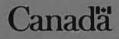
Numerical Modelling of Tides in Hudson Strait and Ungava Bay

DOCUMENTS

LIBRARY

1 18 BY N

P.C.P. Chandler, S. de Margerie, and J.D. Covill


Published by: Atlantic Region Canadian Hydrographic Service Ocean Science and Surveys, Atlantic Department of Fisheries and Oceans

Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia B2Y 4A2

August 1985

Canadian Contractor Report of Hydrography and Ocean Sciences No. 13

> Fisheries Pêches and Oceans et Océans

Canadian Contractor Report of Hydrography and Ocean Sciences

These reports are unedited final reports from scientific and technical projects contracted by the Ocean Science and Surveys (OSS) sector of the Department of Fisheries and Oceans.

The contents of the reports are the responsibility of the contractor and do not necessarily reflect the official policies of the Department of Fisheries and Oceans.

If warranted, Contractor Reports may be rewritten for other publications series of the Department, or for publication outside the government.

Contractor Reports are produced regionally but are numbered and indexed nationally. Requests for individual reports will be fulfilled by the issuing establishment listed on the front cover and title page. Out of stock reports will be supplied for a fee by commercial agents.

Regional and headquarters establishments of Ocean Science and Surveys ceased publication of their various report series as of December 1981. A complete listing of these publications and the last number issued under each title are published in the *Canadian Journal of Fisheries and Aquatic Sciences*, Volume 38: Index to Publications 1981. The current series began with Report Number 1 in January 1982.

Rapport canadien des entrepreneurs sur l'hydrographie et les sciences océaniques

Cette série se compose des rapports non publiés réalisés dans le cadre des projets scientifiques et techniques par des entrepreneurs travaillant pour le service des Sciences et Levés océaniques (SLO) du ministère des Pêches et des Océans.

Le contenu des rapports traduit les opinions de l'entrepreneur et ne reflète pas nécessairement la politique officielle du ministère des Pêches et des Océans.

Le cas échéant, certains rapports peuvent être rédigés à nouveau de façon à être publiés dans une autre série du Ministère, ou à l'extérieur du Gouvernement.

Les rapports des entrepreneurs sont produits à l'échelon régional mais sont numérotés et placés dans l'index à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page de titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Les établissements des Sciences et Levés océaniques dans les régions et à l'administration centrale ont cessé de publier leurs diverses séries de rapports depuis décembre 1981. Vous trouverez dans l'index des publications du volume 38 du *Journal canadien des sciences halieutiques et aquatiques*, la liste de ces publications ainsi que le dernier numéro paru dans chaque catégorie. La nouvelle série a commencé avec la publication du Rapport nº 1 en janvier 1982. Canadian Contractor Report of Hydrography and Ocean Sciences No. 13

August 1985

NUMERICAL MODELLING OF TIDES IN HUDSON STRAIT AND UNGAVA BAY*

bу

P.C.P. Chandler¹, S. de Margerie², and J.D. Covill¹

Published by: Atlantic Region Canadian Hydrographic Service Ocean Science and Surveys, Atlantic

Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, N.S. B2Y 4A2

 $1\,$ Martec Limited, 5670 Spring Garden Road, Halifax, Nova Scotia.

² ASA Consulting Ltd., P.O. Box 2025, Dartmouth, Nova Scotia.

* Prepared under contract no. 08SC.FP901-4-R533 for the Canadian Hydrographic Service.

ACKNOWLEDGEMENTS

The scientific authority, Mr. Stephen Grant, P.Eng., and his staff in the Tidal Division (Atlantic Region of Canadian Hydrographic Service) deserve recognition for their valuable assistance. The contribution of Dr. David Greenberg, Atlantic Oceanographic Laboratory, to the numerical modelling aspect of the project was a definite asset and greatly appreciated.

> ©Minister of Supply and Services Canada 1985 Cat. No. FS 97-17/13E ISSN 0711-6748

Correct citation for this publication:

Chandler, P.C.P., de Margerie, S., and Covill, J.D. 1985. Numerical modelling of tides in Hudson Strait and Ungava Bay. Can. Contract. Rep. Hydrogr. Ocean Sci. No. 13: vii + 60 p.

ABSTRACT

Chandler, P.C.P., de Margerie, S., and Covill, J.D. 1985. Numerical modelling of tides in Hudson Strait and Ungava Bay. Can. Contract. Rep. Hydrogr. Ocean Sci. No. 13: vii + 60 p.

A two-dimensional numerical model was applied to the Hudson Strait and Ungava Bay region to simulate the barotropic tidal circulation. Four fundamental frequencies, the M_2 , S_2 , N_2 and K_1 , were modelled and calibrated to observed tidal data in the study area. The non-linear interaction of these four constituents was examined by conducting a tidal analysis on the results of a 24 day simulation modelling of all four components simultaneously.

Current vector plots of the M_2 tide at intervals of one hour were produced, using high water at Diana Bay (61°N, 70°W) as a reference. Cotidal charts of the model area for the M_2 , S_2 , N_2 , and K_1 constituents were generated and compared to tidal information derived from previous analytical and numerical studies.

The general circulation of the study area was well represented by the numerical model. Agreement between observed and modelled characteristics of the M_2 tide is generally better than $\pm 4\%$ or ± 8 cm for amplitude and 13° (26 minutes) for phase. The absolute error for the other modelled constituents is of a similar order.

iv

RESUME

Chandler, P.C.P., de Margerie, S., and Covill, J.D. 1985. Numerical modelling of tides in Hudson Strait and Ungava Bay. Can. Contract. Rep. Hydrogr. Ocean Sci. No. 13: vii + 60 p.

Un modèle numérique bi-dimensionel a été utilisé dans le détroit d'Hudson et la région de la baie d'Ungava pour simuler les courants de marée barotropiques. Quatre fréquences fondamentales ont été modélisées, soit M_2 , S_2 , N_2 et K_1 . Ces constituantes ont été calibrées à partir des données marégraphiques de la région étudiée. Les interactions non-linéaires de ces quatre constituantes ont été analysées en simulant leur comportement simultanément pendant une période de vingt-quatre jours.

Les courants sont représentés à intervalle d'une heure par des cartes de vecteurs utilisant l'heure de la marée haute à Diana Bay (61°N, 70°W) comme point de référence. Les cartes cotidales des constituantes M_2 , S_2 , N_2 et K_1 obtenues à l'aide du modèle ont été comparées aux informations tirées d'études analytiques et numériques précédentes.

Le modèle numérique reproduit adéquatement la circulation générale de la zone étudiée. Les caractéristiques simulées et observées de la constituante M₂ se comparent en deça d'une erreur de 4% (±8cm) pour l'amplitude et de 13° (26 min) pour la phase. L'erreur absolue est du même ordre de grandeur pour les autres constituantes.

TABLE OF CONTENTS

ABSTF TABLE LIST	DWLEDGEMENTS RACT - RESUME OF CONTENTS OF FIGURES OF TABLES	iii v vi
1.	INTRODUCTION	
2.	BACKGROUND TIDAL INFORMATION	4
3.	THE BAROTROPIC TIDAL MODEL	12
3.1 3.2 3.3	Digitization of the Model Bathymetry Model Boundary Conditions and Calibration Model Implementation for the Hudson Strait/Ungava Bay	12 14
3.4	Study Area Simulation of the Combined M ₂ , S ₂ , N ₂ and K ₁ Tidal Regimes	18 20
4.	MODEL RESULTS	21
4.1 4.2 4.3 4.4 4.5	Tidal Elevations Tidal Currents Tidal Ellipses Sensitivity of Model Bathymetry Discussion	21 29 43 52 52
5.	REFERENCES	54
APPEN	NDIX I - Comparison of Observed and Modelled Tides in Hudson Strait and Ungava Bay	56

.

.

•

LIST OF FIGURES

FIGURE	1.	Location Map of Study Area	2
FIGURE	2.	Locations of Tidal Information Stations	5
FIGURE	3.	Previous Cotidal Charts for the M_2 Tide	10
FIGURE	4.	Model Area	13
FIGURE	5.	Bathymetry of the Model Area	15
FIGURE	6.	Cotidal Chart for the M_2 Tide in the Model Area	24
FIGURE	7.	Cotidal Chart for the S_2 Tide in the Model Area	25
FIGURE	8.	Cotidal Chart for the $N_{\mbox{\scriptsize 2}}$ Tide in the Model Area $\ldots \ldots \ldots$	26
FIGURE	9.	Cotidal Chart for the ${\rm K}_1$ Tide in the Model Area $\ldots \ldots \ldots$	27
FIGURE	10.	Tidal Currents at High Water, Diana Bay	30
FIGURE	11.	Tidal Currents One Hour After High Water at Diana Bay	31
FIGURE	12.	Tidal Currents Two Hours After High Water at Diana Bay	32
FIGURE	13.	Tidal Currents Three Hours After High Water at Diana Bay	33
FIGURE	14.	Tidal Currents Four Hours After High Water at Diana Bay	34
FIGURE	15.	Tidal Currents Five Hours After High Water at Diana Bay	35
FIGURE		Tidal Currents Six Hours After High Water at Diana Bay	36
FIGURE	17.	Tidal Currents Seven Hours After High Water at Diana Bay	37
FIGURE	18.	Tidal Currents Eight Hours After High Water at Diana Bay	38
FIGURE	19.	Tidal Currents Nine Hours After High Water at Diana Bay	39

vi

.

•

LIST OF FIGURES (Continued)

.

•

FIGURE	20.	Tidal Currents Ten Hours After H at Diana Bay		0
FIGURE	21.	Tidal Currents 11 Hours After Hi at Diana Bay		1
FIGURE	22.	Tidal Ellipses for the M ₂ Tide i	n the Model Area 48	8
FIGURE	23.	Tidal Ellipses for the S ₂ Tide i	n the Model Area 49	9
FIGURE	24.	Tidal Ellipses for the N ₂ Tide i	n the Model Area 50	0
FIGURE	25.	Tidal Ellipses for the K ₁ Tide i	n the Model Area 51	1

LIST OF TABLES

TABLE	1.	Tidal Information at Stations Within the Model Boundary Determined from Observed Tidal Data	6
TABLE	2.	Model Boundary Conditions	17
TABLE	3.	Comparison of Amplitudes of Observed and Modelled Tides	22
TABLE	4.	Comparison of Phases of Observed and Modelled Tides	23
TABLE	5.	Comparison of Predicted and Observed Tidal Flows	44

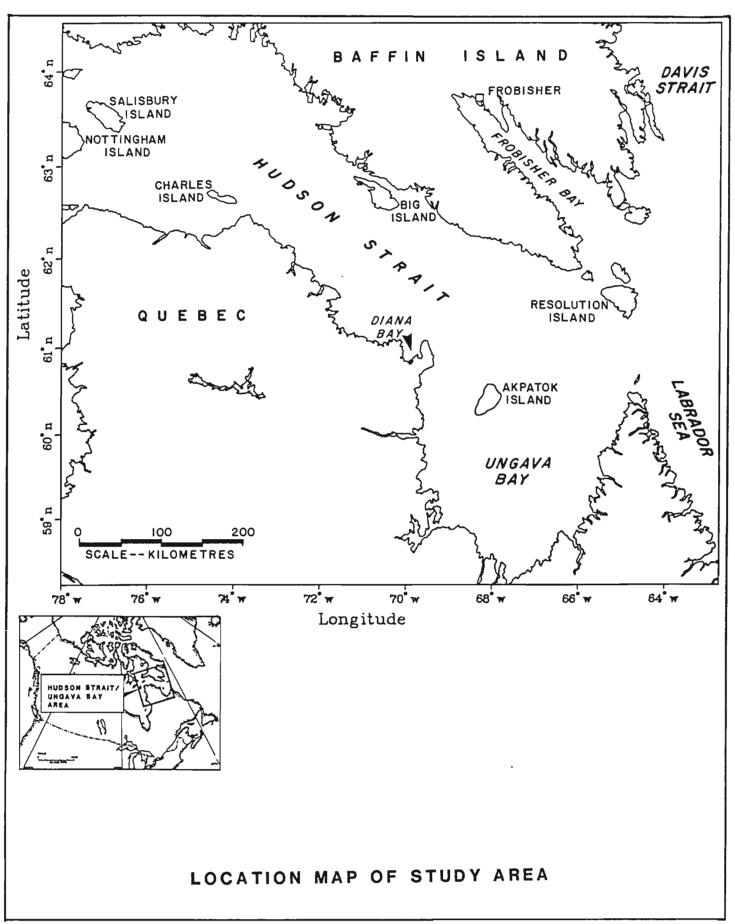
vii

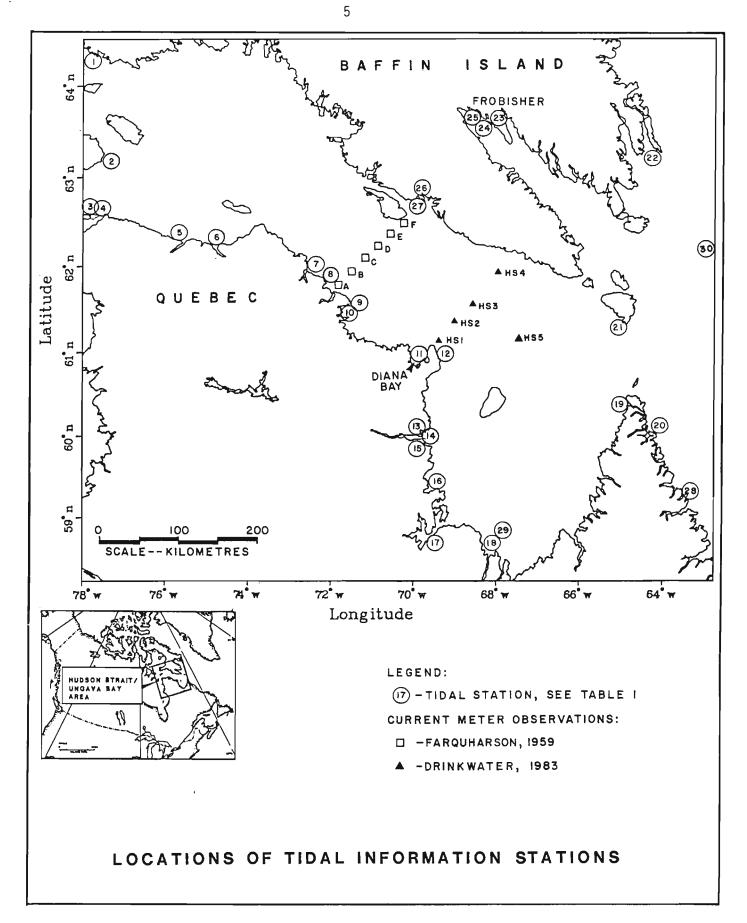
1. INTRODUCTION

There is a growing interest in Canada's arctic waterways related to marine traffic navigation, natural resources exploration, and in the harnessing of tidal energy in Ungava Bay. To further our knowledge of water levels and currents in this region the Canadian Hydrographic Service has implemented a multi-dimensional project including field work, analytical and numerical studies. One aspect of this project is the development of a numerical model to provide information on the tidal elevations and currents in the Hudson Strait/Ungava Bay region shown in Figure 1.

