

PBS Software:

Maps, Spatial Analysis, and Other Utilities

Jon T. Schnute, Nicholas M. Boers, and Rowan Haigh

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2003

Canadian Technical Report of
Fisheries and Aquatic Sciences 2496

Canadian Technical Report of
Fisheries and Aquatic Sciences

 Technical reports contain scientific and technical information that contributes to existing
knowledge but which is not normally appropriate for primary literature. Technical reports are
directed primarily toward a worldwide audience and have an international distribution. No
restriction is placed on subject matter and the series reflects the broad interests and policies of
the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.
 Technical reports may be cited as full publications. The correct citation appears above
the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries
Abstracts and indexed in the Department�s annual index to scientific and technical publications.
 Numbers 1 - 456 in this series were issued as Technical Reports of the Fisheries
Research Board of Canada. Numbers 457 - 714 were issued as Department of the
Environment, Fisheries and Marine Service Technical Reports. The current series name was
changed with report number 925.
 Technical reports are produced regionally but are numbered nationally. Requests for
individual reports will be filled by the issuing establishment listed on the front cover and title
page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport technique canadien des
sciences halieutiques et aquatiques

 Les rapports techniques contiennent des renseignements scientifiques et techniques qui
constituent une contribution aux connaissances actuelles, mais que ne sont pas normalement
appropriés pour la publication dans un journal scientifique. Les rapports techniques sont
destinés essentiellement à un public international et ils sont distribués à cet échelon. Il n�y a
aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des
politiques du ministère des Pêches et des Océans, c�est-à-dire les scences halieutiques et
aquatiques.
 Les rapports techniques peuvent être cités comme des publications complètes. Le titre
exact paraît au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés
dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l�index
annual des publications scientifiques et techniques du Ministère.
 Les numéros 1 à 456 de cette série ont été publiés à titre de rapports techniques de
l�Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre
de rapports techniques de la Direction générale de la recherche et du développement, Service
des pêches et de la mer, ministère de l�Environnement. Les numéros 715 à 924 ont été publiés
à titre de rapports techniques du Service des pêches et de la mer, ministère des Pêches et de
l�Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925.
 Les rapports techniques sont produits à l�échelon regional, mais numérotés à l�échelon
national. Les demandes de rapports seront satisfaites par l�établissement auteur dont le nom
figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution
par des agents commerciaux.

Errata for PBS Software: Maps, Spatial Analysis, and Other Utilities, first printing
(last updated January 9, 2004)

Page 17, fourth line, replaced

 (qcdexe.cpp, qcdexe.h) → (qcdexe.cpp)

Page 39, before the 13th line from the bottom, inserted

If you have MiKTeX installed, you may need to edit its configuration file (e.g.,
C:\Program Files\texmf\miktex\config\miktex.ini). In it, find your
version of LaTeX. To determine your version, issue the command latex in a DOS
window. The output should resemble

This is e-TeX, Version 3.141592-2.1 (MiKTeX 2.4)

where in this case, the version of LaTeX is �e-TeX�. At the end of the �Input Dirs� line,
append a semicolon, the path to Rd.sty, and two forward slashes (e.g.,
;C:\PROGRA~1\R\rw\share\texmf//).

 If, while running Rcmd CHECK, you receive errors involving a file named
MkRules (e.g., C:\Program Files\r\rw\src\gnuwin32\MkRules), you
may need to edit it. Prefix a hash (#) to the following lines (104 to 106 and 121 to 122):

.C.d:
 @echo "making $@ from $<"
 @$(CXX) $(DEPARG) $(CXXFLAGS) $($*-CXXFLAGS) $< -o $@

.C.o:
 $(CXX) $(CXXFLAGS) $($*-CXXFLAGS) -c $< -o $@

Page 43, lines 7 and 10, replaced

 bin → cmd

Page 47, Table A1, indented rows 3 and 7 one additional space.

Page 47, Table A1, indented rows 4 to 6 and 8 to 11 two additional spaces.

Page 47, Table A1, row 19 column 2, replaced

Datasets → Data sets

Page 47, Table A1, below row 17, inserted

 \AnalyticalTools Analytical tools for Windows
 \R R 1.8.1
 \Scilab Scilab 2.7.2

Canadian Technical Report of

Fisheries and Aquatic Sciences 2496

2003

PBS Software: Maps, Spatial Analysis, and Other Utilities

by

Jon T. Schnute, Nicholas M. Boers, and Rowan Haigh

Fisheries and Oceans Canada

Science Branch, Pacific Region

Pacific Biological Station

3190 Hammond Bay Road

Nanaimo, British Columbia

V9T 6N7

CANADA

 � ii �

 Her Majesty the Queen in Right of Canada, 2003

Cat. No. Fs97-6/2496E ISSN 0706-6457

9 8 7 6 5 4 3 2 1 (First printing � October 31, 2003)

Correct citation for this publication:

Schnute, J.T., N.M. Boers, and R. Haigh. 2003. PBS software: maps, spatial analysis, and other

utilities. Can. Tech. Rep. Fish. Aquat. Sci. 2496: viii + 82 p.

 � iii �

TABLE OF CONTENTS

Abstract .. vi
Résumé... vi
Preface... vii
1. Introduction... 1
2. Maps and Spatial Analysis.. 2

2.1. Data Structures for Maps ... 2
PolySet .. 2
PolyData.. 3
EventData.. 3
LocationSet ... 4

2.2. Map Projections ... 4
2.3. PBS Mapping Algorithms and Functions .. 7
2.4. Shoreline Data.. 9
2.5. Examples and Applications.. 10
2.6. Strengths, Limitations, and Alternatives.. 15

3. Utilities.. 15
3.1. Operating System Utilities... 15
dusage.exe (Disk Usage) .. 15
qcd.bat (Quickly Change Directory).. 16
recent.exe (Recently Modified Files) .. 17
setenv.exe (Set Environment Variables).. 17

3.2. Mapping Utilities ... 18
clipPolys.exe (Clip Polygons)... 18
convUL.exe (Convert between UTM and LL) ... 19
findPolys.exe (Points-In-Polygons)... 19
gshhs2r.pl (Convert GSHHS Data to PBS Map Format) .. 19

3.3. Database Utilities ... 20
Macro: 01_Create_Documents ... 20
Macro: 02_Document_Tables... 21
Macro: 03_Document_Fields.. 21
Macro: 04_Create_Empty_Database .. 21
Macro: 05_Populate_Local_Database .. 21
Macro: 06_convUL... 22
Form: Object_Name_Editor.. 22

4. Free Internet Software... 22
4.1. Scripting Languages... 22

Perl .. 23
Python ... 23
Parrot... 23
Tcl/Tk.. 24

4.2. Compilers... 25
C and C++... 25
Fortran... 26

 � iv �

Pascal .. 26
4.3. Tools for Windows .. 27

Adobe Acrobat Reader.. 27
Emacs: Text Editor ... 27
HTML Help Workshop (Microsoft) ... 28
Image Manipulation and Viewing .. 28
OpenOffice.org ... 28
TeX for Mathematical Typesetting... 29
UNIX Tools (Cygwin and R).. 29

4.4. Analytical Tools... 29
R.. 29
Scilab... 30
GIS (freegis.org) ... 30

5. Quick Tutorials ... 30
5.1. Using Emacs .. 31
5.2. Choosing a C/C++ Compiler ... 33
5.3. Building Software with C/C++ .. 34
5.4. Adding Software Product Information... 36
5.5. Embedding C Functions in R/S.. 37
5.6. Creating R Packages .. 39
5.7. Creating S-PLUS 2000 Libraries ... 41
5.8. Building GUIs with Tcl/Tk in Python and R... 43

Acknowlegements... 44
References... 44
Appendix A. Distribution CD... 47
Appendix B. Free Software Technical Information.. 49

Cygwin.. 49
Emacs & Emacs Speaks Statistics .. 49
GSHHS Software .. 50
OpenOffice.org ... 50
Parrot... 50
Pascal .. 51
TeX ... 51

Appendix C. PBS Mapping Function Dependencies.. 53
Appendix D. PBS Mapping Functions and Data .. 54

 � v �

LIST OF TABLES

Table 1. Principal graphics functions in the PBS Mapping package.. 8
Table 2. PolySets derived from the GSHHS database.. 10
Table 3. Database documentation tables... 20
Table 4. Emacs keystroke commands: Nick�s Emacs Cheat Sheet... 32
Table 5. Source code fib.c for making fib.dll ... 35
Table 6. Makefile for creating fib.dll .. 36
Table 7. Resource file for product information in fib.dll... 37
Table 8. C representations for R/S data types... 38
Table A1. Directories on the distribution CD... 47
Table B1. Comparisons between two Pascal compilers ... 51
Table D1. Functions and data sets in PBS Mapping... 54

LIST OF FIGURES

Figure 1. Map of the world ... 5
Figure 2. Map of the northeastern Pacific Ocean (longitude-latitude) ... 6
Figure 3. Map of the northeastern Pacific Ocean (UTM easting-northing).................................... 7
Figure 4. Tow tracks from a longspine thornyhead survey in 2001 ... 11
Figure 5. Areas of islands in the southern Strait of Georgia... 12
Figure 6. Pacific ocean perch survey data (1966-89) ... 13
Figure 7. Proof of Pythagoras� Theorem .. 14
Figure 8. Emacs frame with Hello.c .. 31

 � vi �

ABSTRACT

Schnute, J.T., N.M. Boers, and R. Haigh. 2003. PBS software: maps, spatial analysis, and other
utilities. Can. Tech. Rep. Fish. Aquat. Sci. 2496: viii + 82 p.

This report describes software written to facilitate the compilation and analysis of fishery
data, particularly data referenced by spatial coordinates. Our research stems from experiences
with information on Canada�s Pacific groundfish fisheries compiled at the Pacific Biological
Station (PBS). Despite its origins in fishery data analysis, our software has broad applicability.
The library PBS Mapping extends the languages R and S-PLUS to include two-dimensional
plotting features similar to those commonly available in a Geographic Information System (GIS).
Embedded C code speeds algorithms from computational geometry, such as finding polygons
that contain specified point events or converting between longitude-latitude and Universal
Transverse Mercator (UTM) coordinates. We also present a number of convenient utilities for
the Microsoft Windows operating systems, including commands that support computational
geometry outside the framework of R or S-PLUS. Tools to construct most of our software come
freely from the Internet, as documented here in a guide to the packages available. Furthermore,
we provide quick tutorials that address key technical issues relevant to our work, such as
embedding C code into an R package and writing documentation that meets the R standard. Our
results, which depend significantly on the work of students, illustrate the convergence of goals
between academic training and applied research.

RÉSUMÉ

Schnute, J.T., N.M. Boers, and R. Haigh. 2003. PBS software: maps, spatial analysis, and other
utilities. Can. Tech. Rep. Fish. Aquat. Sci. 2496: viii + 82 p.

