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ABSTRACT

Fissel, D. B. and J. R. Birch. 1990. Satellite-tracked drifting buoy
measurements off Labrador and Newfoundland, 1981-1983. Can. Contract. Rep.

Hydrogr. Ocean Sci. 38: ix + 106 pp.

A total of 14 satellite-tracked drifting buoys were deployed off Labrador
in the autumn of 1981 and the summers of 1982 and 1983. From the buoy positions,
the near-surface circulatian features were examined. The buoys also measured air
pressure and sea temperature, transmitting all data via the ARGOS satellite
system.

The combined results of the drifter studies of 1981 to 1983 were used to
produce summary plots of average surface currents, and velocity characteristics
tabulated by bathymetric regime. The two branches of the southeasterly flowing
Labrador Current located over the marginal trough and continental slope/rise
regions dominated the surface circulation patterns. The magnitude of the
near-surface currents were typically 0.2 to 0.3 m/s in these regimes, except in
the inner core of the offshore branch of the Labrador Current where average
speeds of 0.3 to 0.5 m/s were realized. The two branches of the Labrador Current
were separated by the directionally variable, but at times highly energetic
currents occurring over the banks and saddles of the continental shelf.

The outer branch of the Labrador Current was characterized by strong
(typically 0.4 m/s) flows concentrated in a narrow (<20 to 40 km) core located
over the steeply sloping shelf edge. The southeastward flows extend to locations
offshore of the strong current core over the continental slope and continental
rise. These currents are reduced in magnitude (0.2 m/s) and gradually decrease
with increasing depths.
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RESUME
Fissel, D. B. and J. R. Birch. 1990. Satellite-tracked drifting buoy
measurements off Labrador and Newfoundland, 1981-1983. Can. Contract. Rep.

Hydrogr. Ocean Sci. 38: ix + 106 pp-

Au total, 14 bouées dérivantes poursuivies par satellite ont été déployées
au large du Labrador a l1l'automne de 1981 et pendant les étés de 1982 et de 1983.
Les caractéristiques de la circulation prés de la surface ont été examinées
d'aprés les positions des bouées. Ces bouées permettaient également de mesurer
la température et la pression de l'air, et toutes les données étaient transmises
par le systéme satellitaire ARGOS.

L'ensemble des résultats des études avec bouées dérivantes menées de 1981
a 1983 a servi a produire des tracés sommaires des courants moyens en surface et
des tableaux des caractéristiques des vitesses d'aprés le régime bathymétrique.
Deux branches du courant du Labrador portant au sud-est sur les régions de la
fosse de la marge continentale et de la pente océanique/talus continental
dominent les configurations de la circulation en surface. Ces régimes sont
caractérisés par des courants prés de la surface dont l'ordre de grandeur varie
de 0,2 a 0,3 m/s sauf dans la partie centrale de la branche du large du courant
du Labrador, ou des vitesses moyennes de 0,3 & 0,5 m/s ont été relevées. Les
deux branches du courant du Labrador étaient séparées par des courants de
direction variable, mais possédant a certains moments des énergies élevées, sur
les bancs et ensellements du plateau continental.

La branche extérieure du courant du Labrador était caractérisée par des
écoulements puissants (typiquement de 0,4 m/s) concentrés dans une étroite partie
centrale suituée sur la bordure a forte pente du plateau continental. Les
écoulements en direction du sud-est se prolongent jusqu'au large de la partie
centrale au courant fort sur le talus continental et la pente océanique. La
vitesse de ces courants est réduite (0,2 m/s) et elle diminue progressivement a
mesure qu'augmente la profondeur.
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1. INTRODUCTION

Fourteen satellite-tracked drifting buoys were deployed off Labrador during
the autumn of 1981, and the summers of 1982 and 1983. The buoys, tracked through
the BARGOS satellite system, were equipped with atmospheric pressure and
sea-surface temperature sensors. The data were used in a near real-time mode 1i
support of drilling operations by Petro-Canada Inc. The areas of data collection
are indicated in Figure 1 by the buoy tracks for each year of data collection.

The purpose of this report is to document and display the collected data
and to present a preliminary analysis of the positional and velocity data.

The analysis and evaluation is complete up to December 31, 1983. After this
time, the buoys were no longer operating in the area of interest.

2. DATA COLLECTION
2.1 THE BUOY

The drifting buoys, manufactured by Hermes Electronics Limited of Dartmouth,
Nova Scotia, are illustrated schematically in Figure 2. Ten of the drifting
buoys were standard models equipped with conventional "window-shade" drogues,
while two buoys were air deployable units (see Table 1). Two other buoys were
initially moored in placed, and subsequently broke loose from their moorings as
a result of major storms passing by. For the standard units, the window-shade
drogue accounts for over 94% of the total cross-sectional area of the buoy-drogue
combination, the movements of these drifters are expected to be representative
of near-surface currents over the depth range of the drogue, 4.3 to 11 m.