Accurate determination of the tidal circulation in the Hudson Strait/ Ungava Bay system is of significant importance since tides are responsible for the major part of the currents and sea surface elevation changes in this region. Tidal currents are of interest to navigators and also strongly affect the mixing and transport of water masses which support the northern ecosystem. Knowledge of the tidal range is necessary in planning harbour facilities, and in addition the large tides at the head of Ungava Bay make this a promising area for tidal power generation.

A two year study to numerically describe the tidal regime was carried out by Martec Limited under contract to the Canadian Hydrographic Service (File No. 10SC.FP901-3-R062 and 08SC.FP901-4-R533) (Martec, 1984a). Using a modified version of the Martec/AOL (Atlantic Oceanographic Laboratory) two-dimensional numerical model the barotropic circulation within the study area was simulated and compared with existing tidal data. The four main tidal constituents were modelled: the M₂ (the principal lunar semidiurnal constituent), the S₂ (the principal solar semidiurnal constituent), the N₂ (the lunar elliptic semidiurnal constituent), and the K₁ (the principal lunisolar diurnal constituent). Scale analysis revealed that the non-linear interaction between these constituents would be significant at the eastern end of




FIGURE 1

Hudson Strait and in Ungava Bay. A twenty-four day simulation, therefore, combining these four constituents was undertaken and the resulting time series examined using standard tidal analysis techniques (Foreman, 1979). The model results are presented in terms of cophase and coamplitude charts describing the water surface elevation for each constituent. Current vector plots of the dominant M₂ tide at hour intervals throughout a tidal cycle (referenced to highwater at Diana Bay) are included and can be considered as representative of the overall current flow in the Hudson Strait/Ungava Bay study area.

2. BACKGROUND TIDAL INFORMATION

Descriptive information of the tides in Hudson Strait and Ungava Bay has been documented since the voyages of navigators such as John Davis in 1587. The area has gained a reputation for very strong tidal currents (in the order of 5 knots) and large tidal ranges (up to 15 m) (Canadian Hydrographic Service, 1983). The utilization of automatic data collection instruments has guantified the magnitude and direction of the currents and the variations in water elevation at several locations in this region. The Marine Environmental Data Service (MEDS) and the Canadian Hydrographic Service (CHS) has archived tidal elevation data gathered in the study area in the form of amplitude and phase for various tidal components including the four constituents of interest; the M₂, S₂, N₂ and K₁. Figure 2 and Table 1 provide the location and the constituent values, respectively, for each of the tidal information stations in the Hudson Strait/Ungava Bay region. It should be noted that several of the data collection points (see Table 1) are represented by water elevation records of less than the 28 day period which is required to resolve the N₂ component. At these locations the N₂ constituent characteristics were determined by inference from the $\ensuremath{\text{M}_{2}}$ The tides in the study area are mainly semi-diurnal with a data. typical amplitude ratio for the $M_2:S_2:N_2:K_1$ of 100:33:20:5.

A cotidal chart describes the fields of amplitudes and phase lags for the water elevation of a given tidal constituent. Figure 3 shows two cotidal charts based on observations of the M₂ tide at coastal stations in the study area (Dohler, 1966 and Godin, 1980). In each the solid contours represent cophase lines along which the vertical displacement of the M₂ tide is simultaneous. The phases are measured in degrees and correspond to the phase lag at Eastern Standard Time (the time zone 5 hours ahead of Greenwhich Mean Time, GMT + 5 hours). The tidal wave progresses in the direction of increasing phase and it can be seen that the tidal signal enters the Hudson Strait/Ungava Bay system at the

	Tidal Station	Constituent	Amplitude (cm)	Phase (degree) GMT +5 hrs
1.	Schooner Harbour 62.4°N, 77.9°W	M2 N2 S2 K1	207.5 41.4 71.0 8.2	316.0 289.6 9.0 147.0
2.	Port de Boucherville 63.2°N, 77.6°W	M2 N2 S2 K1	144.4 27.4 53.9 6.7	270.0 331.6 326.0 113.0
3.	Port de LaPerriere * 62.6°N, 78.1°W	M2 N2 S2 K1	94.1 18.2 37.7 4.2	268.0 332.6 322.0 66.0
4.	Digges Harbour 62.6°N, 77.9°W	M2 N2 S2 K1	100.2 19.5 39.3 5.4	279.0 251.6 325.0 104.0
5.	Sugluk 62.2°N, 75.7°W	M2 N2 S2 K1	155.1 30.7 58.5 10.0	255.0 227.6 304.0 90.0
6.	Deception Bay * 62.2°N, 74.8°W	M2 N2 S2 K1	171.7 34.3 60.3 8.3	248.2 222.6 304.0 83.0
7.	Douglas Harbour 61.9°N, 72.6°W	M2 N2 S2 K1	259.3 48.1 92.0 10.5	231.0 214.6 298.0 60.0
8.	Wakeham Bay 61.6°N, 72.3°W	M2 N2 S2 K1	336.5 69.6 162.6 13.4	234.0 212.0 279.1 77.2
9.	Doctor Island * 61.7°N, 71.6°W	M2 N2 S2 K1	257.5 51.5 87.4 14.9	237.0 310.6 289.0 118.0

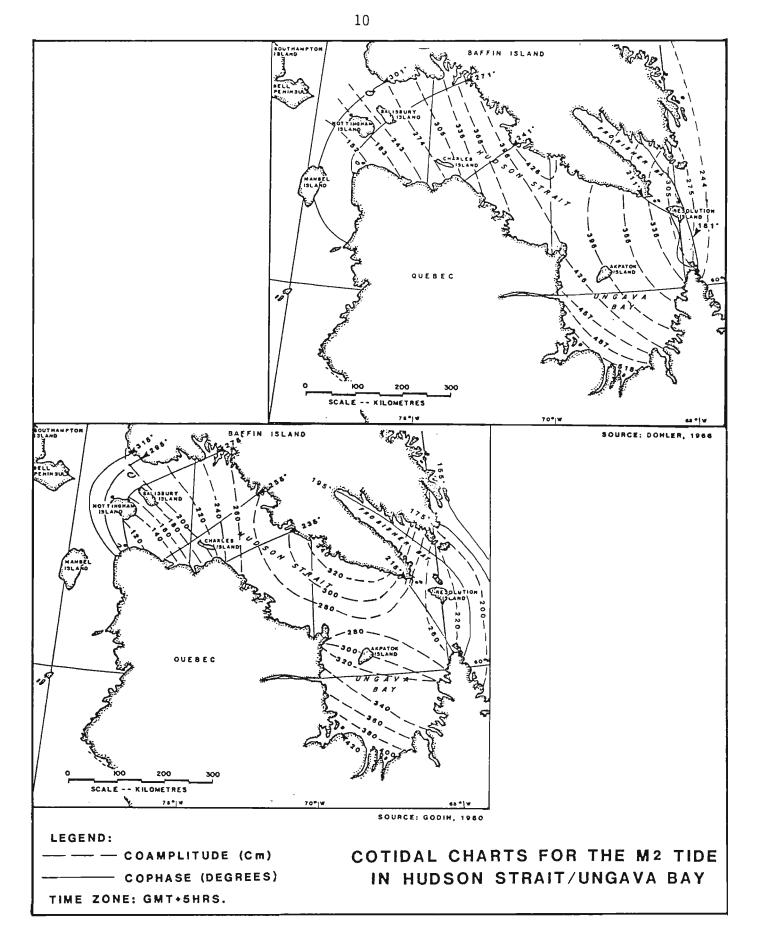
.

TABLE 1. TIDAL INFORMATION AT STATIONS WITHIN THE MODEL BOUNDARY DETERMINED FROM OBSERVED TIDAL DATA

TABLE 1. continued

.

	Tidal Station	Constituent	Amplitude (cm)	Phase (degree) GMT + 5 hrs
10.	Stupart Bay * 61.6°N, 71.5°W	M2 N2 S2 K1	274.9 54.8 92.9 14.3	225.0 331.6 282.0 99.0
11.	Diana Bay 60.9°N, 70.1°W	M2 N2 S2 K1	293.0 58.6 99.3 15.7	224.2 198.0 275.5 87.9
12.	Koartac 61.1°N, 69.6°W	M2 N2 S2 K1	266.5 51.1 91.8 6.8	253.9 226.2 311.3 122.1
13.	Basking Island 60.0°N, 70.1°W	M2 N2 S2 K1	316.6 58.8 99.9 14.3	253.0 235.0 313.0 112.0
14.	Pikiyulik Island 60.0°N, 69.9°W	M2 N2 S2 K1	304.8 55.1 94.7 14.9	251.0 224.0 302.0 105.0
15.	Agvik Island 60.0°N, 69.7°W	M2 N2 S2 K1	349.3 64.6 117.0 17.6	225.0 199.0 275.0 110.0
16.	Hopes Advance Bay 59.4°N, 69.6°W	M2 N2 S2 K1	388.3 83.2 125.2 20.7	225.0 188.0 280.0 97.0
17.	Leaf Basin 58.7°N, 69.8°W	M2 N2 S2 K1	433.1 91.7 136.5 18.5	251.0 253.0 314.0 113.0
18.	Koksoak River Entranco 58.7°N, 68.2°W	e M2 N2 S2 K1	408.7 75.8 135.9 15.8	229.0 196.0 282.0 91.0


TABLE 1. continued

	Tidal Station	Constituent	Amplitude (cm)	Phase (degree) GMT +5 hrs
19.	Port Burwell 60.4°N, 64.9°W	M2 N2 S2 K1	214.2 42.0 65.2 12.4	209.0 177.6 258.0 90.0
20.	Williams Harbour * 60.0°N, 64.3°W	M2 N2 S2 K1	98.1 30.1 23.7 19.2	187.5 154.4 227.0 72.5
21.	Acadia Cove * (Easton, 1972) 61.6°N, 64.73°W	M2 N2 S2 K1	216.0 43.0 89.0 13.0	211.0 246.0 115.0
22.	Brevoort Harbour 63.3°N, 64.2°W	M2 N2 S2 K1	180.7 34.7 64.0 17.0	157.0 132.6 195.0 49.0
23.	Frobisher S Farthest 63.5°N, 68.0°W	M2 N2 S2 K1	329.5 54.0 110.4 18.0	218.5 188.6 267.1 100.6
24.	Resor Island 63.2°N, 68.1°W	M2 N2 S2 K1	334.3 66.4 118.8 20.1	197.0 168.6 242.0 96.0
25.	Frobisher 63.7°N, 68.5°₩	M2 N2 S2 K1	345.2 67.7 117.4 18.4	193.1 164.7 238.8 85.5
26.	Lake Harbour 62.9°N, 69.9°W	M2 N2 S2 K1	349.6 67.6 119.9 15.2	231.7 204.4 280.9 102.1
27.	Ashe Inlet 62.6°N, 70.6°W	M2 N2 S2 K1	335.2 67.0 121.3 15.8	230.0 208.6 287.0 103.0

.

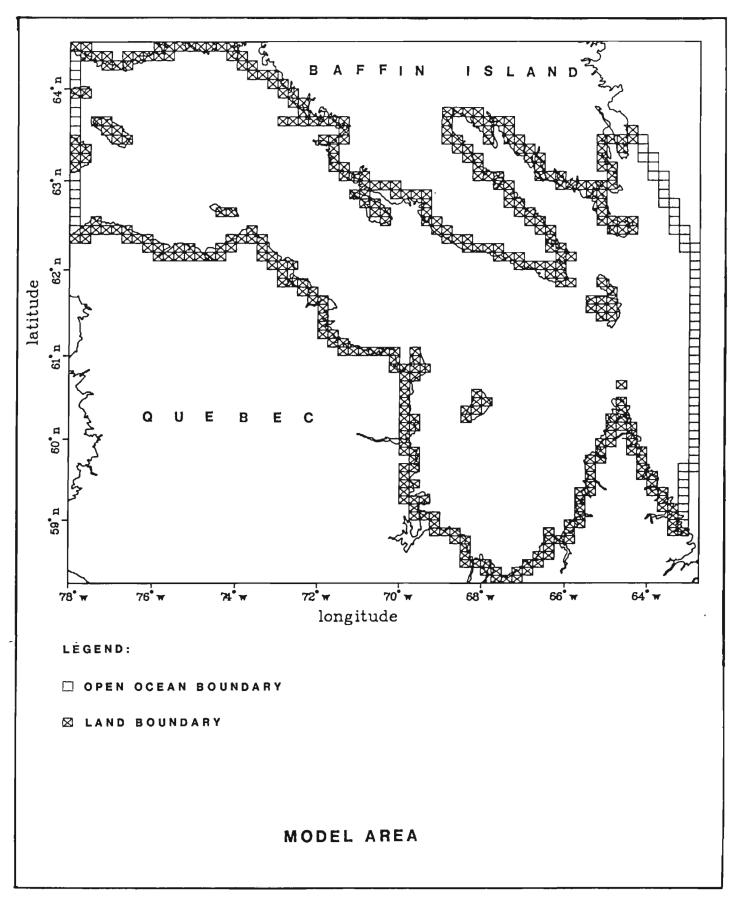
	Tidal Station	Constituent	Amplitude (cm)	Phase (degree) GMT +5 hrs
28.	Schooner Cove * 59.1°N, 63.5°W	M2 N2 S2 K1	35.2 9.1 13.7 14.2	180.1 188.4 207.8 95.5
29.	Ungava Bay 58.6°N, 68.2°W	M2 N2 S2 K1	420.7 133.3 17.7	232.9 205.7 283.9 91.8
30.	Hekja Wellsite 62.2°N, 62.9°W	M2 N2 S2 K1	160.0 35.0 53.0 12.0	171.0 151.0 207.0 83.0

* Recorded tidal data less than 28 days; inference of $N_{\rm 2}$ parameters from $M_{\rm 2}$ data undertaken.

eastern entrance and propagates westward through the Strait. The dashed lines denote contours of equal amplitude with units of centimetres. Extreme amplitudes in the semidiurnal tide in Ungava Bay result from the effects of resonance in the system and a near absence of cophase lines indicating simultaneous tides over a large area. It is evident that there are discrepancies, particularly in the amplitude, between the two representations of the tidal regime shown in Figure 3. The results of the numerically generated cotidal charts will be used to resolve the differences between these two interpretations of the observed coastal tidal information.

To complete the description of the tidal movement in the study area the cotidal charts, which represent the vertical tide only, must be supplemented by information of the horizontal tidal current. In the study area two field investigations (Farquharson, 1959 and Drinkwater, 1983) have provided current observations of sufficient duration, and taken at enough depths, to resolve the tidal variations in flow and their verti-The results of these observations are detailed in cal structure. Section 4 and compared to the current values calculated by the numerical model. The field studies show that the currents are nearly uniform with depth implying that the depth averaged results generated numerically should be appropriate for the region. Drinkwater's analysis also shows that tides are a dominating source of currents in Hudson Strait making the results of tidal circulation modelling of particular interest.