Ce rapport présente un logiciel conçu pour faciliter la compilation et l�analyse de données
sur la pêche, particulièrement de données géoréférencées. Notre recherche découle de notre
expérience de la compilation de données sur la pêche du poisson de fond dans le Pacifique à la
Station biologique du Pacifique (SBP). Bien qu�il ait été conçu pour analyser des données sur la
pêche, notre logiciel est d�application très générale. La cartothèque logicielle PBS Mapping
permet de développer les langages R et S-PLUS afin qu�ils comprennent des capacités de traçage
bidimensionnel semblables à celles disponibles couramment dans un système d�information
géographique (SIG). Le langage C permet d�accélérer les algorithmes géométriques, comme
ceux qui permettent de rechercher des polygones comportant des événements ponctuels précis ou
de convertir des coordonnées géographiques en coordonnées de Mercator transverse universelle.
Nous présentons également un certain nombre d�applications pratiques pour les systèmes
d�exploitation Windows de Microsoft, y compris des commandes de géométrie algorithmique à
l�extérieur du cadre des langages R et S-PLUS. Les outils utilisés pour mettre au point la plupart
de nos logiciels sont disponibles gratuitement sur Internet, tel que souligné dans un guide des
progiciels disponibles présenté dans ce document. De plus, nous offrons de courts didacticiels
qui traitent des principales questions techniques liées à notre travail, comme l�intégration de code
C dans un progiciel en langage R et la rédaction de documents qui satisfont à la norme du
langage R. Nos résultats, qui dépendent grandement du travail d�étudiants, illustrent la
convergence des objectifs de la formation académique et de la recherche appliquée.

 � vii �

PREFACE

During the last several years, I�ve had the pleasure of directing work by computer science
students from various local universities. My research as a mathematician in fish stock assessment
requires an extensive software toolkit, including statistical languages, compilers, and operating
system utilities. It helps greatly to have bright, adaptive students who can learn new languages
quickly, investigate software possibilities, answer technical questions, and design programs that
assist scientific analysis. Let me begin by acknowledging contributions from the following
students:
• Robert Swan (University of Victoria), 1996;
• Mike Jensen (Malaspina University-College and Simon Fraser University), 1997 and 1999;
• Chris Grandin (Malaspina University-College), 2000 and 2001;
• Nick Henderson (Malaspina University-College), 2002;
• Nick Boers (Malaspina University-College), 2003.

Starting in 1998, I began a formal connection with the Computing Science Department at
Malaspina University-College (MUC). My discussions with faculty members, particularly Dr.
Peter Walsh and Dr. Jim Uhl, highlighted the convergence of goals between academic training
and scientific research. Projects designed for fish stock assessment give students an opportunity
to further their computer science careers while producing useful software. Both MUC and the
Pacific Biological Station (PBS), where I work, are located in Nanaimo, British Columbia,
Canada. This happy juxtaposition makes it easy to engage students in the exchange of ideas
between academia and applied research. For example, Jim Uhl participated directly in Nick
Boers� PBS work term during the summer of 2003. Nick had completed a course in computer
graphics taught by Jim in the fall of 2002. Algorithms in the textbook (Foley et al. 1996) proved
invaluable for writing software to produce maps of the British Columbia coast with related
fishery information.

Quantitative fishery science requires a strong connection between theory and practice. In
his book on computing theory, Michael Sipser (1997, p. xii) tells students that:

�. . . theory is good for you because studying it expands your mind. Computer
technology changes quickly. Specific technical knowledge, though useful today,
becomes outdated in just a few years. Consider instead the abilities to think, to express
yourself clearly and precisely, to solve problems, and to know when you haven't solved
a problem. These abilities have lasting value. Studying theory trains you in these areas.�

While dealing with the issues addressed here, I found myself asking simple questions that have
numerically interesting answers. How do you locate fishing events within management areas or
other polygons? How should regional boundaries on maps be clipped to lie within a smaller
rectangle? I soon realised that I had touched upon the emerging field of computational geometry,
where people have devised clever and efficient algorithms for addressing such questions.

 Remarkably effective software can now be obtained freely from the Internet. I�m
particularly fond of R, a version of the powerful statistical language S (and later S-PLUS)
devised by Becker et al. (1988). Although written originally for Unix, R has also been

 � viii �

implemented for Microsoft�s Windows operating systems. The web site http://cran.r-project.org/
describes R as GNU S, �a freely available language and environment for statistical computing
and graphics�. The GNU project (http://www.gnu.org/), where the recursive acronym GNU
means �GNU�s Not Unix�, offers a wealth of free software including compilers for C/C++,
Fortran, and Pascal. Code can be written in these compiled languages to speed computations that
would otherwise run more slowly in R or S. Nick Boers has used such linkages intelligently to
bring fast computational geometry into our map drawing package for R/S.

 The Internet also makes various scripting languages freely available, including Perl
(http://www.perl.com/) and Python (http://www.python.org/). Personally, I prefer the consistent
mathematical design of Python, but many important tasks have been written in Perl. For
example, R uses extensive Perl scripts to build a complete library package from files containing
source code, data, and documentation. Similarly, Nick Boers used Perl to convert high-resolution
shoreline data (http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html) into the format used here.

 Work described in this report began in 1996, when I wanted to develop fishery databases
that would facilitate stock assessments and give perspective to the information available
(Schnute et al. 1996). Some of the tools described here, notably a set of convenient macros for
Microsoft Access, address questions raised at that time. Since then, our databases have improved
substantially, particularly for Pacific groundfish. These include detailed spatial information on
the catch of every species, recorded for every tow by observers aboard trawl vessels. Polygons
that define management regions and coastal boundaries have also become important components
of the data. Statistical analyses require graphical tools to portray information on coastal maps, as
with the software for R/S presented here.

The collective work of several students and various PBS staff members has followed a
path from designing databases to producing visual images on maps. Various other products
appeared along the way, including
• handy operating system tools,
• investigations into various options for free software, and
• resolution of technical questions raised by these tasks.
This report covers rather heterogeneous material, in an attempt to document results from all this
work. Readers can take from it whatever appears useful, most notably the PBS Mapping software
package for R/S. I�ve played mostly a design role in developing these tools, trusting the students
to deal with implementation. It�s been a highly collaborative process, often with heated debates
about how things should work. Occasionally, I�ve taken the first author�s prerogative of
resolving the debate by expressing my own view.

Jon Schnute

 � 1 �

1. INTRODUCTION

 This report describes software written to facilitate the compilation and analysis of fishery
data, particularly data referenced by spatial coordinates. Our work developed from experiences
constructing databases that capture information from Canada�s Pacific groundfish fisheries.
Fishing events take place across a broad range of coastal waters and result in the capture of many
species. Initially, we focused on issues related to database design and development, as described
in previous reports by Schnute et al. (1996), Haigh and Schnute (1999), Rutherford (1999),
Schnute et al. (2001, Section 2 and Appendix A), and Sinclair and Olsen (2002). Analyses of
these databases shifted our attention to the problem of portraying and understanding such
complex information. Maps with statistical information proved especially useful, and we found
ourselves facing questions commonly addressed by Geographic Information Systems (GIS).

 Commercial GIS packages can be expensive, with an additional requirement for
specialised training. Because analysts who deal with Pacific groundfish data usually have
experience using the statistical languages R (available freely on the Internet) or S-PLUS
(available commercially), we began by writing functions in this context to produce the maps
required. As described in the Preface to this report, students played an important role in these
developments. This year we completely redesigned and rewrote the software package, now
called PBS Mapping. Along the way, we devised other pieces of software and investigated
various technical issues. This report compiles a somewhat diverse body of work by various
students since 1996.

 Section 2 covers the mapping software itself, including a description of the public domain
Global Self-consistent, Hierarchical, High-resolution Shoreline (GSHHS) database used here.
We also discuss the Universal Transverse Mercator (UTM) projection that gives a particularly
accurate flat projection of the earth�s surface. Our software supports conversions between
longitude-latitude and UTM coordinates.

Section 3 documents a number of convenient utilities, both for Microsoft Access and the
Windows operating systems. Where possible, we have used free software to construct these
utilities, as discussed more completely in Section 4 and Appendix B. Section 5 provides quick
tutorials on key technical issues relevant to our work. Readers have access to our software and
documentation from a CD (Appendix A), including an Adobe Acrobat PDF file with this report.
Our figures, generated from the mapping software, appear best in colour. We recommend a
colour copy printed from the PDF file, if possible. Appendices C and D provide a complete
technical manual for the mapping library.

We anticipate that our software will change for the better, due to bug fixes and other

improvements. This report documents version 1.0. We may produce revisions as future versions
of the software become available.

 � 2 �

2. MAPS AND SPATIAL ANALYSIS

 Niklaus Wirth, the author of Pascal and Modula-2, summarises the essence of software
design in the title of his book (Wirth 1975): Algorithms + Data Structures = Programs. Our
software package PBS Mapping begins with data structures that embody two essential concepts.
First, polygons define boundaries, such as shorelines and fishery management areas. Second,
fishing events occur at specific locations defined by two coordinates, such as longitude and
latitude. The languages R and S conveniently support such structures through the concept of a
data frame, essentially a database table in which rows and columns define records and fields,
respectively. Objects in R/S can also have attributes that assign properties, such as the projection
used in defining a coordinate system.

2.1. Data Structures for Maps

PolySet

 In our software, a PolySet data frame defines a collection of polygons, based on four or
five numerical fields:
• PID � the primary identification number for a polygon;
• SID (optional) � the secondary identification number for a polygon;
• POS � the position number associated with a vertex;
• X � the horizontal coordinate at a vertex;
• Y � the vertical coordinate at a vertex.
The simplest PolySet has no SID, and each PID corresponds to a different polygon. By analogy
with a child�s �follow the dots� game, the POS field enumerates the vertices to be connected by
straight lines. Coordinates (X, Y) specify the location of each vertex. Thus, in familiar
mathematical notation, a polygon consists of n points),(ii yx with ni ,,1 K= , where i
corresponds to the POS index. A PolySet has two potential interpretations. The first associates a
line segment with each successive pair of points from 1 to n, giving a polyline (in GIS
terminology) composed of the sequential line segments. The second includes a final line segment
joining points n and 1, thus closing the polygon.

 The secondary ID field allows us to define regions as composites of polygons. From this
point of view, each primary ID identifies a collection of polygons distinguished by secondary
IDs. For example, a single management area (PID) might consist of two fishing areas, each
defined by a unique SID. A secondary polygon can also correspond to an inner boundary, like
the hole in a doughnut. We adopt the convention that POS goes from 1 to n along an outer
boundary, but from n to 1 along an inner boundary. In GIS software, these normally correspond
to clockwise and counter-clockwise directions, respectively, so that a clockwise direction always
corresponds to POS moving from 1 to n. Our software uses ordering of the POS index to
distinguish between inner and outer boundaries, but makes no explicit requirement about the
directional sense (clockwise or counter-clockwise).

 � 3 �

A PolySet with a secondary ID field must have indices SID that appear in ascending
order within each PID. Furthermore, inner boundaries must follow the outer boundary that
encloses them. The POS field for each polygon (PID, SID) must similarly appear in strictly
increasing or decreasing order, for outer and inner boundaries respectively, but need not take
sequential integer values. This allows the insertion of a new point, such as point 3.5 between
points 3 and 4, or the deletion of a point without problems. We include a function fixPOS to
renumber points as sequential integers.