The air deployed drifting buoys (4077 and 4078) as illustrated in Figure
2B, come equipped with a holey sock drogue, having dimensions of 0.53 m
(diameter) by 7.6 m (length). The length of the tether from the buoy to the
front of the drogue is 20.4 m. At times when the drogue is hanging vertically
and is entirely perpendicular to water current drag, the submersed area accounts
for 87% of the total cross-sectional area. This type of drifter will also
respond primarily to water current forcing but the direct wind effects could be
larger.

Buoys 4079 and 4080 were originally moored on Nain and Saglek banks
respectively. They broke free of their moorings and were subsequently tracked
down the coast. One of these buoys was subsequently recovered in February 1983
in the vicinity of the Hibernia drilling area by Mobil 0il Ltd. personnel (J.
Dempsey, Dobrocky Seatech (Nfld.) Ltd., personal communication). When recovered,
approximately 70 m of 0.019 m diameter polypropylene line was still attached
along with about 0.6 m of chain. Such a configuration would have 77% of the
total cross-sectional area beneath the water line, assuming the polypropylene
line is hanging vertically, and would respond primarily to near-surface currents.

2.2 THE ARGOS SYSTEM
The ARGOS system determines the platform position by measuring the Doppler

shift of the carrier frequency of messages transmitted by the platforms. The
transmitted messages are emitted approximately once each minute on a continuous
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Figure 1: A composite plot of the trajectories of all drifting buoys in (a) 1981, (b) 1982 and (c¢) 1983. Also

shown are the locations of anemometers operated from small offshore islands during 1982.
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Figure 2: A schematic diagram of the satellite-tracked drifting buoys and attached drogues for (a) the standard
drifter hull and (b) the air deployable buoys.
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Table 1
fate (to December 31,

buoy-drogue configuration for each drifting buoy data set.

of each year) and

Drifter Buoy-Drogue Deployment Fate
I.D. Confiquration Date Area (to Dec. 31)
1981
4070 standard drifting buoy; Oct. 9 centre of Saglek operating
"window shade" drogue Bank
4071 standard drifting buoy; Oct. 9 centre of Nain Bank aground Mar.
"window shade" drogue 17 off we s t
coast of Nflg;
recovered
1982
4072 standard drifting buoy; Aug. 7 offshore of Saglek operating
"window shade" drogue Bank in 2400 m
water depth
4073 standard drifting buoy; Aug. 4 on western side of grounded
"window shade" drogue Saglek Bank Aug. 29 south
of Hebron
4074 standard drifting buoy; Aug. 7 over continental picked up
"window shade'" drogue slope of Saglek Oct. 12 in
Bank Strait of
Belle Isle
4075 standard drifting buoy; Aug. 7 over centre of grounded
"window shade" drogue Saglek Bank Aug. 22 north
of Hebron
4077 air deployable buoy; Sept.10 offshore in 3600 m operating
holey sock drogue water depth (near
former site of
Ocean Station Bravo)
4078 air deployable buoy; Sept.8 offshore of Nain operating
holey sock drogue Bank in 3000 m
water depth
4079 standard drifting buoy; Aug. 5 over Nain Bank operating;
initially anchored, Sept.30 began drifting recovered
no drogue near Hibernia
in Feb. 1983
4080 standard drifting buoy; Aug. 6 over Saglek Bank operating
initially anchored; Sept.12 began drifting
no drogue
1983
4071 standard drifting buoy; Aug. 11 centre of Saglek operating
"window shade" drogue Bank
4091 standard drifting buoy; Aug. 11 over continental operating
"window shade" drogue slope east of
Saglek Bank
4094 standard drifting buoy; Aug. 11 over continental grounded on
"window shade" drogue rise east of Nov. 29 off
Saglek Bank S. Labrador
4093 standard drifting buoy; Aaug. 9 over abyssal depths operating

"window shade" drogue .

off Hamilton Bank
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basis and include the outputs from the pressure and temperature sensors. When
the raw data values reach the ARGOS centre in Toulouse, France, positions are
computed and calibration equations applied to the pressure and temperature
outputs to provide engineering values.

The data are then stored on the ARGOS computer. The most recently received
data values can be accessed via telex or telephone lines. Most of the time, the
position values are available within 4 hours of the measurement times. In
addition, all ARGOS data were obtained on a computer tape once each month. Since
the atmospheric pressure and sea-surface temperature are useful for forecast
applications, the data were also transmitted back to North America on the Global
Transatlantic System for use by weather services and Petro-Canada's consultant
providing weather and sea-state forecast services.

For this report, all data were obtained from the monthly computer tapes
generated by System ARGOS.