3. THE BAROTROPIC TIDAL MODEL

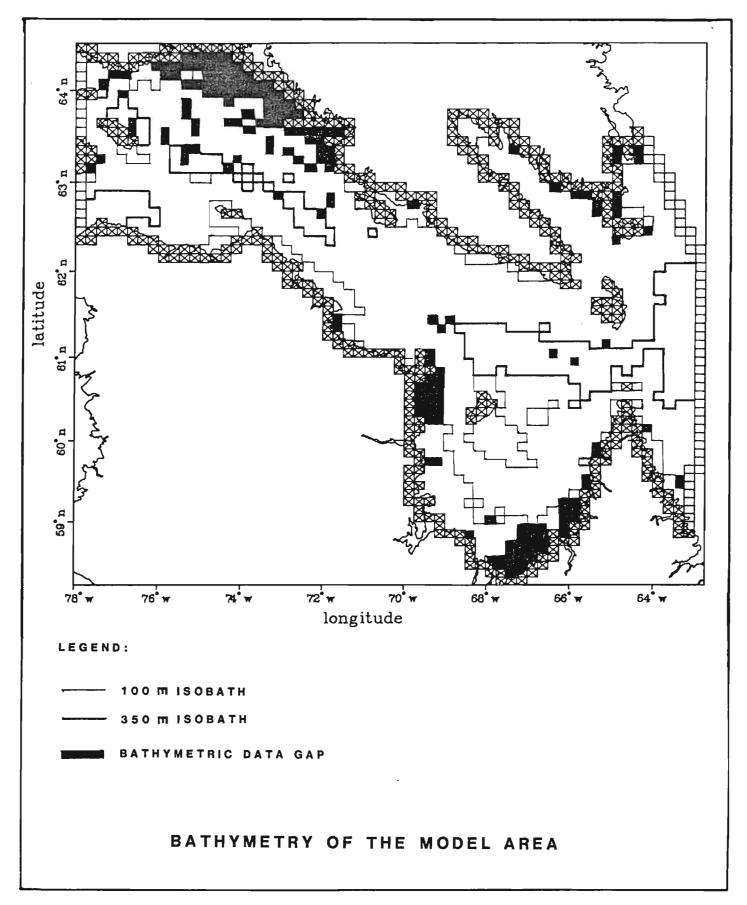

A two-dimensional numerical model (Martec/AOL model) used to assess tidally driven barotropic flow was applied to the Hudson Strait/Ungava Bay study area. The model structure is comprised of depth averaged equations of continuity and motion discretized in a semi-implicit manner on a Richardson lattice (Martec, 1983). Spherical coordinates are used to accommodate areas of large latitudinal extent and are appropriate for the study area centered at 62°N latitude.

The new application of the model to the Hudson Strait/Ungava Bay area entails the digitization of the bathymetry of the region. To solve for the tidal circulation also requires the specifications of tidal elevations along open ocean boundaries and the adjustment of friction factors which simulate natural energy dissipation. The maximum depth in the model is 1,000 m, the minimum grid spacing X (east-west) and Y (north-south) are 12.5 and 11.1 km, respectively, yielding a maximum time step of 84 seconds, in order to preserve numerical stability of the semi-implicit integration scheme. The actual time step used in the model runs was 62.1 seconds, one lunar minute for the M₂ simulations and 60 seconds for the combined M₂, N₂, S₂, K₁ runs.

The model grid is comprised of elements 6 minutes in latitude by 15 minutes in longitude giving a total of 3,843 grid points for the study area. Figure 4 illustrates the model domain superimposed on the study area coastline. Grid elements on the model periphery are defined as either a land or an open ocean point and dictate the flow characteristics at the model boundaries.

3.1 Digitization of the Model Bathymetry

Bathymetric information for the model was derived from soundings provided by the Canadian Hydrographic Service (Hudson Strait Chart No. 5450, Davis Strait Chart No. 7011, and Ungava Bay Chart No. 5300). All


depth soundings recorded on the chart and within the model area were digitized and archived in computer files as three numbers representing latitude, longitude, and depth. This data file was then manipulated to obtain a representative depth for each grid element. If several soundings were given within a specific grid element, the arithmetic mean of these soundings was used as the representative depth. If no bathymetric data were available for a specific grid element, a value was estimated from the adjacent depth data and the general character of the surrounding topography.

Grid elements with no available measured soundings were recognized as potential sources of error in the model results. Therefore, the model sensitivity to depth changes in the regions of estimated bathymetry was examined by modifying the depth and observing the resulting effect on the simulated M_2 tide. This aspect of the study is discussed in detail in Section 4.

Figure 5 is a model generated bathymetric map of the study area and shows isobath contours of 100 m and 350 m. Also indicated are the grid elements at which depth data were not available and thus required manual specification.

3.2 Model Boundary Conditions and Calibration

To solve the numerical problem for tidally driven flows one must specify tidal elevations along open ocean boundaries and also select values for the free parameters appearing in the equations of motion programmed in the model. The intent of the calibration is to adjust these factors to optimize the agreement between modelling results and tidal observations. Ideally observed tidal data on the open ocean boundaries would be available and specified as input into the model, without the need for further adjustments. However, in the case of the Hudson Strait/ Ungava Bay model, tidal stations are sparse, especially near the eastern boundary, and in addition some of the available data is of

questionable accuracy. Therefore use has been made of existing cotidal charts (Godin, 1980) to complement available data and provide a consistent match between the numerically generated flow field and the tidal behavior outside of the modelled region.

A region of noticeable uncertainty in the observed tidal data is the Resolution Island area where the tide tables suggest very rapid changes in phase (one hour difference between the two sides of the island, roughly 40 km). Several initial model runs with boundaries close to this area have shown that a change of phase of 30° at Resolution can cause amplitude changes up to 10% as well as phase changes of 20° at the model interior. Consequently, the final boundaries were selected further east into the Davis Strait/Labrador Sea in order to freely calculate the evidently dynamic tidal regime at the eastern entrance to Hudson Strait without constraints and potential 'numerical noise' imposed by nearby boundaries. The results of model runs using an eastern boundary along the 60°W meridian indicated that the accurate specification of tidal elevation along the open boundary was greatly complicated by the lack of offshore tidal data and the presence of a degenerate amphydromic point along the Labrador coast near 59°N. The final eastern boundary was therefore established along the 63°W meridian where available information at Brevoort Harbour, the Hekja wellsite and Schooner Cove could be utilized to advantage. The boundary conditions adopted for the final model runs are given in Table 2.

As described in the documentation of the barotropic model (Martec, 1984b) there are generally three free parameters, namely A_h , V and K to be specified for a model run. A_h , the coefficient of horizontal eddy viscosity, is parameterized in terms of the water depth (following Schwiderski, 1980). The specification of eddy viscosity is necessary to preserve numerical stability in the model but it can be readily shown to have negligeable effect on the tidal circulation on the scale of the model resolution. V represents the magnitude of currents not attributable to the tidal constituents under analysis and may be

16

TABLE 2. MODEL BOUNDARY CONDITIONS

.

,

	Location	Constituent	Amplitude (cm)	Phase (degree) GMT +5 hrs
1. 	63.5°N, 64.1°W Breevort Harbour	M2 N2 S2 K1	181 35 64 17	157 133 195 49
2.	62.2°N, 62.9°W Davis Strait (Hekja wellsite)	M2 N2 S2 K1	160 35 53 12	171 151 207 83
3.	60.3°N, 62.9°W Labrador Sea	M2 N2 S2 K1	100 22 33 13	184 171 208 90
4.	59.1°N, 63.5°W Schooner Cove	M2 N2 S2 K1	35 9 14 14	180 188 208 96
5.	62.6°N, 77.9°W Southern Digges Island	M2 N2 S2 K1	100 20 39 5	280 252 325 104
6.	63.0°, 77.9°W Southern Nottingham Island	M2 N2 S2 K1	144 27 54 7	270 258 326 120
7.	64.4°N, 77.9°N Schooner Harbour	M2 N2 S2 K1	208 41 71 8	316 290 9 147

estimated from observations. This parameter becomes significant only when modelling the minor tidal components individually to account for the influence of the dominant M_2 tide. The only free parameter remaining is the bottom friction factor K which is iteratively adjusted to optimize the agreement between observed tidal data and the model results. It can be noted that any error in the estimated V can be compensated for by the choice of K, since both occur together in the equations of motion. The optimal values of the friction parameters used for the final model runs are discussed in the following section.

3.3 Model Implementation for the Hudson Strait/Ungava Bay Study Area

The Martec/AOL barotropic tidal model was adapted to run on the CRAY computer of Dorval, P.Q. for the present study. The final plotting of the model results was accomplished using the DISSPLA package on the Cyber computer at the Bedford Institute of Oceanography.

The original structure of the numerical model was refined in several aspects to more accurately simulate the physical conditions in the Hudson Strait/Ungava Bay study area. The first of these was the inclusion of a tidal generating force (TGF) into the equations governing the water motion. With this addition the tidal forcing of the model is provided by two sources: by the tidal signal entering at the open ocean boundaries, and also by the TGF within the Hudson Strait/Ungava Bay waters. However, inclusion of the TGF into the model showed less than a one percent change in the M₂ tidal amplitude and consequently was considered too small to be included in the simulations of the other tidal constituents. A dimensional analysis of the equations

A second enhancement in the numerical model was the capability of dealing with drying model elements. In the event that the model predicts that the water level should fall below the depth of a grid element, no further flow is allowed to leave the element until the

18

following tide causes a new rise in water level. In this way the model remains stable and does not predict physically meaningless negative water depth.

In order to analyze the results of simulations of several constituents modelled simultaneously a tidal analysis post processor was developed. Harmonic analysis techniques, used in earlier stages of the study to determine tidal phases and amplitudes, were not applicable to situations where the time series to be analyzed contained several distinct frequencies. The present model uses a least squares fitting technique derived from Foreman (1979) for tidal analysis. Nodal modulation corrections usually included for the analysis of tidal records is not included since the model results do not include long term modulations of semi-diurnal and diurnal constituents. Initially simulation of the M₂, N₂, S₂ and K₁ tidal regime were undertaken independently. The agreement between predicted and observed tides was optimized by fine tuning the values for the quadratic bottom friction factor and the background flow velocity used to simulate linear friction effects. For the principal tidal constituent the model results were relatively sensitive to the friction factor, with phase lags in Ungava Bay typically increasing by 15° or half an hour for a .0005 increase in drag coefficient. The best fit value for the M₂ tide given below agrees with that used by Easton (1972) and Griffiths et al. (1981) in their numerical studies of the same regions. For the minor semidiurnal constituents, the friction factor had to be significantly increased, which is expected due to interaction with the strong M₂ tide. The fit for the S_2 and N_2 were slightly better with strong bottom friction factor and low background velocity; however, the model showed very little sensitivity to using quadratic or linear friction, as long as a change in one was compensated by a change in the other. For the K_1 tide the best agreement was found with the same drag coefficient as the M₂ tide but with a background velocity of 50 cm/sec. The optimal values of the friction parameters used for the final model runs are given below.

Constituent	Bottom Friction Factor	Background Velocity for Bottom Friction (cm/sec)
M2	0.0025	0
S2	0.0100	0
N2	0.0150	0
K1	0.0025	50

The results of these independent tidal constituent simulations are available under separate cover (Martec, 1984a).

3.4 Simulation of the Combined M₂, N₂, S₂ and K₁ Tidal Regime

The barotropic model has the capacity to simulate the propagation of the tide at more than one frequency simultaneously. Modelling the four tidal constituents (M_2 , S_2 , N_2 and K_1) at one time, instead of individually as done previously, allows for the non-linear interaction between the constituents. The simulation period for this combined constituent run covered twenty-four days providing a time series of water elevation for each grid element in the model. A tidal analysis (following Foreman, 1979) was conducted at each point to resolve the individual contributions of the M_2 , S_2 , N_2 and K_1 constituents. The results of the tidal analysis are presented in the form of charts of cotidal lines and tidal ellipses for each of the four constituents in the Hudson Strait/Ungava Bay system. Appendix I includes a tabulation of observed and modelled values of phase and amplitude.

4. MODEL RESULTS

4.1 Tidal Elevations

The comparison between the modelled tidal amplitude and phase and observations was carried out for several key locations in the Hudson Strait/Ungava Bay system. The choice of which stations to use as reference points was based on:

- 1. The duration and reliability of observations at the station; and
- 2. A geographical location free from local features not resolved by the model.

For instance, the tidal record from Basking Island is dismissed because its position in an estuary is too small to be resolved by the model. Tables 3 and 4 list the final reference stations, the tidal characteristics produced by the model, and the differences between the observed and modelled values. A comparison between all available observations and the model result for the nearest grid points is given in Appendix I. The stations in Appendix I were not used in the calibration of the model as reference points and therefore constitute an independent check on model results. The numerical results of both the independent and combined constituent runs were examined for each tidal component. It was expected that the results of the combined frequencies would compare more favourably to the observed data than would the independent runs for all of the constituents. However, it was found that an independent simulation for the M_2 tide gave better agreement with observed M_2 amplitudes than did the results of a combined $M_2/N_2/S_2/K_1$ simulation. The combined forcing was, however, superior in simulating the tidal regimes of the other constituents. Final results for the M₂ tide are therefore derived from independent M₂ runs, and results for the N₂, S₂, and K_1 simulations are from the combined $M_2/N_2/S_2/K_1$ constituent runs. Figures 6 to 9 are cotidal charts of water elevation for each of the

Location	Observed/Modelled Amplitude	Real Difference	Percentage Difference	Observed/Modelled Amplitude	Real Difference	Percentage Difference
		M ₂			S ₂	
Ashe Inlet Acadia Cove Koksoak River Entrance Hopes Advance Bay Diana Bay Stupart Bay Doctor Island Sugluk Port de Boucherville	335.2/327.0 216.0/219.2 408.7/417.7 388.3/388.2 293.0/293.1 274.9/275.0 257.5/271.0 155.1/156.8 144.4/143.9 420.7/423.4	-8.2 3.2 9.0 -0.1 0.1 13.5 1.7 -0.5 2.7	-2.4 1.5 2.2 0.0 0.9 0.0 5.2 1.1 -0.3 0.6	121.3/99.8 89.0/73.7 135.9/113.7 125.2/110.8 99.3/82.1 92.9/82.3 87.4/80.6 58.5/58.3 53.9/54.0 133.3/113.3	-21.5 -15.3 -22.2 -14.4 -17.2 -10.6 -6.8 -0.2 0.1 -20.0	$\begin{array}{r} -17.7 \\ -17.2 \\ -16.3 \\ -11.5 \\ -17.3 \\ -11.4 \\ -7.8 \\ -0.3 \\ 0.2 \\ -15.0 \end{array}$
Ungava Bay	420.77423.4	N ₂	0.0	155.57115.5	-20.0 K ₁	-13.0
Ashe Inlet Acadia Cove Koksoak River Entrance Hopes Advance Bay Diana Bay Stupart Bay Doctor Island Sugluk Port de Boucherville Ungava Bay	67.0/66.9 43.0/44.0 75.8/75.9 83.2/75.9 58.6/58.5 54.8/54.9 51.5/54.3 30.7/30.7 27.4/27.0 -/79.1	-0.1 1.0 0.1 -7.3 -0.1 0.1 2.8 0.0 -0.4	-0.1 2.3 0.1 -8.8 -0.2 0. 5.4 0.0 -1.5	15.8/14.3 13.0/15.2 15.8/16.0 20.7/15.9 15.7/14.0 14.3/11.8 14.9/12.0 10.0/7.0 6.7/6.6 17.7/16.1	-1.5 2.2 0.2 -4.8 -1.7 -2.5 -2.9 -3.0 -0.1 -1.6	$\begin{array}{r} -9.5\\ 16.9\\ 1.3\\ -23.2\\ -10.8\\ -17.5\\ -19.5\\ -30.0\\ -1.5\\ -9.0\end{array}$

TABLE 3. COMPARISON OF AMPLITUDES OF OBSERVED AND MODELLED TIDES (cm)

22

. .

