the sediment.  It

might also be relevant for a toxicity test with soil, if

the chemical was added to the soil by means of a

solution of that chemical.

In EC toxicity tests, the preferred option is to use

only dilution water as a carrier for the test chemical;

the use of any other solvent “should be avoided

unless it is absolutely necessary” (EC, 1997a, b;

2001a).  If assistance is needed for a sparingly

soluble test chemical, the first choice is a generator

column (Billington et al., 1988).  Less desirable

would be ultrasonic dispersion, and even less

recommended are organic solvents, emulsifiers, or

dispersants (EC 1997b; 1998a; 2001a).  Sometimes

the requirement is stricter, in that no solvent should

be used in a test unless it is one that might be

formulated with the test chemical for its normal

commercial purposes (EC, 1992f; 1998a; 1999b).

For design purposes, an EC test that uses a solvent

must have a solvent control, i.e., a test chamber (or

replicate chambers) that is just like the standard

control except that it contains the solvent at the

highest concentration that is present anywhere else

in the test.  This is in addition to the usual control. 

Needless to say, the concentration of the solvent

should be well below its toxic level, and sometimes

additionally, must not exceed 0.1 mL/L (EC, 1992f;

1999b).  If unknown, its toxicity should be tested in

the usual way to determine its threshold for effect,

before it is used in any other test (EC 1997a, b;

1999b).

Effects of the solvent control must not be greater

than in the (standard) control.  Some EC methods

have that requirement for solvent controls, with no

specific statistical procedures designated (EC,

1992f; 1998a; 1999b).  In some methods (EC,

1998a; 1999b), if there is a solvent control, then it

automatically becomes the overall control for

assessing the effect of the toxicant.  However, in the

sediment tests with midge larvae, H. azteca, marine

amphipods, and polychaete worms, the solvent

control is only used in that way if its endpoint

differs statistically from the standard control (EC,

1992e; 1997b; 2001a).  It is not desirable to pool

data from the solvent control with those from the

ordinary control, and that prohibition is a “must not”

in the test with young stages of trout (EC, 1998a),

because “the control/dilution water lacks an

influence [the solvent] that could act on organisms

in the other concentrations”.  Although in the

sediment test with polychaetes (EC, 2001a), the data

from the solvent control are to be pooled with the

ordinary control data if the two are not different by

t-test, that pooling might well be omitted.  The

OECD (2004) does not favour such pooling, and

points out that real differences between the two

controls might not have been detected by the

statistical test.

In any test method, organisms in the solvent control

must meet the performance criteria for test validity

which normally apply to the control.

2.7.3 Salinity Controls

A salinity control is a separate control chamber or

set of chambers, intended to assess the effect of less-

than-optimal salinities in a toxicity test with marine

organisms.  It also serves the purposes of a normal

control.  There could be a need for salinity controls

in tests with any marine organism, whether in a

medium of water or sediment.

Tests with unadjusted salinities.  A salinity control

would be desirable if the investigator wished to run

a test without adjusting salinities.  For example, it

might be desired to assess the total impact of a

freshwater effluent, when it was discharged into a

marine location.  In such a case, a separate set of

salinity controls should be run, in addition to the

control of control/dilution water at a favourable

salinity (30‰).  These extra containers should have

salinities that duplicate or span the salinities in the

test chambers.  Environment Canada stipulates that

the salinity controls should be made up by adding to

the saline control/dilution water in a series of

vessels, distilled or de-ionized water at the same

concentrations as those of the liquid being tested for

toxicity (EC, 1992f).  The same procedure would be

logical if one were testing the toxicity of a sediment

(say, dredge spoils) which contained a liquid

component that was essentially fresh water, intended

for deposit in a marine location.

Obviously, the purpose of the salinity controls is to

indicate any deleterious effects of low salinity
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acting alone.  These controls would not, however,

indicate any worsened harmful effect caused by

combined actions of the divergent salinity and the

test material.  To interpret results, the only option

would be to credit to the test material, any toxicity

greater than that found in the salinity controls.

Tests would “normally be carried out without

adjustment of salinity” in the EC test for

sticklebacks (EC, 1990b).  Although a salinity

control is not required, it would be beneficial.  The

method provides an option of adjusting salinity to

28‰, for tests with chemicals, effluents, leachates,

and elutriates.

Conceivably there could be a situation in which the

unfavourable salinity was too high.  Perhaps an

effluent could be very briny, and suspected of

containing toxic materials.  The principles for

running and interpreting salinity controls would be

the same as for a low-salinity situation.

Salinity-adjusted tests.  The standard practice in

marine toxicity tests is to adjust all the test

concentrations to a single favourable salinity.  That

practice is the usual procedure with echinoids (EC,

1992f) and in sediment tests with amphipods (EC,

1992e).  It is always the case under Environment

Canada's program of Environmental Effects

Monitoring, with the four tests using marine

organisms (EC, 2001b).  Environment Canada has

adopted 30‰ as a standard favourable salinity for

such adjustment.

In these tests there would be no “salinity control”. 

There would be a normal control at salinity 30‰,

prepared with the same material that was used to

adjust the salinity of the test concentrations and/or

the dilution water.

Special salinity controls.  Another kind of salinity

control might be required in marine tests within the

Environmental Effects Monitoring program (EC,

2001b).  This relates to the particular technique used

in adjusting salinity.

Salinity of an effluent or a test concentration may be

adjusted upwards by adding dry salts (reagent grade

chemicals or a commercial mix), or hypersaline

brine (HSB).  Normally, the same material would be

used to prepare all test concentrations and controls,

in which case, no additional special controls would

be needed. [The normal controls might be called

“salt controls” if made up from dry salts, and “HSB

controls” if made up from HSB (EC, 2001b)].

If, however, the dilution water used in the test

concentrations differed in origin from the salt

control(s) or HSB control(s) used in the tests, then a

second control or set of controls would be set up,

using the dilution water (“dilution-water 

controls”) 12.  All of these treatments would be at a

salinity of 30‰.

Statistical analyses of salinity controls.  The

principle for interpreting the controls is that each

type of control, individually, must satisfy the

performance requirements specified for the control,

in the instructions for that particular toxicity test. 

For example, in a test within the Canadian EEM

program, the “salt control” would have to satisfy the

specified criteria, and so would the “dilution-water

control”, if both had been used.  If any category of

control did not meet the requirements, then the

toxicity test would be considered invalid.

Such a failure is most likely to arise for a test in

which salinity was not standardized for the various

test concentrations.  High concentrations of a

freshwater effluent would mean low salinities in the

test chamber.  The corresponding salinity controls at

those low salinities might fail to meet performance

standards.  The conclusion would be obvious: any

effects seen in the higher test concentrations were

likely due, in whole or in part, to the effect of low

salinity.  It would not be a valid test to determine the

effects of the toxicant (effluent).

If all types of control satisfied the performance

requirements, then the toxicity test would be valid. 

12  The dilution water might be uncontaminated seawater

with salinity 30‰, whereas dry salts were used to adjust

the test effluent to the same salinity.  Or, the dilution

water might be reconstituted from HSB and de-ionized

water, while the effluent was adjusted with dry salts. 

Other combinations are possible.  The principle is that the

special controls are needed if there is any difference

whatsoever in the manner of preparing the controls,

compared to the test concentrations.
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Use of the control results in analysis of the findings,

would then follow whatever standard practice was

specified in the particular test method.

2.7.4 Control and Reference Sediments and

Soils

In EC toxicity tests for sediment or soil, standard

procedure includes a reference sediment/soil with

each test sample or set of samples from a given area

(e.g., EC, 1997a).  The reference sample is

presumed to be clean, and results from the test

sample(s) are compared with the reference results to

see if there is any effect such as increased mortality

or smaller size.  Accordingly, the reference sample

is used as a standard type of control for the test. 

The rationale is sensible, because this provides a

site-specific evaluation of toxicity.

The tests also run a control sediment/soil with each

batch of samples as a check on the general quality of

the test and its organisms.  A limit for acceptable

performance is set in each Environment Canada

method, for example, there cannot be more than

30% mortality in the sediment test with midges (EC,

1997a).  The control sediment/soil is not normally

used as the base of direct comparison for effects in

the test samples.  However, it would be used in that

role if the reference sediment proved “unsuitable for

comparison because of toxicity or atypical

physicochemical characteristics” (EC, 1997a).  The

approach is a reasonable one.

The two types of controls are defined in the glossary

but their characteristics might also be distinguished

here.  A reference sediment is collected in the field,

within the general vicinity of the survey stations, at

a site thought to be beyond the influence of the

source of contamination under study.  This reference

sediment is presumed to be clean, and to have

physical characteristics that closely match the

samples under study.  A reference soil is taken from

a terrestrial location, but otherwise exactly parallels

the characteristics and functions of a reference

sediment.  Because it is the control, it incorporates

the matrix effects into the test.  It can also be used as

a diluent to prepare concentrations of the test soil.

A control sediment or control soil would not be

collected in the same general vicinity as the survey

samples.  It could be taken from an uncontaminated

site, or it could be made up from appropriate

constituents.  The objective is to get a clean

sediment or soil, in which the organisms are known

to do well.  It might be the substrate where the

organisms were collected, or in which they were

cultured.

Statistical analyses.  Comparisons of effect are

made with the reference sediment/soil unless it is

unsuitable, in which case the control sediment/soil is

substituted.  Analysis and interpretation follow

standard methods described in other sections, and

are exemplified in the document for polychaete

worms (EC, 2001a).  Single-concentration tests are

limited to hypothesis testing (Section 7).  If the tests

involve several dilutions of test material, or spiked

sediments/soils, analyses can produce point

estimates, either ICp (Section 6) or EC50 (Section

4).

2.8 Reference Toxicants and Warning

Charts

Key Guidance

• Periodic tests with a standard

(“reference”) toxicant are intended to

assess changes in sensitivity of organisms

and precision within the laboratory.

• The laboratory's historic results are

plotted on a warning chart.  The new

value is compared with the mean of

previous results, and with the warning

limits of ± 2 standard deviations.  All

calculations are based on logarithmic

concentrations; failing to do that is a

common mistake in Canadian

laboratories.

Tests with a reference toxicant are quite different in

purpose and characteristics from the controls

described in Section 2.7.  They use a standard toxic

chemical at known concentrations, to measure the

relative effects on test organisms and are normally

repeated over the months the laboratory is active. 

The intended purposes are (a) to detect any change

in sensitivity of organisms over time, and (b) to
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assess any fluctuation in the measuring technique of

the laboratory.  Those two causes of variation

cannot be distinguished, especially since it is not

customary to carry out the tests in replicate.  The

test is completely distinct from any toxicity test with

samples, although it is often done at the same time.

Environment Canada test methods for aquatic and

terrestrial organisms require that reference toxicants

be used periodically.

The use of a reference toxicant can also be called

the use of a positive control.  The common reference

toxicants used are phenol, sodium chloride, or one

of the metals (EC, 1999a).  The results must be

shown in a warning chart, to judge whether variation

of results at the laboratory is satisfactory.  The

warning chart might be similar to that in Figure 2,

although the points and labelling might be done by

hand.

Figure 2 shows results for part of a series of

reference toxicant tests with rainbow trout.  The

dates and timing have been changed from data

obtained at a Canadian laboratory.  The figure

indicates three tests in each quarter of the year, i.e.,

monthly.  The mean of the logarithmic EC50s is 

-0.027356.  The antilog of that is the geometric

mean of the EC50s, 0.94 mg/L, and that is shown by

a line drawn across the chart.  Warning limits were

calculated as plus-and-minus two standard

deviations, and plotted on the chart as horizontal

lines, serving as visual indicators of any trend

towards divergent results.  The standard deviation

was calculated as 0.15288 from the data of Figure 2,

so two SD would be 0.30576.  Adding and

subtracting two SD from the mean yields logarithms

of -0.33312 and 0.27840 as the warning limits,

giving antilogs of 0.46 and 1.9 mg/L (plotted in

Figure 2).

When a laboratory obtains a new EC50 for the

reference toxicant, it is plotted on the control chart

as in Figure 2.  If it is within the warning limits, the

result would be considered satisfactory.  If the new

EC50 is outside the warning limits, the laboratory

should start an investigation of the causes for the

variation.  The new EC50 would then be

incorporated into the “historic data” for all previous

reference toxicant tests at the laboratory, and a fresh

set of calculations made for the geometric mean and

the warning limits.  Those limits would apply to the

next test of a reference toxicant.  It is not difficult to

set up a spreadsheet to carry out such sequential

calculations in a proper fashion, and provide a plot

similar to Figure 2.

All calculations for the warning chart must be done

on a logarithmic basis of concentration, and the

vertical axis of Figure 2 has a corresponding scale. 

The reasons for adhering to logarithms are given in

Section 2.3 and the manner of calculating the mean

and standard deviation is shown in Appendix F.  If

the arithmetic values of the EC50s had been used,

with arithmetic calculations throughout, rather

different warning limits would have been obtained. 

The average would have been 0.99 mg/L, somewhat

higher than the proper value of 0.94 mg/L.  The

upper warning limit would have been 1.6 instead of

1.9 mg/L, and the lower limit 0.39 instead of 

0.46 mg/L.  The arithmetic range between limits

would have been smaller, at 1.2 mg/L instead of 

1.4 mg/L (Appendix F).

In Canadian laboratories, one of the most common

failures in procedure is resistance by investigators to

making logarithmic calculations.  Indeed, many of

the earlier methods documents published by

Environment Canada treat this matter as a

recommendation and not a requirement.

Some computer packages offer an option to

calculate and plot a “control chart”.  Investigators

should check that the program makes its calculations

using the logarithms of concentrations.  For

example, CETIS (2001) will plot a chart with the

mean plus-and-minus two standard deviations, but

they are incorrectly calculated as arithmetic values

of concentration.  The same error is present in

TOXCALC (1994).

2.8.1 Reasonable Variation

The magnitude (span) of the warning limits is

obviously important.  Narrow limits signify great

precision in historical results from a laboratory. 

Accordingly, if that laboratory obtained an EC50

outside the limits, it would not necessarily indicate a

serious problem in procedures at the laboratory, or a

serious change in sensitivity of organisms.  In fact,

approximately 5% of the EC50s would be expected

to fall outside ± 2 SD by chance alone.  Conversely, 
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Figure 2 A Warning chart for tests with a reference toxicant.  This shows real data from a Canadian

laboratory, for aquatic tests with a reference toxicant.  There is a fairly regular pattern of EC50s

within the warning limits (some of them just within).  The overall variation is slightly greater than

might be considered desirable.  The vertical axis and all calculations are based on logarithmic values

for the EC50s.

a laboratory might have erratic historic results

leading to wide warning limits; subsequent EC50s

might lie within the warning limits but still indicate

undesirable variation.

Accordingly, a second way of assessing variation

can be considered, which might be called a

“reasonable” degree of variation.  This topic is

separate from the warning limits described

previously.  Environment Canada has not set any

firm definition of a reasonable degree of variation

that might be expected in a set of repeated tests. 

However, it was suggested that a coefficient of

variation (CV) no greater than 30%, and preferably

#20%, might be reasonable for tests with reference

toxicants (EC, 1990d) 13.  The same guideline for

13  The coefficient of variation (CV) equals the standard

deviation divided by the mean, customarily expressed as a

percentage.  That calculation of the CV is valid for

arithmetic data.  Accordingly, a known CV can be used to

calculate the SD; simply multiply the mean by the CV (as

a decimal proportion). This way of calculating CV is not

valid for a set of logarithms.  For lognormal data, the

formula is CV = square root [10(SD × SD)  - 1].  The SD in

the superscript is the one calculated from the logarithmic

data.  The SD multiplied by itself is the variance, which

could be used instead, as the superscript in the formula.
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variation with reference toxicants has been

suggested in the method for testing sediment with

polychaete worms (EC, 2001a).

The guideline mentioned by Environment Canada

was apparently based on the arithmetic means and

standard deviations for sets of EC50s, and

accordingly will have some degree of bias. 

However, an equivalent guideline can be calculated

on a logarithmic basis of concentrations, and that

has been done for this document (see derivation in

Appendix F).  The guideline or rule of thumb for

reasonable variation would be this: the value of the

standard deviation calculated from the

logarithmic data should not exceed 0.132, and

preferably should not be higher than 0.0338. 

These same logarithms can be applied to evaluate

the SD of any set of endpoints.  They correspond

approximately to the previously mentioned

arithmetic CVs of 30% and 20%, but avoid the

possible distortion.

The guideline herein requires the mean and standard

deviation of the set of endpoints to be calculated

using logarithms of concentration.  The calculated

standard deviation (a logarithm) is compared with

the value 0.132, and if the calculated value is equal

or smaller, the variation in the set of endpoints is

considered reasonable.

The suggested guideline for reasonable variation

could be compared to the example data used in

Figure 2.  Those data have a calculated logarithmic

SD of 0.15288..., so the observed variation in

endpoints somewhat exceeds the “reasonable”

guideline.

Some appreciation of this “reasonable” variability

can be gained by creating a hypothetical scenario to

compare with the situation shown in Figure 2.  If the

hypothetical set of EC50s had the same mean, but

happened to have the “reasonable” SD of 0.132, the

warning limits would be  0.51 and 1.7 mg/L (see

Appendix F) 14.  Those warning limits for the

“reasonable” hypothetical data would be somewhat

narrower than the ones for the data shown in 

Figure 2.

If a set of hypothetical data had even less variation,

with an SD equal to the “preferable” value of

0.0338, and the same mean as shown in Figure 2, the

limits would be very narrow.  Converted to

arithmetic values for comparison with Figure 2, the

limits would be 0.80 and 1.1 mg/L, which seems

somewhat optimistic for the variation among

repeated toxicity tests.

There would not be any constant relationship

between this suggestion for assessing reasonable

variation, and Environment Canada’s long-standing

warning limits of ± 2 SD for reference toxicants. 

The rule of thumb (or guideline) for reasonable

variation would stay constant, but the warning limits

would vary with the set of data.

2.9 Transformation of Effect Data

Key Guidance

• For quantal data, a common and

standard transformation uses probit

or logit of effect to estimate the EC50.

• In estimating sublethal endpoints by

regression, there is an assumption of

normal distribution of residuals, and

transformation can help achieve that. 

It can also simplify the relationship

for use of regression.  A major

disadvantage is that transformation

requires individualized weighting to

compensate for altering the variances

of the groups of observations; this

requires statistical skill or advice.

• In hypothesis testing, if the data for

effects fail to meet requirements for

normality and homogeneity of

variance, transformation might

remedy that and allow analysis by

standard parametric methods.  This is

recommended as the first option if

hypothesis testing is desired and the

data do not meet requirements.
14  Investigators who are rusty in doing calculations with

logarithms might check their procedures by consulting the

entry in the glossary, Section 2.3.5, Appendix D, or going

through the arithmetic in Appendix F.
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• Logarithms and square roots are commonly

used transformations.  Arcsine square root

is for quantal data; it and the reciprocal are

not often useful.

Transformation of results might assist either of the

two broad approaches for analyzing data from

environmental toxicity tests -- regression techniques

and hypothesis testing.  Both approaches have

certain requirements for normal distribution of the

effects data.  If normality does not prevail, one

option is to transform the data to make them satisfy

the requirement.  For regression, there can also be

the additional pressure to transform in order to

obtain a straight-line relationship for simpler

analysis.

2.9.1 Use in Regression

For tests of acute lethality or other quantal effects,

it is customary to transform the percent effects to

probits or logits.  Those transformations are suitable

and advantageous for statistical analysis.  The

probits or logits generally eliminate the s-shape in a

set of data (Appendix H), allowing a straight-line

model and fewer parameters to estimate.  These

benefits are described in the following text under

“Advantage ...”  The conventional use of probits or

other transformations for quantal data are further

discussed in Section 4.  (For concentration,

logarithms are retained for analysis 15).

Analyses of data from sublethal tests are moving

towards more advanced techniques, notably

nonlinear regression (Section 6.5).  The construction

of confidence intervals for the parameters of

nonlinear regression models usually assumes that

the residuals are normally distributed. 

Transformation would, again, be one possible

approach for achieving this requirement.

Advantage of transforming: simplicity.  One

important principle of regression techniques for

point-estimates is to keep the model simple, if that

can be reasonably done.  Transformation of the data

can simplify the relationship and allow the use of a

simple model.  Although models can be created to

fit a complicated relationship, the resulting equation

will have many terms, and consequent loss of

degrees of freedom, weak predictive power, and

possibly widening confidence limits for the

predicted endpoint (Andersen et al., 1998). 

Statisticians stress this feature of modelling, e.g.,

“Thus simplicity, represented by parsimony of

parameters, is ... a desirable feature of any model ...

Not only does a parsimonious model enable the

research worker or data analyst to think about his

data, but one that is substantially correct gives better

predictions than one that includes unnecessary extra

parameters” (McCullagh and Nelder, 1989).  It

follows that transformations of the data could be

beneficial, in allowing a simpler model. 

The equation that fits exponential growth is a simple

example of transformation (see Section 6.5.3). 

Y = "$X Y

log Y = log " + X  log $ [Equation 1]

Using logarithms, this equation can be transformed

from a multiplicative relationship (upper line,

Equation 1) to a linear one (lower line, Equation 1),

allowing a relatively simple regression.

A common transformation to make proportional data

fit a normal distribution with equal variances is

taking the arcsine of effects (see Glossary and

Section 2.9.3).  These kinds of transformation seem

to be an easy way of making the analysis simpler

and reducing the “obstacle of calculating confidence

intervals around nonlinear regression estimates ...”

(Nyholm et al., 1992).

Disadvantages for regression.  The apparent

advantage of transformations tends to be outweighed

by some major complications.  Although

transformations might be intended to simplify the

estimation of parameters, they can distort a real

(mechanistic) relationship.  For example, enzymatic

reactions are mechanistically described by the

nonlinear Michaelis-Menten equation.  True

threshold-concentration effects could also be

distorted by inappropriate transformations.

15  Use of the logarithmic values of concentration (and/or

time) in the analysis simply retains the original units of the

exposure, for basic scientific reasons (Section 2.3). 

Transforming log concentration to arithmetic values for a

set of calculations, aside from being incorrect, would

likely also introduce skew into the relationship and require

a more complex model.
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Sometimes, transformation can lead to highly biased

estimates of endpoints, occasionally described as

“fatal”.   The problems are discussed from a

toxicological viewpoint by Christensen and Nyholm

(1984) and Nyholm et al. (1992).  They point out

that transformation requires proper weighting to

compensate for altering, to different degrees, the

variances of the data-points.  The weighting is

specific to the data obtained, so there is no “cook-

book” statistical package that can be applied. 

Weighting factors must be inversely proportional to

the variance of the data as calculated for the original

measurements (observations) at any given value of

the independent variable X (or usually, logX).  Even

then, compensation by weighting might not be

precise enough for irregular data, or for observations

near the extremes of the dose-effect distribution. 

The weighting would also have to take into account

whether the original variance was in absolute units

or was proportional to the magnitude of the

measured variable.

Such individualized statistical tailoring of data-sets

is well beyond the limits that can be defined in EC

methods documents for routine tests.  Investigators

should be aware of the pitfalls that can be

encountered by transforming results to obtain a

linear regression.  Further, it is recommended that if

investigators think that transformation might be

advantageous, they should seek the advice of a

statistician familiar with toxicity testing.  It is

possible that suitable statistical approaches are

already available (see Section 6.5.8), or that

statistical packages could become available in the

future.

2.9.2 Use for Hypothesis Testing

The most familiar methods of hypothesis testing

assume that results have a normal distribution.  That

assumption prevails for t-tests, ANOVA, and multi-

comparison tests.  Accordingly, data must be tested

for normality before proceeding to the analysis

(Section 7.3).

If a set of data does not show normal distribution,

the investigator has three main options:

     • use a more sophisticated parametric method

that is appropriate for the data,

     • transform the data to achieve normal

distribution, or

     • use a non-parametric method that has no

assumption about distribution.

The most desirable choice is the first one, but this

choice is seldom made because the methods are not

known to most investigators, who are not

statisticians.  Historically, standard procedures came

to be based on other approaches, because the more

sophisticated parametric methods involved arduous

calculations, but that is not an impediment since the

advent of computers.  This document does not give

guidance on these more advanced methods, but

provides some introduction to them in Sections 6.5.2

and Section 6.5.11 on GLIMs.  It is to be hoped that

future interchange with statisticians will make such

improved methods available and workable for

environmental toxicology.

The most favoured approach has been the second

one listed, transformations to achieve normal

distribution.  This historical use of transformations

has had the objective of producing data suitable for

the statistical methods of earlier decades.  It allows

the use of known standard methods of analysis, with

relatively simple procedures and readily available

statistical tables.

The third listed approach, of non-parametric

methods of analysis, has also become a standard

modern approach, due in part to development and

programming of standard methods for hypothesis

testing in the USA.  Non-parametric methods have

customarily been used when parametric analysis is

not valid.  In many cases they are less powerful than

corresponding parametric tests at distinguishing

effects.  Like parametric tests, nonparametric ones

also have assumptions about the data such as

independence of observations and homogeneity of

variance, but they are generally more robust with

respect to departures from those assumptions.

Advantages and disadvantages.  If it is desired to

analyze results by hypothesis testing, transformation

can take measurements that digress from normality

or homogeneity of variance, and change them into

variables that conform to requirements for analysis

by the familiar parametric tests.  Another use is to
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transform some sets of quantal data, to make them

more suitable for hypothesis testing (Section 2.9.3).

Accordingly, suitable transformation is

recommended if necessary, as the preferred option

for data that do not satisfy requirements for

normality and homogeneity of variance. 

Consultation with a statistician is advisable.  The

most serious problem is that transformation can be

expected to change the inter-relationships within the

data.  The cautions of Section 2.9.1 must be

considered.

If a satisfactory transformation is not found, the next

option would be analysis using non-parametric tests.

2.9.3 Specific Transformations

The most frequently used transformations of

measurements are the logarithm and the square root. 

Both can be effective if variance increases with the

magnitude of the mean.  Logarithms are useful if

the effect tends to increase exponentially with

increasing concentration and if variance is

proportional to the square of the mean result for the

treatment.  This might happen with population

growth, or weight, and transformation might make

the variance independent of the mean.  The 

preferred form, especially if some of the values are

small or zero, is log (X + 1).

The square root transformation can also help to

stabilize the variance.  It is also applicable when the

data arise as a series of counts (Poisson

distribution), and the group variances are

proportional to the means.  Again, the preferred

form includes a constant rather than a simple

transformation, commonly the square root of (X +

0.5), where X is an individual measurement (Zar,

1999).  Possibly superior to that is the slightly more

complex transformation of the square root of X plus

the square root of (X + 1). 

The reciprocal transformation is seldom useful for

quantitative data.  The arcsine square root

transformation is not recommended and is not

relevant for quantitative data, because it is intended

for binomial observations, such as percentages or

proportions (Zar, 1999).  Sometimes, however, an

investigator might wish to analyze quantal data by

hypothesis testing, and arcsine transformation could

be useful and is suitable.  Section 7.2.6 discusses the

topic, and the application of arcsine is discussed in

the Glossary.
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Section 3

Single-concentration Tests

Key Guidance

• Single-concentration toxicity tests are

typically used in surveys to assess

contaminated sediments and soils, or monitor

effluents.  Their results can be used to judge

compliance with regulations, using a fixed

regulatory pass/fail criterion, without

statistical analysis.

• Testing for statistically significant effect in

single-concentration quantal tests (e.g.,

mortality) depends on the type of investigative

program and its design.  For a sample from

one location without replication, testing could

be done by a comparison with the control

using Fisher's exact test, or “Finney's tables”. 

For a single location with “field” replicates,

(e.g., a survey of contaminated sediment or

soil) results could be tested with Fisher’s

exact test.

• For a survey of several locations, with no

replication and quantal effects, results would

not be statistically testable.  With field

replicates, results could be assessed by

logistic regression carried out by, or under

supervision of, a statistician; ANOVA might

sometimes be feasible.

• Quantitative single-concentration tests (e.g.,

effects of exposure to contaminated sediment

on the weight attained by organisms) have

different statistical methods.  For sampling at

one location with field replicates, results

could be compared to the control with a t-test. 

Without replicates, results could not be tested

statistically.

• For quantitative results at several locations,

there are a number of approaches.  Without

replication, no statistical analysis is

suggested.  With field replication, ANOVA

would be a first step if results were suitable. 

If the null hypothesis of no difference was

rejected, analysis would proceed to one of

several multiple-comparison tests.  For

ordered data (gradient expected), Williams’

test would compare each location with the

control.  For unordered data, Dunnett’s test

would compare with the control, and the

Dunn-Sidak test would be a second choice. 

For pairwise comparison (each location

with each other location) Fisher’s LSD is

recommended, with Tukey’s test as an

alternative.

• For replicate field samples, and quantitative

data requiring non-parametric analysis, in

most cases it is recommended that the null

hypothesis be tested before proceeding to a

multiple-comparison test.  If the data are

ordered, locations should be compared with

the control by using Shirley’s test.  Pairwise

comparison of ordered data would start with

the Jonckheere-Terpstra test, and proceed to

the Hayter-Stone test if the null hypothesis

was rejected.  For non-ordered data,

comparison with the control would start with

the Fligner-Wolfe test or if it was not

available, with the Kruskal-Wallis test.  If the

null hypothesis was rejected, the Nemenyi-

Damico-Wolfe test would be applied, with

Wilcoxon Rank Sum test as second choice, and

Steel’s Many-One test as an alternative.  For

pairwise comparison, the Kruskal-Wallis test

of hypothesis would come first.  The

recommended multiple-comparison test is the

Critchlow-Fligner-Steel-Dwass test, with the

alternatives of Steel’s Pairwise test, or

repeated use of Kruskal-Wallis.

Single-concentration tests are often used in

environmental programs to monitor discharges for

regulatory compliance, and to explore potentially

polluted areas of sediments, soils, or surface waters. 

The tests, although not powerful, are efficient,

meaningful ways to fulfil the exploratory purposes.

A program to monitor compliance of liquid

discharges might simply use full-strength effluent,

without any accompanying dilutions.  Effects of the

effluent would be compared with those in the most

appropriate control that could be selected.  Initial

tests of potentially contaminated soils or sediments
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are usually done by using an undiluted sample. 

Effects are normally compared with reference and

control soils/sediments (see glossary).16

No statistical comparison to the control is necessary

when a single-concentration test, such as

measurement of acute lethality, is used under the

regulations for Canadian metal-mining or pulp and

paper mills.  The test material would either pass or

fail if mortality exceeded the allowable limit.

For some other single-concentration tests, standard

statistical procedures are available for analyzing the

results, and hypothesis testing is often used, with

desirable replication of samples in the field.  In

analysis, the distinction between quantal and

quantitative results must be maintained.

The common designs and choices of analytical

methods are indicated in Figure 3, and discussed in

the following sections.  There can be many

variations in single-concentration tests, to meet the

needs of particular situations.  For special designs

which are not covered here, investigators should rely

on the specific instructions of the method,

consultation with a statistician, and any general

principles outlined here.

3.1 Quantal Effects

Mortality is the most common endpoint in single-

concentration tests, and the resulting data are

quantal.  A test might assess mortality of amphipods

or midge larvae exposed to full-strength sediment,

or mortality of rainbow trout in full-strength

effluent.  The upper left part of Figure 3 indicates

the choices of statistical tests.

3.1.1 One Sample without Replication

Testing one sample without replication is common

practice for a waste discharge being monitored

periodically.  By testing one unreplicated sample

and a control, the number of dead can be compared

using one of the tests outlined in the next paragraph. 

The comparison should be done as a one-tailed test

of significance, because normally, the investigator

would be concerned only with greater mortality in

the test concentration than in the control or

reference 17.  Because the tests are based on limited

data, they can only be expected to detect relatively

large effects.

The two suggested methods follow.  Appendix G

provides examples and references, although these

tests of proportions are covered in standard

statistical textbooks.  In comparisons which use

these methods, the null hypothesis is that the test

concentration does not show an effect that is

“worse” than the performance observed in the

control, i.e., a one-tailed test mentioned previously. 

The procedures work whether or not the control

shows reduced performance (e.g., some mortality).

     • Fisher's exact test is recommended as a first

choice, because it is indeed, an exact test.  It is

carried out with minimal calculations, in step-

by-step selections and manipulations of the

data laid out in a simple two-by-two table.  A

calculated value is compared with a critical

value for Fisher's exact test, as provided in

general statistical texts.

     • “Finney's tables”.  The procedure is a simple

matching of the data with some diagrams,

which immediately show whether the

experimental effect is higher than the control

performance.  The diagrams are shown in

Appendix G, but they are only for equal

numbers in the test and control chambers, up

to ten individuals.  For larger or unequal

situations, one might consult the source of

these diagrams, the published tables of Finney

et al. (1963).  The book of tables is in some

university libraries, but might be difficult to 

16  Subsequent tests with soils might establish a series of

concentrations by diluting with clean soil, in which case

ICps or EC50s might be estimated.

17  A two-tailed test such as chi-square is used if the

direction of the difference is not important, or cannot be

assumed before starting the test.  That would seldom be

the case in lethality tests, which deal with greater

mortality in the test sample than in the control.
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find.  The tables represent a tabulation of p-values

for comparing  two proportions, conceptually

similar to the t-test 18.

The Z-test is another way of comparing two

proportions.  It is not recommended here because

the two tests listed previously are available.  The Z-

test is listed in most North American statistics

texts19 (e.g., Zar, 1999, p. 557), and an example is

worked in Appendix G.  A calculated value is

compared with a critical value of “Z”, which in fact,

is found in tables for values of “t”.  The test relies

on the normal approximation to the binomial

distribution, which is poor for the small sample sizes

that would be available in the comparisons

considered here.  The approximation is especially

poor when observed proportions fall outside a range

of about 0.4 to 0.6.

Neither Fisher’s or Finney’s method should be

interpreted too closely.  The exact probability value

will usually be returned by the computer program

for Fisher's exact test.  Even if it were necessary to

look up critical values of Z in tables, the investigator

would be able to judge the approximate p-value.  As

a rule of thumb, the significance of p-values in the

general range from 0.025 to 0.075 might be

considered inconclusive.  For important studies,

further testing might be done, or a statistician should

be consulted about other options.  If alternative

statistical tests were available, they would have to

be selected to match the characteristics of the

particular toxicity test.

3.1.2 Replication at One Location

A program of testing at one concentration might

sometimes use field replicates from a single

location, i.e., several samples collected at the same

time and place.  This would be more likely in soil or

sediment programs than in monitoring liquid

effluents.  There are no customary statistical

procedures established, for using the full spectrum

of data on quantal effects, but some options remain. 

In this situation, Fisher’s exact test is still

appropriate; however, the equality of the replicates

should be tested (with Fisher’s exact test) before

pooling the data.  If the test shows that the data

cannot be pooled, the investigator is left with a

serious question of why effects are significantly

different at one location.  Another possible analysis

would combine the data from replicates and test the

proportions with a Z-test, as listed in Section 3.1.1.

3.1.3 Multiple Sampling Sites

If single samples (e.g., sediments) from a number of

locations were tested at one concentration with a

control, the opportunities for statistical testing of the

entire set of data are virtually non-existent.  Usually,

such a study would be exploratory.  The results

could be inspected for indication of strong effect,

and further sampling and testing with replication

could be done (see following text).

Some data-sets might lend themselves to special

analyses, in consultation with a statistician.  It is

possible that outlier analysis might be applied to

identify any effects that were more severe than in

the control and low-toxicity samples (Section 10.2). 

If the locations constituted a gradient (e.g.,

upstream-downstream), a regression might be

conducted to test for the gradient effect.

Subsamples of Each Sample.  Single samples of

sediment, soil, or liquid, from each of several

locations, plus a control/reference, might be divided

into subsamples and tested.  That would represent

“laboratory replication”.  For quantal effects, such

data limit the options for statistical analysis (see

following text).  The laboratory replication gives an

indication of the variation in the toxicity tests

conducted in the laboratory and the homogeneity of

the sample.  If the subsampling variation were very

low, the replication might assist in distinguishing

among the field samples.  For example, if 

18  Two proportions can be compared, using the same

ideas that underlie the comparison of two means.  When

comparing two means a t-distribution or a normal

distribution is used to determine which difference between

two means is statistically significant.  Ever-smaller

differences in means can be detected, as the sample size

becomes larger and the variability associated with the

means becomes smaller.   The same approach can be used

to compare two proportions, but the binomial distribution

is used.  The calculations are described in Zar (1999) and

are somewhat tedious.  It appears that Finney et al. (1963)

made such direct comparisons of two proportions to

construct their tables and the diagram in Appendix G.

19  In European textbooks, the symbol Z signifies the

standard normal variable, and its values are found in

tables of normal distribution.
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subsampling variance was close to zero, it would

indicate good homogeneity of the samples and

precise results of toxicity testing; differing toxicities

of the field samples would be noticeable.  However,

variation in the field sampling at a given location

would remain unknown, so the subsampling would

not produce any power to judge differences among

locations.  For this reason, laboratory replicates are

not particularly recommended unless it is

specifically desired to assess variation within the

laboratory.  Generally, it would be more useful to

focus the extra effort on field replicates (see Section

2.5.2).  Conclusions from statistical analyses with

laboratory replicates should be made cautiously and

their meaning must be clearly stated.  Otherwise, the

statistical findings might be misinterpreted, with a

mistaken inference that any detected differences

resulted from the different field locations.

Field Replication.  If field replicates were taken,

i.e., several samples at each location, useful

statistical analysis becomes feasible, even for

quantal data at one concentration.  A possible

approach would be logistic regression (Section 6.5)

carried out by a statistician or a toxicologist well

versed in statistics.  The regression would be

“categorical”, i.e., based on Control, Location 1,

Location 2, etc., rather than the familiar regression

on a continuous independent variable such as

concentration.  The approach of logistic regression

might be particularly fruitful if a gradient of effect

was expected (e.g., at successive locations

“downstream” of a pollution source).

3.2 Quantitative Effects at One Location

An example of a single-concentration test for

quantitative effects would be measuring the average

weight of midge larvae after exposure to a sample of

undiluted sediment, compared to weight of midges

exposed to a reference or control sediment (EC,

1997a).  Exploratory tests might conceivably run

single test containers, although definitive tests

would use field replicates.  The extensive branching

of choices is shown in the right and lower parts of

Figure 3.

Without replication.  If there was only one sample

tested, and one control or reference material,

without any replicates, results could be not be

compared by any statistical test.

Replication and comparison by t-test.  In a

quantitative test with replication for the test material

and for the control or reference material, a standard 

t-test would be suitable for statistical analysis.  Here

again, the investigator would be looking for smaller

size in the test material, so the critical value for the

t-test would be for a one-tailed test.  The procedure

for t-tests is commonly provided in statistics texts

and in software programs such as TOXSTAT.

As previously discussed (Section 3.1.3), if the

replicates were subsamples of a single sample

(“laboratory replicates”), the conclusions from

statistical testing would only reflect within-lab

variation.  No conclusions could be drawn about

differences in the outside world, for example,

whether the sampling location differed from the

control location.  If field replicates were used,

however, the conclusions would apply to the real

world at that time/place.

The t-test can be applied to most sets of data.  It

functions for unequal numbers of replicates in the

test and control.  Strictly speaking, the t-test

assumes a t-distribution and equal variances in the

two groups.  If there was doubt about those

assumptions, the t-distribution could be tested by a

quantile-quantile plot, or if the sample size was

greater than about 30, by a test for normal

distribution.  Homogeneity of variance could be

tested by O’Brien’s, Levene’s, or Bartlett’s test, or

the F-test (Section 7.3.1) 20.  However, the t-test is

fairly robust, especially if sample sizes are equal or

nearly equal in test and control, and if the numbers

are not too small.  Various modifications are

available, and CETIS offers the paired-sample t-

test, the equal-variance t-test, and the unequal-

variance t-test.

20   The F-test is the last choice, but if used, the method is

found in all statistical textbooks, which usually provide

tables for critical values of F.  If there are four replicates

and each has an average weight of surviving organisms,

the variance is calculated from the four means, giving a

variance for the test material and another for the control. 

F is the ratio between the greater and lesser variances. 

The degrees of freedom are one less than the number of

replicates in each case.  If the t-test is invalid because the

variances are not equal, a modified formula for the t-test

would be used.  Worked examples are shown in an

appendix of USEPA (1995).
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3.3 Multi-location Quantitative Tests

In another kind of single-concentration test, samples

from several places are tested at the same time,

using the same procedure, and the same control or

reference material.  This is commonly done with

samples of soil from various places around a

contaminated site, or sediment from several

different places within a harbour, in order to

delineate any zone of high contamination.  A

thorough guidance document on sampling and

replication for sediments is available for advice and

is recommended (EC, 1994).  There is also specific

advice for individual sediment-testing methods such

as that for polychaete worms (EC, 2001a).

Field sampling of sediment at different locations is

used as an example here.  Comments are for tests

with quantitative effects such as weight of

organisms.

Productive statistical analysis of sediment samples

from several locations, requires separate samples to

be collected at each location (i.e., field replicates). 

The manner of replication is covered in Section 2.5. 

For hypothesis testing, an alternative that is of no

use in distinguishing locations is one sample from

each station, divided later into subsamples (so-called

“laboratory replicates”).  Testing would provide

only limited information on whether a particular

sample was different from another particular

sample.  It would not allow testing a hypothesis of

no differences among the locations (sampling

stations) (see Section 2.5).

Special case for gradients.  If a gradient of

decreasing effects is expected at a series of sampling

locations which extended out from a source of

pollution, regression can be used as a form of

hypothesis testing.   The null hypothesis is that no

gradient exists.  The alternative hypothesis is that a

gradient of effects exists with increasing distance

from the source.  Selection and use of an appropriate

regression technique requires guidance from a

statistician.  Replicates are not necessary for this

analysis; however, field replicates allow lack of fit

to be tested and also make the regression analysis

more powerful in statistical terms.  Subsamples

(“laboratory replicates”) could be used by a

statistician to reduce the error variance, but

sampling effort should be focused on field

replicates.

3.3.1 Parametric Tests

If the sampling stations can be meaningfully ordered

into a gradient, the immediately preceding comment

on gradients applies, and further guidance is given

in the following paragraph.  Without expectation of

a gradient, hypothesis testing could be done if field

replicates were taken.

For hypothesis testing, the choice for statistical

analysis is analysis of variance, if results met

requirements for parametric analysis (Section 7.3). 

If each sampling station is compared with a

reference or control material, the ANOVA would be

followed by Dunnett's test (Section 7.5.1), and this

sequence is recommended here.  Some old software

programs might require equal numbers of replicates

for Dunnett’s test, but recent programs escape this

limitation (see Appendix P.4.2).  Williams’ test

might be used instead of Dunnett’s test, if it is clear

that there is a gradient of effects such as at a series

of locations successively downstream from a source

of pollution, and if hypothesis testing is used. 

Williams’ test would compare effects at each

location with those at the control location, but

would take the ordered nature of the locations into

account, providing a more sensitive analysis (see

Section 7.5.1).

Conceivably, the investigator might wish to know

which sampling locations were different from which

others.  Such a situation might be several field

samples from each of one or more locations

upstream of an effluent discharge, and similarly

from a number of locations downstream, all tested at

full strength.  The investigator might wish to make

pairwise comparisons within a larger survey of

locations, such as whether the downstream location

showing the “best” recovery could be distinguished

from the upstream station.  To make such an

evaluation, an ANOVA could be followed by

Fisher's Least Significant Difference (LSD) or by

Tukey’s test.

The LSD is useful for paired comparison within a

larger set of data because it is relatively easy to

carry out, and can be extensible to cases with

unequal replication.  The LSD is not commonly

found in computer packages for toxicity, but advice

on using it is given in Section 7.5.1.  Other advice

on parametric multi-comparison  tests is given in

Appendix P, Section P.4.
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Unequal replicates.  As mentioned previously,

Dunnett’s test handles unequal numbers of

replicates, in the modern statistical software

packages which are most likely to be found in

laboratories.  Old packages for toxicology might 

have only the version for equal numbers.  If a

program for unequal numbers is not available, there

is a modification which could be applied.  It is

explained in Newman (1995) and examples are

worked in USEPA (1995).  The other options for

unequal numbers of observations are the Dunn-

Sidak test or the Bonferroni-adjusted t-test (see

Appendix P, Section P.4).

3.3.2 Nonparametric Tests

If results from multi-sample toxicity tests did not

meet the requirements of normality and

homogeneity of variance, nonparametric tests would

have to be used.  The options are shown in the lower

right portion of Figure 3.  Relevant comments and

more details are provided in all sub-sections of

Section 7.5 as well as comments on the availability

of tests.

One branch of testing would prevail if an order or

gradient is expected in the results and if each

location is going to be compared with the control. 

Shirley’s test could be used to make those

comparisons with the control (Shirley, 1977).  If an

order is expected, and a pairwise comparison is

desired (each location with each other location), the

Jonckheere-Terpstra test could be used to test the 

null hypothesis of no differences (Jonckheere,

1954).  If the hypothesis is rejected, testing proceeds

to the multiple-comparison test of Hayter and Stone

(1991).

Another branch of testing would apply if no order of

concentration or effect is expected in the set of

multi-sample test results.  In such a case, the effects

could be compared with those of the control, by

testing the  null hypothesis of no effect, using the

test of Fligner and Wolfe (1982).  If that was not

available, the test of Kruskal and Wallis (1952)

would serve the same purpose.  If the null

hypothesis is rejected, testing would proceed to a

multiple-comparison test.  The first choice would be

the Nemenyi-Damico-Wolfe test (Damico and

Wolfe, 1987).  Alternatively, the Wilcoxon Rank-

sum test would be second choice, or Steel’s Many-

One Rank test could be used (Steel, 1959).

A pairwise comparison (each location with each

other) might also be desired if there was no expected

order of effects.  First, the null hypothesis (no effect

of location) would be tested using the Kruskall-

Wallis test.  If a difference was concluded, the

Critchlow-Fligner-Steel-Dwass test (Critchlow and

Fligner, 1991) would be used to identify the

difference(s).  Alternatively, Steel’s Pairwise test

(Steel, 1960) could be used for balanced data (equal

number of replicates), or the Kruskall-Wallis test

could be used again, this time as a multiple-

comparison test for unbalanced data.
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Section 4

Quantal Tests to Estimate ECp

At the end of a quantal toxicity test, each organism

either shows or does not show the defined effect. 

The effect is binary: an earthworm dies or lives, an

ovum is fertilized or remains unfertilized, a fish

shows an avoidance reaction or does not.  Binary

and quantal are synonymous.  Thus, most quantal

tests are based on the proportion of organisms that

showed the effect, after exposure to a fixed

concentration of test material and a defined period

of time.

Quantal results follow a binomial distribution,

which determines the choice of appropriate

statistical tests.  An investigator seeking further

background in a statistics textbook should look for

chapters or sections on binary data and binomial

distribution.  Collett (1991) describes the methods

of analyzing binary data, and points out that the

familiar techniques of analysis of variance and

simple linear regression, in the forms used with

continuous (quantitative) data, are not suitable for

direct use with quantal data (see end of Section 4.3). 

There are well-established methods for fitting

models to quantal data, but methods for checking

the fit are less well established.  (While assimilating

the good statistical advice of Collett, readers should

be alert for statements on toxicological matters

which might appear to be misleading at first glance,

as explained in Section 2.3.1.)  Other relevant

statistics texts are Finney (1971; 1978), and also

Ashton (1972) who focuses on linear logistic

modelling, particularly suitable for data from

quantal toxicity tests.  Hosmer and Lemeshow

(2000) is a more recent text on logisitic regression. 

Fleiss (1981) covers some aspects such as

contingency tables.

Most quantal tests in environmental toxicity are

based on acute lethal effect.  Although such tests do

not estimate a “safe” concentration, they have a long

history in the development of environmental

toxicology, and a large base of results has been

accumulated.  Quantal tests continue to be

commonly used, particularly in regulatory testing,

perhaps because they often use well-known species

such as rainbow trout.  These tests have useful

features such as rapidity, reasonable economy, a

clear endpoint, and an effect that is obviously

deleterious.  The tests can compare relative

toxicities of materials or sensitivities of species, and

can provide initial explorations of toxicity or

monitoring of changes in an effluent 21.  In

conjunction, there are well-established methods for

statistical analysis.  Some sublethal tests are also

quantal, and use the same analytical techniques.

The general pattern of analysis is reasonably

straightforward (Figure 4).  Logit or probit

regression (frequently called “probit analysis”) is

recommended for routine use if the data are suitable,

because a long history of use means that well-tested

and convenient analytical programs are readily

available.  If the data do not meet the requirements

for probit or logit  regression, there are alternative

methods, and although theoretically less desirable,

they are capable of handling the data commonly

encountered (Section 4.3).

21   Lethal tests are not necessarily inferior to sublethal
tests; sometimes they are precisely the tool needed for

investigations.  An example of using lethality to explore

complex scientific topics, is the powerful development of

Quantitative Structure-Activity Relationships or QSARs,

i.e., relationships between chemical structure of

substances, and their toxicity to aquatic organisms. 

Massive research programs have used lethal tests to define

a series of complex QSARs, so that chemical

configurations can be used for efficient predictions about

hazardous new substances with similar chemical structure

(Broderius, 1991; USEPA, 1994e).
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Figure 4 Sequence of analytical procedures for quantal tests.  Quantal procedures extend downwards

towards the lower left of the flow sheet.

Experimental design
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Data

Multi-concentration testSingle-concentration
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See Figure 3
Section 3

Hand-drawn graph

Quantitative dataQuantal data (pooled replicates)
Dual-effect data
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optional
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See Section 8no yes
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Section 7
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Comments on the steps for statistical analysis of

quantal data are given here in Section 4.  Procedures

are quite different for quantitative data, discussed in

Sections 6 and 7.  Certain tests with large numbers

of quantal observations, can be analyzed by

quantitative methods (Section 6.1.1).

4.1 The Endpoints of Quantal Tests

Key Guidance

• In a quantal test, each organism either shows

an effect or does not show it.  The effect

could be lethal or sublethal (e.g.,

immobilization).

• For a multi-concentration quantal test, the

endpoint is the Effective Concentration,

usually the median Effective Concentration

(EC50).  Lethal tests are a sub-category, and

the usual endpoint is the median Lethal

Concentration (LC50).  The exposure time

must be given, e.g., the 96-h EC50.

In quantal tests, separate groups of organisms are

exposed to one of a series of fixed concentrations,

for a fixed time.  It is desirable to have an equal

number of organisms at each concentration, and the

duration of exposure must be the same.  The

observations are the number of affected organisms

at each concentration (e.g., number dead).  The

proportions affected allow suitable statistical

analyses.  (A background of practical analyses for

proportions is given by Fleiss, 1981). 

The endpoint of a quantal test is the Effective

Concentration for a toxic effect on a specified

percent of test organisms, the ECp.  The chosen

percentage (p) is usually 50%, i.e., the median

effective concentration, expected to cause an effect

in half of the organisms.  In everyday terms, this is

an estimate of the concentration that would just

affect the “typical” or “average” organism, an

endpoint of some validity.  An additional reason for

choosing 50% effect is that confidence limits are at

their narrowest.  They become wider as distance

from the median increases, and so the limits would

be very wide if extremely low or high values were

chosen for percent effect (Section 4.2.4).  There is

currently some demand for estimates of EC25 or

EC20, and those endpoints can also be estimated by

some analysis programs (Section 4.2.5).

An exposure time must always be stated for an ECp,

for example “the 96-h EC50”.  Quantal tests are

commonly associated with acute exposures.  The

EC50 for viability of salmonid eggs after a 7-day

exposure, for example, is an acute test because it

represents a small fraction of the organism's life. 

Less commonly, a quantal test could be chronic,

such as mortality among fish after months of

exposure.

The term ECp applies to any quantal effect, lethal or

sublethal.  A commonly used sub-category is the

lethal concentration (LCp, almost always LC50).  In

the following text, ECp or EC50 will be used as the

more general terms that include LC50 22, 23.

Confidence limits should be reported for each ECp

(see Section 4.2.4).

4.2 General Procedures for All Methods of

Estimating ECp

Key Guidance

• The EC50 cannot be estimated by any

method if there is not an effect $50%

22   Sometimes it can be difficult to determine whether an
animal is dead, particularly for invertebrates.  A suitable

endpoint can be the EC50 for immobilization as in

Environment Canada's test with daphnids (EC, 1990b). 

That endpoint is ecologically meaningful and should be

accepted; it could well be used for other types of

organisms.

23  LC50, EC50, ICp, IC25, etc. have the grammatical
status of nouns.  There is no need to write “LC50 value”

or “ICp estimate”, in fact such expressions are

redundancies.  Each acronym is simply a short form of the

full words, and the sentence structure should fit the full

words.  The operating word that comes from EC50 is

“concentration” which is already a noun.  One would not

write “concentration value”, and similarly it is incorrect to

write “EC50 value”.  The most glaring example of this
mistake, occasionally seen, is “LC50 concentration”,

signifying “median lethal concentration concentration”.
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in at least one concentration.  The EC50

can be estimated if there is a zero effect at

one concentration, but effects at all higher

concentrations are $50%, if a logical

linear effect is evident.  An estimate of the

EC50 is more reliable if partial effects

bracket that endpoint.  However, an EC50

can be interpolated from 0% and 100%

effects at successive concentrations; it

might be a precise estimate if the

concentrations are close together.

• In any estimate, information from

concentrations causing no effect or complete

effect should be used to help establish the

position and slope of the dose-effect

relationship, but only one zero effect and one

100% effect can be used.

• Concentrations must be plotted on a

logarithmic scale to maintain the scientific

assumption that was made in selecting

concentrations.  This scale usually eliminates

skew, for easier visual comprehension of fit. 

Plotting the percentage effect on a logit or

probit scale usually completes a

transformation to a straight line rather than a

sigmoid distribution.

• For estimation of endpoints by computer

programs, there must be checks that

observations have been correctly entered, and

that the output of the program appears

reasonable.  One such check would be a hand-

drawn graph of percent effect against log

concentration, and examples are shown.  The

graph and its estimate of ECp should be

compared to those produced by the computer.

• Endpoints such as EC50s are normally

calculated as logarithms, then converted to

arithmetic values of concentration for ease of

comprehension.  Before any averaging or

other mathematical manipulation of EC50s is

done, they must be converted back to

logarithms.  Time must also be handled in

terms of a logarithmic scale.

Certain general rules apply for all methods of

estimating ECp, and they should not be

circumvented.  Computer programs do not

necessarily guard against violations that could cause

erroneous analyses.

    • The data are combined for replicate containers

at a given concentration 24.

    • If an effect $50% is not achieved in at least

one concentration, the EC50 cannot be

estimated.  (Of course, the EC50 can be said

to be higher than the highest concentration

tested.)  Extrapolation must not be done from

below 50% effect, to estimate a concentration

that would cause 50% effect.  It is possible

that effects of 50% or higher might never

occur at higher concentrations, e.g., a toxic

chemical might reach its limit of solubility

and fail to increase its toxicity further, or the

remaining organisms might be tolerant of high

concentrations.

An investigator must have secondary methods of

analysis available, because many sets of results do

not have the two partial effects required for logit or

probit regression.  At Environment Canada,

laboratory staff have estimated that up to 90% of

standard regulatory and monitoring tests “... result in

either one or zero partial mortalities” (Doe, 1994)

and therefore cannot be processed by probit or logit

regression.  Similarly, APHA et al. (1992) give an

example that “... out of 60 acute [aquatic] toxicity

tests performed, only four (7%) produced results

that met the assumptions and data requirements of

probit regression”.  It is often very important for

monitoring purposes, to have estimates of EC50 and

confidence limits that are reasonable, even if they

are not perfect from a statistical point of view.  The

secondary methods will usually provide the

reasonable estimate.  Often, it is not feasible to

repeat the test for a more precise or defendable

result, because the sample of test material is either

used up, or too old.

24   If the results were hand-plotted to make a graphical
estimate of EC50, the replicates could be kept separate to

provide a visual impression of variation.  The customary

computerized methods of estimating ECp use pooled

replicates.  Possibly, future mathematical systems for

analyses might be able to make use of data from separate

replicates, but currently, few software packages are

capable of correctly using this information.



41

4.2.1 Effects of Zero and One Hundred Percent

An estimate of ECp can usually be regarded as more

reliable if the data show a partial effect below the

ECp, and another partial effect above it. 

Nevertheless, an EC50 can be interpolated with no

partial effects, if one concentration causes zero

effect and the next highest concentration causes a

complete (100%) effect (see Binomial method,

Section 4.5.7).  Indeed, such an all-or-none test

might provide an excellent approximation of the

EC50 if the concentrations were reasonably close

together.  The following guidelines are for use of

zero and complete effects.

• It is permissible to estimate an ECp (e.g., EC25),

from data which include a zero percent effect, but

no partial effects at the chosen p% or lower. 

There must be a consistent pattern of effects

above p%, compatible with a linear relationship,

and the fitted line must describe a statistically

significant proportion of the total variability 25. 

Some authorities and computer programs might

have stricter requirements for estimating an    

ECp 26.  The recommendation here, however, is

that a test need not be disregarded for lack of

partial effect below or at the chosen p%.

• If a certain concentration results in no effect, that

information should be used in fitting the line. 

Similarly, an effect of 100% should be used. 

Those observations have low weight in fitting an

effect-concentration line, but they help to establish

the slope.

• If, however, successive concentrations yield a

series of 0% effects or a series of 100% effects,

only the “innermost” of the series should be used

in estimating the EC50 (Ashton, 1972).  In other

words, the one that is used should be the highest

of the successive concentrations that yielded 0%,

or the lowest concentration that yielded 100%.  In

each case, the concentration (and effect) to be

used is the one that is “closest to the middle” of

the distribution of data.  Use of only one 0% effect

and/or one 100% is important for computerized

analyses.  If the investigator enters more than one

successive 0% or 100% value, programs

endeavour to use the additional value(s), change

the slope and position of a fitted line, and so

produce somewhat deviant estimates of EC50 and

confidence limits.  The solution to this problem is

not to enter the “extra” values into the program. 

This is an important point and a common mistake. 

(These comments about successive zero percent

effects do not, of course, apply to a control.)

4.2.2 Logarithmic-probability Transformation

In choosing the exposure concentrations for a test,

an investigator is almost certain to follow the usual

practice, by selecting them from a

geometric/logarithmic series.  That is a tacit

admission that log concentration has been adopted

as the appropriate dose metameter, and therefore is

the appropriate base for subsequent statistical

analysis, as explained in Section 2.3.  Once

calculated, the endpoint itself should be regarded as

a logarithm.  However, an endpoint such as EC50 is

usually converted to an arithmetic value, to assist in

our everyday comprehension of the numbers.  A

practical benefit of log concentration is that it

usually eliminates skew in the plotted data (Figure

H.1 in Appendix H).

Similarly, biological time is best treated as a

logarithmic phenomenon (Section 2.3.6).  Hence,

logarithms of both time and concentration are used

in toxicity curves (Section 5.2) and log time should

be used in calculations, if median effective times are

to be estimated (Section 5.1).

25  The pattern should be demonstrated by plotting a
graph.  The chi-square should not exceed the critical value

when a line is fitted by probit regression, a condition that

applies to all tests (see Section 4.5.4).

26  The computer program of Stephan et al. (1978) for
probit regression (Section 4.5.3) requires two partial

effects, as in all probit programs.  In addition, the program

requires either (a) one or more effects below 50% and one

or more effects above 50%, or (b) an effect at 50% and at

least one other, either below or above 50%.  These are

reasonable requirements, although slightly stricter than the

present recommendations of Environment Canada.

Some computer programs might estimate an EC50 from

inadequate data, but it should not be accepted unless the

requirements of an Environment Canada test method are

met.  For example, the computer program of Hubert

(1987) will provide estimates from two effects less than,

or two effects greater than 50%.  The former is not

acceptable to Environment Canada, because there would

be no data to prove that the effects would ever reach 50%. 

The latter (two effects >50%) would only be acceptable to

Environment Canada if there were a zero effect at some

lower concentration.
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The use of probits to represent percent effect

originated as a way to produce a straight-line

relationship for the data.  Empirically, the probits

usually straighten a sigmoidal distribution of the

effect-data, which was convenient in the pre-

computer era because a straight line was easier for

analysis.  The practice has carried over into modern

computer programs.  Probits gradually “stretch” the

vertical scale, for effects that are further away from

the 50% level (as represented on a graph, see Figure

5 and explanation in Appendix H).

The combined log-probit plot produces a straight

line, from what is really a cumulated log-normal

curve (Appendix H; Buikema et al., 1982; Chapter 1

of Rand and Petrocelli, 1985).

For hand-plotting, it is convenient to purchase

“logarithmic-probability” graph paper and simply

plot the arithmetic values.  If log-probit paper is not

available through a commercial supplier, the blank

graph in Appendix I could be photocopied.

The descriptions and examples in the next section

refer to probits for simplicity, but logits could be

used, and the same general comments apply.  The

only exception would be that log-probit paper can be

purchased, but not log-logit.

4.2.3 Estimate of EC50 by Hand-drawn Graph

Preparing a quick hand-drawn graph of results

should be the initial step in gaining a general

impression of the data and their resultant EC50.  A

working group of statisticians and toxicologists

(OECD, 2004) agrees.  They describe a “typical data

analysis” and list the steps: “First, the data are

plotted and visually inspected.”  Accordingly,

graphical estimates are described first, and they

conveniently illustrate some concepts and

difficulties.  To some extent, a graph explains what

is being done by a program of computer analysis. 

Figure 5 shows examples using representative sets

of data.

Most Environment Canada methods for quantal

tests, and a guidance document of the USEPA

(2000a), recommend an eye-fitted line to estimate an

approximate EC50, to check the reasonableness of a

computer estimate.  A conscientious investigator

should always make a hand-plotted graph, in order

to apply the most useful assessment of validity --

common sense.  Plotting might reveal an irregular

pattern of effects which should not be forced into a

standard mathematical analysis.  A plot is especially

needed if the Spearman-Kärber method of statistical

analysis is being used (Sections 4.4 and 4.5.6).  The

hand-drawn graph can provide confirmation or

warning, but it does not provide a definitive

reportable endpoint.

Some investigators protest the need of constructing

a hand-drawn graph in these days of splendid

computer graphics, but the pencil and graph paper

retain their importance.  An error in entering the

data on the computer would be reproduced in the

computer's graph as well as in the mathematical

estimate of EC50, and the agreement of the two

would fail to detect the input error 27.  Investigators

should, indeed, make use of the most modern and

powerful computer programs available to them

(such as maximum likelihood estimates).  But from

a practical point of view,  a quick check by a hand

plot might be the best way to remedy problems of

incorrect reporting, which have been evident in

previous EC testing programs.  Some errors can be

rather fundamental and simple.  New workers might

need time to develop skills in toxicity testing and

statistical analysis.  Data managers might enter test

results without a good understanding of the

analytical program, or whether its output was

reasonable.  Hand plots help to remedy those

situations.

A computer-drawn graph should be compared with

the existing hand-drawn graph.  Alternatively, the

results of statistical analysis might be plotted over

the raw data or alongside the eye-fitted line, as a

visual check.  Any appreciable discrepancy should

be investigated and resolved.  Some examples of

27   Most laboratories will have a quality-assurance
program with an independent review of data that should

detect any errors in data entry.  If done rigorously, such a

check can fulfil one function of a hand-plotted graph, but

does not replace it.  Computer programs can produce

peculiar estimates from some sets of data, and we human

operators tend to accept the output at face value.  One EC

laboratory reported a big discrepancy between the hand-

drawn graph and the output of a newly purchased

computer program.  The program itself proved to be the

problem, not the entry of data (reported by K.G. Doe, EC,

Moncton).
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graphs are given in this section, with advice on

fitting lines by eye.  With practice, those lines will

produce estimates of the EC50 that are within a few

percent of the computer estimates, thus serving as

the reality check that is desired.

As mentioned, concentrations are plotted on a

logarithmic scale, with percentage effect on a probit

scale (Figure 5).  Because the probit scale never

reaches 0% or 100%, extreme values are plotted

with an arrow as in Figures 5A and 5B.  The arrow

indicates that the true values lie somewhere beyond

the 2% and 98% values which were the arbitrary

limits on this graph paper.  Despite their low weight,

one 0% and one 100% effect should be plotted if

available, because they sometimes help to “anchor”

a line which has few data.  Again, for a series of

successive zero or complete effects, only the one

closest to the centre of the distribution should be

plotted.

In fitting a probit line by eye, a transparent ruler

should be moved and rotated, in an effort to

minimize the vertical distances between the

observed points and the fitted line.  At the same

time, the points should be mentally weighted. 

Points closest to 50% effect should be given the

most weight, and those at or near 0% and 100%

should be given the least.  As a rule of thumb, most

weight should be assigned to those points between

16% and 84% effect, which are within one probit of

the median.  A value of 10% or 90% has about half

the weight of a point in the 40–60% range.  At 3%

or 97% effect, the weight of a point becomes only

about one-quarter of a value near the centre.

If in doubt as to where to place the line, a

conservative approach is to decrease its slope thus

implying more variation.  As the slope of the line

becomes lower, the confidence limits of the EC50

become wider.

Once the line is fitted, it is a simple matter to note

the intercept with 50% effect, and follow down to

the EC50 on the concentration axis.

Lines which might be eye-fitted to the examples in

Figure 5 are discussed in the following examples.  It

will be convenient to make some comparisons with

lines calculated by the formal statistical methods of 

probit regression, even though the mathematical

methods are covered in Section 4.5.

Example A (Figure 5A).  There is not much doubt

where the fitted line should go.  The observed

data-points line up well, and most people would

select a line very close to the one shown.  That

line is essentially the one calculated by probit

regression, and its fit is good since the chi-square

value is relatively low (chi-square = 1.11, Table

2).  The calculated 95% confidence limits were

taken from Table 2.  The limits are narrow, as

would be expected with a consistent set of data

and a probit line with a high slope.

Example B (Figure 5B).  An investigator might

well fit the line shown, and it is essentially the

same as the one estimated by computerized probit

regression.  There might be temptation to use a

higher slope, to pass closer to the extreme values

at 0% and 100%.  However, this is a good

example to show the lower weight that is assigned

to extreme values; the line is strongly influenced

by the three central points.  The two extreme

values do have a small effect, however, otherwise

the calculated line would have had a lower slope

to pass closely alongside all three central points.

Example C (Figure 5C).  Most people would

probably consider the dashed line to be a

reasonable fit.  It comes close to bisecting the

upper and lower groups of points, and comes close

to minimizing the vertical distances between the

line and the points.  The eye-fitted dashed line

would estimate approximately the same EC50 as

that calculated by probit regression on computer

(solid line).  It might seem puzzling that the

calculated probit line goes to the right side of both

upper points.  Apparently the calculations

produced a lower slope to fit the overall trend of

all points, acknowledging the appreciable

variation in this set of data (a relatively high chi-

square of 3.5, Table 2).

Example D (Figure 5D).  Such variable data as

these might well be encountered in testing.  The

dashed line could be a reasonable choice for an

eye-fitted line.  It is less than perfect in paying too

much attention to the 10% value which carries a

low weight, and leaving a large vertical distance

above the 50% value on the right side, a value that
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Figure 5   Fitting probit lines by eye, to representative sets of data.  The panels A to D show the same data as  

                  in examples A to D of Table 2.  The dashed lines in C and D would be reasonable fits, but the solid      

                  lines would be preferred, and approximate those calculated by probit regression.  The 95% confidence 

                  limits are shown as a horizontal bar, as calculated by probit regression.  For further discussion see        

                  text, particularly for choice of lines in some panels.

    carries maximum weight.  Nevertheless, this          

    potential line only slightly underestimates the        

    EC50 as determined by computerized probit           

    regression.  That calculated line has a lower           

    slope, partly to accommodate the greater               

influence of the three central points.  The lower         

slope is also indicative of greater variation, with a     

high chi-square of 5.5.

A general message from these examples is that

similar estimates of the EC50 are often obtained by

making statistical calculations and by using an eye-

fitted line.  Another apparent conclusion is that a

probit line for variable data, properly estimated,

might have a lower slope than that derived from

fitting by eye.

4.2.4    Effects Among Control Organisms

Key Guidance

• Most Environment Canada methods

for quantal tests allow control

effects #10%, although certain tests

allow up to 30% for particular

species.  No correction is applied

for a control effect within the

allowable limit, but higher effects

render the test invalid.  Cause(s)

should be investigated, and the test

repeated if possible.
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• For the special case of Environment

Canada's quantal sublethal test with

salmonid eggs, a correction is made by

Abbott's formula, for eggs which were

unfertilized at the start of the test.  That

correction is satisfactory because

fertilization occurs before the toxicant

is added.  A somewhat similar

correction is made in the test for

echinoid fertilization.  