2.3 DRIFTER TRAJECTORIES

The tracks of all drifters to December 1983 are presented in Figure 1.
Detailed track plots for each drifter are plotted on a series of 1:2,000,000 maps
in Appendix 1. Plots and statistical summaries of drifter velocities derived
from the time series positional data are shown in Appendix 2.

2.4 ATMOSPHERIC PRESSURE AND SEA-SURFACE TEMPERATURE DATA

The buoys were fitted with atmospheric pressure and sea-temperature sensors.
The pressure sensors consist of a Paroscientific digiquartz transducer having a
range of 920 to 1048 mbars and an accuracy of +1 mbar, according to the
manufacturer's specifications. The sea-temperature sensor is a thermistor with
a range of -5 to 35°C and a specified accuracy of +0.2°C. Intercomparisons of
pressure and temperature data, obtained from different buoys during land-based
testing, indicate the measurements are consistent to within the specified
accuracies, although independent measurements were not available in the limited
time allocated for testing.

The median value derived from each group of pressure and temperature
measurements (1981-1982), as obtained from individual satellite overpasses, are
plotted in Appendix 3. Occasional anomalous values were detected and corrected
by automatic data scanning using first difference techniques. For differences
of sequential readings exceeding 10 mbar in pressure and 2°C in temperature, the
suspect values were replaced by linear interpolation. In most data sets, the
number of corrected values amounted to approximately one percent of the total
number of data samples.

2.5 LAND-BASED WIND MEASUREMENTS

In 1982, wind data were obtained from satellite transmitting automatic
weather stations mounted on well-exposed offshore islands, operated by Petro-
Canada in the summer and autumn of 1982. The sites of wind measurements, shown
in Figure 1, are:
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SITE LATITUDE LONGITUDE PERIOD OF OBSERVATIONS
Quaker Hat Island 54°44'N 57°20'wW August 1 to December 31, 1982
Stirrup Island 57°37'N 61°19'wW August 23 to December 31, 1982

The anemometers provide hourly wind data from the standard measurement
height of 10 m above ground level.

3. NEAR-SURFACE CIRCULATION FEATURES
3.1 POSITIONAL DATA

The number of positional fixes obtained for each drifter generally ranged
from an average of 13 daily positions off northern Labrador to an average of 10
daily positions off Newfoundland.

The ARGOS data were first edited for unacceptable satellite fixes and
redundant positions. The latitude and longitude values were then plotted versus
time and anomalous values were identified and removed manually. The total number
of erroneous positional values was small, numbering four or less for all
drifters, with the exception of drifter 4091, used in 1983. For the latter data
set, a total of 10 erroneous positions were detected from August 11 to November
14, (After November 14, the positional data rate for this drifter was reduced
to an average of only two positions per day and it was no longer possible to
determine which, if any, of the positions were erroneous.)

3.2 MAPS OF COMPUTED NEAR-SURFACE VELOCITIES

From the positional data of each drifter, velocities were computed (Appendix
2). To avoid large uncertainties in the velocity calculations, a minimum elapsed
time of six hours was required between successive positions. Taking the 90%
confidence level of positional accuracy in each component as 0.6 km (as derived
from stationary land-based testing), the corresponding accuracy from velocity
components would be 3.5 km/d or 0.04 m/s when calculated over six hours elapsed
time.

Time series drifter velocities were then computed at uniform six-hourly
intervals using linear interpolation. From these data, basic statistics were
computed for each drifter track (Appendix 2).

Maps of vector-averaged near-surface currents in the western Labrador Sea,
have been prepared, as derived from the 14 drifter tracks (Figures 3-6).
Velocities have been vector-averaged over grids of approximately 50 and 25 km
dimension, for maps of scale 1:6,750,000 (Figure 3) and 1:2,000,000 (Figures 4
to 6), respectively. One grid has been plotted on each map. For the 1:6,750,000
scale map only vector averages based on three or more velocities have been
plotted. On the maps, the number of data points contributing to each average
have been shown beside each vector.

3.3 DESCRIPTION OF DRIFTER MOTIONS
The Labrador Current consists of two spatially separated southeasterly

flowing branches, one over the inner marginal trough and the other further
offshore over the continental slope. Separating the twe current streams is an
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Figure 3: Near-surface currents averaged over 50 km grids, as derived from
fourteen drifter trajectories obtained in the summer and fall of 1981 to 1983.
The near-surface velocities are represented by the mean velocity vector. The
number of six-hourly observations is noted above each vector. The maximum and
minimum axes of the ellipses correspond to the components of the standard
deviation resolved along the principal axes of variations.
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Figure 4: Near-surface currents off Northern Labrador averaged over 25 km grids.
The map scale is 1:2,000,000. See the caption of figure 3 for more details.



Figure 5: Near-surface currents off Central Labrador averaged over 25 km grids.

See the caption of figure 3 for more details.