TABLE 4. COMPARISON OF PHASES OF OBSERVED AND MODELLED TIDES (degrees)

Location	Observed/Modelled Phase	Real Difference	Observed/Modelled Phase	Real Difference
		M ₂		S ₂
Ashe Inlet	230.0/229.0	1.0	287.0/284.0	3.0
Acadia Cove	211.0/198.0	13.0	246.0/244.0	-2.0
Koksoak River Entrance	229.0/228.0	1.0	282.0/284.0	-2.0
Hopes Advance Bay	225.0/219.0	6.0	280.0/268.0	12.0
Diana Bay	224.2/218.0	6.2	275.5/269.0	6.5
Stupart Bay Doctor Island	225.0/224.0 237.0/226.0	$1.0\\11.0$	282.0/280.0 289.0/284.0	2.0 5.0
Sugluk	255.0/250.0	5.0	304.0/310.0	-6.0
Port de Boucherville	270.0/270.0	0.0	326.0/326.0	0.0
Ungava Bay	232.9/230.0	0.8	283.9/273.0	3.0
		N2		κ
Ashe Inlet	208.6/210.0	-1.4	103.0/100.0	3.0
Acadia Cove	- /174.0	-	115.0/87.0	28.0
Koksoak River Entrance	196.0/210.0	-14.0	91.0/92.0	91.0
Hopes Advance Bay	188.0/204.0	-16.0	97.0/89.0	8.0
Diana Bay	198.0/202.0 331.6/209.0	-4.0 122.6	87.9/86.0 99.0/87.0	$1.9\\12.0$
Stupart Bay Doctor Island	310.6/210.0	100.0	118.0/88.0	30.0
Sugluk	227.6/235.0	-7.4	90.0/94.0	-4.0
Port de Boucherville	331.6/258.0	73.6	113.0/118.0	-5.0
Ungava Bay	205.7/208.0	-0.6	91.8/92.0	-0.1

23

-

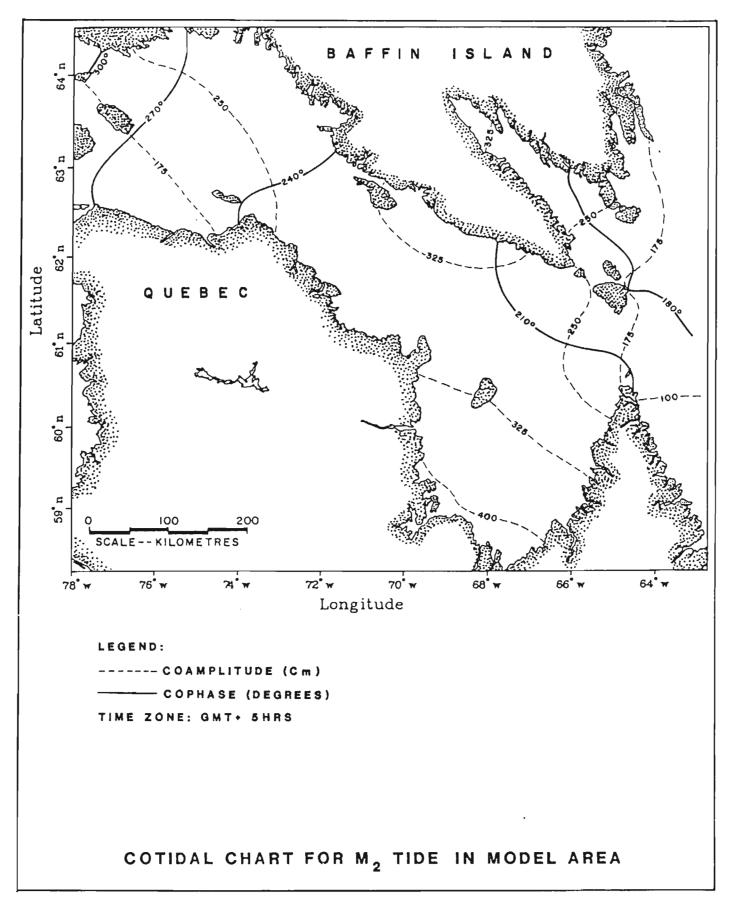
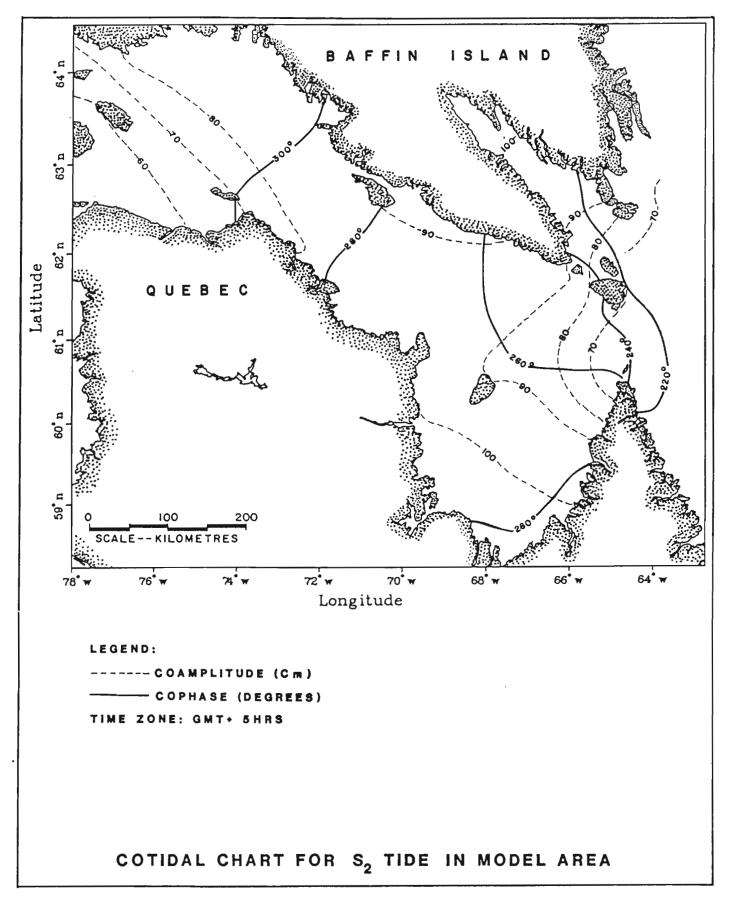



FIGURE 6

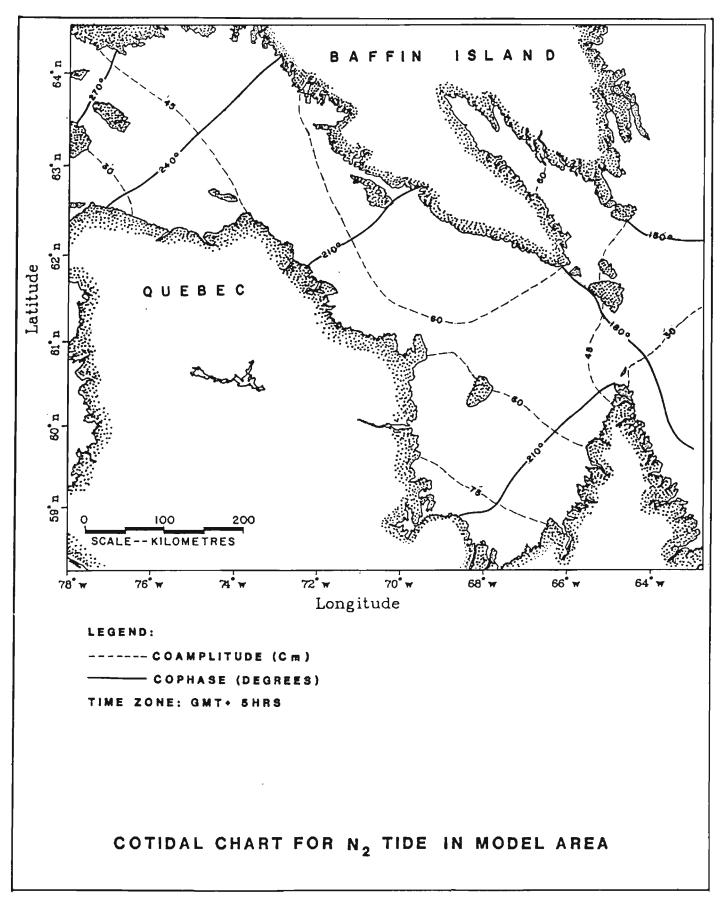
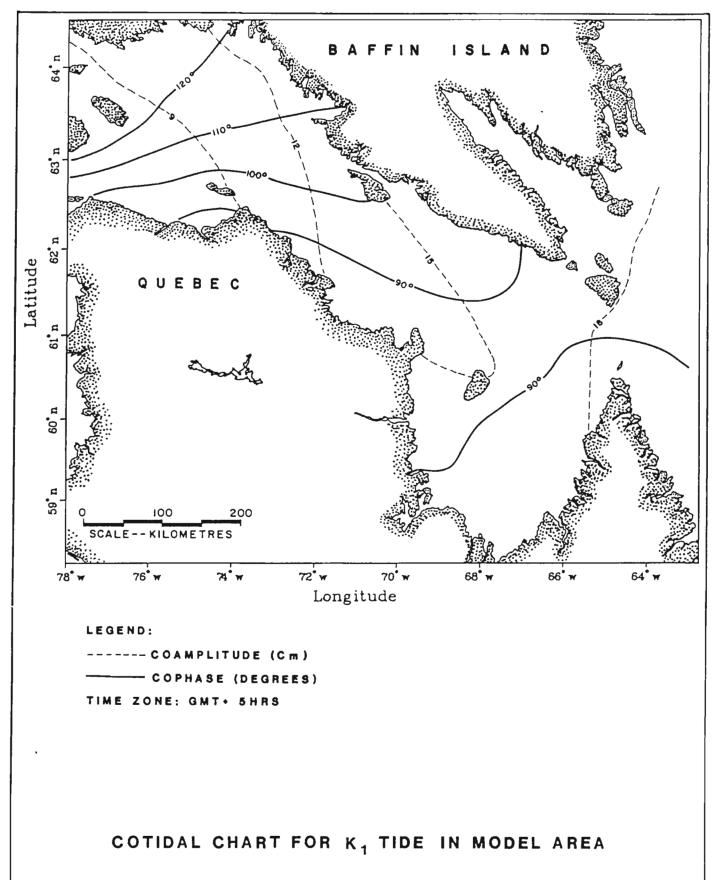
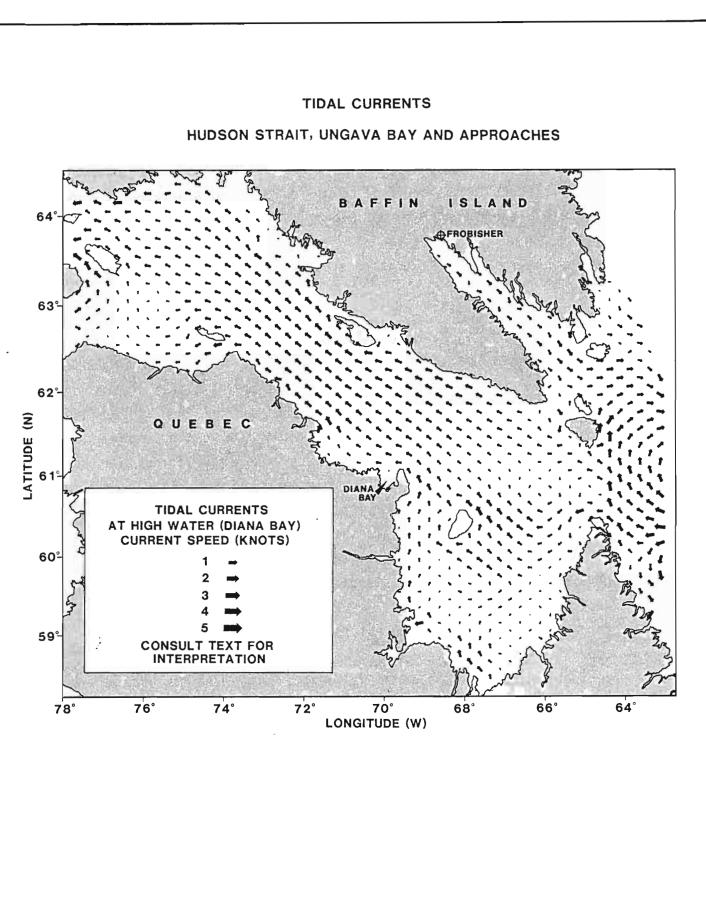
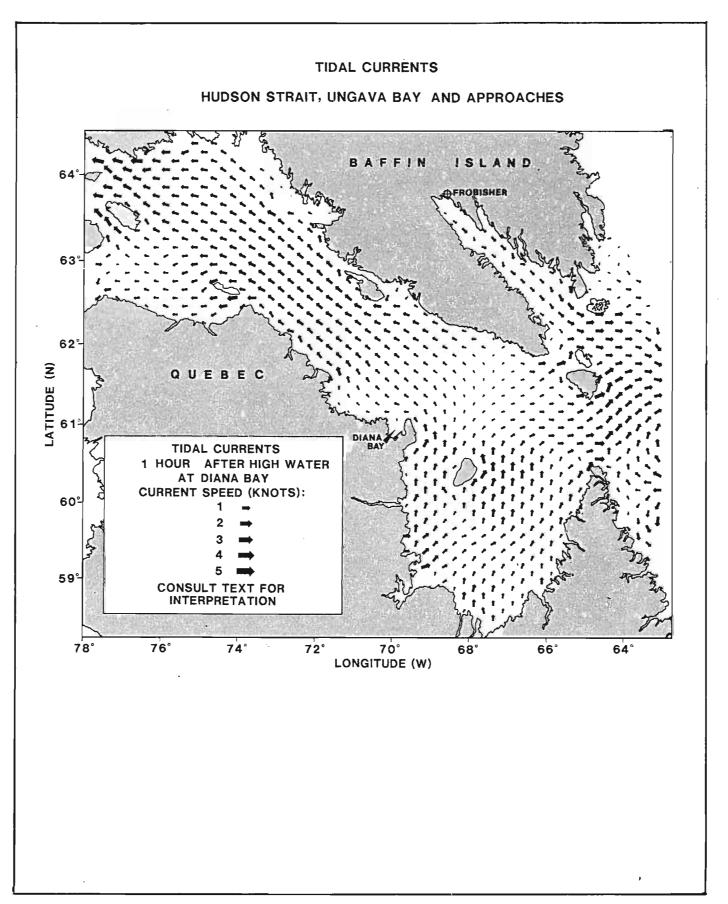