 A PolySet can have a projection attribute, which may be missing, that specifies a
map projection. In the current version of PBS Mapping, projection can have character
values "LL" or "UTM", referring to �Longitude-Latitude� and �Universal Transverse Mercator�.
We explain these projections more completely below. If projection is numeric, it specifies
the aspect ratio r, the number of x units per y unit. Thus, r units of x on the graph occupy the
same distance as one unit of y. Another attribute zone specifies the UTM zone (if
projection="UTM") or the preferred zone for conversion from Longitude-Latitude (if
projection="LL").

PolyData

 We define PolyData as a data frame with a first column named PID and (optionally) a
second column named SID. Unlike a PolySet, where each polygon has many records
corresponding to the vertices, a PolyData object must have only one record for each PID or each
(PID, SID) combination. Conceptually, this object associates data with polygons, where the data
correspond to additional fields in the data frame. The R/S language conveniently allows fields in
a data frame to have different types, such as numeric and character. For example, PolyData with
the fields (PID, PName) might be used to assign names to a set of primary polygons.

Our software particularly uses PolyData to set various plotting characteristics. Consistent
with parameters to the R/S functions lines and polygon, column names can specify
graphical properties:
• lty � line type in drawing the border and/or shading lines;
• col � line or fill colour;
• border � border colour;
• density � density of shading lines;
• angle � angle of shading lines.
When drawing polylines, only lty and col have meaning.

EventData

We define EventData as a data frame with at least three fields named (EID, X, Y).
Conceptually, an EventData object describes events that take place at specific points (X, Y) in
two-dimensional space. Additional fields specify measurements associated with these events. For
example, in a fishery context EventData could describe fishing events associated with trawl
tows, based on the fields:

 � 4 �

• EID � fishing event (tow) identification number;
• X, Y � fishing location;
• Duration � length of time for the tow;
• Depth � average depth of the tow;
• Catch � biomass captured.
Like PolyData, EventData can have attributes projection and zone, which may be missing.

LocationSet

A PolySet defines regional boundaries for drawing a map, and EventData determine
event points on the map. Which events occur in which regions? In the algorithm section below,
we discuss a computational solution to this problem. The output lies in a LocationSet, a data
frame with three or four columns (EID, PID, SID, Bdry), where SID may be missing. One row
in a LocationSet means that the event EID occurs in the polygon (PID, SID). The boundary
(Bdry) variable specifies whether (Bdry=T) or not (Bdry=F) the event lies on the polygon
boundary. If SID refers to an inner polygon boundary, then EID occurs in (PID, SID) only if
Bdry=T. An event may occur in multiple polygons. Thus, the same EID can occur more than
once in a LocationSet.

2.2. Map Projections

 The Flat Earth Society (http://www.flat-earth.org/) asserts that
• �the Earth is flat and has five sides,�
• �all places in the Universe named Springfield are merely links in higher-dimensional space to

one place,� and
• �all assertions are true in some sense, false in some sense, meaningless in some sense, true

and false in some sense, true and meaningless in some sense, false and meaningless in some
sense, and true false and meaningless in some sense.�

For more information, including a proof that 65 = , see the URL mentioned above. Their point
of view could potentially simplify our mapping software. Unfortunately, a non-flat earth requires
some kind of projection to represent it on a flat map.

 The simplest projection associates each point on the earth�s surface with a longitude
x (°≤≤°− 360360 x) and latitude y (°≤≤°− 9090 y), where °= 0x on the Greenwich prime
meridian. The chosen range of x depends on the region of interest, where negative longitudes
refer to meridians west of the prime meridian. When plotted on a rectangular grid with equal
distances for each degree of longitude and latitude, this projection exaggerates the size of objects
near the earth�s poles, as illustrated in Figure 1. For points near the latitude y, a more realistic
map uses the aspect ratio

(2.1)
y

r
cos

1
= ,

where r degrees of longitude x should occupy the same distance as 1 degree of latitude y.

 � 5 �

0 100 200 300

-5
0

0
50

Longitude (°)

La
tit

ud
e

(°
)

1 2 3 4 5 6 7 8 9

Figure 1. Map of the world projected in longitude-latitude coordinates. This image, based on our
PolySet worldLL, uses the longitude range °≤≤°− 36020 x to produce a convenient cut in the
eastern Atlantic Ocean. Red vertical lines show boundaries for the 60 Universal Transverse
Mercator (UTM) zones, with explicit labels for zones 1 to 9. A black line indicates the prime
meridian)0(°=x . Our PolySet nepacLL lies within the clipping boundary shown as a blue
rectangle.

 The Universal Transverse Mercator (UTM) projection gives a more realistic portrayal of
the earth�s surface within 60 standardized longitude zones. Each zone spans °6 , and zone i
includes points with longitude x in the range

(2.2) °+−≤<°+−)6180()6186(ixi . [UTM zone i]

The mid-longitude in (2.2)

(2.3) °+−=)6183(ixi . [Central meridian, zone i]

defines the central meridian of zone i. In particular, zone 9 has central meridian °−129 and
covers the range

(2.3) °−≤<°− 126132 x . [UTM zone 9]

Canada�s Pacific coast lies in zones 8-10 (Figure 2), and the projection to zone 9 gives a
reasonably accurate map for fisheries in this region.

 � 6 �

-180 -160 -140 -120

40
50

60
70

Longitude (°)

La
tit

ud
e

(°
)

60 1 2 3 4 5 6 7 8 9 10 11

Figure 2. Shoreline data in longitude-latitude coordinates for the northeastern Pacific Ocean, as
captured in our PolySet nepacLL. Vertical red lines display UTM boundaries for
zones 11,,2,1,60 K . A vertical dotted line indicates the central meridian of zone 6, near the
centre of this figure.

Visually, UTM zones look like sections of orange peel cut from top to bottom. Each
relatively narrow section can be flattened without too much distortion to give coordinates),(YX
measured as actual distances, as illustrated by zone 6 in Figure 3. Complex formulas, compiled
in detail by the UK Ordnance Survey (Anonymous 1998), allow conversion between two
projections: the UTM easting-northing coordinates),(YX and the usual longitude-latitude
coordinates),(yx . These take account of the earth�s ellipsoidal shape, with a wider diameter at
the equator than the poles. The UTM projection scales distances exactly along two great circles:
the equator and the central meridian, which act as X and Y axes, respectively. Along the
equator, 0=Y km by definition; elsewhere, Y indicates the distance north of the equator, where
a negative value corresponds to a southward displacement. The central meridian is assigned the
standard easting 500=X km, rather than the usual 0=X km. This ensures that 0>X km
throughout the zone. In effect, the difference 500−X km represents the distance east of the

 � 7 �

central meridian, where a negative distance corresponds to a westward displacement. These
interpretations are exact along the equator and central meridian, but approximate elsewhere.

-2000 -1000 0 1000 2000 3000

50
00

60
00

70
00

80
00

UTM Easting (km)

U
TM

 N
or

th
in

g
(k

m
)

60
1

2 3 4 5 6 7 8 9 10
11

Figure 3. Shoreline data for the northeastern Pacific Ocean, projected in UTM coordinates
(zone 6) from our PolySet nepacLL. Vertical red lines show UTM zone boundaries. The central
axis of zone 6 (vertical dotted line at 500=x km) corresponds to the central meridian shown in
Figure 2.

2.3. PBS Mapping Algorithms and Functions

 Our software produces maps from the data structures defined in Section 2.1. Following
typical design concepts in R/S, we use functions to implement algorithms and produce images,
where function arguments often have specified default values. Appendix D gives detailed
technical descriptions of all our functions and other software components. In particular, the
globally defined constant LANG automatically adapts our code to R (LANG="R") or S-PLUS
(LANG="S"). Just set LANG to an appropriate value for the language environment before
running our code.

 In the R/S language, high level commands (like plot) create new graphs; lower level
commands (like points and lines) add features to an existing graph. Similarly, we provide

 � 8 �

functions (plotLines, plotPolys, plotMap) that create graphs and others (addLines,
addPolys) that add graphical features. All these functions draw objects defined by a PolySet.
Both plotLines and addLines treat the data as polylines, with no connection between the
last and first points. By contrast, plotPolys, addPolys, and plotMap regard the data as
polygons, where a final line segment connects the last point back to the first. The functions
plotPolys and plotMap behave similarly, except that plotMap guarantees the correct
aspect ratio, as defined by the projection attribute of the PolySet. Table 1 summarises the
behaviour of our principal graphics commands. A user concerned with drawing maps, where the
correct aspect ratio plays a key role, would initiate a graph with the plotMap function.

Table 1. Behaviour of the principal graphics functions in the PBS Mapping software package.

Function Creates Graph Closes Polygons Sets Aspect Ratio
plotLines Yes No No
plotPolys Yes Yes No
plotMap Yes Yes Yes
addLines No No No
addPolys No Yes No

 Our graphics functions support the usual R/S graphical parameters, including:
• xlim and ylim to specify horizontal and vertical coordinate ranges;
• plt to define the plot region relative to the figure region;
• tck to determine tick mark lengths;
• lty, col, border, density, angle to adjust properties of lines and polygons.
We introduce additional parameters that give finer control over the appearance of tick marks in
high level commands. Each can have length 1 or 2, where a single value pertains to both axes
and two values give separate parameters for the horizontal and vertical axes. These include:
• tckMinor, counterpart of tck that sets a different length for minor tick marks;
• tckLab, with Boolean values that determine whether or not to include numeric tick labels.

 Some of our functions construct a PolySet or evaluate its properties. For example:
• makeGrid constructs a rectangular grid of polygons;
• calcArea computes polygon areas by the formula

 ∑
−

=
++ −+−=

1

1
1111)(

n

i
iiiinn yxyxyxyxA ,

for the area A of a polygon with vertices niyx ii K,1),,(= (Rokne 1996).
Other functions perform numerical tasks that alter a defined PolySet. For example:
• fixPOS renumbers the POS index as a sequence of ascending or descending integers;
• fixBound attempts to fix the polygon boundary within the rectangle defined by the ranges

of X and Y, where points near the bounding rectangular are snapped onto it;

 � 9 �

• closePolys adds corners from the bounding rectangle, if needed, to close polylines into
polygons;

• clipLines clips polylines within a specified rectangle, possibly smaller than the bounding
rectangle;

• clipPolys similarly clips polygons within a specified rectangle;
• convUL converts between UTM and longitude-latitude coordinates.
Clipping can be computationally intensive. We use the Sutherland-Hodgman algorithm (Foley et
al. 1996, p. 124-127).

 Our function findPolys solves the �points-in-polygons� problem. Given a set of
points (EventData) and a collection of polygons (a PolySet), which points lie in which polygons?
Several algorithms have been proposed for this problem, including:
• The angle summation (or winding number) test. Sum the angles swept by a ray from the

trial point to sequential vertices of the polygon. For a point outside the polygon, the angles
sum to 0 because the ray sweeps back and forth, returning to the starting point. For an inside
point, the ray traces a full circle, and the angles do not sum to zero.

• The crossings test. Draw a ray from the trial point in a fixed direction (e.g., upward). If the
ray crosses an even number of polygon edges, the point must be outside. For an inside point,
the number of crossings must be odd.

We use the crossings test, which performs faster than angle summation (Hains 1994, p. 26-27),
due to the large number of trigonometric function calls needed in the angular calculations.