• Available commercial computer

programs might not follow Environment

Canada's approach for control effects,

so the investigator must understand how

a program works.

• For research or other tests outside of

Environment Canada's methods, the

best way to deal with a control effect in

quantal data is to analyze using a

computer program which makes

maximum likelihood estimates of the

control mortality parameter.  Failing

that, a correction for control effect

might be made with Abbott's formula,

but the procedure has basic conceptual

problems, from both the biological and

the statistical points of view.  For the

unusual case in which a control effect is

greater than the effect in a given

concentration, Abbott's formula gives a

peculiar answer, and any correction

should be to zero percent.

An occasional 10% effect could occur among

control organisms, even under favourable

conditions.   That would not invalidate tests and no

correction should be applied for an effect of that

magnitude.  Some quantal methods published by

Environment Canada specify that a test is invalid if

the control shows greater than 10% effect; this

applies for rainbow trout, Daphnia (EC, 1990c;

1990d), and several other methods.  For other test

methods using organisms that are more difficult to

hold in the laboratory, there can be higher mortality

under apparently good conditions.  Environment

Canada allows 20% control mortality for general-

purpose tests with larval fathead minnows and up to

30% for reference tests with certain amphipods (EC,

1992b; 1998b).

For the acute quantal tests of Environment Canada,

the usual methods of statistical analysis do not

provide any option to correct for control effect (e.g.,

EC, 1990a,b,c).  (A maximum likelihood estimate

could allow for the control effect, but is seldom used

routinely at present.)  With the usual analyses, a test

would simply become invalid if the control effect

exceeded the limit specified in the instructions. 

Results would be rejected, and the test could be

repeated if desired (and if feasible). 

Even if an observed control effect is acceptable

according to the EC method, there can be a

suspicion that something is wrong with the test

conditions or the health of the organisms.  A search

should be made for any apparent cause, and if

found, an attempt should be made to eliminate it. 

Any laboratory that consistently experienced

elevated control effects would, of course, intensify

remedial efforts.

Sublethal test with salmonid eggs.  This salmonid

test (EC, 1998a) is a special case for correction of

control effects.  There can be high proportions of

unfertilized eggs during the initial preparations for

the test, but an investigator cannot identify those

eggs until later.  That failure in fertilization cannot

have an interaction with the toxicant, however,

because the toxicant is added after the procedures

for fertilization have been completed.  There is no

reason (except the toxicant) to expect that eggs,

once fertilized, will not develop in a normal manner

and proportion.  In other words, there can be no

physiological interaction between success of initial

fertilization and action of the toxicant.  In this

special case, a correction can be applied for

unfertilized eggs, using Abbott's formula which is

described in the following text.  Some of the major

conceptual problems with Abbott's correction do not

apply in these circumstances.  Therefore, use of

Abbott's formula is recommended by Environment

Canada for this salmonid test, for any reasonable

proportion of unfertilized eggs in the control,

including low values of 10% and less.  After

correction, differences between the control and the

experimental concentrations, in the proportions of

eggs which fail to develop, are then credited to

action of the test material.

In the test of echinoid fertilization (EC, 1992f), an

equivalent to Abbott's correction is used in the
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analysis to determine the ICp, a procedure that is

customary with this toxicity test.

Computer programs.  Available programs do not

necessarily follow Environment Canada approaches

for control effect.  Some programs might use

sophisticated maximum likelihood procedures to

estimate the “true” effect of the toxicant without the

control effect (Section 4.5.5).  The control effect

would still have to be within specified limits, if test

results were to be used under the aegis of

Environment Canada.  Other computer programs

might automatically apply Abbott's formula, which

would not be appropriate for most methods

published by Environment Canada.

Accordingly, an investigator must understand

exactly how a selected computer program deals with

control effects.  (Computer programs are discussed

in following sections.)  The Stephan program

(Stephan et al., 1978) and some of its adaptations

will not accept any control effects.  The programs

TOXSTAT 3.5 and CETIS (see reference list under

those names) can be directed by the investigator to

correct, or not, for control effect.  TOXCALC 5.0

applies Abbott's formula in probit regression, where

the program considers it appropriate.  Choosing a

suitable program is the best way to avoid having an

undesired control correction applied by the

computer.  (In any case the control effect would

have to be within the limits specified by the test

method of Environment Canada).

Use of maximum likelihood estimation.  The best

way of dealing with control effects is with a

computer software package which uses maximum

likelihood estimation (MLE, see Section 4.5.5). 

Programs which offer MLE estimate two parameters

to describe the adopted model, and a third parameter

for control effect.  The endpoint, such as EC50, is

estimated for the effect of the toxicant only, i.e.,

without the control effect.

MLE has been available for a long time in major

software packages such as SAS (1988; 2000).  Such

major statistical packages might not be available in

all laboratories.  The usual software for toxicity tests

(at the time of writing, including CETIS,

TOXCALC and TOXSTAT) are based on the

classic “iteratively reweighted least squares”.

Even a sophisticated procedure (true maximum

likelihood carried out with SAS) operates only

within the confines of the particular test.  Although

the model separates off the control effect, it does not 

compensate for an overall change in resistance of

the test organisms, if such a change were induced by

sickness or some similar factor.  In plainer words,

the EC50 might be representative of weakened

organisms with low resistance to toxicants.  At

present, there is no simple model or modelling

procedure that captures the interaction between the

effect of the background factor and the effect of the

toxicant 28 (see following discussion of Abbott’s

formula).  The remedy is to test under good

conditions with a healthy stock of organisms.

Limitations of Abbott's formula.  This procedure

(Tattersfield and Morris, 1924; Abbott, 1925) is a

simple mathematical method of correcting for

control effects.  Some examples of corrections are

shown in Table 1 and Figure 6, while the formula is

given by Equation 2.  Note that in this formula,

proportions are used, e.g., 3 organisms out of 10

would be entered as 0.3.

where:  

P = the corrected proportion of organisms

showing the effect

P* = the observed proportion of organisms

showing the effect

C  = the proportion of control organisms

showing the effect

Abbott's formula is based on the unlikely

assumption that the effect seen in the control is

completely separate from the effect of the toxicant,

and does not influence it.  Evidence has indicated

that the assumption is invalid (reviewed in Hewlett

and Plackett, 1979), so that use of Abbott's formula 

28   Dr. W. Slob (2003, personal communication, National
Institute of Public Health and Environment, The

Netherlands) reports that such a method is included in

software named PROAST, which is being developed for

use by other investigators.
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Table 1 Examples of corrections by Abbott's formula, for various control effects in a quantal toxicity

test.   The hypothetical results are similar to Example B of Table 2, but with less extreme values at low

and high concentrations.  In the four right-hand columns, the control effect has been changed from zero

to 10, 20, and 30% effect.  The results at each test concentration have been adjusted for those control

effects by Abbott's formula.  Probit regression (Stephan et al., 1978) was then applied, to calculate the

results in the lower four rows, which are plotted in Figure 6.

Concentration,

amount/litre

Number of

organisms

tested

Number of organisms affected, corrected by hand for a control effect of:

zero 10% 20% 30%

56 10 8 7.78 7.50 7.14

32 10 7 6.67 6.25 5.71

18 10 5 4.44 3.75 2.86

10 10 4 3.33 2.50 1.43

5.6 10 2 1.11 0 0

       EC50 16.5 20.3 25.2 30.1

       Confidence limits 7.85, 31.3 12.0, 31.9 16.9, 43.5 20.7, 53.5

       Slope 1.65 1.89 2.38 2.53

       Chi-square 0.136 0.286 1.26 0.606

introduces a distorted correction.  In a situation of

high effect in the control, there could be a

combination of effect from the action of the toxicant

and whatever factor(s) caused the background

effect.  For example, organisms that were weak from

poor nutrition might be less resistant to the toxicant,

which would result in a lower estimated EC50 than

for organisms which had enjoyed good nutrition 29. 

As mentioned previously, no method is known for

correcting the potential interactions of the toxicant

and whatever was causing a control effect.

The actions of Abbott's formula are examined using

the hypothetical data in Table 1.  Corrections are

shown in the columns of Table 1, for successively

greater control effects from zero to 30%.  As the

control effect becomes greater, there are

increasingly greater changes in the corrected results. 

The estimated EC50 increases by 80%, slope

increases by >50%, but confidence limits remain

similar in proportion.  The chi-square increases, but

remains at least six-fold lower than the critical

value.  These changes are demonstrated in Figure 6,

29   
There are other problems with Abbott's formula.  It

adjusts the number of organisms that react, but does not

adjust the number tested.  The control effect is treated as

if it were a constant, and the uncertainty associated with it

(its variance) is ignored.  Failure to incorporate this into

the estimate of EC50 causes an underestimate of the

variability of the EC50.  If probit regression is being used,

the assumption of linearity between probits and the

logarithm of concentration is no longer valid when there is

a control effect.  If the correction is applied for several

concentrations, that introduces correlation among the

concentrations, although they should be independent.  If

100% effect is observed at some concentration, Abbott's

formula makes no change in that effect, i.e., all of the

effect is credited to the toxicant and none to the cause of

the control effect.
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Figure 6 Results of correcting with Abbott's formula, for control effect in a quantal test.  The lines

represent calculated values shown in Table 1.  Panel A is an example with no control effect.  In

successive Panels B, C, and D, the same results are adjusted for control effects of 10%, 20%, and

30%, and the estimated EC50 increases from about 16 to about 30.  Slope also increases because

with larger corrections, the lower percent effects (low concentrations) are moved downwards

towards zero effect, to a proportionally greater extent than are the higher percent effects.
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where the probit line moves downward to the right

in successive panels, and the slope increases.  Other

examples might change differently, but EC50 and

slope would almost always increase with larger

control adjustments.

Abbott’s formula with high or anomalous control

effects.  It should be realized that for organisms

amenable to holding in the laboratory, a control

effect of 20%, 30%, or more, would cast strong

doubt on the validity and usefulness of the ECp. 

Further, correction for control effect by Abbott's

formula would have the major conceptual

difficulties outlined here.  If those difficulties were

accepted by an investigator working for some

purpose outside the requirements of Environment

Canada, Abbott's correction might be used to correct

for control effects up to about 30%.  The procedure

usually raises the estimated EC50 appreciably, as

seen in Figure 6 and Table 1.

For small control effects of #10%, it would seldom

be desirable to apply a correction, no matter what

the purpose of the test.  Such a control effect might

only represent an accidental, unusual, or random

occurrence which had little influence on the EC50

for the toxic material being studied.  If that were so,

the “correction” would worsen the estimate of the

EC50.

If a control effect were  greater than the observed

effect in a given concentration, Abbott's formula

would give a peculiar answer.  The observed effect

would be corrected to a negative value,

unreasonable since it implies that more unaffected

organisms would be present, than were actually

tested at that concentration.  Finney (1971)

recommends using the corresponding probits for the

negative value and continuing the calculations, since

this is merely sampling variation.  However,

investigators might be unable to control the

computer program they are using in that way.  Some

programs have been known to make the correction

to a negative value, then ignore the minus sign, use a

positive value to create a probit for use in analysis,

and carry on with a fallacious calculation of the

EC50!

The following recommendation is made here.  If it

has been decided to apply corrections for control

effect, and if the control effect equals or exceeds an

observed effect, and if it is uncertain that the

computer program can handle a negative value for

effect, then: (a) correct all observed effects by hand;

(b) correct the anomalous effect to zero percent

rather than a negative value; and (c) enter the

corrected effects without the control value.

An example may be seen in the last column of 

Table 1.  For a control effect of 30% and an effect

of 20% at concentration 5.6, Abbott's formula would

correct to minus 0.143 or minus 1.43 organisms. 

Instead, zero was entered.

Hubert (1984) states that “Abbott's formula is only

applied to mortality rates which exceed the estimate

of the natural mortality rate”, but that does not seem

reasonable.  If an observed effect was less than or

equal to the control effect, the observed effect

would be left untouched, and the toxicant would be

credited with causing it.

It is clear that, with respect to Abbott's formula, an

investigator must select an appropriate computer

program and understand exactly how it deals with

control effects.  Among common programs at the

time of writing, TOXCALC 5.0 applies Abbott's

formula in appropriate situations, while TOXSTAT

3.5 and CETIS provide this as one of several

options.  The programs of Stephan et al. (1978) and

OMEE (1995) assume that control effect is zero.  If

Abbott’s formula was being applied, a roundabout

but certain way of getting the desired result from a

program would be the procedure indicated

previously: calculate the corrections for each

concentration by hand, then enter corrected versions

as if they were the raw observations.  No control

data would be entered (or zero control effect would

be entered if the program required an input for

controls).  Corrected values would probably involve

decimals (e.g., 3.33 earthworms out of 10), but most

statistical programs happily accept such fractions.

4.2.5 Confidence Limits on the ECp

Key Guidance

• The 95% confidence limits of the EC50

must be reported; they estimate internal
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variation of the test.  A ratio of 1.3 between

the EC50 and confidence limit represents

narrow limits and good precision, and

ratios of 1.5 to 1.8 are common and

acceptable.

• Confidence limits tell only about the

variation in a particular test.  They do not

indicate overall variation in tests with a

given toxicant.

• It is good practice to also report the slope of

the concentration-effect line, which allows

the line to be re-created later if desired.  The

chi-square for goodness of fit should also be

reported.

• Confidence limits are narrowest at the EC50,

and widen successively at lower or higher

degrees of effect.

• Because of the variability, there are

drawbacks to endpoints with low levels of

effect such as EC20.  The selected level of

effect (p in ECp) should never be within the

range expected for control effect, and

probably never less than EC10.

Reported results must always include the 95%

confidence limits of the EC50.  The only exception

would be tests that did not show a partial effect at

any concentration.  Figure 4 shows that these tests

would be analyzed by the binomial method, which

does not provide confidence limits.  It is also good

practice to report the slope of the fitted line relating

effect to concentration, and the result for goodness

of fit by chi-square.  Reporting the slope allows the

line to be recreated in the future, if desired; without

the slope, there is an inadequate description of the

relationship between concentration and effect.

Investigators must always keep in mind that the

confidence limits for an individual toxicity test

demonstrate only the degree of internal precision of

that particular test, with whatever number of

organisms was used, under the conditions which

prevailed at that time, and with the uncertainties

associated with the model.  Those limits must not be

mistaken for overall limits of the EC50 for a given

test material.  Estimates of EC50 can differ

considerably from time to time and place to place,

for the same species and similar conditions.  For

example, if one wished to define the probable limits

of toxicity for a particular effluent, the confidence

limits from a toxicity test would not tell this. 

Several samples of effluent would have to be tested. 

Then, the variation in the endpoints of those tests

would be the basis for predicting the limits of

effluent toxicity, under the conditions which

prevailed over the sampling period.  Variation is

discussed in Environment Canada's guidance

document on the interpretation of environmental

data (EC, 1999a).

In Example A of Table 2, most of the calculated

confidence limits (upper or lower) differ from the

EC50 by a factor of about 1.3 -- good precision in an

aquatic toxicity test.  In tests with fish, laboratories

often find ratios of about 1.3 to 1.5 between

confidence limit and EC50, using 10 fish per

concentration.  Experience indicates that ratios in

the vicinity of 1.8 would signify acceptable

precision for most purposes 30.  For variable data

such as Example D of Table 2, confidence limits

might be extreme; some of the upper confidence

limits estimated by probit regression are an order of

magnitude higher than the EC50.  Investigators

should be prepared to encounter wide confidence

limits occasionally.  Sometimes the limits can be

improved by choosing a better-fitting model for the

data, if they do not conform to the usual pattern.  If

that is not the case, and the limits are not considered

satisfactory, the only other option is to repeat the

test.

Sometimes the upper and lower limits might appear

to be approximately symmetrical about the EC50 on

a logarithmic scale, but some degree of asymmetry

would be the normal situation (see following text

and Figure 7).

30   Hodson et al. (1977) estimate that a typical toxicity
test with 10 fish per concentration and three

concentrations causing partial effects would have an upper

confidence limit that was almost 2.1 times the value of the

EC50.  Examples A, B, and C in Table 1 have confidence

limits that differ from the EC50s by ratios of about 1.3,

1.4, and 1.4.  The estimates of variation by Hodson et al.

(1977) seem somewhat wider than customary findings in

many laboratories.
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Figure 7 Widening of confidence limits for Effective Concentrations other than the one causing 50%

effect.   The probit line and confidence limits are derived from Example B of Table 2.  Solid points

along the probit line show the calculated values of ECp, used to plot the line and confidence limits. 

The values were estimated by the program TOXCALC.

The span of confidence limits is governed by the

slope of the dose-effect line (an indication of

variation), by the scatter of observed points about

the line, and by the number of organisms at each

concentration.  If individual organisms were

affected at quite different concentrations of toxicant,

the probit line would have a low slope, contributing

to wide confidence limits.  That might happen

because of a toxicant’s mode of action, without

necessarily indicating a procedural flaw.  A low

slope could, however, be caused by poor procedure

such as incomplete acclimation of fish to the

dilution water (Calamari et al., 1980).

Precision of the estimated ECp can be improved by

increasing the number of test organisms, but major

improvements often require more organisms than

are practical, as discussed in Section 2.5.

Figure 7 represents results that are regular and the

confidence limits are fairly narrow.  (Note that the

actual data are not plotted in Figure 7.  The points

shown are the calculated values along the fitted

line.)  The 95% confidence limits of the EC50 are

concentrations of 11.9 and 23.7, differing from the

EC50 by factors of about 1.4, considered

satisfactory for a toxicity test (see previous text).  

Figure 7 shows that the width of 95% confidence

limits differs greatly for different percent effects,

becoming wider as distance from the EC50

increases.  Toward the ends of the concentration-

effect relationship, the limits are quite large.  This

shows why the median effect is a good choice as an

endpoint, and why it is not a good approach to adopt

endpoints for very low effects, e.g., EC10 which

sounds temptingly “protective”.
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Figure 7 also shows that the confidence limits

display some horizontal asymmetry.  This represents

the usual situation.  Limits are originally calculated

in terms of the observed effects at fixed

concentrations, and so at any point in the probit line

they are vertically symmetrical about the line (See

discussion in Section 9.4).  Inverted estimates then

produce the confidence limits in terms of

concentration, as desired by the investigator.  Those

limits will always be at least slightly asymmetrical,

often to a noticeable degree.  Limits at the ends of

the distribution are strongly asymmetrical.

4.2.6 EC20 or Other Non-median Endpoints

In a quantal toxicity test, it is customary to estimate

the median effect (EC50), because that endpoint

represents the median or “typical” organism, and is

associated with the narrowest confidence limits, i.e.,

greatest precision.  At the same time, there is often a

demand for endpoints which are seen to be “more

protective”, i.e., associated with lower proportional

effects, such as the EC20 or EC25.  One way to deal

with these opposing demands is to accept the

median endpoint with its greater precision, then

apply an appropriate factor to obtain a concentration

that would apply to a smaller fraction of the

population of organisms.  That procedure has both

good and bad features.  The more direct approach,

using the same general procedures as for EC50, is to

estimate the EC20 (or whatever ECx is desired)

directly, and tolerate the wider confidence limits. 

One caution that should be heeded is not to attempt

estimates for a very low value of “p”.  While an

EC01 might sound appealing as a concentration

having negligible effect, there are major conceptual

difficulties and the variability of the estimate makes

it very undependable (Figure 7).  There would be

questionable validity and meaning, for any attempt

to estimate an ECp which was similar to potential

control effects.  A rule which would seem

reasonable, is: never attempt to estimate an endpoint

within the acceptable range of effect in the

control(s).  Beyond that, any value for “p” would be

suspect if it was below the lowest effect observed

for the test concentrations.  Thus, the lowest

acceptable value for “p” would depend on the data

from a particular experiment.  It could be less than

10% for a very large experiment, or it might be 20%

or even higher in another experiment.

Future progress in estimating ECx for low values of

x, is of considerable interest in estimating “safe” or

“no-effect” levels of contaminants for humans as

well as natural systems.   Noppert et al. (1994)

studied this in response to interest by the OECD,

and concluded that the best approach would be

modelling of ECx, rather than a hypothesis testing

technique.  However, they ended by suggesting 5 or

10% as the preferred value of “x”, rather than a

value closer to zero.  Regression techniques to

estimate low values of ECx were also concluded to

be the superior approach, by Moore and Caux

(1997).

A particularly meaningless exercise would be an

attempt to estimate a concentration that would just

fail to affect any organism (the EC00).  That cannot

be estimated explicitly because it would depend on

population size (one out of a hundred organisms? a

thousand? a million?).  Nor are statistical procedures

designed to provide such an endpoint.  (However,

Sections 5.2 and 5.3 refer to more sophisticated

modelling techniques which extrapolate from acute

tests to thresholds of chronic effects.)

Restrictions on type of data suitable for “non-

medial” ECps would be those listed at the beginning

of Sections 4.2 and 4.2.1.  The appropriate value of

“p” would be substituted, for example, analysis

might require one effect equal to or greater than

20% instead of $50%.

Several current computer programs provide

estimates of non-medial ECps using probit or logit

regression.  The large computer package SAS does

so, and SPSS prints a selection of ECps over the

entire useful range.  CETIS, TOXCALC, and

TOXSTAT do the same, or can be requested to do

so.  (These statistical packages are found in the

reference list under their names.)  For the Spearman-

Kärber method in these packages, only the EC50 is

estimated.  The program of Stephan et al. (1978)

and its adaptations (OMEE, 1995) are also limited to

estimating the EC50.

The other approach for estimating low endpoints,

would be to start from the estimate of the median

endpoint with its greater precision (as shown in

Section 4.2.5).  Then a factor could be applied, to

reach a concentration expected to cause some low

partial effect of interest, perhaps a concentration
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that was poorly defined in the results of a given

toxicity test.  For example, a factor could be applied

to the EC50, to reach an expected EC20, or even an

EC5.  The factor could be chosen, based on usual

slopes of the probit/logit lines obtained in such tests. 

(This approach has, in fact, been used for decades to

extrapolate from median lethal concentrations to

supposed “safe” levels which have been used as

water quality objectives.  These are the “application

factors” described in EC, 1999a.)  Use of such

factors has the good feature of a starting point which

is relatively well defined.  There is also the less

desirable feature of being mildly or strongly

hypothetical, depending on the degree of

extrapolation.

4.3 Choice of Methods

Key Guidance

• Probit or logit regression by maximum

likelihood regression (MLE) is the

preferred standard method for quantal

effects at three or more concentrations,

including two concentrations with

partial effects.  The second choice is the

commonly used method of iterative

probit (or logit) regression, which

provides estimates comparable to MLE. 

Probit/logit regression is currently

recommended for routine use because of

availability and convenience of

methods.

• Some tests might produce only one

partial effect, unsuitable for probit/logit

regression.  The Spearman-Kärber

method is recommended for those sets

of data.  This method should be run with

no trimming of data and also with

minimum trim (limit of 35% trim).

• If successive concentrations produce

zero and 100% effects with no partial

effect, the approximate EC50 should be

estimated by the binomial method.  This

method should also be used if

anomalous results are obtained with the

Spearman-Kärber method.  The

binomial method does not provide 95%

confidence limits, but instead estimates

conservative limits within which the

EC50 would lie. 

• The moving average method is valid but

has the same data requirements as

probit or logit regression, which are

recommended instead.

• For analysis, a variety of

commercial and government

computer software is available.  

An operator must fully

understand the procedures used

by whatever software is chosen. 

Some software has deficiencies

for the purposes of Environment

Canada, or needs input of

irrelevant material designed for

foreign regulatory agencies.

The following methods of analysis are

recommended for tests carried out for programs

developed by Environment Canada. The most

desirable methods (1) and (2) will not be suitable for

most data from routine testing, because they require

two partial effects.  Secondary methods of analysis

are included in the list, for other types of data.  The

various acceptable methods are described in further

detail in Section 4.5.

1. Probit or logit regression by maximum

likelihood (Section 4.5.3).  This is known to

be available in the statistical software

package SAS (1996).  It has the advantage

of an unbiased method of allowing for

control effect, and estimating an endpoint

based only on the effect of the toxicant. 

Calculation requires two partial effects in

the data.

2. Probit or logit regression by iteration.  The

programs use iteratively reweighted

regression to arrive at a definitive estimate. 

Most available computer programs follow

this “classical” iterative technique.  It

provides satisfactory analysis, reaching a

solution equivalent to maximum likelihood

estimation.  The method requires two partial

effects.
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3. Spearman-Kärber.  This is recommended

only if results cannot be analyzed by the

previous two methods.  The data must have

one partial effect, plus 0% and 100%

effects or values near those extremes. 

Analysis should be run (a) without

trimming, and (b) with “automatic” or

“minimal” trim #35%.  The most

reasonable of the two estimated endpoints

should be selected by inspection of raw

results and their plot.  If neither endpoint is

reasonable, the binomial method should be

used.

4. Binomial.  This is for situations with no

partial effect, but 0% and 100% effects. 

This method would also be adopted for

other situations when methods (1) to (3)

could not be used.  For example, it would

be used if there was one partial effect, but

the Spearman-Kärber method produced

anomalous results, because of lack of 0%

and/or 100% effects, or other reasons.

5. Moving average.  The available program

for this requires two partial effects.  It

might be useful for unusual situations in

which probit/logit analysis failed.  It would

seem to have no particular advantage for

other situations.

6. Litchfield-Wilcoxon graphic method.  Not

recommended for definitive reports.  Useful

for checking computer estimates, for field

work, or for training purposes.

True maximum likelihood estimation using probits

or logits (MLE, item 1) is the most desirable method

of estimating the EC50.  This method assumes that at

each concentration, some proportion of the tested

organisms will be affected.  It further assumes that

those proportions are related in a cumulative

distribution function, increasing from 0% effect at

low concentrations to 100% effect at high

concentrations.  The MLE attempts to estimate the

values of the parameters in the relationship, that

would result in the highest likelihood of observing

the data actually collected (see Section 4.5.5).  Once

defined, the mathematical relationship predicts the

concentration expected to produce a given effect. 

MLE can be carried out by the large statistical

package SAS, which might not be available in some

laboratories, or might not be easily used by

investigators.

Iterative probit regression (item 2) is available in

authoritative major software libraries, notably SPSS

and SYSTAT (programs are listed in the References

under their names), and in most other commercial

toxicology packages.  Because of universal

availability, probit or logit regression by iteration is

designated here as the customary method for routine

use at the present time.  The details of the

approaches and the choice of logits or probits are

considered further in the following text (Sections

4.5.1 to 4.5.6).

The well-known “Stephan program” (Stephan et al.,

1978) includes probit regression (item 2 ), moving

average (item 5), and is the only convenient source

for the binomial method (item 4).  It was developed

by Dr. Charles E. Stephan and colleagues of the

USEPA in Duluth, Minn., and has been in use for

more than two decades.  The Stephan program is

recommended in many EC method documents, has

been generally used in Canadian laboratories, and

has been available from workers in those

laboratories.  The Stephan program has been adapted

in various forms.  An adaptation at the Etobicoke

laboratory of the Ontario Ministry of Environment

and Energy, written by Dr. Gary F. Westlake,

operates in an early Windows format (OMEE, 1995),

has probit, Spearman-Kärber, and moving average

methods, and shows a plot of the results (hereafter

called the OMEE program).

Various commercial computer programs developed

in the USA include CETIS and the older programs

TOXSTAT 3.5 and TOXCALC 5.0.  They can

analyze quantal data by various methods, but

generally include probit, logit, and Spearman-

Kärber.  A dependable program in BASIC is

described in USEPA (1994a, Appendix I; 1994b,

Appendix H; 1995, Appendix H), and is available

from the USEPA in Cincinnati, Ohio, or at the web-

site http://www.epa.gov/nerleerd/stat2.htm.  Some

other programs might not be suitable because they

contain alternatives which are not appropriate in

Canada 31.

31   Design of US commercial computer programs can be
influenced by decisions of the USEPA, but might not

conform to the practices of Environment Canada.  The
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Simple linear regression.  This type of regression

has major limitations and is not recommended.  It

might seem an obvious mathematical method of

fitting a line to quantal data, such as those shown in

Figure 5, but it is not valid.  The reason is the

difference in value (“weight”) of the points, which is

inversely related to the variation, which in turn

increases towards the upper and lower ends of the

line.  The weights must be incorporated into the

fitting process, but there is a “Catch 22”; the weights

can only be derived from the fitted line, not from the

raw observed effects (see footnote 32).  That

explains why simple regression cannot be used, and

why it is necessary to adopt procedures such as

iteration.  Occasionally, naive practitioners

improperly use simple regression in an attempt to

estimate EC50s.

4.4 Comparison of Estimates by Various

Methods

Key Guidance

• Most of the common methods for statistical

analysis of quantal tests are likely to produce

similar estimates of an EC50 and its

confidence limits, for reasonable data.

• Examples of hypothetical “good” data were

analyzed by various methods.  Similar results

were obtained by probit, logit, Spearman-

Kärber, moving average, and angle methods,

and they agreed with those from an eye-fitted

line.  Estimates of EC50 were somewhat

higher by the binomial and Gompertz methods.

• Confidence limits were also similar for

most of the methods, although the

trimmed Spearman-Kärber method

showed wider limits.  The binomial

method did not give confidence limits,

but instead provided a range, within

which the confidence limits would lie.

• For some examples with only one

partial effect, the untrimmed

Spearman-Kärber method provided

good estimates of the EC50s, while the

version with trimming could not

provide estimates.  The binomial

method also provided good estimates of

EC50.

• For some examples of data, which were

erratic or lacked zero and complete

effects, the untrimmed Spearman-

Kärber method gave very aberrant

estimates.  The estimates with trimming

varied with the type of data -- some

were excellent and some were improved

but still divergent.  The binomial

method failed.

Quantal endpoints provided by various statistical

methods are compared in this Section.  Some

relatively good data-sets are used as examples in

Section 4.4.1.  Section 4.4.2 does the same for data

that lack partial effects, a situation frequently

encountered in test programs.  The comparisons help

to explain the recommended methods given in

Section 4.3.

The examples in Tables 2 and 3 could be used to

assess other statistical programs that become

available to investigators.

4.4.1 Estimates for “Good” Data

The hypothetical sets of data shown in Table 2 and

illustrated in Figure 8 can be called “good” because

they have two or more partial effects, so they can be

analyzed by logit or probit regression.  Example A is

the one used as an illustration in several test methods

published by Environment Canada.  The first three

examples, A to C, have rather regular data, while

Example D is erratic.

Spearman-Kärber method has been a common alternative

in US procedure, without the limitations recommended
here for Environment Canada (Section 4.5.6).  Binomial

(and moving average) methods are not offered in recent
US programs.  Instead, they offer “linear interpolation”

using two data-points (Section 4.5.9), and that can be

satisfactory and equivalent to the binomial method if there

are successive zero and complete effects.  Investigators

would have to make sure, however, that linear

interpolation was done with logarithm of concentration as

the default situation.  Programs might also require inputs

of information that is not relevant in Canada, because they

formulate their outputs to meet the reporting requirements

of the USEPA.
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Most of the current statistical programs show similar

estimates of EC50 in Table 2, particularly for the

regular data.  Those computer estimates also agree

with the common-sense graphic estimates, shown in

the first line of the table.  Figure 8 shows that the

graphic and computer estimates are reasonable.

For the five computerized probit programs, Table 2

shows identical EC50s for Examples A, B, and C

which have fairly regular data.  Confidence limits

were also very similar.  The SAS program by MLE

must be considered the best estimate and the

standard of comparison.  Even for the irregular data

of Example D, EC50s from the five programs were

quite close.  The Stephan/OMEE and CETIS

programs matched the SAS estimates very closely. 

TOXSTAT and TOXCALC yielded an upper

confidence limit that was considerably lower than

those of the other methods, for the data of Example

D.

A more extensive comparison of programs for probit

regression was made by Sebaugh (1998), using 50

sets of data.  She adopted the SAS method as

standard, and found that the EC50s differed by more

than 1% in three cases for TOXCALC, five cases for

TOXSTAT, and seven cases for the Stephan

program.  Most comparisons were satisfactorily

close.  A probit program widely distributed as

“freeware” was compiled by the USEPA (described

in USEPA, 1995, Appendix H), and agreed with

SAS for all 50 sets of data.

The Spearman-Kärber method (S-K) can sometimes

give answers that agree closely with those of probit

regression.  For the “good” data of Examples A and

B, agreement with probit regression prevails whether

the S-K estimates are derived using the OMEE or

TOXSTAT program, and whether there is 10%

trimming or no trimming (Table 2).

Untrimmed S-K was unsatisfactory for Example C of

Table 2, even though that example represented

regular data.  The problem was absence of both 0%

and 100% effects.  Without them, both programs for

untrimmed S-K gave aberrant estimates of EC50,

and the OMEE program did not produce confidence

limits.  For this same Example C, when 20% of the

ends of the data distribution were trimmed off,

TOXSTAT estimated EC50 as 13.4, close to the

“correct” value of 12.6.  The OMEE program also

estimated the same value of 13.4 for the EC50, with

any trim of 10%, 20%, 30%, or 35% (not shown in

Table 2).  That endpoint is fairly reasonable.  Thus it

appears that trimming can be useful in obtaining a

reasonable endpoint with the S-K method.  It is

usually said that 0% and 100% effects are “required”

for the S-K method.  This example indicates that the

program will run without such values, but only

provides a reasonable estimate of the endpoint when

trimming allows other extreme values (here, the

values 10% and 90%) to substitute for zero and

complete effects.

Even more extreme examples, which lack zero and

complete effects, can be satisfactorily fitted by

trimmed S-K.  For example, a set of results was

postulated which had results for only three

concentrations, and the effects were 20%, 50%, and

80%.  Untrimmed S-K produced a nonsensical low

EC50, but with 20% trimming, a suitable endpoint

and confidence limits were estimated (TOXSTAT,

minimal automatic trim, not shown in Table 2).  This

extreme example also shows that trimming can be a

useful procedure with S-K.

Apparently, untrimmed S-K can also fail or give

peculiar answers for data that are moderately or

strongly erratic.  In Example D of Table 2, the

untrimmed procedures provided grossly divergent

estimates of EC50 (4.29 and 5.05 instead of 26.2,

last column of Table 2).  Clearly, this differs not

only from the “correct” answer by SAS, but also

from the common-sense, hand-plotted estimate.  In

fact, the untrimmed S-K estimates of EC50s were

lower than the lowest concentration tested, which

only caused 10% observed effect.  Both the OMEE

and TOXSTAT programs for untrimmed S-K

performed poorly with Example D (as well as with

Example C), presumably because of the lack of 0%

and 100% effects.

Trimming 35% of the irregular data off each end of

the distribution in Example D improved the estimate

to a reasonable value of 24 (by TOXSTAT,

compared to the “correct” value of 26.2).  Here

again, the trimming partially compensated for the

lack of zero and complete effects.  The OMEE

program continued to give aberrant answers with any

trim from 10% to 35% (not shown in Table 2).



57

Table 2 Four example sets of acute quantal data for toxicity tests.   See text for explanation of methods

used for analysis.

Concentration, 

weight/litre

Number of organisms affected (e.g., dead) out of ten

Example A Example B Example C Example D

56 -- 10 -- 5

32 -- 7 9 8

18 10 5 8 3

10 9 4 2 4

5.6 4 0 1 1

3.2 2 -- 1 --

1.8 0 -- -- --

Control 0 0 0 0

Graphic estimate EC50 5.6 17 13 29

Probit, maximum

likelihood (SAS)

EC50

(conf. limits)

5.58

(4.26–7.40)

16.9

(11.8–23.7)

12.6

(9.02–18.7)

26.2

(13.1–179)

Probit (Stephan and

OMEE)  The critical

value of chi-square for

p = 0.05 and 3 d. of f. is

given after the calculated

chi-square.

EC50

(confid. limits)

5.58

(4.24–7.37)

16.9

(11.9–23.7)

12.6

(8.98–18.6)

26.6

(13.2–187)

slope of line 4.71 3.17 3.07 1.32

chi-sq. (crit. value) 1.11  (7.82) 3.56  (7.82) 3.47  (7.82) 5.52  (7.82) 

Probit

(CETIS 1.018)

EC50

(conf. limits)

5.58

(4.24–7.37)

16.9

(11.9–23.7)

12.6

(8.98–18.5)

26.6

(13.2–190)

Probit

(TOXSTAT 3.5)

EC50

(conf. limits)

5.58

(4.38–7.12)

16.9

(12.4–22.9)

12.6

(9.13–17.4)

26.6

(13.4–53.0)

Probit

(TOXCALC 5.0)

EC50

(conf. limits)

5.58

(4.24–7.37)

16.9

(11.9–23.7)

12.6

(8.98–18.5)

27.6

(15.9–85.7)

Logit

(TOXSTAT 3.5)

EC50

(conf. limits)

5.63

(4.39–7.22)

16.8

(12.1–23.3)

12.8

(9.36–17.6)

26.5

(13.3–53.1)

Spearman-Kärber, zero trim

(OMEE)

EC50

(conf. limits)

5.64

(4.38–7.26)

16.8

(12.4 –22.9)

7.98

(no est.)

4.29

(no est.)

Sp.-Kärber, zero trim

(TOXSTAT 3.5)

EC50

(conf. limits)

5.64

(4.40–7.23)

16.8

(12.5–22.7)

10.1

(4.8 –21.0)

5.05

(1.39–18.3)

Sp.-Kärber, 10-35% trim

(TOXSTAT 3.5)

EC50  [% trim]

(conf. limits)

5.73   [10%]

(2.55–12.9)

16.7   [10%]

(8.30–33.5)

13.4   [20%]

(11.3–15.9)

24.0   [35%]

(16.1–35.8)

Binomial

(Stephan) 

interpolated EC50

(limits of range)

6.22

(1.8–10)

18

(5.6–56)

13.4

(5.6–32)

>5.6 (with

warning)

Gompertz (Weibull)

(CETIS 1.018)

EC50

(conf. limits)

6.11

(4.43–7.80)

18.6

(12.0–25.2)

14.1

(9.58–19.0)

28.6

(11.2–235)

Angle

(CETIS 1.018)

EC50

(conf. limits)

5.54

(4.42–7.47)

17.0

(12.8–22.2)

12.1

(8.81–17.7)

26.8

(14.1–153)

Moving average

(Stephan/OMEE)

EC50

(confid. limits)

5.58

(4.24–7.33)

17.2

(12.9–22.4)

13.4

(9.0–24.2)

17.8

(11.9–37.1)
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From these examples, it appears that when the S-K

program is being used, estimates should be made by

both the untrimmed and trimmed methods.  For the

degree of trim, an investigator  should choose the

option which is variously called “automatic trim”,

“minimal trim” or “automatically minimize trim

level” in  commercial computer programs

(TOXSTAT, CETIS).  The programs select the

appropriate degree of trim.  Results should be

evaluated by inspecting the raw data and the plot of

those data, then by comparison, choosing the more

reasonable of the trimmed and untrimmed S-K

estimates.  This requirement for the investigator to

make a subjective judgment is not a desirable

procedure, but it appears necessary for the S-K

programs, which do not include any test for validity

of the estimated endpoint.   

The irregularities with the S-K method are not

crucial with the “good” data of Table 2, because 

S-K would not be used for such results, under the

methods published by Environment Canada.  All

four examples would normally be analyzed by

logit/probit methods.  The preceding exercise was

done to evaluate S-K methods.

The binomial method was also used in Table 2 for

illustrative purposes only, because all these

examples could be analyzed by probit or logit

regression.  The estimates by the binomial method

were 6 to 11% higher than those by the SAS probit

method, for Examples A, B, and C.  Of course, the

approximate limits of the estimate differ appreciably

from the confidence limits of the probit method.  For

the irregular data of Example D, the binomial

approximation failed.  The program merely stated

that the EC50 would be higher than the lowest

concentration tested.  It issued a warning:

“Obtaining an approximate LC50 by interpolation

between two concentrations does not appear

reasonable with this [sic] data”.

Analyses based on the Gompertz and angle

transformations are shown in Table 2 although these

methods are seldom used.  The Gompertz EC50s are

noticeably higher than those obtained by other

methods, and higher than the common-sense graphic

estimate in Examples A, B, and C.  The Gompertz

model is more appropriate than normal and logistic

transformation, if the distribution of effects is

asymmetric.  Gompertz analysis is analogous to

using the Weibull model, which is sometimes found

to give the best fit to survival data (Newman, 1995,

p. 125).  The Weibull model also assumes an

asymmetric distribution.  Christensen (1984) found

that use of a Weibull transformation “generally

provides at least as good a fit to experimental data

as the probit model”, but that is not evident in the

endpoints listed in Table 2.

The angle transformation provided estimates that

were very similar to the results from SAS and other

probit methods.  The angle method would appear

valid from that evidence, but would not be needed if

a good probit or logit method were available. 

(Angle or angular refers to the arcsine

transformation.)

The moving average programs of Stephan et al.

(1978) and OMEE (1995) provided identical

estimates that were also the same or almost the same

as probit estimates, for the “good” data of examples

A to C.  However, moving average gave a rather

aberrant EC50 and confidence limits for the

irregular data of Example D.  As stated previously,

the method would not seem to be needed under

normal circumstances because the available program

has the same requirements for type of data as do the

probit and logit methods.

4.4.2 Estimates for Data with Few Partial

Effects

More often than not, laboratories encounter test

results that have only one partial effect, or none. 

The results cannot be analyzed by probit or logit

regression.  The usefulness of other methods is

assessed with the examples in Table 3.

The data in Table 3 were developed from those

shown in Table 2, by reducing most examples to one

partial effect.  The two values at the highest

concentrations were set at 100% effect, and the two

values at the lowest concentrations were set at 0%

effect.  The only exception was Example D, in

which the irregular value of 50% effect at the high

concentration continued.  The methods shown in the

left column were used to analyze these data, or to

attempt analysis.  As recommended in Section 4.2,

the analyses used only one of two successive effects

of 0%, or 100%, the one closest to the centre.

Examples A, B, and C cannot be analyzed by probit

or logit regression.  Nor can the moving average

method provide an answer, confirming that this is
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not much assistance to investigators as a backup

method.

Probit and logit analyses ran satisfactorily for the

contorted Example D.  All five probit programs

provided the same reasonable EC50, and the logit

estimate was close.  Confidence limits varied

somewhat; those from the Stephan/OMEE method

extended from zero to infinity, not a very useful

estimate.

For Examples A, B, and C, both the binomial and

untrimmed Spearman-Kärber methods provided

estimates that seemed reasonable, agreeing fairly

closely with the hand-plotted graphic estimate.  

This supports the recent practice of Environment

Canada, to use S-K when there is only one partial

effect so that probit/logit cannot be used (EC,

2001a; 2004a).  It should be noted that the

successful S-K analyses were for data that contained

both 0% and 100% effects.  Trimmed S-K failed in

each of these three examples (TOXSTAT), or gave

somewhat divergent estimates (OMEE), presumably

because trimming was not appropriate for the scanty

numbers of observations.

For Example D, the Spearman-Kärber and binomial

methods would not be needed, since the preferred

methods of probit or logit regression provided

estimates of the endpoint and confidence limits. 

However, the performance of these secondary

methods is worth examining.  Neither untrimmed 

S-K or binomial could handle the distorted data of

Example D.  The S-K method with no trim produced

an EC50 that was hopelessly low compared to the

values from probit regression; both TOXSTAT and

OMEE produced the same nonsensical EC50.  The

TOXSTAT estimate of EC50, with trimming, was of

the correct magnitude, but a little low.  The erratic

results of the S-K method for Example D support

Environment Canada’s recent recommendation to

use it only when probit/logit regression will not

work because of a single partial effect.

These S-K trials with Example D also indicate that

both untrimmed and trimmed analysis should be

done, and selection between them should be based

on judgement using a comparison of the raw results. 

In some cases, the estimates from both the trimmed

and untrimmed S-K method might be unreasonable,

and an investigator might have to impose judgement

and reject both of them.  There does not appear to be

a fixed rule that can be applied to detect acceptable

S-K results, nor is there a test of validity in the

available software programs, so the judgemental

aspect must remain.

For the OMEE method of S-K, levels of trim higher

than 10% gave increasingly higher and unreasonable 

estimates of endpoints for Examples A, B, and D,

and erratic results for Example C (not shown in

Table 3).  It appears that there is a flaw in the S-K

program of OMEE, and it is recommended that

investigators use the Spearman-Kärber versions

available in commercial packages of computer

software.

4.5 Examination of Statistical Methods 

for ECp

Key Guidance

• Quantal effects are binomially

distributed and analysis must use

appropriate methods.  By custom, probit

transformation of quantal effect is

commonly used to linearize the relation

with log concentration.  Logit

transformation is mathematically

superior and provides similar estimates,

although it has been less commonly

used by environmental toxicologists in

the past.

• Maximum likelihood estimates are

definitive for probit or logit regression,

and have the major advantage of

segregating any control effects in an

advantageous manner.  However,

maximum likelihood methods are

generally available only in large

packages of computer software, and so

they are not often used for routine

analyses in environmental toxicology.

• Classical probit or logit regression

proceeds by a series of successively

improved fits for a  line (“iteration”). 

An acceptable fit is judged by chi-

square.



61

Table 3 Four example sets of quantal data with few partial effects.  See text for explanation of methods

used for analysis.

Concentration, 

weight/litre

Number of organisms affected (e.g., dead) out of ten

Example A Example B Example C Example D

56 -- 10 -- 5

32 -- 10 10 10

18 10 5 10 3

10 10 0 2 0

5.6 4 0 0 0

3.2 0 -- 0 --

1.8 0 -- -- --

Control 0 0 0 0

Graphic estimate EC50 6.1 18 12.4 31

Probit

(SPSS)

EC50

(conf. limits)

----- ----- ----- 28.4

(17.9–48.2) *

Probit

(Stephan/OMEE)

EC50

(confid. limits)

----- ----- ----- 28.4 *

(0–infinity)

Probit

(CETIS 1.018)

EC50

(conf. limits)

----- ----- ----- 28.8

(no est.)

Probit

(TOXSTAT 3.5)

EC50

(conf. limits)

----- ----- ----- 28.4 *

(19.4–41.5)

Probit

(TOXCALC 5.0)

EC50

(conf. limits)

----- ----- ----- 28.4 *

(no est.)

Logit

(TOXSTAT 3.5)

EC50

(conf. limits)

----- ----- ----- 27.6

(18.7–40.8)

Spearman-Kärber (zero

trim, OMEE,

TOXSTAT)

EC50

(conf. limits)

5.96

(4.99–7.11)

17.9

(14.9–21.6)

11.9

(10.3–13.8)

9.11

(5.25–25.5)

Sp.-Kärber, 10-35%

trim (TOXSTAT 3.5)

EC50

(conf. limits)

----- ----- ----- 23.2 [30%]

(18.1–29.9)

Sp.-Kärber, 10% trim

(OMEE)

EC50

(conf. limits)

7.02

(5.61–8.79)

24.1

(19.1–30.4)

15.5

(12.6–19.1)

15.8

( --------- )

Binomial

(Stephan) 

interpolated

EC50

(limits of range)

6.03

(3.2–10)

18

(10–32)

12.0

(5.6–18)

>10 (with

warning) *

Moving average

(Stephan/OMEE)

EC50

(confid. limits)

----- ----- ----- 21.1 *

(10.0–35.5)

* For Example D, all probit and logit methods warned of significant heterogeneity;  most cautioned that the confidence

limits were of questionable validity.  The moving average method warned that confidence limits were “probably too

close”.  The binomial method warned that the “interpolation does not seem reasonable”.
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• In a limited number of trials, angle

transformation of effect also proved to

be satisfactory.

• The “short-cut” Litchfield-Wilcoxon

graphic methods for probit regression

are outdated but might be useful for

checking computer output or for

training new personnel.

• The Spearman-Kärber (S-K) method

does not estimate endpoints by

regression but by weighted averages of

midpoints between logarithmic

concentrations.  The S-K method

requires monotonic symmetrical data,

and effects of zero and 100%.  If the

data are not monotonic, analytical

programs can impose smoothing.  If

zero and complete effects are lacking,

trimming of data from the ends of the

distribution might produce satisfactory

estimates from some sets of results. 

Some recent test methods published by

Environment Canada, specify limited

use of only the untrimmed S-K method

of analysis.  It seems desirable to

analyze using both no trimming and

minimal trimming, then to judge

acceptability of each endpoint through

comparison with the raw data.

• For tests with no partial effects, the

binomial method estimates an

approximate EC50 as the geometric

average of the concentrations causing

no effect and complete effect, and takes

those concentrations as limits, within

which the confidence limits lie.

• The moving average method generally

performs well but is redundant because

the available computer program

requires two partial effects, and probit

or logit regression can be used instead.

• “Linear interpolation” has been

designated in the USA as a particular

technique.  It is essentially the same as

the binomial method.  Investigators

should beware of some older computer

programs for this method, which failed 

to use logarithms of concentrations.

• A list of criteria is provided, to evaluate

potential new computer programs for

analysis of quantal data.

• Future analyses could use nonlinear

regression if convenient packages are

made available for environmental

toxicology.

4.5.1 Probit and Logit Regression in General

Probit or logit regression is a commonly used and

satisfactory approach for analysis of quantal data. 

Logits are superior mathematically as explained in

Appendix J, but probits have been commonly used

in environmental toxicology.  Like all procedures,

the method is most effective for reasonably smooth

and regular data, and requires two partial effects. 

The eye-fitted log-probit line (Section 4.2.2 and

Figure 5) is a form of probit regression, carried out

mentally, without the benefit of calculations.

Explanation is warranted, about moving from a

binomial distribution (for quantal data) to analysis

based on a normal distribution (as in probit

regression).  

1. For quantal data such as those from lethal tests,

mortality of a single organism  is a binary

outcome, yes or no.  

2. Within a single container, the number of

organisms affected (y) is the sum of the

individual binary outcomes.  The variable y is a

binomial random variable.  For that container,

the test result is expressed as y (the number

affected) divided by n (the number of

organisms in the container).  

3. There is usually a series of containers, at

different concentrations.  If the proportions

affected in each container are plotted against

log concentration, and the dots are connected,

the resulting empirical dose-effect relationship

appears to be a cumulative normal distribution

(Figure 10, left).  It also looks like a cumulative

logit distribution function (Figure 10, right), or

a Gompertz distribution.  This distribution

describes the resistance of the sample of

organisms to the toxicant.  
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4. This distribution can now be treated as being

normal, or logistic, etc.  The binomial effects in

the distribution are transformed using probit,

logit, or Gompertz, etc. transformations, which

address the sigmoidal nature of the dose-effect

curve (Figure 10). 

5. The resulting linear relationship between log

concentration and the binomial effect is used to

estimate intercepts and slopes.  Then the linear

model is used in an inverse regression manner

(see Section 9.4) to estimate the ECp.

Logistic and probit regression are two of the

common methods used for the transformation of

step (4); their transformations are indicated in

Figure 10 and described further in Appendices H

and J.  The mathematical formulae for the probit,

logit, and Weibull models are shown and explained

in OECD (2004).

The left panel of Figure 10 gives a simple

illustration of the derivation of probits.  The curve

is a typical one for percent effect related to log

concentration.  The horizontal dashed lines

represent standard deviations of the cumulated

normal curve (half and full standard deviations on

the vertical scale of percent effect).  At their

intercepts with the curve, vertical lines are dropped

to a scale that is made uniform in terms of standard

deviations.  The units are called normal equivalent

deviates (N.E.D. or normits).  The scale has zero

N.E.D. corresponding to the median (50%) effect,

and runs upwards and downwards into positive and

negative values, as shown at the bottom of the

vertical lines.  For mathematical convenience in the

days of hand calculation, a value of 5 was added to

the N.E.D. and the result was named probits, shown

at the bottom of the left-hand panel.  Now, if the

curve is plotted with evenly spaced probits on the

vertical axis, it becomes a straight line against log

concentration (shown in Appendix H).

Logits are illustrated in the right panel of Figure 10. 

The pattern and description is similar except that

the distribution of effects is assumed to be logistic

instead of normal.  The horizontal dashed lines are

in terms of logits, and that follows through the

intercepts to the horizontal scale of logits at the

bottom.  The result is similar; the curve becomes a

straight line when plotted as logits upon log

concentration.

After probit (or logit) transformation, statistical

analysis proceeds.  As described in the follwoing

text, the parameters of the probit or logit model

must be estimated by rather complex processes, and

computer programs are universally used.

4.5.2 Other transformations

There are other models and other transformations. 

Gompertz and angle transformations can be used in

calculations exactly parallel to those for probits. 

These approaches have the same restrictions as with

probits, notably the need for two partial effects.

Results of analysis with the Gompertz

transformation were shown in Table 2, and the

EC50s were noticeably higher than those obtained

by other methods, and generally higher than the

common-sense graphic estimates.  As mentioned in

Section 4.4.1, the Gompertz model and the

analogous Weibull model would be more

appropriate for data in which the effects were

asymmetric.  Angle transformation estimated EC50s

that were similar to those from probit methods. 

This transformation could be used but would not

appear to be needed if a good probit or logit method

was available.

4.5.3 Classical Probit Regression by Computer

In current computer programs for probit regression,

the raw (arithmetic) data are entered, and the

programs generally carry out the appropriate

transformations to logarithm of concentration and

probit of effect.  Some available programs have

idiosyncrasies.  With TOXSTAT 3.5, the operator

must specify transformation to log of concentration,

and must immediately thereafter command the

transformation to “run”, otherwise the

transformation does not remain in force during

calculations.  TOXCALC has the disadvantage that

it does not use probits in its plotted graph.

Most current computer programs for probit

regression follow the “classical” methods originally

developed for mechanical calculators, before

computers were available (Finney 1971; Hubert

1992).  Transformation of the proportional effect 

into probits means that the relationship is linearized

against the logarithm of dose, and fitting is

simplified to a weighted linear regression.  The fit is

obtained by successive approximations to the best

line (iteration), using a least-squares technique. 
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Figure 10 Graphical illustration of the probit and logit transformations (from Hewlett and Plackett,

1979)

Computations were feasible with mechanical

calculators but remained tedious, time-consuming,

and prone to error.  The iterations were required

because the weights (relative values) for the

observations were initially unknown, and depended

on the parameters that were yet to be estimated. 

Numbers of individuals at each concentration

contribute to the weighting process.  The procedure

can be described as “iteratively re-weighted least

squares” 32.

32   These mathematical procedures were designed for the
limited capabilities of mechanical calculators.  The

procedures are fairly complex.  (1) The computer does a

rough fit of a line to the raw data using logarithms of

concentration and probits of effect.  (2) It reads the

expected probits (= % effect) from the rough line.  (3) It

“looks up” in a table of constants, initial weights for the

observations on the basis of the expected probits, then

assigns those weights to the observations.  (4) It “looks

up” working probits on the basis of expected and

observed probits.  (5) It fits a better line on the basis of

the working probits, weighting factors, and numbers of

organisms.  This provides the first estimate of EC50,

confidence limits and chi-square as a measure of fit.  (6)

Another cycle of steps (2) to (5) is done, using the

working probits of (4) as if they were raw data.  In other

words, new values are “looked up” for the weights and

working probits.  (7) Process (6) repeats itself until the

answers approach stabilization (“converge”), and the final

calculations are adopted.

This procedure of fitting by iterated, reweighted least

squares is a way of performing calculations to achieve a

maximum likelihood solution.  Sometimes the number of

cycles is under operator control, otherwise the program

has a built-in criterion for stopping the cycles.  Sometimes

two or three cycles are adequate; for good sets of data,

results of successive cycles change little.  For irregular

data, there might be a “failure to converge” (lack of

suitable fit) in 20 cycles; there would be little reason to

pursue a fit beyond that.  Anomalous data sometimes

produce peculiar results after half-a-dozen cycles, such as

an unrealistic very low slope and wide limits, as the

program attempts to represent the range of results.
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Although cumbersome by hand calculation, this

classical method can be carried out painlessly with

computers.  The procedure is not maximum

likelihood estimation but it obtains results that are

essentially the same; i.e., it “attains a maximum

likelihood solution” for the estimate of EC50 and

parameters of the line.  The classical iterative

procedure was once considered the “most efficient”

technique for good distributions of data that are

log-normal (Gelber et al., 1985).  

There is one important weakness of the iterative

least-squares technique.  It cannot be extended to

deal effectively with any effects in the control.  That

can be done by appropriate models using maximum

likelihood techniques (Sections 4.2.3 and 4.5.5).

4.5.4 Assessing Fit with Chi-square

The fit of the probit line is shown by the computed

value of chi-square, which must not exceed a critical

value if the line and the estimates are to be accepted. 

Computer programs normally carry out these

calculations, but the investigator should make sure

that the chi-square value is satisfactory.  The

assessment by chi-square is approximate, since it

would require at least 30 individuals per treatment

“to be statistically justified” (Hubert, 1992).

Critical values of chi-square may be found in

standard statistical texts.  The degrees of freedom in

a toxicity test are two less than the number of

concentrations tested.  The following tabulation

could be used for a probability value of 0.05.

Degrees of Critical value,

  freedom   chi-square

1 3.54

2 5.99

3 7.82

4 9.49

5 11.1

6 12.6

For the four examples in Table 2, the number of

concentrations is always five, so degrees of freedom

are three.  The critical value is 7.82.  If a calculated

chi-square exceeded that value, the data would be

significantly heterogeneous and the line would not

be an acceptable fit.  All four examples in Table 2

are acceptable.

It is also desirable to make a visual check of the

computed probit line.  It should be compared with

the eye-fitted line, created for this purpose (Section

4.2.2).  The OMEE program provides a graph of

results, and other programs might do the same.  If

not, the computed line should be plotted alongside

the hand-drawn line, on log-probit paper.  Plotting

can be done with ease since the slope that is

calculated by the program represents the rise in

number of probits for a run of one logarithmic cycle

of concentration.  Starting with the known point of

EC50, one log cycle and one probit are scaled off

(upwards or downwards or both) to locate a second

point for the line (or second and third points). 

Plotting is even easier if a computer program reports

a series of endpoints ( EC10, EC20, etc.), as is done

by SAS, SPSS, CETIS, TOXCALC, and

TOXSTAT.

4.5.5 Maximum Likelihood Estimates

Maximum likelihood estimation (MLE) is an

objective technique for choosing the values of

parameters, for a model that is being used to fit a set

of data.  The parameters are chosen to maximize (in

a selected model) the likelihood of observing the

data that were actually collected.

For a quantal toxicity test, the number of organisms

affected at a given concentration follows a binomial

distribution.  The parameters of the binomial

distributions are assumed to be related to the

concentrations by a function, usually the normal or

the logistic.  Under those conditions, the maximum

likelihood estimates are found to depend on two

equations.  Today the equations can be directly

solved to select the values of parameters, using a

personal computer and modern statistical software

packages such as SAS 33.

Use of MLE in toxicity tests is only a small part of

its general application.  Models can be adopted from

a variety of patterns to fit different kinds of data,

33   Finney (1978), the pioneer in the field, welcomed the
arrival of modern computing machinery with the

statement: “One of the greatest gains to statistics from

computers is the ease of initiating and executing iterative

calculations. ... Moreover, the classical probit and logit

iterative regression calculations can be replaced by direct

optimization techniques that lead to the same answers

expeditiously and more accurately than before.”
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while the MLE techniques apply throughout.  Thus,

MLE could be useful for analyzing various kinds of

toxicity tests, whether quantitative or quantal.  For

example, the model could be a regression of the

weight of organisms on the logarithmic exposure

concentrations.  Alternatively, it could be a

distribution function that described the probability

distribution of a single set of observations.  Here,

models for quantal tests are being considered (i.e.,

probit regression) representing one very useful

application of MLE.

For probit regression, MLE is “equivalent” to the

older method of iteratively reweighted least squares

(Jennrich and Moore, 1975).  In other words, MLE

reaches estimates for EC50 and confidence limits

that are very similar to those of the iterative

technique described in Section 4.5.3.  MLE is,

however, mathematically more elegant, and should

be regarded as the definitive approach.  In the older

iterative probit regression, there are two parameters

of interest, the slope and intercept.  In modern

programs for maximum likelihood, those parameters

are replaced by their equivalent parameters, the

mean and variance.  A likelihood function is

manipulated to express the parameters as functions

of the data.  Calculus is used to set the first

derivative equal to zero, then equations are solved

for the maximum likelihood estimates of parameters.

Because MLE is a standard technique of statistical

analysis, it is included in major statistical software

packages.  Probit regression using MLE is

specifically available in the major statistical package

SAS (2000) and perhaps in others.  The SPSS and

the toxicological programs TOXSTAT, TOXCALC,

and CETIS appear to use the older iterative line-

fitting.  Environmental toxicologists would no doubt

find it convenient to have MLE included in software

packages that were tailored to their needs.

Control effects.  A major advantage of probit or

logit regression with MLE is the ability to estimate a

control effect as a separate variable, and use only

the toxicant-induced effect to estimate the ECp.  The

observed effects are the sum of two sources of

effect, and the level of control effect is included as

one of the parameters to be determined in the model. 

The more complex model has three equations to

solve (for mean, variance, and control effect).  Two

rates of effect are estimated, one of them a baseline

or control effect that was not attributable to the

toxicant.  The other rate is the incremental effect

due to the toxicant alone, and it is used to estimate

the EC50 without the effect of the baseline

condition showing itself in the control.

Maximum likelihood estimation is the best

mathematical method of dealing with control effect. 

However, as pointed out in Section 4.2.4, it cannot

remedy any interactions that are biological instead

of statistical.  For example, disease might cause a

control effect, and might also weaken the test

organisms' resistance to the toxicant.  The analysis

would estimate an ECp that was statistically valid,

but for weakened organisms.

4.5.6 Spearman-Kärber

The Spearman-Kärber procedure (S-K) is

recommended here for quantal data which include

(a) one partial effect, and (b) 0% and 100% effects. 

In other words, the method can be used when

probit/logit methods will not function because the

data do not include two partial effects.  This method

is available in most commercial programs such as

CETIS and TOXSTAT, and at the web site

http://www.epa.gov/nerleerd/stat2.htm.  It is also

available in the OMEE program, although that

version of S-K seems to have a procedural flaw in

certain cases of irregular data, and is best avoided.

The Spearman-Kärber method was introduced for

use in environmental toxicity tests by Hamilton et

al. (1977), and has a much different mathematical

approach than probit regression.  The S-K method

estimates the EC50 from weighted averages of the

midpoints between concentrations, on a logarithmic

scale.  The weight applied to each midpoint is the

change in proportion of effect between the two

concentrations.  The concept is similar to estimating

the mean of a frequency distribution, whereby the

class mid-points are multiplied by the proportion

responding within each class.  (Further explanation

in Appendix K.)

The S-K method can deal with unequal spacing of

concentrations on the logarithmic scale, and also

with unequal numbers of organisms at the various

concentrations.  There is no intrinsic method of

dealing with an effect in the controls.

Confidence intervals can be estimated if there is at

least one partial effect.  They are estimated as ± 2

SD of the EC50.  This assumes that the estimated
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EC50 is distributed as a normal random variable

(Miller and Halpern, 1980).  The limits are “not

likely to be far wrong” unless the number of

observations is low (Finney, 1978).  

The test has the following requirements or

assumptions of monotonic, symmetrical data which

include 0% and 100% effects. 

• Monotonic data is a requirement.  If effects

decrease from one concentration to a higher one,

then the effects are averaged and the result

assigned to both concentrations.  This

smoothing procedure cycles through the set of

data until it becomes monotonic (Appendix K). 

The smoothing does not affect the value

calculated for EC50, but it will affect the

confidence limits.

• Symmetry is an assumption of the method.  If

the distribution of effect is asymmetric, the S-K

method does not estimate a true EC50.   Even if

trimming were employed, the estimate of EC50

would only be reasonable if the central

(untrimmed) part of the distribution were

symmetrical.  

• Zero and complete effects are required, and

this is somewhat related to the assumption of

symmetry.  Without these extreme effects, the

untrimmed method will fail, or at best will

produce anomalous results.  Trimming can

sometimes remedy  the lack of zero and

complete effects, if there are low and high

effects such as 10% and 90%.

• Trimming is an attempt to correct for non-

symmetry in the tails of the dose-effect curve. 

Trimming can be invoked in order to delete the

extreme values and use the central data.  This

can be useful if there are unexpectedly large

proportions of organisms in either tail of the

distribution, i.e., many of them reacted at low

concentration, or many failed to react at high

concentration.  Hamilton (1979; 1980) studied

these situations and found that a small amount

of trimming resulted in a standard error for the

estimated EC50 which was much smaller (i.e.,

more optimistic) than for other reference

methods such as maximum likelihood probit or

logit analysis.  Extensive trimming further

decreased the standard error, but raised the

estimate of EC50.  Hamilton suggested

trimming of 10–20% for cases with erratic

results in the tails of the distribution, but

avoidance of trimming for data with regular

distribution.

Recent test methods published by Environment

Canada (EC, 2001a; 2004a) are similar to the

recommendations of Hamilton (1979; 1980), but

more restrictive since they do not allow trimming. 

Discussion at a meeting of Environment Canada’s

Statistical Advisory Group had expressed doubts

about “fitting a statistical model to make the data

look more robust than [they] really [are]”.  Other

statements were: “Don't try to make a silk purse

from a sow's ear”; and that trimming led to

“difficulties with the variance, hence with

confidence limits” (Miller et al., 1993).  As

mentioned below, prohibition of trimming is

probably overly conservative.

In any case, the Spearman-Kärber method is

recommended here, only for those quantal tests

which produce one partial effect plus zero and 100%

effects.  For such sets of data, the S-K method is

preferred over the binomial method because it

calculates confidence limits that can be considered

legitimate.

For “good” sets of data, the S-K method can give

answers that are very similar to those from probit

regression, but might not yield trustworthy answers

under some circumstances.  Comparisons in

Sections 4.4.1 and 4.4.2 showed that this was

sometimes true for both trimmed and untrimmed

variations of the procedure.  The untrimmed method

could give very peculiar answers for data that were

moderately or strongly erratic (both Examples D in

Tables 2 and 3).  The trimmed procedure sometimes

provided a better estimate of the endpoint, but in

some cases of scanty data it failed to provide an

estimate (Table 3, Examples A–C).

The untrimmed S-K is almost certain to give an

anomalous EC50, perhaps without confidence

limits, if the data lack 0% and 100% effects.  An

analysis could be attempted using minimal trim, if

the data-set contained quite low and high values

(#20%, $80%) as well as a central partial effect.  A

trim of 20% is likely to produce a reasonable

estimate of EC50 and confidence limits.
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Apparently, from the examples discussed in

Sections 4.4.1 and 4.4.2, the most reasonable way to

use the S-K method is to make an estimate by the

procedure with no trimming, and another estimate

using minimal trimming to the degree selected by

the computer program.  A choice should be made

from the two estimates (if different), by comparing

with the raw data and a plot of those raw data.  That

involves judgement, but it appears to be

unavoidable.  No test of the validity of the estimate

is provided in the computer programs.

The S-K method was named in early methods

documents published by Environment Canada, but

was not recommended as a method of analysis (e.g.,

EC, 1992b).  However, in EC (2001a), its use was

specified for quantal data sets with only one partial

effect, which could not be analyzed by probit/logit

regression.  In the most recent of Environment

Canada’s test methods (EC, 2004a,b,c) there is new

guidance that the S-K method with limited trimming

can be used with caution for sets of data with only

one partial effect.  Investigators should follow the

limitations for the S-K method in particular test

methods of Environment Canada.  A useful

approach would include judicious use of trimming

as suggested in the preceding paragraph.

An investigator should carefully check the operating

procedures used by any program for the Spearman-

Kärber method.  Those available at the time of

writing allow the investigator to choose between no

trim and trimming.  Here, it is recommended that

both those options be used.  Some programs have

allowed the user to specify the level of trim that will

be used (e.g., OMEE).  Others (TOXSTAT, CETIS)

offer an “automatic” procedure in which the

program selects the lowest satisfactory level of trim. 

 That “automatic” or “minimal” option is

recommended here.

4.5.7 Binomial Method

The binomial method is a known mathematical

procedure, and is currently available as a convenient

computer package for quantal analysis, in a program

by Stephan et al. (1978) and also as modified for a

Windows format (OMEE, 1995).  It is recommended

here for the numerous sets of data in which one

concentration results in zero percent effect on the

test organisms, and the next higher concentration

causes 100% effect.  It is also to be used for a set of

data which has one partial effect, but cannot be

satisfactorily analyzed by the Spearman-Kärber

method.