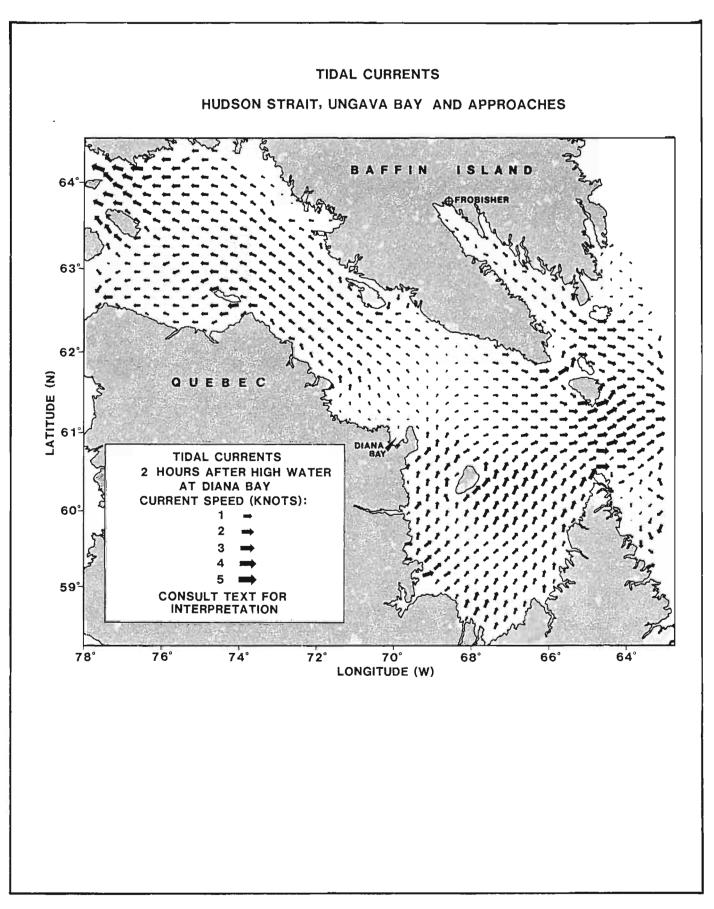
FIGURE 8

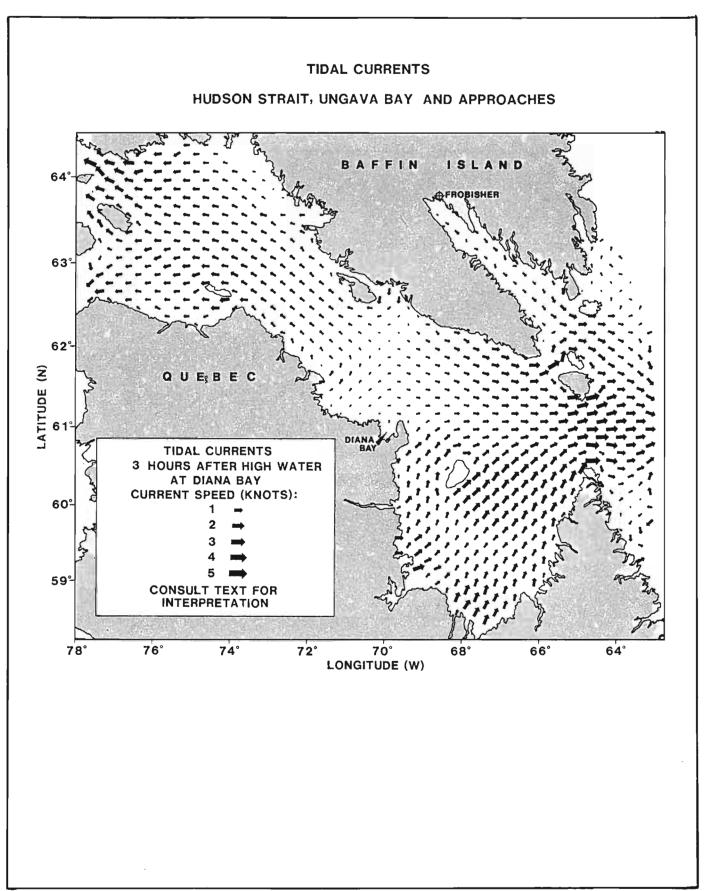
four modelled constituents and show the amplitude contours (in cm) and the cophase lines (in degrees referred to Greenwich Mean Time plus 5 hours).

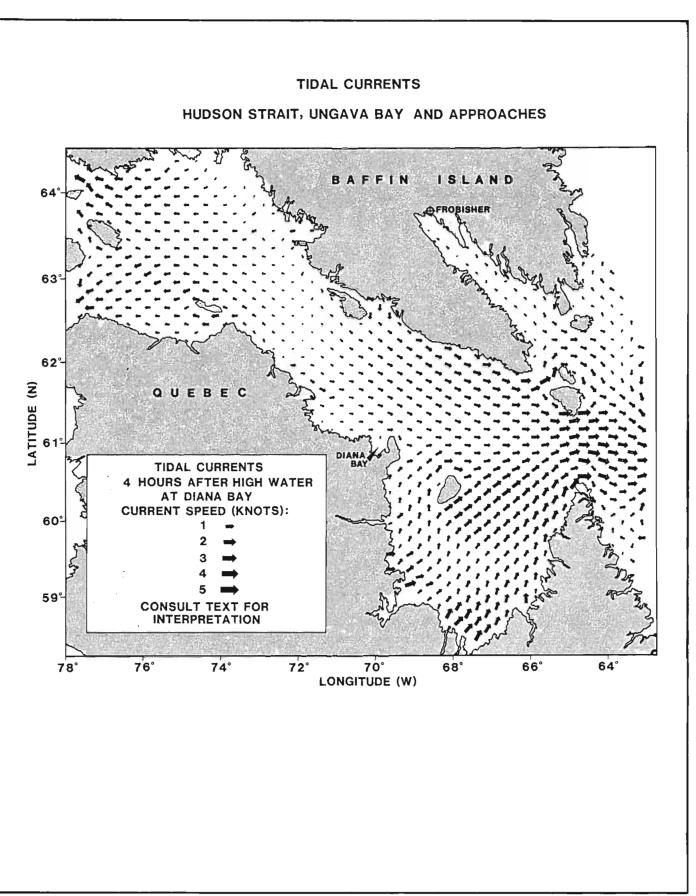
For the M₂ tide the agreement with the reference stations is good, the largest difference being a 5.2% overestimate in amplitude at Doctor Island and a 13° phase lead at Acadia Cove. It can be noted, however, that for these stations the cotidal charts (Godin, 1980 and Dohler, 1966) support the model results rather than the observations. As stated previously the data collected at Acadia Cove may be affected by the dynamic tidal activity at the entrance to Hudson Strait. Since at present there is no way to ascertain whether these observations are in error, we shall assume that they are correct and we shall take the difference between them and model results as the worst expected errors. For the M₂ amplitude the standard deviation for the reference stations is 2.1% and should be representative of typical expected accuracy. The accuracy of model results, in terms of percentage, for the other constituents is somewhat lower than the M_2 , however, since they have a smaller absolute magnitude their effect on tidal prediction in diminished.

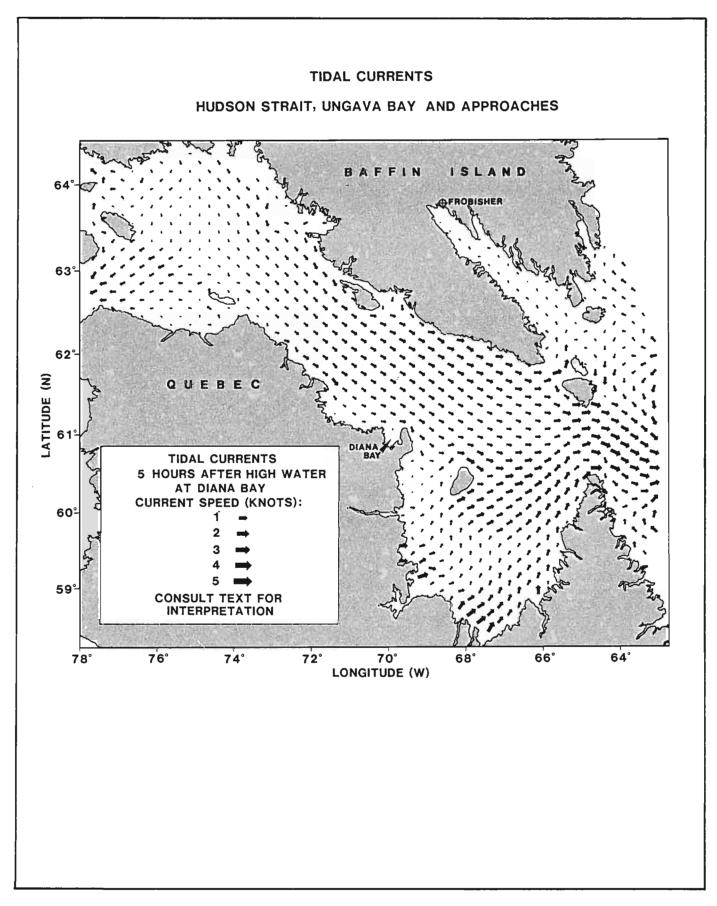

When comparing the model results to all available tidal observations (see Appendix I), we find that five stations are systematically wrong (Stations 8, 12, 13, 14, and 17 shown in Table 1 and Figure 2). With the exception of Station 12, these are all located 12 to 15 km upstream of river mouths, in estuaries too small to be resolved by the model. These observations are therefore not representative of the coastal tides and will not be considered further. Smaller models with higher resolution will be needed to correctly predict the water levels in upstream regions of long inlets and estuaries. Station 12 was dismissed as being erronous since it shows inexplicable differences with nearby Diana Bay which is the principal tidal station in the study area.


Considering all remaining observations, we find that the accuracy for the amplitude of the M_2 tide is generally better than $\pm 4\%$ or ± 8 cm, while the phase agreements are better than 13° or 26 minutes. For the other constituents the percent amplitude difference tends to be higher; however, because the constituents themselves are smaller, the absolute error is still in the order of ± 6 cm for each constituent. The maximum cumulative error in predicted water level, obtained by adding the M_2 , S_2 , N_2 and K_1 constituents is 31 cm or 2.6% of the tidal range, and occurs at Ashe Inlet. At other stations the error averages ± 8 cm.


4.2 Tidal Currents


The barotropic tidal model generates current information at each grid element for each of the modelled constituents. The tidal regime of the Hudson Strait/Ungava Bay area is dominated by the M₂ semidiurnal constituent and as such the overall tidal flow can be represented in terms of the M₂ tide. Extending the model simulation over several tidal cycles allows the non-linear effects of the tidal signal to be included in terms of residual flow and higher harmonics. Figures 10 to 21 show current vectors within the study area for each lunar hour of an M₂ tidal cycle. For most navigational purposes the lunar hour can be considered equivalent to a standard hour (i.e. 60 minutes). The charts depict currents within the system that are due entirely to M₂ tidal forcing and consequently do not include the effects of strong winds and other exceptional meteorological phenomena causing currents of a nonperiodic nature. A separate allowance must also be made where the tidal flow conditions are significantly altered by local influences such as river discharge.


To promote clarity in the charts current vectors are displayed for only one out of two model grid elements. This series of current vector charts provides both a temporal and spatial description of the relative strength of the water flow within the Hudson Strait/Ungava Bay study area.



. FIGURE 14

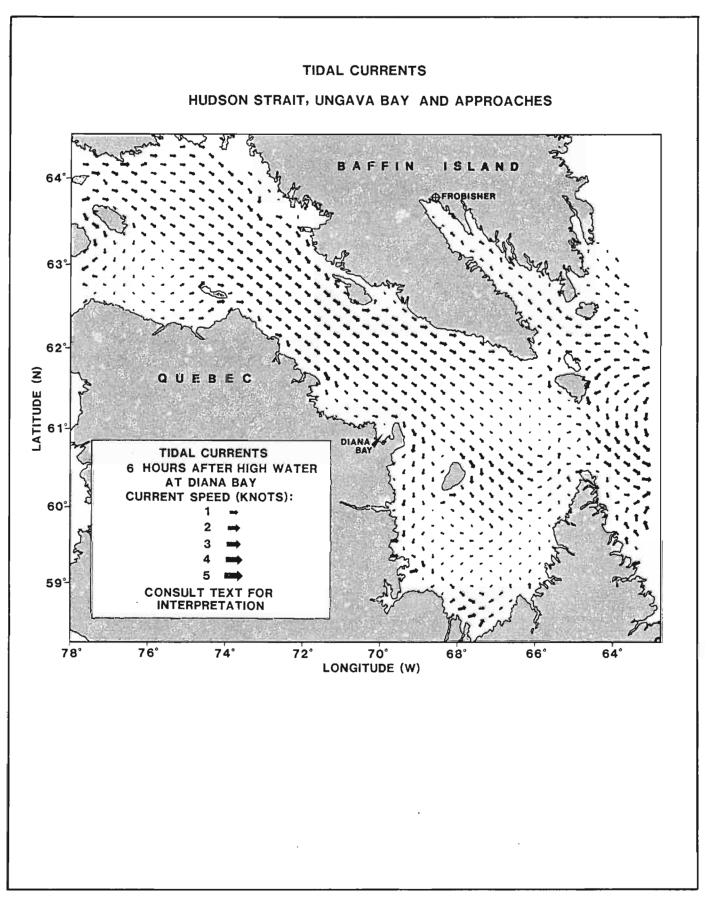
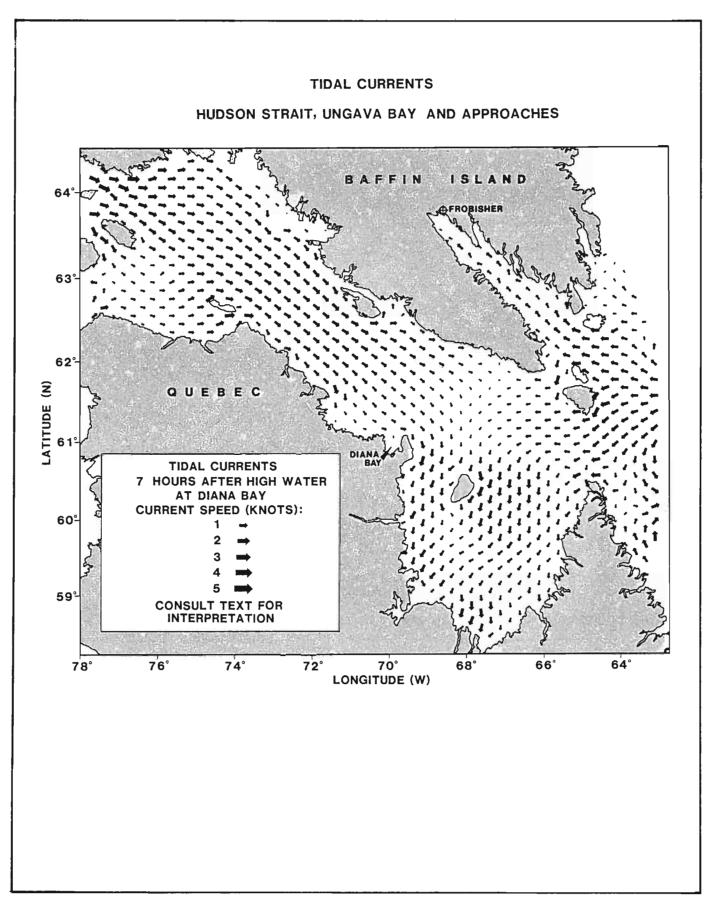