The map scale is 1:2,000,000.
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area of directionally unsteady flows centred over the various banks between the
trough and slope (Buckley et al., 1981; Fissel and Lemcn, 1990).

Exchanges between the two branches of the Labrador Current often occur
through the saddles which separate the individual banks located over the middle
portion of the shelf. Evidence of cross-shelf near-surface flows was obtained
from the track of drifter 4070 in 1981, which exited the inner marginal trough
in mid-November along the southern side of Hopedale Saddle and then returned on
the inner trough current in late November by way of the northern side of
Cartwright Saddle (Figure 7). Further evidence of cross-shelf exchanges through
saddles is found in the 1982 drifter results. Drifter 4079 was observed to leave
the marginal trough through Hopedale Saddle (October 17-15) and then to re-enter
the marginal trough region through Hawke Saddle (November 10-16). Two other
drifters also turned shoreward from the outer branch of the Labrador Current
through Hawke Saddle (Figure 7). Drifter 4078 followed the bathymetry into and
then out of Hawke Saddle rejoining the offshore branch of the Labrador Current.
Drifter 4079 also used Hawke Saddle to travel from the offshore side of Hamilton
Bank into the southern end of the marginal trough.

There are also occasions in which drifter tracks passed over banks in moving
from one current branch to another (Figure 8). 1In the first of these, drifter
4074 travelled from the offshore branch to the inshore branch of the Labrador
Current by way of Nain Bank (August 13-September 2). [This same pattern has been
observed in the track of an iceberg in the spring of 1981 (Birch et al., 1982)
and in a few observations of icebergs from a drill site on central Nain Bank
(Marex, 1976).] Later, from November 17-30, drifter 4080 passed along the
central axis of Hamilton Bank from Cartwright Saddle to the offshore branch of
the Labrador Current. However, for both of these events, the net velocities were
small, the motion having occurred over an extended period of time in comparison
to drifters which moved through the saddles from one bathymetric regime to
another. Therefore, these over-bank motions probably are not as important as
exchanges through the saddles (described above) to the overall exchange between
the two branches of the Labrador Current.

In 1982, the net motion experienced by drifters in the marginal trough and
the outer portion of the offshore branch of the Labrador Current appeared to be
approximately equal (Figure 9). This was based on the motions of two drifters
released simultaneously in the vicinity of Saglek Bank. A drifter was released
in each current branch and traversed roughly the same length of the Labrador
coastline over a one month period. The magnitudes of the vector averaged
velocity (or net velocity) within this period were 22.7 cm/s (trough) and 21.8
cm/s (slope). Note, however, that the offshore drifter was located in the outer
portion of the offshore branch of the Labrador Current. Had this drifter been
located in the intense but narrow portion of the Current located just beyond the
shelf break, the drift speed would have been considerably larger, as discussed
below.

Given the tendency for near-surface exchanges to occur through saddles as
noted above, and the concentration of the two cores of the Labrador Current over
steeply sloping bottom, topographic steering of near-surface currents appears to
be important. Peterson and Symonds (1988) noted similar cross-shelf exchange
patterns in satellite-tracked ice floe velocities in Hopedale and Hawke Saddles.
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Figure 7: Portions of drifter trajectories indicative of near-surface exchanges

between the inner and outer branches of the Labrador Current. (a) Drifter 4070
in 1981; (b) Drifter 4078 and 4079 in 1982.
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The upstream origin of the inner branch of the Current as a well defined
entity is unclear. The motions of drifters 4073 and 4080 in 1982, and 4094 in
1983, indicate that the surface flow becomes stronger and steadier off the
southwestern edge of Saglek Bank. This corresponds to the northern edge of the
channel separating Saglek from Nain Bank. Although bathymetrically separated from
the marginal trough, the data indicate that the inner core of the Current may
first become identifiable in this region.

Of the 1981-1983 drifter data, only one trajectory overlay the shelf break
region as far north as Saglek Bank (Figure 4). This drifter (4074 in 1982)
followed the 500 m bathymetric contour south, then curved shoreward onto Nain
Bank. For the northern portion of the Labrador Shelf, the data are insufficient
to describe the characteristics of the offshore branch of the Labrador Current.
The possible existence of intrusive circulation patterns south of Saglek and Nain
banks, as well as the underlying cause of the motion of 4074 onto Nain Bank, must
await further measurements.

Labrador Current Velocity Statistics by Bathymetric Regime

Each of the drifter trajectories obtained north of the Strait of Belle Isle
(52°N) was divided into individual segments according to the type of bathymetric
regime (trough, bank, saddle, continental slope, continental rise and abyssal
waters). The choice as to bathymetric regime was made arbitrarily and some
segments, where the drifter was oscillating between two regimes, were not used.
Velocity statistics were then computed according to type of bathymetric regime.
(The steadiness factor, B, is defined as the ratio of the magnitude of the mean
velocity magnitude to mean speed. Ramster et al. (1978) suggest that values of
B significantly less than 70% are indicative of unsteady flows for which the
vector mean is not representative of their true nature).