 After finding the polygons that contain various events, an analyst often wants to compute
statistics associated with the events within each polygon. For example, in a fishery context, what
is the total catch from all fishing events within each management region? Our function
combineEvents supports such calculations. The function makeProps can then associate
statistical values with polygon properties, such as the colour intended for graphing.

 Finally, the R/S locator function enables users to define (x,y) coordinates from mouse
clicks on an existing graph. Similarly, our functions locatePolys and locateEvents
construct PolySet and EventData objects from points identified visually with the mouse.

2.4. Shoreline Data

To portray fishery data along Canada�s Pacific coast, we need a PolySet that defines the
relevant shoreline. We began with a polyline of the British Columbia coast, obtained digitally
from a marine map. To convert this object to a meaningful closed polygon, we devised the
functions fixBounds and closePolys. Satellite imagery and other sources, however, make
our initial coastline obsolete. For example, Wessel and Smith (1996) have used information from
the public domain to assemble a Global Self-consistent, Hierarchical, High-resolution Shoreline
(GSHHS) database for the entire planet. They make this available via the Internet as binary files
in five different resolutions: full, high, intermediate, low, and crude. They also supply software
as C source code for
• converting the data to an ASCII (plain text) format (gshhs.c);
• thinning the data by reducing the number of points sensibly (gshhs_dp.c).

 � 10 �

Their thinning software uses an algorithm devised by Douglas and Peucker (1973), whose initials
dp appear in the file name. We compiled both programs with a free GNU compiler, as described
in Appendix B.

Table 2. PolySets derived from the full resolution GSHHS database.

PolySet Thinning Longitude Latitude Vertices Polygons
nepacLL* 0.2 km oo 110190 −≤≤− x oo 7234 ≤≤ y 75,929 536
nepacLLhigh 0.1 km oo 110190 −≤≤− x oo 7234 ≤≤ y 199,914 9,961
worldLL* 5.0 km oo 36020 ≤≤− x oo 8490 ≤≤− y 30,797 210
worldLLhigh* 1.0 km oo 36020 ≤≤− x oo 8490 ≤≤− y 191,268 1,502

*Excludes polygons with fewer than 15 vertices after thinning.

PBS Mapping includes four data sets derived from the full resolution GSHHS database
(Table 2). These all use longitude-latitude (LL) coordinates. The nepac data sets contain the
northeastern Pacific Ocean shoreline in a region that extends roughly from California to Alaska
(Figure 2), and the world data sets cover the planet (Figure 1). As discussed in section 2.2,
longitude coordinates x take continuous values meaningful for the intended map, with °= 0x on
the Greenwich prime meridian.

 We generated each data set from the full GSHHS database by following a consistent
sequence:
• thin the database with a specified distance tolerance, as listed in the above table, using

GSHHS software;
• convert the result to an ASCII file with GSHHS software;
• use our own Perl script (gshhs2r.pl) on this file to:

- remove the lakes, islands in lakes, and ponds in islands;
- eliminate small polygons, if desired, such as those with fewer than 15 points;
- transform this file to another ASCII file with the structure of a PolySet;

• clip the data to the desired coordinate range with our own stand-alone program;
• import the ASCII table to a data frame in R/S;
• use an R function to extend the Antarctic polygon to longitude °− 20 and latitude °− 90

(world data sets only).

2.5. Examples and Applications

Our library includes an illustrative PolySet towTracks containing the longitude-
latitude coordinates of 45 tow tracks from a longspine thornyhead (Sebastolobus altivelis) survey
in 2001. Figure 4 portrays these data relative to the west coast of Vancouver Island, drawn with
shoreline data clipped from the PolySet nepacLL. The PolyData object towData specifies the
depth of each tow, represented in the figure by colours corresponding to depth intervals (black =
500-800 m, red = 800-1200 m, dark blue = 1200-1600 m).

 � 11 �

-127.5 -127 -126.5 -126

48
.5

49
49

.5

Longitude (°)

La
tit

ud
e

(°
)

LTS Survey Tracks
500-800 m

800-1200 m
1200-1600 m

Vancouver
Island

Figure 4. Tracks for 45 tows performed during the 2001 longspine thornyhead (Sebastolobus
altivelis) survey along the west coast of Vancouver Island (Starr et al. 2002). A colour indicates
the depth stratum for each tow. Data come from the PolySet towTracks and PolyData
towData.

Figure 5 illustrates the use of our software to calculate polygon areas. We examine a
region along the south-west British Columbia coast that includes a cluster of islands in the Strait
of Georgia. Shoreline data come from the PolySet nepacLLhigh. Because area calculations do

 � 12 �

not make sense in the longitude-latitude projection, we convert the PolySet to UTM coordinates,
with comparable X and Y coordinates (km), and then clip to the desired region. The figure shows
areas for six selected islands, highlighted in yellow, based on the calcArea function. Mean
coordinates for each island give a reference point for printing the island�s name and area (km2).

900 910 920 930 940

53
80

53
90

54
00

54
10

54
20

54
30

54
40

UTM Easting (km)

U
TM

 N
or

th
in

g
(k

m
)

Saltspring

San Juan

Galiano

Saturna
N Pender

Mayne

193

149

63

3530

26

Vancouver Island

Strait of Georgia

Figure 5. Areas (km2) of selected islands in the southern Strait of Georgia. Shoreline data have
been clipped from nepacLLhigh after conversion to UTM coordinates.

 � 13 �

Figure 6 portrays data from Pacific ocean perch (Sebastes alutus) surveys conducted
along the central BC coast during the years 1966-1989. The EventData object surveyData
contains information from each tow, including the longitude, latitude, depth, catch, and effort
(tow duration). These data also imply the computed value of catch per unit effort (CPUE =
catch/effort). To draw the figure, we apply a sequence of mapping functions:
• clipPolys clips the relevant shoreline from nepacLL;
• plotMap initiates a coastal map of this region;
• makeGrid creates a grid in the region of interest;
• findPolys associates tows with the appropriate grid cells;
• combineEvents calculates the mean CPUE within each cell;
• addPolys draws cells with colours (in the polyProps argument) scaled to the CPUE;
• points (the native R/S function) plots events on the map.

-131 -130 -129 -128

51
51

.5
52

52
.5

Longitude (°)

La
tit

ud
e

(°
)

POP Surveys (1966-89)

CPUE (kg/h)
0 - 50

50 - 300
300 - 750

750 - 1500
1500 - 25000

Figure 6. Portrayal of surveyData from Pacific ocean perch (Sebastes alutus) surveys in the
central coast region of British Columbia from 1966-89, with shoreline data clipped from
nepacLL. Colours portray the mean catch per unit effort (CPUE) within each grid cell (0.1º by
0.1º). Circles show locations of individual tows.

 � 14 �

PBS Mapping can also display non-geographical data, such as technical drawings,
network diagrams, and transportation schematics. For example, we use a PolySet to construct the
proof of Pythagoras� Theorem in Figure 7, where the caption explains the logic leading to the
famous result 222 cba =+ . Incidentally, Devlin (1998, chapter 6, p. 221) mentions an historical
incident that nicely distinguishes maps from network diagrams. A now familiar drawing of the
London Underground (see the file �underground.pdf� at the web site
http://www.europrail.net/maps/) fails to represent geography correctly, but contains exactly the
information passengers need to navigate the system. It took two years for the designer, Henry C.
Beck, to persuade his superiors that his drawing would prove useful to the public.

Pythagoras' Theorem: a² + b² = c²

Proof:
(a + b)² = 4 triangles + a² + b² = 4 triangles + c²

a²

b²

c²

a

b

c

Figure 7. Proof of Pythagoras� Theorem. A PolySet defines all geometric objects in this figure,
and PolyData determine the colours for plotting. Four blue triangles plus the yellow square)(2a
and the green square)(2b equal four blue triangles plus the red square)(2c ;
consequently, 222 cba =+ .

 � 15 �

2.6. Strengths, Limitations, and Alternatives

 PBS Mapping works with data exported from database tables, where records may not
have a definite order. The POS field in our PolySet definition imposes the required order for
polylines and polygons. This field also provides a convenient means of distinguishing inner and
outer boundaries. Our PolySets have a flat structure with at most two levels, corresponding to
primary and secondary IDs. We have found these limitations acceptable in the context of our
work. Sceptical readers might challenge our choices, with a preference for more complex
hierarchical structures. For example, Becker and Wilks (1993, 1995) define polygons as
composites of polylines, so that a common boundary between two regions need be defined only
once and then referenced in each regional definition. In our approach, all vertices of a common
boundary must be repeated in each regional definition.

 We designed our software explicitly to address a few key issues in the spatial
representation of fishery data:
• easy importation from databases, Geographic Information Systems, and other sources, such

as the shoreline data compiled by Wessel and Smith (1996);
• precise control over the boundaries chosen for clipping from a larger map;
• support for longitude-latitude and UTM easting-northing coordinates;
• computational ability to associate events with polygons in which they lie;
• flexible plotting tools that summarise events within grids and other polygons.
Different purposes could well lead to other designs.

3. UTILITIES

As described in the Preface, students have produced a number of generic utilities for
dealing with operating systems, databases, and other computing problems. Their software,
described in this section, may prove useful to our readers.

3.1. Operating System Utilities

dusage.exe (Disk Usage)

This application makes it easy to see how directories use space on the hard drive. Our
utility dusage.exe resembles the UNIX command du, but has different functionality. The
distribution CD includes C source code (dusage.c). To install the application, simply copy the
file dusage.exe into any directory on the path, as defined by the PATH environment variable.

By default, dusage.exe scans the current working directory and its subdirectories, and
then reports the number of files and disk space (kilobytes) used in each directory. The command

dusage [/h] [/l] [/sN] [/uX] [PATH]

has optional arguments that influence the output as follows:
• /h display a help screen;

 � 16 �

• /l show only the local directory size, excluding subdirectories;
• /sN show paths only down to the first N subdirectories;
• /uX display directory sizes in units X as indicated by a letter:

 B: bytes, K: kilobytes, M: megabytes, G: gigabytes, T: terabytes;
• PATH list of directories to check.
The PATH argument can include wildcards, provided that they expand only to directory names,
not file names. Paths should use the backslash (\), never the forward slash (/) as in UNIX. The
program�s standard output can be redirected to a text file.

qcd.bat (Quickly Change Directory)

 Within a DOS shell, the command cd serves as a cumbersome tool for traversing
directories. Our utility qcd.bat provides a streamlined alternative, where the qcd acronym
means �quickly change directory�. A text file serves as a directory index, and qcd searches this
file to locate a directory that matches a given string. For example, if a drive has the path
\programs\research\pbsmapping, then the brief command

qcd pbsm

offers a quick alternative to the conventional DOS command

cd \programs\research\pbsmapping

 In general, after installing the program, run the command

qcd /r [DRIVE LETTER]

for each drive in the system. This renews (/r) the directory index. Run this command again after
altering directories on a drive. (A missing drive letter implies the letter of the currently active
drive.) Given a string STR, the command

qcd STR

will change the working directory on the current drive according to the following rules:
• The program searches the index for directories exactly named STR and compiles a list of all

exact matches. It changes the directory either to the first exact match (if the current directory
is not an exact match) or to the next exact match.