The mathematical procedures are very simple.  With

no partial effects, the binomial method approximates

the EC50 as the mean of the logarithms of the two

concentrations causing 0% and 100% effects.  It

does not estimate confidence limits, but uses those

same concentrations as a conservative (wide) range

within which the EC50 lies.  True confidence limits

would likely be well within that range (see below).

The basic calculation of an EC50 can be done easily

without a computer program by calculating the

average of the logarithms of the two concentrations

which bracket the EC50.  This is the geometric

mean, which can also be estimated by multiplying

the arithmetic values for the two concentrations, and

taking the square root, as in Equation 3.

[ Equation 3 ]

EC50 = q (CL ) ( CU )

where:

CL = the arithmetic value of the “lower”

concentration with no effect

CU = the arithmetic value of the “upper”

concentration causing complete effect

The range within which the EC50 is presumed to lie

is given by the same two concentrations.

This binomial method is, in fact, a simple linear

interpolation on a logarithmic scale of

concentration.  The name binomial method has been

retained here to keep the label which has been used

for a long time.  The name “linear interpolation” has

been kept separate (next section) to avoid confusion,

because it has been used in the USA to describe a

particular technique that does not always represent

satisfactory practice.

The binomial method is of great usefulness, as was

demonstrated for the data of Table 3, because it is

common to have no partial effects when testing

industrial effluents.  If the concentrations were

spaced with reasonable closeness, a test producing

such data should not be regarded as deficient, but

rather as a legitimate sharp and uniform response by

the test organisms.  This can indicate a very precise
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test, as discussed by Stephan (1977) 34, and in such

cases, use of the binomial method is recommended. 

In tests with no partial effect, the true confidence

limits are usually well within the concentrations

causing 0% and 100% effect.  Given a finer

gradation of concentrations, the lower limit could be

as high as the concentration causing 30% effect, and

the upper limit could be as low as that causing 70%

effect (Doe, 1994) 35.  This was demonstrated in

Table 2, in which the limits of the binomial method

were much more conservative (wider) than the true

confidence limits from the probit method.

The binomial method is also recommended if the

data show one partial effect, but cannot be analyzed

by the Spearman-Kärber method because 0% or

100% effect is lacking, or other reasons.  If the

probit or Spearman-Kärber method is valid, the

binomial method need not, and should not, be used. 

Nevertheless, the binomial method will function,

and approximates the EC50 obtained by more

sophisticated calculations.  Comparisons in Table 2

showed that binomial EC50s were somewhat higher

than those by probit or logit methods.

4.5.8 Litchfield-Wilcoxon Graphic Method

In decades before the 1970s, this graphic “short-cut”

method of probit regression was well-used because

computers and scientific calculators were not widely

available.  The method started with a hand-drawn

regression, then tested goodness of fit and estimated

confidence limits by simplified calculations and

nomograms (Litchfield and Wilcoxon, 1949). 

Appendix L gives further description of the

techniques.

The method is not recommended here for definitive

estimates, but it can still be useful for checking the

estimates of EC50 and confidence limits produced

by a computer program.  Indeed, the initial hand-

drawn line is recommended as the first step in any

analysis, to check for reasonable computer estimates

(Section 4.2.2).

The Litchfield-Wilcoxon method might also have a

useful function in training new personnel.  Going

through the steps of the graphic method could

provide insight on how the endpoints and

confidence limits are influenced by various types of

data.  It could help people to recognize anomalous

results from a computer program.

The method was formerly useful for initial estimates

under field conditions if there was no access to

computer programs.  Lap-top computers now

remedy that situation.

4.5.9 Linear Interpolation

Although the words “linear interpolation” signify an

ordinary and widely used technique, it is listed here

as a separate method because the USEPA has

designated it as a distinct category with a distinct

statistical procedure (USEPA and USACE, 1994) 36. 

The method is also sometimes called the “Graphical

Method” (USEPA, 2000a).  Accepting for the

moment, that these names apply to the particular US

procedure, it can be said that the procedure has no

particular advantage, and is not recommended.  The

methods recommended for Environment Canada

purposes would be probit or logit, Spearman-Kärber,

or binomial, depending on the number of partial

effects.  The US method of linear interpolation is the

exact equivalent of a binomial estimate if there are

only two concentrations to deal with, one giving an

effect below 50% and the other above 50%.

34   Stephan (1977) covers most techniques for estimating
quantal endpoints, as a background for his computer

program.  He justifies the binomial and moving average

procedures, and explains why environmental toxicologists

should not be overly concerned when they do not obtain

two partial effects in a quantal test.  Those effects were

important in pharmacological work, which gave rise to

probit regression, because the investigators needed to

assure themselves about slopes of the probit lines, before

estimating relative potency of two substances.  In the kind

of toxicological work discussed here, Stephan points out

that useful endpoints can be obtained without any partial

effects.

35   Confidence limits for a test with one partial effect can
be read from tables provided by van der Hoeven (1991),

but only for special circumstances.  The ratio of

successive test concentrations must be two.  There must

be no effect at the concentration immediately below the

partial effect, and there must be complete effect at the

concentration immediately above the partial effect.  A

“fairly complicated numerical procedure” would be

required in other situations.

36   Available at http://www.epa.gov/nerleerd/stat2.htm
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Linear interpolation (and the binomial method)

assume a change in effect that is linear with the

logarithm of concentration.  For data with no partial

effect, either method carries out the equivalent of

drawing a straight line on a graph between the

logarithms of concentrations causing 0% and 100%

effect, then interpolating to the logarithm of

concentration causing 50% effect.  This is the

equivalent of the averaging done in Equation 3.

A further reason for avoiding the “linear

interpolation method” is that some computer

programs were based on arithmetic values of

concentration, and hence gave erroneous estimates. 

That improved, and logarithms were used by

USEPA and USACE (1994).

The “linear interpolation method” is further outlined

in Appendix L.  The appendix includes a more

generalized method of linear interpolation, which

would handle data sets with partial effects.  It could

conceivably be useful in an unusual situation.

4.5.10 Moving Average

This method is not recommended for Environment

Canada programs, but elsewhere it has been

considered as a possible choice for analysis of

quantal data, and Stephan (1977) considered it “the

method of choice” for aquatic toxicology.  The

moving average method estimated EC50 and

confidence limits which were identical or similar to

those of probit methods for “good” data of Table 2

(Section 4.4.1).  However, for irregular data, it gave

anomalous estimates compared to other methods

(Examples D in Tables 2 and 3).

The method, developed by Thompson (1947), needs

results from at least four treatments and they must

be at equal geometric/logarithmic intervals. 

Furthermore, it assumes that there is a symmetrical

distribution.  It can estimate the EC50, but not any

other value of “p” such as EC25.

In theory, the moving average method should

estimate the EC50 with one or no partial effects,

although in the examples of Section 4.4 it would not

provide confidence limits without at least one partial

effect.  In practice, the available standard program

for moving average (Stephan et al., 1978; OMEE,

1995) does not run unless there are two or more

partial effects.  Probit or logit regression would run

on the same data and is recommended here.  The

moving average approach has some limitations,

described by Finney (1978) who comments that “its

inherent weaknesses are scarcely balanced by its

computational simplicity in an age when computing

is so cheap”.  Possibly, there might be some unusual

sets of data for which probit regression would not be

suitable, and for which the moving average method

could provide an analysis.

For a given set of data, the moving average method

estimates several sets of EC50s and confidence

limits, one set for each “span” used in calculations. 

The span indicates how many intervals between

concentrations are included in the calculations.  The

Stephan program prints the results from calculations

using several spans, so the investigator can examine

the changes produced by various spans.  The most

appropriate one is indicated by the lowest value of

“g”, which is printed by the Stephan program.  The

OMEE version of the Stephan program selects the

most appropriate span and indicates which one was

used.  Finney (1978) suggests “the largest possible

span” without specifically defining “possible”.

4.6 Evaluating New Computer Programs

The data in Tables 2 and 3 might be used to evaluate

future new computer programs for estimating ECp. 

Results could be compared with those shown in the

tables, particularly Table 3 for data lacking partial

effects.  If in doubt about the usefulness of a new

program, an investigator could analyze other less-

than-perfect sets of data with the new program, and

compare with output from one of the more powerful

programs such as SAS or SPSS.

The criteria that can be used to evaluate a computer

program for analyzing toxicity tests, were listed by

Atkinson (1999, slightly reworded), after he

reviewed available programs.

     • Freedom from non-relevant coding and

reporting format (e.g., specifications of

USEPA ).

     • Requirements and cost of equipment and

software.

     • Requirement for purchasing additional

programs (e.g., EXCEL).
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     • Quality and friendliness of directions.

     • Constraints on analyses and data entry.

     • Restrictions on number of concentrations and

replicates.

     • Methods included for desired endpoint

calculation (e.g., logistic, Williams' test).

     • Methods contrary to recommendations of

Environment Canada.

     • Suitability of default settings.

     • Proper use of logarithmic scale of

concentration for calculations.

     • Treatment of unequal numbers of replicates.

     • Inappropriate control adjustments for quantal

tests.

     • Existence and usefulness of graphical

presentations of data.

     • Goodness-of-fit tests included.

     • Availability of summary statistics and simple

tests.

     • Correct confidence limits (compared to other

methods).

All of these criteria might not apply to a particular

program, but they provide a partial framework for

assessment.  The last item might be expanded

somewhat.  Although one assumes that the estimated

endpoint will be correct, as well as the confidence

limits, the correctness should be tested by

comparing results from accepted programs and from

examining the plotted data.  It was reported in

Section 4.2.3 (footnote 27) that one laboratory found

the output of a newly purchased computer program

to be erroneous, after comparing with hand-drawn

graphs (K.G. Doe, personal communication, EC,

Moncton, New Brunswick).

4.7 Nonlinear and Other Possible Future

Methods

For the immediate future, probit or logit regression

seems likely to be the method of choice for

estimating ECps in toxicity tests of standard design. 

However, new approaches such as nonlinear models

are developing for analysis of quantal data.  To

some extent, new quantal methods are coming as

“extras” from methods developed for regressions

with quantitative data.  A relevant example is the

adoption of an approach for linear/nonlinear

regression by Environment Canada (Section 6.5.8).

Whatever methods develop, they must estimate the

EC50 and its confidence limits, if the testing is

within monitoring programs of Environment

Canada.  Good computer programs will also provide

a description of the fitted line (such as slope if it is a

straight line) and will measure the goodness of fit.

A procedure already available is a complete program

for analysis of toxicity data offered by Kooijman

and Bedaux (1996).  The program is primarily for

nonlinear regression but it is said to provide

analyses of quantal data on mortality (LC50s),

effective concentrations (EC50s), and effective

times (ET50s), all with confidence limits (see

Section 5.1).

Individual statisticians have used nonlinear models

for many years, for analysis of quantal data and

determination of the LC50.  The approach was

described by Kerr and Meador (1996), and is

discussed in Appendix M.

Generalized linear models might not be very suitable

for routine toxicity tests, which often produce data

with one or no partial effects.  The models can

utilize zero and complete effects, but would appear

to rely strongly on the partial effects.  Nonlinear

models are further discussed in Sections 6.5.2 to

6.5.13.

Additional methods of less immediate interest are

discussed in Section 5, including Time to 50% effect

and use of a mortality rate model, the latter

technique probably of more interest for research. 

Other discussion of potential methods is in

Appendix M.
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Section 5

Effective Times, Toxicity Curves, and Survival Analysis

All topics in this section are related to the time taken

for the toxic material to act on the organisms.  At

present, these time-related approaches are not in

primary use for the testing programs of Environment

Canada; however, they have some advantages as

extra features in analysis or for possible adoption in

the future.

5.1 Median Effective Times

Key Guidance

• An alternative approach estimates the

time required to affect 50% of the

organisms in each of a series of fixed

concentrations.  The median effective

times (ET50s), and modelling of those

ET50s, can provide higher levels of

information and insight, or usefulness in

special situations such as short exposures.

• Tests designed to estimate the ET50 also

provide the data to estimate the EC50,

given appropriate choice of

concentrations.

• There is no simple and convenient software

package for estimating ET50s and confidence

limits, but it would be useful to develop one.

Median lethal times (LT50s) have not been used

much in recent decades, but in the past they were the

standard way of investigating environmental toxicity. 

Bliss (1937) used logarithmic time series to

demonstrate that log-probit transformations were

useful in lethal tests.  The LT50 was the endpoint in

studies of the effects of pesticides on insects (Finney,

1971) and in the classical Canadian work on tolerance

of fish and aquatic invertebrates to lethal

temperatures, oxygen, salinity, and toxicants (e.g.,

Fry, 1947; Shepard, 1955; McLeese, 1956).  A time-

based approach (e.g., LT50) could be helpful in

evaluating rapid effects of a dangerous toxicant.  For

example, it could predict potential damage to fish

swimming through a plume of effluent.

To determine acute ET50s, a toxicity test uses a group

of organisms at each of several concentrations in a

standard logarithmic series.  The number of

organisms affected in each concentration is observed

at successive times which increase in an approximate

logarithmic series.  For fish, the observation times in

hours might be 0.5, 1, 2, 4, 8, 14 ± 2, 24, 48, 96, and

perhaps 7 days.  For shorter-lived organisms, the

time-scale would be adjusted downwards as

appropriate.

For a given concentration, the cumulative percent

effect is plotted on a probit scale against the

logarithm of exposure time.  A line would be fitted by

eye, and the LT50 read from the graph.  When

completed for all the concentrations, the findings

could be similar to Figure 11, which shows a classical

example of mortality times for fish in reduced oxygen

(Shepard, 1955).  If a suitable range was chosen,

severe concentrations would generate short ET50s,

and some mild concentrations might only elicit

mortalities less than 50% (right side of Figure 11).

The technique could be used for sublethal toxicity,

but the effect would have to be easily observed and

immediately evident, not delayed.  The effect would

have to be quantal, or else defined relative to a

control, in the same manner as an inhibition

concentration (ICp).  The term median effective time

(ET50) is suitable for sublethal effects, as well as for

lethal effects.

A series of ET50s could be used to produce toxicity

curves such as those in Figure 12.  At first glance, the

curves appear to be the usual toxicity curves (Section

5.2), but they have concentration as the x-axis and

time (ET50) as the y-axis.  The curves for copper and

zinc in Figure 12 appear straighter than usual, with

very abrupt thresholds of effect.  Below those

threshold concentrations (left side of graph), more

than half of the test organisms survived for long

times; apparently acute lethality had ceased and the

organisms were able to deal effectively with the

metals.



74

Figure 11 Time-related mortality of brook trout exposed to low concentrations of dissolved oxygen 

(from Shepard, 1955).   Oxygen concentrations are indicated at the tops of the probit lines.  The

maximum exposure time of 5000 minutes represents about 83 hours.  Successive cumulative

mortality in each group of fish is plotted on the vertical probability scale, and a straight line is fitted to

each.  Mortality apparently ceased in the three mildest treatments (right-hand side).

Unfortunately, there is no simple, specially designed

computer program for estimating confidence limits

for an ET50 37.  The old method for obtaining these

confidence limits is a simplified nomographic

procedure (Litchfield, 1949).  The standard computer

programs for estimating an EC50 and its confidence

limits are not valid for estimating an ET50, which

arises from repeated observations on the same groups

of organisms.  Kooijman and Bedaux (1996) offer a

program for analysis of toxicity data that might

remedy this situation.  It is primarily for nonlinear

analysis of sublethal quantitative data, but the authors

claim that it can also estimate endpoints with

confidence limits, for effective concentrations

(EC50s), and effective times (ET50s).  These

capabilities have not been verified for the present

document because of initial difficulties in operating

the program.  Mainstream statistical packages (SAS,

SPSS, SYSTAT) could estimate the ET50 and

confidence limits with relative ease, although they are

not exactly “off-the-shelf” methods for a toxicity

laboratory.

Using an ET50 as an endpoint for each concentration

is predictably more efficient in providing information

than using EC50s.  In general, about half the

information is lost if only the EC50 is estimated. 

Dixon and Newman (1991) state that “significant

statistical benefits accrue from the small amount of

additional work” in obtaining time-to-death data,

compared to determining the LC50.  Similarly,

Newman and Aplin (1992) express regret at the lack

of attention paid to time-to-effect approaches in 

37   A computer program was written and used at B.C.
Research, sometime in the 1970s.  It was derived from the

method of Litchfield (1949) and apparently worked well

(D.J. McLeay, 2004, personal communication, McLeay

Environmental Ltd., Victoria, British Columbia).  Recent

efforts to find this program have not been successful.
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Figure 12     Times of median effect for Atlantic salmon exposed to copper and zinc (from Sprague, 1964).      

                      Confidence limits about the ET50s were estimated by the method of Litchfield (1949).  Points with        

                      vertical arrows represent survival of more than 50% of the test fish during the exposure period               

                      indicated by the position on the time axis.

environmental toxicology.  They point out that this

approach does not lose the standard endpoint (EC50),

but gains extra information (the series of ET50s), and

enhances interpretation of data (the opportunity to

look for meaningful irregularities in the effects).

Examples and further explanation of the gain in

information are provided in Bliss and Cattell, 1943;

Gaddum, 1953; Sprague, 1969; and Suter et al.,

1987.  An expected result would be narrower

confidence limits on an ET50 compared to an EC50. 

Another advantage is circumventing the

complication of inverted estimates of EC50 and its

confidence limits (see Section 9.4).

There would be an even greater gain in information

with methods that considered the time course of

effects (not just the ET50).  There might be

additional revelations about what was happening in

a toxicity test.  Sometimes a “pause” might be noted

in the progress of effect, possibly indicative of a

change in mechanism of toxic action.  Differences in

slopes of adjacent probit lines could provide clues

about actions of the toxic substance.  A break and

flattening of a probit line could indicate

decomposition or disappearance of the active toxic

agent(s).  A double bend in the line could indicate

two modes of action at shorter and longer times, or

the presence of two toxic agents.

One pitfall that should be avoided is any attempt to

judge the relative toxicities of different materials, on

the basis of short-term ET50s (i.e., effective times in

very high concentrations).  The comparison can be
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very misleading (examples in Sprague, 1969). 

Similarly, comparisons of EC50s based on short

exposure-time (again, involving high

concentrations) are misleading.  Comparisons are

much more meaningful when they are based on

times and concentrations that are at or near the

threshold of effect (Section 5.2).

Considering all the advantages of ET50s, it is

regrettable that methods have swung firmly towards

estimating only EC50s.  A data-base collected for

ET50s such as those in Figures 11 and 12, could still

be used for definitive estimates of EC50s.  For

example, a 96-h EC50 could be estimated in the

usual way from percent effects in the various

concentrations at 96 hours of exposure.  Only the

raw observations should be used as input for

estimating an EC50; it would not be valid to pick

smoothed percent effects from fitted lines such as

those in Figure 11.

5.2 Toxicity Curves and Thresholds of Effect

The term toxicity curve has a particular meaning in

environmental toxicology.  It is a graph showing a

series of median lethal concentrations plotted against

their exposure times, both as logarithms. 

Alternatively, it could be a series of median lethal

times plotted against their exposure concentrations,

again as logarithms (Figure 12).

Key Guidance

• A toxicity curve should be plotted as the

test proceeds.  LC50s can be estimated at

key times during the test, and plotted as a

toxicity curve (log LC50 against log time).

• The toxicity curve demonstrates any

unusual relationships, and whether a

threshold of acute action was reached by

the end of the test (i.e., the curve became

asymptotic to the time axis).  An incipient

LC50 is a relatively meaningful endpoint

since it is determined by the physiology of

the test organism rather than by an

arbitrary time of exposure.

• Most toxicants appear to produce an

incipient LC50 in the standard 96-h

exposure with fish, and in 10- to 14-d tests

for sediment or soil toxicity using

invertebrates.

• In addition to reporting the EC50 for a

standard exposure-time (e.g., 96-h EC50

for fish), reporting an incipient EC50 or

the absence of one would increase the

practical and scientific value of a test.

• Modelling of the data used for toxicity curves

has proven profitable in research studies

(Section 5.3).

The main purposes of a toxicity curve are to show any

unusual relationships, and whether an asymptote with

the time axis was attained.  Periodic recording of

effects during an acute test provides material for the

toxicity curve and increases the information gained

from the test, which is particularly true for acute

lethal tests.  Such tests for fish will be used as

examples 38.

A major goal in constructing a toxicity curve is to

find out whether a time-independent threshold of

lethality has been reached (i.e., no further deaths), and

if so, whether it occurs early in the test, or slowly. 

Threshold is used in the sense of half of the fish

showing the effect and half not showing it, thus the

median fish has just passed the threshold of effect

(see glossary).  The concentration at which this

occurs can be called the incipient LC50 (or incipient

lethal level, incipient EC50, threshold LC50/EC50). 

That is a relatively robust yardstick of toxicity since it

marks the concentration that the average fish can just

deal with, by excreting or detoxifying a chemical as

fast as it enters the body.  In other words, the

incipient LC50 is determined by the physiology of the

fish, and is therefore a relatively meaningful and firm

endpoint describing acute toxicity.

38   The acute tests with fish are typically four days in
duration.  For acute mortality of invertebrates in sediment

or soil, Environment Canada's tests are usually 10 to 14

days long, sometimes with optional inspection of mortality

at 7 days (EC, 1992e; 1997a,b; 1998b; 2001a; 2004a). 

For the soil/sediment tests, it is not generally feasible to

establish a toxicity curve because of the difficulty of

establishing mortality at intermediate times, and the

possibility of damaging the animals during inspection.
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The advantages of comparing results for different

exposure times in acute toxicity tests are described by

Sprague (1969), Newman and Aplin (1992), and

Lloyd (1992).  If no threshold is found, it is a warning

that effects might continue with extended exposure at

very low concentrations.

Estimates of EC50s can be made as the experiment

proceeds (e.g., 4, 8, 24, 48, and 96 hours of

exposure), and these can be plotted as a toxicity curve

using logarithmic scales (Figure 13) 39.  It may

become evident that the curve becomes asymptotic to

the time axis, i.e., acute lethal action has ceased

(right-hand side, Toxicant A in Figure 13).  It is of

considerable interest to know whether there is a low 

concentration which the average organism can deal

with during an acute exposure; the remaining

organisms would apparently survive the exposure. 

There is no particular rule for determining whether

such an incipient LC50 has been achieved, so the

toxicity curve should be interpreted subjectively 40. 

Sometimes there can be a very sharp threshold,

leaving little doubt about the interpretation 

(Figure 12).

Even if a short exposure time did not cause 50%

mortality, it can still contribute to shaping the toxicity

curve.  For that exposure time, the LC50 would be

higher than the highest concentration tested; a point

can be plotted with an arrow pointing up to higher

concentrations than those tested (left side of curves in

Figures 13 and 14).  The fitted curve can miss some

points (smoothing) because each LC50 has potential

variation (confidence limits).

It would have been desirable to prolong the test for

Toxicant B in Figure 13 to see if a threshold

(asymptote) was eventually achieved.  Therefore, a

rough plot of the curve should be made as a test 

proceeds, for guidance on terminating the test.  Even

lower concentrations would apparently have killed

the organisms with longer exposure.  It would

obviously be of interest to know of such a situation,

which would represent a dangerous type of toxicant,

because lower and lower concentrations might cause

an effect, given a sufficiently long exposure time.

The use of logarithms of time and concentration in

plotting the toxicity curve is of utmost importance,

for reasons discussed in Sections 2.3 and Appendix

D.  A toxicity curve plotted with an arithmetic scale

of time distorts the curve and can be highly

misleading.  One primary error could be that a

threshold appeared to be reached at long exposure

times, when in fact there was no threshold.  With a

graph using arithmetic time, any test could be made

to show an apparent threshold, even if one did not

exist, simply by running the test long enough.

A hypothetical example of incorrect axes is shown in

Figure 14, in which the upper panel has arithmetic

scales of both concentration and time.  The curve

appears to reach a reassuring asymptote after

exposure of 7–10 days (168–240 hours).  However, a

proper logarithmic plot of the same data, in the lower

panel of Figure 14, shows regular continuing

mortality and a straight-line relationship with no

threshold.  In other words, by using arithmetic axes,

the investigator would be misled into believing that a

toxicant possessed a threshold, below which the toxic

effect disappeared, when in fact, the lower

concentrations caused toxicity under exactly the same

time-concentration relationship as at higher

concentrations.

Contributing to the misinterpretation of data used in

Figure 14, would be the failure to maintain a regular

increase of exposure.  The important change in

exposures is the ratio between successive exposure

levels, not the absolute increase (Section 2.3).  In

most of the test shown in Figure 14, successive

exposure times represented a doubling, or close to

that.  The final pair of inspections represent a three-

day interval (from 7 days to 10 days) which might

seem like a relatively long interval, and indeed, plots

as a long interval on the arithmetic scale.  However, it

represents an increase of only 1.4 times, and therefore

allowed less opportunity for change in observed

effect, than did the earlier doubling changes, such as

from 1 to 2 days, and 2 to 4 days.  This type of 

39   An arithmetic scale of concentration would be used
instead of a logarithmic one, if the “toxic agent” being

studied was temperature or pH, which is already

logarithmic.

40   No standard method of statistical testing has been
established to determine whether an asymptote had been

obtained.  It seems unlikely that any simple method will

be provided,  partly because of the non-independent

repeated observations on the same groups of organisms.
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Figure 13 Toxicity curves for two hypothetical toxicants.   Curves were obtained by fitting lines by eye to

all of the LC50s.  Logarithmic scales are used for time and concentration.  Toxicant A reached an

incipient LC50, because the curve became asymptotic to the time axis after about two days. 

Toxicant B did not reach an asymptote.

mistake seems to be establishing itself in acute tests

of soil toxicity (Lanno et al., 1997) and should be

remedied.

Estimating the incipient EC50.  It is not

appropriate to report an incipient EC50 which has

been estimated by eye from a toxicity curve.  Instead,

the curve is used to determine an exposure time that

appears to be in the asymptotic region, and a final

(incipient) LC50 is formally calculated for that time,

using a standard technique (Section 4.5),  that

provides an accurate EC50 with 95% confidence

limits.

The OECD (2004) advises against using toxicity

curves: “This is not a proper method and should be

avoided”.  However their arguments are not well

taken and their main statistical objection is that the

“dose-response data at different time points are not

independent ...”.  That would not appear to be a

problem since the toxicity curve is merely an

informal way of visualizing when acute effects seem

to have ceased.  As recommended here, the definitive

calculation of the incipient EC50 is done in a standard

way, completely independent of any data on effects at

earlier times.  A toxicity curve can add a great deal of

insight for understanding toxic effects in a test, and

investigators should not be dissuaded from using this

tool, by the comments of the OECD.

Designing a test with a toxicity curve in mind might

require that additional low concentrations should be

tested.  The benefit, however, is that a plotted toxicity

curve will usually increase understanding of the

toxicant's hazard.  In aquatic testing with fish, most

toxicants produce an incipient LC50 in the standard

96-h exposure (Sprague 1969), while a threshold

seems likely in 14-d soil tests with earthworms

(Lanno et al., 1997).
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Figure 14   Improper toxicity curve on arithmetic axes.   For the arithmetic axes in the upper panel, the curve     

                    flattens out parallel to the time axis on the right-hand side.  An investigator would be misled to believe    

                    that a threshold of acute toxicity had been achieved, so that toxicity would not occur at lower                   

                    concentrations.  In the lower panel, the data are replotted with correct logarithmic axes, resulting in a       

                    straight-line toxicity curve.  No threshold is evident, and acute toxicity seems likely to continue to lower 

                    concentrations, a dangerous type of toxicant.  Hypothetical data.

For Environment Canada tests, an EC50 should be

estimated for the standard exposure time stipulated in

the methods document, such as 96 hours for fish, or

14 days in soil tests with earthworms.  If that standard

EC50 also represented an incipient EC50 as described

previously, that should be reported.  If an asymptote

was obtained only after longer exposure, a second,

incipient EC50 should be estimated for that longer

time and reported as an additional meaningful

endpoint.  It is beneficial to submit a toxicity curve as

part of any report on a lethal test.  If there is no

asymptote observed, an investigator should point that

out; apparent absence of a threshold is of

considerable toxicological importance.
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There appears to be some renewed interest in time-

related modelling of toxic effects, as indicated in

following sections.

5.3 Modelling Effect-times and Toxicity 

Curves

Statistical modelling of results is not part of

Environment Canada's standard tests, so the topic is

not extensively examined here.  Some mention is

made for investigators who might wish to proceed

further in analyses of their tests.

There are a few publications on statistical

descriptions of toxicity curves.  A pioneering study

by Alderdice and Brett (1957) fitted a rectangular

hyperbola to lethality data for Canadian pulp mill

effluent.  An incipient LC50 was derived.  Carter and

Hubert (1984) developed a generalized polynomial

equation (growth-curve type), using a multivariate

linear model.  This was incorporated into a BASIC

computer program by Hong et al. (1988).  They used

the program to describe a 14-day toxicity test with

fish, producing a three-dimensional graph, time-

independent LCps, and toxicity curves with

confidence bands.  The program has not received

wide use.  It had deficiencies of not allowing for

control effects, and of modelling with arithmetic

values of time, so the curves gave a distorted

impression of toxicity relationships.

Heming et al. (1989) used time-related analyses in an

excellent study of the effects of the insecticide

methoxychlor, on several species of fish.  They were

successful in demonstrating several fits for standard

toxicity curves.  Four models gave good descriptions

of the curves, out of eight models tried.  Kooijman

and Bedaux (1996) offer a complete program

(DEBtox) for analysis of toxicity data.  The program

has options for analysis of data on EC50s and median

effective times (ET50s), with confidence limits and

consideration of the time of response.  Others have

used a plot of a fitted survival model, to show a three-

dimensional relationship between concentration, time,

and percent effect (Newman and Aplin, 1992).

Periodic attempts were made some decades ago to

extrapolate toxicity curves for lethality, to predict

threshold toxic effects, including sublethal effects. 

Lee et al. (1995) revived this quest in a sophisticated

way by developing three models to predict chronic

lethal effects in fish.  They applied multiple

regressions to data on acute lethality, with choices of

data transformed to log concentration and log time,

reciprocal of time, or log of reciprocal of time.  Trials

against 28 sets of data showed that predicted values

were generally close to observed chronic lethality,

and at least of the same order of magnitude.  The

practical application of the method would be using

inexpensive acute tests to identify dangerous

pollutants that deserved study by more expensive

chronic tests.

5.4 Analyses of Survival over Time

Key Guidance

• Mortality/survival rates and analysis

represent a group of advanced statistical

procedures for examining toxic effects.  They

are well-known in biomedical research, and

recent literature shows relevance for

environmental toxicity.  The research

techniques would need to be tailored for

routine use by investigators.

• The “repeated measures” procedures of

statistics might often be appropriate for

analysis of repetitive test observations.

5.4.1 Mortality Rate

Mortality and survival represent two sides of a coin,

but Borgmann (1994) developed an approach in

environmental toxicology, which integrates the

effects of time and concentration under the name

mortality rate.  The approach could be beneficial in

research, particularly for long exposures which

combine observations on mortality with sublethal

effects such as weight.  It would be useful for long-

term tests with sediment and invertebrates, in which

there is often continued mortality.  It is also

advantageous when there are few concentrations with

partial effects.  Investigators interested in pursuing

this approach could gain an appreciation of its

methods and applications in Borgmann (1994).

Although the mortality rate is a continuous or

quantitative variable, Borgmann (1994) uses it to
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integrate mortality, which is a quantal effect.  The

mortality rate model starts from the different

assumption that all of the test organisms have the

same sensitivity to the toxic material, and that

mortality is a random event which can be quantified

as a rate.  Total mortality rate can be statistically

separated into components of control mortality and

toxicant-induced mortality rate.  A concentration-

effect curve can be produced, and the LC50

estimated.  The approach can also be used for

production rate of biomass.  Guidance on working

with rates is given in a textbook by Fleiss (1981).

5.4.2 Survival Analysis

A particular group of techniques is signified by the

name survival analysis, often used in biomedical

studies.  These are well-established and profitable

methods of examining time-related toxic effects,

although they are somewhat complex (Newman and

Aplin, 1992).  A brief but excellent introduction is

given by Crane and Godolphin (2000).  They provide

examples and access to the literature for such topics

as two-step linear regression, multifactor probit

regression, survival-time modelling, and kinetic

models.  The kinetic approach includes more-or-less

theoretical consideration of the behaviour of toxicants

in living organisms, with the possibility of better

determining incipient toxic concentrations and true

no-effect concentrations (NEC).

Heming et al. (1989) applied these techniques in their

applied consideration of pesticide toxicity (see

Section 5.3).  Another good example of survival-time

modelling is provided by Newman and Aplin (1992),

who analyzed salt toxicity to a freshwater fish.  They

did standard analyses for LC50s, but showed that

survival-time modelling provided much more

information.  Their methods allowed median survival

times at any given concentration of toxicant, low

levels of mortality such as 5%, and toxicity for a

given body weight of fish to be predicted, all with

accompanying estimates of standard errors.  

Newman and Aplin (1992) recommended the SAS

procedure LIFEREG for these analyses.

Among the strongest proponents of these more-

sophisticated analyses for environmental toxicology

are Kooijman and Bedaux (1996; also Kooijman,

1996).  A comprehensive introduction to these

advanced topics, for those with some statistical skill,

is provided in a recent book by Crane et al. (2002). 

Chapter 5 of the book shows the advantages of

survival-time modelling compared to conventional

probit/logit analyses of acute lethality.  The book

proceeds to more advanced techniques of time-related

analyses, such as life tables and exponential survival

functions.  Dixon and Newman (1991) point out that

analyses of effect-times are “readily implemented

with several common software packages” including

SAS and SYSTAT, but that does not represent an

easily accessible program tailored to the needs of all

toxicology laboratories.  Another source of

information on survival analysis is Parmar and

Machin (1995).

5.4.3 Repeated Measures

Repeated measures is the name applied to

procedures and analyses based on measurements

collected over time from the same source.  If a blood

sample were taken from a fish on several occasions,

that would yield repeated measurements on a

sampling unit.  If measurements were made on

aliquots of an algal suspension extracted from a

larger vessel over time, the repeated measurements

would be made on the experimental unit.  (These

would not be subsamples, which would be collected

simultaneously.)  The approach is not often used in

environmental toxicology and changes in effect over

time “can and often should be analyzed using

repeated measures and related approaches, but those

approaches may be more complex” than the design

which is shown in a table for ANOVA (Paine,

1996).  There is a need for someone to establish a

pattern for using these more sophisticated

approaches to time-effect data in environmental

toxicity studies.
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Section 6

Point Estimates for Quantitative Sublethal Tests

Estimating the endpoints of sublethal tests is a major

interest in environmental toxicology.  Four of the nine

topics discussed by Canadian environmental

toxicologists at the Quebec City meeting, were

specifically focused on determining sublethal

endpoints (Miller et al., 1993).

This section starts with orientation on choosing

endpoints and general items for all sublethal tests and

proceeds with specific coverage of quantitative point

estimates that can be used to describe sublethal

effect.  Sublethal tests get further coverage in

Sections 7 and 8.

6.1 General Items on Sublethal Tests

In quantitative toxicity tests, the investigator does not

merely observe whether an organism shows an effect

or does not show it, but instead makes quantitative

(continuous) measurements.  The weight of each test

organism might be measured in grams, the number of

progeny might be counted, the activity of an enzyme

might be measured, etc.  Whole-organism effects are

of great practical interest, and are considered in this

document.  The effects commonly measured are

attained size, degree of larval development,

fertilization, germination, and number of young

produced.  In a few cases, the sublethal effects are

quantal but can be treated as quantitative because of

the large numbers of observations (see following

text).

The quantal methods described in Sections 4 and 5

are neither appropriate nor valid for quantitative

measurements, and no attempt should be made to

apply them.  However, mortality might sometimes be

an additional measurement in a test designed to show

sublethal effects, and quantal analysis would be

appropriate for that mortality data in dual-effect tests

(Section 8).

There is a choice of approaches and methods in

sublethal tests, and some comments on that choice are

made here.  Some general items are also covered here

since they apply to both point estimates (this Section)

and hypothesis testing (Section 7).

6.1.1 Types of Tests and Endpoints

Key Guidance

• Environment Canada has published a

variety of sublethal methods for testing

water, sediment, and soil, using chronic,

sub-acute, or acute exposures.

• Most of the tests involve quantitative

effects, e.g., measurement of the weight of

organisms.  Some quantal effects could

also be measured in the same test, such as

mortality after long exposure, or mortality

of the first generation of earthworms.

• A point estimate is recommended as the

best quantitative endpoint.  This is usually

a specified degree of reduction in

performance compared to the control,

most commonly 25% impairment in

Environment Canada tests.  An example

would be the concentration associated

with a weight that was 25% lower than the

control.

• Unsatisfactory methods of analysis have

been commonly used for making point

estimates.  The method of interpolation is

easy but neglects much of the data.  More

sophisticated methods using linear and

nonlinear regression are becoming more

widely used, and are now standard in

Environment Canada's new methods for

soil toxicity.  The methods require that

laboratory staff understand the

judgements in selecting appropriate

mathematical models.

• Hypothesis testing is commonly used to

identify concentrations with significant

effects compared to the control.  This

method has many flaws and is not

recommended for future use (see 

Section 7).
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Types of Tests.  In recent years, Environment

Canada has produced standard methods for a number

of sublethal toxicity tests, mostly for free-living

aquatic organisms and sediment-dwellers.  Further

methods for sediment and soil toxicity are under

development.  The tests are catalogued in Appendix

A, and are briefly listed here to indicate the wide

range of organisms and sublethal effects (EC, 1992a–

f; 1997a,b; 1998a,b; 1999b; 2001a,b; 2002a;

2004a–c).  Some of the toxicity tests use hypothesis

testing for analysis, but quantitative point estimates

are recommended for most of them.  Some tests are

dual-effect (Section 8), and are so marked in the list. 

The second effect is often quantal, usually mortality

which is obviously not sublethal.

Organisms Type of Test

Marine luminescent Sublethal functioning in liquid

bacterium, as indicated by amount of 

Vibrio fischeri. light produced.

Sublethal functioning in

sediment.

Freshwater green Inhibition of growth and

alga, Pseudokirchneriella reproduction as indicated by

subcapitata [formerly number of cells.

Selenastrum 

capricornutum] 

Freshwater aquatic plant, Inhibition of growth.

Lemna minor.

Terrestrial plants. Emergence and growth of

plants exposed to contaminants

in soil.

Marine and estuarine Inhibition of growth in

polychaete worms. sediment and mortality (dual

 effect).

Earthworms in soil. Avoidance behaviour.  Number

and growth of progeny, 

mortality of first generation

(dual-effect).

Springtails. Number of progeny and

mortality of first generation

(dual effect).

Marine echinoids, sea Fertilization success after

urchins, and sand dollars. initial exposure of sperm,

continued after adding eggs.

Freshwater crustacean, Number of young produced,

the waterflea and long-term mortality of the

Ceriodaphnia dubia. adults (dual-effect).

Marine/estuarine Apparent avoidance of

crustacean amphipods sediment, ability to burrow and

rebury, and 10-day mortality

(dual-effect).

Freshwater crustacean Growth (weight increase) and

amphipod mortality in sediment after a

Hyalella azteca. 14-day exposure (dual-effect).

Freshwater midge Growth (weight increase) and

larvae (Chironomidae)  mortality in sediment after a

Chironomus tentans 14-day exposure (dual-effect).

or C. riparius.

Cyprinid freshwater fish, Growth of newly hatched

the fathead minnow. larvae, and their mortality

(dual-effect).

Freshwater salmonid fish. Success in development of 

embryos, embryo/alevins, or 

embryo/alevins/fry.

Quantal endpoints.  A test designed to measure

sublethal effects might also have mortality as one of

several effects.  There might be short-term mortality

at higher concentrations.  Chronic exposure might

have various sublethal effects that would finally

cumulate and cause death.  Analysis of mortality

should be done by probit regression or other quantal

method (Section 4).

There are a few quantal sublethal tests.  One measures

avoidance of contaminated soil by earthworms (EC,

2004a).  The analysis would produce an ECp, using

the same quantal procedures as for LC50 (Section 4). 

Two other tests measure fertilization success with

gametes of rainbow trout (EC, 1998a) and echinoids

(EC, 1992f).  The effect is quantal, but an alternative

analysis can be used for the echinoids, as described in

the following text.

Quantitative estimates on quantal data.  If the

number of quantal observations (organisms) is large,

$100 in a replicate, it is acceptable to analyze the data

as if they were quantitative.  An example would be

the echinoid fertilization test (EC, 1992f), which has

counts of 100–200 eggs per container.  The eggs are

classified as fertilized or not fertilized, i.e., quantal
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data as indicated previously.  Because of the large

numbers, however, the change in percent effect

caused by one individual reacting, would be low

enough that these data can be treated as if they

represented a continuous distribution 41.  Environment

Canada recommends estimating the ICp, a

quantitative endpoint, in the echinoid test.  There is

an optional extra of hypothesis testing, although it

retains all the disadvantages listed in Section 7.1.2. 

Another example is in tests of algal

growth/reproduction, in which the basic variable is

the number of cells, which is quantal.  Because there

can be thousands or tens of thousands of cells, the

distribution of numbers can be considered continuous

and the test is treated as a quantitative one.

On the other hand, Environment Canada's early life-

stage test with salmonids has only 40 eggs per

container for a total of 120 per treatment (EC, 1998a).

The test yields quantal data (viable/non-viable eggs),

and the required endpoints are EC25 and EC50,

appropriate for these numbers of individuals.  The

numbers in the containers are not high enough to treat

the data as if they were quantitative.

Quantitative point-estimates.  The preferred

quantitative endpoint in sublethal tests is called a

point-estimate, which is a specific point on the

continuous scale of concentration (see Section 6.2.2

for a list of advantages).  Usually the endpoint is

chosen to represent a certain degree of reduced

performance compared to the control, e.g., 25% fewer

progeny than the number produced in the control. 

The method has a basic assumption that there is a

reasonably regular dose-effect relationship that can be

used to estimate the single endpoint.

There are two main problems with using a point-

estimate.

    • First, selection of an appropriate degree of

impairment is clearly a subjective choice by the

investigator or by consensus of the profession

(should it be 25% impairment, or 10% as is

fairly common in Europe?).  Choosing the

greater degree of effect (25%) will make it

more clearly the result of the test material and

not merely experimental variation.  A lower

level of effect (e.g., 10%) will mean that the

endpoint is closer to a truly “safe”

concentration (see Glossary and Section 6.2.4).

    • Second, the distributions of effect assume a

variety of shapes, and accordingly, require a

variety of mathematical models to describe

them.  However, real progress has been made in

developing a standard approach, which starts

with selecting a suitable model from a small

suite of choices (Section 6.5.8).

An investigator considering suitable methods of

analysis could follow Figure 15 downward to the left

through “Point estimate”, and find two general

choices of method, described in Sections 6.4 and 6.5.

     • First is the nonparametric method of

Smoothing and Interpolation.  This has been

the usual method for analysis, but it has several

deficiencies and deserves to be replaced

(Section 6.4.1).

     • A second choice is regression, either linear or

nonlinear, suitable for a variety of dose-effect

distributions.  General-purpose statistical

programs such as SYSTAT can be used in a

standard analytical approach, now adopted by

Environment Canada (Section 6.5.8).  The

toxicological program CETIS also offers

mathematical models for nonlinear regression. 

There is a continuing requirement for some

mathematical knowledge, to select the

appropriate nonlinear model and carry out the

mathematical treatment.

41  The quantal (binary) data will predictably adhere to a
binomial distribution, and appropriate statistical analyses

would use methods for that distribution such as the chi-

square test.  However, with the large numbers, the

distribution of observations comes to resemble a normal

distribution.  Little bias or error is introduced by using

quantitative statistical techniques to obtain an endpoint.

For example, if 10 eggs were in a replicate, and eight were

found to be fertilized, then each egg had an influence of

10% on the results, from 70% total effect if that egg had

been unfertilized, to 80% total effect if it were fertilized. 

That 10% jump is an abrupt and appreciable change,

indicative of the quantal nature of the data.  However, if

there were 100 eggs in the replicate, each egg could

influence the overall result by only 1%, say from 70% to

71%.  For all practical purposes, that represents a

quantitative effect.
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Participation of a statistician in design and analysis

(Section 2.1) is especially important in sublethal

point-estimates.  Some of the more sophisticated

methods towards the end of Section 6 have an

absolute requirement for qualified statistical advice.

Hypothesis testing.  This alternative to point-

estimates has been commonly used, and is allowed

but no longer recommended in various new test

methods of Environment Canada.  The approach

determines the lowest concentration which caused a

statistically significant effect in the test (the LOEC;

right side of Figure 15).  It is described with its

deficiencies in Section 7.

6.2 Elements of Sublethal Point Estimates

Key Guidance

• The ICp (Inhibiting Concentration for a

specified percent reduction of

performance) is the standard endpoint for

quantitative sublethal tests.  The value of

“p” in ICp is commonly 25% or 20%, or

sometimes 10% in Europe.  It is selected

by biological judgement, and has no

statistical root.

• Europeans and some groups in the USA

often call this endpoint the ECp, a

misleading error since that refers to

quantal tests in which a specified

proportion of organisms show a

particular effect.

• The ICp brings many advantages.  It is a

single concentration, confidence limits

can be calculated, and variability of data

should not systematically influence its

value.  Disadvantages are fewer and

minor.

• Replication might not be required by a

test document, but even modest

replication is beneficial.  It can help

distinguish between (a) variability within

the test, and (b) deviation about the model

selected as the dose-effect pattern. 

Extensive replication is needed when

determining endpoints with nonlinear

regression.

• Before formal mathematical analysis, a

hand plot of results should be made to

inspect the general form of the dose-effect

curve, and to provide a rough endpoint to

check the computerized estimate.

6.2.1 Terminology

The name for a quantitative sublethal point estimate

in North America is ICp, signifying the Inhibiting

Concentration for a (specified) percent effect.  It is

the concentration that is estimated to cause a

designated percent impairment in a biological

function, compared to the control.  For example, an

IC25 could be the concentration estimated to result in

25% fewer progeny per brood, relative to the control.

Quantitative sublethal effects should not be described

with the terms EC25, EC50, etc.; those terms are for

quantal data (effective concentration for a specified

percentage of individuals).  Referring to 25% of

individuals being affected (EC25) is quite a different

thing than referring to a performance that is 25%

“worse” than that of the control (IC25).  Using the

correct term provides information to others about the

type of test, type of data obtained, and appropriate

type of analysis.  Use of the incorrect term is

misleading.

Particularly disturbing is the incorrect use of EC50 in

Europe, even by technical people of some reputation,

and especially by working groups of the OECD and

ISO.  This mistake also occurs in North America, in

some statistical packages (CETIS), among

mathematicians (surprisingly), and  notably for tests

of bacterial luminescence.  Even the USEPA

sometimes fails to draw a clear distinction between

quantal and quantitative tests when describing point

estimates (USEPA, 1995).

Other names and symbols have been suggested for

endpoints of particular statistical techniques, but ICp

seems suitable for all quantitative estimates.

6.2.2 Advantages of Point Estimates

The chief advantages of point estimates are that a

single concentration is obtained as the endpoint and

confidence limits can be estimated.  A list of other

advantages follows, in comparison to the alternative

approach of NOEC/LOEC.  Most of the items assume

that the point estimate was obtained from a

regression.  Similar lists have been provided by
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Stephan and Rogers (1985); Pack (1993); Noppert et

al. (1994) 42; Chapman, (1996); Moore, (1996);

OECD (1998), and others.

(a) A single concentration is designated as the

endpoint.

(b) The endpoint can be any concentration within the

range tested, and does not have to be a

concentration selected by the investigator and

used in the test.

(c) Confidence limits can be placed on the endpoint. 

Other customary expressions of variation can be

calculated, such as the standard deviation.  

(d) The value of the endpoint would not usually be

biased in a consistent direction by the degree of

natural variation, by variation induced by the

investigator's care in conducting the test, or by

the number of replicates (the precision, however,

could be influenced).

(e) Choice of """", the level of statistical significance,
does not affect the estimate of toxicity.

(f) If the endpoint is estimated by regression, the

particular method chosen would usually have a

relatively small effect on the estimated endpoint,

at least for central values of “p” in ICp.

(g) Use of ICp encourages the consideration of

degrees of impairment in the real world, and

discourages thoughts that the NOEC derived by

hypothesis testing is a biological “no-effect”

level.

Disadvantages of point estimates can also be listed. 

Some of these simply indicate problems to be solved,

or methods which still have to be standardized.

(a) The magnitude of effect for the endpoint (the “p”

in ICp) is not an absolute, and requires subjective

input and concordance among investigators.

(b) Precision of the estimate of the endpoint depends

upon the number of test concentrations, their

numerical values, the number of replicates, and

on the selection of an appropriate mathematical

model for the relationship.  Thus, the choice of

concentrations may influence the estimated ICp,

particularly for low values of “p”.

(c) Confidence limits become wider for smaller

values of “p” in ICp.

(d) The model chosen to fit the data can influence the

value estimated for the endpoint, particularly

again, for endpoints of low effect.

6.2.3 Replicates

Section 2.5 provides full information on replication

for point estimates.  For regression, only one

measurement at each concentration is an absolute

requirement for estimating the endpoint and

confidence limits.  However, replicates are needed if

the investigator wishes to choose among linear and

nonlinear models to fit the data and assess the

goodness of fit.  For less desirable estimation of an

endpoint by smoothing and interpolation (ICPIN,

Section 6.4), there must be at least two replicates for

each concentration to calculate confidence limits, and

five or more are desirable.  Environment Canada

documents usually recommend three replicates for

point estimates, in case they are needed for

hypothesis testing, but four would be needed for

certain methods of nonparametric analysis.

6.2.4 Selecting the Degree of Effect for an

Endpoint

The choice of a value for “p” in ICp is entirely

arbitrary.  It is a judgemental decision made by

investigators, not something that is governed by

mathematics.  In North America, there have been

some informal attempts to establish IC20 as a

standard endpoint in aquatic tests, but IC25 is more

frequently used than other values (i.e., 25% reduction

in performance).

There has been some justification of the IC25 as

being similar, in many cases, to the NOEC 43.  That is

42   Alternatively, see deBruijn and Hof (1997), van der
Hoeven (1997), and van der Hoeven et al. (1997).

43   The evidence is not copious.  One major comparison
for aquatic tests indicated that the IC25 was similar to the

NOEC for 23 effluents and reference toxicants, in

sublethal tests with sea urchins, sheepshead minnow, and

the red macroalga Champia (USEPA, 1991a).  A set of

tests with daphnids and a single reference toxicant also

showed similarity of the two measurements (OECD,



88

not a particularly good argument in view of the many

deficiencies of the NOEC/LOEC approach (Section

7).  The relationship between ICp and NOEC could

change with the power and variation of a particular

test, with the effect measured, and with the material

tested.

Europeans have found that estimation of IC10 is

feasible in several types of tests.  It has been used to

describe inhibition of algal growth (ISO, 1999) and is

sanctioned for other methods of the International

Organization for Standardization (ISO, 1998). 

Certainly the IC10 is an acceptable endpoint in tests,

if it can be estimated with suitably narrow confidence

limits, and certain other conditions are satisfactory

(see following text).  Promoting the IC10 as a

potential endpoint might help to replace the less

desirable NOEC/LOEC.  Some clients of testing

programs, among industry and environmental

organizations, feel that the endpoint of a test should

sound “safe”, and NOEC has that sound.  The IC10 is

obviously closer to a no-effect level than is the IC25,

and gives a stronger impression of a low and

relatively protective endpoint.

The Statistical Advisory Group of Environment

Canada listed various influences in choosing a

suitable value of “p” (Miller et al., 1993), and these

are given here in abbreviated form.

    • The basic question is whether to choose the value

of “p” in ICp on the basis of ecological

significance, or for statistical convenience.

    • A low value of “p” is desirable from the

biological point of view, to obtain a sensitive

estimate of toxic action.

    • A low value such as IC10 would mean working at

one end of a dose-effect relationship, perhaps

resulting in undesirable variation of the estimate. 

An IC50 would be statistically desirable, but

biologically, a lower value of “p” would be

required in sublethal tests.

    • The option of a low value of “p” will be specific

to the type of test and the effect measured.  If a

variable effect were being measured, an IC10

might well be within the zone of normal

biological variability, resulting in uncertain

interpretation of the endpoint.  The variability

observed in the control should play a part in

selecting the value of “p”.

    • IC25, or sometimes IC20, seems to have gained

favour in North America and some other

countries, as a good minimum for indicating a

“biologically significant” change.

The “p” of ICp should have a value that is greater

than whatever value is specified in the methods

document as the upper limit of acceptable effect in

the control and this qualification should be added to

the second last point.  The IC10 would generally

seem to be a practical lower limit as a dependable

endpoint.  Considerations on choosing a “p” for ICp

are somewhat parallel to those for quantal endpoints

(ECp) mentioned in Section 4.2.5.

Statistically, there is a definite situation of wider

confidence limits on the ICp as “p” becomes lower. 

For very low values of “p”, it might be difficult to

obtain a reasonable estimate of a concentration with

acceptably narrow confidence limits.  Part of this

effect is because the ICp and its limits might be

estimated by inverse regression, in parallel fashion to

quantal estimates of ECp (see Section 9.4 44). 

Working in the tails of the regression, the limits

1997).  A compilation by Suter et al. (1987) of 176

sublethal tests with fish indicated that the IC25, on

average, was almost equal to the TOEC (a higher

concentration than the NOEC).  However, even the mean

ratios IC25/TOEC, for various effects on the fish, varied

from 0.5 to 3.2.  Later, Suter et al. (1995) concluded that

a sublethal inhibition of 20% to 25% was about the lowest

that would correspond to a statistically detectable effect

(LOEC).

44   Briefly, the investigator chooses a set of
concentrations and observes the effects at each of them.  If

a regression is fitted, the effect is the dependent variable,

and log concentration is the independent variable.  The

confidence intervals of the regression are in terms of the

effect, and as always, they are wider at the extreme

concentrations than in the “centre”.  The investigator

wishes to reverse the interpretation, with confidence limits

expressed in terms of concentration about an endpoint

(concentration) which is estimated to cause a specified

effect (p).  This can be considered an “inverse

regression”.  The inverted limits are asymmetric, and in

the lower part of the regression, the lower limit can

become particularly wide (similar to Figure 7).  See

Section 9.4.
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become large, and for concentrations at the low end,

it is not uncommon to have the lower limit go to

infinity when inverse regression has been used.

The choice of concentrations can reduce this problem. 

Since confidence intervals always flare out from the

mean of the independent variable, a good design for

the experiment would mean that the independent

variable (concentration) would be centred on the 

p-value of interest.  Concentrations, therefore, should

be selected so that they were near the endpoint of

interest, say the IC10.  Of course that is a little

difficult to foresee, and there are conflicting priorities 

(Section 2.2), but the principle should be kept in

mind.

General experience indicates that the IC10 is less

desirable in the tests commonly done with the

methods of Environment Canada because it can

experience wide limits.  The selection of IC25, as has

become customary for Environment Canada and more

broadly in North America, or the IC20 as an

alternative, has merit as an achievable endpoint that is

still meaningful.

6.2.5 Selecting the Biological Variable for an

Endpoint

The effect that is to be analyzed might influence the

ICp, moving it higher or lower.  Accordingly, the

choice of effect might be an important influence in

selecting the value of “p” in ICp.  This could be

particularly important in dual-effect tests, a topic

considered in Section 8.

6.3 General Steps in Estimating a Sublethal

Endpoint

Key Guidance

• A rough hand-plot of the data should be

the first step in analysis.  This shows the

general nature of the results and provides

a check on the final estimate of the

endpoint.

• Linear or nonlinear regression is the

method of choice.  If that cannot be done,

the alternative is to fall back on a

common method using interpolation (the

“ICPIN”procedure).

6.3.1 Plotting Data

Plotting by hand should be the first step in analysis

and need not be time-consuming.  Plot the effect for a

given logarithm of concentration, whether the effect

is size attained, percent inhibition of reproduction, or

some other quantitative effect (see sample results in

Section 10, Figures 22–31, and Appendix P, Figure

P.1).

A list of advantages of the rough plot follows.

(a) The plot will show anything unusual in the

results.  It might be something of considerable

interest biologically, which would not be noticed

otherwise.

(b) The general shape or form of the dose-effect

relationship will be evident, which could prevent

forcing the data into a mathematical model that

was unsuitable.

(c) A rough estimate of the endpoint can usually be

made from the graph.  If the endpoint from

mathematical analysis does not agree reasonably,

the cause of the divergence should be sought. 

Sometimes, that could help the investigator to

avoid reporting a result which contained an

unexpected arithmetic oversight or an incorrect

transfer of data 45.

Alternatives could be plotting the raw data onto a

computer-generated graph, or vice-versa.

6.3.2 Choosing the Method

Linear/nonlinear regression analysis is the method of

choice for quantitative sublethal tests in Canadian

laboratories of environmental toxicology.  Guidance

on these methods is available (Section 6.5.8), and 

Environment Canada now requires regression

analysis as the primary choice for tests of growth and

reproduction in soil organisms (EC, 2004a–c).

The most common method used in the past, and the

easiest choice, has been Smoothing and Interpolation

(see Section 6.4).  The notable deficiencies of this

45   Good computer programs often include a component
to plot the results, which is useful, but as pointed out in

Section 4.2.2, it is not a substitute for a graph drawn by

hand.  If there had been an error in entering data, the

computer-drawn graph and the calculations would agree,

but both would be incorrect.
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method have been known to Canadian investigators

for many years and were described at the Quebec City

meeting of the Statistical Advisory Committee

(Miller et al., 1993; see Section 6.4.1).  The

participants recommended regression analysis as an

alternative procedure and expressed the need for

guidance in selecting the appropriate model.  As

mentioned, this guidance is now available.

6.4 Smoothing and Interpolation

Key Guidance

• This method has been in standard use

across North America, and should now be

phased out in Canada in favour of

regression methods.  It is convenient

because the only assumption about the

pattern of results is that effect increases

with concentration.

• The ICp is estimated by interpolation

between the two adjacent data-points,

which is less desirable than a regression

approach using all the data.

• An initial step in analysis adjusts the raw

data so they are monotonic, which to a

limited extent, can make use of the wider

distribution of data.

• Calculation of the ICp is simple enough to

do by hand, but a convenient computer

program is freely available (“ICPIN”).

• At present, the computer program fails to

adopt a logarithmic scale of

concentration.  Canadian users of the

program must enter the concentrations as

logarithms.

• Confidence limits cannot be calculated by

the usual methods.  Instead, the computer

program is used for a “bootstrap”

estimate.  The computer resamples from

the original measurements at least 240

times (a recommended minimum), to

estimate confidence limits.

6.4.1 General Critique

This method of interpolation was introduced by the

USEPA (Norberg-King, 1993) and is available as the

computer program ICPIN.  Estimates by linear

interpolation have some conceptual problems (see

following text), but the interpolation method is

versatile.  It has been the usual way of obtaining a

quantitative point estimate in North America, in the

previous absence of a convenient statistical package

for regression.  ICPIN is little known in Europe at the

time of writing (Niels Nyholm, 2001, personal

communication, Technical University of Denmark,

Lyngby, Denmark).

Some general deficiencies of smoothing and

interpolation have been listed as follows, by the

Statistical Advisory Group (Miller et al., 1993).

    • inefficient use of data, since the method

interpolates between only two concentrations

bracketing the endpoint, and neglects the overall

relationship between effect and concentration

(except for some general influence of

smoothing);

    • sensitive to any irregularities or peculiarities of

the two concentrations used;

    • fails to use logarithm of concentration,

introducing a slight bias into the calculation of

ICp, towards a higher value; and,

    • the “bootstrap” method of calculating confidence

limits sometimes produces unrealistically narrow

limits.

The three assumptions that follow are implicit in the

Smoothing and Interpolation method.  (Sometimes

this is called an “assumption-less” method because it

does not postulate any particular form of dose-effect

curve, but nevertheless there are some assumptions.)

    • The effects must increase monotonically at each

successive higher concentration (or at least, they

should not decrease).  If this requirement is not

met, it is imposed by mathematical manipulation.

    • The method assumes that effects increase linearly

between two successive concentrations. 

(Sometimes described as following a “piece-

wise” linear function, a term with various

connotations.)
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    • The effects should come from a representative

sample of test data that is random and

independent, an assumption that applies to most

statistical analyses.

In practice, problems with the required assumptions

are seldom recognized when carrying out this

procedure.  For the first requirement (monotonic

series), the data are simply adjusted as necessary, to

make the series monotonic.  There is no way of

testing the second assumption (piece-wise linearity). 

There is seldom, if ever, a test of the third assumption

(random, independent results).

The investigator has little opportunity to ascertain

whether the method is producing a reliable result. 

The method should be used with caution if the effects

diverge strongly from monotonic.  The method is

particularly inappropriate for data showing hormesis

(Section 10.3), such as some tests with the alga

Pseudokirchneriella subcapitata.  The method would

also be risky if successive concentrations caused very

low and very high effects (USEPA, 1995). 

Nevertheless, the smoothing procedure will hide such

irregularities, and the method is often used for

irregular data.  Caution in such cases would mean

subjective comparison with the original data and the

hand-drawn graph.

6.4.2 Steps in Analysis

A generalized description of the mathematical

procedures for estimating an IC25 by smoothing and

interpolation is provided in the following steps,

because the method has been so widely used.  When

an example is needed, it is the weight of fish at the

end of a toxicity test.  Appendix N provides a very

detailed description of the analysis, and the computer

program ICPIN.  Investigators who use the method

would do well to understand the steps in Appendix N.

(1) As a subjective check on the quality of data, plot

the unadjusted average weight of each group of

fish against the logarithm of concentration.

(2) Start the linear interpolation by smoothing the

data if the average weight increases between one

concentration and the next higher concentration.

The IC25 is estimated by a simple linear interpolation

between the two concentrations which bracket it. 

Hand calculations (see next steps), follow the same

steps as the computer program ICPIN.  The steps

sound complicated but are actually rather simple

arithmetic.

(3) Calculate the weight that represents the endpoint. 

It is 75% of the average weight of the control

fish, i.e., a 25% reduction.

(4) From the result of step (3), subtract the average

weight at the concentration immediately below

the IC25.  This will normally be a negative

number, in a growth experiment.

(5) From the average weight at the concentration

immediately above the IC25, substract the weight

at the concentration immediately below the IC25. 

This is also likely to be a negative number in a

growth experiment.

(6) Divide the result of step (4) by the result of step

(5).

(7) Calculate the difference between the logarithms

of the two concentrations below and above the

IC25.  Subtract the logarithm of the concentration

just below the IC25, from the logarithm of the

concentration above the IC25.

(8) Multiply the result of step (6) by the result of step

(7).  This is the upward movement of

concentration to the IC25, from the concentration

immediately below it.

(9) Add the result of step (8) to the logarithmic

concentration immediately below the IC25.  The

result is the IC25 as a logarithm.

The ICp cannot be estimated if there is not one test

concentration lower than the ICp, and another higher. 

One can only say that the ICp is lower than the lowest

concentration tested, or greater than the highest

concentration, as the case may be.

A computer is necessary for estimating the

confidence limits (see Section 6.4.3 and Appendix N).

6.4.3 The Computer Program ICPIN

ICPIN runs on personal computers and is available

within commercial packages; however, free copies

are widely available (Appendix N).  ICPIN is easy to

use, has a very clearly written set of instructions, and

the steps for entering and manipulating data are

obvious.
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ICPIN carries out all steps (1) to (9) listed in Section

6.4.2, before it calculates the confidence limits. 

However, the investigator must manually determine

the logarithms of test concentrations and enter those

logarithms, rather than arithmetic concentrations as

specified in the instructions of the program.

A computer must be used to obtain 95% confidence

limits about the ICp.  A technique called

“bootstrapping”must be applied, because the usual

statistical methods cannot be used after interpolation. 

ICPIN does this by calculating a series of ICps that

might have been obtained, based on resamplings of

the original observations (see Appendix N).  To do

this, the toxicity test must have replicates.  From the

distribution of the hypothetical ICps, it is possible to

calculate confidence limits for the estimated ICp.

6.5 Point Estimates by Regression

Key Guidance

 

• Regression techniques represent the

method of choice for estimating ICp. 

There are many relevant publications, and

specific guidance has recently been made

in Canadian test methods.

• Most patterns of sublethal quantitative

effects can be fitted by nonlinear

regression.  Potential patterns are

reviewed here, with step-by-step guidance

in Appendix O.

• No single model of nonlinear regression

can be suitable for all the dose-effect

patterns encountered.  Investigators can

fit most patterns by selecting from five

defined models.  Subsequently, the data

can be fitted and the endpoint estimated

by applying programs from a general-

purpose statistical package.  The choice

and subsequent analysis require some

statistical knowledge, and not simply  the

rote application of a computer program. 

At least one “off-the-shelf” package of

statistical software for environmental

toxicology offers a wide selection of

models for nonlinear regression. 

• Nonlinear regression can fit effect-

distributions showing hormesis.  One

suggested model allows for the hormesis,

yet uses the true control for deriving the

endpoint.

• Environment Canada now requires

regression analyses in the recent toxicity

test methods for assessing growth and

reproduction in soil organisms.

This subsection gives some background on using

regression, then proceeds towards specific procedures

for the regression methods now required in most

Environment Canada tests for soil toxicity.

There has been widespread interest in improving

methods of analysis for sublethal toxicity tests, which

has been largely directed towards regression

techniques.  A workshop on statistical methods

sponsored by SETAC-Europe in 1995 was attended

by some two dozen participants from many countries

(Chapman et al., 1996a), and a similar workshop was

sponsored by the OECD (Chapman, 1996).  

Regression analysis has been a tool in statistics for a

long time (Draper and Smith, 1981), and likely

provides the best method for estimating quantitative

sublethal endpoints.  There has been appreciable

development and standardization of regression

methods for environmental toxicology.

Regression or regression analysis is a mathematical

description of the relationship between two or more

variables.  In this document, the dependent variable

is the observed effect.  Its value depends upon the

independent variable, the concentration, or perhaps

on more than one variable if there are modifying

conditions.  The data are fitted mathematically to a

selected model, then (in toxicology) an endpoint is

picked from the model.  Standard mathematical

techniques can describe a regression to convey useful

information to others.  Effects at high and low

concentrations can be predicted, and confidence

bands can be estimated.  The selected model should

conform to the pattern of the data, even if that model

has no particular biological basis or little theoretical

rationale (Moore, 1996).

A regression approach has the problem that no single

model will fit the diverse dose-effect curves from

sublethal tests.  A spectrum of models is required,

with guidance on choosing the appropriate one.
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Transformation of effects-data is a possible approach

for making the results fit a relatively simple linear

model.  There are advantages and disadvantages (see

Section 2.9.1), and generally it is preferable to avoid

transformations.

6.5.1 ABCs of Regression

The common requirements and essential steps in any

regression (in the context of toxicity tests) can be

stated simply as follows. 

(1) Compile the data-set.

The test has a fixed set of values for the

independent variable (concentration).  At each

of those values, observations are made for the

dependent variable (effect).

(2) Choose a model.

Some relationship between the dependent and

independent variables is proposed by the

investigator.  It is specified as a mathematical

function such as a straight line or logistic curve.

(3) Select a procedure for fitting the relationship to

the data.

First, check that assumptions of the model are

met (e.g., normality of data).  Then, the

parameters of the model are usually estimated

by minimizing the squared deviations of the

observations from the curve which is serving as

the model.  Environment Canada’s standard

method is described in Section 6.5.8.

(4) Calculate and consider the goodness of fit of the

data to the model.

(5) Carry out the inverse estimation of the

concentration predicted to cause the selected

degree of effect (the endpoint, e.g., the IC25).

(6) Find the confidence limits on the endpoint, also

by inverse estimation.

The calculations are normally carried out using a

computer program for regression.

6.5.2 Concepts: Linear, Nonlinear, GLM, and

GLIM

...all models are wrong; some, though, are

more useful than others and we should seek

those.  (McCullagh and Nelder, 1989)

Key Guidance

• In linear regression, the “linear” refers to the

relatively simple nature of the equation.  The

parameters (a, b, etc.) can be estimated by

evaluating a single formula.

• In nonlinear regression, the parameters

are not independent of other parameters. 

An iterative approach is required to

estimate the model parameters.

• General linear model (GLM) describes a

class of similar models.  The class

includes simple linear regression,

analysis of variance, analysis of

covariance, repeated measures, and

others.  Generalized linear model (GLIM,

GLiM) is a broader version of the

approach used for the GLM.  Statisticians

use it to estimate the parameters of

models which include exponential,

binomial, logistic, Poisson, and log-

normal distributions.  The concept is quite

advanced and as yet is not widely used in

environmental toxicology.