Table 2 provides statistics of summer near-surface currents during the
summer and autumn seasons off Labrador, based on three years of drifter data
(1981-1983). The results contained in Table 2 can be summarized as follows:

(1) The inner core of the Labrador Current follows the marginal trough. Speeds
here are typically 0.2 to 0.4 m/s with a mean speed of 0.26 m/s over the
records of three summers, 1981-1983. The current is relatively steady as
indicated by the 80% steadiness (B) factor. The maximum speed travelled
by a drifter over a 6-hour interval was 0.85 m/s, although generally peak
speeds were in the 0.5-0.6 m/s range.

(2) The offshore branch of the Labrador Current consists of: a strong current
core following the continental slope/shelf break, with reduced
southeasterly flows over the deeper waters of the continental rise
(1,500-3,000 m). In the shelf break/inner slope portion, the mean speed
was large at 0.39 m/s and the flows had a high degree of directional
steadiness (B=93%). Average current speeds were about 50% greater than
over the marginal trough. The amount of ‘data over the continental slope
is limited by comparison to other regions, with only 33 days in total
compared to 173 over the marginal trough. The lateral shear in the deeper
waters of the offshore branch are discussed below.



Table 2: Velocity statistics for segments of six-hourly interpolated drifter velocity data according to
bathymetric regime. Note that summary statistics are computed as time-weighted means for velocity magnitude
and mean speed and as overall maximum for maximum speed. The steadiness factor B is defined as the ratio of
net velocity to mean speed times 100%. (Note: Segments of drifter tracks not used: 4073, Aug.22-23 Grounded
at times on coastline at 59°N; 4074, Aug.29-Sept.6 Inner edge on Nain Bank or trough?; 4079, Oct.1-3 Nain Bank
or trough?; 4079, Oct.10-20 Trough or inner portion of Hopedale Saddle; 4080, Nov.12-17 Trough or inner portion
of Cartwright Saddle.)

Drifter Period f## of Net Vel Speed B Drifter Period # of Net Vel Speed B
Days Mag. Mean Max % Days Mag. Mean Max %
{Vec Avqg) m/s) (Vec Avq) (m/s)
a) Marginal Trough (*inner trough <200 m) c) Saddle
4070* Oct.25-Nov.10,1981 16 0.183 0.214 0.789 86 4070 Nov.27-29,1981 2 0.314 0.326 0.396 96
4070 Nov.10-15,1981 5 0.306 0.330 0.605 93 4078 Oct.12-23,1982 11 0.045 0.213 0.437 21
4070 Nov.29-Dec.12,1981 13 0.183 0.243 0.598 75 4079 Oct.21-25,1982 4 0.084 0.312 0.482 27
4071 Oct.30-Nov.15,1981 16 0.327 0.379 0.815 86 4079 Nov.12-15,1982 3 0.251 0.330 0.530 76
4073 Aug.24-27,1982 3 0.362 0.374 0.563 97 e -
4074 Sep.7-21,1982 14 0.222 0.255 0.457 87 Mean 20 0.111 0.262 0.530 42
4074 Sep.22-0ct.7,1982 15 0.243 0.269 0.765 90 d) Continental Slope (Depth: 300-1,500 m)
4079 Oct.5-9,1982 4 0.395 0.403 0.620 98 4072 Oct.5-11,1982 6 0.402 0.412 0.594 098
4080 Oct.3-19,1982 16 0.133 0.174 0.429 76 4074 Aug.7-12,1982 5 0.508 0.520 0.723 98
4080* Oct.20-Nov.11,1982 22 0.184 0.262 0.852 70 4078 Oct.6-12,1982 6 0.387 0.400 0.635 96
4094* Oct.12-Nov.3,1983 22 0.116 0.174 0.415 67 4079 Oct.26-Nov.11,1982 16 0.294 0.334 0.557 88
4094 Nov.3-11,1983 8 0.315 0.351 0.713 90 e
4094* Nov.11-30,1983 19 0.158 0.262 0.620 60 Mean 33 0.363 0.388 0.723 93
———————————————————————————— e) Continental Rise (Depth: 1,500-3,000 m)