• Failing an exact match, the program searches the index for directory names beginning with
STR and compiles a list of all the partial matches. To resolve multiple partial matches, it
follows the procedure outlined above for multiple exact matches.

• Failing both an exact and partial match, the program removes the last character of STR to
form a new string STR'. Then, it starts this procedure again by searching for an exact match
using STR'. If it removes all of the characters without finding a match, the program
terminates without changing the directory.

 � 17 �

Technically, qcd.bat calls two other components: qcdexe.exe and qcdbat.bat.
The executable qcdexe.exe searches the index file and creates qcdbat.bat, which then
contains the actual command to change directories. The distribution CD contains C++ source
code (qcdexe.cpp, qcdexe.h) for the executable, but the user need only be concerned with
the following steps for installation:
1. Pick a (possibly new) directory for installation, and copy the files qcd.bat and

qcdexe.exe into it.
2. Edit the QCDWD (meaning �qcd working directory�) environment variable in qcd.bat by

setting it to the exact path for the directory in step 1.
3. Either add this directory to the path, or copy the edited version of qcd.bat to a directory on

the path.
4. Note that the command

 qcd /r D
creates (or renews) the file Dtree.txt in the directory of step 1. This contains the index
for drive D.

To uninstall the program, remove the files qcdexe.exe, qcdbat.bat, and *tree.txt
from the program�s directory. Similarly, find and remove qcd.bat.

recent.exe (Recently Modified Files)

 This application lists recently modified files on a drive, or the directories that contain
such files. The distribution CD includes C source code (recent.c). To install the utility,
simply copy the file recent.exe to any directory on the path.

 By default, recent.exe scans the current drive for files modified since 12:00 AM of
the current day. The command

recent [/h] [/d] [/c] [/nN] [/pPATH] [//FILE]

has optional arguments that influence its behaviour as follows:
• /h display a help screen;
• /d report only directory names rather than directory names and filenames;
• /c display only the first eight characters of each directory name;
• /nN scan for files modified within the previous N days;
• /pPATH restrict the search to PATH and its subdirectories;
• //FILE select files matching FILE, a string containing standard wildcard characters.
The program�s standard output can be redirected to a text file.

setenv.exe (Set Environment Variables)

 The DOS batch language lacks a means for setting environment variables interactively.
For example, although a batch file can include the command set FileName=Report.txt
to assign a value to FileName, no facility exists to change the value of FileName based on
user input. Our setenv utility resolves this limitation. To install it, simply copy the file

 � 18 �

setenv.exe to any directory on the path. The distribution CD includes C source code in
setenv.c. In a batch file, the two commands

setenv.exe VARIABLE_NAME [PROMPT]
call setenvr.bat

prompt the user (with an optional PROMPT) for a value of the environment variable
VARIABLE_NAME and then set the variable appropriately.

Technically, setenv.exe creates a file named setenvr.bat in the same directory
as setenv.exe. This batch file contains the set command necessary to set the environment
variable. The batch file must therefore include both calls in the pair listed above. Note that the
contents of setenvr.bat in the installation directory are changed with every use of
setenv.exe.

3.2. Mapping Utilities

 The PBS Mapping package for R/S includes several algorithms that we have also
implemented as standalone command-line utilities. These can handle very large data sets that
may be too large for the R/S working environment. Furthermore, some users may wish to
implement computational geometry calculations without reference to the R/S language. Our
utilities make this possible by directly processing text files with the appropriate data format.
They have been compiled with the same C code used for the dynamically linked library (DLL) in
R/S. For each utility, a corresponding .c file provides a front end to shared code for the
algorithms.

clipPolys.exe (Clip Polygons)

The application clipPolys.exe reads an ASCII file containing a PolySet (explained
further below) and then clips it. The command

clipPolys.exe /i IFILE [/o OFILE] [/x MIN_X] [/X MAX_X] [/y MIN_Y]

[/Y MAX_Y]

has five arguments as follows:
• /i IFILE ASCII input file containing a PolySet (required);
• /o OFILE ASCII output file (defaults to standard output);
• /x MIN_X lower X limit (defaults to minimum X in the PolySet);
• /X MAX_X upper X limit (defaults to maximum X in the PolySet);
• /y MIN_Y lower Y limit (defaults to minimum Y in the PolySet);
• /Y MAX_Y upper Y limit (defaults to maximum Y in the PolySet).
The first line of the PolySet input file must contain the field names (PID, SID, POS, X, Y),
where SID is optional. Subsequent lines must contain the data, with four or five fields per row.
All fields must be white-space delimited. The program generates a properly formatted PolySet.

 � 19 �

By default (unless otherwise specified by /o), this result goes to standard output, which can be
redirected to a text file.

convUL.exe (Convert between UTM and LL)

 The application convUL.exe reads an ASCII file containing two fields named X and Y,
as described further below. The command

convUL.exe /i IFILE [/o OFILE] (/u | /l) /z ZONE

has the arguments:
• /i IFILE ASCII input file containing the X and Y data (required);
• /o OFILE ASCII output file (defaults to standard output);
• /u (or /l) convert to UTM (longitude-latitude) coordinates (required);
• /z ZONE source or destination zone for the UTM coordinates (required).

The input file must have an initial header line with field names, including X and Y. Subsequent
lines contain the data, with all fields separated by white space. The program converts each (X, Y)
pair to a new pair (X2, Y2). The output file matches the input file, with the fields (X2, Y2)
appended to the end of each line. The default standard output can be redirected to a text file.

findPolys.exe (Points-In-Polygons)

The application findPolys.exe reads two ASCII files: one containing a PolySet and
the other containing EventData. The program then determines which events fall inside the
available polygons. The command

findPolys.exe /p POLY_FILE /e EVENT_FILE [/o OFILE]

has the arguments:
• /p POLY_FILE input file containing the PolySet (required);
• /e EVENT_FILE input file containing EventData (required);
• /o OFILE output file (defaults to standard output).
The first line in both input files must contain field names, and subsequent lines must contain the
data. All fields must be delimited by white space The PolySet must have field names
(PID, SID, POS, X, Y), where SID is optional. The EventData must have fields (EID, X, Y).
The program writes a properly formatted LocationSet, as defined in section 2.1. The default
standard output can be redirected to a text file.

gshhs2r.pl (Convert GSHHS Data to PBS Map Format)

 As discussed earlier in Section 2.4, our Perl script gshhs2r.pl converts data from the
Global Self-consistent, Hierarchical, High-resolution Shoreline (GSHHS) database to a PolySet
for use with PBS Mapping. We first require an ASCII file created by gshhs.exe, the program

 � 20 �

supplied by the GSHHS project to convert binary to ASCII data. (Binary data may have been
thinned with gshhs_dp.exe.) Our utility removes non-ocean shorelines, such as lakes and
islands within lakes, as well as small polygons with N vertices or fewer. The command

gshhs2r.pl /i IFILE [/o OFILE] [/n N]

has arguments:
• /i IFILE ASCII input file created by gshhs.exe (required);
• /o OFILE output file for an ASCII PolySet (defaults to standard output);
• /n N minimum number of vertices in an output polygon.
If the /n parameter isn�t specified, no filtering on the number of vertices takes place.

3.3. Database Utilities

Schnute et al. (1996, p. 9) argued that historical fishery data deserve �the same careful
preservation that might accompany an important museum artifact or rare library book.� They
proposed a documentation system within Microsoft Access that maintains important metadata in
six database tables (Table 3). They also supplied macros and related code modules in support of
the documentation tables A2_Tables and A3_Fields. These utilities have evolved to operate
with newer versions of Microsoft Access and to enhance the use of remote databases linked to an
Access shell. In this section, we describe the current version of our database utilities, all
contained within the Access file Document.mdb.

Table 3. Standard database documentation tables proposed by Schnute et al. (1996, p 3).

Table Name Contents
A1_ReadMe Database background, origins, and related references
A2_Tables Table names and descriptions
A3_Fields Field names, descriptions, and associated tables
A4_Q&A Common questions and answers to them
A5_Questions Questions for which the answer is currently unknown
A6_Changes Documented history of database changes

Macro 01_Create_Documents

This macro compiles the properties of tables and fields within a database and saves the
resulting information in A2_Tables and A3_Fields. In particular, A2_Tables contains the
following metadata for each table in the database:
• the table name;
• the name of the associated remote linked table, if any;
• the number of fields;
• the number of records;

 � 21 �

• the table description.
Similarly, A3_Fields contains the following information for each field in the database:
• the name of the table in which the field occurs;
• the field name;
• the position number of the field within the table;
• the number of records with non-null values for this field;
• the number of records with null values for this field;
• the field�s data type;
• the number of bytes occupied by the field;
• a flag that indicates whether or not this field is one of the primary keys;
• the field description.
Access Basic code for this macro resides in the module 00_Document.

Macro 02_Document_Tables

 This macro takes table descriptions from A2_Tables and applies them to the actual
tables in the database. Essentially, A2_Tables provides a central table description repository.
The user can review and edit table descriptions in A2_Tables, then run
02_Document_Tables to broadcast the revised descriptions as properties of the database
tables. Access Basic code for this macro resides in the module 00_Document.

Macro 03_Document_Fields

 This macro takes field descriptions from A3_Fields and applies them to fields within
the database tables. Essentially, A3_Fields provides a central field description repository. The
user can review and edit field descriptions in A3_Fields, then run 03_Document_Fields
to broadcast the revised descriptions as properties of the database fields. Access Basic code for
this macro resides in the module 00_Document.

Macro 04_Create_Empty_Database

 This macro creates a database of empty local tables from information residing in
A2_Tables and A3_Fields. All tables (local and linked) not specified in the documentation
tables are deleted. The primary key for each new table consists of the fields identified by
Is_Key in A3_Fields, and an index is created for this primary key. Access Basic code for
this macro resides in the module 04_Create_Empty_Database.

Macro 05_Populate_Local_Database

 This macro downloads all data from tables linked to a remote database server, such as
Oracle or Microsoft SQL Server. It stores the remote data in local tables with the names
previously used for the linked tables. Effectively, this macro makes a local copy of a remote
database. Typically, a user would fabricate a local database with appropriately linked files before
running this macro. Access Basic code resides in the module
05_Populate_Local_Database.

 � 22 �

Macro 06_convUL

 As in PBS Mapping, this macro converts between longitude-latitude (LL) and UTM
coordinates. It takes input from a table with field names (lon, lat) or (utme, utmn) and
creates a new table with all fields from the input table, plus two fields of converted coordinates.
If the argument utm is TRUE, then the macro converts UTM to LL; if utm is FALSE, it converts
LL to UTM. Access Basic code resides in the module 06_convUL.

Form Object_Name_Editor

 This form renames tables and/or queries by removing prefixes or suffixes specified by the
user. We found it useful when dealing with linked tables that might have odd prefixes or suffixes
inherited from a remote database. The Access Basic code for this utility is embedded in the form
Object_Name_Editor. To view the code, go to design view, right click any button, and
select Build Event.