• The advantage of nonlinear regression is

that all of the data are used for a point

estimate with confidence limits, for

various shapes of effect-curves including

hormesis. The control measurement is

included in the regression.  Some

knowledge and judgement must be

applied, however, in selecting the model

and applying the statistical procedures.

Non-mathematicians must keep in mind that when

statisticians refer to linear or nonlinear, they are not

describing the shape of a mark drawn by a pencil on a

piece of paper.  They are referring to the relationships

of elements within an equation.  In statistical

parlance, an expression is linear in its parameter(s) if

a solution for the parameter can be written down that

refers only to the data and not to another parameter. 

Linearity refers to the relationship between the effect

and the parameters of the model, not the relationship

between the effect and the independent variable or

variables.  The simplest example of a linear model is

Equation 4 for a straight line (Section 6.5.3).  The

values of """" and ß can be determined by means of a
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little arithmetic, based on the observed values of X

and Y.  Beyond that, a quadratic equation (Equation

5) is still a linear model because its parameters can

also be estimated from the observed data.

In nonlinear regressions, it is not possible to estimate

the values of the parameters from the observed data,

in one step.  An iterative approach must be used to

solve the equations which estimate each parameter. 

(See Section 6.5.4.)

At a more complex level, the words “linear models”

are used in two confusingly similar terms which

differ in meanings to statisticians.  Both are relevant

to analysis of toxicity tests.  The first term, General

linear models (GLM), represents a general class of

models with a single dependent variable (Section

6.5.10).  The class includes familiar models such as

ANOVA and regression and also more complicated

models such as ANCOVA and repeated measures. 

General linear models apply only if the data (such as

weight of organisms) are normally distributed.  Under

the strict definition, binomially distributed data such

as mortality, would not be included.

The second term is Generalized linear models

(GLIM or GLiM), representing an even larger

category of models that includes GLMs as a sub-

category.  GLIMs allow an investigator even more

scope for analyzing quantal or quantitative effects

that arise from either simple or complex arrangements

of independent variables in an experiment (Section

6.5.11).

6.5.3 Linear Regression

The familiar relationship of a straight line (Equation

4) represents a linear model.   (Curved lines can also

be included in the category.)

Y = " +  $X [ Equation 4 ]

The formula describes the relationship between a

measured effect Y which is the dependent variable,

and a predictor X which is the independent variable

and in this case would likely be the logarithm of

concentration.

In Equation 4, alpha and beta (" and $) are
parameters.  Alpha is the intercept of the straight line

with the y-axis, i.e., the value of the dependent

variable (Y) when the independent variable (X) is

zero.  Beta is the slope of the regression, i.e., the rise

in Y for unit increase of X.  For a given set of data,

the parameters would be estimated by some

mathematical means.  Often this is done by least

squares, which estimates the values of the parameters

that minimize the sum of squares of deviations of

observed values from the model.

The relationship might be causal as implied by the

term dependent”, or it might only be a correlation. 

There are only two variables being considered, so this

is simple regression, hence the term simple linear

regression (Zar, 1999).  (There might be more than

one independent variable, in which case a more

complex formula would describe it, as indicated

below under “Multiple regression”.)

Toxicity tests might sometimes yield a relationship

between effect and concentration that appears

straight, at least for the central part of the regression. 

Calculating the best fit of the line (model) to the data

could then be done by conventional means for dealing

with linear regressions, such as least squares.  Indeed,

simple regressions have been used to describe results,

especially for sublethal effects such as growth (e.g.,

Rowe et al., 1983).

Linear regression is a simple model.  If a set of

toxicological data fits the regression satisfactorily,

then the relationship can be used in a predictive

fashion.  For any given or selected value of X (e.g.,

log concentration), one can calculate from the

equation, the predicted value of Y (say the weight of

fish exposed to that concentration).  It is important

that the values of the independent variable X are

created and measured without error.  [As described in

Sections 6.2.4 and 9.4), the toxicological investigator

finally makes an inversion to estimate the

concentration (and its confidence limits) that can be

expected to cause a selected level of effect (e.g., 25%

reduction from control performance, the ICp.)]

A more complete, correct, and explicit description of

the model would add subscripts to Equation 4. 

Although they will usually be neglected in the present

document, they are implicit, and investigators should

expect to encounter them elsewhere.  Subscripts

would be required if an equation represented a set of

observations in a test.  Subscript “I” would indicate

each of the organisms or measurements in the test,

and subscript “j” would indicate levels of toxicant. 
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The modification of Equation 4 would be Equation

4a.

Yij  =  " +  $Xj  [Equation 4a]

Because data points would show scatter about the

fitted line, an error term ( ,ij or eij ) is added to the
equation.  The “e” represents random variability of an

individual measurement “I” at the “jth” concentration. 

The complete linear regression is Equation 4b.

Yij  =  " +  $Xj + eij [ Equation 4b ]

Multiple regressions.  These are included in the

category of linear regression.  The name indicates that

the dependent variable is governed by two or more

independent variables (X1 and X2 in Equation 5).  For

example, the toxicity of a metal might depend not

only on concentration of the metal but also on

temperature of the medium.  Equation 5 might

represent a regression with four parameters ", $1, $2,
and the variance (sigma).

Y  =  " +  $1 X1 +  $2 X1
2 [ Equation 5 ]

Equation 5 falls into several categories.  It can be

called a multiple regression because it has several

terms.  It is also a quadratic function, because of the

added final, so-called quadratic term.  Statisticians

point out that in using such a model for toxicity data,

it should be limited to describing a local effect.  In

theory, the quadratic is inappropriate because it will

predict a decreased effect at some high concentration,

for the usual dose-effect situation.  As stated,

however, it can be useful for describing local effects

within a limited range of concentrations. 

6.5.4 General Aspects of Nonlinear Regressions

The linear relationship (Section 6.5.2) is relatively

simple, and is often insufficient for describing a

complex relationship of effect with concentration. 

The investigator would have to select a more complex

model (i.e., a mathematical function), in an attempt to

fit the toxicity data, and the shape of the dose-effect

relationship might well lead to a nonlinear regression

model.  Two or more of the model’s parameters might

be functions of each other in multiplicative fashion,

as in exponential growth, shown by Equation 6 (Zar,

1999).  Clearly, estimating the parameters of such an 

equation will be more complicated than for a linear

regression.

Y =  " $X [ Equation 6 ]

Often, a function describing a sigmoid shape would

be appropriate in environmental toxicology.  Two

nonlinear models that have often been found suitable,

are the logit and Weibull equations.  The logit model 

is symmetrical while the Weibull model is

asymmetric (see Sections 4.5.1, 4.5.2, and Appendix

J).  Other useful models are detailed in Section 6.5.8.

Once the function (model) is specified, “best”

estimates of its parameters are found by maximum

likelihood or least squares techniques.  As mentioned

previously, an iterative approach must be used to

solve the equations which estimate each parameter.

The iteration used with nonlinear regression might be

described informally as initial “guesses” of the values

of parameters in the model, guesses made by the

investigator or the program used.  In successive

iterations, these initial values are changed upwards or

downwards by the program, to approach more closely

to a fit of the observed data.  In other words, the

program searches for an optimum value for each

parameter.  This model can be visualized as a group

of small hills for the various parameters, with each

parameter having an optimum value at the top of a

hill.  The program can determine at the time of each

iteration, the slope of the hill locally, and hence the

proper direction to go in the next iteration, to move

towards the optimum value of the parameter (“top of

the hill”).  When estimates for all parameters remain

essentially constant in successive iterations, the

procedure has converged to a final solution, i.e., it has

achieved the best estimates of the model parameters

for the particular set of data.

The OECD (2004) points out that it can be important

to make realistic initial “guesses” for the parameter

values.  The final estimates might depend on that

initial choice, because there might be several local

maxima or optima for a given parameter.  In the

visualization, it might be thought of as several small

sub-peaks scattered on the slopes of a big hill.  Since

the program, in any one iteration, can appreciate only

the slope in the immediate vicinity, not the complete

shape of the hill, it might work to the top of a sub-

peak and remain there, in an undesirable

“convergence”.  Hence the importance of an initial

realistic starting point, near the main peak.
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One method of arriving at the final estimates of

variables in an equation is by using least squares

techniques.  Iteration with least squares was referred

to in solving probit regression for quantal data

(Section 4.5.3).  In least squares, the predicted and

observed values of the dependent variable (toxic

effect) are compared at given levels of the

independent variable (log concentration).  The

difference between predicted and observed is called a

residual, and residuals become smaller as a line fits

better.  Residuals are squared and summed and that

“sum of squares” is taken as an assessment of fit. 

Obviously, the lowest sum of squares indicates the

best fit, giving rise to the term “least squares”.

The least squares solution for parameters of an

equation will often be equivalent to those obtained by

maximum likelihood solution, a more sophisticated,

complex, and mysterious mathematical approach.

As indicated in subsections 6.5.7 and 6.5.8, use of

nonlinear regression requires some judgement and

familiarity with the mathematical techniques.  A

general statistical software program is often used,

although there is at least one statistical package

designed specifically for environmental toxicology

(CETIS), that provides a wide choice of models.  The

general methods for regression have existed for some

time in standard statistical texts and packages, but it

has often been a time-consuming exercise for

toxicologists to develop their own expertise (Moore,

1996).  The useful techniques in toxicology have been

described by Newman (1995).

Guidance on nonlinear regression is available in

textbooks such as Bates and Watts (1988).  An

investigator starting to use nonlinear regression

would benefit from the advice of an experienced

statistician (Section 2.1).  A naive investigator might

produce incorrect results by failing to satisfy the

assumptions of a technique, choosing an

inappropriate model, etc.  Further information is

given in Sections 6.5.7 to 6.5.9.

Advantages of Nonlinear Regression.  For analysis

of toxicity data, regression is much more defensible

than smoothing and interpolation, or hypothesis

testing.  The test data will dictate the type of

regression.  If a linear regression fits, it should be

used; if it is not suitable, then a nonlinear model

becomes a better choice.  Some of the general

advantages of regression, and particular advantages of

nonlinear regression, can be listed as follows:

• all of the data from the test are used;

• a point estimate is obtained, the ICp;

• confidence limits of the ICp are obtained;

• any value of p can be used, e.g., IC25; various

shapes of concentration-effect curves can be

accommodated;

• the control measurement is included in the fitted

regression; and

• hormesis can be accommodated without

compromising the control effect.

The main disadvantage is that there cannot be a

simplistic “black-box” computer program designed

for toxicology.  The investigator must exercise some

knowledge and judgement in selecting the model and

applying the statistical procedures.

6.5.5 Choosing a Regression Model

Key Guidance

• It is prudent to select a model that is

adequate, but as simple as possible.  A

“parsimony of parameters” is desirable --

each one added to the model loses a degree of

freedom.

• One way to keep simplicity in the model is to

eliminate parameters which are correlated to

another parameter which is already in the

model.

• The model might fail to fit because of a poor

choice of model, an overly complicated one,

outliers, or mistakes in coding.  Sometimes the

original data might not cover the upper or

lower range of the model.

• Plots of residuals against the predicted values

provide a visual assessment of the fit of a

model, and a visual check of the data is

always needed.  For linear regression, the

coefficient of determination (“R2 value”) can

be used to assess fit.
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In choosing a model, investigators must consider their

own priorities as well as technical matters.  The

“best” model for one person might be that with the

least error of prediction, while another person might

emphasize a parsimonious function, or another that

shed the most light on biological mechanisms.  Some

aspects in the choice of model are mentioned in the

following text.

It is prudent to adopt relatively simple but adequate

models, and avoid overly complex models.  Certainly

a polynomial equation with enough terms could be

made to fit almost any unusual pattern of effect, but

adding additional parameters has penalties, such as

loss of degrees of freedom, and widening confidence

limits.  In their text on generalized linear models,

McCullagh and Nelder (1989) caution against using

many parameters to get a close fit to data.  “In so

doing, however, we have achieved no reduction in

complexity ... simplicity, represented by parsimony of

parameters, is also a desirable feature of any model;

we do not include parameters that we do not need. 

Not only does a parsimonious model enable the

research worker ... to think about his data, but one

that is substantially correct gives better predictions

than one that includes unnecessary extra parameters.” 

In the preceding quotation, “unnecessary” might be

interpreted as a parameter that was not statistically

significant.  Another expert points to the possibility

that an obscure biological interpretation might arise

from a complex model with a four-parameter

equation: “a fit may look smart, but how to use the

results when the computer people have gone home?”

(Nyholm, 2001).

One example of unnecessary complexity would be for

observations that were highly correlated (e.g., length

and weight of organisms), and investigators should be

wary of using parameters for each in a regression

model.  That can lead to a problem of

“multicollinearity” and error messages or failure of

the fit.  Statistical packages usually produce a

correlation matrix for the parameters and it should be

examined; high correlations might indicate that one of

a pair of variables could be omitted.

In multiple regressions, it is possible to test whether

all the variables are necessary, and this is highly

recommended.  The preferred way is to do a series of

fits with and without parameters of interest, and

compare results (see Section 6.5.6 under the heading

“Explained variability in regression”).  Another

method that is mentioned in some statistical texts, but

is not recommended here, is checking each parameter

with a t-test (sometimes provided in the statistical

package).  The null hypothesis would be that the

parameter equalled zero, and if the t-test did not

disprove that, the parameter would be deleted from

the regression.

Weighting might be required, as explained by

Nyholm et al. (1992): “If the variance of the data

points is constant (constant absolute error), nonlinear

regression can be carried out directly with no

weighting, ... otherwise a proper statistical weighting

must be used.  The weighting factors should be

inversely proportional to the variance of the data

points ...”.  This requires replication and testing for

equal variances as described in Section 6.5.8.

6.5.6 Adequacy and Fit

Failure to fit.  The model might “fail to converge” in

which case there would be no fit and no estimate of

the parameters.  One reason for failure to converge

can be multicollinearity (see Section 6.5.5). 

Sometimes, satisfactory estimates of the parameters

might not be obtained, even after satisfactory

convergence.  Some possible reasons can be listed.

• Poor choice of model. An unsuitable model

cannot be expected to fit.

• Outliers.  Even one outlier could prevent

convergence.  The outlier must not be arbitrarily

omitted in a modelling process, but instead given

objective consideration by methods such as those

mentioned in Sections 6.5.8 and 10.2.

• Mistakes in coding.  Inaccuracy or errors in

coding (see Glossary) can produce nonsensical

results.

• Range of data.  Procedures might be satisfactory,

but the original data could be deficient.  Values

might fail to cover the upper or lower range of the

model.  Quantal data should span the range from no

effect to complete effect.  Quantitative data should

be represented in each section of the model's shape. 

This is a relatively common deficiency, discussed

in Section 2.2.  Range-finding tests can remedy this

problem.
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• Overly complicated model. (e.g.,

multicollinearity, Section 6.5.5).  A simpler model

should be adopted if observations fail to cover part

of the desired distribution.

When parameters have been successfully estimated,

the investigator must decide if the model gives an

adequate description of the variability.  Most

statistical packages provide an F-test; if that test

produces a p-value that is less than 0.05, it can be

concluded that the regression model describes a

significant proportion of the data, with 95%

confidence.  Other assessment should continue as

described in the following text.

Explained variability in regression.  Plots of

residuals against the predicted values provide a

visual assessment of satisfactory fit of a model (see

Glossary for residuals).  Certain problems might be

revealed.  A series of residuals above or below

predicted values could indicate inadequate fit or

correlated observations.  A vee shape in residuals

indicates heterogeneity of variance.  A divergent

pattern suggests an incorrect model (see Section 6.5.8

and Appendix O).

Other common sense appraisals should follow the

plot.  Was the range of tested concentrations wide

enough to show the scope of effects?  Does a plot of

the fitted regression do a reasonable job of

representing the actual observations?  Does the shape

of the model fit with mechanisms that are thought to

govern the effect?  Have outliers influenced the fit to

an undue extent?  If negative answers predominate,

the investigator would be wise to consult a

statistician.

For linear regression, the coefficient of determination

or R2 (“the R2 value”) is the sum of squares explained

by fitting the model (SS regression), divided by the total

sum of squares (SS total) about the mean.  Values are

often expressed as a percentage and could

theoretically range from zero (nothing explained) to

100% (a perfect fit for the model).  The 100% will not

be encountered, and very high results are not

necessarily desirable.  Such high results suggest a

complex model with many parameters and the

associated drawbacks (see Section 6.5.5).  The

coefficient of determination cannot be applied to

nonlinear models.

The OECD (2004) cautions against blindly applying a

statistical test of goodness of fit in a strict and

absolute manner (i.e., the model either fits or does not

fit).  The OECD guidance document states that “A

visual check of the data is always needed and may

overrule a goodness-of-fit test.”  That advice is

intended to encourage the investigator to check that

the data provide sufficient information to confine the

model.  For example, if there had been additional data

for intermediate levels of dose, could that have

changed the shape of the relationship?  The OECD

also points out that data with only a few test

treatments can more easily pass a goodness-of-fit test. 

Alternatively, a good set of data with a single deviant

treatment/effect could result in rejection of a model

that, otherwise, followed the data perfectly.

There are other means of evaluating fit.  ANOVA can

summarize a regression model, and the overall F-test

checks the null hypothesis of adequate fit.  Another

form of R2 would use only the denominator to

describe residual error.  A low value is desirable, but

again, over-parameterization can be one cause of low

error.  A superior version of R2 is provided by

Mallows (1973), whose Cp penalizes models that are

over-parameterized.  Similar measurements that

should be recognized as superior if encountered are

the Bayesian Information Criterion (BIC) and

Akaike's Information Criterion (AIC).

6.5.7 A Recent Example of Nonlinear

Regressions

Key Guidance

• A group of Canadian authors developed

procedures that have served as the basis for

Environment Canada’s standard approach of

using regression for point estimates of

quantitative sublethal endpoints.

• These authors applied the linear and

nonlinear regression models, which were

available in a standard statistical package

(SYSTAT), to their tests of soil toxicity to

plants.

• The authors found that most sets of results

could be fitted satisfactorily by one of five

models: linear, logistic, logistic with

hormesis, exponential, and Gompertz.
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Clear illustrations of fitting nonlinear regressions to

sublethal quantitative data were provided by

Stephenson et al. (2000), with explanation of the

same research by Koper (1999).  These investigators

obtained useful estimates of the sublethal toxicity of

contaminated soils to several species of plants.  Their

methods have been further developed by

Environment Canada as required procedures in new

soil tests (EC, 2004a–c; see Section 6.5.8).

Stephenson et al. (2000) illustrated the general form

and explained equations for three models, the

logistic, logistic with hormesis, and exponential. 

Other useful models were added to their nonlinear

package (Koper, 1999).  One was the sigmoidal

Gompertz, another was a standard linear equation. 

A parameter was added to the exponential model to

allow the asymptote to be a value other than zero.

The techniques and difficulties of nonlinear

regression are described briefly by Stephenson et al.

(2000) who provide a flow sheet, similar to Figure 16,

as a guide to the steps in selecting the most

appropriate model.  An initial estimate had to be

made by the investigator, for each parameter in the

model.  (Realistic initial estimates must be made, or

an anomalous endpoint could be chosen by the

statistical program, see Appendix O.)  The parameters

of the fitted equation were then estimated using

iterative calculations.  Stephenson et al. (2000) noted

that having too many parameters could prevent

estimates from being made.  A suitable strategy was

to use the simplest suitable model (Section 6.5.5),

enough replicates, and up to 12 treatments.  The need

for equal variances in the treatments was also

troublesome, because inequalities might lead to an

inflated estimate of the standard error and confidence

limits.  To correct for this, observations were

weighted using the inverse of the variance for

observations at each treatment (see Section 2.6). 

Good estimates of the variance were required to do

this, sometimes $9 replicates per concentration. 

Koper (1999) recommended that if weighting was

necessary, calculations should be done for both

weighted and unweighted distributions, then the

results and distribution of residuals can be compared.

Koper (1999) pointed out that through computers,

nonlinear regression has become feasible for routine

use in laboratories.  Models were reparameterized so

that the calculations automatically generated the

estimate of ICp and its confidence limits (see Section

6.5.12 on reparameterization).  The process for

reparameterizing was developed from the methods of

Van Ewijk and Hoekstra (1993) and Hoekstra and

Van Ewijk (1993).  The analyses were run using the

statistical software package SYSTAT 7.0.1. 

Problems with fitting could be caused by collinearity,

which occurs when parameters are highly correlated,

or when a value close to zero in the denominator of a

matrix was inverted as part of the calculations.  Other

items of possible statistical difficulty were

convergence, choosing a maximization algorithm,

local versus global maxima, and comparing nested

and non-nested models.

The procedures of Stephenson et al. (2000) had some

requirements.  Data must bracket the ICp (which

would also be beneficial or essential for other

methods).  At least 10 or 12 treatments were

recommended, to show the shape of the relationship

and choose the model.  The large number of

treatments also contributed to the success of the

computer calculations.  The number of replicates per

treatment could be two, although these investigators

had up to six replicates.  There was no need to have

the same number of replicates at each concentration.

Readers emulating this work should be aware that

Stephenson et al. (2000) failed to use logarithms of

concentration.  Investigators should use log

concentration in the scatter diagrams and in the

calculations, as in the standard procedure of

Environment Canada (Section 6.5.8).  As explained in

Section 2.3, this is a question of proper scientific

procedure, not just of statistical procedure or whether

the model is capable of handling arithmetic values of

concentrations.

6.5.8 Environment Canada’s Method for

Regression Analysis

Key Guidance

• The new tests of Environment Canada for soil

toxicity require linear/nonlinear regression as

first choice for estimating the ICp.  Specific

procedures are outlined for SYSTAT or other

statistical packages.  
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• Investigators choose from five models: linear,

logistic, Gompertz, exponential, and logistic

adapted for hormesis.  The models have been

re-parameterized to directly estimate the ICp

and confidence limits.

• Assumptions of normality and

homoscedasticity of the residuals must be

satisfied before the estimate is made.

• If regression methods are not successful, then

the ICp should be estimated by interpolation

using the program ICPIN.

The new Biological Test Methods published by

Environment Canada for earthworms, plants, and

springtails (EC, 2004a–c) require linear and nonlinear

regression to be applied as the primary method of

analysis for the quantitative sublethal data.  Only if

results are unsuitable for regression, is the

investigator allowed to fall back on less desirable

methods of analysis.

Upon completion of a multi-concentration test, the

ICp and 95% confidence limits must be calculated 

using one or more of a series of linear and nonlinear

regression models proposed by Stephenson et al.

(2000).  The models have been re-parameterized

using techniques from van Ewijk and Hoekstra

(1993), to automatically generate the ICp and its 95%

confidence limits for any specified value of ‘p’ (e.g.,

IC25 or IC50).  The models include one linear model,

and the following four nonlinear regression models:

exponential, Gompertz, logistic, and logistic adjusted

to accommodate hormesis46.  Instruction is provided

in Appendix O for applying linear and nonlinear

regression using Version 11.0 of the statistical

program SYSTAT47.  However, any statistical

software capable of linear and nonlinear regression

may be used (see the end of this subsection for

comments on other statistical software).

Descriptions of the five models follow, with further

information provided in Appendix O.  The

exponential model given below is a general version,

while the coded version in Appendix O has some

specific modification.

Exponential model:

Y = a × (1 - p)( C ÷ ICp )

where:

Y = dependent variable (e.g., number of

juveniles, root/shoot length, or dry mass)

a = the y-intercept (i.e., the control response)

p = desired value for ‘p’ (e.g., 0.25 for a 25%

inhibition)

C = the test concentration as a logarithm

ICp = the ICp for the data-set

Gompertz model:

Y = t × exp[log(1-p) × (C ÷ ICp)b ]

where:

Y = dependent variable (e.g., number of

juveniles, root/shoot length, or dry mass)

t = the y-intercept (i.e., the control response)

exp = the exponent of the base of the natural

logarithm

p = desired value for ‘p’ (e.g., 0.25 for a 25%

inhibition)

C = the test concentration as a logarithm

ICp = the ICp for the data-set

b = a scale parameter, estimated to be

between 1 and 4, that defines the shape

of the equation

46    A hormetic type of response (low-dose stimulation)
might be found in sublethal observations at the lowest

concentration(s), i.e., performance at such

concentration(s) is enhanced relative to that in the control. 

For instance, there might be more progeny produced in

low concentrations than in the control, or the weights of

individuals might be higher than in the control.  This

response is a real biological phenomenon, not a flaw in

the testing.  Such data should be analyzed using the

hormesis model.  The hormetic effects are included in the

regression, but do not bias the estimate of the ICp.  An

estimated IC25 would still represent a 25% reduction in

performance from that for the control.

47   The latest (Version 11.0 or later) version of
SYSTATTM is available for purchase by contacting

SYSTAT Software, Inc., 501 Canal Boulevard, Suite C,

Point Richmond, Calif.  94804-2028, USA, 

phone: 800-797-7401;  www.systat.com/products/Systat/. 
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Hormesis model:

Y = t × [1 + (h × C)] ÷ { 1 + [(p + (h × C)) 

÷ (1 - p)] × (C ÷ ICp)b }

where:

Y = dependent variable (e.g., number of

juveniles, root/shoot length, or dry mass)

t = the y-intercept (i.e, the control response)

h = describes the hormetic effect (estimated

to be small, usually between 0.1 and 1)

C = the test concentration as a logarithm

p = desired value for ‘p’ (e.g., 0.25 for a 25%

inhibition)

ICp = the ICp for the data-set

b = a scale parameter, estimated to be

between 1 and 4, that defines the shape

of the equation 

Linear model:

Y = [(-b × p) ÷ ICp] × C + b

where:

Y = dependent variable (e.g., number of

juveniles, root/shoot length, or dry mass)

b = the y-intercept (i.e., the control response)

p = desired value for ‘p’ (e.g., 0.25 for a 25%

inhibition)

ICp = the ICp for the data-set

C = the test concentration as a logarithm

Logistic model:

Y = t ÷ {1 + [ p ÷ (1 - p)] × (C ÷ ICp)b }

where:

Y = dependent variable (e.g., number of

juveniles, root/shoot length, or dry mass)

t = the y-intercept (i.e, the control response)

p = desired value for ‘p’ (e.g., 0.25 for a 25%

inhibition)

C = the test concentration as a logarithm

ICp = the ICp for the data-set

b = a scale parameter (estimated to be

between 1 and 4) that defines the shape

of the equation 

The general process for selecting the most appropriate

regression model, and subsequent statistical analysis

for quantitative toxicity data, is outlined in Figure 16. 

The selection process begins with an examination of a

scatter plot or line graph of the test data to determine

the shape of the concentration-response curve.  Its

shape is then compared to available models so that

one or more model(s) that best suit(s) the data is (are)

selected for further examination (see Figure O.1,

Appendix O, for examples of the five models).

Once the appropriate model(s) is (are) selected for

further consideration, assumptions of normality and

homoscedasticity of the residuals are assessed.  If the

regression procedure for one or more of the examined

models meets the assumptions, the data (and

regression) are examined for the presence of outliers. 

If there is an outlier, the test records and experimental

conditions should be scrutinized for human error. 

Then the analysis should be performed with and

without the outlier(s), to examine the effect of the

outlier(s) on the regression.  A decision must be made

on whether or not to remove the outlier(s) from the

final analysis, considering natural biological

variation, and other biological reasons that might

have caused the apparent anomaly.  Additional

guidance on the presence of outliers and unusual

observations is provided in Section O.2.4 in

Appendix O as well as in Section 10.2.  Additional

guidance from a statistician familiar with dealing with

outliers is also advised.

If there are no outliers present or none are removed

from the final analysis, the model that demonstrates

the smallest residual mean square error is selected as

the model of best choice. 

Normality should be assessed using the Shapiro-

Wilk’s test as described in Appendix P, Sections P.2.1

and P.2.2.  A normal probability plot of the residuals

may also be used during the regression procedure, but

is not recommended as a stand-alone test for

normality, because detection of a ‘normal’ or ‘non-

normal’ distribution would depend on the subjective

assessment by the user.  If the data are not normally

distributed, then the user is advised to try another

model, consult a statistician for further guidance, or to

analyze the data by the less-desirable method of

linear interpolation 
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Figure 16 The general process for selecting the most appropriate model and completing the statistical

analysis for data on quantitative toxicity (adapted and modified from Stephenson et al. 2000).
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using ICPIN (see Section 6.4 and Appendix N).  In

recent EC soil tests, the ICPIN program is the fall-

back choice for analysis if regression is a failure (EC,

2004a–c).

Homoscedasticity of the residuals should be assessed

using Levene’s test as described in Appendix P,

Section P.2.3, and by examining the graphs of the

residuals against the actual and predicted values.  

Levene’s test provides a definite indication of

whether or not the data are homogeneous (as in

Figure O.2A of Appendix O).  If the data are

heteroscedastic, then the graphs of the residuals

should be examined.  If there is a significant change

in the variance and the graphs of the residuals

produce a distinct fan or ‘V’ pattern (see Figure

O.2B, Appendix O), then the analysis should be

repeated using weighted regression.  Before choosing

the weighted regression, the standard error of the ICp

should be compared to that derived from the

unweighted regression.  If the two standard errors

differ by more than 10%, then the weighted

regression is selected as the best choice 48.  However,

if the difference is less than 10%, then the user should

consult a statistician for the application of other

models, or the data could be re-analyzed using linear

interpolation (less desirable).  This comparison

between weighted and unweighted regression is

completed for each of the selected models while

proceeding through the process of selecting the final

model and regression.  Some non-divergent patterns

might be indicative of an inappropriate or incorrect

model (e.g., Figure O.2C, Appendix O), and the user

is again urged to consult a statistician for guidance on

other suitable models.

Choice of statistical software packages.  The

previous descriptions refer to use of a general-

purpose statistical package (SYSTAT), but the future

could bring “dedicated” software packages, designed

for environmental toxicology.  For example, the

CETIS package contains an extremely wide choice of

models for nonlinear regression.  Jackman and Doe

(2003) compared its estimates of endpoints with those

from SYSTAT, for many models.  In general, they

found that the two software packages, and various

models, produced similar estimates of EC20s, using a

selection of real sublethal test results.  However, they

warned that  results “often varied considerably” with

different techniques, and some methods “gave results

that were completely inappropriate”.  

Specifically, Jackman and Doe (2003) report that

similar results were obtained with SYSTAT and

CETIS for 13 sublethal data-sets with various

organisms.  In two other cases, the results from

SYSTAT “seemed more reasonable”, and in one case

the reverse was true.  They found that CETIS was

more complicated and more difficult to learn than

older toxicology packages.  A “strong understanding

of the statistical methodologies (or a very detailed

guidance documentation) is required to make the

correct statistical choices.”  They recommended good

guidance for non-statisticians in selecting the proper

nonlinear model from the wide choice available in the

CETIS package.  They also noted that if CETIS was

used to estimate IC50s, it often did not provide

reasonable estimates of confidence limits.

As more toxicology packages with nonlinear

regression become available, it will be important to

have  guidance from a statistician in their use.  It will

also be desirable to compare estimates of endpoints

from the new packages, with those obtained from

general-purpose statistical packages using the

standard method published by Environment Canada.

6.5.9 Newtox-Logstat—An Alternative

Regression Program

Key Guidance

• The Newtox-Logstat procedure obtains point

estimates by regression.  It has been

successfully used in Canada for tests on

inhibition of growth in duckweed.

• Newtox-Logstat offers investigators an

alternative procedure for point estimates of

sublethal quantitative data, at least for growth

in plants.  At present, it offers two models

based on the Weibull and log-normal

distributions.  It does not model hormetic

48   The value of 10% is only a rule of thumb based upon
experience.  Objective tests for judging the improvement

due to weighting are available, but beyond the scope of

this document.  Weighting should be used only when

necessary, as the procedure can introduce additional

complications to the modeling procedure.  A statistician

should be consulted when weighting is necessary.
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effects, but might have broader capabilities in

the future.

The toxicity analysis program Newtox-Logstat was

developed at the Technical University of Denmark by

Drs. K.O. Kusk and N. Nyholm, from a method

described by Andersen (1994).  (The main principles

of a similar method were published by Andersen et

al. (1998), although that publication has a different

focus.  An even earlier paper (Nyholm et al., 1992)

described the benefits of nonlinear regression for

dealing with the statistical difficulties of quantitative

data, and pointed towards the new method.)  The

program has been used in Canada, as described in the

following text.  The most convenient source of the

program for Canadian investigators is from the

Saskatchewan Research Council, by agreement of

Drs. Kusk and Nyholm and Mary Moody49.

The Newtox-Logstat procedure is suitable for

sublethal quantitative results.  It runs under an Excel

spreadsheet, and each data-point is entered, not just

the mean effects.  It provides a choice of two

nonlinear models based on the Weibull and normal

log distributions.  It estimates ICp and confidence

limits.

The program was originally designed for data on

growth rates.  It has been successfully used in Canada

by Moody (2003), for toxicity data on growth

inhibition in duckweed (Lemna sp.; inhibition of

increase in number of fronds and dry weight).  Moody

reports that the Weibull model provided the best fit to

the data, visually.  An example of the fit for inhibition

of number of fronds is shown in Figure 17.  

The Newtox-Logstat procedure offers Canadian

investigators an alternative method of estimating

endpoints by regression, certainly for tests involving

algae and duckweed, and probably for other growth

effects.  At its present state of development, Newtox-

Logstat does not have the capability of including

hormesis in the model.  The designers of the

procedure suggested that hormetic effects should be

arbitrarily set at zero inhibition for purposes of

modelling.  Moody (2003) found that hormesis did

not generally interfere with analysis, but omitted such

data when they did create a problem. 50

6.5.10 General Linear Models

Key Guidance

• General Linear Models and Generalized

Linear Models represent broad categories of

statistical models, including many familiar

statistical techniques.

• GLIM is the more inclusive category, and

covers a variety of distributions, including

normal, exponential, probit, logistic, and

Poisson.  The approach could be applied to

studies of quantal variables, or continuous

ones such as weight.

• These concepts remain in the realms of

statisticians at present, but have been

advanced for use in toxicology.  Benefits

could be a single package of software to

analyze diverse categories of results, transfer

of knowledge and techniques among models,

use of better mathematical methods instead of

inexact techniques, and comparison of diverse

models for their fit.  However, non-

statisticians would probably find the existing

software packages difficult to use.

49   Ms. Mary Moody, Research Scientist, Environment
and Minerals Branch,  Saskatchewan Research Council,

125 -- 15 Innovation Boulevard, Saskatoon, Sask.  

S7N 2X8.   (moody@src.sk.ca)

50   From tests with frond inhibition, Moody (2003) took
23 endpoints derived by regression, and compared them to

endpoints derived from smoothing and interpolation

(ICPIN procedure).  For the ratios of the endpoints

(interpolation divided by regression) there was an overall

similarity (average ratio 102%, median ratio 96%). 

However, there was great diversity in individual

comparisons.  The ratios ranged from 42 to 195%, with a

standard deviation of 39%.  Assuming that the endpoints

from regression are more realistic, it represents an

appreciable improvement in procedure.  Comparison of

dry weights of plants showed greater similarity between

endpoints obtained by the two methods (standard

deviation 20%), but in seven cases, interpolation failed to

estimate the endpoint, or else failed to provide the

confidence limits.
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Figure 17 Effect of cadmium on inhibition of frond increase in Lemna minor (from Moody, 2003).  The

fitted curve is based on a Weibull model using the Newtox-Logstat procedures of Kusk and Nyholm

developed from Anderson (1998).

The term general linear model (GLM) does not

signify a specific technique, but a class or category

of approaches, or a  particular class of models.  The

models have a single dependent variable which is a

function of an independent variable or variables. 

Thus simple linear regression falls into this class,

but GLM should not be thought of as being limited

to regressions.  Also fitting the GLM class are

models such as analysis of variance (ANOVA) and

analysis of covariance (ANCOVA), which might not

be thought of as “linear” models.  Statisticians

would point out that these procedures are “linear”

because their parameters enter into the model in a

linear fashion.  Gad (1999) gives an example in

which “the GLM procedure of SAS” is called up to

do a conventional ANOVA for typical toxicological

data (weight of kidneys as related to several doses).

Thus, investigators should expect many specific

analytical techniques to be found under the broad

umbrella of “general linear model”.  GLM is not at

all a cut-and-dried computer package for simple

application to a set of data.  Most biologists or

toxicologists would need direct participation of a

statistician to apply these techniques to their work. 

GLMs are described by Searle (1971).

6.5.11 Generalized Linear Models

The term generalized linear models represents a

larger category of mathematical models, that includes

the GLMs of the previous section.  The category has

sometimes been called generalized linear interactive

models, hence the acronym GLIM (or sometimes

GLiM).

The broad capabilities of GLIMs were initially useful

as a teaching tool, but research and the advent of

powerful computers have brought this category to the

front and centre of statistical endeavours and

developments.  All GLIMs share the same

mathematical approach, but the category could

include a variety of specific statistical techniques. 

The techniques themselves might be of more direct

interest in applied toxicology, than the more abstract

mathematical concepts of GLIMs.  An introduction to

the topic is provided by Dobson (2002), and a more

In
h
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detailed textbook was designed for statisticians and

“numerate biologists” by McCullagh and Nelder

(1994).

A variety of familiar mathematical distributions fit

under the umbrella of GLIM, including normal,

exponential, probit, logistic, and Poisson.  These can

be mathematically described so that an effect in any

one of the distributions can be linked through a

function to one or more independent variables.  The

effect might be quantal (counts, mortalities,

proportions), or continuous variables such as weight. 

There is a common method for computing estimates

of parameters.  A researcher could use GLIMs to

assess the dependence of an effect on a single

independent variable such as concentration (by

regression), or a more complicated structure of

independent variables such as group treatment

(ANOVA), or treatments and covariates (ANCOVA).

Enthusiastic support for GLIM in toxicological

analyses is given in a series of papers by Bailer and

Oris (1993; 1994; 1997) and associates (Bailer et al.,

2000a, b).  They show that their general regression

model can fit a variety of different effects, whether

counted, dichotomous, or continuous.  The regression

can be used to estimate ICp, and circumvents the

conceptual problems that exist in the computer

program ICPIN (Bailer and Oris, 1997), being

“superior to the [ICPIN] method in terms of bias,

mean squared error, and coverage probability” (Bailer

et al., 2000b).  Bailer and Oris (1994) comment that

“computer software to fit the GLIM models ... is

readily available (e.g., the GLIM macro in the NLIN

procedure of SAS.”  In the earlier papers, confidence

limits are not estimated, but Bailer and Oris (1997)

list some options that could be developed with a

defensible mathematical basis.

There are several benefits from use of GLIMs and

their subcategory GLMs.

     • A single package of statistical software can

replace the array of programs needed to analyze

non-normal and linear effects.

     • The investigator's general knowledge can be

transferred among the types of models under

the GLIM umbrella (e.g., significance,

goodness of fit, testing assumptions).

     • Approaches that still incorporate inexact

“short-cuts” and ad hoc techniques from pre-

computer days can be abandoned in favour of

better mathematical methods.

     • It is straightforward to compare the fit to dose-

effect data by various distributions (e.g., probit,

logistic, Gompertz).

At the same time, there are limitations and drawbacks

to GLIM approaches.  Although a stand-alone

software package for GLIM exists, biological

investigators would probably find it difficult to use.  

Purchase of a larger package such as SAS would also

provide GLIM capability, but personnel would have

to know how to call up and master the appropriate

techniques.  Clearly, GLIMs are currently useful for

toxicological research, but routine or regulatory

toxicity tests will probably follow developed

pathways, such as statistical guidance outlined in EC

methods documents.

6.5.12 Reparameterization

This approach to analysis of toxicity data grows out

of the desire to estimate endpoints and confidence

limits in terms of a specific concentration (EC50,

IC25), although the toxicity tests were set up with

concentration as the independent variable.  The

degree of effect was actually the dependent variable,

yet a fixed degree of effect is used to calculate the

endpoint in terms of concentration.  This “inversion”

of the regression to select an endpoint entails some

statistical complications, described in Section 9.4. 

One way of attempting to circumvent the

complication is reparameterization to create a model

containing the endpoint of interest.  The approach

was adopted by Stephenson et al. (2000), and has

been modified as part of recent EC methods (Section

6.5.8).

Key Guidance

• In environmental toxicity tests, the measured

effect is the dependent variable.  To calculate

the endpoint, however, a fixed degree of effect

is used as if it were the independent variable,

in order to calculate the corresponding

concentration of toxic material (the endpoint). 

This entails an “inversion” of the

relationship.
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• Reparameterization involves rewriting the

statistical model describing the relationship to

incorporate the endpoint (say the ICp) and its

confidence limits as variables to be estimated

by the model.  This is done in linear/nonlinear

regression techniques of Environment Canada

(Appendix O).

• This procedure might result in poorer

performance of the models, with the penalty of

increased replication needed for satisfactory

results.

• Other authors have published approaches to

nonlinear modelling, and some examples are

outlined briefly.

Reparameterization starts with any standard statistical

model, such as nonlinear regression.  If the IC25 is to

be estimated, the regression equation is

“reparameterized” by rewriting it to include the IC25

as a parameter.  This allows the IC25 and its

confidence limits to be estimated directly, without the

need for inverse regression techniques.

There are some drawbacks to the technique.  In

particular, statistical analysis might perform more

poorly.  For example, the hormetic logistic model

(Section 6.5.8) was found to be very sensitive to the

choice of optimization algorithm.  It is therefore

desirable to test more concentrations than might

normally be used.

An early description of reparameterization was

provided by Bruce and Versteeg (1992), who

presented an excellent outline for using nonlinear

regression on quantitative toxicity data.  They tested

the method on sublethal tests with the alga

Pseudokirchneriella subcapitata, fathead minnows,

and mysid shrimps.  The resulting curves for

measured effects at different log concentrations

appeared to be smooth fits.  The program then

reparameterized the equation of the fitted line, to

estimate the logarithmic ICp and its confidence

limits, for any selected value of “p”.  Bruce and

Verstag (1992) based their model “... on an S-shaped

curve derived from the cumulative normal

distribution”, and they provide the code for carrying

out the analysis with SAS.  Another example is

provided by Andersen et al. (1998).

This procedure has been incorporated into the models

offered for the new EC test methods (EC, 2004a–c),

described in Section 6.5.8 and Appendix O.

6.5.13 Other Examples of Regression Trials

Regression methods used by some other authors are

outlined here.  The procedures look promising, but

require knowledgeable application.

A family of nonlinear models, similar to the ones

discussed previously, has been described by Slob

(2002).  Analytical procedures are carried out by an

“easy-to-use” software package called PROAST,

which is available within Slob’s institute in the

Netherlands.  One of the good features of the

regressions is the determination of the Critical Effect

Dose (CED), which is related to a negligible or

acceptable degree of effect on the test organisms.

Generalized nonlinear regression was recommended

for estimating ICp and its confidence limits by

Andersen et al. (1998).  A plot of data was used to

choose a particular regression function.  For their

analysis, the authors amalgamated some standard

numerical routines, including coding in FORTRAN

90.  Their method used “... the empirical

nonhomogeneous variance and covariance in the

estimation of the dose-response curve”.  A version

operated in Windows 95 format.

Scholze et al. (2001) used 10 different sigmoidal

regression functions, the more familiar being probit,

logit, Weibull, generalized logit, and three options of

Box-Cox functions.  All functions were fitted to a

given set of data, and the best was selected by two

stages of testing (residuals, then goodness of fit). 

Bootstrap estimates provided confidence limits.  The

method was tested by a remarkable prediction of total

toxicity of a mixture of 14 substances with differing

modes of action.  The predicted effect on inhibition of

bacterial luminescence was 36%, almost identical to

the actual observation of 39%.

Moore and Caux (1997) used five “generic” models

on quantal and quantitative data.  Best fits were

usually obtained by a three-parameter logistic

equation with a steep slope parameter.  They also

tried three logistic models, a two-parameter probit

model, and a two-parameter Weibull model.  Higher

order polynomials, which had little biological

plausibility, were excluded.  Their package ran in a
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spreadsheet format, used logarithm of concentration,

and gave a maximum-likelihood fit with each model

(Caux and Moore, 1997).  Output included goodness

of fit, graphs with observed data and fitted curve, and

ECps or ICps from low to high values of “p”.  From

198 sets of sublethal data, they selected 65 sets which

had reasonable monotonic dose-effect relationships

and at least one partial effect.  They analyzed the 65

sets using their method, and claimed an adequate fit

in about 40 cases.

Baird et al. (1995) claimed that only two nonlinear

parametric models were needed to deal with diverse

toxicity results.  Using a logistic dose-response and a

power model, they fit 77–100% of quantitative

sublethal tests with minnows, sea urchin, abalone, and

giant kelp.  The power model had the form y = bxc

and would fit straight lines and upwardly concave or

convex distributions.  However, their validation was

uncertain, because their hypothetical data had very

unrealistic arithmetic ranges, and logarithmic data

were analyzed using arithmetic concentrations.  Data

for giant kelp were fitted and graphed as a curve, but

would apparently have been a straight line if a proper

logarithmic scale of concentration had been used.

6.6 Thresholds from Regression

Key Guidance

• There is some international movement to

develop methods which would estimate the

“true” or absolute no-effect concentration for

a population of organisms.  That would be a

theoretical value and would have to be

estimated using regression techniques.

• Workers in the Netherlands have developed

such models to estimate the No-effect

Concentration or the Critical Effect Dose.

• “Hockey-stick” models estimate such a

threshold of effect.  The long “handle” is the

normal concentration-effect regression, while

the “blade” represents the background of

normal effects.  The intersection is taken to

represent a threshold.

There is a current thrust in Europe, and

internationally, to develop toxicity models that

estimate the “true” no-effect concentration (NEC)

(OECD, 2004).  That estimate would be an absolute

no-effect level, which is a parameter of the

population, not the sample that is tested (Anon.,

1994).  The goal would be approached by regression

techniques, not hypothesis testing which estimates the

observed no-effect concentration (NOEC) in a

sample, rather than the true one.  Examples of these

developments in Europe are given in Section 6.6.2.

6.6.1 Thresholds with the Hockey-stick Model

Threshold modelling for quantitative sublethal

toxicity can be done using a “hockey-stick” model. 

This is a linear model for regression since two

straight lines are fitted to data from the test.  The

longer “handle” of the model applies to the usual

dose-effect relationship, and the “blade” of the model

would be a line parallel to the concentration axis

(Figure 18).  Zajdlik (1996) works through the

mathematical steps of fitting such a model, and

comments that it is not difficult.

Zajdlik's description lends considerable appeal to the

approach, which estimates an apparently objective

and meaningful threshold of effect as the “join point”

of the two lines.  He points out some potential

drawbacks, such as the general problem of fitting a

curved dose-effect relationship.  Sometimes a

particular toxicant might not demonstrate a threshold

of effect (lower concentrations would simply take

longer to act).  Zajdlik (1996) indicates that it might

be more expensive to run the experiment for this kind

of analysis, but that would be balanced by the

advantages of an objective estimate of an

environmentally “safe” concentration.

The method discussed by Zajdlik (1996) has been

used by other authors.  One excellent example is for

incidence of liver lesions in benthic fish, as related to

PAHs in the sediments (Horness et al., 1998). 

Graphical representation (Figure 18) shows

background incidence of lesions distributed

horizontally along one segment of the hockey stick,

across a range of low logarithmic concentrations of

PAH.  Then there is an abrupt change as the second

segment of the regression shows a linear increase of

lesions with higher log concentrations.  The fits

appear to be reasonable, although there are rather

large confidence intervals for the relationships in

panels A and D.  Confidence intervals are not

indicated for panel B, but might also be large.  Still,

the estimate of an apparent threshold for toxic effects 
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Figure 18    Examples of hockey-stick regression (from Horness et al., 1998).  The panels represent data for         

                     types of hepatic lesions in English sole, collected at Pacific coast locations.  Vertical scales represent      

                     frequency of occurrence among fish.  Horizontal axes are measurements of total aromatic hydrocarbons 

                     in dried bottom sediment from the same locations.  Threshold concentrations are indicated by arrows,     

                     and the shaded bars represent confidence intervals.
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at the junction of two segments appears to be a very

useful piece of information.

For their analysis, Horness et al. (1998) treated the

two segments (lines) as a single discontinuous

function, defined by a single regression.  The PAH

concentrations were transformed to logarithms before

analysis, although it could be done within the

calculations.  Horness et al. point out that iterative

numerical techniques for estimating nonlinear

regression parameters are increasingly available in

standard commercial packages, and they used the

SAS statistical package JMP®.

The potential usefulness of “hockey-stick endpoints”

is forcefully demonstrated by Beyers et al. (1994),

who estimated thresholds of toxicity that were 2- to 

4-fold lower than the NOEC derived by hypothesis

testing.  They studied toxicity of pesticides to fish,

and their fits to the hockey-stick model appear to be

satisfactory.  They also used the statistical software

developed by SAS.

6.6.2 No-effect by Regression

Nonlinear regression should be amenable to

estimating thresholds of toxic effect, and workers in

the Netherlands have taken that approach.  Slob

(2002) demonstrated the use of a family of nonlinear

regressions to determine the Critical Effect Dose

(CED), related to a negligible degree of effect on the

test organisms (see Section 6.5.13).

Similarly, Kooijman and Bedaux (1996) offer a

description and software for estimating the sublethal

endpoint designated as the No-Effect Concentration

(NEC).  Their program is designed primarily for

analysis of the sublethal tests methods published by

the OECD, on growth of fish, reproduction of

Daphnia, and algal growth.  The authors indicate that

the program can also yield analyses of quantal data on

mortality (LC50s), effective concentrations (EC50s),

and effective times (ET50s), all with confidence

limits.  These claims have not been validated for the

present Environment Canada document.

Kooijman and Bedaux (1996) supplied the computer

program on a disk (DEBtox, signifying Dynamic 

Energy Budget), as part of a book.  The program

published in 1996 operated under Windows 3.1 or

95).  More recent versions operate under Windows

and Unix, and are available on the Internet at: 

www.bio.vu.nl/thb/deb/deblab/.  The program

features were described in detail recently in an OECD

guidance document (OECD, 2004).  The program

appears to be well designed, clear, and easily used. 

Example data run easily under the program; it

produces endpoints and supporting information, but

does not give indications of just what models and

procedures were used to obtain the answers.51  The

program offers graphs which can be printed out if

desired.  Unfortunately the concentrations were

plotted on an arithmetic scale which provides the

viewer with a distorted impression of asymptotes,

apparent thresholds, and general shape of the curves.  

The NEC approach is also embodied in a

mathematical function for inhibition of population

growth in algal tests (Kooijman et al., 1996).  The

equation is reported to perform well, equalling the

effectiveness of logistic, log-normal, or Weibull

analyses (N. Nyholm, 2001, personal communication,

Tech. University of Denmark, Lyngby, Denmark).

The advantages of the NEC approach are obvious.  It

uses suitable statistical procedures, namely fitting a

regression.  It satisfies the demand for an endpoint

that represents the threshold of effect, ostensibly no

effect.

51   An attempt at entering new data failed.  The Canadian
operator was able to enter numbers in some positions of

the initial data-table, but was unable to discern which

parts of the table were to receive data on concentration,

time, number of test organisms, and effect.  He was unable

to find guidance on the issues.
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Section 7

Hypothesis Testing to Determine NOEC/LOEC

7.1 General Suitability for Environmental

Testing

Key Guidance

• Hypothesis testing determines statistically

significant differences between results for the

control and results at each test concentration.

• This is one approach for single-concentration

tests such as those used in monitoring.

• In a multi-concentration test, hypothesis testing

identifies the no-observed-effect concentration

(NOEC) and lowest-observed-effect

concentration (LOEC).

• Estimate of NOEC/LOEC is an option in some

sublethal test methods published by

Environment Canada.  However, it does not

represent a good toxicological endpoint in

multi-concentration tests, for several reasons

including the following ones.

     - The endpoints are defined statistically rather

than biologically; higher variability within the

test leads to higher values of NOEC/LOEC.

     - The NOEC does not necessarily represent a safe

level in the environment although it conveys that

impression.

     - The endpoints can only be concentrations that

were actually tested and are therefore open to

manipulation by chance or design.

     - The calculations produce a pair of

concentrations, rather than one endpoint.

     - No confidence limits can be calculated.

• The geometric mean of NOEC and LOEC can

be used to provide a single endpoint, and

should be called the threshold-observed-effect

concentration (TOEC).  It has the same

shortcomings as NOEC and LOEC.

7.1.1 Single-concentration Tests

Hypothesis testing is standard procedure for toxicity

tests which have replicates of one concentration and a

control (e.g., samples of sediment from one location). 

This is a suitable statistical approach, and there is no

other.  Available techniques are described in 

Section 3. 

Comparison of one treatment with a control can be

made with a t-test.  Multiple t-tests must not be

repeated in a set of samples, in lieu of a multiple-

comparison test.  Special modifications of the t-test

are available (Appendix P.4.4).

The remainder of this section deals with tests which

have at least two test concentrations or sets of

samples.

7.1.2 Multi-concentration Tests

Point estimates such as IC25 are recommended in this

guidance document as the primary endpoint, and

hypothesis testing is assigned a secondary position. 

However, several EC methods documents allow

hypothesis testing to be used if desired.  Accordingly,

the procedures are outlined here, since they might be

relevant to a particular situation, and also, to allow

evaluation of existing work which used this statistical

method.

The variables estimated in hypothesis testing would

be the no-observed-effect concentration (NOEC) and

lowest-observed-effect concentration (LOEC).  The

usual method for determining NOEC and LOEC is to

statistically compare the control effect to the effects

at individual test concentrations (see Sections 7.4 and

7.5).  Hypothesis testing is frequently used, in part

because there are well-established methods.  The

ANOVA and nonparametric methods are readily

available, relatively easy to use, and robust in the face

of irregular data.  However, there is a growing

literature which points out many deficiencies of the

hypothesis testing approach (Suter et al., 1987; Miller

et al., 1993; Pack, 1993; Noppert et al., 1994;

Chapman, 1996; Chapman et al., 1996b; Pack, 1996;

Suter, 1996; Moore and Caux, 1997; Bailer and Oris,

1999; Andersen et al., 2000; Crane and Newman,
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2000; Crane and Godolphin, 2000).  Canadian

environmental toxicologists and statisticians are

among those with misgivings (Miller et al., 1993). 

Several limitations are listed in the following text.

    • NOEC and LOEC can only have values equal to

concentrations that were actually tested.  Since

that was determined by the investigator, the

endpoints could be susceptible to chance

influences, whim, or manipulation.

    • NOEC and LOEC are particularly sensitive to

variability within the test, since they depend on

determining statistically significant difference

from the control effect.  A careful test with a

precise result would result in a lower NOEC,

while a test with great variability would result in

a higher NOEC.  Thus, the endpoints

NOEC/LOEC do not relate to any particular point

on the dose-effect curve. 

    • The values of NOEC and LOEC depend to some

extent on the method of statistical analysis that is

used.

    • The statistical power of the ANOVA and

multiple-comparison test is often low because of

relatively few replicates.  Fewer replicates result

in a higher NOEC, so there could be an incentive

to either reduce or increase the replication,

depending on orientation of the program.

[This situation could be remedied by increased

consideration of the power characteristics in

design of the test (Section 7.23).  There could be

a requirement imposed, to demonstrate that a test

had adequate power to detect, say, a 25% effect.]

    • No confidence limits can be calculated for the

endpoint; therefore, different NOECs cannot be

compared statistically.

    • The name of the NOEC has some popular appeal,

and might be mistaken for a “safe” concentration

by non-toxicologists, even though it can be

associated with appreciable effects.

    • Estimating an NOEC tends to be somewhat in

conflict with a basic rule of the scientific method,

because there is an attempt to “prove” a null

hypothesis of no effect.

In fairness, it should be pointed out that these

limitations are not unique to hypothesis testing.  Most

of them have parallel weaknesses in other approaches

used to analyze test results.  For example, the

conventional confidence intervals for IC25 and EC25

depend on the assumption that the model used to

produce them is correct.  That assumption is rarely

even acknowledged, let alone tested.

The importance of precision of results and choice of

statistical method is illustrated in an example by

Crane and Godolphin (2000).  They present some

hypothetical data for lethal testing of the same

effluent by laboratory no. 1 which obtained precise

results, and laboratory 2 which had variable results. 

Analysis by Dunnett's test (currently the most popular

multiple-comparison test) yielded NOECs of 2.2% for

laboratory 1, and 22% for laboratory 2.  Choice of

other statistical tests produced great variation in

estimated NOEC, from 1.0 to 10% for results of

laboratory 1, and from 2.2 to 46% for laboratory 2

(see Section 7.5.1).

Other specific examples can be given.  Suter et al.

(1987) demonstrated that estimation of NOEC/LOEC

did not provide satisfactory endpoints.  When

sublethal studies on fish were analyzed with nonlinear

regression, a comparison with results of hypothesis

testing showed that the geometric means of NOEC

and LOEC (TOECs see following text) were

associated with effects of 12% on hatching, 19% on

larval survival, 20% on parental survival and larval

weight, 35% on weight per egg, and 42% on

fecundity.  Those are relatively strong effects,

certainly demonstrating that TOECs can be far from a

true threshold of effect.  A similar analysis of 14

sublethal test results showed that the NOEC (not the

TOEC), was associated with sublethal effects which

ranged from 3 to 38%, with a geometric average

effect of 14% (Crane and Newman, 2000).

Concerning the appeal of the name NOEC, the

minutes of the meeting in Quebec City noted

hypothesis testing “has an appeal from regulatory and

management perspectives” because it sounds as if it

answers the question about whether a given

concentration in the environment is, or is not, toxic

(Miller et al., 1993).  Environmental toxicologists

will be aware that any answer to that question by

determining NOEC/LOEC could be erroneous

because of the problems itemized previously.
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7.1.3 Expressing Results as a Threshold

A geometric mean of the NOEC and LOEC is often

calculated for the convenience of having one number

rather than two.  A recommended term for this

geometric average is the TOEC signifying threshold-

observed-effect concentration.  The use of

“threshold” is in the dictionary sense of “point at

which an effect begins to be produced”.  Such a value

may be used and reported, recognizing that it

represents an arbitrary estimate of an effect-threshold

that could lie anywhere in the range between the

LOEC and NOEC, and is subject to all the

uncertainties of those values (Section 7.1.2).

The term Maximum Acceptable Toxicant

Concentration (MATC) was used in the past, mostly

in the USA, as an empirical endpoint for sublethal

life-cycle tests.  Various authors used the term

confusingly, to signify (a) the geometric mean of

NOEC and LOEC, (b) the NOEC, (c) a value that

could not be determined, between NOEC and LOEC,

or (d) the range from NOEC to LOEC.  Recent

literature tends to abandon the linguistically

tormented term MATC giving preference to the use

of NOEC and LOEC; TOEC is recommended here. 

Point estimates are more appropriate for determining

thresholds (Section 4).

7.2 Design Features in Hypothesis Testing

Key Guidance

• Major errors in analysis of variance could

result from using non-replicate measurements

as if they were replicates.

• “Type I error” means a “false positive”, i.e.,

concluding that a difference existed between

treatments when there was actually no real

difference.  “Type II error” means accepting

a null hypothesis of no difference, although a

real difference existed.

• Most investigators set the level of significance

( """" ) as probability (p) = 0.05.  As a result,

5% of toxicity tests can be expected to show a

difference by chance alone, leading to a 

one-in-twenty possibility of a Type I error.

• The probability of making a Type II error is ß

(Beta).  It is inversely related to """", so if lower

p-values are selected, there is greater

likelihood of a Type II error.  The power of a

test is (1 - ß), and is the discriminating ability

of a test.  Most investigators do not design

tests in terms of ß or power, although it would

be desirable.

• If applied to real environmental situations, a

Type I error in toxicity testing would result in

stricter discharge limits or additional waste

treatment, which might not be necessary.  A

Type II error would increase the chance of

damage to the environment.

• The Minimum Significant Difference (MSD)

should be reported as an alternative way of

describing the power of a toxicity test.  The

MSD is the smallest percentage difference

between results for the control and a

treatment, that would be statistically different

within the design of the toxicity test.

• “Bioequivalence” is a reverse application of

MSD; before starting the toxicity test, a

degree of acceptable difference between

treatment and control is set for a “pass” in

the test.

• Hypothesis testing should not normally be used

on untransformed quantal data.  It can be used,

however,  if replicates have quantal

observations on $100 individuals; the numbers

are great enough that they approach a

quantitative distribution.  This approach is

currently seeing some use, although superior

methods might well be required in the future.

7.2.1 Replicates and Experimental Units

In hypothesis testing, it is very important to identify

experimental units and the true replicates

(explanation in Section 2.5 and warning note here). 

A sloppy designation of replicates could lead to

extremely erroneous analysis and conclusions.  In

particular, organisms in a single test container would

not represent replicates, but sampling units.

7.2.2 Errors of Types I and II

In hypothesis testing, it is particularly easy to arrive at

mistaken conclusions in a manner that is either overly

optimistic, or else too conservative.  The topic is

closely related to the power of the statistical test used

in testing a hypothesis (see Section 7.2.3).  The topic 
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Table 4 Types of errors in hypothesis testing, with associated probabilities (after USEPA and USACE,

1994).

Conclusion drawn from

hypothesis testing

Actual (true) status of the populations

No difference (H0 is true) Difference (H0 is false)

Accept null hypothesis

(H0 concluded to be true)

Correct

( Probability = 1 - """" )
Type II error

 ( Probability = ß )

a “false negative”

Reject null hypothesis

(H0 concluded to be false)

Type I error

( Probability = Significance level = """" )
a "false positive"

Correct

( Probability = Power = 1 - ß )

is also related to questions of statistical versus

biological significance (Section 9.3).

A Type I error (a “false positive”) occurs when a null

hypothesis that is actually true is rejected (i.e., a

difference is concluded when there is none).  A Type

II error ( a “false negative”) occurs when the null

hypothesis of no difference is accepted ( = not

rejected), even though it is actually false and a

difference exists.  Table 4 shows the relations

between test conclusions and the (unknown) true

situation.

Most investigators partially control these mistakes by

setting the level of significance (“""""”) for tolerating
false positive results (Type I error).  Almost always,

"""" is set so that the probability (p) = 0.05.  If that is

done, one test out of 20 (5% or 0.05) can be expected

to show an apparently significant difference by

chance alone, i.e., the items being compared are

strongly divergent, but not really different. 

Accordingly, there is a one-in-twenty chance of

concluding a “false positive” or Type I error.  If a

higher value of """" were selected (say, 0.1), the chance
of concluding a false positive would increase (in this

example, a chance difference would be expected in

one of ten trials).  At a low value of """" = 0.01, only
one in a hundred trials would be expected to show a

Type I error (but see the following text for the

penalty).

The probability of making a Type II error is called ß

(Beta), the probability of accepting the null

hypothesis when it is actually false (Table 4).  The

value of ß is seldom set deliberately by the

investigator before doing the test (see following text),

but is determined in large part by the initial choice of

".  There is an inverse relation between """" and ß, and
as the significance level is lowered, (smaller selected

value of """" and less possibility of a Type I error), Beta
becomes larger, so there is greater likelihood of a

Type II error.  As another contributing factor, the

more powerful the design of the test (e.g., more

replicates, Section 7.2.3), the less likelihood there is

of making a Type II error.

Statisticians usually talk about Beta in terms of the

power of a test, which is (1 - ß), and can be defined

as 

(a) the “discriminating ability” of a test, 

(b) the probability of correctly concluding that there

is a difference, or more properly,

(c) “the probability of rejecting the null hypothesis

when it is in fact false and should be rejected”.

When applying the results of toxicity tests to the real

world, there are very different implications for

making Type I and Type II errors.  Falsely concluding

that there is a toxic effect (Type I), if applied to an

industrial discharge or to the setting of water quality

limits, could lead to tightening up restrictions, or

applying further waste treatment.  The consequences

would be a wider margin of safety for the natural

world, and increased cost in human activity 52.  On the

52   The importance of the selected level of statistical
significance and power was demonstrated in a surprising

result from Moore et al. (2000).  They submitted samples
of non-toxic, laboratory-manufactured water to testing



115

other hand, failing to detect a difference which was

actually real (Type II error) would create an

unwarranted impression of safety for the tested

material, possibly resulting in a receiving

environment that damaged organisms.  From the

ecological point of view, Type II errors are more

serious.  Accordingly, the significance level ("""")
should not be set at unduly strict levels.  Choosing a

significance level of 0.01 instead of 0.05 might seem

to be setting a high standard, but it would also

decrease the power of the test, increase the likelihood

of a Type II error, and increase the possibility of

harmful consequences for the environment.

7.2.3 Power of a Toxicity Test

Section 7.2.2 introduced the concept of the power of

a statistical test in hypothesis testing.  The power is

influenced by several factors:

• the significance level ("""") chosen by the
investigator; 

• variability of replicates;

• effect size (ES, the magnitude of the true effect

that is being tested); and

• n, the number of samples or replicates used in a

test.

Power analysis can be used a priori to determine the

magnitude of the Type II error and the probability of

false negative results (USEPA and USACE, 1994). 

Three of the four listed items can be selected by the

investigator and incorporated into the design of the

test.  The fourth item, variability, is difficult to

predict, but can be estimated from past experiments,

or trial tests.  Accordingly, it could be time-

consuming or tedious to design power into a test, so it

is not often done.  Designing for suitable power might

indicate the need for a large test, economically and

logistically unattractive.  In that case, investigators

should at least recognize the limitations and the

possibility of an incorrect conclusion.

No standard value has been developed for the power

of a test, or for its basis, which is the Type II error

rate, ß.  A value of 10% for ß (power = 90%) has

been adopted for monitoring of effects at metal mines

(EC, 2002b), and might be considered a suitable goal. 

However, even at this power, any conclusion about

lack of toxic effect could be shaky.  At a power of

90%, one test in ten might fail to show an effect

because of chance, perhaps related to small sample

size or variability among the organisms.  It is wise to

temper conclusions of “no effect” with the

qualification “for this design and power of test”.  For

a low-power test, it could be more realistic to report

an inconclusive result rather than no effect.

Toxicologists have been urged to report both """" and
statistical power (1 - $), as indications of the
possibilities of drawing false conclusions in either

direction.  Most people have difficulty with power,

and do not report it.  Indeed, it is a fairly complex

item, with different specific formulae for various

statistical tests.  In view of the complexity, an

alternative approach using Minimum Significant

Difference is outlined in Section 7.2.4.  Investigators

wishing to report power of toxicity experiments

should consult USEPA and USACE (1994).

7.2.4 Minimum Significant Difference

The Minimum Significant Difference (MSD) is a

particular case of the power in a given test, and can be

regarded as “an index of power”.  Since MSD is a

feature of the software for many multiple-comparison

tests (Section 7.5), reporting it is a partial remedy for

the difficulty in communicating the power of a

toxicity test.

The exact meaning of Minimum Significant

Difference depends on the statistical test being

considered.  In general, MSD is the magnitude of the

difference that would have to exist in average

measurements (weights, for example), between the

control and a test concentration, in order to conclude

that there was a significant effect at that

concentration.  Clearly, MSD becomes larger with

increased variation within concentrations.

The MSD is often stated as a percentage.  For

example, an MSD of 12% would mean that a

difference of 12% between the measurements for a

test concentration and those for the control, would be

the minimum difference that could be detected in the

toxicity test.  (In other words, if a 12% difference

were found, it would be considered statistically 

laboratories, as supposed samples of wastewater.  Six of

14 laboratories reported that the water was toxic.  Moore

et al. (2000) could not find any plausible reason for this

high level of Type 1 error, and suggest remedies including

additional criteria for acceptance of toxicity tests.
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significant, for the manner in which the test was

conducted).

If NOEC/LOEC are reported as endpoints, it is

beneficial to report the MSD.  The user of the results

will gain some sense of the variability in a given test,

and how closely the result should be interpreted. 

Environment Canada requires the MSD to be stated in

reports under their programs, for the statistical tests in

which it is available.  It is strongly recommended that

the MSD should also be stated in reports under other

jurisdictions (Miller et al., 1993).

The MSD or its equivalent is provided by all

parametric multiple-comparison tests, such as

Williams' and Dunnett's tests (Section 7.5). 

Unfortunately, in today’s common practice, there is

no useful analogue provided by nonparametric tests

(such as Steel's Many-One or Wilcoxon Rank Sum

tests.)

Acceptable values for MSD.  As yet, Environment

Canada has no guidelines for deciding an acceptable

MSD.  

Attendees at the meeting of the Statistical Advisory

Group considered adopting a cutoff point, such as

invalidating a test with MSD greater than 50%, but no

decision was reached (Miller et al., 1993).