FIGURE 16

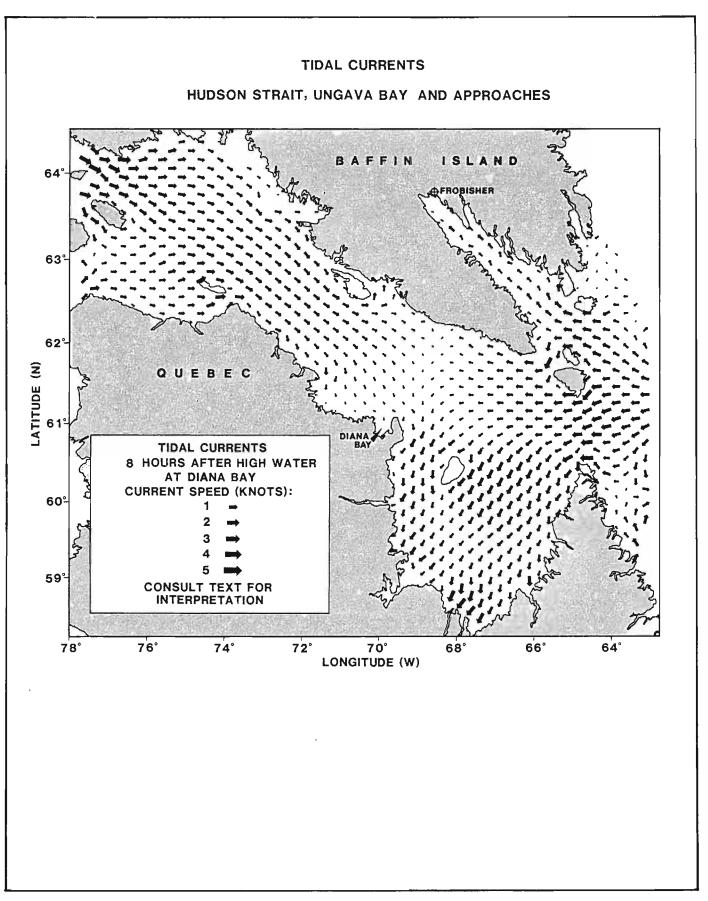
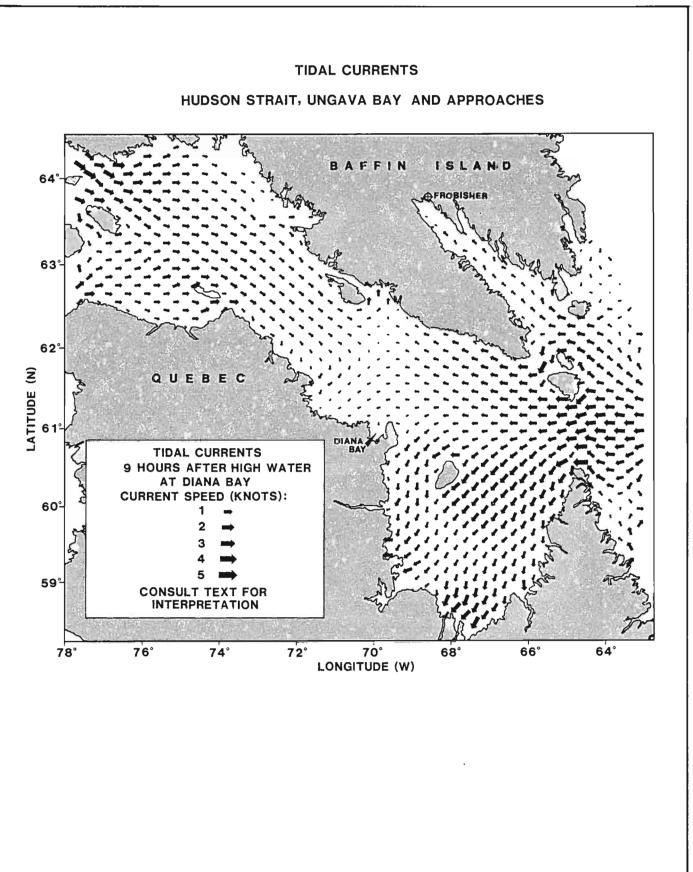



FIGURE 18

39

_

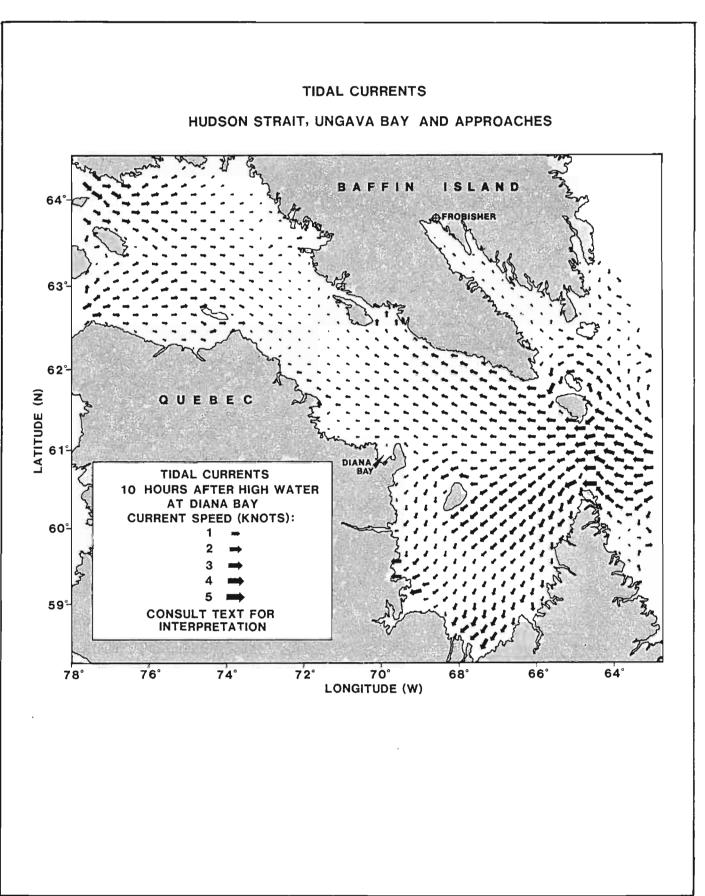


FIGURE 20

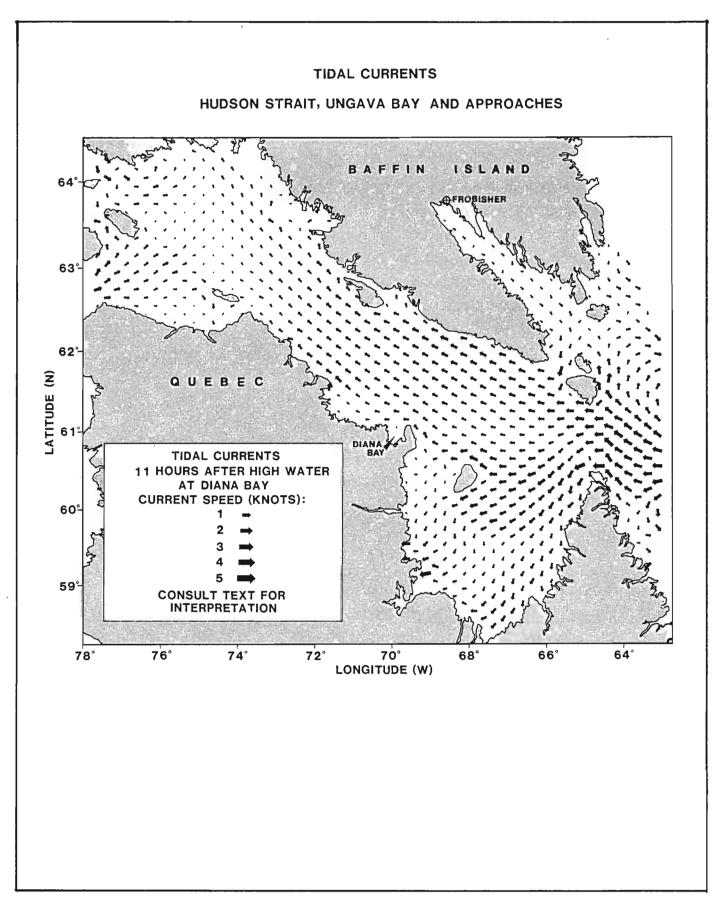


FIGURE 21

Being the principal tidal reference port in the study area Diana Bay, located near the midpoint of the Hudson Strait, was chosen as the reference location for the current vector charts. The timing of the currents is related to the time at which high water occurs at Diana Bay during Eastern Standard Time (available from the Canadian Hydrographic Service tide tables). When daylight saving time is in effect an extra hour must be added to the Diana Bay time. Care therefore should be taken to apply appropriate time corrections when operating in a time zone other than Eastern Standard Time. The currents shown are those to be expected for the mean tidal range of 6.4 m at Diana Bay. The following correction factors must be applied to the current speeds given in the vector diagrams to correspond to the actual tidal range at Diana Bay (also given in the tide tables) which varies due to the spring-neap cycle of the tide.

Correction Factors

Range at Diana Bay	Multiply Current by				
5.5 m	0.9				
6.5 m	1.0				
7.5 m	1.2				
8.5 m	1.3				
9.5 m	1.5				

Continuity arguements can be used to show that tidal currents and tidal elevation are directly related. It can be expected, therefore, that the accuracy of the modelled currents will reflect the accuracy of the previously examined water elevation (i.e. on the order of 2 to 5 percent). The modelled currents, however, represent a depth averaged velocity and as such do not include internal motions which may result in one layer of water sliding over another, at a different speed and, perhaps, in a different direction. Analysis of observed current behaviour provides the best means to assess the significance of these effects.

Quantitative tidal current measurements in the Hudson Strait/Ungava Bay area are sparse. The observations of Farquharson (1959) and Drinkwater (1983) do allow an examination of the vertical structure and tidal components of flow at several locations within the study area. Table 5 summarizes the results of these observations and compares them to the currents numerically generated at corresponding grid elements in the model. As can be seen the observed tidal currents are nearly uniform with depth implying that shearing effects, if any, are weak. The representation of the current flow by the two-dimensional barotropic model should, therefore, be applicable.

The agreement between the observed tidal current and the numerically modelled tidal flow can be quantified by examining the root mean square (RMS) deviation of the modelled current from the observed current. This RMS deviation between observations and model results is ± 0.06 For navigational knots while the maximum difference is 0.23 knots. purposes it is often more useful to compare observed near surface currents with model results. In this case we find a maximum difference of .31 knots and an RMS deviation of ±0.09 knots. In comparison to these differences it can be shown through the examination of Farguharson's (1959) data that observed differences between two time series of current speed recorded at the same location can be up to 0.35 knots, with discrepancies of ±0.10 knots common. Keeping the accuracy of observations in mind it may be concluded that the model differences between modelled and observed currents may be attributed principally to observational uncertainties.

4.3 Tidal Ellipses

Tidal flow patterns in Ungava Bay and Hudson Strait are presented in the form of tidal ellipses for the M_2 , N_2 , S_2 , and K_1 constituents in Figures 22 to 25. The tidal ellipses shown represent the path followed by water particles as they are carried by tidal currents. For clarity of presentation the ellipses in the figures are increased in scale by a factor of 2, 4, 4, and 8 for the M_2 , N_2 , S_2 , and K_1 components, respectively (e.g. the size of the M_2 ellipse corresponds to twice the actual M_2 tidal excursion at that location). An arrow head on each ellipse

TABLE 5. COMPARISON OF PREDICTED AND OBSERVED TIDAL FLOWS

Donth	M ₂ Major Axis			S ₂ Major Axis			K ₁ Major Axis		
Depth (m)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)
				STATION	4				·
7 20 30 50	334 332 344 338	.96 .84 1.06 .56	275 264 258 267	334 332 344 338	.33 .29 .37 .20	333 322 316 325	334 332 344 338	.12 .11 .09 .06	148 163 167 155
Depth Average Observations Model Results	337 312	.72 .85	273 279	338 310	.25 .27	320 297	336 308	.07 .05	150 146
	•			STATION	B				
7 20 30 50 75 100 150 230	305 312 315 303 307 309 - 307 311	$ \begin{array}{c} 1.14\\ 1.12\\ 1.11\\ .69\\ .56\\ .52\\ .55\\ .33\\ \end{array} $	273 271 263 254 248 248 248 253 241	305 313 315 303 307 309 307 311	.32 .91 .31 .19 .16 .15 .15 .09	332 330 322 315 309 309 309 314 302	305 312 315 303 307 309 307 311	.08 .12 .09 .10 .08 .08 .08 .06 .09	185 165 155 43 333 240 277 13
Depth Average Observations Model Results	309 321	.60 .83	257 279	310 308	.21 .27	318 297	306 306	.02 .05	309 150

Observation by Farquharson (1959)

44

٠

.