Mean 173 0.206 0.25 0.850 80 4072 Aug.7-22,1982 15 0.103 0.179 0.349 57
b) Banks ' 4072 Aug.23-Sep.6,1982 14 0.112 0.256 0.578 44
4070 Oct.9-25,1981 16 0.041 0.133 0.424 31 4072 Sep.7-0Oct.4,1982 27 0.205 0.247 0.542 83
4078 Sep.30-0ct.6,1982 6 0.264 0.295 0.444 89 4078 Sep.9-29,1982 20 0.123 0.136 0.334 90
4071 Oct.9-27,1981 18 0.033 0.152 0.372 22 4070 Nov.19-25,1981 6 0.070 0.197 0.538 35
4073 Aug.9-20,1982 11 0.028 0.194 0.437 15 4071 Aug.12-0Oct.12,1983 61 0.156 0.222 0.626 70
4074 Aug.13-28,1982 15 0.048 0.170 0.707 28 4091 Aug.12-0ct.17,1983 66 0.137 0.210 0.736 65
4075 BRAug.7-22,1982 15 0.056 0.195 0.610 29 e
4078 Oct.26-Nov.11,1982 16 0.075 0.119 0.422 63 Mean 209 0.150 0.215 0.736 70
4080 Sep.13-0ct.3,1982 20 0.082 0.174 0.390 47 f£) Abyssal Waters (Depth: >3,000 m)
4080 Nov.18-Dec.5,1982 17 0.104 0.174 0.428 60 4077 Sep.12-Dec.31,1982 109 0.007 0.124 0.404 6
4094 Aug.12-0ct.12,1983 61 0.021 0.204 0.534 10 4093 Aug.10-Nov.29,1983 111 0.031 0.223 1.100 14

Mean 195 0.048 0.177 0.707 27 Mean 220 0.019 0.174 1.100 11

91
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(3) Current velocities over the banks are variable in direction, resulting in
low net vector-averaged velocities. Speeds are typically about 0.2 m/s,
but can reach 0.6-0.7 cm/s, over six-hour averaging periods.

(4) Relatively little data are available for the saddle regions. Mean speeds
were comparable to those in the marginal trough, about 0.26 m/s. The
steadiness factors are less due to the intrusive character of the current
in these areas.

(5) Offshore of the Labrador Current, in the abyssal zone, net velocities are
low due to the directional variability. Mean speeds averaged 0.17 m/s.
However, high velocities were exhibited by both drifter 4072 during
December 1982, and 4093 during November-December 1983 in a region roughly
300-400 km north of Flemish Cap. The high velocities observed in this
offshore region may reflect the influence of the North Atlantic Current.

A comparison (Figure 10) was made of the drifter results and the subsurface
current measurements (from depths of 52 to 102 m) based on the 1980 current meter
data (Fissel and Lemon, 1990). The current meter velocity statistics were
derived from 10-minute samples while the drifter velocity statistics are based
on 6-hourly interpolated values. As a result, the mean speeds and, in
particular, the maximum speeds will tend to be underestimated in the drifter
velocities as compared to the current meter velocities. The near-surface
currents are generally larger than those at greater depths (Figure 10). Over the
trough and slope regimes, the near-surface currents are larger by approximately
a factor of two. The increases are somewhat less for currents over the banks,
particularly for net velocities. Given the very limited amount of saddle data
for both drifters (20 days) and current meters (one 1location only), the
comparisons are of questionable significance. Steadiness factors agree to within
30% or better within the same bathymetric regimes, reflecting the same high
degree of directional variability over banks and saddles, and much reduced
variability over the trough and slope.

Lateral Shear in the Offshore Branch of the Labrador Current

The drifter data were used to examine lateral shear in the offshore branch
of the Labrador Current at near-surface levels. Previous studies (e.g. Smith,
Soule and Mosby, 1937) using indirect geostrophic methods have shown that the
core of the offshore branch of the Labrador Current is centred over the outermost
portion of the continental shelf and the continental slope, associated with
depths ranging from 300 m to perhaps 1,500 m.

Four drifters in 1982 (4072, 4074, 4078 and 4079) and two in 1983 (4071,
4091) travelled persistently to the southeast in the offshore branch of the
Labrador Current. Based on data of portions of these six drifters, when located
offshore of the banks and north of 52°N, the net velocity over two-day intervals
were plotted as a function of water depth (Figure 11). The results show that the
core of the current (near-surface speeds of 0.25 to 0.54 m/s) occurs over depths
ranging from 300 m to as deep as 1,700 m. From 1,700 to 3,000 m over the less
steeply sloping continental rise, average net velocities are reduced from 0.25
to 0.12 m/s, although there is substantial scatter in the data. These results
agree well with the earlier results based on geostrophic methods, and indicate
the current core location to be in the 300 to 1,700 m depth range.
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Figure 10: Summary statistics by bathymetric regime as computed from the 1981 to
1983 drifter results ( this study) and the 1980 subsurface current meter results
(Fissel and Lemon, 1990).
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Most of the data points in the 1,800 to 2,800 m depth range, having higher
speeds of 0.3 to 0.45 m/s, were measured over the more steeply sloping region off
Cartwright Saddle and northern Hamilton Bank. In this region, the width of the
continental slope and rise decreases markedly. The separation between the 300
and 3,000 m bathymetric contours decreases from 170 km, off Nain Bank, to 90 km
off Cartwright Saddle. Drifters 4072, 4079 (in 1982), 4071 and 4091 (in 1983)
all accelerated as they moved south through this area. For example, 4071
increased speed from about 0.1-0.2 m/s to 0.45 m/s (2 day averages) and 4091 from
0.15-0.2 to 0.35-0.4 m/s. 1In this region off Cartwright Saddle, current speeds
appear to increase over the entire shelf break/continental slope - continental
rise cross section. A representative mean speed curve for this portion of the
outer shelf/slope region would be about 0.1 m/s above the curve plotted in Figure
1.