Washington State has adopted an MSD of 40% in

sublethal tests, for regulatory purposes (WSDOE,

1998).  The USEPA (2000b) has offered some

recommended maxima for accepting results in certain

toxicity tests (Table 5).  The values were derived by

inspecting a national data base for tests with reference

toxicants, for 23 test procedures at 75 laboratories

over 10 years.  The maxima would apply no matter

what probability value ("""") was selected.

From Table 5, it appears that the normal value of

MSD is very much an individual characteristic of

various toxicity tests.  Apparently, it is not

appropriate to have one value of MSD for all

organisms and procedures.  In dual-effect tests, the

recommended values apply only to the sublethal

effect.

The same conclusion of the need for different MSDs

for different tests was reached in an objective study

by Wang et al. (2000).  From trials with suitable sets

of data, Wang and co-workers concluded that MSD

limits could be set in a scientifically sound manner. 

The limit would be chosen from a fairly complex

equation, which they provided, and depended on

several other variables including power of the

statistical test and the desired detectable difference

from the control.  No single “cook-book” value could

be given.

7.2.5 Bioequivalence

Bioequivalence is the name which has been given to

a testing approach related to MSD.  This tool for

hypothesis testing has the effect of turning the general

approach and use of a null hypothesis upside down. 

First, a degree of acceptable difference is set, between

the performance of the control and the test

concentrations.  The null hypothesis is that test results

are not “further out” than the acceptable difference. 

The hypothesis is tested by statistical treatment.

Shukla et al. (2000) show advantages of using

bioequivalence.  Many toxicity tests with an

appreciable effect which had received a “pass” under

the conventional approach, because of high variability

within the test, showed a (deserved) failure under the

bioequivalence approach.  Many tests with only a 

slight toxic effect, which had shown a “failure” of the

test material under the conventional approach,

because of slight variability within the test, showed a

(deserved) “pass” under the bioequivalence approach. 

Statistical background for the bioequivalence

approach is provided in Wellek (2002).

Use of the bioequivalence approach requires

agreement on what is a biological meaningful effect,

which is not decided for most EC tests (see previous

text).  However, there have been some initial

approaches to limits of acceptable effect in Canadian

tests.  Regulatory control of industrial effluent usually

requires that a test of acute lethality must show an

effect of less than 50%.  This does not imply that

killing almost half of the test organisms is acceptable. 

The endpoint was adopted as one that could be

estimated with reasonable accuracy and

dependability.  Beyond that, the philosophy was that

reasonable control of toxicity in the discharged waste

itself, would achieve satisfactory conditions after

dilution in the receiving environment.

The Canadian Disposal at Sea Program has somewhat

more restrictive requirements for two toxicity tests. 



117

Table 5 Minimum significant differences recommended by the USEPA for certain sublethal effects in

selected toxicity tests (after USEPA, 2000b).

Test method published by the USEPA Effect measured Maximum MSD

Ceriodaphnia, reproduction and survival Reproduction 37%

Fathead minnow, larval survival and growth Growth 35%

Inland silverside, larval survival and growth Growth 35%

Mysid, survival, growth, fecundity Growth 32%

Sheepshead minnow, larval survival and growth Growth 23%

Pseudokirchneriella subcapitata,

growth/multiplication

Growth/multiplication 23%

In the echinoid test (EC, 1992f), a sediment fails if

fertilization success is 25% less than the success

rate in control water.  In the marine amphipod test

(EC, 1992d; 1998b), a sediment fails if survival is

20% less than the survival rate in a reference

sediment, or 30% less than in a control sediment

(Porebski and Osborne, 1998; Zajdlik et al., 2000). 

There is also a requirement that the difference

should be statistically significant.  In other words,

the apparently deleterious effect should not be the

result of chance.  The criteria for a valid toxicity test

must also be satisfied.  The scientists of the Disposal

at Sea Program intended these limits to be

reasonably representative of an ecologically

significant difference from natural variability in

populations.  They were strongly aware of the

restricted knowledge for setting such limits, but

clearly the limits were required for regulatory

programs.  Validation of the choice is a topic of

investigation (Zajdlik et al., 2000).

7.2.6 Using the Techniques on Quantal Data

It is possible to use hypothesis testing, normally a

quantitative technique, for evaluating quantal effects,

but usually, that should not be done.  One exception,

however, would be if the data were suitably

transformed, as outlined in Sections 2.9.2 and 2.9.3.

Another exception would be if each replicate had

$100 observations; quantitative analysis could be

used directly, as discussed in Section 6.1.1.  An

example is the echinoid fertilization test (EC, 1992f),

with quantal data for fertilization of 100–200 eggs per

container, it is satisfactory to treat the data as if they

represented a continuous distribution.

If replicates have low numbers of individuals, say less

than 100, results must be analyzed as quantal data.

7.3 Preparation for Testing by ANOVA

Hypothesis testing is a well-recognized procedure,

with a general approach that is commonly used for

research in pharmacology and human health.  The

approach has a set of statistical techniques which can

be used when the data are quantitative, i.e., variable

in magnitude among individuals, such as size, weight,

or number of tumours 53.

53  Some tests with quantal data can be analyzed by
hypothesis testing if the numbers of observations are large

(Section 7.2.6).
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Key Guidance

• For hypothesis testing of quantitative results,

the effects of exposure to different treatments

are examined for statistical differences. 

There must be replicates.  Often, the different

treatments would be a series of concentrations

and a control (assumed in the following text).

• The Shapiro-Wilk’s test is used to assess

normal distribution of the data, and O'Brien's

test (or Levene’s or Bartlett's test) judges

homogeneity of variances in the various

treatments.  With favourable results, the

investigator can proceed to parametric

analyses.  Plotting a graph could help to

assess normality.

• If data do not conform to normality and

homogeneity of variance, they might be made

to do so by transformation of the data. 

Analysis could then proceed by conventional

parametric methods.

• If transformed data still do not conform to

normality and homogeneity of variance,

nonparametric methods of analyses must be

used.  Parametric analyses would not be

valid, but might also proceed, to compare the

estimated sensitivities.  The parametric

methods are relatively robust for small

deviations from normality and homogeneity of

variance, and for such mild deviation, results

from parametric analysis might be reported in

addition to the required non-parametric

analysis.

The fundamental approach is to adopt a null

hypothesis that the effects shown by organisms in the

test concentrations will be no different from those

seen in control organisms.  The toxicity test is then

run, and the degrees of effect are measured in

replicated groups of test organisms at one or more

concentrations, and in control organisms.  When

parametric methods are used, the statistical

comparison of the degrees of effect reveals whether

the differences between differently treated groups

(variation among) are statistically greater than the

overall variation within each treatment.  In

nonparametric methods the comparison is based on

the relative rankings among treatments.  If there is no

effect of treatment, the average ranking should be the

same for the various treatments.  If no difference is

detected between any test concentration and the

control, compared to the general “noise” among

replicates, then the investigator accepts the null

hypothesis, i.e., no effect of the test condition(s).  If

there is/are significant difference(s) between

treatment(s) and control, the null hypothesis is

rejected, and automatically the alternative hypothesis

is accepted, that there is a real effect of the test

material, i.e., toxicity.

The general statistical procedures in environmental

toxicology were well developed in the 1980s and

1990s (citations in Appendix P), and statistical

background is provided by Wellek (2002).  The

general flow of hypothesis testing is indicated in

Figure 19.  Usually, if a toxicity test is suitably

designed and elicits consistent effects among the test

organisms, it will follow a track vertically downwards

in the centre of Figure 19, while tests that have some

irregularity or problem will divert towards the right

side.  The most-recommended multiple-comparison

tests are indicated at the bottom of Figure 19, along

with substitutes if the first choice is not available. 

Some others are mentioned in the text.

An investigator should plot the results from a test,

even though hypothesis testing does not fit a line to

the data.  Examination of the plot allows one to assess

whether NOEC and LOEC are reasonable, and to see

any anomalies in the data (see examples in Section

10.4).

Although test concentrations should have been

selected in a geometric series (Section 2.2), under

usual circumstances the scale of concentration is not a

factor in the statistical analysis, which deals with

effects.  The concentrations serve only as a label for

the groups.

7.3.1 Tests of Normality and Homogeneity of

Variance

Analysis of variance (ANOVA) is at the core of

hypothesis testing in parametric analysis.  It is based

on assumptions that data are normally distributed,

and that variance is similar in different

groups/treatments.  The same assumptions apply to

the parametric multiple-comparison tests that follow 
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the ANOVA.  The investigator must test whether

those assumptions are met, before using ANOVA. 

The tests are listed in this section and described

more fully in Appendix P, Section P.2.  There must

be at least two replicates for all of these statistical

tests and more are desirable; the deficiencies of the

multi-comparison tests become more serious if the

number of replicates is small.

If one or other of the qualifying tests is failed, the

data must by analyzed by the alternative

nonparametric methods (Section 7.5.2).  For mild

non-conformity, there could be some benefit in

carrying out and reporting both parametric and

nonparametric analyses (Section 7.3.2).

Normality.  The Shapiro-Wilk's Test is

recommended for testing normality, rather than the

Kolmogoroff-Smirnov Test available in some

computer programs.  Shapiro-Wilk's is described in

Appendix P, Section P.2.1, and an example is given. 

The analysis is based on residuals, with a minimum

sample size of three.  Standard toxicological

computer programs handle the complicated

calculations.  Final comparison uses a critical value

(W), provided in tables (Shapiro and Wilk, 1965;

D'Agostino, 1986), and investigators can assess the

degree of non-conformity.

In addition, plotting the data for each replicate or

concentration could be instructive (see Figure P.1,

Appendix P).  The graph could suggest the apparent

cause of non-normality or non-homogeneity.

Homogeneity of variance.  The test of Levene

(1960) is recommended here, but unfortunately it is

not included in the software packages designed for

environmental toxicology.  Levene's test avoids a

problem shown by Bartlett's test, of over-sensitivity

to non-normal data.  Levene's is based on the

average of the absolute deviations of observations

from the treatment mean.  Levene's test is not easily

available but it could be implemented by hand

treatment of the data (Appendix P, Section P.2.3).

O'Brien's Test (O'Brien, 1979) is superior to

Levene's test in certain mathematical aspects;

however, it is almost unattainable, even in text

books.

The test of Bartlett (1937) is standard for testing

homogeneity of variance in software packages for

environmental toxicology, and is described in

Appendix P, Section P.2.3.  It has the drawback of

high sensitivity to data that are not normally

distributed, especially skewed distributions.  A set

of data might be rejected because of an erroneous

conclusion about homogeneity of variance.

Each of these tests starts with a null hypothesis that

there are no differences in variance among

treatments.  If variances differ substantively, a

subsequent ANOVA is invalid.  These tests operate

on the assumption that observations are normally

distributed.  Data based on proportions should not

normally be put through these procedures (Appendix

P, Section P.2.4).

7.3.2 Decisions after Testing Distribution of Data

Results which pass both the Shapiro-Wilk's and

Levene's or Bartlett's tests should be analyzed using

parametric methods, i.e., ANOVA.  Data which fail to

satisfy either test might be transformed to meet the

requirements.  The transformed data are tested for

normality and homogeneity, and if the requirements

are met, the data are analyzed using standard

parametric methods.  Transformation has

complications and disadvantages, however, as

described in Section 2.9.2. 

If the original or transformed data do not satisfy

either test for distribution of data, then analysis by

nonparametric methods must be carried out (Figure

19).

The tests for normality and homogeneity of variance

can be overly sensitive in some cases, while ANOVA

and the multiple-comparison tests are rather robust

towards minor non-conformity (Appendix P.2.4). 

Accordingly, if a data-set deviated mildly or

moderately from normality or homogeneity of

variance, an investigator might wish to consult a

statistician about suitable procedures for analysis.  It

is recommended that both parametric and

nonparametric analysis should be done, and reported. 

The more sensitive of the two analyses should

provide the definitive estimate of toxicity.54

54   There appears to be some support for flexibility in this
respect.  A group of statisticians and others who wrote an

ecotoxicity analysis document for OECD (2004) had a
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Results of Shapiro-Wilk's and O'Brien's (or Bartlett's)

test should also be submitted, with a graph of raw

results.  The rationale for this is that parametric tests

are often more powerful in detecting toxic effects,

even with minor irregularities in the data.

7.4 Analysis of Variance

Analysis of variance (ANOVA) is carried out for

parametric testing.  It tests the null hypothesis ( H0 )

that there is no difference in the mean effect among

treatments (concentrations).  Most investigators will

be familiar with analysis of variance, and it is

available in most software packages for toxicology. 

It is further described in Appendix P.3.  The ANOVA

compares the variation among mean effects at the

various treatments (concentrations), with the variation

of effects for the replicates within concentrations. 

The ratio of the two is compared to critical values

available in tables, to determine whether there is one

or more significant difference(s) between treatments. 

If not, the analysis is at an end and the null hypothesis

is accepted.  If a difference is shown, analysis can

proceed further by using a multiple-comparison test

to identify differences.

Key Guidance

• When data conform to normality and

homogeneity of variance, the first step in

parametric testing is an analysis of variance

(ANOVA) to detect an overall difference

among treatments.  ANOVA compares the

variation between concentrations with the

background of variation within

concentrations.

• If the ANOVA detected an overall difference,

a multiple-comparison test would follow, to

decide which concentration(s) caused effects

different from the control.  That determines

the LOEC (lowest-observed-effect

concentration).  The next lower concentration

is the NOEC (no-observed-effect

concentration).  Williams' test is

recommended if there is an order of

concentrations in the treatments, or Dunnett’s

test if there is no such order.  Fisher’s LSD

test is recommended for pairwise comparison

(each treatment with each other).  Substitute

tests are available.

• For nonparametric analysis of data which are

ordered, Shirley's multiple-comparison test is

recommended for comparing treatments with

the control, although the method is not readily

available.  For pairwise comparison, the

Jonckheere-Terpstra test should be used as a

non-parametric analogue of ANOVA.  If it

rejects the null hypothesis, it should be

followed by the Hayter-Stone test for a

pairwise multiple comparison of treatment

effects.

• For nonparametric analysis of unordered

results, and comparison of treatments with the

control,  the Fligner-Wolfe test should be used

to test the null hypothesis.  If there is

rejection, the multiple-range test of  Nemenyi-

Damico-Wolfe is recommended.  If

unavailable, alternatives are the Wilcoxon

Rank Sum and Steel's Many-One Rank tests. 

For pairwise comparison, the Kruskal-Wallis

test should be used for the null hypothesis.  If

it is rejected, the Critchlow-Fligner-Steel-

Dwass multi-comparison test should follow; if

that is not available, substitutes are listed.

surprisingly relaxed view on the formal tests for normality

and homogeneity.  In the section on choosing between

parametric and non-parametric methods, they state that

“[a] visual inspection of the data may have indicated that

the scatter is more or less symmetric and homogeneous ... 

In that case, one may analyze the data by the standard

parametric methods based on normality.”   Further:

“When the data appear to comply with the assumptions

(after a visual inspection) of a particular parametric

analysis, this is the obvious method to choose.  The

assumptions can be further checked at the end of the

analysis (e.g., by examining the residuals ...).  It may be

noted that parametric analysis based on normal

assumptions is reasonably robust to mild violations

against the assumptions.”  “Formal tests exist as well ...,

but it should be noted that mild violation of the

assumptions is no reason for concern, and tests do not

measure the degree of violation.”  For most investigators,

it would be difficult to judge what constituted a “mild

violation”, in which case, advice should be sought from a

statistician.
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The ANOVA also provides what is called the error

variance or residual error term for any subsequent

multi-comparison tests (Section 7.5).  Modern

computer programs for ANOVA can process data

with unequal replication and provide the correct

residual error term for any subsequent multiple-

comparison tests.

7.5 Multiple-comparison Tests

A multiple-comparison test is applied to determine

which treatments elicit effects that are significantly

different from effects in the control, and if desired,

from each other.  The various multi-comparison tests

(sometimes called multi-range tests) make somewhat

different comparisons.  The investigator selects the

appropriate one (Figure 19).  Because this is

hypothesis testing, none of the tests take into account

the numerical value of the concentration, but two of

them (Williams' and Shirley's) consider the mean

effects in order of concentration and find the first one

that is different from the control.  Accordingly, when

data are ordered, as in testing a series of

concentrations, the first preference is to use Williams’

(parametric) or Shirley’s (non-parametric) test.55

Multi-comparison tests are discussed in the following

subsections and further explained in Appendix P,

Sections P.4 and P.5.  Mathematical details are found

in Newman (1995) or in standard statistical

textbooks.  Many of the important tests are offered in

various computer packages.

7.5.1 Parametric Tests

Williams' test (Williams, 1972) is strongly

recommended because it takes into account the order

of concentrations according to their increase or

decrease.  This desirable feature, is appropriate for

most toxicity tests.  Williams' test compares effects at

each concentration with the control, as is standard in

many multi-concentration tests.  The test statistics are

compared, in order, with the critical value.  The first

statistic to exceed the critical value indicates a

significant difference of that mean from the control. 

Because of its superior statistical power, Williams’

test is appreciably more sensitive in estimating a

lower LOEC than other available tests (Appendix P,

Section P.4.1).

Williams' test assumes that the data within

concentrations are normally distributed and

homogeneous.  There must also be a monotonic series

of concentrations.  If that is not the case, the means

should be smoothed although that can 

reduce the sensitivity of the test.   Smoothing might

be available in newer toxicological software,

otherwise the smoothing should be done by hand

calculation.  The test statistics are estimated by one of

two simple formulae, depending on whether there are

equal or unequal numbers of observations

contributing to the mean values.  The critical value,

corresponding to the desired Type I error rate and the

error degrees of freedom, is obtained from tables

(Williams, 1972) if the data are “not too unbalanced”

according to criteria described therein.  Tables for

unbalanced cases are available in Hochberg and

Tamhane (1987).  The test loses some power with

unbalanced data, and OECD (2004) cites evidence

that it should not be used for highly unbalanced

results.  Williams’ test is further discussed in

Appendix P, Section P.4.1, considered in detail in

OECD (2004, appendix), and its procedures are given

by Newman (1995).

Dunnett's test, like Williams', compares each group

mean with the control, but is less powerful because it

ignores the order of concentrations (Table P.3;

Dunnett, 1955; 1964).  If there is no implied order in

samples, such as various sediments tested

simultaneously at a single strength, then Dunnett's

test can be used instead of Williams'.  Dunnett's is

given more prominence than Williams’, in the

computer programs used for environmental

toxicology.

The basic formula for Dunnett’s test is similar to that

of the Student t-test.  The common software packages

for Dunnett's require an equal number of observations

at each treatment.  A series of modifications, which

allow for unequal numbers, have been published,

culminating in Dunnett and Tamhane (1998).  Until a

suitable modification becomes incorporated into the

available software programs, investigators with such

data could consult and use the published

modification, or could use the Dunn-Sidak test

described in the next paragraph.

55   Statisticians might prefer approaches other than
multiple-comparison tests, at least for parametric data. 

They might choose to initiate comparisons by using

statements built into General or Generalized Linear

Models (GLM, GLIM, see Section 6.5.2).



123

The Dunn-Sidak test could be substituted for

Williams' or Dunnett's tests, if there were unequal

numbers of replicates because of accidental loss or

other cause.  A Bonferroni adjustment of the t-test

is frequently used, but is less powerful than the Dunn-

Sidak test and has no particular advantage over it. 

Both tests are less powerful than Williams' and

Dunnett’s, in estimating the NOEC/LOEC.

An investigator might wish to compare differences

among all pairs of locations in a multi-location

survey.  Fisher's Least Significant Difference,

(LSD) related to the t-test, is recommended.  It

controls the family-wise Type I error rate and can

deal with unequal replication, but is not common in

computer packages designed for toxicology

(Appendix P, Section P.4.4).  The LSD is also

intended for only a few of all the possible

comparisons in a set of data, and those comparisons

would have to be specified in advance.  (The

preceding limitation has general application for other

multiple-comparison tests.)  Tukey's test is similar,

commonly available, can adapt to unequal sample

sizes, but is not very sensitive (Appendix Table P.3). 

The Student-Newman-Keul test (SNK) is another

alternative. 

7.5.2 Nonparametric Tests

Nonparametric tests are strong tools for data that are

not normally distributed.  Generally, they tend to be

less powerful than parametric tests if used on

normally distributed data, in which case they might

fail to detect a real effect of toxicity.  Many of the

commonly used nonparametric methods require at

least four replicates; however, some do not (e.g., the

Wilcoxon Rank Sum test).

It is recommended that nonparametric testing follow

the same general sequence as is used in parametric

testing.  First, the null hypothesis of no difference in

the treatments should be tested using methods that are

analogous to an ANOVA.  Only if the null hypothesis

is rejected, should testing proceed to the multi-

comparison tests. 

Analogues of ANOVA.  The Kruskal-Wallis Rank

Sum test is sometimes provided in software

packages, and can be used as the nonparametric

equivalent of an ANOVA (Kruskal and Wallis, 1952;

hereafter called the Kruskal-Wallis test).  The

Fligner-Wolfe test (Fligner and Wolfe, 1982)

examines the null hypothesis that the treatment means

are equal, with the customary alternative hypothesis

that one or more treatment means differ from the

control.

The Jonckheere-Terpstra test (Jonckheere, 1954)

also tests the null hypothesis that the medians are

equal, but the alternate hypothesis is that the

treatments are ordered.  It is suitable for data that

strongly deviate from normality and

homoscedasticity, and has very good power.  This test

has no problem handling unequal sample sizes, but

failure to take into account the number of individuals

in each subgroup can also be a disadvantage. 

Unfortunately, the method is not widely available as a

computer program, and without that, it requires

tedious manual calculations.  However, a version that

handles small sample sizes is available in the

commercial software SAS and StatXact (OECD,

2004).  The characteristics of the test are described in

great detail in an appendix of OECD (2004).

These three tests start with the null hypothesis of no

differences among the effects of treatments.  As in

parametric testing, if the null hypothesis of equality is

accepted, then the statistical analysis would stop

there, with a conclusion of no significant differences.

Multiple comparison.  Shirley's test (Shirley, 1977)

is recommended as first choice for comparing the

treatment medians with a control median, if there is

an order in the magnitude of treatment and/or

effect.  This is the nonparametric analogue of

Williams' test, and it considers the order of

concentrations.  It requires five replicates but does not

need equal replication.  Unfortunately, it is not

provided in most computer programs, nor is it easily

available in printed form (Appendix P, Section P.5).

It is also possible to do a pairwise comparison (each

treatment with each other treatment), if the treatments

have an order (e.g., a series of concentrations).  The

Jonckheere-Terpstra test can be applied, and if the

null hypothesis is rejected, analysis proceeds to the

Hayter-Stone test for pairwise multiple comparison

(Hayter and Stone, 1991).  Unfortunately, here again,

software for these test procedures is not readily

available.  

If the treatments have no order (e.g., locations in a

general survey), a non-parametric analogue of
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ANOVA should be applied first.  Only if the null

hypothesis is rejected (i.e., a difference exists

somewhere among the treatments), should the

analysis proceed to non-parametric multiple-

comparison tests, as in the following text.  This step

of testing the null hypothesis is not necessarily

stipulated in procedures outlined elsewhere, but it is

recommended here as a suitably conservative

approach.  The procedure should eliminate or greatly

reduce Type 1 errors, i.e., false conclusions of a

difference.  In statistical terminology, the multiple-

comparison test is being “protected”, by the initial

test with an analogue of ANOVA.  Since the

multiple-comparison test is not run unless the

preceding test rejects the null hypothesis, the

multiple-comparison test is “protected” from finding

a difference due to chance alone.

In a non-ordered situation, the Fligner-Wolfe test is

recommended to test the null hypothesis of no

difference from the control (Fligner and Wolfe, 1982;

see Appendix P).  If that is not available in suitable

computer software, the Kruskal-Wallis test could be

used.  If the null hypothesis is rejected, the

recommended first choice for comparison with the

control is the Nemenyi-Damico-Wolfe test (Damico

and Wolfe, 1987).  This is suitable for a balanced

design (i.e., equal numbers of replicates).  A second

choice is the Wilcoxon Rank Sum test which is

generally available, and handles unequal replication. 

This is also known by other names such as Wilcoxon 

signed rank test, and often in Europe as the

Wilcoxon-Mann-Whitney test or simply the U test

(Appendix P, Section P.5.4).  It is often used without

the initial test of the null hypothesis, but carrying out

that step is supported by Hollander and Wolfe (1999). 

A third choice that is commonly available in

toxicological software, is Steel’s Many-One Rank

test (Steel, 1959), which requires equal replication.

If pairwise comparisons are desired for a non-ordered

set of data, the Kruskal-Wallis test should be used to

test the null hypothesis.  If the hypothesis is rejected,

the first choice of a follow-up test would be the

Critchlow-Fligner-Steel-Dwass test, also known as

the Critchlow-Fligner test (Critchlow and Fligner,

1991).  This is suitable for equal or unequal

replication.  If it is not available in suitable software,

Steel’s Pairwise test (Steel, 1960) should be used for

balanced data.  This test should not be confused with

the earlier Steel’s Many-One Rank test (Steel, 1959;

see previous text.)  For unbalanced sets of data, a

somewhat unusual procedure could be followed. 

First the null hypothesis is tested with the Kruskal-

Wallis test, and in the case of rejection, the same test

is used for multiple comparisons, to find which

treatment mean(s) differ from which others.

Edwards and Berry (1987) developed a multiple-

comparison test which can be used in all situations,

but unfortunately, is not readily available as software.
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Section 8

Dual-effect Tests

Dual-effect tests measure two different effects,

usually mortality as a quantal component, plus a

sublethal component such as weight of organisms or

number of progeny, which is almost always

quantitative.  These categories of effect have been

previously covered (see Sections 4, 6, and 7), but in

dual-effect tests there are conceptual and statistical

quandaries because the two effects frequently

interact.  For example, the weight of individuals

which die during the test is lost from the assessment

because it is not possible to determine those weights. 

Similarly, the death of an individual could obviously

affect the number of young that it could have

produced.

Choice among methods of analysis is partly governed

by the philosophical/biological aspects of applying

results to the real world, and partly by the practical

aspects of particular toxicity tests.  Separate sections

follow for quantal and for two categories of sublethal

effects.

8.1 The Quantal Component

Key Guidance

• Quantal effects in sublethal or chronic tests

should be analyzed by quantal techniques.

• For mortality that occurs during a test

designed to measure chronic or sublethal

quantitative effect, a separate analysis of

mortality should usually be conducted by

standard quantal methods such as probit

regression.

• The LC25 might be estimated instead of the

LC50, if an endpoint somewhat parallel to

the sublethal IC25 is desired.

• For sublethal quantal effects such as egg

fertilization, an ECp should be estimated by

the usual quantal techniques, although

quantitative analysis may be used if there

are $ 100 observations per replicate.

• In dual-effect tests involving reproduction, it

might be desired to analyze that effect in

combination with mortality, using a

“biomass” approach.

The quantal part of a dual-effect test is usually

mortality, and dealing with it is sometimes relatively

straightforward.  Investigators must not assume that

because a toxicity test is chronic, mortality should be

analyzed as an Inhibiting Concentration (ICp). 

Mortality is a quantal effect and should be analyzed

by quantal techniques (Section 4). The collected data

on mortality must still be considered quantal, even if

they result from the cumulated effects of a variety of

sublethal actions during a chronic exposure.

Estimating the LC25, to parallel the customary

quantitative endpoint of IC25 could be done, although

confidence limits would be wider than for LC50

(Figure 7).  There cannot, however, be an

extrapolation to the endpoint, so there must be an

actual observed effect $25% in order to estimate an

LC25.  Maximum mortality could, however, be less

than 50% 56.

Other quantal endpoints can be obtained in dual-

effect tests such as success in fertilization of salmonid

eggs, which should be analyzed using quantal

methods (Section 6.1.1).  Numerous quantal

observations ($100 for each replicate) can be

analyzed by quantitative means (Section 6.1.1).

Sometimes mortality is intimately combined with

reproductive effects, and it is appropriate to analyze

the combined effects in a “biomass” approach (see

Section 8.3).

56   As noted in Section 4.5.3, some computer programs

for estimating ECp will not analyze data unless there is an

effect $50%, a safeguard to prevent estimates of EC50

from inadequate data.  For EC25, that restriction would

have to be circumvented, or another procedure used.
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8.2 “Growth” as the Sublethal Component

Key Guidance

• In a dual-effect test which measures attained

size (so-called “growth”), it is often

preferable to analyze that sublethal effect

separately from any mortality, to estimate an

independent endpoint, usually the ICp.  For

attained weight of salmonid fry, fathead

minnow larvae, juvenile amphipods, or midge

larvae, the separate analysis can be based on

the average final weight of survivors in each

replicate.  Dead individuals would not

contribute data for the endpoint based on

weight.  Nevertheless there might be a bias

caused by interaction, say if “weak”

individuals showed both smaller size and

more rapid mortality; no method of dealing

with that problem is evident.

• An alternative, the “biomass” approach,

combines mortality with size by analyzing

total weight of survivors, or total weight in a

replicate divided by the number of organisms

that started the test in that replicate.  It can be

used, if desired or prescribed.  To some extent

it simulates ecological success, and might

yield stronger effects.  This approach also has

the potential bias from interaction of size and

survival time.

• The “separate” and “biomass” approaches

should not be mixed in half-measures.

• Mathematical techniques must be chosen with

care.  The “separate” approach could result

in unbalanced numbers in replicates, limiting

the suitable statistical methods.  The

“biomass” approach could produce

measurements of zero in some replicates,

leading to complications with variance.

The sublethal component of dual-effect tests is

usually quantitative, such as weight or number of

young.  Analysis is more straightforward for weight

of organisms, and the choices are explained in this

Section (8.2).  These are often called “growth” tests,

although the data would be better described as

“attained weight” or “attained size”.  Usually there is a

measurement of size at the end of the test, but none at

the beginning, as would be required for a proper

assessment of growth.

Choice of an approach for number of progeny is more

complex (see Section 8.3).

8.2.1 Options for Measurement

In dual-effect tests dealing with attained weight (or

attained length or other measurement of size), there

should be thoughtful consideration of the sublethal

effect that is to be analyzed and reported.  The

magnitude of the endpoint that emerged might be

much higher or lower for certain effects or

combinations of effects.  Usually, the basic choice

is whether to combine the sublethal measurements

with mortality, or to attempt to keep them separate. 

For dual-effect tests, some method documents of

Environment Canada specify which procedure to use,

and the specification must be followed for

departmental programs.  If the choice were open to the

investigator, it would be partly philosophical,

depending on the investigator and the ecological

applications of results.  Nonetheless, the choice has

definite implications for validity of mathematical

procedures.

Whatever choice is made, there could be subtle

unknown and undesired interactions in the test

containers.  For example, if some organisms died, that

might allow more test solution, more space, and/or

more food for the remaining organisms, possibly

affecting growth or well-being of the survivors.  Such

possibilities should be considered when interpreting

results.  Although no statistical correction can be made

for such interactions, their importance can be

minimized by following the recommendations of

Environment Canada on volume of test solution and

other procedural matters.

Another potential difficulty which could lead to an

over-sensitive sublethal test has been called the

scrawny/brawny interaction by statistician 

B. Zajdlik.  It could be quite possible that “weak” or

“enfeebled” individuals might die first in a test, and

would also be of smaller size.  At a low concentration

in which there was no mortality, such “scrawny”
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individuals would survive and influence that

concentration to show a representative, but relatively

low mean weight.  At a higher concentration, only the

“brawny” would survive, biasing the mean weight

upwards for that concentration.  The net effect would

be that the estimated endpoint for effect on weight

would move downwards.

There are three basic options that have been used for

measuring effects.  The choices are illustrated in this

section by the sublethal test on fathead minnows,

which measures final weight attained by a group of

larvae in a given replicate (EC, 1992b).  The options

represent different objectives; and are not equal from

either a biological or statistical viewpoint.  All of the

options have minor or major imperfections or

difficulties.

Option (1) Separate the sublethal effect from any

mortality in the test, and analyze it separately, as far

as that is possible.  This means tabulating the

sublethal measurements, only for organisms that

survived until that measurement was made (at the

end of the test).  For fathead minnow larvae, the

raw data would be the average weight of

surviving fish.  The total weight measured in each

replicate at the end of a test, would be divided by

the number of larvae that survived in that

replicate.  As indicated previously, that might lead

to a “scrawny/brawny interaction” of unknown

magnitude, for which there would be no remedy.  If

no fish survived in a replicate, there would be no

measurement of weight, and no entry of data (in

essence it would be a missing replicate).  Mortality

would be assessed by a separate analysis (Section

8.1).

Option (2) Partial allowance for mortality has

sometimes been used in the following inconsistent

fashion that is not recommended.  If there were one

or more living organisms in a replicate, then the

weight would be estimated as the average weight of

surviving fish, as in Option (1).  If all 10 organisms

died in a given replicate, zero would be entered as

the sublethal measurement.  By this method, zero is

being used as the average weight of 10 dead larvae

in the replicate, which is inconsistent.  If all larvae

died, zero weights would be used to represent them;

if some larvae survived in a replicate, zero weights

would not be used to represent the dead larvae.

Option (3) The “biomass” endpoint is a

combination of sublethal effect and mortality.  It can

result in major differences among observations for

different concentrations, and gives strong emphasis

to the effect of the test material.  In the fathead

minnow test, the measurement analyzed would be

the total weight of living fish in a replicate at the end

of the test, divided by the number of larvae that

started in the replicate.  (If the same number of

larvae had started in each replicate, exactly the same

result would be obtained by analyzing the total

weight of fish in each replicate, rather than the

average.)57   The final biomass is the measurement

analyzed.  If all fish died in a replicate, then a value

of zero weight would be assigned, as in Option (2)
58.  This approach might also have the bias of

incorporating the “scrawny/brawny interaction”.

All three options have been used in Canada, and two of

them have been recommended or at least suggested in

methods published by Environment Canada.

Option (1) is the standard practice in Environment

Canada's method for weight of fathead minnow larvae

(EC, 1992b) 59.  It is also standard for analyzing the

weights of salmonid fry in the early-life-stage test 

57  If any larvae had been accidentally lost or damaged

during the exposure, they would be deducted from the

initial number of larvae in that replicate.

58   In effect, Option (3) assigns zero weight to dead 
larvae in any replicate, whether the replicate had complete

or partial mortality.  The method is therefore an extension

of Option (2), but removes inconsistency.  The procedure

fits with its name: the “biomass” approach.

59   The Environment Canada method for sublethal effects

on fathead minnows instructs that a concentration should

be excluded from the analysis if all the larvae died in all the

replicates of that concentration (EC, 1992b).  The

instructions are not explicit on what should be done if all

the larvae died in one replicate, but not in other replicates

of the same concentration.  The consistent action would be

to leave the replicate with complete mortality out of the

analysis.  This action would result in an unbalanced set of

data, and would require a method of statistical analysis that

was appropriate for unbalanced replicates.  Certainly the

EC instructions do not require Option (2), which would

have meant entering a zero for weight of a replicate which

showed complete mortality of larvae.
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(EC, 1998a), of midge larvae (EC, 1997a) of the

freshwater amphipod Hyalella azteca (EC, 1997b),

and of the polychaete worm Polydora cornuta (EC,

2001a) in sediment toxicity tests.

Option (2) does not appear to be standard for any

published methods.  Nevertheless it was commonly

used for weight of midge larvae in tests of sediment

toxicity, by some Canadian consulting companies,

before publication of the method by Environment

Canada (1997a).

Option (3) is common practice in certain test methods

of the USEPA, in which weight or size is the

measurement of effect.  The ICPIN program

(Norberg-King, 1993) instructs that the total weight

of fathead minnow larvae in a replicate is to be

divided by the number of larvae that started the test.

8.2.2 Conceptual Aspects of the Options

The three options of Section 8.2.1 have various

positive and negative features.

Option (1) can certainly be justified on biological

grounds, as it directly examines sublethal

performance, and only sublethal performance, of all

the test organisms which proceeded through a

complete exposure.  This approach seems to be

rational, but it can produce anomalies.  For example,

in some long-term tests with amphipods, mortality is

a more sensitive endpoint than growth.  Test

sediments might even have better nutritional quality

than the control sediment, and produce better growth

of amphipods (U. Borgmann, 2001, pers. comm.,

National Water Research Institute, Environment

Canada, Burlington, Ontario).  This kind of anomaly

is remedied in test methods of Environment Canada,

which require a separate analysis of mortality, with

the most sensitive effect adopted to represent the test. 

Also, there is the possible bias of a “scrawny/brawny

interaction” with an unknown magnitude.

Option (2) is a compromise, used historically, which

cannot be justified from a conceptual viewpoint.  As

mentioned, the procedure was used unofficially in

Canada for tests with midge larvae in sediment. 

Obviously, each larva had a finite weight at the

beginning of a test, and assigning a final weight of

zero to any of those larvae is not a rational

representation.  As an extreme example, if all the

larvae died in a replicate, entering zero for weight

would imply that there were larvae alive at the end of

the test, and they had absolutely no weight.  This

certainly influences the distribution of measurements

and moves the endpoint to a lower concentration, but

the approach is internally inconsistent and

undesirable.

The “biomass” Option (3) can be justified on

ecological grounds, since it simulates the overall

success of the species under the conditions of

exposure.  Ecological success is often measured in

terms of total biomass or total number of individuals. 

Option (3) is likely to give a more extreme (steeper)

dose-effect curve than Option (1), probably with a

lower concentration as endpoint.  However, the data

of Option (3) have more variability, with reduced

statistical sensitivity to balance the apparent increased

biological effect (Zaleski et al., 1997).  Indeed, in

tests with fathead minnows, Option (3) has produced

estimates of toxicity that are no lower than those of

Option (1) (Pickering et al., 1996; WSDOE, 1998). 

Option (3) could be appropriate in long-term tests

such as those for amphipods in sediment, which

have mortality as a sensitive endpoint.  Again, this

option might contain the bias from a

“scrawny/brawny interaction”.

8.2.3 Statistical Aspects of the Options

The three options have potential statistical intricacies. 

In each, the numbers of individuals might be different

in various replicates and concentrations, requiring

more complex statistical procedures.  Unbalanced

numbers would not be a serious problem for point

estimates based on regression.

Option (1) seems to have the least serious problems

for analytical treatment.  Unequal numbers in

replicates could be compensated by standard methods

in either regression or ANOVA.  Some difficulties

might arise.  If there were wholesale mortality at high

concentrations, those concentrations would be

missing from the sublethal analysis.  If growth was

affected only near concentrations that eventually

caused death, then sublethal observations in the upper

part of the dose-effect curve would be missing or

scanty, and the estimate of the sublethal endpoint

could be inadequate or weak.  Such a situation would

be relatively uncommon, but could happen.  The

situation would be helped by designing in more

concentrations with smaller differences between

adjacent concentrations; Environment Canada

suggests as many as 8 to 10 concentrations in dual-

effect tests.
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Option (2), a poor practice which was sometimes

used in the past, has the previously mentioned

problem of unbalanced treatment of dead organisms

in those replicates with complete mortality, compared

to replicates with partial mortality.  At the least, that

would mean unbalanced numbers in replicates,

whereas analysis methods might have been designed

for balanced numbers.  Beyond that, any analysis

would seem to be hopelessly compromised by having

two categories of data.

Option (3) could have the common mathematical

problem of unbalanced numbers in replicates and/or

concentrations, which can be dealt with by

appropriate statistical methods.

At the research level, a potentially superior approach

was offered by Wang and Smith (2000).  It differs

from the previous options, but is statistically complex

and not completely developed.  The modelling

includes both mortality and sublethal effects, and

estimates an ICp based on both, complete with

confidence limits.  The authors concede that the fit of

their model was not completely satisfactory.  They

indicate that “more complicated models” might be

more suitable; apparently their already complicated

statistical method is not an immediate solution to the

difficulties mentioned in this section.

8.3 Number of Progeny as the Sublethal

Component

Key Guidance

•  In a dual-effect toxicity test measuring

mortality and number of progeny, assessing

the combined effect in a “biomass”

approach is a choice for analysis.

• The other legitimate approach, a separate

analysis of the sublethal effect on

reproduction (e.g., in Ceriodaphnia) is more

complex than for tests which measure

growth.  This is because the number of

progeny depends, in part, on the length of

survival by the parents.

• A suitable approach can be based on an

inspection-by-inspection tabulation of the

average number of new progeny, per parent

alive during that inspection period.  The 

procedure deserves standardization, with a

convenient computer package.

If a dual-purpose test measures number of progeny

(“reproduction”) as the sublethal effect, there is

another complexity which applies, in addition to

those described in Section 8.2.  The situation is

illustrated by the test for reproduction of the water-

flea, Ceriodaphnia (EC, 1992a), but also applies for

reproduction of earthworms and springtails

(Collembola, EC, 2004a,c).  In the test with

Ceriodaphnia, each parent daphnid starts the test in a

separate container, and accordingly, represents a

replicate at a given concentration.  The number of

young that it produces by the end of the test is the

sublethal datum that is used in statistical analysis for

the replicate.  (In addition, the mortality of the parent

daphnids is analyzed by quantal methods to estimate

an endpoint such as LC50 or LC25.)

The EC test method bases the analysis and

interpretation on this straightforward count of the

actual number of young produced in each replicate,

whether the parent survived or not, which is

appropriate for the “biomass” concept.

8.3.1 Inter-relation of Mortality with

Reproduction

If a parent daphnid dies before reproducing, the

number of young for that replicate is zero.  However,

if a daphnid lives to reproduce, the observed number

of progeny depends partly on the duration of parental

life, since there would normally be repeated broods of

young.  Thus, the apparent clear-cut measurement of

sublethal effect for the Ceriodaphnia test (number of

progeny produced in a container during the exposure)

actually has parental mortality integrated into it.  

This particular kind of inter-mixing with mortality is

not a factor in the sublethal endpoint for weight of

fathead minnow larvae (Section 8.2).  In tests with the

fish, the mortality governed the number of larvae

present at the end of the test.  However, for the

recommended Option (1), the criterion for a sublethal

data-point was independent -- if a larva lived until the

end of the test it contributed a weight to the observed

sublethal data, but if it did not live, it did not

contribute data on weight.  Degree of mortality in a

group did not affect the magnitude of the data-point

(average weight), with the possible exception of the

“scrawny/brawny interaction”.
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When number of progeny is the measured effect,

there is an interaction with mortality, unlike the

situation with weights of minnows.  Parental

mortality affects the number of young in the data-set,

i.e., the magnitude of sublethal observations is shaped

by the degree of mortality.  In light of that, the three

options for analyzing data (Section 8.2.1) can be

considered for the test of reproduction in

Ceriodaphnia.  Current statistical analyses for

reproduction of daphnids assume a normal

distribution of the data, but they should be based on a

Poisson distribution. 

Option (3) is conceptually and mathematically

suitable for analysis of data from the test with

Ceriodaphnia, if the biomass approach is accepted as

a suitable criterion of effect.  Zeros, low numbers, and

high numbers of progeny are entered into the

analysis, disregarding the duration of parental

survival.  This method is, indeed, standard practice in

Canadian and US tests of reproduction in

Ceriodaphnia.

Option (2) was described in Section 8.2, and is not

considered here for the reasons previously stated. 

Option (1), which is not recommended, would

encounter the additional difficulty described

previously, that parental mortality cannot easily be

separated from the sublethal effect, although such

separation is the thrust of this option.  If an adult dies

before producing young, the zero progeny recorded

for that replicate does not represent a sublethal effect

on reproduction, but rather, it represents mortality. 

Similarly, if a parent died early, the low number of

progeny would reflect that mortality, rather than a

dampening of reproductive mechanisms.60  A

potential new approach to this difficulty is outlined in

Section 8.3.2.

8.3.2 Analyzing Reproduction as a Separate

Entity

A perceptive study of the problem of assessing

number of progeny in toxicity tests with

Ceriodaphnia was provided by Hamilton (1986).  He

documented a potentially favourable approach for

option (1).  This approach, of separating the sublethal

effect from mortality, deserves to be assessed for

future use.  It is surprising that this has not been done

already.

Hamilton (1986), used real data from a test with

Ceriodaphnia to demonstrate the biases if numbers of

progeny are based on either the initial number of

adults, or the number surviving at the end.   A

possible solution is to tabulate the number of progeny

produced by each live adult, at each of several

inspection times.  (The test usually lasts for seven

days, and progeny are counted and removed daily.) 

The daily average-per-adult is calculated for all the

replicates of a given concentration.

This approach is only valid if there is no correlation

between mortality and production of young.  If

approaching mortality slowed down reproduction, the

interaction could make this method inappropriate. 

Hamilton (1986) demonstrated that the correlation

was negligible or absent.  The parent Ceriodaphnia

continued to reproduce at a normal rate until death, as

far as could be detected by statistical means, and by

convincing graphic comparisons.   At the same time,

Hamilton's examination of data indicated that the

biomass approach reflected primarily the mortalities,

not the reproductive rates.

60   The situation for Option (1) would become even more
untenable if there were a naive attempt to express the data

for a given concentration as average number of progeny

per adult.  Any tactic for making that calculation runs into

trouble.  If one or more adults died part way through the

test after producing some progeny, it would become

difficult to calculate a realistic average without

incorporating survival time.  If the total number of

progeny were divided by the number of parents that

started the test, the average would be biased downwards

(e.g., an adult that died on the first day of exposure

without producing young, would still be used in the

calculation as if it were a producing parent).  If the

number of progeny were divided by the number of parents

surviving to the end, the average would be biased

upwards, above a realistic value.  (For example, an adult

which died an hour before the final inspection would

probably have produced its full component of progeny,

but would not be used in calculating the average number

per adult.  As an ultimate absurdity, if all the adults

produced their young, but died one hour before the final

inspection, then a large number of young would be

credited to zero adults, scarcely realistic.)



131

At the end of the test, the daily averages (of progeny

per parent) were combined to produce a total average

progeny per adult, at each concentration.  Those base

data represent a relatively unbiased estimate of

reproductive performance.  Hamilton (1986)

demonstrated from adjusted data that the method

would detect changes in reproductive performance,

aside from any influence of mortality.  To measure

the variation at each concentration, Hamilton

recommended bootstrap procedures.

The rationale for the approach appeared to be well

thought out and well documented by Hamilton

(1986).  It is recommended here, as an approach

which could be developed in the future, for dual-

effect tests with reproduction as the sublethal effect,

as in the test with Ceriodaphnia.  This would be an

“Option (1)” approach, separating number of progeny

as an individual effect.  The approach is similar to

that used in human epidemiology, to investigate the

expected time-to-death from, a given cause (say, heart

attack), if the effects of competing causes of death

were removed.  It is also similar to procedures used in

fisheries biology to remove the effect of “fishing

mortality” so that natural characteristics of fish

populations can be described (Ricker, 1958).

The precise procedures for this method of analysis

need to be standardized and a convenient computer

package developed.  The method could apply to any

dual-effect test in which a cumulative response was

used for each animal, and early mortalities could

occur.  The preferred endpoint would be ICp. 

Hamilton (1986) recommended that in addition to a

mathematical analysis, graphs of the number of

young produced daily in each replicate, should be

plotted to assess the separation of mortality and

production of young.

This “Option (1)” or “separation” procedure could be

an alternative to analyzing “biomass”, which is used

in the Environment Canada test with Ceriodaphnia. 

The two approaches are, however, identical if all of

the adults survive to the end of the test.

8.4 Summary and Recommendations

It goes without saying, that tests following methods

published by Environment Canada must use the 

prescribed analysis.  In other situations, the choice

of a suitable method and statistical analysis must be

made by the investigator to meet the needs of the

study.

There are two broad legitimate options for analysis

and interpretation of dual-effect tests.  The first

approach (“Option 1”) is to separate the sublethal

effect from the other effect (usually lethality), and

analyze it separately.  This separation of effects

might be more technically informative.

The second approach is to combine the two effects

in a “biomass” type of analysis.  This option might

enhance the apparent toxic effect, and the results

might better predict overall ecological effects in the

real world.  The biomass approach could be suitable

for particular tests or purposes.  The general

application of this option does not, however, have

much support among active Canadian investigators

(Schroeder and Scroggins, 2001).

Approaches which partially combine two effects,

should be avoided.

In dual-effect toxicity tests which measure attained

size of organisms, Option (1) appears to be

preferable.  This option uses the average size of the

surviving individuals, and allows “clean” statistical

analyses.  Such observations are amenable to most

common statistical methods which allow for unequal

numbers of individuals in replicates.  Mortality and

other effects should not be ignored, but suitably

reported after analysis by quantal methods.

In dual-effect tests, which measure number of

progeny, the biomass approach is one suitable

alternative for analysis and interpretation.  It would

be desirable for Environment Canada to develop and

standardize an alternative approach, which would

separate off the sublethal component (reproduction)

by means of average number of progeny per parent,

tabulated for each inspection period and summed for

the test (see description in Section 8.3.2).
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Section 9

Some Statistical Concepts and Tools

Most investigators will already have a foundation in

statistics, and this guidance document does not

attempt to provide that.  However, some statistical

terms relevant to toxicology are defined in the

Glossary for convenience.  In addition, some

mathematical basics that are relevant to toxicity

analyses are outlined at the beginning of this section. 

Later parts of this section cover some often-used

mathematical procedures.

9.1 Normal and Binomial Distributions

Key Guidance

• Normal and binomial distributions are

fundamental characteristics of quantitative

and quantal toxicity tests, respectively. 

For large numbers, and proportions near

0.5, binomial curves become similar to

normal ones.

Normal distributions are basic for much of the data in

toxicity testing, as in most biological fields.  Many

statistical tests assume normality of the data,

particularly for quantitative sublethal tests (Section

6).  Similarly, the binomial distribution is basic for

quantal data (Section 4).  For many observations and

proportions near 0.5, the binomial distribution

becomes similar to the normal.

9.1.1 Normal Curves

Features of a normal distribution are described in the

Glossary, and a visual representation is given in

Figure 20, using the heights of people as an example.

The characteristic normal distribution in the upper

panel of Figure 20 shows most measurements of

people's heights clustering around the mean.  There

are fewer and fewer observations towards the outer

limits of the range.  The frequency histogram can be

described by a standard “bell-shaped” normal  curve. 

Not all bell-shaped curves are normal; to qualify, a

distribution must satisfy a fairly complex formula

(Zar, 1999).  Standard tests ascertain whether a set of

data meets the requirements (Section 7.3).

The lower panel of Figure 20 shows how the

magnitude of the standard deviation (F, sigma)
governs the shape of a normal curve.  In this panel,

“X” represents the measured variable, with a mean of

zero in this case.  The vertical axis represents

frequency “f ”(or probability) of occurrence.   A

greater value for standard deviation makes the curve

wider and squatter.  A change in the value of the

mean would shift the curve to left or right, but would

not change its shape.  Normal curves are always

symmetrical, although an asymmetric or skewed

distribution might result if one normal distribution

were superimposed on another (i.e., combining two

sets of data with different means.)

9.1.2 Binomial Distributions

Binomial distributions are very important in

environmental toxicology because a large part of the

data is “either/or” in nature.  Many tests count the

numbers of experimental organisms that are dead, out

of the total number exposed.  Such data can be

described as binomial, binary, or quantal (see

Glossary).  Some histograms of binary data are shown

in Figure 21.

A symmetrical distribution is seen in the left panel of

Figure 21, when the probability is 0.5.  If the

probability of the event is reduced, the distribution

becomes skewed, as in panels (b) and (c).  The

frequency becomes higher for bars on the left side of

the histograms, notably for zero occurrences out of

five trials (X = zero, or no deaths).  Consequently, the

frequency becomes lower for bars on the right side of

the histograms, notably there is a disappearance of

five occurrences out of five trials (X = 5, or death of

all five organisms).

From Figure 21, it is easy to see that with larger

sample sizes (say, $25), and with p . 0.5, the

binomial distribution of trials (or organisms) would 

assume the general shape of a normal distribution

(Figure 21).  Many of the observations would cluster
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Figure 20 Normal distributions.  The upper panel shows the distribution of heights of 1052 people, fitted with a

standard “bell-shaped” normal curve.  In the lower panel, “X” represents the measured variable, with a

mean of zero; the vertical axis represents frequency (f).  The shape of the curve is governed by the

magnitude of the standard deviation (F, sigma).  After Snedecor and Cochran (1980) and Zar (1974).
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Figure 21         Binomial distributions.  These are distributions for five trials of a binomial event (for example,    

                          “death” or “not death” among five waterfleas in a chamber).  The probability of the event              

                         occurring (“death”) is p, and the probability of it not occurring (“alive”) is q.  The horizontal axis   

                        (X) under each histogram represents zero occurrences, one occurrence, two occurrences, etc. out of 

                        five trials or replicates (i.e., no death, one death, etc. among the five organisms).  The vertical axis  

                        is the frequency of those occurrences.  In the left-hand panel (a), the probabilities are even for the   

                        event to occur or not, and a symmetrical distribution is seen.  In panels (b) and (c) the probabilities 

                        of the event occurring are reduced (“death” is less likely), and the distributions are skewed.  After   

                        Snedecor and Cochran (1980).

near the proportion 0.5, with fewer and fewer

observations as proportions diverged further towards

zero or 1.0.  If p diverged appreciably from 0.5, the

normal distribution would be a poorer approximation

of the binomial one.  Depending on the value of p, it

might require hundreds of binary observations to

achieve a distribution that was similar to the normal

one.  This characteristic is relevant to the assumptions

of normality used to assess fertilization in the toxicity

tests with echinoids and salmonids (EC, 1992f;

1998a).

9.2 Samples and Populations

Key Guidance

• Toxicity tests always use a sample of test

organisms, and random selection is essential if the

sample is to represent the population in a holding

chamber.

• There is seldom any attempt to establish whether

a particular toxicity test is representative of the

much larger free-living (wild) populations of

organisms.  However, most deliberate trials of

“field validation” confirm that toxic levels

determined in the laboratory are good

predictors of harmful effects to natural (wild)

communities.

Investigators carry out toxicity tests on a sample of

organisms.  They might take a sample from a holding

chamber containing large numbers of the organisms. 

All the organisms in the tank might be regarded as a

population.  The investigator assumes that the sample

is typical of the organisms in the tank, which is why

some process for random selection of the samples is

important.

The endpoint of the test, and its statistical

descriptions, always characterize the sample. 
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Statistical tests and descriptions will take into account

the size of the sample, and the variation in the

observations, as a part of producing their estimate.  A

large sample is likely to produce a more precise

endpoint.  Hence there is usually competition in

designing the experiment, between a desire for a

larger sample to obtain more precision, and a desire

for smaller samples to reduce the size of apparatus,

amounts of test substrate, and time required to check

effects.

It is usually a reasonable assumption that the endpoint

for the sample also represents the population. 

However, if the investigator did a poor job of

sampling (say, taking all large organisms), any

statistical findings would apply to the sample, but

might not apply to the population in the holding tank.

At a broader level, there is an implicit assumption, not

dealt with here, that the organisms in the holding

chamber, and the sample endpoint, represent a much

larger population, such as all the wild organisms of

the species tested.  Such an assumption is seldom

tested for a given set of laboratory toxicity tests, and

that must be acknowledged by users of the test data. 

Therefore, it is essential to present information on the

sample of organisms tested, such as genetic

background, rearing history, and size.  These items

are required in methods documents published by

Environment Canada.

There is, however, a large body of information on

“field validation” of toxicity tests in the laboratory. 

Field work around some Canadian pulp mills showed

that effects in nature agreed with expectations from

laboratory tests (Scroggins et al., 2002), and the

laboratory assessments are also useful for predicting

effects of metal mining (Sprague, 1997).  There have

been an appreciable number of deliberate field

research programs to associate effects in natural

(wild) aquatic communities with results of laboratory

tests, and also similar experiments using controlled

communities (mesocosms).  Environment Canada

provided a major review of that research, and

concluded that in most cases, the laboratory tests were 

good predictors of effects in natural habitats (EC,

1999a).

Further relevant particulars can be found in the

Glossary under sample, population, sampling unit,

experimental unit, treatment, replicate, random

sampling, sampling error, and precision.

9.3 Statistical Versus Biological Significance

Key Guidance

•  There are relatively few attempts to define

the degrees of toxic effect that are

biologically significant.  Ideally, in

hypothesis testing, such a level should be

defined before the toxicity test.  The test and

its statistical analysis could then be suitably

designed to assess biological significance. 

The test result would be that an adverse

biological effect had been (or had not been)

observed with 95% certainty.

• At present, statistical significance of effects

is generally substituted for biological

significance by default, but they do not

necessarily correspond without appropriate

design.

Throughout this document and throughout

environmental toxicology, reference is made to the

statistical significance of results.  This is particularly

true for hypothesis testing.  It is well-nigh universal to

select as a criterion, 5% probability that any

difference would occur by chance.  If an observed

difference is large enough that it would occur by

chance only once out of 20 times (or fewer), the

difference is considered significant.  This level of

significance means that if 20 toxicity tests were done

with a harmless chemical, results of one test would be

expected to show a significant difference from the

control (a Type I error, concluding a difference where

none really existed, Section 7.2.2).

The deficiency of the general approach is that

biological significance is seldom defined, and so that

concept cannot be designed into the toxicity test. 

When the test is complete, biological and statistical

significance need not have any particular relationship

to one another.  Section 7.1.2 mentioned that the

statistical no-effect concentration was associated with

sublethal biological effects that averaged 14%

“worse” than the control, and ranged as high as 38%

(Crane and Newman, 2000).

The proper approach would be for the biologist or

toxicologist to start the process by deciding what was

an ecologically significant effect in a particular
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situation (survival, growth, reproductive rate, etc.)

and convey information to the statistician.  The

statistician, in turn, would build that degree of effect

into the hypothesis test, and inform the toxicologist

about the requirements for numbers of samples,

replicates, or individual organisms, given a certain

amount of variation.  After analyzing test results, the

conclusion would be that an ecologically significant

effect had (or had not) been demonstrated with 95%

certainty.  (This assumes that beta had been set at

0.05.)

A rare and laudable Canadian judgement on

biological significance has been made in the Disposal

at Sea Program.  The criteria for meaningful

biological difference have been set at 20–30%

divergence from the control in certain tests of

sediment (Porebski and Osborne, 1998; Zajdlik et al.,

2000; see Section 7.2.5).  (The findings must also be

statistically significant, of course.) 

This question of judgement is prominent in another

major approach of environmental toxicology, the

point estimate (Section 6).  The endpoint, ICp, can

have any value of p selected by the investigator.  The

IC25, for 25% reduction in performance (compared to

the control) has gained general approval as an

endpoint that has reasonable ecological meaning

(Section 6.2.4).

The decision on what is a meaningful ecological

effect has to be derived from biological criteria and

the judgement of investigators.  The selected degree

of effect might vary with the type of effect.  Perhaps a

decrease of 50% in the number of eggs might not be

considered of any ultimate ecological importance, but

a 10% decrease in growth rate of individuals might be

considered of major consequence.

Lacking initial decisions on biological significance,

the potential disparity with statistical significance can

go either way.  A statistically significant effect might

be a very small effect, of no biological concern. 

However, an effect that was not statistically

significant might be a large effect, of major biological

concern, which could happen in a test showing great

internal variability.  This latter conflict is perhaps of

greater practical importance.  An investigator is torn

between the statistical results, and a responsibility to

point out a major biological effect.  One thing to

avoid is lapsing into phraseology of first-draft

master's theses, that “although not statistically

significant, the large change in the ... indicates 

that ...”.  In fact, in a case like this, the investigator

has not shown that there was any change from the

control.

Paine (2002) gives an excellent description of the

overall conflicts in relation to programs for

monitoring environmental effects, under the current

approach for experimental design.

“Environmentally significant effects may not be

statistically significant, and statistically

significant effects may not be environmentally

significant.  Environmentally significant effect

sizes are difficult to define, because they

depend on environmental, sociological, political

and economic issues and values.  Consequently,

we often treat environmental and statistical

significance as equivalent, implicitly or by our

actions.  Legal, regulatory, and management

discussions and decisions are often based on the

statistical significance of results or effects. 

More generally, journal articles and consultant

or government reports often provide only the

statistical significance of effects (e.g., “fish

fecundity was significantly lower in the Impact

area than in the Control area”), ...”

Paine (2002) makes three recommendations for

dealing with the sometimes opposing tugs of

statistical and biological significance.  Certainly the

first two should be followed by investigators

reporting their work.  The second one is the essence

of the argument given previously.

(1) Report the magnitude of effects and the

confidence limits, not just whether the effects

were statistically significant.

(2) “Make an effort to define environmentally

significant effects, however difficult that may

be.”

Paine’s third recommendation, to give up the

“obsessive focus on statistical significance”, would be

best satisfied by designing toxicity tests so that the

statistical result had direct meaning for biological

effect.
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9.4 Inverse Regression

Investigators should be aware that in the usual kind of

environmental toxicity test, there is a complex

statistical problem in estimating the endpoint and its

confidence limits.  The complexity is handled by the

statistical treatment, so the investigator does not have

to take any remedial action.  However, the

complication explains why specific statistical

procedures must be used, and why confidence limits

are often asymmetric.

Key Guidance

• Concentrations start as the independent

variable in a toxicity test.  Variation in the

test is measured in terms of biological effect,

the dependent variable.  The estimate of

endpoint and confidence limits is, however,

inverted into terms of concentration.  This

entails statistical complexities.

• The investigator is largely unaware of the

complexity during the statistical analysis, but

this explains why particular analytical

programs must be used for toxicity data, and

why confidence limits can be asymmetric.

• The inversion does not apply to endpoints

based on time, such as the ET50, since

observations and calculations are based on

variation along the time scale.

Investigators usually fix concentrations when they set

up a toxicity test, making concentration the

independent variable.  The degree of biological effect

seen in the organisms is measured as the dependent

variable.  This creates a fundamental conflict between

the design of tests and the desired endpoints.  Simply

put, the concentrations end up being treated as if they

were the dependent variable.  Determination of the

endpoint is inverted, in order to estimate the

concentration necessary to cause a fixed level of

biological effect specified by the investigator, i.e.,

such items as the EC50, IC25, and their confidence

limits.  The inversion entails statistical complexities

in the programs used to analyze the data.

The test concentrations being initially fixed, are

presumed to be without variation.  The experimental

observations on degree of effect are subject to

experimental variation about the true effect.  If a

linear relation between the two is calculated, its

variability continues to be in terms of the measured

biological effect.  That linear relationship, with its

variation along the effects axis, is used to predict

endpoints and confidence limits along the other axis,

i.e., the concentration axis.  For example, a median

effective concentration and the concentrations

marking its confidence limits, would be estimated

from the fitted line and its variation in effects (see

Figure 7).

The conflict is less evident in hypothesis testing.  The

estimate of an endpoint is straightforward, because it

uses the observed variation in effect to determine

which treatment causes an effect that is significantly

different from the effect in the control.  However, an

inverted estimate takes over for confidence limits,

which are derived from variation in effect, but

calculated in terms of concentration.

The reciprocal switching of variables between

dependent and independent can be described as

inverse estimation of endpoints and confidence

limits.  As mentioned, the inversion procedures are

designed into statistical programs, so an investigator

is not reminded of them.  They remain, nonetheless, a

complexity in the statistical procedures of most tests

in environmental toxicity. 

One common effect of the inverse estimation is

shown by the example for a hypothetical quantal

toxicity test in Figure 7.  At any given concentration,

the confidence limits are vertically symmetrical

because they were calculated in terms of the observed

effects at the fixed concentrations.  However, the

limits of the EC50 are along the horizontal axis for

concentration, and will usually be asymmetrical

because of the inversion in calculations.  The

asymmetry is noticeable if a ruler is laid horizontally

at the 50% effect-level in Figure 7, or any other

effect-level.  Asymmetry is particularly evident near

the ends of the probit line, where one or both of the

limits can sometimes become very large or near-

infinite.
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The inverted estimates apply when any technique of

regression, whether linear or nonlinear, is applied to

the usual toxicity tests.  Ordinary statistical packages

(non-toxicological ones) do not provide a standard

option for dealing with this, for example in estimation

of confidence limits.  This is one of the reasons why a

specially designed program of probit regression must

be used to estimate an EC50 rather than a simple line-

fitting procedure based on least squares.  Although a

formula was provided by Nyholm et al. (1992) for

estimating confidence limits about a toxicological

endpoint derived by ordinary linear regression, it does

not yet seem to have been incorporated into North

American software packages for environmental

toxicology.  Formulae for the same general purpose

are provided in Draper and Smith (1981) and in some

other textbooks on regression.

The inverse regression does not apply to quantal tests

for estimating the time to 50% effect (ET50 or LT50,

see Section 5).  Both endpoint and confidence limits

are estimated in terms of the dependent variable, time. 

The direct approach is statistically clean, adding to

the other benefits of using ET50 as an endpoint.

The other general approach to the problem of inverse

estimation is to reparameterize the equation relating

effect to concentration (see Section 6.5.12).  

Environment Canada has done that in recent test

methods for soil toxicity (EC, 2004a–c; Sections 6.5.7

and 6.5.8).

9.5 Significant Differences Between EC50s

Key Guidance

• Significant differences between two quantal

endpoints (EC50s) can be assessed from their

confidence limits.  The simple comparison is

similar to standard error of the difference.

• A superior mathematical method for two EC50s

seems feasible.

• To test for differences among several EC50s,

conventional ANOVA could be used for the

unusual situation in which replicates were

available.

• It seems possible that a dedicated mathematical

formula could be developed to detect whether a

significant difference existed among several

EC50s, but like an ANOVA it would not single

out which EC50(s) differed.

Significant differences between endpoints may be

calculated without recourse to ad hoc methods, when

the raw data are available.  These methods are,

however, beyond the scope of the present document. 

This section describes ad hoc methods which can be

used when the raw data are not available.

9.5.1 Pairs of EC50s

Some ad hoc methods are available for comparing

two quantal endpoints for statistically significant

difference.

No overlap of confidence limits.  It is convenient

that for results of quantal tests, significant differences

between some pairs of EC50s may be determined by

inspection of their confidence limits.  If the

confidence limits do not overlap, the EC50s are

different, and may be declared so without further

statistical testing.  However, if the confidence limits

overlap, this does not tell anything about significant

difference.

Litchfield-Wilcoxon method.  The method of

Litchfield and Wilcoxon (1949) can be used to

distinguish two EC50s.  It is parallel to a recognized

mathematical technique, standard error of the

difference between means (Zar 1974, p. 105–106),

although most statistical/toxicological texts do not

cover this explicitly.  The Litchfield and Wilcoxon

(1949) method is analogous to the procedure for

obtaining a single pooled estimate of variance from

the variances of two distributions (Snedecor and

Cochran, 1980).  Finney (1971, p. 110–111) shows a

parallel example, for obtaining a single variance for

relative potency from the sum of two variances of a

pair of substances.  The method is questioned by

Hodson et al. (1977) but is a standard one in

pharmacology.  Application to environmental

toxicology is described by Sprague and Fogels

(1977).  The method has been used for some decades,

and seems valid for pairs of tests which have similar

distributions of data.

This approximate procedure is carried out as shown in

Equation 7.  The method might be used with 
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caution 61 until a superior mathematical method is

developed and published.

f1,2 = antilog  q(log f 1)2 + (log f 2)2

[ Equation 7 ]

To compare two EC50s with overlapping confidence

limits, the statistic f1,2 is calculated according to

Equation 7.  There would be a significant difference if

the ratio (greater EC50) ÷ (lesser EC50) exceeded the

statistic f1,2.  The value f1 is simply the ratio between

the confidence limit and the EC50 for a given test,

and may be calculated as [(upper confidence limit)/

(EC50)] + [(EC50)/(lower confidence limit)], then

dividing this sum by 2.  For the other EC50, f2 is

calculated in the same way.  A short computer

program for this has been available from Environment

Canada in North Vancouver 62.

The primary use of Equation 7 should probably be to

determine whether two EC50s are not different, thus

avoiding over-interpretation of variation which has

not been shown to be real 63.

Caution should be raised that a conclusion of

significant difference would apply only to the two

particular endpoints that were compared, and might

not prevail if additional tests were done.  For

example, if Equation 7 showed that EC50s for copper

were significantly different for two species of

crustaceans, it would not necessarily mean that the

species were different in their tolerance, just that

these two particular endpoints were different.  Also,

the biological significance of differences and possible

causes should be considered.  For example, variation

in results from different labs or different times might

lead to statistically significant differences, but the

biological meaning of the difference might be in the

realm of unexplained variation, and should be

considered in that light.

Zajdlik's ad hoc method no. 1

A mathematical method for comparing two EC50s

can be based on the two-sample Z-test, which is

explained in most statistical texts (e.g., Zar, 1974, p.