4. FREE INTERNET SOFTWARE

Where possible, we have constructed our utilities with software packages freely available
on the Internet, such as R, C/C++ compilers, and Perl. This section describes briefly the
packages we used, plus other high calibre products that may interest our readers. For each
product, we provide one or more web site addresses. Because precise locations for downloading
software can be somewhat transient, we cite relatively stable pages that normally include a link
for downloading. (If some links fail, it may be necessary to truncate the web address back to a
home page.) Usually, packages come with straightforward installation instructions, but in a few
cases we experienced difficulties. Appendix B documents these issues and provides additional
technical information that may prove helpful.

4.1. Scripting Languages

 Windows users have probably encountered the scripting language available in a DOS
shell, where typing the command dir gives a directory listing. A DOS batch file automates a
sequence of such commands as a �script�. Unlike a compiled program in C or FORTRAN, a
script usually runs as input to an �interpreter� that reads and interprets statements at run-time.
This makes scripting languages handy for development and debugging. Try running statements
from the command line to see how they work, and then assemble them as a program in a script
file.

Scripting languages vary in their complexity. Some, like the DOS batch language, have
limited support for controlling program flow and defining data objects. Others, like Perl and
Python, have features similar to those in compiled languages, including logical structures for
program flow and flexible data types. At an elementary level, scripting languages can automate
simple tasks in a command-line environment. The more advanced languages, however, can
implement full programs, such as fishery simulation models.

 � 23 �

Perl

Web sites: http://www.perl.com (Home page)
 http://www.activestate.com (Find �Downloads�, then �ActivePerl�)
 http://www.perldoc.com (Documentation)

Larry Wall initially designed Perl, the practical extraction and reporting language, for
manipulating text files (Whitehead and Kramer 2000). Since its release in 1987, it has matured
into a high-level interpreted programming language, offering complex data types and a wealth of
built-in functions. For example, a program can use a regular expression to search a file for lines
of text that contain specific patterns. It can then perform a variety of actions on the selected lines,
such as extracting values or manipulating the text. Thus, the regular expression engine in Perl
makes text processing easy. Our script gshhs2r.pl (Section 3.2) uses these capabilities of
Perl for converting text files from the GSHHS format to our PolySet format. The R distribution
includes extensive Perl scripts to build packages from source and documentation files, as
discussed further in Section 5.6 below. We generated the PBS Mapping package for R using
these scripts.

Python

Web sites: http://www.python.org (Home page)
 http://www.activestate.com (Find �Downloads�, then �ActivePython�)
 http://www.python.org/doc (Documentation)

 Guido van Rossum created the Python language starting from a mathematical design that
makes code easy to read and maintain. The web site (www.python.org/doc/Summary.html)
describes Python as �an interpreted, interactive, object-oriented programming language.� Like
many interpreted languages, it supports high-level data types, such as dictionaries and lists. It
also uses dynamic typing, where variables change type depending on the values assigned to them.

Although interpreted languages (like R) often perform slowly, Python runs relatively
quickly. Furthermore, the �NumPy� numeric extension (http://www.numpy.org/) improves its
computational speed for many calculations, particularly those associated with matrices and linear
algebra.

The language name comes from the British TV comedy series Monte Python. The web
site takes its motto from a user comment (attributed to Mark Jackson in June 1998): �Python -
why settle for snake oil when you can have the whole snake?�

Parrot

Web site: http://www.oreilly.com/parrot/

 In an article dated April 1, 2001, Simon Cozens posted the surprising announcement of a
new scripting language named Parrot (http://www.perl.com/pub/a/2001/04/01/parrot.htm):

 � 24 �

�Today brought the official announcement that many of us in the Perl and Python
communities had been awaiting and expecting for some time now: the culmination of the
year-long collaboration between Larry Wall and Guido van Rossum, and the
establishment of a period of joint development between the developers of Perl and
Python.�

Cozens also posted an interview with the authors, who explain that �We went over lots of
possible names: Chimera, Pylon, Perth, before finally coming up with Parrot. We had a few basic
ideas: we wanted it to begin with �P�; it had to be something that wouldn't sound stupid on the
end of /usr/bin/.�

 O�Reilly and Associates, publishers of the authors� guide to the Parrot language (van
Rossum and Wall 2001), describe this book as

�. . . the definitive reference for the new, dynamic programming language, Parrot, a
language intended to merge the indubitable strengths of the twin Open Source scripting
giants, Perl and Python. Stemming from the unprecedented meeting of minds in the new
ActiveState Technical Advisory Board, Programming Parrot was written jointly by Larry
Wall, the original creator of Perl, and Guido van Rossum, the inventor of Python. By
uniting the unparalleled flexibility of Perl with the simplicity and maintainability of
Python, Parrot is destined to become the premier application development language of
the twenty-first century.�

 Although we highly recommend Parrot as the language of choice for most software
projects, we caution users to check the date of its announcement and to read Simon Cozens�
interview with its authors at the web site mentioned above. (Also, see Appendix B.)

Tcl/Tk

Web sites: http://www.tcl.tk (Home page)
 http://www.activestate.com (Find �Downloads�, then �ActiveTcl�)
 http://home.pacbell.net/ouster/ (Tcl/Tk author John Ousterhout)

A well-designed graphical user interface (GUI) can make complex tasks seem simple and
intuitive. Unfortunately, rapid development of Windows GUIs often requires a particular
programming environment, such as Borland Delphi or Microsoft Visual Basic. The Tcl/Tk
package, which combines the scripting language Tcl with the GUI toolkit Tk, provides an
excellent alternative that separates the GUI from the underlying program. For example,
programmers can develop GUIs easily in Python or R using Tcl/Tk libraries. In fact, the latest
releases of R (version 1.7.1) and Python (version 2.3) both include Tcl/Tk as part of the official
distribution.

To use Tcl/Tk independently from a language that includes it, download it as a stand-

alone program. Tcl/Tk runs on most operating systems: Windows, Macintosh, and Linux.
Consequently, GUIs developed in this framework can easily be ported to other operating
systems.

 � 25 �

The author�s web site shows an amusing picture of him scratching his head in puzzlement
while reading the book �Tcl/Tk for Dummies�. His article (Ousterhout 1998) provides
interesting speculations about the role of scripting languages in the 21st century.

4.2 Compilers

 Compilers translate languages meaningful to humans into binary instructions for
computers. Historically, a number of key languages have served as the human interface,
including C/C++, Fortran, and Pascal. Compilers have at least two advantages over scripting
languages: they produce executable code that runs without the compiler, and the code usually
runs faster than an equivalent script. On the downside, they typically lack native support for high
level routines, like sorting, although these can be added with program libraries. As a result,
compilers often achieve speed at the expense of greater program complexity. In this section, we
give a brief history of the three languages mentioned above, along with corresponding web sites
for free language support.

C and C++

Web sites: http://gcc.gnu.org (GCC, the GNU Compiler Collection)
 http://sources.redhat.com/cygwin (Cygwin Project)

http://www.mingw.org (MinGW Project)
 http://www.bloodshed.net/download.html (Dev-C++)
 http://www.cs.bell-labs.com/who/bwk/index.html (C author Brian Kernighan)
 http://cm.bell-labs.com/cm/cs/who/dmr (C author Dennis Ritchie)
 http://www.research.att.com/~bs/homepage.html (C++ author Bjarne Stroustrup)
 http://www.splint.org (Splint C code checker)

Dennis Ritchie developed the C programming language in the early 1970s from a parent
language B associated with early UNIX development (Ritchie 1993). C rapidly gained
widespread acceptance, and a dialect of the language called K&R C follows the standard defined
by Kernighan and Ritchie (1978, 1988). As a relatively small and simple language, closely
related to the UNIX operating system, C continues to be a significant language even today.
Stroustrup (1985) extended C to the richer, more expressive, language C++.

Modern students (like our co-author Nick) sometimes learn C or C++ as their main

programming language. Compilers exist for almost every computer architecture and operating
system, so that code tends to be highly portable. As mentioned earlier, we have used C to
increase the speed of various algorithms in our mapping software.

 The GNU Compiler Collection (GCC) contains compilers for several languages: C, C++,
Objective-C, Fortran, Java, and Ada. The C compiler supports the K&R definition, as well as
ANSI (American National Standards Institute) standards. Although earlier developed for Linux,
two different groups distribute a binary version for Windows.
• Cygwin provides a UNIX-like environment for Windows that includes a C/C++ compiler

among a collection of other Linux utilities. To function, Cygwin uses its own specialized

 � 26 �

DLL as a Linux emulation layer. All programs built with Cygwin�s compiler need this DLL
on the path in order to run properly. Furthermore, noncommercial license restrictions require
that programs linked with the Cygwin DLL have their source code freely available.

• MinGW (Minimalist GNU for Windows) distributes a slightly different version of the
collection, including only the C, C++, and Fortran compilers. This version depends only on
DLLs included with Windows. Furthermore, programs compiled with MinGW do not need to
have open source code. The Dev-C++ distribution includes the MinGW compiler, along with
a GUI for integrated program development.

C compilers usually check the code primarily for syntax errors. Programs can, however,

contain other types of coding errors. By analogy with laundry, the code can contain lint, or
computational fluff, resulting from various potential errors in logic. To detect such problems, the
Secure Programming Group at the University of Virginia Department of Computer Science
offers Splint (Secure Programming Lint), which the web site describes as �a tool for statically
checking C programs for security vulnerabilities and coding mistakes.�

Fortran

Web sites: See the GCC, Cygwin, and MinGW sites for C/C++ above.
 http://netlib.caspur.it/linpack (LINPACK)
 http://www.netlib.org/eispack (EISPACK)
 http://www.netlib.org/lapack (LAPACK)

The name Fortran combines the words formula and translation. Developed by IBM for
numeric and scientific applications in the 1950s, Fortran became the first high level, compiled
language to receive wide acceptance (Sebesta 2002, p. 45). It has evolved with the computers it
runs on, passing through several language standards (Fortran 66, Fortran 77, Fortran 90 and
Fortran 95). The GNU Compiler Collection includes a Fortran compiler (g77.exe), which
supports Fortran 77 and some Fortran 90 features.

 Historically, Fortran served as the principal language for sharing numerical algorithms
associated with matrices and linear systems. The LINPACK, EISPACK, and LAPACK web sites
show the breadth of this remarkable archive. The authorship of this report illustrates a Fortran/C
generation gap. Jon and Rowan remember card decks with a Fortran statement punched on each
card. Nick has never seen a card reader and considers Fortran archaic relative to C.

Pascal

Web sites: http://www.gnu-pascal.de (GNU Pascal)
 http://www.bloodshed.net/devpascal.html (Dev-Pascal)
 http://community.borland.com/museum (Borland�s �Antique� compilers)
 http://www.cs.inf.ethz.ch/~wirth (Pascal author Niklaus Wirth)

In the early 1970s, Niklaus Wirth developed Pascal as a new teaching language.
Consistent with the author�s programming philosophy (Wirth 1975), Pascal�s syntax highlights
the structural features of a program. From a few years after its release to the late 1990s, Pascal

 � 27 �

was the most widely used teaching language in colleges and universities (Sebesta 2002, p. 78).
The language went through some evolution to shift from an educational environment to the real
world. For example, Borland developed a non-standard �Turbo Pascal� to deal with various
limitations. True to their �Turbo� title, the Borland compilers translated source code to
executable programs with speed that seemed almost astonishing at the time. The company has
kindly released versions 1.0, 3.02, and 5.5 for free personal use. One of us (Jon) used these
extensively to write programs for fishery data analysis. For further information on the
availability of free Pascal compilers, see Appendix B

4.3 Tools for Windows

This section describes several free tools that work effectively in the Windows operating
system to accomplish specific tasks, such as word processing and image manipulation.