TABLE 5. continued

Observation by Farquharson (1959)

· · ·

Depth	M ₂ Major Axis			S ₂ Major Axis			K ₁ Major Axis		
(m)	Direction (° True)	Amplitude (knots)		Direction (°True)	Amplitude (knots)	Phase (°GMT+5)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)
	STATION C								
7 30 50 100 150 200 300 Depth Average Observations Model Results	310 305 296 302 299 310 307 305 308	1.11 1.07 .85 .81 .94 .83 .81 .84 .84	255 266 269 270 263 285 246 266 260	310 305 296 302 299 310 307 304 307	.40 .39 .31 .29 .34 .30 .30 .30	305 316 319 320 313 335 356 316 297	310 305 296 302 - 310 - 308 307	.07 .09 .02 .04 - .09 - .06 .06	122 153 345 84 - 138 - 130 152
	1		1	STATION I)	L	L	L	I
7 20 30 50 100 150 200 300	280 289 276 297 300 307 300 316	.85 .91 .88 .92 1.08 1.08 .95 .72	291 293 284 267 266 263 267 243	280 289 276 297 300 307 300 316	.20 .22 .21 .22 .26 .26 .26 .23 .17	328 330 321 306 305 302 302 282	280 289 276 297 300 307 300 316	.15 .17 .08 .05 .11 .04 .03 .03	181 148 153 223 178 123 270 202
Depth Average Observations Model Results	303 307	.88 .92	263 282	302 306	.20 .30	302 296	299 306	.03 .06	217 153

45

•

• .

TABLE 5. continued

Observation by Farquharson (1959)

Depth	M ₂ Major Axis			S ₂ Major Axis			K ₁ Major Axis			
(m)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)	Direction (° True)	Amplitude (knots)	Phase (°GMT+5)	
	STATION E									
7 20 30 50 100 100 200 300 Depth Average Observations Model Results	311 298 290 291 292 299 308 322 304 304	1.10 1.13 1.13 .90 1.01 1.08 1.01 .69 .89 .99	250 257 267 264 262 258 237 256 283	311 298 290 291 292 299 308 322 304 304	.30 .31 .25 .28 .30 .28 .19 .25 .33	311 318 328 328 325 323 319 298 317 295	311 298 290 291 292 299 308 322 305 305	.10 .06 .07 .07 .04 .07 .10 .05 .06 .06	101 274 284 289 97 147 140 177 154 153	
				STATION I	=		1		<u> </u>	
7 20 30 50 100 150 200 290 Depth Average	265 270 269 280 287 276 286 286 276	1.07 1.14 1.20 .98 .98 1.12 1.18 1.06	271 264 263 261 260 258 261 241	265 270 269 280 . 287 276 286 286 276	.34 .36 .38 .32 .32 .37 .38 .34	328 321 320 318 317 315 318 298	265 - 269 - 287 276 286 286 276	.06 .00 .08 .00 .07 .11 .09 .08	248 	
Observations Model Results	280 310	1.07 1.11	257 288	280 310	.35 .37	313 290	278 310	.08 .07	136 144	

TABLE 5. continued

Depth	M ₂	M ₂ Minor Axis							
(m)	Direction Amplitude Phase (°True) (knots) (°GMT+5)		Amplitude (knots)						
STATION HS1									
30 50 100 200 Depth Average	287 283 293 296	.58 .57 .58 .46	224 224 221 215	.11 .10 .13 .02					
Observations Model Results	292 302	.52 .54	220 209	.08 .10					
	ST/	ATION HS2		I					
30 Dopth Avenage	299	.40	215	.09					
Depth Average Observations Model Results	299 299	.40 .62	215 192	.09 .18					
	ST/	ATION HS3							
30 200 Depth Average	297 292	.50 .54	202 207	.05 .11					
Observations Model Results	294 295	.52 .69	206 183	.09 .12					
	ST/	TION HS4							
30 100 Depth Average	290 296	.91 .81	205 199	.09 .00					
Observations Model Results	293 291	.85 .85	202 186	.05 .03					
	ST/	TION HS5		,					
30 200 Depth Average	291 272	.76 .57	144 162	.26 .09					
Observations Model Results	283 284	.61 .69	158 159	.14 .11					

Observations by Drinkwater (1983)

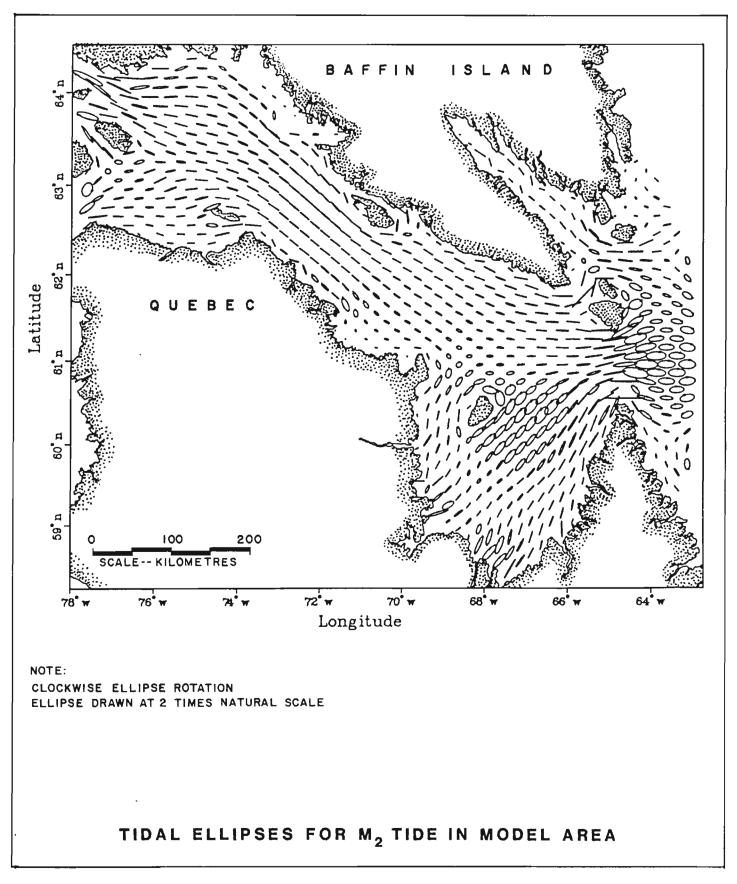
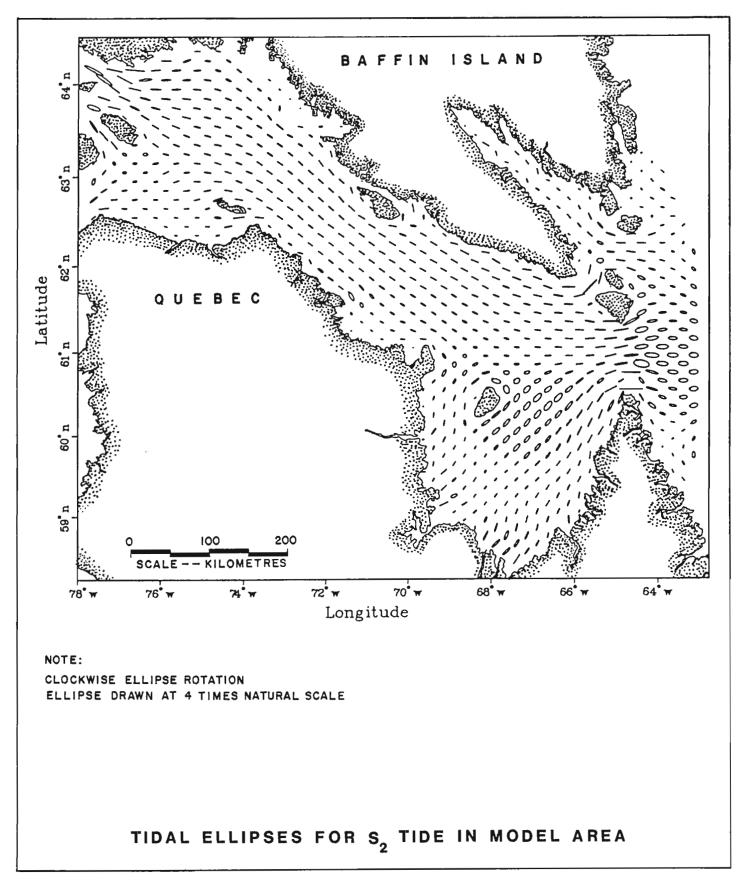
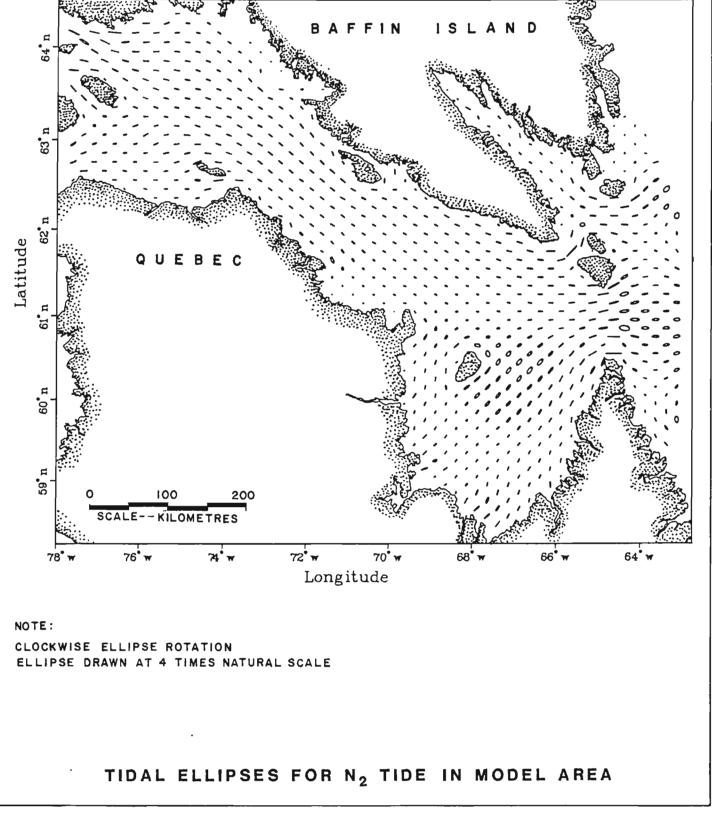




FIGURE 22

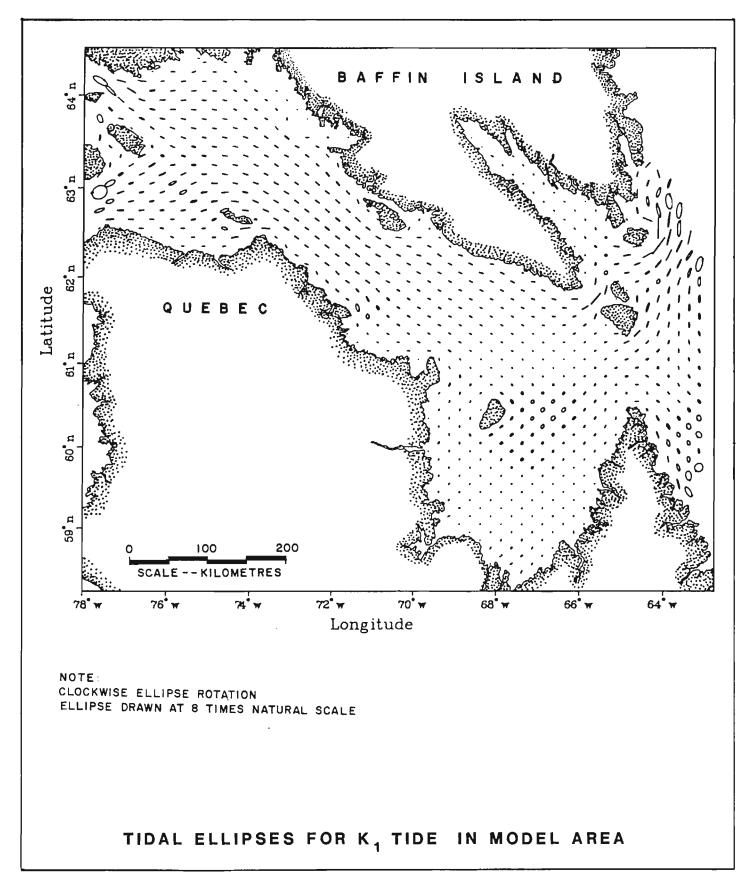


FIGURE 25

indicates the direction of travel of the water particle during the tidal cycle. Although these arrows are only visible on the larger ellipses their direction of rotation is clockwise throughout the study area.

From these plots the dominance of the M_2 tide can again be identified. It can also be seen that tidal flow is rectilinear (i.e. consisting mainly of a back and forth motion) over most of the study area. A marked rotational character is evident only near open ocean boundaries and in the middle of Ungava Bay where the water flow is less constrained by the presence of land.

4.4 Sensitivity of Model Bathymetry

As discussed in Section 3.1 the input bathymetric data file for the study area was supplemented in several areas for which no depth measurements were available. A linear bottom slope was assumed for those regions at which estimated bathymetric values were necessary. In order to assess the sensitivity of the numerical model to changes in the bathymetry input data, and hence determine the uncertainty in the model results, the M₂ tide was simulated for two runs with modified bathymetry. The first sensitivity run doubled the estimated bathymetric values and the second run halved these values. Comparison of the model results indicated that the variation in bathymetry, i.e. the sensitivity of the model to bathymetric uncertainty, is less than five percent for amplitude and three percent for phase lag. The biggest changes occur at the head of Ungava Bay.

4.5 Discussion

Numerically modelling the tidal regime in the Hudson Strait/Ungava Bay system has provided quantitative values that agree well with the available observed tidal information in the region. Comparison of observed and modelled tidal amplitudes show typical differences in the order of 2.1 percent and the expected accuracy of modelled tidal currents is at least as good as that from presently available data. It can be expected therefore that the model results are of comparable accuracy within the model domain allowing insight into the tidal characteristics throughout the study area. The charts of current strength and direction can be used to show mariners where and when to expect certain flow conditions which should be an advantage to the navigation of vessels of all sizes. The overall circulation patterns derived by the numerical model will contribute to the information required by scientists investigating the oceanographic processes that exist in the A broader understanding of the physical phenomena of water region. flow will be of benefit to engineering applications, such as the planning of harbours or determining the feasibility of tidal generation plants, and also to ecological concerns such as the distribution of larvae or fish populations.