105–106).  The general method was suggested for use

in comparing two EC50s by Hubert (1992).  It could

be a useful method once the steps in the procedure

have been described by Zajdlik (in prep.).  Equation 8

gives the formula for calculations.

logEC501  - logEC502
Z =  

q( F2(logEC501)  + F2(logEC502) )
[ Equation 8 ]

Sigma ( F ) represents the standard error, i.e., the
standard errors of the first and second log(EC50)s.  

61  Equation 9.1 parallels that for Standard Error of the
Difference, in which SEDIFF equals the square root of the

sum of (SE squared for the first item) plus (SE squared for

the second item).  Use of this method in environmental

toxicology might sometimes be forcing it beyond its

intended statistical foundation.  In pharmacology, the

classical procedures tested a drug of unknown potency

against a standard of known potency.  Testing for

significant difference in potencies, in the manner of

Equation 9.1, required the same slope for the dose-effect

relationships of the two materials.  In toxicity testing, the

“slopes” of the effect-distributions might not be the same,

so the validity of using this method is in question.  It is

likely that if f1 and f2 are similar, i.e., the confidence limits
are of similar magnitude on a logarithmic scale, relative to

their EC50s, then this procedure for testing significant

difference would be reasonable.  If  the ad hoc procedure

of Zajdlik becomes available, it would be the preferred

method, in the absence of the raw data.

62  Toxicology Program, Environment Canada, Pacific
Environmental Science Centre, 2645 Dollarton Hwy,

North Vancouver, B.C., V7H 1V2.

63  Some examples might assist.  For the comparisons of
EC50s in the table, all the 95% confidence limits were

arbitrarily fixed at EC50 * 1.5 and EC50/1.5.  Thus

 f1 = f2 = 1.5, and f1,2 will always be calculated as 1.77.

Higher Lower EC50 f1,2 Different?

EC50 EC50 ratio

(limits) (limits)

20 8 (5.3, 12) No Not Yes

(13.3, 30) overlap tested

as 11 (7.3, 1.82 1.77 Yes,

above 16.3) just

as 12 (8, 18) 1.66 1.77 Not

above quite

as 15 (10, 1.33 1.77 No

above 22.5)
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The procedure for obtaining F (and hence F2)
remains to be defined at the time of writing.

If |Z| > 1.96, then the two EC50s are significantly

different at the 95% level of significance for a two-

tailed test, when the question posed is whether

EC501 differs from EC502, greater or smaller.  For a

one-tailed test, in which the question is whether

EC501 is statistically greater than EC502,

significance would be established if |Z| is greater

than 1.645.

Other approaches.  There have been other thoughts

on this topic as it relates to environmental

toxicology.  Villeneuve et al. (2000) address relative

potency which is the same general question as

determining significant differences between EC50s. 

They acknowledge that estimates of relative potency

(ratio of two EC50s) are valid only when the dose-

effect curves are parallel and show the same

maximum achievable effect.  The requirement for

parallelism is less important in toxicity tests. 

Villeneuve et al. (2000) offer a framework for

analysis which would require further development

for use in environmental toxicology.  They outline a

method using multiple-point estimates over a range

of effects from EC20 to EC80, to determine relative

potency ranges.  Villeneuve et al. offer a

dichotomous “framework” for decisions on deriving

and applying estimates of relative potency; however,

they do not offer a particular mathematical

technique for treating the toxicity data. 

Transformation to a straight line is suggested, if

possible, by using log of dose and probit, logit, or

logistic tools.  Subsequent linear regression was

used but they refer the reader to several “generalized

linear models and other nonlinear regression

techniques” that are in the literature.

9.5.2 Comparing Multiple EC50s

A pairwise test, such as those shown by Equations 7

and 8, must not be repeated between all possible

pairs in a list of EC50s, because it will likely cause a

false positive (Type I) error.  If the 5% level of

significance had been adopted, the repeated testing

would be expected to show significant differences

because of chance alone, in one of 20 comparisons.  

The problem is parallel to that for repeated use of a

t-test in situations where an analysis of variance

would be appropriate.

In environmental toxicology, investigators have

seldom tested for differences among a series of

EC50s, probably due to the lack of a convenient test

method or package.  Testing by conventional

analysis of variance would be valid if replicate

EC50s were available, but that would not be the case

in most testing programs.

The method described by Equation 9 might be used

by investigators if it were proven valid and its

procedures were described.  Equation 9 remains

tentative at the time of writing but might be

developed (Zajdlik, in prep.).  The method is based

on the chi-square test and would tell whether or not

a significant difference existed among an array of

more than two EC50s.  As in an ANOVA, use of

Equation 9 would not distinguish which endpoint

differed from which others.

For each EC50, w = (1/SE log(EC50))
2, i.e., the square

of the reciprocal of the standard error (SE) of the

EC50 on a logarithmic basis.  Some of the steps in

making the calculation are given in Appendix Q,

with an example calculation.  A spreadsheet or

simple computer program could be used for ease of

calculation.

The calculated chi-square (P2) is compared with
table values for one less than the number of EC50s,

for the selected probability value, usually p = 0.05. 

If the calculated value is greater than the table value,

there is one or more significant difference(s) among

the EC50s.

To determine which endpoint(s) differed from which

others, a multiple-comparison test would be

required, but a suitable one has not yet been

documented.
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9.6 Significant Differences Between ICps

Key Guidance

• Pairs of ICps may be compared by a method

derived from the two-sample Z-test.

• If several ICps were replicated, significant

differences could be assessed by standard

analysis of variance and multiple-

comparison tests.

• Without replication, there is no method

currently available for testing differences

among several ICps.

Section 9.5 outlines methods for testing significant

differences between and among the endpoints of

lethal and other quantal tests.  Parallel methods can be

used for assessing quantitative endpoints.  Some

procedures for pairs of endpoints are established, but

methods for comparing several endpoints await

further development.

The most commonly used quantitative endpoint in

North America is the IC25.  The following methods

are valid for any value of p, so the general term ICp is

used.  It is understood that comparisons must be made

only for the same values of p, i.e., IC20 with IC20,

IC25 with IC25, etc.

9.6.1 Pairs of ICps

No overlap.  If the confidence limits of ICps do not

overlap, they can be declared significantly different

without further testing.  If the limits overlap, this

signals nothing about significant difference.  The

principle is the same as in comparison of two EC50s

(Section 9.5.1).

Litchfield-Wilcoxon method.  The Litchfield-

Wilcoxon method (Section 9.5.1) uses a

combination of confidence limits of two EC50s to

judge significant differences.  Although it might

seem easy to extend the method to ICps, statisticians

concur that it is not suitable for this purpose.

Zajdlik's ad hoc method no. 2.  This is similar to

the ad hoc method shown in Section 9.5.1.  The

method also originates from the two-sample Z-test,

described in most statistical texts (e.g., Zar, 1974, 

p. 105–106).  Equation 10 gives the formula, but the

steps in calculation await description (Zajdlik, in

prep.).  The mathematical manipulations are simple

enough as indicated by Equation 10, and involve

only the logarithmic values of the ICps and their

standard error.  This method assumes that ICps are

normally distributed, or rather, for environmental

toxicity tests, that the logarithmic ICps are normally

distributed.

logICp1  - logICp2
Z =  

q( log SE ICp1)
2  + (log SE ICp2)

2 

[ Equation 10 ]

If |Z| > 1.96 (i.e., greater than the critical value of Z)

then the two ICps are significantly different at the

95% level of significance, for a two-tailed test.  In

the more usual case, it would be obvious to the

investigator that one of the ICps was numerically

larger than the other.  A one-tailed test would be

appropriate (is ICp1 statistically no greater than

ICp2?).  Statistical difference would be established if

|Z| were greater than the critical value 1.645.

In Equation 10, SE represents the standard error of a

logarithmic ICp.  The SE for each of the ICps is

calculated as shown in Equation 11 (Zajdlik, in

prep.).

ln (logUCL - logICp1) +

SE(logICp1) = Q ‰
ln(logICp1 - logLCL)  - 2 ln (z 1- "/2)  ÷  ÷ 2

[Equation 11]

For Equation 11:

UCL is the upper confidence limit of the ICp,

for (1 - """")% (customarily 95%),

LCL is the lower confidence limit of the ICp,

for (1-"""")% (customarily 95%), and

Z refers to the normal quantile for (1 - """")%. 
The quantile is UCL (95%) minus LCL

(95%) = 1.96, and that numerical value is

substituted in the formula.
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The approach is based on the confidence intervals

which were calculated at the same time as the ICps. 

The method is appropriate, whether the ICp and

limits were derived by regression or by interpolation

and bootstrapping.  The procedure in Equation 11

uses the upper and lower confidence limits to

provide two estimates of the variance for a given

ICp, in this case ICp1, the first ICp.  The geometric

average of those estimates is used to obtain a single

value for the first SE.  The SE of the second ICp

would be estimated in the same way.

The natural logarithms in Equation 11 are part of the

process of obtaining the geometric average of the

upper and lower confidence limits.  The logarithms

(base 10) represent calculations for test exposures

derived from a logarithmic series of concentrations

(Section 2.3).

In some methods of calculating ICp, notably in the

better regression methods, the standard error would

be part of the output of analysis.  The investigator

could use that value without resorting to Equation

11, and proceed to the comparison by Equation 10.

An example of calculating an SE by Equation 11 can

be given, using arbitrary choices of ICp = 10 mg/L

and confidence limits of 6 and 16 mg/L.  On the

right side of Equation 11, the part within the

parentheses becomes (omitting some digits):

[ln(log 16 - log 10) + ln(log 10 - log 6) 

- 2(ln 1.96)]/2

[ -1.5890... -1.5057... -1.3458... ] / 2   =  -2.2203...

Taking that as an exponent would yield for the

equation:

SE(log ICp)  =  0.108571336

ICp + SE would be calculated as:

log ICP + SE(log ICp) =  1 + 0.10857... = 1.10857,

or as the antilog, 12.8 mg/L

ICp - SE would be calculated as:

log ICP - SE(log ICp)  =  1 - 0.10857... = 0.89142,

or as the antilog, 7.79 mg/L

9.6.2 Comparing Multiple ICps

If there is true replication of ICps in several sets of

tests, differences among the sets may be tested by

the standard methods of ANOVA, followed by a

multiple-comparison test if desired.  However, if

there is a series of unreplicated ICps, there does not

appear to be any method in use, for establishing

whether there is/are significant difference(s) among

those endpoints.  A pairwise test, such as that shown

by Equation 10, must not be repeated between all

possible pairs in a list of EC50s, because that could

result in a false positive (Type I) error.

The method shown in Section 9.5.2, for comparing

several EC50s would seem to lend itself to

comparing ICps, and might see future development

for that purpose (Zajdlik, in prep.)  Alternatively,

efforts might  be focused on obtaining the raw data

from the tests, and applying more sophisticated

techniques.
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Section 10

Dealing with “Difficult” Results

Toxicity tests can produce data in a variety of patterns

that are difficult to deal with.  Some difficulties are

addressed here, mostly for sublethal tests, but not all

have agreed solutions.

10.1 Variation

Key Guidance

• A high level of variability in effects should

not systematically influence an ICp

upwards or downwards, but wider

confidence limits will indicate less

reliability of the estimate.  In hypothesis

testing, higher variability moves the

NOEC/LOEC towards higher

concentrations.

If a linear model is used to estimate an endpoint, high

variability might not change the endpoint, although it

will result in wider confidence limits.  Those limits

will be reported, so reliability of the endpoint will be

appropriately apparent to all users of the information.

If hypothesis testing is used to analyze data from a

test, high variability will make the test less sensitive. 

The endpoint will be a higher concentration, a

deficiency of the hypothesis approach that is at the

base of discussions in Sections 7.1, and 7.2.2 to 7.2.5.

Once a toxicity test has been completed, the

variability cannot be changed.  The only way of

minimizing the effects is by choosing the most

appropriate and effective methods of statistical

analysis.  If similar new tests were being done, the

most likely remedy at the design stage would be to

increase the sample sizes, or sometimes, to refine the

statistical experimental design, and remove or reduce

the procedural sources of variation.

10.2 Outliers

From time to time, test results will include an outlier,

a measurement that does not seem to fit the other

values from the test.  An investigator would

probably first notice an outlier by inspecting

tabulations, or by plotting the distribution of data,

which is one reason an initial hand plot is

emphasized in this document.

There is no mathematical or judicial procedure that

can magically and definitively separate an error

from inherent variation.  Error and variation could

be similar in magnitude, and the investigator must

not yield to temptation, by arbitrarily discarding a

point which does not seem to fit a presumed

distribution.  On the other hand, a divergent point

should not be blindly processed in the usual manner

-- it might indeed be erroneous, and have a bad

influence on technical interpretations.

Key Guidance

• If an apparent outlier is noticed, it must

not be removed from the analysis without

a strong reason.

• If there is an outlier, all test records

should be scrutinized for human error. 

Holding and testing procedures should be

reviewed as possible causes of a changed

biological response.  Alternative models

for analysis should be considered,

perhaps a simple transformation of data.

• The investigator should also apply

suitable mathematical tests for evaluating

outliers (as described in the text). 

However, the tests have deficiencies for

use in toxicology, and their conclusions

should be tempered by inspection of total

variation in an experiment.

• Anomalies should be reported, along with

any tests done on them, and conclusions

about their status.

• Generally, overall analyses of test results

should be done with and without the

outlier, and both should be reported,

indicating which is considered definitive,
and why.
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The problem of outliers can be approached in a

reasonable manner.  There are three successive steps

in dealing with suspect observations, according to

Grubbs (1969) described in Newman (1995).  This

is good advice for environmental toxicologists.

 (1) Investigators should reject any measurement

they know has been obtained by a faulty

procedure.  The measurement should be

rejected whether or not it appears to fit the

presumed distribution.  (The procedures

responsible for all data should be scrutinized

as part of the laboratory's normal program of

quality control, whether or not those data

appear unusual.)

(2) Next, investigators should consider that they

might have adopted an unsuitable model,

which might be the reason for poor fit of one

or more observations.  This possibility, often

ignored, is an important one.

(3) Finally, if the anomaly remains unexplained, it

should be reported, no matter what course is

chosen for subsequent analysis of data.

10.2.1 Checking Errors and Procedures

Any apparent outliers should be re-checked for

human errors.  This includes measuring the effect,

recording the data, transferring numbers, or entering

into computer programs.

The happiest remedy for an aberrant datum would be

to discover that it was caused by a mistake in

transcription or arithmetic, which can be corrected

immediately.  All other data-points should be

checked in similar fashion.  There might also have

been an error in a non-outlier, and a balanced

scientific approach must subject all observations to

the same scrutiny.

If no human slip of the pencil or keyboard were

apparent, the investigator should look for biological

or procedural items which could have caused the

apparent anomaly.  On the principle that “the test

organism never lies”, the investigator should consider

all the potential environmental stimuli that the

organisms encountered during their acclimation and

testing.

The entire sequence of procedures should be

scrutinized for correctness, in all parts of the test, and

for all treatments in the test.  This follows the first

step listed previously.

10.2.2 Alternative Models

If no error is apparent, the next step could be to

consider whether an unsuitable model was being

assumed.  For example, a smooth decrease in

performance with increased concentration might be

assumed, but the actual situation might be hormesis

(increased performance at a low concentration,

Section 10.3).

Another logical step in finding a more suitable

model would be the possibility of transforming the

data using a common procedure.  A systematic trend

in the data might be amenable to an advantageous

transformation.  For example, a general failure to

show normality in the distribution might be

remedied by the arcsine root transformation.  If the

outlier were a single aberrant point, the rationale for

transformation would weaken, as would the

likelihood of solving the difficulty by this method.

If transformation was of little assistance, analysis by

nonparametric methods could be useful.  A method

that makes use of ranking can show good

performance with an aberrant value, since it is

usually less influenced by an outlier.  The OECD

(2004) suggests including such a nonparametric

analysis (including the outlier) as a supplementary

final step in a report which includes two parametric

analyses (with and without the outlier, see following

text).

A statistician might be able to provide a robust

model, which uses a different penalty function (a

rule for optimizing, such as minimum residual sums

of squares) that minimizes the effect of the outlier. 

A comparison of the inferences obtained from

regular and robust methods could guide decisions on

the outlier.

10.2.3 Criteria for Outliers

In parallel with the procedures in subsections 10.2.1

and 10.2.2, an investigator should, if possible, use

objective mathematical techniques to see whether the

outlier appears to represent an anomaly or merely

variation.  Findings of these mathematical techniques

must be tempered by judgement when they are
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applied to toxicity results (see following text), but

they can help to decide whether or not an anomalous

value should be included in the overall analysis of

results.

If there is no replication (as in the probit line for a

quantal test), there are no objective means of

identifying outliers.  An investigator should use

tabulated or graphed data in a report, to convey the

magnitude of the anomaly.

With replicates, there are additional options.  Figure

22 shows examples with possible outliers in the

second-lowest concentrations.  The value in the left

panel of Figure 22 seems particularly divergent.

Rules of thumb.  A rule of thumb might be applied

for assessing an outlier among replicated

measurements.  If the observation is distant from the

median by more than 1.5 times the inter-quartile

range (i.q.r.), it is likely an outlier.64  Unfortunately,

the rule of thumb loses some usefulness in

environmental toxicology because there are usually

only a few replicates for any one treatment, and

estimates of the inter-quartile range become rather

shaky.  For example, this procedure is not useful for

the data in Figure 22, because it would be quixotic

to estimate quartiles for a series of four

measurements.

A variant of this informal procedure is Tukey’s rule

(Tukey, 1977), which includes somewhat fewer

observations as possible outliers.  A potential outlier

would be 1.5 times the i.q.r. (or more) below the first

quartile, or above the third quartile.  From 1.5 to 3.0

times is considered a “mild outlier”, and >3.0 times

indicates a “severe outlier”.  This procedure has the

same difficulty in deciding the inter-quartile range for

the low numbers of replicates usually found in

environmental toxicology.  The OECD (2004)

suggests that Tukey’s rule might be used as a formal

test by assessing the outliers in terms of the residuals

(the results of subtracting the treatment mean from

the individual values), in order to avoid confounding

the outliers and treatment effects.

Statistical criteria for outliers.  Statistical tests

have been proposed for assessing a potential outlier

in an objective manner.  The method of Grubbs

(1969) is recommended by Newman (1995).  The

suspected outlier in a group is entered into a formula

with the mean of all observations (x-bar) and the

standard deviation of all observations (SD), to

estimate a value T.  For environmental toxicology,

“all observations” mean all values obtained at the

particular concentration giving rise to the aberrant

value.  The formulae for high outliers and low

outliers are as follows.

outlier - 0

T = 
SD

0 - outlier
T = 

SD

The value calculated for T is compared with a table

of critical values provided by Grubbs (1969) and

Newman (1995).  If the calculated value exceeds the

critical value, the suspected outlier is judged not to

come from the same normal distribution as the rest

of the values. 65  A key weakness of this parametric

outlier test is the assumption that the data follow a

specific distribution, in this case, normal.  Whether

or not a data-point is rejected depends on that

assumption.

64  Interquartile range is described in the Glossary and
Appendix R.  If five mean values in a series were 20, 24,

28, 34, and 40, the first quartile would be 24, the median

28, and the third quartile would be 34.  The interquartile

range would be 34 - 24 = 10.  The criterion would be 10

times 1.5 = 15.  The limits would be 28 ± 15 = 13 and 43. 

Both the lowest and highest values in the series are within

the limits and probably not outliers.

65  
In his table, Grubbs (1969) gives a choice of three

levels of significance, for up to 100 observations in the

distribution.  For environmental toxicology, lower

numbers of observations would be common.  For 3, 4, 5,

.... 10 observations in the distribution, and a significance

level of 5%, the critical values would be 1.15, 1.46, 1.67,

1.82, 1.94, 2.03, 2.11, and 2.18.  The critical value for 20

observations would be 2.56, and that for 30 observations

would be 2.75.  These are one-tailed values, as would be

appropriate for the formulae shown.
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Figure 22 Examples of possible outliers in tests for seven-day growth of fathead minnow larvae.  These

data are from tests on two Canadian pulp mill effluents.  In each example, one measurement at the

second-lowest concentration (25% effluent) is above the other measurements at that concentration

and also above the general distribution.  There were four replicated at each concentration, each with

nine or 10 larvae.

This formula can be applied to the data for the

second-lowest concentration in the left panel of

Figure 22, where there appears to be a definite

outlier.  The average weights of larval minnows

from the four replicates are: 0.69, 0.77, 0.79, and a

divergent 1.47 mg.  Carrying extra significant digits

for calculation, the mean is 0.93, standard deviation

is 0.3626, and T is calculated as 1.49.  The critical

value (see footnote 65) for four measurements is

1.46.  T is just greater than the critical value, so the

high point could be classified as an outlier.  This

appears to be justified from inspecting the total set

of data.  It is noteworthy that T does not exceed the

critical value as much as might be expected from the

appearance of the graph.

Repeating this procedure for the right panel of

Figure 22 shows that this objective test must be

tempered with judgement when applied to data from

toxicology.  The four average weights of fish for the

second-lowest concentration are 0.84, 0.82, 0.85,

and 1.0 mg.  The mean is 0.8775, standard deviation

is 0.08261, and T is 1.48.  Once again the critical

value is 1.46.  The calculated T just exceeds the

critical value, so this provides some justification for

rejecting the high value at this concentration, and

proceeding with analysis using the other three. 

However, the entire distribution of data in the right

panel of Figure 22 should be inspected.  The overall

variability in the second lowest concentration is not

greatly different from variation in the other

concentrations.  The statistical decision on an outlier

appears to have been driven by the tight clustering

of three measurements, which are indeed unusually

close together (0.84, 0.82, and 0.85).  This

clustering reduces the standard deviation to a very

low value, and thus raises the calculated T.  The

assumed normal distribution might not be valid, a

problem mentioned previously.  Nor does this

statistical method take into account the overall

variation shown in the complete test; it was totally

influenced by the minimal variation at the

concentration of interest, which was apparently an

unusual chance event.  A method which

incorporated total variation in a test would be

superior for the needs of environmental toxicology.
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The conservative approach in a marginal case like

the right panel of Figure 22, would be to accept the

questioned measurement.  It is recommended that an

investigator should provide analyses with and

without the marginal point, along with a description

of the situation and interpretive conclusions.

Other statistical methods for detecting outliers are

described in the literature, but they seem to have the

same weakness for use in toxicity tests, of not

considering the total variation in all concentrations. 

The standard statistical text by Snedecor and

Cochran (1980) gives two relatively straightforward

formulae for testing whether an observation can be

classified as an outlier.  The methods use fairly

detailed tables of the critical values in the tests,

which cannot be reproduced here.  There is also a

dedicated book by Barnett and Lewis (1994), and

the USEPA (1995) suggests consulting a publication

by Draper and John (1981).

Multiple outliers.  Application of a remedy

becomes more doubtful for more than one suspected

outlier at a single concentration.  Collett (1991)

advises that there “is no reliable objective procedure

that can be recommended for assessing ... a group of

two or more outliers”; however, a possible procedure

is given by Rosner (1983).  The same procedure is

outlined by Newman (1995), along with code for a

computer program in FORTRAN for the procedure. 

Snedecor and Cochran (1980) show how the two

simple formulae for an outlier can, and should, be

applied in the case of two outliers in a set of

observations (say, in the replicates at one

concentration).  The most extreme of the outliers

should be tested first.  Whether or not the most

extreme value was found to be a statistical outlier,

that most extreme value should be removed from the

set, and the second most extreme value should be

tested within the remaining distribution of values.  If

it was an outlier, statistically, then both it and the

most extreme value would be declared outliers.  The

rationale is that the most extreme value can “mask”

the deviation of the second most extreme value, by its

influence on the overall distribution.

Although there is no completely adequate criterion

for outliers in toxicity tests, the method of Grubbs

(1969), outlined previously, seems as suitable as any. 

Statistical methods should be developed that are more

appropriate for toxicology.  Meanwhile, if an

apparent outlier is critical to interpreting a test one

way or the other, the advice of a statistician should be

sought to apply measures, not described here,

quantifying the degree of influence that a particular

observation has for a model.

10.2.4 Actions for Reporting

If an outlier is suspected, the sequence of desirable

approaches and actions can be summarized. 

• All records of the test should be examined for

errors in observation or recording.  

• Next, the procedures used in holding and testing

should be reviewed to see if they had triggered

some understandable biological response.  

• If not, alternative models for the results should be

considered.  

In parallel with these steps, the investigator should

use objective statistical methods to examine the

question of rejecting or accepting the variant

observation(s).

In reporting, anomalies should be listed and results

and conclusions of the investigative steps should be

described.  

If statistical techniques do not indicate an outlier, that

should be reported, and the overall analysis of results

should proceed with the aberrant result included.  (An

analysis without the anomalous value might also be

included in the report, with comments on any

influence on interpretation.)

It should also be reported if the statistical test

identifies an outlier.  Results should be analyzed with

and without the questionable value.  Both analyses

should be reported, the investigator should indicate

which one is chosen as definitive, and should offer a

commentary on reasons for the choice.  An alternative

or additional analysis by a nonparametric or other

more robust method could provide additional

enlightenment.  This duplication of analysis and

explanation might not fit some regulatory programs,

which usually require one standardized result.  In that

case, investigators should report the best estimate in

their judgement, with an indication that additional

background analyses and explanations are attached or

held on file.
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10.3 Hormesis—Stimulation at Low

Concentrations

Key Guidance

• There are many sublethal tests in which

performance is stimulated at low

concentrations, i.e., hormesis or “better than

the control”.  This brings a philosophical

problem of deciding whether these are

deleterious effects, and which level of

performance should be considered the

control.  No general answer prevails.

• Hormesis also brings practical problems of

analysis.  Standard dose-effect models do not

fit, or else they cause fallacious estimates. 

More complex models can lose power for

detecting the deleterious concentrations, if a

minimal experimental design is adopted.

• For point estimates such as IC25, the best

approach is to fit the data with a nonlinear

regression, and estimate the IC25 by

comparison to the true control.  A standard

analytical approach for this is included in

new methods from Environment Canada and

in this document.

• If hypothesis testing is done, normal

procedure should be followed, with data

included from all concentrations.  However,

only effects significantly “worse” than the

true control should be considered in

designating the NOEC/LOEC.

• For tests showing hormesis, reports should

include the original results and explanation of

methods of analysis.

In hormesis, a low concentration of the test material

acts as a stimulant for performance of the test

organisms, compared to the control organisms, i.e.,

they perform “better” than the control.  At higher

concentrations, deleterious effects are seen.  The more

general category of “low-dose stimulation” is usually

the more appropriate term to use.  It includes other

possible causes of stimulation, such as solvent effects,

experimental error, or conceivably, just a general

arousal of test organisms held under monotonous

laboratory conditions (“sufficient challenge”).  Low-

dose stimulation is sometimes seen in a variety of

effects including increased growth of test organisms,

or increased algal cell density, shown in Figure 23.

Low-dose stimulation is, perhaps, the most common

hindrance to analysis of well-designed sublethal

toxicity tests.  It represents a real phenomenon, not

outliers or a flawed test, and some Canadian

investigators encounter waste materials that reliably

produce hormetic results.  This is not limited to

environmental studies; it is widespread in medical

toxicology (Davis and Svendsgaard, 1990). 

Calabrese and Baldwin (1997) reviewed positive

effects ranging from 30 to 60%, although Canadian

environmental laboratories experience +30% as a

more likely maximum.

The cause of increased performance is seldom

determined.  For growth or number of cells produced,

the findings would be consistent with some nutrient

being added with the test material, stimulating

production.  If that were so, and if the nutrient were

known, the obvious remedy would be to add the

nutrient itself to all concentrations including the

control.  The level of understanding would rarely

justify such a remedy.

10.3.1 The Difficulties

Problems with usual methods.  If low-dose

stimulation is present, and common techniques of

analysis are applied, the endpoint usually tends to be

lowered (“more toxic”).  The control or baseline

performance is often over-estimated, leading to an

over-estimation of the effects of concentrations and a

lowering of ICp.  The slope of the fitted relationship

usually becomes steeper, which could affect the

estimate of confidence limits. 

If the data shown in Figure 23 are entered without

change into the ICPIN program (Section 6.4.3), the

standard smoothing process raises the control to a

higher number of cells and estimates a lower ICp

than might be expected.  The original (actual)

control value of 2650 cells is adjusted to 2860 cells. 

Smoothing, assigns the same value of 2860 cells to

each of the first four concentrations.  Accordingly, if

the IC25 is being estimated, it is based on about

2145 cells (75% of 2860) instead of the original

1988.  The IC25 is estimated as approximately

logarithm 3.92 or 8300 concentration units,

compared to logarithm 4.05 or 11 220



149

Figure 23 An example of stimulation at low concentration.   This was a test with the green alga,

Pseudokirchneriella subcapitata [formerly Selenastrum capricornutum] in a Canadian laboratory. 

The horizontal dotted line shows performance of the control, and the lowest concentration was

similar.  The alga showed increased reproduction at the next three concentrations, then the expected

decrease at high concentrations.

concentration units if the original control had been

used, which is certainly an appreciable change.

From this, it is clearly not desirable to simply ignore

low-dose stimulation and proceed with routine use

of commonly used statistical methods.

Effect or enhanced control?  There is a

philosophical conundrum in dealing with hormesis,

and there is no consensual solution.  There are

several possible approaches, but none of them are

completely satisfactory.

Should the improved performance be considered an

“effect” of the toxicant and therefore, by definition,

undesirable?  Outside the laboratory, in a living

community, diversion of an organism's energy into

avenues such as growth might indeed be deleterious. 

It might steal energy that would be more

strategically used for reproduction or some other

activity.  However, within a laboratory test, such

speculation is hard to support; it is difficult to

consider improved performance in the test criterion

as a harmful effect.

On the other hand, if low-dose stimulation were

adopted as a deleterious effect for the example in

Figure 23, it would mean that the 2nd, 3rd, and 4th

concentrations would be declared as potential toxic

effects, which would probably not seem rational to

most observers.

Still another alternative would be to regard the

improved performance as a sort of enhanced control,

perhaps resulting from improved supply of nutrients. 

Or perhaps for animals, it might be a response to

“sufficient stimulus”, compared to an otherwise

monotonous set of conditions for existence under

the control conditions.  The stimulated measurement

would then represent potential performance, and

assume the function of the control.  Most

investigators would probably consider that

unrealistic, and instead, opt for comparison with the

standard control.
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It is not desirable to adopt some blend of control and

stimulated performance as a new control, as was

done in the smoothing of the ICPIN program.  This

method, as previously shown, results in an

appreciably lowered endpoint.

Figure 23 shows the difficulty of answering such

fundamental questions, and in the past there has not

been a real consensus on these matters.

Aside from the philosophical questions, low-dose

stimulation brings very practical problems of

deriving a statistical approach to analyze the data

(see following options).  One potential  problem is

that hormetic effects at low concentrations would

mean that the statistical procedure had fewer

concentrations showing decreased performance for

modelling the reduction from the control.

10.3.2 Including Hormetic Effects in Regression

Environment Canada has adopted this reasonable

option in its recent standard methods of nonlinear

regression to estimate ICps (EC, 2004a–c; Section

6.5.8 and Appendix O).  The true control is used for

comparisons of effect.  A special model

accommodating hormesis is used, and the procedure

resolves the analytical problems referred to

previously.   This felicitous solution to the statistical

part of the hormesis problem has many advantages. 

There is no need to reject any of the data.  There is no

need to change the control value by smoothing or

other remedies.  There is no distortion of effects at

concentrations higher than those showing hormesis. 

This is listed in Section 10.3.3 as “Option 1” for

analyzing data which show low-dose stimulation.

Generalized linear models (GLIMs) have been

applied to the results of Ceriodaphnia tests, and

showed promise for dealing with low-dose

stimulation which often occurred (Bailer et al.,

2000a).  Using GLIMs allowed more consistent

estimates of ICp than with the program ICPIN.  The

GLIMs were equally applicable to data that were

quantal, quantitative, or counts.

Brain and Cousens (1989) described some hormetic

sets of results by reparameterized logistic (sigmoid)

models.  The added parameter of the equation

allowed for a hormetic change in performance at low

concentrations.  The approach was further developed

by including the desired endpoint as a parameter (van

Ewijk and Hoekstra, 1993), and that technique has

been incorporated into the recent methods of

Environment Canada.  The advantage is direct

estimation of the endpoint and confidence limits from

the data.  A possible disadvantage is the need to

estimate four parameters using nonlinear regression,

requiring an experimental design that produces a

data-set with adequate numbers of concentrations and

replicates.  The parameterization of van Ewijk and

Hoekstra (1993) is sensitive to the optimization

algorithm underlying the nonlinear package (B.A.

Zajdlik, 2004, pers. comm. B. Zajdlik & Associates

Inc., Rockwood, Ont.).

The more sophisticated method of analysis eliminates

the statistical part of the hormesis conundrum.  It

solves the philosophical problems of Section 10.3.1

by the reasonable approach of using the performance

in the true control as the basis for judging effects

(Option 1, Section 10.3.3).  The philosophical

question of what should be designated as “normal”

performance might still be debated in some unusual

situations, and that is considered in Section 10.3.3.

10.3.3 Options for Dealing with Hormesis

A range of approaches is outlined in the following

options for tests with stimulation at one or two low

concentrations.  Option (1) is recommended, and is the

required first choice in Environment Canada’s recent

soil tests (EC, 2004a–c).  Option (4) is recommended if

it is necessary to make point-estimates by the ICPIN

program, and Option (5) for estimating NOEC/LOEC,

if hypothesis testing is used for some reason.

(Option 1)  In point estimates, include hormesis

in a more complex model.  If an IC25 is being

estimated, adopt the model for hormesis and carry out

nonlinear regression (Section 6.5.8).  The IC25 is still

estimated in relation to the true control performance.

(Option 2)  Smooth the effects for the control and

low concentrations.  Smoothing is done in the

commonly used computer program ICPIN, to estimate

the ICp.  This adjusts the control to “better” levels,

with a consequent lowering of the estimated ICp.  A

similar result could occur in hypothesis testing.  This

option is not recommended, because it makes

comparisons with a control that does not, in fact, exist.

(Option 3)  Omit concentrations showing

significant hormesis from the statistical analysis.

There is no mathematical or statistical basis for using

this option; it could only be considered biological
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judgement.  This option might fit estimation of ICp by

the ICPIN method.  It would not be suitable for point

estimates by regression.  This technique would require

a preliminary analysis to decide which concentrations

actually demonstrated hormesis.  Once the data-points

were removed, analysis could proceed on the

remaining concentrations.  Accompanying the analysis,

there would have to be a clear statement of the values

omitted, and why.

This option is followed in only one of Environment

Canada's toxicity test methods, the method for

inhibition of algal growth (EC, 1992d).  If algal growth

in a test concentration is greater than in the control,

those observations are reported but are not used for

calculating the ICp.

This option would be unsatisfactory under certain

circumstances.  It could estimate an endpoint that was

unrealistically low, if removal of the hormetic data left

a wide “gap” between two low concentrations that

spanned the endpoint.  A hypothetical example is

shown in footnote 66 in line no. 2 of the table 66. 

Because of this uncertain usefulness, the method is

not recommended as a complete solution for tests

other than algal growth.

(Option 4)  Assign the control value to

concentrations showing low-dose stimulation.

This is arbitrary and has no statistical justification, but

is likely to provide realistic endpoints, with

straightforward calculations by commonly used

methods.  It is not recommended for point-estimates,

because a suitable method for regression is available

(Section 6.5.8).  Option (4) would function for point-

estimates with the ICPIN program.  This option was

once supported for transitory use by a cross-section of

Canadian investigators (Schroeder and Scroggins,

2001), but only until suitable regression methods were

developed, as they have been now.

(Option 5)  In hypothesis testing, consider low-

dose stimulation as non-harmful.  The statistical

analysis would proceed as usual, i.e., it would include

performance higher than the control.  If the analysis

showed that one or more low concentrations showed

significantly better performance than the control, that

information would be reported but it would not be

considered a deleterious effect.  The LOEC would be

designated as the lowest concentration which resulted

in a significant decrease in performance compared to

the control.  The endpoint would be the same as would

be obtained with Option (4), but is preferred for

hypothesis testing since it does not involve any

manipulation of the original data.

These options might not be appropriate for all results. 

Investigators should inspect the graphed data to judge

reasonable approaches and endpoints.

In all cases of  low-dose stimulation it is important to:

     • report the original data, and

     • state which measures were adopted for

analysis.

10.4 Deviant Concentration-effect

Relationships

Key Guidance

• Examples of several unusual or difficult

types of data-sets are given.  Suggestions

are offered on interpretation.

66  This hypothetical example represents the number of algal

cells counted at various test concentrations.  For simplicity, no

replicates are shown.

  Control 6 12 25 50 100

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

1. Observed     200 200 275 300 100 50

number of

cells

2. Hormetic     200 200 100 50

concentrations

removed

3. Control      200 200 200 200 100 50

value

substituted

for hormesis

The observed effect in the first line indicates clear hormetic

effects at 12 mg/L and 25 mg/L.  These two effects are omitted

in the second line, as in Option (3) of the text.  If one intended

to estimate the IC25 (concentration resulting in 150 cells) using

the ICPIN method and the data in line 2, there would be

interpolation between 6 mg/L and 50 mg/L, values which are

rather widely separated.  The ICp would be estimated as 

17 mg/L, unrealistically low since there was no evidence of

damage to algal production in the original data for 25 mg/L.

The third line of the table shows a procedure that has apparently

been used by some laboratories to force a more realistic

endpoint (Option 4 of the text).  The control value is arbitrarily

assigned to the concentrations that showed hormesis.  The

interpolation of the endpoint would now be between 25 mg/L

and 50 mg/L.  The IC25 would be 35 mg/L, which appears to be

more reasonable.
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• Some of the difficulties can be avoided by

appropriate test design, particularly using a

wide enough spread of concentrations.

Most laboratories encounter unusual concentration-

effect relationships occasionally.  Test organisms

seldom lie, so aberrant results usually have an

explanation, but it might not be obvious.  This section

shows graphs of some unusual findings, with possible

explanations and recommendations for dealing with

the results.  Initial interpretation should use plotted

graphs, as recommended in Sections 4.2.2 and 6.3.1

and in guidance from the USEPA (2000a).

The series starts with some “good” data, for

comparison.  Some anomalous examples were

obtained in Canadian laboratories during regular test

programs, others are patterned after examples used by

the USEPA (2000a).  Problems of outliers and

hormesis are covered in preceding sections.

(1) Good concentration-effect data.  A regular

linear relationship for an algal test is shown in Figure

24.  There is no difficulty in estimating an endpoint

such as an IC25 by various linear approaches. 

Hypothesis testing also performs satisfactorily.

The good results shown in Figure 24 would be

gratifying to obtain, but they could have been

improved at the design stage.  There were eight

concentrations tested within an order of magnitude,

i.e., the concentrations were spaced close together. 

As mentioned in Section 2.2, such a design runs a risk

of missing concentrations of interest, and in fact, that

happened in this example.  The lowest tested

concentration shows a result about 13% lower than

the result for the control.  One facet of good design is

to have at least one low concentration yielding results

that are essentially the same as those of the control. 

The concentrations should have been spread over a

wider range.

The results in Figure 24 are generally monotonic, and

the slightly irregular effect at the third highest

concentration would not cause concern.  Presumably

it represents background variability and would

contribute a slightly larger variance to any statistical

description of a fitted line.

A similar and remarkably straight concentration-

effect relationship is shown in Figure 25.  There

would be no difficulty in analyzing such results,

either for a point-estimate or hypothesis testing.  It is

somewhat unusual that the effects from low to high

are spread out over more than two orders of

magnitude.  The spread, however, would not impede

the analysis; the design was adequate, and both low

and high effects were obtained.  An additional lower

concentration in the series, however, might have

shown an effect that was closer to the control effect. 

Again, this good result illustrates the importance of

designing tests with a wide spread of concentrations,

rather than trying to guess which narrow range will be

the important one (Section 2.2).  In this test, the

surprisingly wide spread of effects encompassed all 

of the concentrations of a design that would

normally be considered adequate in breadth.

(2) Steep relationships.  Sharp changes in effect at

successive concentrations are common in

environmental toxicity tests.  The example in Figure

26 is not quite “all-or-nothing”, because there is one

intermediate effect as the relationship changes from a

control value to a major deleterious effect.  This type

of data is moderately satisfactory; and the estimated

endpoint will be reasonably precise, with narrow

confidence limits (depending on the dilution factor

used to choose concentrations).

A desirable feature shown in Figure 26 is the

presence of a low concentration with an effect

similar to the control value.  This is one indication

of suitable design and procedure in the test.  There

are, in fact, four low concentrations similar to the

control, and statisticians would point to improved

precision if more of the data-points had been in the

region of rapid change.  Accordingly, an improved

design, in this case, would have omitted some of the

lowest concentrations, in order to provide more data

at the higher concentrations.  Ideally, a range-

finding test would have indicated the appropriate

series of concentrations for the definitive toxicity

test.  However, lacking a range-finder, any change in 

design of the test concentrations would represent

hindsight.  As pointed out previously, a design that

narrows the concentration range can be dangerous in

testing a material of unknown toxicity.  Some

important concentrations might be “missed”, and so

it is better to spread the concentrations as was done

in this test.
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Figure 24 An example of a good linear relationship of concentration and effect.  These are results for a 

Canadian test of toxic surface water with the alga Pseudokirchneriella subcapitata [formerly

Selenastrum capricornutum].  For convenience of illustration on the logarithmic scale, the control

is plotted as a very low  concentration.  Zigzag lines represent the discontinuity in use of the

concentration scale.

Figure 25 Another example of a good relationship of concentration and effect.  Results from a Canadian

laboratory, for growth of duckweed (Lemna minor) in concentrations of arsenic.  (Other description

as in Figure 24.)
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Figure 26 A steep relationship for weight of fathead minnow larvae exposed to concentrations of an

effluent.  Results from a Canadian laboratory.  (Other description as in Figure 24.)

(3) Lack of effect with an irregularity. 

Sometimes no effect of the test material is evident at

the highest concentration tested.  If the material is

an effluent or a sample of sediment or soil, nothing

higher than 100% concentration can be tested. 

Interpretation is simple -- no harmful effect was

demonstrated in this test.  No point-estimate (ICp)

can be calculated, and hypothesis testing would also

show no effect.

The results in Figure 27 illustrate this, but show one

inconsistency.  The middle concentration is

appreciably lower than the control level.  Rarely, a

laboratory might encounter such a pattern in a

sublethal test.  At the anomalous concentration,

performance might be 25% worse than the control,

and might also be statistically different from the

control.

If analysis of the tests is normally done by point

estimates, this irregularity does not cause a problem. 

The low value would not result in an endpoint and

should be reported as an anomaly.  If an investigator

intended to use hypothesis testing, the irregular

effect at the middle concentration might emerge as

the LOEC.  The lack of effect at higher

concentrations invalidates any such estimate.  The

only reasonable approach would be to acknowledge

the apparent anomaly, and state that hypothesis

testing was not appropriate.

An explanation should be sought.  Examine the

records for divergent test conditions such as pH or

dissolved oxygen.  A single divergent replicate

might have influenced the mean value (see outliers,

Section 10.2).  It is possible that failure to

randomize might have influenced results through

condition of organisms or some factor related to

position in the array.  If no explanation can be

found, there is little option except to describe the

range of results that were obtained, with a

conclusion of one anomalous data-point.

(4) Anomalous intermediate lack of effect. 

Sometimes, an apparent progressive increase in

effect is interrupted by a concentration showing lack

of effect, similar to the control (Figure 28). 

Analysis could be carried out by methods which

estimate an ICp.  Line-fitting techniques would take

the irregularities into account and produce

appropriately wide confidence limits.  ICPIN would

force monotonicity on the relationship (Norberg-

King, 1993), probably with satisfactory analysis in

this case.  Hypothesis testing would be spoiled if
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Figure 27 Lack of effect at high concentrations, with an anomalous intermediate concentration.  Hypothetical

data for survival of fathead minnow larvae.

the anomalous point were significantly different

from the control; two sets of NOEC/LOEC would be

generated.  In that case, USEPA (2000a)

recommends choosing the lower one as the NOEC

(6.25% in Figure 28) if the test shows a satisfactory

MSD (see Section 7.2.4).  That would be a

satisfactorily cautious approach.

The anomalous pattern should be reported, whether

or not there is a successful point estimate.  A search

of test procedures should be made for a cause, as in

example (3).

Rarely, a biological reason might be ascertained for

anomalous dose-effect situations, and aggression is

an example.  In a series of 90 lethal screening tests

on an industrial effluent, a few tests were seen to

have extreme aggression among trout, after they

were put into the test tanks.  Particularly odd results

were obtained in two tests.  Out of the totals of 20

fish per treatment, 9 died in the control, and 5 in the

lowest concentration, apparently the result of

fighting.  There were no deaths in two intermediate

concentrations, in which the fish appeared to be

pacified by the effluent.  In full-strength effluent,

toxicity came into play and 16 fish died (Sprague,

1995).  The major effect in the control was a clear

message that there was some extraneous factor

acting in the test.  The deviant U-shaped relationship

of mortality to concentration could be explained but

not analyzed by conventional means.

(5) Flat effect-curve.  Figure 29 indicates an

apparent slight effect at many concentrations, but no

increase in effect with higher concentration. 

Clearly, there is some anomaly.  Results on the

right-hand side might or might not be significantly

lower than the control, but the consistent pattern

should alert the investigator.  There should be no

attempt to estimate an endpoint for data as extreme

as those illustrated.

A search should be made for a procedural or

biological reason.  Some possibilities follow.

(a) The control performance might be unusually

high.  It should be compared with previous

control findings at the laboratory.  If high, the

test results merely indicate that the tested

effluent is not toxic at any concentration.  (It

is unlikely that this would represent a control

performance that was unusually low.  If that

were the case, it would mean that most or all

of the test concentrations caused an effect, but

without a concentration-effect relationship.)
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Figure 28 An apparent anomalous lack of effect at an intermediate concentration.  Hypothetical

example, modified from data in Figure 26 for weight of larval fathead minnows.

Figure 29 An apparent slight effect, but flat with concentrations.  This example is from a Canadian

laboratory using the test to measure larval weight of silversides, a marine fish.

M
e
a
n
 w
e
ig
h
t 
(m
g
)

A
v
e
ra
g
e
 w
e
ig
h
t 
(m
g
)



157

(b) Dilution waters might be inappropriate.  If the

control used one type of water (say the culture

water) and the test concentrations used some

other water, that could be a logical

explanation of a flat, lowered distribution. 

Such a situation should not arise since

procedures of Environment Canada call for a

single control/dilution water.  In the example

of Figure 29, the explanation might lie in

some effect of the seawater brine or salts used

to adjust salinities in the test concentrations.

(c) There might be pathogenic effects.  This is

unlikely but might occur in chronic tests,

especially with fish.  There might be

pathogens in the tested material, which caused

a low-grade effect on the organisms, although

the material itself was not toxic.  If this

happened, results would probably be more

erratic than shown in Figure 27.  If pathogens

seemed likely, and it were desired to

investigate, parallel tests might be run with

one set using ultraviolet or antibiotic

treatment on the test material.

If this pattern persisted in a testing program, it might

be desirable to investigate by chemical analysis or

toxicity identification techniques.

(6) Inverse relationship of effect to concentration. 

At first glance, Figure 30 might seem like a suitable

regular relationship.  A second glance reveals that

performance of the algal cultures improves as

concentration increases.  The conclusion is

straightforward; the effluent being tested is not toxic

to algae, but is providing some nutrient which

enhances their growth and reproduction.  Such an

effect-curve is most likely to be seen with plants, but

might conceivably occur with other organisms. 

(The evidence of nutrients in the tested material

should be considered from a wider perspective, with

regard to enrichment of the receiving waterbodies.)

Another unlikely but possible explanation would be

that the tested material was not toxic, but the

control/dilution water was.  If the receiving water

was used for dilution, it would appear to be toxic

already.  If this were a possible explanation, and the

“absolute” toxicity of the effluent or other test

material is to be determined, then a standard dilution 

water should be used, one known to be favourable

for the organisms.

(7) Strong effects at all concentrations.  The

example in Figure 31 shows major effects on algal

numbers at all of the tested concentrations.  There is

also a very flat relationship of effect to

concentration.  This is a real test result, not a 

hypothetical situation.  Obviously a wider range of

concentrations should have been tested, as discussed

under items (1) and (2).  The five tested

concentrations spanned only one order of

magnitude.  If they had been spread more widely,

the pattern of results might have been less

enigmatic.  A dependable IC25 cannot be estimated

with the present data, nor would there be a reliable

approach for NOEC/LOEC.

It is difficult to judge whether the effects might have

extended into higher and lower concentrations

because of the limited range of concentrations

shown for Figure 31.  To explain the flat

distribution, one might stretch for an explanation

involving some balance within the material being

tested, between toxic components and others that

stimulated algal growth.  Perhaps there could be a

chemical explanation in the amount of active form

or component that was free to operate at the various

concentrations.

10.5 Procedural Interactions that Affect

Results

Key Guidance

• Procedures selected for testing could

influence the analysis and results.

• In a growth test, for example, some

deaths in a container at high

concentration could result in the

remaining organisms having a bigger

share of food, showing compensatory

growth, and thus compromising the

analysis and obscuring sublethal

effects.

• Similarly, partial mortality in a

container could result in more 
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Figure 30 An example of better performance with higher concentration.  The example is for number of

algal cells and is taken from USEPA (2000a).

toxicant available to the survivors, 

enhancing sublethal actions.

• The best defence against such

influences is to use proven

procedures.  Selection of feeding

regime and favourable renewal rates

for test solution might avoid the

problems mentioned.

Questions may arise concerning the influence of the

test methods themselves on the statistical analysis and

estimate of endpoint.  The interaction can produce

results that are inappropriate for statistical analysis or

difficult to interpret.  This topic is seldom considered,

but could sometimes be important.  One example is

given here; there would be parallel examples for other

tests and other effects.

The number of organisms per container could easily

affect analysis and results in sublethal tests.  If there

were several test organisms per container, and they

were dying in some containers and not in others, that

could lead to unbalanced exposures influencing

effects.  The unequal treatment of groups could

violate requirements for statistical analysis.

• If most of the organisms died in one container,

would the remaining ones benefit from more

available food?  Could an assessment of growth

be biased?  It is certainly possible, if the feeding

technique provided more food per organism in

those containers with deaths.  There are clear

examples of compensatory (increased) food

intake in fish, which can overcome the

deleterious effect of a toxicant on growth

(Warren, 1971).  Use of a feeding rate based on

number or biomass of organisms could rectify

this problem.

• The choice of feeding rate could easily influence

the result obtained, in view of the previously

noted phenomenon of compensatory growth.  An

investigator might choose a relatively high

feeding rate in hopes of showing maximum

differences among the test concentrations, but too

high a rate could smooth differences because of

the compensatory feeding.
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Figure 31 Test results showing only strong effects.  The example from a Canadian laboratory is for biomass

of the alga Pseudokirchneriella subcapitata [ formerly Selenastrum capricornutum ].

• If most of the organisms in a container died,

would the remaining ones receive greater

exposure (dose)?  Presumably, there would no

longer be uptake of toxicant by the organisms

that died, so they would not be lowering the

ambient concentrations.  The exposure of the

remaining organisms would be greater than a

situation of no mortalities.  The effect might or

might not be negligible.

The main defence against such anomalous results is

to use good, well-tested test procedures.  Standard

methods such as those of Environment Canada are

widely available now; the methods are beneficial,

having generally been hammered out by experienced

groups of investigators.  Feeding rates would have 

been chosen to minimize anomalies.  For maintaining

desired concentrations in the test containers, any

influence from partial mortalities in groups of

organisms would be overcome by favourable high

volumes of test solution for the biomass involved.
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Appendix A

Biological Test Methods and Supporting Guidance Documents Published by the

Method Development and Applications Section, Environment Canada1

Title Type of data Date 2 Amended

A.  Generic (Universal) Biological Test Methods

Acute lethality test using rainbow trout.  [EPS 1/RM/9] Quantal: acute mortality July 1990

(1990a)

May 1996

Acute lethality test using threespine stickleback

(Gasterosteus aculeatus).  [EPS 1/RM/10]

Quantal: acute mortality July 1990

(1990b)

Mar. 2000

Acute lethality test using Daphnia spp.  [EPS 1/RM/11] Quantal: acute mortality July 1990

(1990c)

May 1996

Reproduction and survival using the cladoceran

Ceriodaphnia dubia.  [EPS 1/RM/21]

Dual effect: mortality of adults

and number of young 

Feb. 1992

(1992a)

Nov. 1997

Larval growth and survival using fathead minnows.

[EPS 1/RM/22]

Dual effect: mortality and weight

of larvae

Feb. 1992

(1992b)

Nov. 1997

Luminescent bacteria (Photobacterium phosphoreum)

[now Vibrio fischeri]  [EPS 1/RM/24]

Quantitative: 50% inhibition of

light production

Nov. 1992

(1992c) —

Growth inhibition using the freshwater alga Selenastrum

capricornutum  [now Pseudokirchneriella subcapitata].

 [EPS 1/RM/25]

Quantitative: specified %

reduction in algal cells produced

during 72 hours

Nov. 1992

(1992d)

Nov. 1997

Acute test for sediment toxicity using marine or

estuarine amphipods.  [EPS 1/RM/26]

Quantal: % survival, emergence

from sediment, failed to rebury

Dec. 1992

(1992e)

Oct. 1998

Fertilization assay using echinoids (sea urchins and sand

dollars).  [EPS 1/RM/27]

Quantal: reduced success of

fertilization

Dec. 1992

(1992f)

Nov. 1997

Early life stages of salmonid fish (rainbow trout).

[EPS 1/RM/28, 2nd edition]

Quantal: nonviable embryos,

alevins, or fry; fry mortality.

Quantitative: fry weight.

Describe delayed, abnormal

development

July 1998

(1998a) —

Survival and growth in sediment using the larvae of

freshwater midges (Chironomus tentans or Chironomus

riparius).  [EPS 1/RM/32]

Dual effect: survival and weight

of larvae

Dec. 1997

(1997a) —

Survival and growth in sediment using the freshwater

amphipod Hyalella azteca.  [EPS 1/RM/33]

Dual effect: survival  and weight Dec. 1997

(1997b) —

1 These documents may be purchased from Environmental Protection Publications, Environment Canada, Ottawa, Ont.,

K1A 0H3.  For information or comments, contact the Chief, Biological Methods Division, Environmental Technology

Centre, Environment Canada, Ottawa, Ont. K1A 0H3.
2  The Date column gives publication date and also coding to the present reference list (e.g., 1990a).
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Title Type of data Date Amended

Inhibition of growth using the freshwater macrophyte
Lemna minor.  [EPS 1/RM/37]

Dual effect: weight and decreased
proliferation (number) of fronds

Mar. 1999
(1999b) —

Survival and growth in sediment using spionid polychaete
worms (Polydora cornuta).  [EPS 1/RM/41]

Dual effect: survival  and weight Dec. 2001
(2001a) —

Tests for toxicity of contaminated soil to earthworms
(Eisenia andrei, Eisenia fetida, or Lumbricus terrestris). 
[EPS 1/RM/43]

Quantal: acute mortality; per cent
avoidance.  Dual effect: adult

mortality, number and weight of
young.

June 2004
(2004a) —

Test for measuring emergence and growth of terrestrial
plants exposed to contaminants in soil.  [EPS 1/RM/45]

Dual effect: number of seedlings
emerged, length and weight of

shoots and roots

June 2004
(2004b) —

Survival and reproduction effects in springtails
(Onychiurus folsomi and Folsomia candida).  
[EPS 1/RM/47]

Dual effect: survival of adults and
number of young

Dec. 2005
(2005) —

B.   Reference Test Methods 3

Acute lethality of effluents to rainbow trout.  [EPS
1/RM/13, 2nd edition]

Quantal: acute mortality Dec. 2000
(2000a) —

Acute lethality of effluents to Daphnia magna.
[EPS 1/RM/14, 2nd edition]

Quantal: acute mortality Dec. 2000
(2000b) —

Acute lethality of sediment to marine or estuarine
amphipods.  [EPS 1/RM/35]

Quantal: acute survival Dec. 1998
(1998b) —

Toxicity of sediment using luminescent bacteria in a 
solid-phase test.  [EPS 1/RM/42]

Quantitative: inhibition of light
production

Apr. 2002
(2002a) —

C.  Supporting Guidance Documents

Control of toxicity test precision using reference toxicants.  [EPS 1/RM/12] Aug. 1990
(1990d) —

Collection and preparation of sediment for physicochemical characterization and biological
testing.  [EPS 1/RM/29]

Dec. 1994
(1994) —

Measurement of toxicity test precision using control sediments spiked with a reference
toxicant.  [EPS 1/RM/30]

Sept. 1995
—

Application and interpretation of single-species tests in environmental toxicology. 
[EPS 1/RM/34]

Dec. 1999
(1999a) —

Guidance document for testing the pathogenicity and toxicity of new microbial substances to
aquatic and terrestrial organisms.  [EPS 1/RM/44]

Mar. 2004
(2004d) —

Guidance document on statistical methods for environmental toxicity tests. [EPS 1/RM/46] 
[This document]. 

Mar. 2005
—

3  A reference method is defined as a specific biological method for performing a toxicity test, having a set of instructions and
conditions which are described precisely in a written document.  Reference tests are usually associated with requirements of
specific regulations, unlike the multi-purpose use of generic (“universal”) biological test methods of Environment Canada.
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Appendix B

Members of the Inter-Governmental Environmental Toxicity Group 
(as of January 2004)

Federal, Environment Canada
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Montreal, Quebec
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Ottawa, Ontario
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Appendix C
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15th Floor, Queen Square

45 Alderney Drive

Dartmouth, Nova Scotia

B2Y 2N6

Québec Region

105 rue McGill
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Montreal, Quebec

H2Y 2E7

Ontario Region

4905 Dufferin St., 2nd Floor

Downsview, Ontario

M3H 5T4

Prairie and Northern Region

Room 210, Twin Atria No. 2

4999 -- 98th Avenue

Edmonton, Alberta

T6B 2X3

Pacific and Yukon Region

401 Burrard Street

Vancouver, British Columbia

V6C 3S5
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Appendix D

Calculations Using Arithmetic and Logarithmic Concentrations

D.1 Example: Comparing Means
The table shows the divergence between medians, arithmetic means, and geometric/logarithmic means for four

hypothetical sets of numbers, and the columns might represent the EC50s for replicate tests.  The first column

represents “good” data, with results being fairly similar.  The second column has a slightly divergent concentration

at the high end of the set.  The third column has a most unlikely high concentration.  The fourth column has a wildly

unlikely outlying concentration.  It is assumed for the purpose of illustration, that there is no reason to reject any

concentration.  Any general principle which is derived from the extreme examples, would also apply to ordinary sets

of data from toxicity laboratories.

“Good” data Divergent value Unlikely value Weird data

10 10 10 10

12 12 12 12

14 14 14 14

16 16 16 16

18 18 18 18

22 28 100 1000

Median 15 15 15 15

Arithmetic mean 15.3 16.3 28 178

Geometric mean 14.6 15.4 19 28

For the “good” set of concentrations in the first column, the three measures of central tendency are essentially the

same, as would be expected for regular data.  For the second, third, and fourth columns, the median remains the

same, because it does not consider the numerical value of the highest item.  The median could often be a good

choice for expressing central tendency of a skewed distribution.  Indeed, in estimating an EC50, the foundation of

the endpoint is the quantal effect on the median tested organism.  However, elsewhere in toxicology, the median 

has seldom been used for quantitative things like concentration, as investigators employ instead, an average that

makes use of the numerical values.  In these examples, the median fails to indicate that a high value is aberrant; even

if both of the uppermost values in the set were aberrantly high, the median would show no change.

The arithmetic mean for the second column is about 6% higher than the geometric one, a difference that is

noticeable but not of major importance.

For the third “unlikely” set of concentrations, the arithmetic mean is higher by a factor of almost 1.5, an appreciable

difference.  The geometric mean tends to minimize the effect of the outlier, and is more representative of the other

five closely sequenced concentrations.
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In the weird example, the arithmetic mean is 5.4 times higher than the geometric mean, and is not at all

representative of most of the values in the series.  The geometric mean is, at least, the same order of magnitude as

the five similar concentrations.

Normally, the outliers in the two right-hand columns might be rejected by statistical testing, but that is not the point

of this example.  In the two extreme examples, the geometric mean clearly gives a more robust defence than does

the arithmetic average, against the unusual high concentrations, and would seem to give a better representation of

the probable average toxicity.  The principle having been ascertained, it would also extend to “good” data-sets.  The

geometric mean should give a more dependable representation of mean values.  Readers might wish to put together

other examples.

D.2 Example: Probit Regressions
The following table gives calculations of EC50s by probit regression.  The four examples are for the sets of data

listed in Table 2 of Section 4.4.  The estimates of EC50 using log concentrations are those obtained in most

computer programs, which automatically use log concentration for calculation.  The estimates of EC50 using

arithmetic concentration were made using the program TOXSTAT 3.5, bypassing the use of logarithms.  (It would

not be difficult to make that mistake with the program, and never realize it, which is a good reason for checking

estimates by hand plots.)

EC50s (and confidence limits) for four example sets of data

A B C D

With arithmetic

concentration

 6.3   (4.9–7.7) 20.6   (14.3–26.9) 15.6   (11.4–19.5) 32.5   (17.6–47.4)

With log concentration  5.6   (4.4–7.2) 16.8   (12.1–23.3) 12.8   (9.4–17.6) 26.5   (13.3–53.1)

Ratio, arithmetic/log 1.12 1.23 1.22 1.23

The EC50s calculated with arithmetic concentrations average 1.2 times the proper values.  This is an appreciable

error and should be avoided.  Most of the confidence limits are also raised to generally higher ranges.  Section 4.4

and Table 2 indicate that when proper logarithmic concentrations are used, the TOXSTAT endpoints are in

substantial agreement with calculations by other programs.
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Appendix E

Randomization

Randomization is part of assigning test organisms to containers and concentrations, and of assigning containers into

an array.

E.1 Random Numbers for Allocating Organisms to Containers

Randomization of organisms into containers is not required in all methods published by Environment Canada.  It

was decided that in some tests, the procedures could lead to operator errors which would be more serious. 

Subsequent randomization of containers or concentrations was deemed sufficient to avoid bias in the test and its

results.

However, if test organisms can be handled as discrete individuals (e.g., fish, as used here), and if they are to be

counted into test containers, it is always advantageous to do so randomly.  Any convenient method could be used,

such as drawing slips of paper from a hat, the slips marked with concentrations.  Most computers will generate

random numbers.  Another convenient way is offered by USEPA (1995), using a table of random numbers, and is

repeated here (Table E.1).

First, a series of two-digit numbers are assigned to the various test concentrations, setting up in tabular form as

shown immediately below.  Several two-digit numbers should be used for each concentration, so that a later step

“uses up” the numbers in a table of random numbers.  The value 00 is not used, and in this particular tabulation, no

number greater than 30 is used.

Assigned numbers Test concentration

01 07 13 19 25   Control

02 08 14 20 26 0.5% effluent

03 09 15 21 27 1% effluent

04 10 16 22 28 2.5% effluent

05 11 17 23 29 5% effluent

06 12 18 24 30 10% effluent

Now, going to a table of random numbers such as Table E.1, any row and column may be picked to start (for

example, row 3 of column 6, which has a value of 19).  This is considered the first fish that happens to be caught

from the stock tank, and from the tabulation above, it is assigned to the control.

Returning to Table E.1 the second fish is picked by moving horizontally to the right; the numbers 64, 50, and 93 are

ignored because they are higher than those used in the tabulation.  The second fish gets number 03, which assigns it

to 1% effluent.  The process continues across the row in Table E.1, then across the next row downwards, until the

tanks are filled, say with 10 fish each.  It is necessary to keep track of the assignments, so that each tank gets its full

complement of fish, but no extras.  If a number comes up that would overfill a container, the number is ignored.  If

one person is doing the exercise, it is easiest to do all the selection of numbers on paper, then catch and distribute

fish.

Randomization must be done anew for each test or set of tests.  It is not suitable to set up a pattern of randomization

and use it over again.
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Table E.1 Two-digit random numbers.   From Dixon and Massey (1983; as used by USEPA, 1995).
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E.2   Random Numbers for Allocating Positions of Chambers
Location of containers is important in a test.  If the containers are in a line, it might be that one end was near a

window, with strong direct lighting of some containers, resulting in stress, attempted avoidance reactions, or

better growth, depending on the type of organism.  One end of the series might be warmer than the other, a

particular risk if the test was done in an incubator.  One end of a series might be near a door and human traffic

could startle the organisms.  Such influences could affect results, and there could be other unexpected and

unknown influences.  Investigators should attempt to eliminate or minimize such influences, but there might be

unrecognized factors.  The way to eradicate any systematic uncontrolled variables is to randomize the positions

of test chambers.

In the previous example, there were five concentrations and a control, and they might be placed in a row for

convenience.  Their positions could be randomized by picking numbers out of a hat or, as before, from Table E.1

or from a simpler table in a mathematical book.

If there were more containers to deal with, say five replicates of each concentration, the investigator might wish

to have a 6 by 5 layout on the lab bench.  (It could be any layout, the same procedure would apply.)  The same

randomizing process could be used as previously outlined.

• A tabulation is made and numbered to represent the 30 positions in the 5 by 6 configuration.  Numbers from     

01 to 30 are written into the table.

The tabulation of positions for test containers could appear like this one.

01 02 03 04 05 06

07 08 09 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

• Enter Table E.1 at any point and read the number; it will represent the first replicate of the control.  (e.g., the

11th column of Table E.1, 3rd row down.  The number is 23, so the first control replicate goes to position 23

on the tabulation, near the lower right corner.)

• Move to the next number to the right in Table E.1, this number is for the second replicate of the control.  (It is

number 20, so this replicate will be positioned near the lower left corner of the tabulation.)

• Continue the process until all replicates of all concentrations have been assigned a position.  If a number

comes up a second time, ignore it.  If a number over 30 comes up, ignore it.  (The next number in our example

would be 90, which does not apply to any position, so it is ignored, and the following number 25 becomes the

position of the 3rd replicate of the control.)

In the tabulation shown above for numerals one to thirty, two or three numbers could have been listed for each

position if desired, in order to better “use up” the numbers of Table E.1, and not draw so many numbers that must

be ignored.  Using only one number in each position simply means that the investigator will draw mostly

“blanks” from Table E.1, i.e., most numbers taken from the table will not apply to any position and will be

ignored.

Setting up the positions in this way would also be perfect preparation for a “blind” set of observations.  The

positions of the various replicates would be recorded, but unknown to the observer during the test.  The observer
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could not introduce bias from knowledge of the concentrations.  After the end of the test, the observations would

be assigned to their proper replicates and concentrations.

Possible exception.  Testing volatile substances might be one of the few situations in which randomization of

test containers in an open array would not be appropriate.  The volatile toxicant might escape from containers

with high concentrations and reach other containers.  In particular, it might contaminate the control and cause

anomalous control effects.  Although this could certainly affect statistical analysis, the remedy lies in another

field, that of proper laboratory facilities designed for testing volatile materials.  Such a situation would require

sealed containers, separate venting, or some such arrangement.  Randomization of treatments would still be an

objective.
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Appendix F

Calculating the Mean and Limits for a Warning Chart

For convenience, Figure 2 is repeated as Figure F.1 in this appendix.  Data from the figure will be used to show the

steps for calculations in warning charts.  The steps are given in some detail because some modern investigators

might be unfamiliar with using logarithms.  Calculations are easily done with any computer spreadsheet; which will

handle logarithms, antilogarithms, and calculate the mean and standard deviation.  Indeed, the calculations are

simple enough on a hand-held scientific calculator.

Figure F.1 Warning chart for tests with a reference toxicant.  The chart/graph shows data from aquatic

tests with a reference toxicant, from a Canadian laboratory.

The steps for calculating warning limits are as follows.

(1) Compile the historic data.  These are the previous EC50s estimated for the reference toxicant, at the

laboratory.  Probably the EC50s would be recorded as arithmetic values, so each would be converted back to

a logarithm.  (Log to the base 10 is customary, although natural logarithms are equally good if they are used

throughout.)  For purposes of this example, only the first five EC50s from Figure F.1 are listed, and only a

few digits are shown for the logarithms.

antilog EC50 1.02 1.19 1.03     0.81    1.16

EC50 as log    0.0086002...      0.075547...      0.012837...         -0.091515...        0.064458...
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(2) The logarithms are averaged.  This is simply the arithmetic mean of the logarithms.