The results presented above point to a correlation between surface current
speeds and bottom slope in the outer branch of the Labrador Current. This
correlation appears to hold, both laterally across the width of the Current and
along-stream, where acceleration in the currents along a particular isobath
coincides with increased bottom slope, as was the case off Cartwright Saddle.
Further investigation is required to quantify the apparent relationship and to
determine the time and spatial scales of the response of the current to changes
in bottom slope.

4. SUMMARY

Preliminary results from 14 drogued drifters released during the autumn of
1981 and the summers of 1982 and 1983 are presented in this report.

The combined 1981-1983 data in the form of average near-surface current
maps, results in the most complete maps of directly measured near-surface
circulation available for this area (Fiqures 3-6). The two branches of the
Labrador Current are clearly evident, separated by weaker and directionally
variable flow over the banks. Mean near-surface current speeds (over six hours)
in the inner and outer branches of the Labrador Current are typically 0.26 and
0.39 m/s respectively, suggesting the offshore branch of the current is faster.
Currents in the saddle regions are moderately strong, averaging 0.26 m/s, and
intrusive in character. Currents are generally weaker offshore of the Labrador
Current; however in late fall of both 1982 and 1983, the drifters moved at speeds
on the order of 0.75 m/s in the region about 550 km northeast of Newfoundland.

The outer branch of the Labrador Current can be divided into: (1) an intense
(0.4 m/s) but narrow (<20-40 km) core current trapped over the steeply sloping
shelf edge and inner continental slope area and (2) an outer portion of weaker
current speeds (0.2 m/s) found further offshore over the reduced slopes of the
continental rise. The apparent correlation between near-surface current speed
and bottom slope for the offshore branch of the Labrador Current may also exist
along the length of the Current as illustrated by the current speeds and bottom
slope exhibiting concurrent increases off Cartwright Saddle.
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APPENDIX 1
DETAILED TRACK PLOTS

The first map indicates the areal coverage of the various base maps. The base
map used for each track plot is identified by the letter in the upper right hand
corner. All maps are 1:2,000,000 scale, Lambert Conformal projection.
Bathymetric contours have been included in order to outline the bank regions and
the continental slope.
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APPENDIX 2

PLOTS AND STATISTICAL SUMMARIES

OF DRIFTER VELOCITIES
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4070 Drifter Velocity Statistics
start date is 1981 10 9 12 0 0.0
stop date is 1982 3 31 16 0 0.0

QUANTITY UNITS MEAN
speed m/s 0.215
direction
ew_comp m/s 0.049
ns_comp m/s -0.104

4071_1 Drifter Velocity Statistics
start date is 1981 10 9 12 0 0.0
stop date is 1982 3 21 4 0 0.0

QUANTITY UNITS MEAN
speed m/s 0.175
direction

ew_comp m/s 0.007
ns_comp m/s -0.059

4072 Drifter Velocity Statistics
start date is 1982 8 7 14 51 51.0
stop date is 1982 12 30 18 51 51.0

QUANTITY UNITS MEAN
speed m/s 0.232
direction

ew_comp m/s 0.083
ns_comp m/s -0.072

4073 Drifter Velocity Statistics
start date is 1982 8 6 21 50 39.0
stop date is 1982 8 29 17 50 39.0

QUANTITY UNITS MEAN
speed m/s 0.167
direction

ew_comp m/s 0.023
ns_comp m/s -0.077

4074 pDrifter Velocity Statistics
start date is 1982 8 7 16 38 42.0
stop date is 1982 10 11 18 38 42.0