Adobe Acrobat Reader

Web site: http://www.adobe.com (Find �Get Adobe Reader�)

 Most of our readers probably know about the Adobe Acrobat Reader, but no discussion
of free software would be complete without mentioning it. Adobe has devised a generic solution
to the problem of distributing formatted documents. Their commercial software, Adobe Acrobat,
acts like a printer driver that works with most applications to generate an output file in Portable
Document Format (PDF). Although Adobe sells the tool to make PDF files, the software to read
them (Acrobat Reader) is freely available. Our distribution CD includes numerous PDF files, so
we strongly recommend having the Reader available.

Emacs: Text Editor

Web sites: http://www.gnu.org/software/emacs (GNU emacs)
 http://www.gnu.org/software/emacs/windows/ntemacs.html (Windows release)
 http://www.analytics.washington.edu/Zope/wikis/ess (ESS)
 http://www.gnu.org/software/auctex (AUCTeX)

The name Emacs originated as an abbreviation of Editor macros. The user manual
describes Emacs as an extensible, customisable, self-documenting, real-time display editor for
text files. It supports a large number of text manipulation and display features, such as
• copying and pasting, including rectangular sections of text;
• automatically filling or wrapping;
• highlighting changes in the current draft; and
• indicating white space at the end of a line.
For a wide variety of computer languages, Emacs also supports language-specific features, such
as syntax highlighting, indenting, and reserved word recognition. Extensions can enhance the
program�s ability to deal with specific applications. For example, Emacs Speaks Statistics (ESS)
configures the editor for the R/S programming language (Rossini et al. 2001). Similarly,
AUCTeX configures Emacs for the TeX mathematical typesetting system described below.
Section 5.1 and Appendix B give further information on using and installing Emacs.

 � 28 �

HTML Help Workshop (Microsoft)

Web site: http://msdn.microsoft.com (Search for �HTML Help Workshop�)

Microsoft freely provides the HTML Help Workshop to create help files for Windows
operating systems. This utility includes the HTML help compiler for converting HTML and
graphic files into the binary .chm help file format. Recent versions of Windows include a
viewer that recognises and displays .chm files interactively. We have indirectly used the
Workshop for building the PBS Mapping software, because R�s Perl script for making packages
calls the HTML Help Workshop to create help files in .chm format.

Image Manipulation and Viewing

Web sites: http://www.gimp.org (Image manipulation; find �GIMP for Windows�)
 http://www.irfanview.com (Image viewing)

The GIMP utility can retouch photographs, compose or create images, and perform other
image manipulation tasks. Its features compare with commercial programs such as Paint Shop
Pro (http://www.jasc.com) and Adobe Photoshop (http://www.adobe.com/products/photoshop).
Subject to some copyright restrictions, it supports many file formats. For example, GIF support
requires a separate download. Plug-in utilities can extend the GIMP�s capabilities, and scripts
can automate tasks.

Irfan Skiljan�s utility �IrfanView� provides a convenient, full-featured image viewing
program for Windows.

OpenOffice.org

Web sites: http://www.openoffice.org (Home page)
 http://www.openoffice.org/product (Version 1.1 Product Description)

 OpenOffice.org provides a free alternative to commercial office productivity suites, such
as Microsoft Office. The web site gives this Mission Statement: �To create, as a community, the
leading international office suite that will run on all major platforms and provide access to all
functionality and data through open-component based APIs and an XML-based file format.� The
organisation endorses the Open Source Initiative (OSI, http://www.opensource.org) philosophy
that open source code facilitates rapid software evolution and improvement. Version 1.1 contains
most features you�d expect in office software. You can create dynamic documents (Writer),
analyse spreadsheet data (Calc), design eye-catching presentations (Impress), produce dramatic
illustrations (Draw), edit mathematical formulas (Math), develop scripts and programs (Basic),
open up your databases (Database User Tools), and create PDF files with built-in support. The
product description page (cited above) gives more complete information, including an
introduction to OpenOffice.org in Flash format. We discuss the installation procedure in
Appendix B.

 � 29 �

TeX for Mathematical Typesetting

Web sites: http://www.miktex.org (TeX distribution)
 http://www.latex-project.org (LaTeX dialect)
 http://www-cs-faculty.stanford.edu/~knuth (TeX author Donald Knuth)
 http://research.microsoft.com/users/lamport (LaTeX author Leslie Lamport)

Donald Knuth devised TeX as �a new typesetting system intended for the creation of
beautiful books � and especially for books that contain a lot of mathematics� (Knuth 1984,
Preface). Essentially, the language uses a text description of a document to process fonts into a
printed page. Leslie Lamport (1986) extended the language with a collection of macros called
LaTeX that have become a standard dialect. The R documentation system builds LaTeX files
that produce a convenient software manual, as illustrated here by our documentation of PBS
Mapping (Appendix D). The MiKTeX web site provides an excellent Windows distribution. For
further technical information, see Appendix B.

UNIX Tools (Cygwin and R)

Web sites: http://sources.redhat.com/cygwin (Cygwin)
 http://www.stats.ox.ac.uk/pub/Rtools/tools.zip (Tools for R)

UNIX includes a much richer suite of command line tools than those available in a DOS
window. In fact, the R utility to build packages requires a small set of UNIX tools, which can be
downloaded from the web site above. Cygwin provides a more complete version of UNIX for
DOS/Windows, based on dynamically linked libraries (DLLs), as discussed in Section 4.2 with
regard to C/C++ compilers. The Cygwin installer presents a suite of optional UNIX software for
emulation in Windows, ranging from the �bash� shell to the �X-Windows� GUI environment.

4.4. Analytical Tools

 The rich literature of numerical algorithms in Fortran (Section 4.2) epitomises classical
software design: first build a library of tested routines, then tie them together with a custom
program to conduct a specific analysis. Modern analytical software, like R, streamlines this
process by providing an environment where the routines exist as part of the language and simple
statements tie them together.

R

Web sites: http://www.r-project.org (CRAN: Comprehensive R Archive Network)
 http://cm.bell-labs.com/cm/ms/departments/sia/jmc (S author John Chambers)
 http://www.stats.ox.ac.uk/~ripley (Author Brian Ripley)
 http://www.cmis.csiro.au/bill.venables (Author Bill Venables)

Like the commercial product S-PLUS (http://www.insightful.com/products/splus), R
supports high-level data structures and provides a wealth of plotting commands that make data
visualisation easy. The language gives particular emphasis to statistical analysis, with functions

 � 30 �

and language structures designed explicitly for statistical models. According to the CRAN web
site (with slight changes from their exact text):

R is a GNU project similar to the S language and environment, which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R can be considered as a different implementation of S. There are some
important differences, but much code written for S runs unaltered under R.

R was initially written by Robert Gentleman and Ross Ihaka, also known as �R&R�, of
the Statistics Department of the University of Auckland. . . . A special debt is owed to
John Chambers who has graciously contributed advice and encouragement in the early
days of R and later became a member of the core team.

The authors Bill Venables and Brian Ripley appear in the list of core developers and
contributors. Their books (Venables and Ripley 1999, 2000) provide excellent guides to the
language and application of R and S.

We have designed PBS Mapping for compatibility with both R and S-PLUS.

Scilab

Web site: http://www-rocq.inria.fr/scilab

 The web site describes Scilab as �a scientific software package for numerical
computations providing a powerful open computing environment for engineering and scientific
application.� Its historical roots lie partly in the numerical Fortran algorithms mentioned earlier.
Like R, Scilab has a commercial counterpart Matlab (http://www.mathworks.com). The
engineering focus of Scilab/Matlab differs somewhat from the statistical focus of R/S, but both
language environments offer powerful tools for numerical modelling, analysis, and visualisation.

GIS (freegis.org)

Web site: http://www.freegis.org

Because PBS Mapping includes features often supported by a Geographic Information
System (GIS), a free GIS alternative may someday be much better than the software described
here. The above web site summarises the current status of free GIS programs and data.
Organised by categories and subcategories, it lists web sites with available software, data,
projects, and documents. The list receives frequent updates and grows steadily.

5. QUICK TUTORIALS

 Have you ever experienced the frustration of learning the tricks needed to accomplish
some task, only to forget them the next time you need them? While developing our software, we
had to learn technical details about C compilers, text editors, R packages, and various other
applications. Sometimes a topic might require an entire book for complete documentation, but a

 � 31 �

few key concepts provide enough to get started. This section offers a few quick tutorials, based
on our experiences.

5.1. Using Emacs

Emacs comes from UNIX, which often uses terminology different from that in Microsoft
Windows. An Emacs window, in the Microsoft sense, is called a frame. Subdivisions within that
frame are called windows. An Emacs session can consist of one or more frames, each with one or
more windows. Most applications, however, need only a single Emacs frame. When reading the
Emacs help files, remember these specialised meanings of frame and window.

Figure 8. An Emacs frame displaying the file Hello.c, which contains C source code for a
classical �Hello world� program. The frame includes a title bar, menu bar, editing window, status
line, and echo area (or minibuffer window). Emacs recognises the .c file extension and
highlights text in a manner consistent with C code. The black rectangular cursor lies in line 8 to
the right of column 5 (L8�C5 in the status line).

Figure 8 shows the components of an Emacs frame, when the program edits a C source
code file (Hello.c). A title bar appears at the top of the frame, consistent with most Windows
programs. A menu bar lies immediately below the title bar. The menu can change in relation to
the type of file (such as .c, .r, or .tex) being edited. A toolbar (not shown here) can also
appear below the menu bar. The editing window below the menu bar in Figure 8 contains text
from the file, with highlighting appropriate to the C language. Each editing window ends with a
status line that shows window�s status, such as the file name and cursor position. The last line of
the frame is the echo area or minibuffer window, where editing commands (such as searching or
formatting) may prompt for additional information.

Keystroke combinations control most of Emacs� behaviour, as illustrated by the
commands in Nick�s Cheat Sheet (Table 4). Overall, Emacs accepts hundreds of keystroke
combinations, and the extensive online help lists them all. A seasoned Emacs user can quickly
accomplish most editing tasks with a deft sequence of keystrokes. Many commands can also be

 � 32 �

Table 4. A guide to using keystroke commands in Emacs, also known as Nick�s Emacs Cheat
Sheet. Help files use a different notation, where �C-x� means <Ctrl-x> and �M-x� means
<Meta-x>. In Windows, <Alt> serves as the <Meta> key, so that �M-x� translates to <Alt-x>.