Using all 21 EC50s of Figure F.1, the mean of logarithms is -0.027356...  That mean remains as a logarithm

for subsequent calculations, but is more easily comprehended when translated to 0.93895 mg/L (before

rounding).  The arithmetic value 0.94 is the geometric mean EC50.  It is plotted as a line in Figure F.1.

(3) The standard deviation is calculated for the 21 logarithms of the EC50s.

This turns out to be 0.15288...

(4) The value of two standard deviations is twice the value in step (3).

2 x 0.15288... = 0.30576...

The antilog of this before rounding is 2.0219, but the antilog is of no particular use.

(5) The upper warning limit is calculated as the mean (step 2) plus 2SD (step 4).

-0.02736... + 0.30576... = 0.278404...

This can be converted to its antilogarithm of 1.9 mg/L, which is the upper warning limit and can be plotted

on the control chart (see Figure F.1).

It is a mistake to do the calculations of steps (5) and (6) with arithmetic values; the wrong answers will be

obtained.  (However, see the following text for using arithmetic values with multiplication and division

instead of addition and subtraction.)

(6) The lower warning limit is calculated as the mean (step 2) minus 2SD (step 4).

-0.02736... - 0.30576... = -0.33312...

Converted to its antilogarithm of 0.46 mg/L, this lower warning limit is plotted (Figure F.1.)

The warning limits are symmetrical about the mean in Figure F.1, because the vertical axis is a logarithmic scale. 

In the past, some investigators unfamiliar with concepts of logarithms have been distressed that warning limits

calculated in the above fashion were not symmetrical when plotted on an arithmetic scale.  That should not be a

concern.  Correct limits will never be arithmetically symmetrical (they should not be), but they will be

symmetrical on an appropriate logarithmic scale.

There is another way of calculating the warning limits, if desired, using arithmetic values.  Adding and

subtracting logarithms is equivalent to multiplying and dividing their arithmetic equivalents.

     • Thus, the upper confidence limit could be calculated as the geometric mean (step 2) multiplied by the

antilogarithm of two standard deviations (step (4)):

0.938954 x 2.0219 = 1.9 mg/L, the same value obtained in step (5).

     • The lower confidence limit could be estimated as the geometric mean divided by the antilogarithm of two

standard deviations:

0.938954 / 2.0219 = 0.46 mg/L, once again the same value obtained in step (6).

There is also an alternative way of graphing the data.  An arithmetic scale could be used for the vertical axis, and

the logarithmic values could be plotted.  Most investigators would probably consider this more cumbersome. 

Spreadsheets make it simple to plot the values on a graph with a logarithmic scale.

It is worth comparing the erroneous warning limits that would have been obtained if logarithms had not been

used, i.e., if calculations had been based on the arithmetic values of the EC50s: 1.02, 1.19, 1.03, 0.81, etc. 

 

     • The average would have been calculated as 0.99 mg/L, somewhat higher than the proper value of 

0.94 mg/L.
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     • The warning limits would have been 1.6 instead of 1.9 mg/L, and 0.39 instead of 0.46 mg/L.  Thus the

warning limits would have been appreciably lowered on Figure F.1.  The range between limits would have

been smaller, at 1.2 mg/L instead of 1.4 mg/L.

At first, it might seem anomalous that the erroneous mean is higher than the logarithmic one, while the erroneous

warning limits are lower than the ones calculated logarithmically.  This is a foreseeable part of the distortion. 

The erroneous (arithmetic) limits are equally spaced above and below their mean on an arithmetic scale.  The

confidence limits derived logarithmically are not equidistant from their mean on an arithmetic scale, but they are

properly symmetrical as multiples of the arithmetic mean, differing from it by a factor of about 2.0.

“Reasonable” variation in EC50s.  As mentioned in Section 2.8.1, Environment Canada has offered advice that

variation in repeated tests of a reference toxicant would be considered reasonable if the coefficient of variation

(CV) were 30%, and preferably 20%.  This guideline was derived by calculations with arithmetic endpoints,

which is subject to bias and undesirable.  Therefore, the  guideline was converted to a logarithmic basis, in an

approximate way, by the process outlined below.  Extra significant figures were carried in the calculations, and in

the following text, three dots after a logarithmic value indicate the omission of numerals that would normally be

carried for logarithms.

Several real and “dummy” sets of EC50s were compiled.  Using the arithmetic values of the EC50s, coefficients

of variation (CV) were calculated.  One of the sets of EC50s was adjusted so that CV = 30.0% and another so

that CV = 20.0%.  Then for each set of EC50s, the standard deviation (SD) was calculated using the logarithmic

values of the EC50s.  The arithmetic CVs and the logarithmic SDs showed an approximate straight-line

relationship when plotted.  Logarithmic SDs were picked from the relationship, to correspond with the arithmetic

CVs of 30% and 20%.

The SDs were 0.132...  and 0.0338... and they represent a translation of Environment Canada’s rule of thumb for

“reasonable” and “preferred” variation in a set of results.   The same values apply to any set of results, because

they were derived from ratios on a logarithmic scale.  The actual (calculated) SDs for any set of logarithmic

EC50s may be compared with those guideline values.

An actual SD of 0.153 can be calculated for the data shown in Figure F.1, which is higher than the “reasonable”

value of 0.132 estimated previously.  It may be concluded that the data of Figure F.1 are somewhat more variable

than the “reasonable” guideline published by Environment Canada.

(If an SD equal to the guideline value of 0.132 actually prevailed for a set of data which had the same mean as the

data in Figure F1, the warning limits would be somewhat more narrow than those in the Figure.  The limits would

be the mean of the data, ± 2 SD.  The logarithmic mean being -0.027356... (see above), the limits would be -

0.027356 - (2 × 0.132) and -0.027356 + (2 × 0.132).  The results would be   -0.2914... and 0.2366..., which have

antilogarithms of 0.51 and 1.7 mg/L.  Those limits for hypothetical data are a little narrower than the actual

warning limits shown in Figure F.1, of 0.46 and 1.9 mg/L.)

(If an SD equal to the “preferred” guideline SD of 0.0338 prevailed for a set of data with the same mean as the

data in Figure F.1, the warning limits would be much narrower.  Going through calculations parallel to those of

the previous paragraph, the warning limits would be 0.80 and 1.1 mg/L.)

These rules of thumb for reasonable and preferable variation among repeated toxicity tests might be seen as being

somewhat optimistic.
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Appendix G

Tests for Single-concentration Results with No Replication

Testing of this nature is usually done under a regulatory program such as monitoring of a waste discharge.  A firm

pass/fail criterion is used to judge the test results; however, statistical testing might be required.  Some of the

statistical tests are discussed here, to supplement the information in Section 3.

G.1 Fisher's Exact Test
Fisher’s Exact test can be used for testing a single sample, along with a control, and without replication.  Often the

observed effect is mortality, so the data are quantal.  Fisher's Exact test, which is applied to quantal data only, is

used to compare the results.  This is a one-tailed test of statistical significance, because the investigator is interested

in whether mortality is higher in the test sample, than in the control.  Such testing might also be appropriate for

mortality in Ceriodaphnia tests (EC, 1992a).

The procedure can be seen in the following example, which represents the numbers of individual organisms in a

single-sample test with no replication.

Dead Alive Total

Test 6 4 10

Control 1 9 10

Total 7 13 20

 

The numbers of live and dead organisms are tabulated as shown.  The null hypothesis is that the proportion of

dead organisms is not greater in the test than in the control.

Subtotals for the rows and columns are entered into the margins.  The total number in the table is called n, in

this case n = 20.

The smallest of the four marginal subtotals is selected, in this case 7, and is designated as m1.  Then in the other

margin (the margin which does not contain m1), the smallest marginal subtotal is selected and called m2.  In this

case m2 is 10; the lower 10 (for the control) was taken although the same final result will be obtained whichever

10 is selected.  Now the number is selected in the body of the table, that contributes to both m1 and m2.  This

number is 1, and it can be called f.

The next step is a comparison of “f” with critical values contained in a rather complex table, given in some

statistics texts such as Zar (1999; “Critical values for Fisher's exact test”).  The table is entered at a certain point

according to the selected level of significance (usually a probability value of 0.05), and also according to the

values of n, m1, and m2.  At that location in the table, there will be two pairs of critical values of f, and

investigators should use the first pair, which is for a one-tailed test.  (The second pair is for a two-tailed test

which is not relevant here).  If f is less then or equal to the first critical value, or is greater then or equal to the

second critical value, then the null hypothesis is rejected, and mortality is concluded to be greater in the test than

in the control.

In this case, critical values from the table are 1 and 6.  The calculated f of 1 is equal to the first critical value; 

therefore, the null hypothesis is rejected, and the test sample showed significant increased mortality.  (If the

upper row of the table had been used to select 10 as m2, then f would have been 6, equal to the second critical

value, with the same rejection of the null hypothesis.)
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The test mortality of 6 out of 10, shown in the table, happens to be the lowest that would be significant, for a

small control effect of one out of 10.  If the test had shown 5 dead out of 10, the null hypothesis would have

been accepted.  This is not entirely out of line with the conclusion of Zajdlik et al. (2001) that a “pass/fail

decision is ambiguous when 4 to 7 fish die” out of 10.  If there were no control effect, lesser mortalities than the

6 out of 10 tested, namely 5 out of 10 and 4 out of 10, would be significant.  If the control effect were higher,

say 2 out of 10, higher mortalities (7 or more out of 10) would be required for significance.

An alternative diagrammatic and tabular method is “Finney's Tables”, outlined in Section G.2.

G.2 Comparison with “Finney's Tables”
Mortality in a single group can be compared to a control, using the diagrams in Figure G.1, or by tables in

Finney et al. (1963) from which they were derived.  The diagrams shown are designed for 3 to 10 individuals in

each group.  The diagrams are provided by Wardlaw (1985) in a statistics textbook that is very friendly to non-

statisticians and they only work if the numbers of organisms are equal in the test group and the control.

Figure G.1 can be used to test the previous example given, with mortality of 6 out of 10 in the test group and 1

out of 10 in the control.  The diagrams are set up for a one-tailed test of significance, so the null hypothesis is

that mortality in the test group is not greater than in the control.

The lower right diagram is used for the 10 × 10 comparison.  Only the “numerators” are used to enter the

diagram, i.e., 6 for the test and 1 for the control.  Enter the diagram in the column marked 6 (for the test

mortality of 6), and at the row marked unity (for control mortality of 1).  At the intersection, the square is

stippled, indicating that the probability of this occurring due to chance alone is 0.05 or less.  The null hypothesis

is rejected at that level of probability, and it is concluded that the test mortality is greater than the control

mortality.  (Note that the conclusion is not that “the two groups are different”, implying a two-tailed conclusion

in which the test group might be either higher or lower than the control.)

The black areas of the diagram are for combinations in which the probability is 0.01 or less.  The white areas

indicate probabilities greater than 0.05, i.e., the test group would not be significantly higher than the control by

the usual critical value of P.

For combinations other than those shown in Figure G.1, investigators could turn to the tables of Finney et al.

(1963).  The tables cover not only comparisons of equal numbers of organisms, but all possible combinations of

unequal numbers up to 40 per group.  For example, the tables allow a test mortality of 18 out of 32 to be

compared with a control effect of 2 out of 20.  Wardlaw (1985) also explains a tedious arithmetic method of

making a comparison, which would quickly become unmanageable as numbers rose above 10 in the groups!
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Figure G.1 Diagrams for comparing quantal effects in a test group and a control.   The diagrams determine

whether a test group shows a significantly greater effect than the control group.  These diagrams are

for equal numbers of experimental units (organisms) in test and control groups, from three in each

(upper left diagram) to ten each (lower right).  Black areas indicate P #1%, stippled blocks are 5% $P

>1%, and white areas P >5%.  After Wardlaw (1985), from tabulations of Finney et al. (1963).
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G.3 Comparing Two Proportions with a Z-test
The method is given in general statistics texts, usually as “differences between proportions” or “comparisons of

proportions” (e.g., Zar, 1999; Snedecor and Cochran, 1980).  The method can be illustrated with the same data that

used for the Fisher's Exact test.

Dead Alive Total Proportion dead

Test 6 4 10 = nT 0.6 = pT

Control 1 9 10 = nC 0.1 = pC

Total 7 13 20

Proportion 0.35 = pTC 0.65 = qTC

The statistic Z may be calculated by substituting in the following formula.

The critical value of Z for p = 0.05 and a one-tailed test is the same as the critical value of “t”for infinite degrees of

freedom = 1.645.   The calculated Z is greater than the critical value, therefore the null hypothesis is rejected, and

mortality in the test chamber is greater than in the control.
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Appendix H

Explanation of Probits and the Logarithmic-probability Transformation

H.1 Customary Transformations
Computer programs for probit regression use the log-probit transformation, which is seen in Figures 5, 8, and 9 in

the main text.  The transformation is intended to produce a straight line from what would otherwise be a skewed (see

Glossary), cumulated normal curve (Figure H.1).

Figure H.1 Transformation of quantal data.   Raw data from a test such as lethality to fish usually produce a

skewed normal curve when plotted on arithmetic axes (Panel A).  That distribution may be cumulated to

produce a skewed sigmoid curve (Panel B), and logarithm of concentration removes the skew (Panel C). 

Applying a probability transformation to the percent effect (Panel D) straightens the line by vertically

compressing the central portion and progressively extending the distal portions, which never reach 0% or

100% in this transformation.
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If results of a quantal toxicity test were plotted on arithmetic paper, the result would almost always be a skewed

normal curve.  Panel A of Figure H.1 represents this as the proportions of total test organisms that showed the effect

for each of a series of concentration-intervals.  On the left of the curve, a few individuals are sensitive and show the

effect at low concentrations.  On the right, similar small numbers are very resistant, showing the effect only at very

high concentrations.  Most organisms are affected at the middle ranges of concentrations.  If the numbers affected

are cumulated, that yields a sigmoid or “S” curve, skewed to the right (Panel B).

Plotting logarithms of concentration usually eliminates the skew (Panel C).  Using a probability transformation 

(= probit transformation) produces a straight line as shown in Panel D.  The straight line allows easier techniques to

be used for fitting the distribution of data, which was important during the development of new procedures, and in

the past when calculations were done by hand or mechanical calculator.  Today, complex calculations can be done

on computer, so that the probit transformation could be omitted.  Nevertheless, the older standard method with log-

probit transformation continues to be a good model for hand-plotting a graph to check the pattern and the

reasonableness of computer calculations. 

H.2 Why Logarithms?
In a plot based on an arithmetic scale of concentrations, such as that for the raw data in Panel A of Figure H.1, the

skew to the right is caused by the fact that a given arithmetic increase will represent successively diminishing

proportions of higher concentrations.  

A logarithmic scale adequately deals with this problem of changing proportions, since an increase by a given ratio in

any arithmetic value (10 to 20, 100 to 200, or 1000 to 2000) results in the same numerical increase in a logarithm

(Section 2.3).  Or, on the logarithmic axis of a graph, a doubling of concentration occupies the same absolute

distance, no matter where the starting point is located on the axis.  This is true for logarithms to the base 10, and also

for natural logarithms to the base “e”.  Base-10 logs are routinely used in environmental toxicology, and it is

important not to mix types of logarithms in any given analysis.

H.3 What is a Probit?
Probits are equivalent to standard deviations from the standard normal distribution.  Indeed they were originally

called Normal Equivalent Deviates (NED; Gaddum, 1953), a name which had meaning to mathematicians, but is

seldom seen today.  In analysis of quantal toxicity data, probits substitute for the cumulated percent effect.

Probits are based on the usual distribution of frequencies in a normal curve: ± one standard deviation about the mean

value includes about 68% of the observations; ± two standard deviations includes 95% of the observations; etc.  If a

cumulated normal curve is drawn (sigmoid), the theoretical relationship between cumulated percentages and

standard deviations is still known.  That relationship is used with probits.

A probit of value 1 (or one probit) corresponds to one standard deviation in the standard normal distribution (a

normal distribution with mean = 0 and variance = 1.

Rather than the formal consideration, some simplistic diagrams can be used to illustrate the derivation of probits

(Figure H.2).  The panels are explained in the following steps.

(1) Start with a standard normal curve (Panel A of Figure H.2).  Plus and minus one standard deviation from the

mean includes 68% of the population (by definition of a normal curve).  Plus and minus 2 F includes 95% of

the population, and + and - 3 F includes 99.7%, etc.
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Figure H.2        The origin of probits.   See text for explanation of the panels.

(2) Cumulate the curve.  The percentages happen to work out as in Panel B of Figure H.2, shown on the dashed

lines at various heights on the graph.  This is a typical sigmoid curve.

(3) Now delete the percentage scale on the vertical axis, and number the dashed lines with the same numbers that

are on the intercepts on the horizontal axis (Panel C).  The numbers of the horizontal axis represent standard

deviations.

(4) The vertical scale in Panel C is irregular with respect to the new numbering system.  Use an arithmetic scale

for the vertical axis with respect to the new numbers, running from -3 to +3 in the example of Panel D.  The

result is a straightening of the sigmoid curve.  If the percentage scale were still present, it would be irregular,

but the scale based on standard deviation is regular and the line is straightened.

This small exercise takes away the mystery.  This is merely a method of fixing a cumulated normal curve, so that it

looks straight.  The units of the vertical axis have been transformed from percentages to equivalents of standard

deviations, originally called Normal Equivalent Deviates, and now called probits.

One more modification has been customary, and investigators should be aware of it.

(5) The scale running from a negative to a positive value was awkward in the days of hand calculators. 

Therefore, each value had 5 added to it, so the usual working range became 2 to 8, as shown on the right side
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of Panel D.  Thus, a probit of 5 became the midpoint.  Strictly speaking, the definition of “probit” includes the

added value of 5.  Adding the 5 is no longer necessary for calculations by computer, but no harm is done if it

is included.

Clearly there are relationships among probits, percentages, and standard deviations for a normal curve, so

investigators can go from one to another if desired.  The probit for any particular percentage can be found in

published tables (Finney, 1971; Hubert, 1984; 1992), or obtain it from a normal probability calculator which is

found in most statistical packages and spreadsheets.  Computer programs for probit regression calculate the values.
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Appendix I

Blank Logarithmic-Probability Paper (Log-probit Paper)

A sample of log-probit paper is provided on the next page.  Photocopies of this could be used for analyses, if such

paper is difficult to find.  This paper is suitable for plotting the results of quantal toxicity tests.  The effect is plotted

on the vertical axis.  Any quantal effect could be assigned, such as lethality, percent fertilization of salmonid eggs,

or percentage of organisms showing lesions.

Various axes are available on commercial log-probit paper.  In some, the probit scales run to very low and high

values (e.g., 0.1% and 99.9%) which would be too extreme for most practical purposes.
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Appendix J

Advantages and Explanation of Logits

Logistic methods are recommended over probits, for mathematical simplicity and other good reasons.  However,

both methods are good for analysis of quantal data, and the endpoints are usually very similar (Section 4.4).

Analysis of quantal data with logits is superior to using probits for several reasons.

• Numerically more stable than estimates with probits; failure is less likely (Hoekstra, 1989).

• The parameters produced by logistic regression make use of all the relevant information in a series of

observations, which is not true in probit regression.  Conversely, the parameters of a logistic regression have a

direct meaning in reconstructing the original data.

• The parameters of the logistic model are widely used in the biomedical literature as measures of risk.

• Computer programs are somewhat easier to program for logistic regression models.

• Many more statistical packages are available, compared to probit regression.

The cumulated logit and normal distributions are similar (Figure J.1).  Accordingly, the logit transformation can

work satisfactorily on data that are normally distributed and suitable for  probit regression.  (Section 4.5.1 describes

how the binomial effect in each individual test container became suitable for analysis using a normal or logistic

distribution, when the cumulative distribution for all containers was considered.)  Figure J.1 shows that the logistic

curve has wider tails that are “heavier” than the normal curve.  If an investigator is interested in the tails (say, <5%

or >95%), the logit and probit endpoints would be appreciably different.

Figure J.1 Comparing the logistic and normal distributions.  The distributions are cumulated, as done for

the results of a quantal toxicity test.

F
 (
X
)
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67 
 For the normal curve, the “scale” in the sense of size, is in standard deviations.  Thus, if dealing with weights of fish, the x-axis

would be in terms of “standardized fish weights”, made unitless.  The scale of the logistic distribution is not the standard deviation,

for rather complex statistical reasons.  Setting the logistic scale at unity makes the comparison equitable.  Statisticians would

customarily refer to the units of the axis as “quantiles” and would label the axis with that descriptor.

The curves in Figure J.1 have been standardized about a mean of zero on the horizontal axis.  For ease of

understanding, the data may be treated as if they were weights of organisms, rather than as quantal data.  Thus

Figure J.1 represents the cumulated proportions of organisms with various weights.  Standardization of the normal

curve was done by subtracting the mean weight from each individual observation of weight, then dividing that by

the standard deviation of the data-set.  As a result, the horizontal axis is unitless, and has simply been labelled “x”. 

For the normal curve, the values of “x” are standard deviations, the usual measurement of variability.  To compare

the logistic curve on an equivalent basis, the “scale” of the horizontal axis was set at unity 67.  For both curves, the

vertical axis, F(x), describes the probability of obtaining a value less than “x”; that is, F(x) is a function that

integrates the area under the curve to the corresponding point on the x-axis.

Some insight into the relationship of probits to a dose-effect curve, and how the curve is straightened, is provided 

Figure 9, which compares probits and logits.

A fairly simple transformation is used to obtain logits.  For a given concentration, the proportion of organisms

affected (p) is divided by (1 - p).  The logarithm of the result is taken and that logarithm is the logit which can be

used in fitting a regression and estimating an endpoint.  The regression is linear and the equation becomes:

                               logit (p) = " + $X

Thus, for quantal data such as a lethality test, the transformation has ended with a relationship that is similar to the

familiar formula of a straight line (simple linear regression):  Y = " + $X.  This is, of course, the relationship

between an effect (Y, the dependent variable) and X, the independent variable (the logarithm of concentration),

further explained in Sections 6.5.1 and 6.5.2.  This familiar formula, and the parallel equation for logits, represent a

regression with only two parameters, """" the intercept with the y-axis, and ß the slope of the line.

In both logistic and probit regression, for this quantal example, the parameters """" and ß cannot easily be estimated

because no equation can be written to solve for one parameter, that does not contain the other parameter.  The

solution is usually achieved by iteration (Section 4.5.3).  For logistic regression, we may generalize that a computer

program “guesses” at the value of the second parameter, solves the equation for the first parameter, then uses that

estimate to solve for the second parameter.  The process repeats, starting with the newly estimated value of the

second parameter, until calculations are stopped by pre-determined criteria that indicate a satisfactory solution.

The regression, having been established for this quantal data, can be used to estimate the ECp and its confidence

limits.

The logit transformation also provides a valuable model for sublethal quantitative data such as growth or

reproduction.  It has now been adopted by Environment Canada as an option for analyses of such sublethal tests. 

(see Section 6.5.4).
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Appendix K

The Spearman-Kärber Method

The Spearman-Kärber method (S-K) of estimating an EC50 has been widely used, particularly after it received

support within the USEPA.  The requirements of the method and its general approach are given in Section 4.5.6. 

Additional detail is given here on the inner workings of S-K, so that investigators can appreciate how the program

processes the data.

Early methods documents published by Environment Canada did not recommend using S-K for estimating ECps

because “divergent results might be obtained by operators who are unfamiliar with the implications of trimming off

ends of the dose-response data” (EC, 1992b).  In general, it was felt that S-K might manipulate test data in ways not

understood or realized by the investigator, and the smoothing of irregular data might distort situations which

deserved to be recognized as unusual.  The famous statistician Finney also questioned S-K because it is

“arithmetically possible to use it in situations where its validity is in grave doubt” (Finney, 1983, pers. comm., Dept.

of Statistics, Univ. of Edinburgh, Edinburgh, Scotland).  Indeed, anomalous results can be obtained for irregular

data-sets (Section 4.4).

Environment Canada has recently recommended the untrimmed version of S-K to analyze tests showing one partial

effect, which are not suitable for probit/logit regression (EC, 2001a, 2004a).   A less restrictive approach is

recommended herein.  Use S-K for data-sets with only one partial effect, perform both untrimmed and minimally

trimmed analyses, and select an ensuing endpoint that is reasonable, as judged from a plot of the raw data and the

data themselves.

K.1 Simple Example Calculations
The basis of S-K is a process to calculate the mean of a probability distribution, in essence the mean of a frequency

histogram.  The mean is taken as the median, which is true for symmetrical distributions.

Table K.1 provides a very simplified example of a test with fish, to show how the method works.  The data are

shown for two concentrations, 10 and 20 mg/L, with zero effect out of 10 fish in the low concentration, and a

complete effect at the higher concentration.

Using the S-K method, the EC50 is estimated to be 15 m/L.  To give an anthropomorphic explanation, the lower

concentration failed to kill any of the fish, but the higher concentration was sufficient to kill all of them.  In essence,

the method assumed that is there had been several intermediate concentrations, they would have killed the fish in

regularly increasing proportions from zero to 100%.  Therefore, the method assigned half of the mortality to the

mid-point between the two concentrations actually used.  Or, looking at this simplistic example in another way, the

program assumed that the weakest fish would not be affected at 10 mg/L but would be at 11 mg/L, the next weakest

not affected at 11 mg/L but at 12 mg/L, etc.  Thus an effect on the fifth (median) fish would be predicted at 15 mg/L,

and that was taken as the EC50.

The real procedure would use logarithms of concentration; arithmetic was used in this example for simplicity.  It

is customary to use natural logs (loge) with S-K, but the base of logarithms does not matter, as long as there is

consistency.
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Table K.1 A simplified example to demonstrate calculations of the Spearman-Kärber method.  

Arithmetic values of concentration are used to assist understanding.

(1) Concentration 10 mg/L 20 mg/L

(2) Mid-point of concentration range, 15 mg/L

(C1 + C2) ÷ 2

(3) Proportion of fish affected 0.0 1.0

(4) Proportion of fish dying in that interval 1.0

of concentrations (1.0 - 0.0 = 1.0)

(5) Product of items (2) and (4) 15 mg/L

(6) EC50 = sum of all of items (5) 15 mg/L

Usually there would be more concentrations, as in the more realistic example in Table K.2.  This example has

unusually large numbers of test organisms (fish in this case), and the proportions affected represent zero out of 40,

1/40, 1/40, 6/38, and 40/40.  The example goes through exactly the same steps as in Table K.1, except that there are

more concentrations and natural logs of concentration are used.  The anthropomorphic explanation given above is

also lost, as step (4) has four proportions of the total effect.  Each of those proportions contributes to the final

estimate of EC50, although in this case, most of the contribution comes from the right-hand proportion.  It is

important to carry many digits through the calculations.

Table K.2 A typical example of calculations by the Spearman-Kärber method.

(1) Concentration (mg/L) 15.54  20.47  27.92  35.98  55.52

lne conc.   2.7434    3.0190    3.3293    3.5830    4.0167

(2) Mid-point  2.8812  3.1742  3.4562  3.7999

(3) Proportion affected     0.0   0.025    0.025    0.158   1.00

(4) Proportion in that interval  0.025  0.0  0.133  0.842

(5) Product, (2) x (4)   0.07203  0.0  0.45967  3.19952

(6) Total of items (5)   3.7312

The estimated EC50 is 3.7312 and its antilog is 41.7 mg/L.  Confidence limits are calculated from variance and are

39.9 and 43.7 mg/L.  Probit regression gives very similar results in this case.
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K.2 Comments on Procedures
Smoothing of data is a manipulation used in S-K calculations, to obtain monotonic data.  Smoothing can be

necessary because the method requires that the effect at any given concentration must be greater than or equal to the

effect at the next lower concentration.  If not, the average effect at those two concentrations is taken, assigned to

both concentrations, and used in calculations.  This is called “adjusted proportion affected”.  In Table K.2, the two

values of 0.025 listed for proportion affected had been previously adjusted from 0.05 in the second concentration,

and zero in the third concentration.

Trimming the ends of the distribution is an option in computer programs for S-K (the “Trimmed Spearman-Kärber

method”).  The user can mathematically trim off 10%, 20%, or more, of the data at the ends of the cumulated effect-

curve, where there could be irregularities, and work with the central portion.  For the example in Table K.2, the

“10%-trimmed estimate” of EC50 would be 42.8 instead of 41.7 mg/L; possibly a better estimate with narrower

confidence limits.  Some computer programs (TOXSTAT, CETIS) automatically select the minimum suitable trim,

beyond the control of the investigator, which is considered satisfactory and is recommended here.

The validity of trimming has, however, been questioned.  The original S-K method required effects of 0% and 100%

at the ends of the distribution.  If one or the other is missing, and both ends of the distribution are trimmed and

discarded to get an even set of data, the program then mathematically “expands” the distribution to 0% and

100%, and proceeds to estimate the EC50.  Trimming does not help if the irregularity is in the central part of the

distribution.  If such irregularities existed, it is the responsibility of the investigator to recognize them and deal with

them appropriately.

K.3 Mathematical Formulae behind Spearman-Kärber Analysis
The formulae used in the Spearman-Kärber method are shown with two examples.  Table K.3 shows calculations for

Example A of Table 2 in the main text.  Table K.4 shows another example in which smoothing took place.  The

comparison shows a major feature of Spearman-Kärber analyses, that the smoothing procedure tends to widen the

confidence limits.

The log EC50 is estimated by:

     k  - 1

u =  ½   ' ( p i + 1 - p i ) (x i + x i +1) [Equation K.1]

   i = 1

where:

pi refers to the proportion dying (out of ni organisms) at the ith concentration, 

xi refers to the ith log concentration, 

k is the number of concentrations,

p1 = 0% mortality,

pk = 100% mortality.  

The variance of u is given by:

         k  - 1 p i (1 -  p i ) (x i + 1  +  x i - 1) 
2 

V ( u) = ' [Equation K.2]

   i = 2 4 ( ni  - 1)

Confidence intervals are estimated as twice the standard deviation and so are constructed as EC50 ± 2 × standard

deviation, which assumes that the estimated EC50 is distributed as a normal random variable.
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Table K.3 Spearman-Kärber calculations for example A of Table 2.

Conc.,

(mg/L)

Log(conc.)

(xi)

i n No.

Dead

Proportion

dead (pi)

Contribution to EC50

(pi+1 – pi)(xi + xi+1)

Contribution to variance

(Equation K.2)

1.8 0.255273 1 10 0 0 0

3.2 0.50515 2 10 2 0.2 0.07604 0.001080

5.6 0.748188 3 10 4 0.4 0.1253 0.001633

10 1 4 10 9 0.9 0.4370 0.0006430

18 1.255273 5 10 10 1 0.1128

Sums : log(EC50) = 0.7512 variance of log(EC50)

= 0.003356

The approximate 95% confidence interval on the log(EC50) is ± 2 [square root of the variance of (log(EC50))]. 

That is 0.7512 ± 2 [square root (0.003356)] which estimates limits of 0.6353 and 0.8670.  These values can be

exponentiated to obtain EC50 = 5.64 with a 95% confidence interval of 4.32 to 7.36.  These are essentially the

values shown in Table 2.

If the effect is non-monotonic, it must be adjusted (smoothed) before using the Spearman-Kärber method.  Adjacent

effects are combined according to Equation K.3, which is tailored for the example in Table K.4.

e3 + e4

p 3.5 =  [Equation K.3]

n3 + n4

The data in Table K.4 can be described as a general case.  The series of concentrations can be taken as c1, c2, c3, c4,

and c5.  Taking “e” as the number affected and “n” as the number tested, the observed proportional effects are p1 =

e1/n1,  p2 = e2/n2,  p3 = e3/n3,  p4 = e4/n4, and p5 = e5/n5.  In this example, p3 > p1, p2, and p4, while p4 > p1 and p2.  It is

required to combine p3 and p4 to obtain p3.5, as in Equation K.3.

Since p2 < p3.5 < p5, calculations can proceed to estimate the endpoint.  If monotonicity had not been obtained,

smoothing would be repeated in the same fashion.

The EC50 and its 95% confidence interval are estimated as in Table K.3.  The EC50 is 5.66 with a 95% confidence

interval from 4.12 to 7.78.

The effects are similar in these last two examples, and the EC50s are approximately equal (5.64 and 5.66).  The

confidence interval is somewhat wider in the second case which used smoothing (4.12–7.78), than in the previous

case (4.32–7.36).  This is a typical consequence of the monotonization procedure.
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Table K.4 Spearman-Kärber calculations for data that require smoothing.

Conc.,

(mg/L)

Log(conc.)

(xi)

i n No.

dead

Proport'n

dead (pi)

Adjusted

proport'n

Contribution to EC50

(pi+1 – pi)(xi + xi+1)

Contribution to

variance (Equat. K2)

1.8 0.255273 1 10 0 0 0 0.114063

3.2 0.50515 2 10 3 0.3 0.3 0.188001 0.001417

5.6 0.748188 3 10 7 0.7 0.6 0 0.001633

10 1 4 10 5 0.5 0.6 0.451055 0.001714

18 1.255273 5 10 10 1 1

Sums : log(EC50) = 0.753119 variance of log(EC50)

= 0.004764
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Appendix L

Background on Other Methods for Quantal Data

L.1 The Graphic Methods of Litchfield and Wilcoxon
This former “short-cut” method (Litchfield and Wilcoxon, 1949) is now a curiosity, but was frequently used until

the 1960s, before easy access to electronic calculators or computers.  The method is based on an eye-fitted line, but

produces reasonable results.  It estimates the EC50 and 95% confidence limits, the slope of the fitted line, and

chi-square as an assessment of fit.

Outmoded as they are, the procedures are briefly described here in case an investigator can use them.  Older work

could be evaluated using this method, and it is useful for checking dubious output from computer programs.  (In any

case, the first part of the Litchfield/Wilcoxon method is an eye-fitted probit line, which is recommended in all

analyses to determine an ECp, as a check on computer estimates.)  It is instructional to try some of these analyses by

hand, in particular, to see how the slope chosen for a probit line influences the width of the confidence limits about

the EC50.  Various lines can be tried for fit.

The procedures were designed to avoid the tedious hand calculations of probit regression.  Slope of the eye-fitted

line, and fit (chi-square) are calculated on the basis of deviations of the observed points from the line.  The 95%

confidence limits about the EC50 are determined by using nomograms; i.e., pre-calculated solutions to complex

calculations, represented by three linear scales printed on a page in parallel fashion.  A transparent ruler is placed

appropriately on two of the linear scales representing known variables, and the answer (unknown variable) is read

off the third scale where the ruler crosses it.

A modern description of the Litchfield-Wilcoxon method is provided by Newman (1995), who substitutes arithmetic

calculations for the nomograms.  The calculations are now easy enough on hand calculators, and the arithmetic

procedures should be used to replace the nomograms of Litchfield and Wilcoxon.

L.2 Linear Interpolation
Section 4.5.9 points out that “linear interpolation” was designated as a particular technique for quantal data by the

USEPA, but has no special use for Environment Canada tests.  If a test shows no partial effects, investigators can

use the binomial method which is exactly equivalent to linear interpolation.  For other configurations of data, more

suitable methods should be used as recommended in Section 4.3.  The “linear interpolation” procedures of the

USEPA are described here because they are frequently encountered in reports, and to explain why they are not

required in Canada.

Early computer programs for linear interpolation were based on arithmetic values of concentration (Section 4.5.9), a

deficiency that was remedied in more recent methods for testing dredged material, which use logarithms (USEPA

and USACE, 1994).

The linear interpolation method merely interpolates between two points, and ignores other parts of the effect-

distribution.  If two successive test concentrations produced 0% and 100% effect, the calculations for linear

interpolation could be done by Equation 3 (Section 4.5.7), the formula for  geometric average.

A more generalized equation for linear interpolation handles results which show a partial effect at one or more

concentrations.  This might conceivably be useful in an unusual situation, although other methods are recommended

here (Section 4.3).  Equation L.1 is provided by USEPA and USACE (1994).  Confidence limits cannot be obtained

with this formula.
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Appendix M

Nonlinear and Kernel Methods for Quantal Data

M.1 Nonlinear Regression
Kerr and Meador (1996) point to existing nonlinear techniques for estimating an ECp.  Conventional analysis

transforms to a linear relationship by means of probits (or logits), their example with a generalized linear model

(GLIM) “... utilizes the inherent S-shaped feature of the toxicologic response ...”.  It is not clear whether the

advantage of not needing a transformation would be outweighed by the disadvantage of needing more parameters in

the equation fitting the relationship.  Their model does, however, have the desirable feature of taking into account

the sample size, and it also effectively uses 0% and 100% effects without any need for correction factors.  The

model can estimate ECp and its confidence limits for any value of p from low to high.  This GLM uses an “...

iteratively reweighted least-squares (IRLS) algorithm to find the parameter estimates that minimize the deviance.” 

Kerr and Meador state that the analytical libraries SAS, Systat, and others have algorithms or specific programs for

GLM, and can be used to estimate LCp.  A certain degree of statistical knowledge is required to use the technique

from those libraries.

Unfortunately, Kerr and Meador follow the same naive path as some others for their analysis, in abandoning the

near-geometric distribution of test concentrations in the example data.  The estimate of endpoint could well be

accurate because the model can adapt to various curvatures and does not depend on a straight-line relationship.  Still,

abandoning the initial geometric/logarithmic assumption was not proper scientific procedure, and using that

geometric base for concentration might have accomplished a fit that was more parsimonious in use of parameters, a

distinct statistical advantage.  This scientific fault could easily be corrected in the model to make it into a standard

method.

M.2 Kernel Methods
A kernel estimator is a smoothing function that evens out a curve by applying an averaging procedure to points in

the vicinity of any given point.  The smoothing procedure is applied in turn, to each of the originally observed

points, in order to produce a smoothed curve.  An EC50 would be estimated at the fiftieth percentile from the

smoothed curve, then related to the corresponding log concentration.

A weighting process is employed for the smoothing.  For any given point, the nearest observations would be given

the most weight, while those further away would be given less weight.  There are several techniques for weighting

points, and the most interesting ones are as follows.

     • The rectangular kernel, in which points in the vicinity of the target point are given a weight of unity, and all

other points are given a weight of zero (i.e., they do not contribute).

     • The triangular kernel, in which observed points greater than a specified distance from the target point are

given a weight of zero, while closer observations are assigned weights ranging from 0 to 1.

     • The Gaussian kernel, in which weights follow the Gaussian or normal probability density function.  This

implies that all observations are included in the estimation of the target observation.

The analyst can choose a “span” or bandwidth for regulating the weights indicated previously.  The choice of this

span has a greater influence on the resulting smoothed curve, than does the choice of kernel function (Hastie and

Tibshirani, 1990).  These procedures, including optimal bandwidth selection, are discussed by Härdle (1991) and

Scott (1992).
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Kernel methods have advantages for use with toxicity tests, since they are nonparametric, and could be applied

when there were no partial effects in the set of data.  Potential methods have not yet been evaluated for the types of

data that might come from Canadian environmental toxicity tests, but some assessments of relevance have been

made (Kappenman, 1987).  Müller and Schmidt (1988) ran evaluations of very large simulated sets of data (48

concentrations with 48 organisms per concentration).  If the data were non-sigmoidal, the kernel analysis estimated

an EC50 with a variance 40 to 70% smaller than would be obtained by probit regression, a very impressive feature. 

However, sigmoidal data would be more usual in test results, and for those, the variance was 20 to 30% larger than

that for probit regression.



N-206

68 
 The smoothing is done in a particular way.  If the lowest concentration produced an average weight of, say, 14 units, higher than

the control weight of 8 units, those weights would be averaged in the first round of smoothing.  The result (11 units) represents the

effect in both the control and the lowest concentration. The investigator would then leave the control and lowest concentration, and

proceed to the two concentrations which were next above the lowest concentration, and so on, pairwise through the concentrations. 

The second cycle of smoothing would start again with the control; if the second lowest concentration had an average weight of 13,

higher than the new value for the lowest concentration (and the control), then it would be averaged in with the 11, and the result

used for the control and the two lowest concentrations.  The new average would be weighted for the number of original

observations involved, in this case the value 11 would have twice the weight of the 13.  If each concentration had four observations

(replicates), the calculation would be [(8 × 11) + (4 × 13)]/12 = 11.7.  Alternatively, one could revert to the original observations

and average them: [(4 × 8) + (4 × 14) + (4 × 13)]/12 = 11.7.  The value 11.7 now represents the effect in the control and each of the

two lowest concentrations.  Note also, the second lowest concentration was because it was higher than the average of the control

and lowest concentration; it was not actually higher than the original weight for the lowest concentration.  For that reason, if doing

the process by hand, it would be best to do the smoothing for initial pairs of values, then repeat the cycle.

Appendix N

Point Estimates for Quantitative Data by Smoothing and Interpolation

N.1 Preparation for Analysis
The steps of the Smoothing and Interpolation method are given here in much more detail than in Section 6.4.2. 

Calculation of the ICp can be done by hand if desired (the explanation follows).  The example uses weight of fish at

the end of the test.

(1) Calculate the average weight of the fish held in each replicate of each concentration (including control).  From

the values for replicates, calculate the overall average weight for each concentration.

(2) Plot the average weights against a horizontal axis of the logarithm of concentration.  This is the subjective check

on the quality of data.

(3) Smooth the data if necessary.  No smoothing is necessary if the overall average weight stays the same or

decreases, at each step of increasing concentration, from the control to the highest concentration.  If that is not

true in any step, smoothing is necessary.  The process must use the weighted average of the means (see

following text).

    • If the average weight at the lowest concentration is greater than in the control, take the mean of those two

average weights, and use that mean for both the control and the lowest concentration.

    • If the average weight at the second-lowest concentration is larger than at the average weight at the lowest

concentration, take the mean of those two average weights, and use the mean for both the lowest and second-

lowest concentrations.  Repeat this for each ascending pair of concentrations until the highest concentration is

reached.

    • If the new average weights do not monotonically stay the same or decrease at each step of concentration,

repeat the smoothing procedure for the appropriate pair(s) of concentrations, weighting each value that enters

the averaging procedure, according to the number of original concentrations it represents 68.

    • Repeat the preceding two steps until the set of results is monotonic.

    • The new averages are used as input data for the analysis.  In Equation N.1 (Section N.2), the symbol M

indicates the new average weight, M1 for weight in the control, and Mj for weight in a concentration to be

named.  All the original concentrations remain in the analysis, perhaps with a modified (smoothed) effect.
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69  
At least 240 new estimates of hypothetical ICps should be made.  Each estimate arises from re-sampling the data from each

concentration of the test, allowing any data-point to be selected more than once (“random resampling with replacement”).  The

computer program does the random sampling.  For example, the effect-data entered into the program might be the total (or

average) weight of fish for each of four replicate chambers at each concentration of a test.  The computer would select four values

to represent a concentration, from the four available weights of that concentration.  It would select each of the four values from the

same spectrum of four weights (“sampling with replacement”), so each sampling would likely include some weights twice or more,

and fail to include one or more weights.  A similar selection would be made for each concentration in the test, then a hypothetical

ICp would be calculated.  Then the computer would start over with another set of random selections from the same data, with

another calculation of ICp, and so on.

Depending on the chance selections, there could be quite a variety of data-sets and ICps might be obtained.  Greater variation in 

the original data results in a wider spread among the calculated ICps.  The series of $240 hypothetical ICps will have its own

distribution.  The concentrations which mark off 2.5% of the hypothetical ICps, at either end of the distribution, are used to

estimate the confidence limits of the ICp that was actually obtained in the experiment.  The bootstrap technique was proposed by

Efron (1982), and discussed by Marcus and Holtzman (1988).

If the limits came from only 80 bootstrap samplings, estimates might be unstable (USEPA, 1995).  The earlier BOOTSTRP

computer program tended towards optimistic narrow confidence limits, and that was noted in the minutes of the Canadian Statistics

Advisory Group (Miller et al., 1993).  This tendency was especially evident when the number of replicates was small, such as two

replicates per concentration.

70  Source of the program is EMSL-Cincinnati, United States Environmental Protection Agency, 3411 Church Street, Cincinnati,

Ohio, 45244, USA.  In practice, since the program is not proprietary, many investigators have obtained copies of it from colleagues

at some other laboratory, and as mentioned, it is a component of commercial toxicity programs.

71 
 Ease of use is not necessarily true for commercial programs that incorporate ICPIN, as indicated in Appendix N.4.

If there are no test concentrations both lower and higher than the ICp, then it cannot be estimated.  It can only be

said that the ICp is lower than the lowest concentration tested, or greater than the highest concentration, as the case

may be.

N.3 Confidence Limits and the Computer Program ICPIN
A computer must be used for “bootstrapping”, to obtain 95% confidence limits about the ICp.  This involves

calculating a series of ICps that might have been obtained, based on resamplings of the original observations

(replicates).  From the series of hypothetical ICps, it is possible to calculate reasonable confidence limits for the

estimated ICp 69.

ICPIN runs on personal computers and is available within commercial packages; however, it is not proprietary, and

copies are available from the USEPA 70.  ICPIN is easy to use, has clear instructions, and obvious handling of 

data 71.  An earlier version of the program, BOOTSTRP, should not be used.

ICPIN carries out all steps (1) to (11) listed in Section N.2, and raw observations are entered into the program.  For

correctness, investigators must enter the logarithms of test concentrations, rather than arithmetic

concentrations as specified in the instructions of the program.  At the end, the ICp and its confidence limits

estimated by the computer can be converted from logarithmic to arithmetic values, for convenience in understanding

them.  Some commercial programs based on ICPIN offer a chance to transform the concentration (or “dose”) to

base-ten logarithms; however, the investigator should make sure that the transformation is actually retained

and used in the calculations (Section 2.3.2 and Appendix N).

ICPIN handles up to 12 concentrations including the control, and up to 40 items per concentration.  These “items”

must be true replicates.  For example, if weights were measured for 10 fish in a container at a given concentration,

the weights would not be replicates; their total weight or average weight would be the measurement to enter into
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ICPIN, as one replicate.  It seems unlikely that 40 replicates would ever be available in tests done by the methods of

Environment Canada.  Equal numbers of items are not required in the various concentrations.  The degree of

impairment chosen as an endpoint can range in values of p from 1 to 99%.

The investigator must specify the number of resamplings in the bootstrap portion of the program.  The number can

range from 80 to 1000 in multiples of 40; at least 240 are usually recommended (Norberg-King, 1993), and there is

no reason not to select a high number, say 800.  If there are more than six data-entries (replicates) per concentration,

the program provides “original” 95% confidence limits.  If there are fewer than seven data-entries, the ICPIN

program of 1993 (Version 2.0) provides original and “expanded” confidence limits, and the investigator should use

the expanded values, which are an attempt to allow for over-optimistic estimates of limits by the bootstrapping.

The program output includes tables of data and preliminary calculations.  The ICp from linear interpolation is

provided and should be used.  Confidence limits are printed, original or original and expanded as indicated

previously.  A “mean ICp” is also printed from the bootstrap sampling, with standard deviation; that is not the result

of the toxicity test and must not be reported as such.

N.4 Commercial Programs with ICPIN
Commercial software packages contain versions of ICPIN, along with other programs for analysis of toxicity tests. 

Three common packages at the time of writing, are: TOXSTAT version 3.5 (1996), TOXCALC version 5.0 (1994),

and CETIS (2001).  These software packages have been used by investigators in Canada.  Since the programs are

changed from time to time, and new ones will become available, only general comments are warranted here.

The commercial programs usually follow the procedures of USEPA closely, and tend to produce information to

satisfy requirements of the USEPA, sometimes on the government report sheets.  The test methods and reporting do

not necessarily satisfy requirements of Environment Canada.  TOXCALC requires tedious entry of much accessory

information that is not required.

Commercial programs tend to be written for application in current personal computers.  The commercial packages

were not as easy and obvious as ICPIN itself, for setup, entry of data, and analysis.  Some old versions of the

commercial programs were peculiar in their methods of data entry, or recalcitrant in their operation.  Manuals failed

to cover topics or failed to offer understandable words.  The commercial programs did not offer free telephone

access for help.  Investigators should run example files if they are provided, to get acquainted with the requisite

format.

As mentioned, investigators must ensure that log concentration is used in the analysis, which will probably require

entering logarithms for most software.  TOXSTAT 3.5 offered a transformation of concentration to logarithms, but

in order to retain the logs in the analysis, the operator must choose that option and then command that instruction to

“run”, before proceeding to the analysis.
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72  The latest version of SYSTATTM (e.g., Version 11.0) can be purchased from SYSTAT Software, Inc., 501 Canal

Boulevard, Suite C, Point Richmond, Calif. 94804-2028, USA, phone 800 797-7401; web site

www.systat.com/products/Systat/.

Appendix O

Estimating ICps Using Linear and Nonlinear Regression

Section 6.5.8 gives the general procedures for Environment Canada’s standard method of regression for quantitative

data from toxicity tests.  This appendix offers step-by-step generic instructions for carrying out an analysis.  The

statistical methods are identical to that included as standard procedure in Environment Canada’s recent methods for

soil toxicity (2004a–c).

O.1 Introduction
This appendix provides instruction for the use of linear and nonlinear regression analyses to derive ICPs, based on

the concentration-response relationships for quantitative data.  It represents an adaptation and modification of the

approach described by Stephenson et al. (2000).  Instructions here are for using Version 11.0 of SYSTAT72;

however, any suitable computer software may be used.  These regression techniques are most appropriately applied

to continuous data from test designs with 10 or more concentrations or treatment levels including the control

treatment(s).  The test design for measuring the effects of prolonged exposure on the earthworm Eisenia andrei,

Collembola (springtails, e.g., Folsomia candida or Onychiurus folsomi), and plant growth, is summarized in Table

O.1.

An overview of the general process used to assess the suitability of a set of data for these regressions is presented in

Figure 16.

Before data are analyzed, the reader should refer to appropriate sections within this statistical guidance document, as

well as relevant sections on test design and regression analyses in the methods specific to earthworms, plants, and

Collembola (EC, 2004a–c).  Some of the related guidance from those documents has been provided in this appendix.

O.2 Linear and Nonlinear Regression Analyses
O.2.1  Creating Tables of Data

The statistical analysis must use the logarithms of concentrations (log10 or loge).  If the concentrations fall below

unity (1.0, e.g., 0.25), then the units of concentration can be changed (e.g., from mg/kg to µg/kg) using a

multiplication factor (1000 in this example); the modified concentrations are then expressed as logarithms. 

Logarithmic values can be recorded in the original electronic spreadsheet, or the change can be done when the

original data are transferred to the SYSTAT data file.  The ICps and confidence limits should be transformed to

arithmetic values for reporting, for ease of comprehension.

(1) Open the appropriate file containing the data-set in an electronic spreadsheet.

(2) Open the SYSTAT program.  In the main screen, go to File, New, and then Data.  This  will open up an

empty data-table.  The user must first insert the variable names into the column heading by double-clicking

on a variable name, which opens the ‘Variable Properties’ window.  Insert an appropriate name for the

variable of interest within the ‘Variable name’ box, and select the variable type; additional comments can

be inserted within the ‘Comments:’ box.  For example, the following variable names might be used:
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Table O.1 Summary of test design for Environment Canada’s biological methods for testing toxicity of

soil for plant growth, or reproduction of earthworms and collembolans.

Variable Earthworm Plant Collembola

Species Eisenia andrei;
sexually mature adults
with clitellum and
individual wet weights
ranging from 250 to
600 mg

Various Folsomia candida; age
synchronized; 
10–12 days after
eclosion

Onychiurus folsomia;
adults >2 mm body
length; not age-
synchronized; 5 males
and 5 females

Test
duration

56 days = 8 weeks 14 or 21 days; 
species-dependent

28 days 35 days

Number of
replicates

10 replicates per
treatment

6 per control treatment;
4 for each lower
concentration; 3 for
middle to highest
concentrations

$3 replicates per
treatment; $5 replicates
per control treatment

$10 replicates per
treatment, including the
control treatment

Number of
treatments

Negative control soil
and $7 concentrations;
$10 concentrations plus
negative control
strongly recommended

Negative control soil
and $9 test
concentrations as a
minimum

Negative control soil
and $7 concentrations;
$10 concentrations plus
negative control
strongly recommended

Negative control soil
and $7 concentrations;
$10 concentrations plus
negative control
strongly recommended

Quantal  Methods in this appendix are not appropriate.  Use quantal procedures if there is a suitable         
                concentration-effect relationship.

Statistical
endpoints

• Mean percent adult
survival in each
treatment on Day 28

• Calculate 28-d LC50 
(quantal procedures) 

• Mean percent
emergence in each
treatment

• Calculate 14- or 
   21-day EC50 by        
quantal procedures

• Mean percent adult
survival in each
treatment on Day 28

• Calculate 28-d LC50 
(quantal procedures) 

• Mean percent adult
survival in each
treatment on Day 35

• Calculate 35-d LC50
(quantal procedures 

Quantitative Estimate the ICp (e.g., IC50 and/or IC25)

• Mean number and dry
mass of live juveniles
in each treatment, on
Day 56

• ICp for dry mass and
number of live
juveniles

• Mean shoot and root
length and dry mass
in each treatment, on
Day 14 or 21

• ICp for the mean
shoot and root length
and dry mass

• Mean number of live
juveniles in each
treatment, on Day 28

• ICp for number of
live juveniles
produced

• Mean number of live
juveniles in each
treatment, on Day 35

• ICp for number of
live juveniles
produced

conc = concentration or treatment level

logconc = log10 value of the concentration or treatment level

rep = replicate within a treatment level

juveniles = number of juveniles produced

jdrywt = dry mass of juveniles produced

mnlengths = mean length of plant shoots

mnlengthr = mean length of plant roots

drywts = dry mass of plant shoots

drywtr = dry mass of plant roots

(3) Transfer the data by copying and pasting each column from the electronic spreadsheet containing

the concentrations, the replicates, and associated mean values, to the SYSTAT data-table.
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(4) Save the data by going to File, then Save As; a ‘Save As’ window will appear.  Use appropriate coding

to save the data-file.  Select Save when the file name has been entered.

(5) Record the file name of the SYSTAT data-file in the electronic spreadsheet containing the original data.

(6) If the data (i.e., the test concentrations) need to be changed to logarithms, select Data, Transform, and

then Let....  Once in the Let... function, select the column heading containing the appropriate header for

the format desired (e.g., logconc), and then select Variable within the ‘Add to’ box to insert the

variable into the ‘Variable:’ box.  Select the appropriate code (e.g., L10 for log10 or LOG for the natural

logarithm) in the ‘Functions:’ box (the ‘Function Type:’ box should be Mathematical), and then

select Add to insert the function into the ‘Expression:’ box.  Select the column heading containing the

arithmetic version of the data (i.e., ‘conc’ for concentration or treatment level), followed by Expression

within the ‘Add to’ box to insert the variable into the ‘Expression:’ box.  If a multiplication factor is

required to adjust the concentration before the change to logarithms, this step can be completed within

the ‘Expression:’ box (e.g., L10[conc*1000]).  Select OK when all of the desired actions are complete. 

The logarithmic data will appear in the appropriate column.  Save the data (i.e., select File, followed by

Save).

The log10 of the negative control treatment cannot be provided, because the log10 of zero is undefined. 

Therefore, assign the control treatment level a very small number (e.g., 0.001) known or assumed to be

a no-effect level.  This will allow this treatment to be included in the analysis and will differentiate it

from the other logarithmic treatment levels.

(7) From the data-table, calculate and record the mean of the negative controls for the variable under study. 

Each endpoint is analyzed independently.  The mean value of these control data will be required when

estimating the parameters of the model.  In addition, determine the maximum value within the data-set

for that particular variable and round it upwards to the nearest whole number.  This number is used as

the maximum value of the y-axis (i.e., ‘ymax’) when creating a graph of the regressed data.

O.2.2 Creating a Scatter Plot or Line Graph

The scatter plots and line graphs provide an indication of the shape of the concentration-response curve for the data-set. 

The shape of the concentration-response curve can then be compared to each model (Figure O.1) so that the most

appropriate model(s) for the data can be selected.  Each of the selected models should be used to analyze the data.  Each

model should be reviewed subsequent to the analysis.  Select the model that demonstrates the best fit.

(1) Select Graph, Summary Charts, and then Line....  Select the independent variable (e.g., logconc), followed by

Add to insert the variable into the ‘X-variable(s):’ box.  Select the dependent variable under examination,

followed by Add to insert the variable into the ‘Y-variable(s):’ box.  Select OK.  A graph will be displayed

within the ‘Output Pane’ of the main SYSTAT screen containing the mean values for every treatment level.  To

view a larger version of the graph, simply select the ‘Graph Editor’ tab located below the central window.  A

scatter plot of the data can also be viewed by selecting Graph, Plots, and then Scatterplot... and then following

the same instructions for inserting the x- and y-variables.  The graphs will provide an indication of the general

concentration-response trend, allowing the potential model(s) of best fit to be chosen.  They will also indicate the

approximate ICp of interest.

The main SYSTAT screen is divided into three parts.  The left-hand side (‘Output Organizer’ tab) provides a list

of all of the functions completed (e.g., graphs) –  each function can be viewed by selecting the desired icon.  The

right-hand side forms the central window in which the general output of all completed  functions  can be viewed 

(e.g., regression, graphs).  The tabs below this central window allow the user to toggle between the data-file (use
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tab ‘Data Editor’), individual graphs (‘Graph Editor’) and the output (‘Output Pane’).  The various graphs

can be viewed individually within ‘Graph Editor’ by selecting the graph of interest within the left-hand side of

the screen (‘Output Organizer’ tab).  The bottom portion of the screen displays the command codes used to

derive the functions (regression and graphing codes).  The ‘Log’ tab within this command screen displays a

history of all of the functions completed.

(2) Visually estimate and record an estimate of the ICp (e.g., IC50) for the data-set. For example, for an IC50, divide

the average of the control measurements by two, and find this value on the y-axis.  Project a horizontal line from

the y-axis until it intercepts the data-points.  Extend a vertical line downward to the x-axis and record this

concentration as an approximate estimate of the IC50.

(3) Using the scatter plots or line graphs, select the potential model(s) that will best describe the concentration-

response trend (refer to Figure O.1 for an example of each model).

O.2.3 Estimating the Parameters of the Model

(1) Select File, Open, and then Command.

(2) Open (or create) the file containing the command codes for the particular model chosen from Section O.2.2

(i.e., select the appropriate file, followed by Open):

nonline.syc = exponential model
nonling.syc = gompertz model
nonlinh.syc = logistic with hormesis model
linear.syc = linear model
nonlinl.syc = logistic model

The file will provide the command codes for the selected model within the appropriate tab of the command

editor box at the bottom of the main screen.  All of the command codes for deriving IC50s and IC25s are

provided in Table O.2; however, the equations can be formatted to derive any ICp.  For example, the

command codes for the logistic model to derive an IC50 would be:

nonlin

print = long

model drywts = t/(1+(0.25/0.75)*(logconc/x)^b)

save resid1/ resid

estimate/ start =   85, 0.6, 2 iter  =  200

use resid1

pplot residual

plot residual*logconc

plot residual*estimate

(3) For the column in the data-table which contains the variable to be analyzed, type the header within the line

entitled ‘model y=’ (where ‘y’ is the dependent variable, e.g., jdrywt).

(4) The fourth line of the text should read ‘save resida/ resid’, where ‘a’ indicates a number to which the residual file

is assigned.  Substitute this same number into the sixth line (‘use resida’) so that the same file will be used to

generate a normal probability plot and graphs of the residuals.  The command lines that follow provide instruction

for generating a probability plot (‘pplot residual’), for generating a graph of residuals against the concentration or

treatment level (‘plot residual*logconc’), and for a graph of the residuals against the predicted and fitted values

(‘plot residual*estimate’).  These graphs help to assess the assumptions of normality (e.g., probability plot) and

homogeneity of the residuals (e.g., graphs of the residuals) when evaluating for the model of best fit (Section

O.2.4).
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Exponential Model

IC50: mnlengths = a*exp(log((a-a*0.5-b*0.5)/a)*(logconc/x))+b

IC25: mnlengths = a*exp(log((a-a*0.25-b*0.75)/a)*(logconc/x))+b

Where:

a = the y-intercept (the control response)

x = ICp for the data set

logconc = the logarithmic value of the exposure concentration

b = a scale parameter (estimated between 1 and 4)

Gompertz Model 

IC50: mnlengths = g*exp((log(0.5))*(logconc/x)^b)

IC25: mnlengths = g*exp((log(0.75))*(logconc/x)^b)

Where:

g = the y-intercept (the control response)

x = ICp for the data set

logconc = the logarithmic value of the exposure concentration

b = a scale parameter (estimated between 1 and 4)

Hormesis Model

IC50: mnlengthr = (t*(1+h*logconc))/(1+((0.5+h*logconc)/0.5)*(logconc/x)^b)

IC25: mnlengthr = (t*(1+h*logconc))/(1+((0.25+h*logconc)/0.75)*(logconc/x)^b)

Where:

t = the y-intercept (the control response)

h = the hormetic effect (estimated between 0.1 and 1)

x = ICp for the data set

logconc = the logarithmic value of the exposure concentration

b = a scale parameter (estimated between 1 and 4)

Linear Model

IC50: drywtr = ((-b*0.5)/x)*logconc+b

IC25: drywtr = ((-b*0.25)/x)*logconc+b

Where:

b = the y-intercept (the control response)

x = ICp for the data set

logconc = the logarithmic value of the exposure concentration

Logistic Model

IC50: drywts = t/(1+(logconc/x)^b)

IC25: drywts = t/(1+(0.25/0.75)*(logconc/x)^b)

Where:

t = the y-intercept (the control response)

x = ICp for the data set

logconc = the logarithmic value of the exposure concentration

b = a scale parameter (estimated between 1 and 4)

Figure O.1 Equations from SYSTAT Version 11.0 for linear and nonlinear regression models and

examples graphs for each model
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(5) Substitute the mean of the controls and the estimated ICp in the fifth line entitled ‘estimate/ start=’ (refer to

Table O.2 for details on the substitution for each model).  These values were initially derived from examining

the scatter plot or line graph.  The model, once it converges, will provide a set of parameters from which the

ICp and its 95% confidence limits are reported (i.e., parameter ‘x’).  It is essential to provide accurate

estimates for each parameter before running the model, or the iterative procedure might not converge.  The

estimate of the scale parameter (Table O.2) is usually between one and four.  The number of iterations can be

changed, but for this example it was set at 200 (‘iter = 200’).  Typically, 200 iterations are sufficient for a

model to converge; if more than that are required, it is likely that the most appropriate model is not being

used.

(6) Select File, and then Submit Window to run the commands; alternatively, right-click the mouse and select

Submit Window.  This will generate a printout of the iterations, the estimated parameters, and a list of the

actual data-points with the corresponding predicted values and residuals.  A preliminary graph of the

estimated regression line will also be presented.  This preliminary graph should be deleted by selecting the

graph in the left-hand window within the main screen.  A normal probability plot and graphs of the

residuals will also be presented.

O.2.4 Examining the Residuals and Test Assumptions

An examination of the residuals for each tested model helps to determine whether the assumptions of normality

and homoscedasticity have been met.  If any of the assumptions cannot be met, regardless of the model examined,

a statistician should be consulted for guidance on using additional models, or the data should be re-analyzed

using the less desirable method of linear interpolation (ICPIN; Section 6.4 and Appendix N).

O.2.4.1 Assumptions of Normality

Normality should be assessed using Shapiro-Wilk’s test as described in Section O.2.4.3 (see also Appendix P,

Sections P.2.1 and P.2.2).  The normal probability plot, displayed in the ‘Output Pane’, can also be used to

evaluate whether the assumption of normality is met.  The residuals should form a fairly straight line diagonally

across the graph; the presence of a curved line represents deviation from normality.  The normal probability plot

should not, however, be used as a stand-alone test for normality, because a decision on the degree of curvature

would depend on subjective judgement of the user.  If the data are not normally distributed, then the user should try

another model, consult a statistician, or the data should be analysed using the less desirable linear interpolation

method.

O.2.4.2 Homogeneity of Residuals  

Homoscedasticity (or homogeneity) of the residuals should be assessed using Levene’s test following the

instructions in Section O.2.4.3 (see also Appendix P, Section P.2.3), and by examining the graphs of residuals. 

Homogeneity of the residuals is characterized by an equal distribution of the variance of the residuals, for all

values of the independent variable (Figure O.2A).  A significant result for Levene’s test indicates that the data are

heteroscedastic, and the graphs of the residuals should then be examined.  If there is a significant change in the

variance and the graphs of the residuals produce a distinct fan or ‘V’ pattern, then the data analysis should be

repeated using weighted regression.  (Refer to Figure O.2B for a plot of the ‘residual*estmate’; a corresponding

‘V’ pattern in the opposite direction also occurs in the plot of the ‘residual*logconc’.)  Alternatively, a divergent

pattern suggestive of a systematic lack of fit (Figure O.2C) will indicate that an inappropriate or incorrect model was

selected.

O.2.4.3 Assessing Normality and Homogeneity of Residuals  

SYSTAT Version 11.0 can perform both Shapiro-Wilk’s and Levene’s tests.  Levene’s test can only be performed

by  conducting an ANOVA on the absolute values of the residuals derived in Section O.2.3.
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Table O.2 Command codes in SYSTAT for linear and nonlinear regression models

Model Command Codes

Exponential nonlin where:

print = long ‘a’) aRepresents the estimate of the y-

model mnlengths = a*exp(log((a-a*0.25-b*0.75)/a)*(logconc/x))+b intercept (i.e., ‘a’) (the control response)

save resid1/ resid bRepresents the scale parameter (i.e., ‘b’)

estimate/ start = 25a, 1b, 0.3c iter = 200 (estimated between 1 and 4)

use resid1 cRepresents the estimate of the ICp

pplot residual plot residual*logconc  for the data set (i.e., ‘x’)

plot residual*estimate

Gompertz nonlin where:

print = long aRepresents the estimate of the y-

model mnlengths = g*exp((log(0.75))*(logconc/x)^b)  intercept (i.e., ‘g’) (the control response)

save resid2/ resid bRepresents the estimate of the ICp for

estimate/ start = 16a, 0.8b, 1c iter = 200 the data set (i.e., ‘x’)

use resid2 cRepresents the scale parameter (i.e., ‘b’)

pplot residual (estimated between 1 and 4)

plot residual*logconc

plot residual*estimate

Hormesis nonlin where:

print = long
a Represents the estimate of the y-

model mnlengthr = (t*(1+h*logconc))/(1+((0.25+h*logconc)/  intercept (i.e., ‘t’) (the control response)

0.75)*(logconc/x)^b) bRepresents the hormetic effect (i.e., ‘h’)

save resid3/ resid (estimated between 0.1 and 1)

estimate/start = 48a, 0.1b, 0.7c, 1d iter = 200 cRepresents the estimate of the ICp for

use resid3 the data set (i.e., ‘x’)

pplot residual dRepresents the scale parameter (i.e., ‘b’)

plot residual*logconc (estimated between 1 and 4)

plot residual*estimate

Linear nonlin where:

print = long aRepresents the estimate of the y-

model drywtr = ((-b*0.25)/x)*logconc+b intercept (i.e., ‘b’) (the control response)

save resid4/ resid bRepresents the estimate of the ICp for

estimate/start = 5a, 0.7b iter = 200 the data set (i.e., ‘x’)

use resid4

pplot residual

plot residual*logconc

plot residual*estimate

Logistic nonlin where:

print = long aRepresents the estimate of the y- 

model drywts = t/(1+(0.25/0.75)*(logconc/x)^b) intercept (i.e., ‘t’) (the control response)

save resid5/resid bRepresents the estimate of the ICp for 

estimate/start = 85a, 0.6b, 2c iter = 200 the data set (i.e., ‘x’) 

use resid5 cRepresents the scale parameter (i.e., ‘b’)

pplot residual  (estimated between 1 and 4) 

plot residual*logconc

plot residual*estimate

(1) Select File, Open, and then Data to open the data-file containing the residuals created in Section O.2.3

(e.g., resid1.syd).

(2) Insert a new variable name into an empty column by double-clicking on the variable name, which opens the

‘Variable Properties’ window.  In this window, insert into the ‘Variable name:’ box, an appropriate
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73  
The value of 10% is only a rule of thumb based upon experience.  Objective tests for the improvement due to weighting are

available, but beyond the scope of this document.  Weighting should be used only when necessary, since the procedure can

introduce additional complications to the modelling procedure.  If weighting is necessary, but the resulting estimates of

parameters are nonsensical, a statistician should be consulted.

name for the transformed residuals (e.g., absresiduals).  Transform the residuals by selecting Data,

Transform, and then Let....  Once in the Let... function, select the column heading containing the

appropriate header for the transformed data (e.g., absresiduals), and then select Variable within the ‘Add

to’ box to insert the variable into the ‘Variable:’ box.  Select the appropriate transformation (e.g., ABS for

the transformation of data into its absolute form) in the ‘Functions:’ box (the ‘Function Type:’ box

should be Mathematical), and then select Add to insert the function into the ‘Expression:’ box.  Select

the column heading containing the original untransformed data (i.e., residuals), followed by Expression

within the ‘Add to’ box to insert the variable into the ‘Expression:’ box.  Select OK, and then the

transformed data will appear in the appropriate column.  Save the data.