It is considered that the limiting factor of accuracy in the numerically modelled results at this point can be attributed to the precision of the observed tidal data used to calibrate and validate the model. The model has been structured so that future observational information (such as bathymetry or tidal data) can be easily incorporated as input and consequently refine the present model results. Alternatively, the model area can be expanded to include new area to allow a more global perspective of tidal currents in Canada's arctic waterways. 5. REFERENCES

- Canadian Hydrographic Service. 1981. Atlas of Tidal Currents, Bay of Fundy and Gulf of Maine, 36 p.
- Canadian Hydrographic Service. 1983. Sailing Directions, Labrador and Hudson Bay, Fifth ed., 450 p.
- Canadian Hydrographic Service. 1984. Canadian Tide and Current Tables, Arctic and Hudson Bay, Vol. 4, 51 p.
- Dohler, G. 1966. Tides in Canadian Waters, Canadian Hydrographic Service, Marine Sciences Branch, Department of Mines and Technical Surveys, Ottawa, Ontario, 16 p.
- Drinkwater, K. 1983. Moored Current Meter Data from Hudson Strait, 1982, Canadian Data Report of Fisheries and Aquatic Sciences 381, Marine Ecology Laboratory, Ocean Science and Surveys, Atlantic Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, N.S.
- Easton, A.K. 1972. Tides of Hudson Strait, Bedford Institute of Oceanography, Report Series, BI-R-72-6.
- Farquharson, W.I. 1959. Tidal and Oceanographic Survey of Hudson Strait, August and September 1959, Canadian Hydrographic Service, Department of Mines and Technical Surveys, Ottawa, Ontario.
- Foreman, M.G.G. 1979. Manual for Tidal Heights: Analysis and Prediction, Pacific Marine Science Report 77-10, Reprinted with corrections. Institute of Ocean Sciences, Patricia Bay, Sidney, B.C., 97 p.
- Freeman, N.G. and T.S. Murty. 1976. Numerical Modelling of Tides in Hudson Bay, Journal of the Fisheries Research Board Canada, Vol. 33, pp. 2345-2361.
- Godin, G. 1980. Cotidal Charts for Canada, Marine Sciences and Information Directorate, Department of Fisheries and Oceans, Ottawa, Ontario, 93 p.
- Griffiths, D.K., R.D. Pingree and M. Sinclair. 1981. Summer Tidal Fronts in the Near-Arctic Regions of Foxe Basin and Hudson Bay, Deep Sea Research, Vol. 28A, No. 8, pp. 865-873.
- Martec Limited. 1983. Internal Wave Study. Prepared under contract 09SC.FP901-2-X035 for Department of Supply and Services, 57 p.
- Martec Limited. 1984a. Ungava Bay Tidal Elevation and Current Numerical Model Development. Prepared under Contract 10SC.FP901-3-R062 for Department of Supply and Services, 46 p.

- Martec Limited. 1984b. User Manual for Barotropic Circulation Model. Prepared under contract 09SC.FP901-3-X064 for Department of Supply and Services, 29 p.
- Schwiderski, E.W. 1980. On Charting Global Ocean Tides, Review of Geophysical Space Physics, Vol. 18, p. 243-268.

. •

.

APPENDIX I

COMPARISON OF OBSERVED AND MODELLED TIDES IN HUDSON STRAIT/UNGAVA BAY

•

COMPARISON OF AMPLITUDES OF OBSERVED AND MODELLED TIDES (cm)

۰ ·

	M ₂			S ₂			
Location	Observed/Modelled Amplitude	Real Difference	Percentage Difference	Observed/Modelled Amplitude	Real Difference	Percentage Difference	
Schooner Harbour	207.5/207.2	-0.3	-0.1	71.0/68.4	-2.6	-3.7	
Port de Boucherville	144.4/143.9	-0.5	-0.3	53.9/54.0	0.1	0.2	
Port de La Perriere	94.1/99.3	5.2	5.5	37.7/38.7	1.0	2.7	
Digges Harbour	100.2/100.0	-0.2	-0.2	39.3/39.0	-0.3	-0.8	
Sugluk	155.1/156.8	1.7	1.1	58.5/58.3	-0.2	-0.3	
Deception Bay	171.7/171.7	0.0	0.0	60.3/61.1	0.8	1.3	
Douglas Harbour	259.3/258.0	1.3	-0.5	92.0/81.5	-10.5	-11.4	
Wakeham Bay	336.5/276.7	-59.8	-17.8	162.6/83.0	-79.6	-49.0	
Doctor Island	257.5/271.0	13.5	5.2	87.4/80.6	-6.8	-7.8	
Stupart Bay	274.9/275.0	0.1	0.0	92.9/82.3	-10.6	-11.4	
Diana Bay	293.0/293.1	0.1	0.0	99.3/82.1	-17.2	-17.3	
Koartac	266.5/292.6	26.1	9.8	91.8/82.5	-9.3	-10.1	
Basking Island	316.6/349.7	33.1	10.5	99.9/99.1	-0.8	-0.8	
Pikiyulik Island	304.8/349.7	44.9	14.7	94.7/98.4	3.7	3.9	
Agvik Island	349.3/359.5	10.2	2.9	117.0/102.7	-14.3	-12.2	
Hopes Advance Bay	388.3/388.2	-0.1	0.0	125.2/110.8	-14.4	-11.5	
Leaf Basin	443.1/407.2	-35.9	-8.1	121.3/112.9	-8.4	-6.9	
Koksoak River Entrance	408.7/417.7	9.0	2.2	135.9/113.7	-22.2	-16.3	
Port Burwell	214.2/213.1	-1.1	-0.5	65.2/63.5	-1.7	-2.6	
Williams Harbour	98.1/86.3	-11.8	-12.0	23.7/23.5	-0.2	-0.8	
Acadia Cove	216.0/219.2	3.2	1.5	89.0/73.7	-15.3	-17.2	
Breevort Harbour	180.7/180.7	0.0	0.0	64.0/64.0	0.0	0.0	
Frobisher S. Farthest	329.5/324.8	-5.0	-1.4	110.4/105.0	-5.4	-4.9	
Resor Island	334.3/352.2	18.0	5.4	118.8/115.4	-3.4	-2.9	
Frobisher	345.2/356.5	11.3	3.3	117.4/115.6	-1.8	-1.5	
Lake Harbour	349.6/353.2	3.6	1.0	119.9/116.7	-3.2	-2.7	
Ashe Inlet	335.2/327.0	-8.2	-2.4	121.3/99.8	-21.5	-17.7	
Ungava Bay	420.7/423.4	2.7	0.6	133.3/113.3	-20.0	-15.0	

• .

COMPARISON OF AMPLITUDES OF OBSERVED AND MODELLED TIDES (cm)

•

. .

.

	N ₂			К1			
Location	Observed/Modelled Amplitude	Real Difference	Percentage Difference	Observed/Modelled Amplitude	Real Difference	Percentage Difference	
Schooner Harbour	41.4/39.5	-1.9	-4.6	8.2/7.9	-0.3	-3.7	
Port de Boucherville	27.4/27.0	-0.4	-1.5	6.7/6.6	-0.1	-1.5	
Port de La Perriere	18.2/20.0	-1.8	-9.9	4.2/5.0	0.8	19.0	
Digges Harbour	39.3/20.0	-19.3	-49.1	5.4/5.1	-0.3	-5.6	
Sugluk	30.7/30.7	0.0	0.0	10.0/7.0	-3.0	-30.0	
Deception Bay	34.3/35.3	1.0	2.9	8.3/7.6	-0.7	-8.4	
Douglas Harbour	48.1/52.0	3.9	8.1	10.5/11.0	0.5	4.8	
Wakeham Bay	69.6/55.6	-14.0	-20.1	13.4/12.0	-1.4	-10.4	
Doctor Island	51.5/54.3	2.8	5.4	14.9/12.0	-2.9	-19.5	
Stupart Bay	54.8/54.9	0.1	0.2	14.3/11.8	-2.5	-17.5	
Diana Bay	58.6/58.5	-0.1	-0.2	15.7/14.0	-1.7	-10.8	
Koartac	51.1/58.1	7.0	13.7	6.8/14.2	7.4	108.8	
Basking Island	58.8/68.3	9.5	16.2	14.3/15.2	0.9	6.3	
Pikiyulik Island	55.1/70.0	14.9	27.0	14.9/15.2	0.3	2.0	
Agvik Island	64.6/68.3	3.7	5.7	17.6/15.6	-2.0	-11.4	
Hopes Advance Bay	83.2/75.9	-7.3	-8.8	20.7/15.9	-4.8	-23.2	
Leaf Basin	91.7/78.4	-13.3	-14.5	18.5/16.2	-2.3	-12.4	
Koksoak River Entrance	75.8/75.9	0.1	0.1	15.8/16.0	0.2	1.3	
Port Burwell	42.0/42.0	0.0	0.0	12.4/14.7	2.3	-18.5	
Williams Harbour	30.1/21.5	-8.6	-28.6	19.2/15.4	-3.8	-19.8	
Acadia Cove	43.0/44.0	1.0	2.3	13.0/15.2	2.2	16.9	
Breevort Harbour	34.7/34.7	0.0	0.0	17.0/17.0	0.0	0.0	
Frobisher S. Farthest	54.0/67.4	13.4	24.8	18.0/18.7	0.7	3.9	
Resor Island	66.4/74.5	8.1	12.2	20.1/19.2	-0.9	-4.5	
Frobisher	67.7/74.7	7.0	10.3	18.4/19.2	0.8	4.3	
Lake Harbour	67.6/72.7	5.1	7.5	15.2/15.6	0.4	2.6	
Ashe Inlet	67.0/66.9	-0.1	-0.1	15.8/14.3	-1.5	-9.5	
Ungava Bay	-/79.1	-	-	17.7/16.1	-1.6	-9.0	

• •

COMPARISON OF PHASES OF OBSERVED AND MODELLED TIDES (degrees)

.

÷ .

Location	Observed/Modelled Phase	Real Difference	Percentage Difference	Observed/Modelled Phase	Real Difference	Percentage Difference
Schooner Harbour	316.0/316.0	0.0	0.0	9.0/6.0	3.0	0.8
Port de Boucherville	270.0/270.0	0.0	0.0	326.0/326.0	0.0	0.0
Port de La Perriere	268.0/280.0	-12.0	-3.3	322.0/325.0	-3.0	-0.8
Digges Harbour	279.0/280.0	-1.0	-0.3	325.0/325.0	0.0	0.0
Sugluk	255.0/250.0	5.0	1.4	304.0/310.0	-6.0	-1.7
Deception Bay	248.2/246.0	2.2	0.6	304.0/306.0	-2.0	-0.6
Douglas Harbour	231.0/230.0	1.0	0.3	298.0/287.0	11.0	3.1
Wakeham Bay	234.0/226.0	8.0	2.2	279.1/282.0	-2.9	-0.8
Doctor Island	237.0/226.0	11.0	3.1	289.0/284.0	5.0	1.4
Stupart Bay	225.0/224.0	1.0	0.3	282.0/280.0	2.0	0.6
Diana Bay	224.2/218.0	6.2	1.7	275.5/269.0	6.5	1.8
Koartac	253.9/214.0	39.9	11.1	311.3/266.0	45.3	12.6
Basking Island	253.0/213.0	40.0	11.1	313.0/262.0	51.0	14.2
Pikiyulik Island	251.0/213.0	38.0	10.6	302.0/263.0	39.0	10.8
Agvik Island	225.0/214.0	11.0	3.1	275.0/264.0	11.0	3.1
Hopes Advance Bay	225.0/219.0	6.0	1.7	280.0/268.0	12.0	3.3
Leaf Basin	251.0/226.0	25.0	6.9	314.0/272.0	42.0	11.7
Koksoak River Entrance	229.0/228.0	1.0	0.3	282.0/284.0	-2.0	-0.6
Port Burwell	209.0/226.0	17.0	4.7	258.0/276.0	-18.0	-5.0
Williams Harbour	187.5/196.0	8.5	2.4	227.0/217.0	10.0	2.8
Acadia Cove	211.0/198.0	13.0	3.6	246.0/244.0	18.0	5.0
Breevort Harbour	157.0/157.0	0.0	0.0	195.0/195.0	0.0	0.0
Frobisher S. Farthest	218.5/182.0	36.5	10.1	267.1/223.0	44.1	12.3
Resor Island	197.0/183.0	14.0	3.9	242.0/226.0	16.0	4.4
Frobisher	193.1/184.0	9.1	2.5	238.8/226.0	12.8	3.6
Lake Harbour	231.7/224.0	7.7	2.1	280.9/289.0	-8.1	-2.3
Ashe Inlet	230.0/229.0	1.0	0.3	287.0/284.0	3.0	0.8
Ungava Bay	232.9/230.0	2.9	0.8	283.9/273.0	10.9	3.0
	Percentage Differen		ved phase - mo	odelled phase) X 100%)	
	360					

COMPARISON OF PHASES OF OBSERVED AND MODELLED TIDES (degrees)

	N ₂			Кı			
Location	Observed/Modelled Phase	Real Difference	Percentage Difference	Observed/Modelled Phase	Real Difference	Percentage Difference	
Schooner Harbour	289.6/288.0	1.6	0.4	147.0/145.0	2.0	0.6	
Port de Boucherville	331.6/258.0	73.6	20.4	113.0/118.0	-5.0	-1.4	
Port de La Perriere	332.6/252.0	806	22.4	102.1/104.0	-1.9	-0.5	
Digges Harbour	251.6/252.0	-0.4	-0.1	104.0/104.0	0.0	0.0	
Sugluk	227.6/235.0	-7.4	-2.1	90.0/ 94.0	-4.0	-1.1	
Deception Bay	222.6/227.0	-4.4	-1.2	83.0/ 88.0	-5.0	-1.4	
Douglas Harbour	214.6/214.0	0.6	0.2	60.0/ 90.0	-30.0	-8.3	
Wakeham Bay	212.0/210.0	2.0	0.6	77.2/ 89.0	-11.8	-3.3	
Doctor Island	310.6/210.0	100.0	27.8	118.0/88.0	30.0	· 8.3	
Stupart Bay	331.6/209.0	122.6	34.1	99.0/ 87.0	12.0	3.3	
Diana Bay	198.0/202.0	-4.0	-1.1	87.9/ 86.0	1.9	0.5	
Koartac	226.2/199.0	27.2	7.6	122.1/86.0	36.1	10.0	
Basking Island	235.0/198.0	37.0	10.3	112.0/86.0	26.0	7.2	
Pikiyulik Island	224.0/194.0	30.0	8.3	105.0/86.0	19.0	5.3	
Agvik Island	199.0/199.0	0.0	0.0	110.0/87.0	23.0	6.4	
Hopes Advance Bay	188.0/204.0	-16.0	-4.4	97.0/ 89.0	8.0	2.2	
Leaf Basin	253.0/209.0	44.0	12.2	113.0/91.0	22.0	6.1	
Koksoak River Entrance	196.0/210.0	-14.0	-3.9	91.0/ 92.0	-1.0	-0.3	
Port Burwell	177.6/204.0	-26.4	-7.3	90.0/ 94.0	-4.0	-1.1	
Williams Harbour	154.4/185.0	-30.6	-8.5	72.5/76.0	-3.5	-1.0	
Acadia Cove	- /170.0	-	-	115.0/87.0	28.0	7.5	
Breevort Harbour	132.6/133.0	-0.4	0.1	49.0/49.0	0.0	0.0	
Frobisher S. Farthest	188.6/164.0	24.6	6.8	100.6/79.0	21.6	6.0	
Resor Island	168.6/166.0	2.6	0.7	96.0/80.0	16.0	4.4	
Frobisher	164.7/166.0	-1.3	-0.4	85.5/80.0	5.5	1.5	
Lake Harbour	204.4/220.0	-15.6	-4.3	102.1/102.0	0.1	0.0	
Ashe Inlet	208.6/210.0	-1.4	-0.4	103.0/100.0	3.0	0.8	
Ungava Bay	205.7/208.0	-2.3	-0.6	91.8/92.0	-0.2	-0.1	
		1	und uhana m	adallad where)			

Percentage Difference = _____ (observed phase - modelled phase) X 100%

. .

. .