QUANTITY UNITS MEAN
speed m/s 0.245
direction

ew_comp m/s 0.036

ns_comp m/s -0.157

STD.DEV.
0.146

0.157
0.173

STD.DEV.
0.155

0.160
0.161

STD.DEV.
0.141

0.164
0.186

STD.DEV.
0.110

0.117
0.141

STD.DEV.
0.164

0.161
0.187

MAXIMUM

0.905
359.9

0.693

0.501

MAXTMUM

1.238
359.5

0.761

0.541

MAXTMUM

1.001
359.5

0.604

0.774

MAXIMUM

0.487
356.5

0.334

0.238

MAXTIMUM

1.083
358.6

0.371

0.280

MINIMUM

0.002

0.2
-0.377
-0.750

MINIMUM

0.001

0.3
~-0.959
-0.783

MINIMUM

0.006

0.4
-0.807
-0.580

MINIMUM

0.007

1.6
-0.228
-0.450

MINIMUM

0.016

0.8
-0.930
-0.750
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4075 Drifter Velocity Statistics
start date is 1982 8 7 10 0 6.0
stop date is 1982 8 21 18 0 6.0

QUANTITY UNITS MEAN
speed m/s 0.153
direction

ew_comp m/s -0.027
ns_comp m/s ~-0.049

4077 Drifter Velocity Statistics
start date is 1982 9 11 4 43 13.0
stop date is 1982 12 30 18 43 13.0

QUANTITY UNITS MEAN
speed m/s 0.107
direction

ew_comp m/s -0.003
ns_comp m/s -0.005

4078 Drifter Velocity Statistics
start date is 1982 9 8 18 40 32.0
stop date is 1982 12 30 20 40 32.0

QUANTITY UNITS MEAN
speed m/s 0.155
direction

ew_comp m/s 0.033
ns_comp m/s -0.087

4079 Drifter Velocity Statistics
start date is 1982 9 30 12 2 44.0
stop date is 1982 12 30 10 2 44.0

QUANTITY UNITS MEAN
speed m/s 0.198
direction

ew_comp m/s 0.068
ns_comp m/s -0.087

4080 Drifter Velocity Statistics
start date is 1982 9 13 0 1 45.0
stop date is 1982 12 30 18 1 45.0

QUANTITY UNITS MEAN
speed m/s 0.187
direction

ew_comp m/s 0.061
ns_comp m/s -0.100

STD.DEV.

0.116

0.091
0.160

STD.DEV.

0.058

0.090
0.082

STD.DEV.

0.106

0.111
0.118

STD.DEV.

0.138

0.146
0.158

STD.DEV.

0.119

0.122
0.143

MAXIMUM

0.599
359.0

0.221

0.378

MAXIMUM

0.347
359.8

0.280

0.217

MAXIMUM

0.652
359.0

0.406

0.226

MAXIMUM

0.604
359.4

0.531

0.392

MAXIMUM

0.847
359.6

0.606

0.288

MINIMUM

0.009

0.8
-0.261
-0.584

MINIMUM

0.005

0.6
-0.252
-0.318

MINIMUM

0.003

1.6
-0.359
-0.647

MINIMUM

0.001

0.3
-0.398
-0.551

MINIMUM

0.002

0.1
-0.289
-0.592
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4071_2 prifter Velocity Statistics
start date is 1983 8 11 15 25 1.0

stop date is 1983 12 31 17 25 1.0
QUANTITY UNITS MEAN
speed m/s 0.227
direction

ew_comp m/s 0.105
ns_comp m/s -0.088

4091 Drifter Velocity Statistics
start date is 1983 8 11 14 19 59.0
stop date is 1983 12 31 14 19 59.0

QUANTITY UNITS MEAN
speed m/s 0.245
direction
ew_comp m/s 0.120
ns_comp m/s -0.088

4093 Drifter Velocity Statistics
start date is 1983 8 9 6 32 17.0
stop date is 1983 12 31 18 32 17.0

QUANTITY UNITS MEAN
speed m/s 0.284
direction

ew_comp m/s 0.069
ns_comp m/s -0.025

4094 Drifter Velocity Statistics
start date is 1983 8 11 23 41 25.0
stop date is 1983 11 28 19 41 25.0

QUANTITY UNITS MEAN
speed nm/s 0.185
direction

ew_comp m/s 0.041
ns_comp m/s -0.070

STD.DEV.

0.173

0.144
0.206

STD.DEV.

0.160

0.176
0.179

STD.DEV.

0.245

0.267
0.252

STD.DEV.

0.113

0.138
0.146

MAXIMUM

1.202
358.7

0.892

1.038

MAXTMUM

0.892
359.6

0.884

0.449

MAXIMUM

1.243
359.8

1.106

0.976

MAXIMUM

0.698
359.9

0.692

0.431

MINIMUM

0.003
0.043
-0.485
-0.469

MINIMUM

0.005

0.1
-0.335
-0.705

MINIMUM

0.005

0.5
-0.854
-1.025

MINIMUM

0.006

1.3
-0.322
-0.470
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APPENDIX 3

PLOTS OF SEA TEMPERATURE

AND AIR PRESSURE

MEASURED FROM DRIFTING BUOYS
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APPENDIX 4

PLOTS OF WIND DATA

OBTAINED AT OFFSHORE ISLANDS

DURING 1982
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