(3) To perform Shapiro-Wilk’s test, select Analysis, Descriptive Statistics, and then Basic Statistics....  A

‘Column Statistics’ window will appear.  Select the residuals from the ‘Available variable(s):’ box,

followed by Add to insert this variable into the ‘Selected variable(s):’ box.  Within the ‘Options’ box,

select the Shapiro-Wilk normality test, followed by OK.  A small table will appear within the SYSTAT

Output Organizer window, where the Shapiro-Wilk critical value (i.e., ‘SW Statistic’) and probability value

(i.e., SW P-Value’) will be displayed.  A probability value greater than the usual criterion of p > 0.05

indicates that the data are normally distributed.

(4) To perform Levene’s test, select Analysis, Analysis of Variance (ANOVA), and then Estimate Model...,

an ‘Analysis of Variance: Estimate Model’ window will appear.

(5) Select the variable within which the data are to be grouped (e.g., logconc), and place this variable into the

‘Factor(s):’ box by selecting Add.

(6) Select the transformed residuals (i.e., absresiduals), followed by Add, to insert the variable into the

‘Dependent(s):’ box.  Select OK.  A graph of the data and the test output will appear within the ‘Output

Pane’ tab.  A probability value greater than the usual criterion of p > 0.05 indicates that the data are

homogeneous.

O.2.5 Weighting the Data

If Levene’s test indicates that the residuals are heteroscedastic, and there is a significant change in variance

across treatment levels (a distinct fan or ‘V’ shape, Figure O.2B), the data should be re-analyzed using weighted

regression.  The weight for a given treatment is the inverse of the variance of observations within that treatment. 

When performing the weighted regression, the standard error for the ICp (presented in SYSTAT as the

asymptotic standard error (‘A.S.E.’; see Figure O.3) is compared to that derived from the unweighted regression. 

If the difference is greater than 10%, then the weighted regression is selected as the best choice.  However, if

there is a significant change in variance across all treatment levels, and there is less than a 10% difference in the

standard errors of the weighted and unweighted regressions73, then the user should consult a statistician about

alternative models, or the linear interpolation method could be used.  The comparison between weighted and

unweighted regression is completed for each of the selected models during the final selection of models and

regression.  Alternatively, if Levene’s test indicates non-homogeneity, and the graphs of the residuals

demonstrate a non-divergent pattern (e.g., Figure O.2C), an inappropriate model might have been selected.  This

would be another occasion to consult a statistician on alternate models.
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(A)

(B)

(C)

Figure O.2 Residuals plotted against the predicted values.  (A) indicates homoscedasticity.  Two types of

heteroscedasticity are shown by (B) with a fan or ‘V’ shape which needs further examination

using a weighted regression, and (C) which demonstrates a systematic lack of fit because an

incorrect model was selected.
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(1) Select File, Open, and then Data.  Select the file containing the data-set to be weighted.  Insert the two

new variable names into the column  heading by double-clicking on a variable name, which opens the

‘Variable Properties’ window.  In this window, insert an appropriate name for the variable of interest,

select the variable type, and specify comments if desired.  The two new column headings should indicate

the variance for a particular variable (e.g., varjdrywt), and also the inverse of its variance (e.g.,

varinvsjdrywt).  Save the data-file by selecting File, and then Save.

(2) Select Data, followed by By Groups....  Select the independent variable (logconc), followed by Add, to

insert this variable into the ‘Selected variable(s):’ box  This will enable the determination of the desired

variance by treatment level (i.e., “group”).  Select OK.

(3) Select Analysis, Descriptive Statistics, and then Basic Statistics....  Select the variable of interest to be

weighted (e.g., jdrywt), followed by Add to insert this into the ‘Selected variable(s):’ box.  Select

Variance within the ‘Options’ box, followed by OK.  The desired variance, grouped by treatment level,

will be displayed within the ‘Output Pane’ tab of the main screen.

(4) Select Data, By Groups..., and then click on the box beside Turn off, and select OK, so that any

following analysis will not be based on individual treatments, but on the entire set of data.

(5) Return to the data-file by selecting the ‘Data Editor’ tab within the main screen.  Transfer the variances for

each concentration or treatment level to the corresponding concentration within the variance column (e.g.,

varjdrywt).  Note that the variance is the same among replicates within a treatment.

(6) Select Data, Transform, and then Let..., and select the column heading containing the inverse of the

variance (e.g., varinvsjdrywt) for the variable of interest, followed by Variable within the ‘Add to’ box to

insert the variable into the ‘Variable:’ box.  Select the ‘Expression:’ box and type in ‘1/’, and then select the

column heading containing the variances (e.g., varjdrywt) of the variable of interest for each replicate and

concentration, followed by Expression within the ‘Add to’ box to insert the variable into the ‘Expression:’

box.  Select OK.  The inverse of the variance for each replicate and concentration will be displayed in the

appropriate column.  Save the data by selecting File, and then Save.

(7) Select File, Open, and then Command.  Open the file containing the command codes for estimating the

parameters of the equation (Section O.2.3, step 2) for the same model selected for the unweighted analysis.

(8) Insert an additional row after the third line by typing ‘weight=varinvsy’, where ‘y’ is the dependent variable

to be weighted (e.g., weight=varinvsjdrywt), as in the fourth line below.

nonlin

print=long

model drywts = t/(1+(0.25/0.75)*(logconc/x)^b)

weight=varinvsdrywts

save resid2/ resid

estimate/ start = 85, 0.6, 2 iter=200

use resid2

pplot residual

plot residual*logconc

plot residual*estimate

(9) Assign a new number for the residuals within the line entitled ‘save resida’ (where ‘a’ represents the

assigned number).
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            residual mean square error

ICp, asymptotic standard error, and

lower and upper 95% confidence

 limits

SYSTAT Rectangular file C:\SYSTAT\STATAPP.SYS,
created Tue May 25, 2004 at 13:46:14, contains variables:

CONC REP LOGCONC JUVENILES JDRYWT
 Iteration
 No.      Loss      G           X           B
   0 .452080D+04 .340000D+02 .400000D+00 .100000D+01
   1 .184579D+04 .328003D+02 .708478D+00 .157121D+01
   2 .157417D+04 .331384D+02 .696189D+00 .197718D+01
   3 .156445D+04 .329695D+02 .702780D+00 .211068D+01
   4 .156432D+04 .329461D+02 .703292D+00 .212794D+01
   5 .156432D+04 .329427D+02 .703387D+00 .212931D+01
   6 .156432D+04 .329424D+02 .703394D+00 .212941D+01
 
Dependent variable is JUVENILES
 
    Source   Sum-of-Squares    df  Mean-Square
 Regression       41208.683     3    13736.228
   Residual        1564.317    87       17.981
 
      Total       42773.000    90
Mean corrected    15140.456    89
 
       Raw  R-square (1-Residual/Total)        =        0.963
Mean corrected R-square (1-Residual/Corrected) =        0.897
          R(observed vs predicted) square      =        0.897
 
                                                      Wald Confidence Interval
Parameter         Estimate       A.S.E.    Param/ASE        Lower < 95%> Upper
 G                  32.942        1.031       31.952       30.893       34.992
 X                   0.703        0.031       22.898        0.642        0.764
 B                   2.129        0.229        9.299        1.674        2.585
 
          JUVENILES   JUVENILES
  Case     Observed    Predicted     Residual
      1       36.000       32.942        3.058
      2       31.000       32.942       -1.942
      3       22.000       32.942      -10.942
      4       25.000       32.942       -7.942
      5       39.000       32.942        6.058
      6       42.000       32.942        9.058
      .       ......       ......       ......
      .       ......       ......       ......
     86        2.000        0.337        1.663
     87        0.000        0.337       -0.337
     88        0.000        0.337       -0.337
     89        1.000        0.337        0.663
     90        0.000        0.337       -0.337
 
Asymptotic Correlation Matrix of Parameters

G X B

G 1.000
X -0.696 1.000
B -0.611 0.566 1.000

Figure O.3 Example of the initial output obtained with the Gompertz model in SYSTAT Version 11. 

The initial output provides the residual mean square error used to select the model of best choice, as

well as the ICps, the standard error for the estimate, and the upper and lower 95% confidence limits. 

The number of cases displayed has been reduced for this diagram.  The output within SYSTAT

displays all cases, including the actual variable measurement and the corresponding predicted

estimate and residual.
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(10) Substitute the mean of the controls and the estimated ICp within the line entitled ‘estimate/ start...’ (refer to

Table O.2 for details on the substitution for each model).  These estimates will be the same as those used for

the unweighted analysis.

(11) Select File, and then Submit Window to run the commands.  This will generate output of the iterations, the

estimated parameters, and a list of the data-points with the corresponding predicted data-points and residuals,

all within the ‘Output Pane’ tab of the main screen.  A preliminary graph of the estimated regression line

will also be presented; this should be deleted.  A normal probability plot and graphs of the residuals will also

be presented.

(12) Proceed with the analysis as described in Section O.2.4 to ensure that all model assumptions have been met.

(13) Compare the weighted regression analysis with the unweighted regression analysis.  Select the weighted

regression if its standard error for the ICp is 10% less than that for the unweighted regression analysis.

O.2.6 The Presence of Outlier(s) and Unusual Observations

An outlier is a measurement that does not seem to fit the other values derived from the test.  Outliers and unusual

observations can be identified by examining the fit of the concentration-response curve to all data-points, and by

examining the graphs of the residuals.  If an outlier is observed, the general advice in Section 10.2 should be

followed, which includes scrutinizing all experimental conditions and test records, whether hand-recorded or

electronic, for human error.  Identical examination must be given to all treatments, not just the one giving rise to the

anomaly.  The examination should also consider natural biological variation, and other biological reasons that might

have caused the apparent anomaly.   If an outlier is identified, analyses should be done with and without the outlier. 

Regardless of which analysis is regarded as definitive, a description of the data, outliers, and both  analyses with

their interpretive conclusions, must accompany the final report.  If it seems that more than one outlier is present, the

selected model should be re-assessed for appropriateness and alternatives considered.

The ANOVA function within SYSTAT can be performed as one method of determining whether or not the data

contain outliers.  However, ANOVA assumes that the residuals are normally distributed, and that assumption must

be met before using the ANOVA.  The presence of outliers can also be determined from the graphs of residuals, and

by certain tests described in Section 10.2.

(1) Perform an Analysis of Variance (ANOVA) as described in Section O.4, to determine whether any outliers

exist.  They will be identified as a case number that corresponds with the row number in the SYSTAT data-

file.  The program uses the studentized residuals as an indication of outliers; values greater than three indicate

the possibility of an outlier.  This should be confirmed with the graphs of the residuals.

(2) If it is desired to perform an analysis without the anomalous datum, delete the value from the original data-

table (file), and re-save the file under a new name (i.e., select File, and then Save As...).  For example, the

new file name might contain the letter ‘o’ (for outlier(s) removed) at the end of the file’s original name.

(3) Repeat the regression analysis with the outlier(s) removed, using the same model and estimated parameters

that were used with the outlier(s) present.  An alternative model might be used for analysis if it resulted in a

better fit and smaller residual mean square error.  If the removal of the outlier(s) does not result in a

significant change to both the residual mean square error and the ICp with its confidence intervals, then the

investigator should use professional judgement on which analysis is superior.  Justification for the choice

must be provided, along with the records of alternative analyses.

O.2.7 Selection of the Most Appropriate Model

Once all of the contending models have been fit, each one should be assessed for normality, homogeneity of the

residuals, and the residual mean square error.  The model which meets all of the assumptions and has the smallest
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residual mean square error (Figure O.3) should be selected as the most appropriate.  If more than one model has the

same residual mean square error, and all other factors are equivalent, the simplest model should be selected as the

best choice.  The residual mean square error is presented in the ‘Output Pane’ tab just following the iterations, and

preceding the estimates of parameters.  If weighted and unweighted regressions were performed, the best one should

be selected by the criterion provided in Section O.2.5.  If none of the models provide a suitable fit to the data, the

investigator should consult a statistician, or the data should be analyzed by the less desirable linear interpolation.

O.2.8 Creating the Concentration-Response Curve

Once an appropriate model has been selected, its concentration-response curve must be generated.

(1) Within the command editor window at the bottom of the screen, copy the model’s equation from the command

codes used to derive the estimates for the selected model.  This is the equation after the ‘=’ sign, in the third line

of the command codes depicted in Table O.2.  The equation should consist of the original alphabetic characters

(e.g., t, b, h, etc.).  The equation can be copied by highlighting the equation and selecting Edit, followed by

Copy (or right-clicking the mouse and selecting Copy).

(2) Select File, Open, and then Command and open an existing graph command file (i.e., any file with ‘*.cmd’)

similar to the following example (or, if and as necessary, create a new one), using the logistic model. The

first plot (i.e., ‘plot’) is a scatter plot of the dependent variable against the log concentration series.  The

second plot (i.e., ‘fplot’) is the regression equation, which is superimposed upon the scatter plot.

graph

begin

plot drywts*logconc/ title = ’Dry Mass of Barley Shoots’, xlab = ’Log(mg boric acid/kg soil d.wt)’,

ylab = ’Mass (mg)’,

xmax = 2, xmin = 0, ymax = 90, ymin = 0

fplot y = 80.741/(1+(0.25/0.75)*(logconc/0.611)^2.533); xmin = 0, 

xmax = 2, xlab = ’‘ ymin = 0, ylab = ’‘, ymax = 90

end

(3) Paste the previously copied equation in place of the pre-existing equation (as seen in the shaded area above)

by highlighting the previous equation, and then selecting Edit, followed by Paste (or right-clicking the

mouse and selecting Paste).  Replace all of the alphabetical characters (e.g., t, b, h, x, a, etc.), together with

the respective estimates, provided in the ‘Output Pane’ tab generated by the application of the selected

model.

(4) Type in the correct information within the line entitled ‘plot y*logconc...’, where ‘y’ is the dependent

variable under study (e.g., drywts).  Adjust the ‘xmax’ (i.e., the maximum log-concentration used) and

‘ymax’ (refer to Section O.2.1, Step 7) numerical values accordingly.  Ensure that all ‘xlab’ and ‘ylab’ (i.e.,

axis labels) entries are correct, if not, then adjust accordingly.  Ensure that all quotation marks and commas

are placed within the command program as depicted in the previous example; SYSTAT is case- and space-

insensitive.

‘title’ refers to the title of the graph

‘xlab’ refers to the x-axis label

‘xmin’ refers to the minimum value requested for the x-axis

‘xmax’ refers to the maximum value requested for the x-axis

‘ylab’ refers the y-axis label

‘ymax’ refers to the maximum value requested for the y-axis

‘ymin’ refers to the minimum value requested for the y-axis

The ‘xmin’, ‘xmax’, ‘ymin’, and ‘ymax’ must be the same for both plots to superimpose the regression line

accurately on the scatter plot.  An example of the final graph is provided in Figure O.1 for each of the five proposed

models.
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(5) Select File, then Save As to save the graph command codes in an appropriate working folder using the same

coding used to generate the data-file, with an indication of the model to which the regression corresponds. 

Select Save to save the file.

(6) Select File, then Submit Window to process the command codes.  A graph of the regression, using the

parameters estimated for the selected model, will appear.

O.3 Determining Additional ICps

In some cases, it might be desirable to estimate a second ICp with another value for ‘p’.  Although the following

section, and Figure O.1, are for determining an IC25, the models can be changed to suit any ‘p’ value (e.g., IC20).

(1) Select File, Open, then Command, and open the file corresponding to the command codes used to generate the

estimates of parameters (refer to Table O.2 for the command codes for each model).  Change the model equation

such that it will calculate the desired ICp (e.g., IC25).  Figure O.1 provides guidance on adjusting the models to

calculate the IC25.  Any ICp can be determined by modifying the fractions used in each model.  For example, to

calculate an IC20 using the logistic model, the equation for calculating an IC50, which is ‘t/(1+(logconc/x)^b)’,

would change to ‘t/(1(0.20/0.80)*(logconc/x)^b)’ for calculating an IC20.

(2) Once the equation has been adjusted for the ICp of interest, follow each step outlined in Section O.2.3. 

However, substitute the initial estimate of ICp in the fifth line entitled ‘estimate/ start=’ (refer to Figure O.1

for details on the substitution for each model).  This is the value that was initially derived from an

examination of the scatter plot or line graph.  The model, once it converges, will provide a set of parameters

from which the ICp and its 95% confidence limits, are reported (i.e., parameter ‘x’).

(3) Proceed with the analysis as described in Sections O.2.4 to O.2.8.

O.4 Analysis of Variance

(1) Select File, Open, and then Data to open the data-file containing all of the observations for the data-set.

 

(2) Select Analysis, Analysis of Variance (ANOVA), and then Estimate Model....

(3) Select the variable within which the data are to be grouped (e.g., logconc), and place this variable into the

‘Factor(s):’ box by selecting Add.

(4) Select the variable of interest (e.g., jdrywt), followed by Add, to insert the variable into the ‘Dependent(s):’

box.

(5) Select the box beside ‘Save’ (bottom left-hand corner of the window called ‘Analysis of Variance: Estimate

Model’) and scroll down the accompanying selections to choose Residuals/Data.  Type an appropriate file

name within the adjacent empty box to save the residuals (e.g., anova1).  Select OK.  A graph of the data and

the generated output will appear within the ‘Output Pane’ tab.  At this point, any outlier(s), based on the

studentized residuals, will also be identified (see Section O.2.6 for outliers).

(6) Assess the assumptions of normality and homogeneity of the residuals as in Section O.2.4, using the data-file

that was created to save the Residuals/Data before conducting the ANOVA (i.e., anova1).  Make the

assessments using Shapiro-Wilk’s and Levene’s tests.  The following coding can be used to examine the

graphs of the residuals.

graph

use anova1

plot residual*logconc

plot residual*estimate
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Appendix P

Hypothesis Testing

P.1 Statistical Methods

Hypothesis testing has been commonly used in the past for sublethal quantitative effects such as attained size.  It is

possible to transform some quantal data into a quantitative form suitable for analysis by hypothesis testing (Sections

2.92 and 2.9.3).  Hypothesis testing can be applied directly to quantal data, without statistical difficulties, if numbers

in a replicate are 100 or more, because the data become similar to quantitative distributions.  For example, in the test

with sea urchin eggs, the number of fertilized eggs is counted, among the first 100 or 200 encountered on a slide. 

The EC test method (1992f) acknowledges that this is a quantal effect, but with large enough numbers to be treated

as a quantitative one.  The procedure is not recommended for low numbers of observations per replicate, such as 40. 

The importance of large numbers is that the quantum jump in effect caused by one individual reacting within a

group of 100, is only 1%, approaching a continuous distribution and satisfactory for quantitative techniques.

Statistical procedures for hypothesis testing are given in TOXSTAT (1996; WEST and Gulley, 1996), in CETIS

(2001), and are explained with some guidance in USEPA (1994a), Newman (1995), and various EC sublethal test

methods.  The TOXSTAT and CETIS software are available commercially, and other suppliers provide broader

general programs for computerized analysis.  Procedures in the instructions that accompany the program should be

followed.  All providers of software packages modify the procedures to a greater or lesser extent in successive

versions of the software.

A logarithmic scale is important in choosing the test concentrations; however, there is no need to ensure that

logarithms of concentration are used in estimating NOEC/LOEC.  The logarithms do not enter into the statistical

analysis, because the statistical comparisons are among the observed effects.  The groups could be identified just as

well by using arbitrary numbers, letters, or names.  In some cases the concentration is considered, for example,

Williams' test considers order of concentration, although not the absolute magnitude.

P.2 Tests of Normality and Homogeneity of Variance

P.2.1 Shapiro-Wilk's Test for Normality

Calculations for this test are complicated and would be tedious if done by hand.  TOXSTAT and other computer

programs carry them out rapidly.  The mathematical steps are shown in Newman (1995) and in an example by the

USEPA (1995).  The final step is comparison with a critical value (W) found in tables (Shapiro and Wilk, 1965;

D'Agostino, 1986).  The minimum sample size for this test is three.

An example of testing for normality can be based on the data shown in Table P.1.  The data represent the weight

gains in groups of late sac fry of rainbow trout, exposed to various concentrations of copper until they reached the

early swim-up stage.  Five concentrations and a control were tested.  There were 12 fish per concentration, although

3 died in the highest concentration.  These real data were obtained in the laboratory of Beak International, Inc. of

Brampton, Ont.

In Table P.1, the two columns for “Weight gain” and “Residual” are relevant to the Shapiro-Wilk's test.  Each value

for a residual is simply the mean weight for the group, subtracted from the individual weight (see Glossary), and

those residuals are the values that enter the Shapiro-Wilk analysis.

The calculations end with a critical value W = 0.9836, and the associated probability value is 0.5, i.e., very high. 

Compared to the usual criterion of p > 0.05, it is clear that the data are normally distributed.  For a visual

appreciation of such data, see Figure P.1.
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Table P.1 Tabulation of toxicity data used as an example of assessing normality.  The data represent weight

gain of sac-fry of rainbow trout exposed to copper in water of 135 mg/L hardness.  There are no

replicates in this example, but in hypothesis testing , there would always be replicates.  Data provided

by Beak International, Inc.

Copper Weight Residual Rank Cumulative Probit

(µg/L) gain (mg) in group proportion

(mg)

Control 66.7 -43.9 1 0.0769 3.5738

101.5   -9.1 2 0.1538 3.9797

102.7   -7.9 3 0.2308 4.2638

103.7   -6.9 4 0.3077 4.4976

105.0   -5.6 5 0.3846 4.7066

109.3   -1.3 6 0.4615 4.9034

111.7     1.1 7 0.5385 5.0967

112.6         2.0 8 0.6154 5.2930

122.2    11.6 9 0.6923 5.5018

125.7    15.1     10 0.7692 5.7362

128.9    18.3     11 0.8462 6.0203

137.3    26.7     12 0.9231 6.4262

mean 110.6

   12      64.0  -25.4 1 0.0769 3.5738

 67.3  -22.1 2 0.1538 3.9797

 81.8    -7.6 3 0.2308 4.2638

 85.6    -3.8 4 0.3077 4.4976

 85.8    -3.6 5 0.3846 4.7066

 92.0     2.6 6 0.4615 4.9034

 92.0 2.6 7 0.5385 5.0967

 92.1 2.7 8 0.6154 5.2930

 96.5 7.1 9 0.6923 5.5018

 96.6 7.2     10 0.7692 5.7362

105.4       16.0     11 0.8462 6.0203

114.1   24.7     12 0.9231 6.4262

mean   89.4

   25      51.5  -41.3 1 0.0769 3.5738

 73.4  -19.4 2 0.1538 3.9797

 80.2  -12.6 3 0.2308 4.2638

 81.5  -11.3 4 0.3077 4.4976

 88.3    -4.5 5 0.3846 4.7066

 88.6    -4.2 6 0.4615 4.9034

 91.7    -1.1 7 0.5385 5.0967

 96.4 3.6 8 0.6154 5.2930

109.0   16.2 9 0.6923 5.5018

109.1   16.3     10 0.7692 5.7362

112.6      19.8     11 0.8462 6.0203

131.5   38.7     12 0.9231 6.4262

mean  92.8

Copper Weight Residual Rank Cumulative Probit

(µg/L) gain (mg) in group proportion

(mg)

48       54.6      -28.1  1 0.0769 3.5738

  56.4  -26.3  2 0.1538 3.9797

  57.7  -25.0  3 0.2308 4.2638

  78.0    -4.7  4 0.3077 4.4976

  79.6        -3.1  5 0.3846 4.7066

  80.8    -1.9   6 0.4615 4.9034

  81.9        -0.8  7 0.5385 5.0967

  83.3     0.6  8 0.6154 5.2930

  97.4   14.8  9 0.6923 5.5018

                106.4   23.8      10 0.7692 5.7362

                                                                        107.8   25.1      11 0.8462 6.0203

107.9       25.3      12 0.9231 6.4262

82.7

65    49.8  -16.1 1 0.0769 3.5738

  54.9  -10.9 2 0.1538 3.9797

   56.1    -9.7 3 0.2308 4.2638

  56.4        -9.4 4 0.3077 4.4976

  60.2    -3.6 5 0.3846 4.7066

  62.6    -3.2 6 0.4615 4.9034

  64.0    -1.8 7 0.5385 5.0967

   65.0    -0.8 8 0.6154 5.2930

  68.8 3.0 9 0.6923 5.5018

  69.2     3.4     10 0.7692 5.7362

                               81.2   15.4     11 0.8462 6.0203

            102.0       36.2     12 0.9231 6.4262

65.9

91      11.7 -25.4 1 0.0769 3.5738

 13.5  -22.1 2 0.1538 3.9797

 19.1  -20.0 3 0.2308 4.2638

 41.3   -2.2 4 0.3077 4.4976

 45.6     6.5 5 0.3846 4.7066

  47.4     8.3 6 0.4615 4.9034

  56.6   17.5 7 0.5385 5.0967

  57.2   18.1 8 0.6154 5.2930

  59.2   20.1 9 0.6923 5.5018

39.1
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Figure P.1 Plots to inspect apparent normality of distribution, for weight gains by rainbow trout sac-

fry exposed to various copper concentrations.   Each panel represents the cumulative rank of

each fry's weight gain within the distribution for 12 fry (on a vertical probability scale), plotted

against the absolute weight gains (on an arithmetic scale).  Three fry died in the highest

concentration.
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Investigators can assess the degree of non-conformity by the p-value offered in the computer program, or if

necessary, in a table of critical values of “W” which should provide various probability levels from 0.01 upwards. 

Values of about 0.3 to 1.0 can be expected as the output (W) from the Shapiro-Wilk’s test, with the lower value

signifying considerable deviation from normality, and the value of 1.0 signifying little or no deviation.

Although normality tests could be conducted on the weights within each treatment, that is not recommended.  

The smaller sample sizes reduce the power of the test and increase the likelihood of a Type I error.

P.2.2 Plotting to Inspect Normality

The Shapiro-Wilk’s test (Section P.2.1) is recommended for assessing normality, and should be the criterion for

acceptance of the data.  In addition, it could be instructive to plot graphs for visual appreciation of the distribution

of data.  Graphs should be based on the original data for a replicate or concentration.  In cases of non-normality or

non-homogeneity, the graph could reveal the apparent cause of failure to meet the requirements.  It is not

recommended that a graphic analysis by itself should be used to judge whether results are normal, because

specialized graphic procedures are needed, as well as experience and skill for the subjective interpretation.  For

small sample sizes, there could be abrupt changes which could easily lead to over-interpretation.  If visual

assessment is done, the preferred methods in order are: quantile plots, box and whisker plots or stem and leaf plots,

and frequency histograms.

Despite those qualifications, there is support in the literature for graphical appraisal of normality.  Some support

from OECD (2004) is described in Section 7.3.2 (footnote 54).  Newman (1995) describes the procedure briefly and

refers to detailed examples in Sokal and Rohlf (1981) and Miller (1986).  Newman (1995) quotes Miller as writing

“If a deviation from normality cannot be spotted by eye on probit paper, it is not worth worrying about.”  Beyond

question; however, the eye that is used for spotting must be an experienced one.

Some examples of plotting can be given with the data from Table P.1 (Figure P.1).  We already know that the data

are normally distributed with a high probability value, from the Shapiro-Wilk’s test in Section P.2.1, and so the

panels of Figure P.1 illustrate relatively good data.  It must be emphasized that the test of normality is that the

residuals are normally distributed.  Although in theory, if the effects are normally distributed at each

concentration, the residuals should also be normally distributed, the actual tests of normality should be done on the

residuals.  Accordingly, Figure P.1 does not represent the visual assessment mentioned two paragraphs above

(quantile plots, etc.)  Figure P.1, to repeat, is merely a presentation of what relatively good data look like on probit

plots.

The following outline is the procedure for calculating and plotting.  The last three columns shown in Table P.1 are

used.  In other kinds of tests, “weight gain” would be replaced by whatever type of measurement was used.

• Within each concentration (or replicate if they exist), list the individual measurements in order from

smallest to largest.  (In this case, the measurements would be gain in weight for each of the 12 young fish.)

• Assign a number to each weight gain, indicating its rank in the list of twelve.  For tied values, the average

of the ranks should be used.

• For each weight gain, calculate the cumulative proportion of the data represented.  Calculate these values

by assuming that there is one additional value (12 + 1 = 13 for most of the treatments in Table P.1, and 9 +

1 for the highest concentration).

Cumulative proportion = (Rank of the weight gain)/(number of measurements plus 1.0)

• Plot each of the cumulative proportions on a probit scale against its weight gain.  (Alternatively, for each

cumulative proportion, obtain the probit from a computer program or a table, and plot as the probit on an

arithmetic scale, as in Table P.1 and Figure P.1.)
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Weight gains of trout fry in Figure P.1, show a reasonably linear relationship in most cases, indicating probable

normal distribution.  There are some mild to moderate departures from normality, particularly for the individual

showing least gain in the control, and the individuals showing the greatest gain (in 65 and 91 µg/L).  Nevertheless,

these data achieved a high degree of probability in the Shapiro-Wilk's test, and so Figure P.1 represents satisfactory

normality of distribution.

If the experiment in Table P.1 were for hypothesis testing, there would be replicates.  There would be an additional

12 sac fry in a separate test chamber for each replicate of a concentration.  For plotting or testing the normality of

residuals, each replicate would be plotted separately.

In some cases, a replicate observation would be a single number, such as the total weight or mean weight of all the

individuals from a test chamber, which is the case for weight of larvae in the fathead minnow test.  For tests of that

design, the mean weight for a given replicate would be ranked among all the mean weights for the same

concentration.  The residuals from those rankings and mean weights would be plotted.  If there were only two or

three values, the plotting exercise would not be very revealing, and in fact, might be misleading.  The Shapiro-

Wilk's test would remain as the criterion.

P.2.3 Tests for Homogeneity of Variance

The method recommended here for assessing equality of variances is the test of Levene (1960), which is described

in Snedecor and Cochrane (1980) but it is not presently included in software packages designed for environmental

toxicology.  The test of Bartlett (1937) is standard in the software packages but has a drawback (see following text). 

The test of O'Brien (1979) is somewhat superior to Levene's test, but is also absent from current statistical

packages.  Data based on proportions should not be put through these procedures.

All these tests determine whether the variances are equal in all the treatments, with a null hypothesis that there are

no differences.  If the variances differ substantively from treatment to treatment, the assumption of homogeneity

required for a subsequent ANOVA is invalid.  The tests of variance operate on the assumption that observations are

normally distributed.

Bartlett's test is available in most software for environmental toxicology and is widely used.  The test statistic is

derived from the within-treatment variances and residual variances.  The final comparison is with a critical value of

chi-square, for the appropriate degrees of freedom and a selected probability value ("""").  For sample sizes less than

five, a special table of critical values is used.  Most investigators will allow a computer program to work through

the calculations; the actual steps are shown in examples by Newman (1995) and USEPA (1995).

Bartlett's test is overly sensitive, if the data are not normally distributed and particularly if distributions are skewed. 

In such situations, a set of data might be erroneously rejected by the testing for homogeneity of variance.

Levene's test avoids that problem by using the average of the absolute deviations of an observation from its

treatment mean, rather than the average of the squared deviations of within-treatment and residual variances.  As

mentioned, Levene's is not included as a standard test in software packages, nor is it mentioned or described in

some textbooks (Zar, 1999; Newman, 1995).  Levene's method could, however, be implemented by hand treatment

of the data.  Each observation should be recorded as an absolute deviation from the within-treatment mean.  An

ANOVA would then be performed on the recorded observations.  The F-test for difference in the recorded

observations would be a test of the assumption of homogeneity.

O’Brien's test has some superiority over Levene's test in certain technical mathematical aspects.  However, it is

even less easily available than Levene's, and is not explained in common texts (Snedecor and Cochran, 1980; Zar,

1999; Newman, 1995).

If the data being tested are proportions, then variances will differ with proportion and hence with treatment.  Such

quantal data should be analyzed by more appropriate methods than hypothesis testing (Section 4), or else suitably
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74  If an investigator decided to directly analyze proportional (quantal) data by hypothesis testing, there is one situation which

would have to be regulated by the investigator.  It would result in unnecessary rejection of results for parametric testing, as the

result of testing homogeneity of variance by Bartlett's or Levene's tests.  An analysis of egg fertilization in sea urchins can be

used as an example.  It might happen that 100% fertilization occurred in each replicate of the control treatment.  Similarly,

there might possibly be 0% fertilization in each replicate of the highest concentration.  In either of those situations, the

variance for that treatment would be zero.  When the test for homogeneity was run, the zero variance would result in rejection

of the hypothesis of equal variances.  If that situation occurred, the treatment with zero variance should be omitted from

Bartlett's or Levene's test, and the ensuing estimate of the variance within treatments should be adopted (USEPA 1994d).  If

the other treatments met the condition of equal variances, then parametric analysis could proceed.  In the subsequent analyses

(ANOVA and multiple-comparison test), all treatments should be used including the one(s) with zero or 100% effects.

75  Shapiro-Wilk's test for normality is sensitive to unequal variance, while Bartlett's, the test usually recommended for

unequal variance, is known to be sensitive to non-normality.  In view of this reciprocal sensitivity, investigators might have

some justification if they did not adopt this pre-testing regime as an infallible article of faith.

76  “Experience has shown that analyses of variance and t tests are usually robust enough to perform well even if the data

deviate somewhat from the requirements of normality, homoscedasticity, and additivity.  But severe deviations can lead to

spurious conclusions.” (Zar, 1974).

transformed (Section 2.9.3).  A warning about a particular difficulty with testing proportional data for homogeneity

of variance was given by USEPA (1994d) 74, but the warning is not relevant if proportional effects are not included

in hypothesis testing.

P.2.4 Robustness of Parametric Analysis and Decisions on its Use

If the data satisfactorily pass both the Shapiro-Wilk's and Levene's or Bartlett's tests, analysis should proceed with

parametric methods, i.e., ANOVA.

If the data show inconsistencies and do not satisfy one or other of those tests, it might be possible to transform them

statistically to meet the requirements for analysis.  Transformation should be avoided, if possible, because there are

complications and disadvantages as described in Section 2.9.2.  If transformation is adopted, the set of modified

data would be recycled through the tests for normality and homogeneity, to see if they now met the requirements. 

If so, analysis could proceed by standard parametric methods.

If the data cannot, even after transformation, satisfy both of those tests for the distribution of data, then analysis

must be done using nonparametric methods (Figure 19).  Computer packages usually assume that nonparametric

analysis will be the only option, when one of the qualifying tests has failed.

However, a case can be made that ANOVA and the subsequent multiple-comparison tests are rather robust in the

face of small deviations in normality and homogeneity.  The tests for those characteristics function well for large

samples, but might not do so for the small samples often found in environmental testing.  The test for normality can

be over-sensitive for unequal variances, and vice versa 75.  

The relative robustness of ANOVA was described by Zar (1974) 76.  Newman (1995) cited work indicating that

ANOVA produces realistic probabilities if the distribution of data is at least symmetrical and if the variances for the

treatments are within three-fold of each other.  One statistical program states that “An ANOVA can be valid even

with departures from normality, especially when the number of replicates per group is large.  If replicates are equal

or nearly equal, heterogeneity of variance has little effect on the analysis” (TOXSTAT, 1996).  Recent documents

published by the USEPA also seem to have softened on this topic, with such wording as “If the tests fail ..., a

nonparametric procedure ... may be more appropriate.  However, the decision ... may be a judgement call, and a

statistician should be consulted in selecting the analysis.” (USEPA, 1995).

Accordingly, if the statistical tests for normality and homogeneity of variance indicate mild to moderate deviation

from the requirements (i.e., marginal failure of a test), investigators might wish to consult a statistician about

possible usefulness of parametric tests.  
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77  The rationale for this is apparently based on the supposition that many parametric tests have greater power to detect

effects, than do the corresponding nonparametric tests.  They might detect a toxic effect for a set of data, even in the presence

of minor irregularities, while a nonparametric analysis might fail to detect the effect.

78  
In some tests, effect might be measured for each of several organisms in a given chamber (replicate).  The comparison of

interest would be among the mean effects at different concentrations.  This would be estimated by using the ratio of (a) the

variation within the concentrations (i.e., among replicates), and (b) variation among concentrations.  The measurements for

individual organisms might be used in an ANOVA if, for some reason, it were desired to test for differences among replicates

at the same concentration, as well as among concentrations.  This would be a more complex “nested” ANOVA, described in

statistics texts.

In this situation, some sublethal EC test methods recommend both parametric and nonparametric analysis, with the

more sensitive (lower concentrations) of the two analyses providing the final estimates of toxicity 77.  That

procedure is recommended here, and findings by both methods should be reported.  Results of the Shapiro-Wilk's

and O'Brien's (or Bartlett's) test should be submitted, along with a graph of raw results.

P.3 Analysis of Variance

For parametric testing, an analysis of variance (ANOVA) is carried out, with two main purposes.  The initial

purpose is to see if there is an overall difference between any two (or more) mean values for the various treatments

(concentrations).  This is done by testing the null hypothesis ( H0 ), that there are no significant differences between

mean values for the treatments.  If a difference is found, the second purpose of the ANOVA is to obtain an estimate

of the error variance; it will be used in further tests to see which particular concentrations differ.

The ANOVA makes use of (a) the total variance in the test, (b) the variance among concentrations, and (c) the

variance within concentrations (i.e., among replicates).  The estimates of variance are the “mean sum of squares”

(fully expressed, the “mean squared deviations from the mean”), usually called the mean square error.  These are

obtained by dividing the sum of squares by the degrees of freedom.  The sum of squares is obtained by subtracting

each observation (replicate) from the mean of the category (concentration), squaring it, and adding all the squares

together.  The degrees of freedom are one less than the number of items in the category.

The analysis produces an output with the relevant values displayed in Table P.2.  These hypothetical values would

be for a test with five concentrations and three chambers (replicates) at each concentration78.

Table P.2 The format of results from a hypothetical analysis of variance.

Source of Variation Sum of Squares Degrees of Freedom Mean Squares

Total 2669 15 - 1  = 14

Among concentrations 2046 5 - 1 = 4 511.5

Among chambers within

concentrations

623 5 ( 3 - 1 ) = 10 62.3

For Table P.2, the real output of an ANOVA would probably label the three rows as “Total, Among, and Within” or

“Total, Groups, and Error”, rather than the explanatory labels shown.  In the degrees of freedom column, only the

14, 4, and 10 would be shown, not the explanatory arithmetic.  The values 623 and 10 in the third row could be

obtained by subtraction.

If the mean square for “among concentrations” is larger than the mean square for “within concentrations”, the null

hypothesis might be untrue, i.e., significant difference in effect among two or more treatments.  This is tested by
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dividing “among” mean squares by “within” mean squares, the result being named “F”.  If “F” exceeds a critical

value, provided by the computer program, or found in tables, then there is a significant difference somewhere

among treatments (concentrations).

In this hypothetical example, F = 511.5/62.3 = 8.2.  The critical value of F for 4 and 10 degrees of freedom and p =

0.05 is 3.48.  Since the calculated F is greater than the F found in the table, the null hypothesis is rejected and it is

concluded that there is one or more difference(s) between concentrations.

The comparison of F with the critical value is only valid when the assumptions of the ANOVA have been met. 

This reflects back to the points raised in Section P.2.4.

If there is no significant difference shown by the ANOVA, the analysis is finished, the null hypothesis is accepted,

and no toxicity has been demonstrated.  If the null hypothesis is rejected, a difference exists and the statistical

analysis proceeds to multiple-comparison tests (Section 7.5 and Section P.4), to decide which treatments differed

from the control (and/or from which other treatments).  

Generally these calculations are done by a computer program such as TOXSTAT, but it is possible to carry them

out by hand using formulae shown in Newman (1995) or statistics texts (Zar, 1974; 1999).

One of the problems that might arise in ANOVA would be choosing the wrong value for the sum of squares of the

“error”.  If there were measurements on individual organisms within a replicate, and they had been entered into the

analysis, Table P.2 would have additional numbers in another row at the bottom.  Computer printouts would often

label that row as “error”.  An investigator might inadvertently use the mean square for that row in calculating F,

which could be appropriate in some other experimental designs, as indicated in the preceding footnote, but not

common.  Usually the proper values can be identified fairly readily in the table printed out, and confirmation can be

made by considering which line of the table has the correct number for degrees of freedom.

For testing hypotheses by ANOVA, it is highly desirable to have equal sample sizes (equal numbers of replicates

per treatment).  If there are inequalities, the analysis becomes more complex, but modern computer programs

handle this easily and provide the correct error term for any subsequent multiple-comparison tests.  Other important

aspects of replication are given in Section 2.5.  Interpretation and types of error are also relevant (Section 7.2.2).

P.4 Parametric Multi-comparison Tests

The use of multi-comparison tests is described in Section 7.5.  Section P.4 provides some additional background

information on the tests.  Detailed guidance on multiple-comparison procedures is available (Hochberg and

Tamhane, 1987).

P.4.1 Williams' Test

Williams’ test is a multiple-comparison test recommended for primary use in parametric analyses, after an analysis

of variance has shown that a difference exists.  It has a major advantage because, when comparing each treatment

with the control, it takes into consideration the order of the groups according to increasing (or decreasing)

concentration (Williams, 1972).  Making use of this information increases the sensitivity of the test.  Williams' test

is provided in TOXCALC, TOXSTAT, and CETIS.

The superior sensitivity of Williams' test is demonstrated by an example.  Crane and Godolphin (2000) compared

precise test results from “laboratory 1” with variable results for “laboratory 2”.  These were hypothetical

observations on mortality, with three replicates, for a control and eight concentrations (as percent effluent, 1.0, 2.2,

4.6, 10, 22, 46, 60, and 100).  Data were transformed as square roots and analyzed by ANOVA and several

multiple-concentration tests.

The differences were striking.  Not only were the calculated NOECs surprisingly different for the two laboratories,

but also for the different statistical tests (Table P.3).  Williams' test was the most sensitive of the four tests by 
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79  The computer software for Dunnett's test is available at http://www.epa.gov/nerleerd/stat2.htm.

Table P.3 Differences in NOECs calculated by various multiple-comparison tests.   The NOECs represent

percent effluent, for hypothetical data from laboratory 1 with precise data, and laboratory 2 with

variable data, as presented by Crane and Godolphin (2000).

Multiple-comparison test NOECs for Lab. 1 NOECs for Lab. 2

Williams' 1.0 2.2

Dunnett's 2.2 22

Bonferroni t-test 2.2 22

Tukey's 10 46

factors of 2 to 20 times.  It was particularly effective in establishing a low concentration for the variable data of

laboratory 2.

Williams' test proceeds in a stepwise manner.  It starts by comparing the effect of the first-ranked sample (e.g.,

highest concentration) with the control effect, then that of the next ordered sample, until no difference is found.  By

that process, the test identifies the lowest concentration associated with a significant mean effect in a test group.

Williams' test is related to the t-test and shares the same assumptions.  Effects must be approximately normally

distributed, variances within concentrations must be equal, and observations must be independent.  Those

requirements should have been met for the preceding ANOVA.  If the requirements are not met, the nonparametric

stream would be appropriate, using Shirley's test (Section P.5.3) as the alternative for Williams' test.

The test must operate on a monotonic series, i.e., each successive mean effect is either (a) equal to or smaller than

the previous one, or else (b) equal to or larger than the previous one.  In case of irregularities,  there is a smoothing

procedure, which might have to be applied by hand.  The correction assigns the same mean effect to the two aberrant

mean effects in the series.  The correction can be made more than once if necessary, but in the usual series for a

toxicity test, such equalization of groups could lose an important part of the test's ability to discriminate.  These

situations will be seen easily when an investigator inspects or plots the original data; if it exists the investigator

should apply Williams' test and also another multiple-comparison test, to check for anomalous results.

Williams’ test will function for equal or unequal numbers of observations contributing to the mean value of the

control and each treatment.  Normally the calculated error term is obtained with a computer program.  If a particular

computer package cannot deal with unequal numbers of observations among the treatments, the adjustments can be

made by hand.  There is a choice of simple formula for balanced or unbalanced data (Williams, 1972). 

The critical value for a given set of data, corresponding to the error degrees of freedom, can be obtained from tables

in Williams (1971; 1972).  For unbalanced data, the critical values should be obtained from the tabulation of

Hochberg and Tamhane (1987).  Comparing the calculated test statistic to the critical value, the first one that is less

than the critical value is significantly different from the control.

P.4.2 Dunnett's Test

Dunnett’s test is a standard test which compares the mean effect at each treatment with the mean effect in the

control.  Dunnett's test is given prominence in TOXSTAT and most current methods from the USA.79  However,

Williams' test is recommended here instead, for Environment Canada tests that have ordered data (e.g., successive

concentrations).  Dunnett's is less powerful than Williams' for establishing LOEC, because it ignores any order in
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the data (Table P.3).  Also, it controls for the experiment-wise error rate rather than the pairwise error, when

comparing any treatment with the control. 

Dunnett's test is, however, the appropriate choice for making a comparison with the control when there is no

intrinsic ordering of the treatments, i.e., no gradient is expected.  This could occur, for example, in sediment-testing,

if there were materials from a number of different places, all tested in replicate, but only at one concentration (i.e.,

full-strength).

Dunnett’s test requires a normal distribution of data; it represents an extension of the t-test (Dunnett, 1955; 1964). 

Dunnett's is usually set up in computer software packages to carry out a one-tailed test of significance, which fits

the expected situation that the measurements in the test concentrations will all be in the same direction from the

measurement in the control.  Dunnett's test gives conservative results (tendency not to identify differences) for the

normal one-tailed tests.

Dunnett's test is usually applied to experiments which have an equal number of observations at each treatment, and

the older available software packages offer only that option.  Sometimes unequal numbers could occur, such as more

observations in the control.  The best remedy would be to download a recent version of the “modified” Dunnett’s

test (see footnote 79).  There is also a suitable modification explained in Newman (1995), and worked examples are

found in USEPA (1995).  The other options for unequal numbers of observations are the Dunn-Sidak test or the

Bonferroni-adjusted t-test.

P.4.3 Dunn-Sidak and Bonferroni Adjustments for Unequal Replicates

The modified Dunnett’s test is recommended for comparing each treatment with the control, when numbers of

observations are unequal.  If the adaptation of that test for unequal observations was not available, the Dunn-Sidak

test could be used.  The Bonferroni adjustment is mentioned because it is used in the United States, but it has no

particular advantages and need not be considered for use.

Both the Dunn-Sidak and Bonferroni adaptations compare the mean of each treatment with the mean for the control. 

Neither is very powerful compared to Williams' test, i.e., real differences might not be distinguished.  The

Bonferroni adaptation is currently standard in software packages, the Dunn-Sidak is provided in CETIS,

TOXCALC, and TOXSTAT but might not be available in some packages.  An example of the Bonferroni adaptation

is worked in USEPA (1995).

The Dunn-Sidak and Bonferroni adaptations are based on the t-test, with an adjustment of the critical values of t, to

correct for a multiple comparison.  Repeated pairwise comparisons with a normal t-test could result in a Type I error

(Section 7.2.2).  The required adjustments are made automatically in computer packages, and over-compensate

somewhat.  The table of critical values for the Dunn-Sidak test can be inspected, if desired, in Newman (1995).

P.4.4 Pairwise Comparison Tests

There are tests for checking the difference between all possible pairs of treatments.  Although this is not likely to be

needed for most toxicity tests, it could be of interest for field testing or comparing various locations.  Fisher's Least

Significant Difference (LSD) is akin to the t-test, and is recommended.  It has the favourable feature of controlling

pairwise, rather than experiment-wise, Type I error.  The LSD can be used for equal or unequal replication.  It is

intended for only a few of all possible comparisons in a set of data, comparisons which would be specified in

advance, and in that respect is similar to other multiple-comparison tests.  The LSD is included in the computer

package SYSTAT and some others that can be used in toxicity work, and is described in some textbooks (Steel and

Torrie, 1980; Steel et al., 1997).  Orientation on use of the LSD is provided in Section D.2.2 of USEPA and USACE

(1994).

As substitutes for LSD, Tukey's test and the Student-Newman-Keuls test (SNK) are commonly available in software

packages for environmental toxicology.  Tukey's test can cope with unequal sample sizes although equality is

desirable.  The sensitivity of Tukey’s is low (Table P.3).
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80  
The requirement for four replicates could be a problem.  A test might have been designed with three replicates, primarily

for calculating a point estimate as recommended in this document.  If the investigator wished to calculate the NOEC/LOEC,

that could also be done with parametric methods.  If, however, the results deviated from normality, and required analysis by

nonparametric methods, then the investigator might not be able to determine the NOEC and LOEC, depending on the

particular nonparametric test.  Recent test methods published by Environment Canada require four replicates for hypothesis

testing, but that would not be enough for use of Shirley’s test.

P.5 Nonparametric Methods for Estimating NOEC
If the data from a test cannot meet the requirements for normality and/or homogeneity of variance, even with

transformation, they should be analyzed by nonparametric methods, using the tests described here and in Section

7.5.2.  These nonparametric options are strong tools for data that are not normally distributed.  However, in general

they would be less powerful in detecting a toxic effect than corresponding parametric tests, if they were used on

normally distributed data.

Certain nonparametric methods require at least four replicates and sometimes five 80.  This is acknowledged in the

methods documents for specific sublethal tests published by Environment Canada.  

P.5.1 Initial Tests of Hypothesis

Many of the nonparametric multi-comparison tests are self-sufficient and do not have an absolute need to be

preceded by a test that would be analogous to ANOVA.  Omitting that initial hypothesis testing step has been

common practice in toxicological work.  However, this document recommends that many of the nonparametric

multi-comparison tests should be preceded by hypothesis-testing (see Figure 4).  In these cases, the analysis should

proceed to multiple comparison, only if the initial test rejects the hypothesis of no difference among treatments.  The

reason for this is to avoid Type I errors in the multiple comparison.  In other words, the aim is to avoid declaring a

significant difference between two treatments when the difference is the result of chance, an event that is expected

in one out of twenty comparisons for the usual p-value of 0.05).  In statistical parlance, the multiple-comparison test

is being protected by the initial screening test of hypothesis.  This two-stage testing is a conservative approach, and

conceivably, it might occasionally result in failing to detect a difference that is real (Type  II error).  

Descriptions of three of these tests follow, for use with different types of nonparametric data (Figure 4).  They are

the nonparametric equivalents of an ANOVA (Zar, 1999) and indicate whether or not there is at least one difference

among the treatment effects.  These tests do not indicate which one is different from which others.  Their particular

use in different situations is shown in Figure 4 and will be indicated in following sections.  

The Kruskal-Wallis Rank Sum test (hereafter called the Kruskal-Wallis test) was described by Kruskal and Wallis

(1952).  It is sometimes provided in software packages (TOXSTAT, 1996) as if it were only a multiple-comparison

test, the nonparametric equivalent of Tukey's test.  However, this test can be used for hypothesis testing (ANOVA

analogue), and also as a multiple-comparison test.

The Fligner-Wolfe test is a rank sum test that can be used to test a null hypothesis of no effect (Fligner and Wolfe,

1982).  It tests the null hypothesis that none of the treatment medians differ from the control median, against the

alternative hypothesis that all treatment medians are greater than the control median.  This alternative hypothesis is

different from the usual one with such tests, and is quite explicit.  One serious effect of this is that the test is not

appropriate when some treatments (concentrations) result in a higher measured effect and some result in a lower

measured effect.  Therefore the test is not suitable for toxicity tests displaying hormesis, in which cases, the

Kruskal-Wallis test should be used.  The other limitation of the Fligner-Wolfe test is easily overcome.  If the

treatments in a toxicity test result in lower values for the effect measured, all those values should be multiplied by

minus unity (-1). 

The Jonckheere-Terpstra test (Jonckheere, 1954) also performs as a nonparametric analogue of ANOVA, and has

very good power.  The null hypothesis is that all medians are equal and the alternative hypothesis is a little different
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from usual -- that the treatments are ordered.  Accordingly, it is very suitable for toxicity tests.  Although available

in some major statistical software packages, this test unfortunately, is not yet included in software for toxicology,

and the hand calculations are very tedious and time-consuming.

P.5.2 A General Multi-Comparison Test

The Edwards-Berry test (Edwards and Berry, 1987) is a multiple-comparison test  which could follow any of the

three previously mentioned procedures for hypothesis testing.  If the null hypothesis were rejected by whichever 

test was being used, then the Edwards-Berry test would be suitable for any of the situations described in the sections

that follow.  Regrettably, this test is not readily available in software packages yet, but could be used as it becomes

more widely available.  The Edwards-Berry test uses boot-strapping to develop an empirical distribution for the

data.  Because of that approach, the method can handle most configurations of data, whether balanced or not.  A

critical value is produced which protects the family-wise comparison error rate.

P.5.3 Ordered Data -- Shirley’s Test or Pairwise Comparison

Shirley's test is a very desirable nonparametric method.  It parallels the parametric Williams' test, and considers the

ranking of the concentrations, in their increasing (or decreasing) order.  It is used to compare effects with the

control, and is not preceded by a hypothesis-testing procedure (i.e., no nonparametric analogue of ANOVA is used,

see Figure 7.1).  It is adaptable for unequal replication.  Shirley’s is an extension of the Kruskal-Wallis test (Section

P.5.1), but can be expected to yield results like Williams' test.  The test assumes that the effects are monotonically

decreasing, and if not, they are smoothed as in Williams' test.  The within-treatment sample size must be five or

more.

Shirley's test ranks the groups for degree of effect by using the mean values of effects in the control and treatment

groups.  The actual mean values are not used in the analysis as they would be in Williams' test.  The control effect(s)

is/are ranked in the same series as the treatments (test concentrations).  The test compares the mean rank for a given

concentration, with the mean rank of the control.  The variance is the nonparametric variance of the ranked

observations.  The procedure works on a rank sum basis.  The rank of the highest concentration is compared with

that of the control.  If that is significant, the comparison proceeds to the next lower concentration until no difference

is found.

Shirley's test should be used when it becomes available, but unfortunately it is not found in most computer packages

for toxicology, nor in some general statistical packages such as SPSS (1996; 2001).  Nor is the method described in

some standard textbooks.  The test can be carried out by hand, although it is tedious.  If the test is not available, an

investigator requiring a nonparametric test could use a pairwise comparison of the ordered data (Section P.5.3) if the

appropriate tests were available.  The other possibility for comparison with the control only, would be to use the

options for a non-ordered set of data, starting with the Fligner-Wolfe test (Section P.5.4).

Pairwise comparison of ordered data starts with hypothesis testing, using the Jonckheere-Terpstra test (Section

P.5.1).  If the null hypothesis of no difference was rejected, analysis would proceed with the Hayter-Stone test

(Hayter and Stone, 1991).  This multiple-range test can deal with equal or unequal replication.  Tables of critical

values are available for large or small samples, if there is equal replication (i.e., balanced data).  For unbalanced

data, there is a more limited availability of the critical values.  At the time of writing, the tables of critical values

have been provided only for smaller sets of unbalanced data, including three treatments or fewer, and with no more

than seven replicates.

The computer software is not readily available, for either the Jonckheere-Terpstra or Hayter-Stone tests. 

P.5.4 Comparing Non-ordered Data with the Control

In such a non-ordered situation, the Fligner-Wolfe test (Section P.5.1) is recommended to test the null hypothesis of

no differences from the control.  If that is not available in suitable computer software, the Kruskal-Wallis test could

be used.  If the null hypothesis is rejected, and the data are balanced, the recommended first choice for a multiple-

comparison with the control is the Nemenyi-Damico-Wolfe test (Damico and Wolfe, 1987).
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81  Steel and Dwass proposed such a pairwise test independently, but it was only for balanced data.  The publication by

Critchlow and Fligner (1991) extended the test to cover unbalanced results, and so all four names are suitably associated with

the test method.

A second choice for the multiple-comparison test is the Wilcoxon Rank Sum test which is generally available, and

handles unequal replication.  The Wilcoxon test arises from procedures and critical values developed by a number of

statisticians (Newman, 1995). 

The Wilcoxon test functions in a similar fashion to Steel's Many-One Rank test (see following text).  For a given

concentration, the differences between test measurements and their corresponding controls are ranked.  A plus or

minus sign is given to each ranking, according to the nature of the difference from the control.  Positive ranks are

summed, and negative ranks also.  The smaller of the positive and negative sum is compared with known critical

values to determine whether a significant difference exists between test effect and control effect.  Repeating this for

each concentration yields an estimate of NOEC and LOEC.  This test is generally available in computer software

programs.  An example is worked in USEPA (1995).

A third choice is Steel’s Many-One Rank test (Steel, 1959; 1961) which is offered in most statistical packages and

is called by several names.  An example of the test is worked in USEPA (1995).  As available in software programs,

this test is suitable only for data with an equal number of observations in each treatment and the control(s).  At least

four observations (replicates) are required.  Computer packages provide a one-tailed test, that is, all the samples with

toxicant are presumed to cause effects the same as, or greater than the control.  Being the nonparametric equivalent

of Dunnett's test, Steel’s test can be used in comparisons such as sediment testing, as mentioned previously.

The method has ranking at its core.  A set of replicate measurements for a given concentration (say, four mean

weights from four replicates) is listed together with the four measurements from the control.  The eight mean

measurements are ordered by rank (increasing magnitude).  The rankings of the test measurements are added

together and the rankings of the control measurements are also added.  The lower of the two sums of ranks is

compared with a critical value from a standard table of critical values.  The test measurements for this concentration

are declared either different or not different from control measurements.  This procedure of listing along with

control values, is repeated for each test concentration.  At the end, the investigator knows which concentrations have

an effect that is significantly different from the control (further details in Newman, 1995).  There is a modification

for the case in which all test concentrations have the same number of observations, but the control has a different

number.  Although this modification is not available in the usual software packages for environmental tests, it is

described in Newman (1995).

P.5.5 Pairwise Comparison of Non-ordered Data

The first choice for a multiple-comparison test is the Critchlow-Fligner-Steel-Dwass test, commonly called the

Critchlow-Fligner test (Critchlow and Fligner, 1991).81  This test could be used if the preceding Kruskal-Wallis test

rejected the hypothesis that all treatments showed median effects that were equal.

The test compares the results from each treatment with those from each other treatment including the control, and it

indicates whether the medians are equal or different.  The Critchlow-Fligner test would be preceded by the Kruskal-

Wallis test (Section P.5.1), and would only be used if that test rejected the null hypothesis.  The Critchlow-Fligner

test is suitable for equal or unequal replication among the treatments.  This is a two-sided test for difference, i.e., a

difference could be one treatment showing effects greater in magnitude than another treatment, or lesser in

magnitude.  A given comparison of two treatments is not influenced by effects measured in other treatments; this is

a very desirable feature in a nonparametric multiple-comparison test (Miller, 1981).  The test controls the

experiment-wise error rate, and there is a low probability that one will declare a difference in two treatments, when

there is none.  
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The Critchlow-Fligner test is not included in the usual packages of computer software, and would have to be taken

from its description in Critchlow and Fligner (1991).  Tables of critical values are only available for a limited

number of sample sizes, although the additional required tables could be generated.  

Steel’s Pairwise test (Steel, 1960) is a second choice for a multiple-comparison test, and it is suitable for balanced

data.  If the set of data was unbalanced, and the Critchlow-Fligner test was not available,  the Kruskal-Wallis test

would be pressed into double duty.  First it would be used to test the null hypothesis and in the case of rejection, the

same test would be used for multiple comparisons, to find which treatment effect(s) differed from which others.
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Appendix Q

Statistical Differences Among EC50s

Section 9.5.2 provided Equation 9 as a potential method for carrying out a chi-square test for differences among

three or more EC50s.

Equation 9 may be revised as in Equation Q.1 to make it appear less formidable, and to more easily illustrate the

steps in the calculations.

In turn, c may be defined as in Equation Q.2, and b may be calculated as shown.

Example calculations are shown in Table Q.1.   The comparison is based on three of the EC50s which were

previously used as examples in footnote 63 of Section 9.5.1.  The EC50s and confidence limits are 8 (5.3, 12), 11

(7.3, 16.3), and 15 (10, 22.5), used here as examples A, B, and C, respectively.  The EC50s are changed back to

logarithms for calculations in Table Q.1.  Standard Errors (SE) are also calculated on a logarithmic scale and shown

in the second row of the table.  In the rows below that, the calculations are carried out according to the formulae

above.

There is at least one significant difference among the three EC50s, but it is not known where the difference(s) lie(s). 

A suitable multiple-comparison test has not yet been defined, but might be developed  (Zajdlik, in prep.).  Still, the

procedure in Table Q.1 could already be useful.  It will at least define situations in which a significant difference

does not exist, possibly avoiding needless speculation on the cause of differences which were, in fact, not

significant.
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Table Q.1 Example calculations to calculate chi-square for testing significant differences among three

EC50s.

Toxicity tests Sigma

A B C ( = sum )

log EC50 0.90309 1.041399 1.17609 

SE of logEC50 0.06392 0.06284 0.06343 

w = (1/SE) squared 244.7224 253.2706 248.5211 746.5141 

b = w * logEC50 221.0064 263.7541 292.2835 777.0440 

c = Sigma b / Sigma w 1.0409 

logEC50 - c -0.13781 0.00050 0.13519 

previous item squared 0.01899 0.00000 0.01828 

w * previous item  

( = contributions to chi-square)

4.64744 0.00006 4.54237 9.190 

Critical value of chi-square for 3-1 deg. of freedom, and p 0.05 = 5.991

Calculated value ( 9.190) is higher than critical value, therefore there is

at least one significant difference among the three EC50s.

Another difficulty in using this procedure at present, is that an investigator is seldom informed of the value of SE, by

the usual statistical programs for estimating EC50.  Confidence limits of the EC50 are, however, provided, and

statistics textbooks describe a general relationship between the confidence interval and the standard error (e.g., Zar,

1999).  That relationship is for conventional types of means and limits, and it is uncertain whether it can be used for

the toxicity data.  This matter might be resolved by Zajdlik (in prep.)
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Appendix R

Median and Quartiles

The median and quartiles are useful and apparently simple mathematical concepts.  However, it can become

confusing when attempting to apply quartiles to laboratory data.  This appendix explains the confusion but might not

remedy it.

The median is uniformly defined in the literature as the “middle” number (item) in a series of numbers that is ranked

from lowest to highest numerical value (or alternatively, from highest to lowest).  With an odd number of items in

the series, the median is the numerical value of the middle item/number.  With an even number of items, the median

is the average of the numerical values of the two middle items.  In either case, the median fulfils its purpose of

dividing the series so that half of the items in the ranked series precede the median and half of them follow it.

Quartiles have a similar purpose of further equal division of a ranked series of numbers.  One rule of thumb, the

interquartile range, i.e., the numerical difference between the first quartile and the third quartile can be used to

identify possible outliers.  As described in the glossary, one-quarter of a ranked series of numbers would occur

before the first quartile, and three-quarters would occur before the third quartile.

It is recommended here, that in picking quartiles for a series, an investigator should choose the most reasonable

values for satisfying the general definitions above, i.e., the one-quarter and three-quarters definitions.  Sometimes

this becomes difficult to decide in short series, and in such cases the concept of quartiles becomes less useful and

might best be avoided.

The dilemma in short series is increased because various mathematical authorities specify different systems for

identifying or calculating the quartiles.  As many as eight variations in method have been listed (web site

www.xycoon.com/quartiles).   Outlines of the usual methods follow, but  contradictions can be seen by searching

apparently academic web sites on the internet for “quartile” and “statistics”.

The most commonly encountered version of the quartiles will probably be the one that is used in recent versions of

the spreadsheet programs EXCEL and QUATTRO-PRO.  The lower quartile is derived from the formula  L = 1/4 (n

+ 3), and the upper quartile from U = 1/4 (3n + 1).  (The symbol “n” is the number of items in the series.)  If the

result from either formula is a whole number (integer), then that number indicates which item in the list is the

quartile.   (For example, if the answer is 3, pick the third item in the list of numbers).  If the result from a formula

includes decimals, then it tells the item in the list and the proportion that must be calculated between that item and

the next item in the list.  (For example, if the answer is 3.75, pick the third item in the list and interpolate three-

quarters of the way between the third item and the fourth item.)  EXCEL describes the latter situation: “If a quartile

falls between two discrete values in the list, a fractional value is determined by linear interpolation”.  It might be

noted that if there is an odd number of items in the list, this method includes the median value in the lower half of

the list when determining the lower quartile, and also in the upper half when determining the upper quartile. 

Including the median in that way was the procedure used by the statistician John Tukey when he was defining

quartiles so that they could be calculated by simple methods.

This spreadsheet method can be applied to the very short list which was used as an example in the footnote of

Section 10.2 (the series 20, 24, 28, 34, 40).  Applying the formula for L, the answer is 2.0, so the lower quartile is

the second item in the list, i.e., 24.  For U, the answer from the formula is 4.0, so the upper quartile is the fourth

item, i.e., 34.  Another example would be a list of eight items: 4, 5, 7, 9, 10, 12, 13, 16.  By the formula, L = 2.75, so

the lower quartile is 6.5.  U equals 6.25, so the upper quartile is 12.25.  The decimals are retained as part of the

values of the quartiles.
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Statistics Canada recommends picking the quartiles in the same manner used for the median, and provides formulae

(web site www.statcan.ca).  The first quartile is the middle item of the ranked observations below the median.  The

third quartile is the middle item of ranked observations above the median.  (The median is not included in either

series.)  For an even number of items, the quartile is calculated by  the same method used for the median.  Their

example is a 12-item series: 1, 11, 15, 19, 20, 24, 28, 34, 37, 47, 50, 57.  The median is the average of the 6th and

7th items, (24 + 28)/2 = 26.  Below that, there are six items with values from 1 to 24.  The first quartile is the

average of the third and fourth values, 15 and 19 = 17.  Similarly, the third quartile is 42.  Statscan gives no advice

on procedure if the quartile is a decimal value, but presumably that value would be accepted as for the median.

Some authoritative sources indicate that the quartiles must be actual values from the ranked series of numbers.  That

simple procedure was followed in the example in the footnote 64; Section 10.2.  (Quartiles of 24 and 34 were

selected for the series 20, 24, 28, 34, 40.)  Use of actual values from the series is an end-result from formulae

described by Zar (1974), which are similar to the spreadsheet formulae shown previously.  The expression (n + 1)/4

identifies which item is the first quartile.  Similarly, 3(n + 1)/4, or 0.75(n + 1) identifies the item in the series which

is the third quartile.  If the result is not an integer (e.g the 1.5th item), the next higher integer is selected (e.g., the

2nd item in the series).  That selection can bring problems in a short series like the one shown previously (20, 24,

28, 34, 40); the first quartile is the second item in the series (24), but the third quartile would be the fifth item in the

series, i.e., 40.  The fifth item is the last number in the series and scarcely fulfils the purpose of having one-quarter

of the values following it.

A variant of the preceding method was once used in some early versions of the Microsoft spreadsheet program

EXCEL.  If the calculation resulted in a decimal value of × .51 or higher, the next higher item in the series was

selected (e.g., for 1.51, the second item).  If the calculated result was  × .49 or lower, the preceding item was

selected (e.g., for 1.49, the first item).  If × .50 was obtained, that value was used as the quartile (e.g., 1.5).  If the

result was an integer, that item was used (e.g., 2.0, use the second item). 

Sometimes advice is found, to omit the “+ 1” from those formulae described by Zar (1974) and given above.  The

first quartile would be described by  n/4 and the third quartile by 3n/4, moving up to the next higher integer if

required.  For the five-item series used as an example above, that would give quartiles of the second and fourth

items, i.e., 24 and 34 as used in the footnote 64; Section 10.2.

Some authorities provide greater exactness in the selection process by allowing values that could potentially have

occurred in the series.  For example in a series of integers, a quartile would be an integer, but might not have

actually occurred in the series.

In the face of this differing advice, the recommendation here is that an investigator who must pick first and third

quartiles, should pick the most sensible values that satisfy the definition in the glossary, i.e., to divide the series of

numbers into four equal parts.  For long series of numbers, the conflicting advice will not create a problem in

identifying quartiles; all methods will give similar answers, and the spreadsheet method will be satisfactory.  For

very short series, the use of quartiles is not recommended.
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