File Manipulation
<Ctrl-x>, <Ctrl-f> Create/open a file (buffer)
<Ctrl-x>, k Close a file (buffer)
<Ctrl-x>, s Save the current file (buffer)
<Ctrl-x>, <Ctrl-c> Save files (buffers) and close Emacs

Frame Manipulation
<Ctrl-x>, 5, 0 Delete the current frame
<Ctrl-x>, 5, 1 Delete all other frames
<Ctrl-x>, 5, 2 Create a new frame
<Ctrl-x>, 5, o Cycle the cursor through the frames

Window Manipulation
<Ctrl-x>, 0 Delete the current window
<Ctrl-x>, 1 Delete all other windows
<Ctrl-x>, 2 Split the current window vertically
<Ctrl-x>, 3 Split the current window horizontally
<Ctrl-x>, o Cycle the cursor through the windows

Cut/Copy/Paste
<Ctrl-x>, h Highlight the whole buffer
<Ctrl-Space> Start highlighting a region
<Ctrl-g> Remove highlighting
<Ctrl-w> Cut highlighted region
<Alt-w> Copy highlighted region
<Ctrl-k> Cut current line (pressing multiple times cuts multiple lines)
<Ctrl-y> Paste

Searching/Replacing
<Ctrl-s> Incremental search (forward)
<Ctrl-r> Incremental search (reverse)
<Alt-%> Start a search/replace operation

Help
<Ctrl-h>, i Display the help

Miscellaneous Commands
<Ctrl-g> Stops the Emacs command currently in progress
<Ctrl-l> Scroll the current window vertically to centre the cursor
<Alt-x>, indent-region Indent a highlighted region
<Alt-x>, comment-region Comment a highlighted region
<Alt-x>, goto-line Go to a specific line number
<Alt-x>, tabify Convert all spaces in highlighted region to tabs
<Alt-x>, untabify Convert all tabs in highlighted region to spaces
<Esc-i> Insert a tab character

 � 33 �

accessed via the Emacs GUI. In the usual style for Windows, the File menu gives options for
opening, saving, or closing files, and the Edit menu supports search and replace operations. The
Options menu includes various configuration choices, such as turning syntax highlighting on or
off. As with most Windows applications, it helps to explore the possibilities.

Emacs uses various modes to support different file types. Modes can determine many
things, such as indenting, text colouring, and items on the menu bar. The status line shows the
current mode (C Abbrev in Figure 8). Emacs includes native support for many applications,
such as Perl and LaTeX. Furthermore, modes can be added with suitable configuration files, as
illustrated by the Emacs Speaks Statistics (ESS) package to support source code for R or
S-PLUS. File extensions normally determine the mode automatically, although the mode can be
changed manually by pressing <Alt-m> and typing the mode name.

Learn Emacs by delving into it! Nick�s Cheat Sheet (Table 4) helps diminish the learning
curve, and Nick guarantees that the benefits will outweigh the costs. Available for Linux, Mac
OS X, and Windows in both command-line and graphical environments, Emacs is highly
portable. Experience gained on one platform transfers directly to all others.

5.2. Choosing a C/C++ Compiler

Section 4.2 mentions various C/C++ compilers that run within Windows. They differ in
several respects, such as adherence to standards, compilation time, and inclusion of an IDE. The
resulting executables may also differ in size and execution time. A detailed comparison of
compilers warrants its own report, but our work has led to observations that illustrate some of the
possibilities.

In a scientific environment, execution time can be important. To compare the product of
several compilers, we used our points-in-polygons routine findPolys.exe as a test case.
Executables from the Microsoft, Intel, and MinGW GCC compilers all produced a similar run
time. However, the Cygwin GCC compiler gave an executable that outperformed its competitors
by finishing execution in nearly half the time. The difference appeared to occur in the input and
output routines, perhaps due to implementation in the Cygwin DLL. Possibly, subtle choices in
compiler options might have influenced these results. We use this example only to illustrate that
compiler choice can influence execution time. It certainly offers no definitive recommendation
for one compiler over another.

We also noticed size differences in the resulting executables. For example, MinGW GCC
version 2.95 created a 7 kilobyte executable recent.exe. When MinGW GCC version 3.2
compiled the same source file, the executable occupied 30 kilobytes. Perhaps the difference
stems from default compilation options and libraries embedded in the code by the two compilers.
Again, we use this example only to illustrate that compiler choice can influence executable size.

Where execution time and executable size are important, it may prove helpful to explore
various compiler choices. The free GNU Compiler Collection offers several possibilities, and
some commercial companies (such as Intel) provide free demonstration versions of their
compilers.

 � 34 �

5.3. Building Software with C/C++

 The GNU Compiler Collection (GCC) includes a variety of tools for compiling source
code into machine-readable object code. In particular,
• gcc compiles C source code, usually from files with the extension .c; and
• g++ compiles C++ source code, usually from files with the extension .cpp.
Our examples pertain to C code, but similar commands work for C++ code after replacing gcc
with g++.

A normal cycle translates source to object code (*.o) and then links required libraries to
give an executable file (*.exe or *.dll). Arguments on the command line determine the steps
in this process, which may go directly from source code to an executable file. The command

 gcc �-help

gives a partial list of the available options, and the user manual shows even more. Although these
long lists can seem a bit daunting, it helps to think of the basic C compiler command as

 gcc �o OFILE [ARGS] IFILES

with the arguments
• -o OFILE output file name (e.g., *.o, *.exe, or *.dll);
• ARGS additional compiler arguments;
• IFILES one or more input input files (e.g., *.c or *.o).
Notice that compiler arguments use the UNIX hyphen (-), rather than the Windows slash (/).

 Our Emacs example (Figure 8, Section 5.1) shows a simple C program in a file named
hello.c. To compile this source code into an executable file named hello.exe, use the
command:

 gcc �o hello.exe hello.c

Alternatively, two steps also give the intermediate object code hello.o:

 gcc �o hello.o -c hello.c
 gcc �o hello.exe hello.o

where the �c option in the first line specifies compilation only.

 Making a dynamically linked library (DLL) for Windows requires additional steps.
Perhaps the easiest method uses the tools dllwrap.exe and dlltool.exe included with
the Dev-C++ distribution (Section 4.2). Table 5 lists source code in a file fib.c intended for a
making a DLL, where the fibonacci function uses a pointer variable for accepting input and
returning output. The three commands

 � 35 �

gcc �o fib.o �c fib.c
dlltool --output-def fib.def --export-all-symbols fib.o
dllwrap -o fib.dll --def fib.def fib.o

successively produce object code fib.o, a slightly mysterious definition file fib.def, and the
final library fib.dll.

Table 5. C source code file fib.c that defines a function to calculate the nth Fibonacci number
from the recursion 12 −− += nnn xxx with 00 =x and 11 =x . For use in a dynamically linked
library (DLL), the function uses the pointer *n to pass the input integer n and the return
value nx . It returns 1− when 0<n .

void fibonacci (long *n)
{
 long i, xa = 0, xb = 1, xn, nn = *n;

 if (nn < 0)
 xn = -1;
 else if (nn <= 1)
 xn = nn;
 else {
 for (i = 2; i <= nn; i++) {
 xn = xa + xb;
 xa = xb;
 xb = xn;
 }
 }

 *n = xn;
}

The GNU collection also includes a standard UNIX utility make.exe that facilitates

execution of commands needed to create a file like fib.dll. This program uses a text file with
the standard name Makefile in the directory that contains the relevant project files. Running
the command make then causes the desired target files to be constructed according to specified
rules. Although a full explanation of the make utility requires much more explanation, Table 6
illustrates a Makefile for fib.dll that automates the three commands listed above. For
further information, see the web site http://www.gnu.org/software/make/.

 � 36 �

Table 6. Contents of a Makefile to create fib.dll. The target fib.dll depends on
fib.o, and the target fib.o depends on fib.c. The commands to build a target appear
below the line that shows target dependencies.

fib.dll: fib.o
 dlltool �-output-def fib.def --export-all-symbols fib.o
 dllwrap �o fib.dll --def fib.def fib.o
fib.o: fib.c
 gcc �o fib.o �c fib.c

5.4. Adding Software Product Information

 Microsoft Windows allows the embedding of product information in executable files and
dynamically linked libraries (DLLs). You can see this for most Microsoft software, such as the
Windows Explorer (explorer.exe, usually in main Windows directory), by right-clicking the
program icon and selecting Properties. The Version tab shows various entries, including a
version number, description, and copyright. The file PBSmapping.dll in our mapping
software includes similar product information. How did we manage to get it there?

 The key to solving this problem lies in a Windows Resource file (*.rc) that specifies the
required product information. Table 7 illustrates technical resource code written for the
Fibonacci example in Tables 5 and 6. Starting from the two files
• fib.c (the C source code in Table 5) and
• fib_res.rc (the Windows resource code in Table 7),
the following sequence of commands:

gcc �o fib.o �c fib.c
dlltool --output-def fib.def --export-all-symbols fib.o
windres �o fib_res.o fib_res.rc
dllwrap -o fib.dll --def fib.def fib.o fib_res.o

produces the dynamically linked library fib.dll, complete with product information. The
command windres.exe in the third line, included with the Dev-C++ distribution, converts the
resource code fib_res.rc into object code fib_res.o. The final line uses dllwrap.exe
to link the two object files fib.o and fib_res.o into fib.dll. Here�s an exercise for the
keen reader. How would you change the Makefile in Table 6 to include the resource file
fib_res.rc in building fib.dll? (Hint: Add a dependency line for fib_res.o.)

Microsoft provides detailed instructions for writing resource files, like the one shown in
Table 7, although we had some difficulty finding this information. Currently, it resides at

http://msdn.microsoft.com/library/en-us/tools/tools/versioninfo_resource.asp.

If this link fails, we suggest using a good search engine, like Google (http://www.google.ca), to
find the subject versioninfo_resource.

 � 37 �

Table 7. A Windows resource file fib_res.rc for adding product information to fib.dll.

#include <windows.h>

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 1,0,0,0
 PRODUCTVERSION 1,0,0,0
 FILEFLAGSMASK 0x3fL
 FILEFLAGS 0x0L
 FILEOS VOS__WINDOWS32
 FILETYPE VFT_DLL
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "CompanyName", "Fisheries and Oceans Canada\r\n\
Pacific Biological Station\0"

VALUE "FileDescription", "Calculates the n-th Fibonacci\0"
VALUE "FileVersion", "1.00\0"

 VALUE "InternalName", "Fibonacci Test\0"
 VALUE "LegalCopyright", "Copyright © 2003\0"
 VALUE "OriginalFilename", "fib.dll\0"
 VALUE "ProductName", "Fibonacci Test\0"
 VALUE "ProductVersion", "1.00\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

5.5. Embedding C Functions in R/S

The rich R/S programming environment sometimes runs slowly, particularly with
problems that require explicit looping. The PBS Mapping software illustrates situations in which
compiled C code runs much faster. A dynamically linked library connects the C and R/S
environments, where the same DLL file works with both R and S-PLUS 2000. Unfortunately,
S-PLUS Release 6 uses a different function calling convention, and the current version of PBS
Mapping works only with S-PLUS 2000.

C and R/S code written for use with an interfacing DLL must conform to several

restrictions:
• C does not support the high-level R/S data types. Instead, each type has a specific

representation in C (Table 8).

 � 38 �

• R/S code must define objects, and thus allocate memory for them, before calling C functions
in the DLL. Some of these objects may contain predefined input values. Others serve as
locations for the output, to be modified by the C code.

• C functions can create additional variables for internal calculations, but allocated memory
must be freed before the function terminates. Otherwise, the memory will be lost, creating a
proverbial memory leak.

• C functions directly accessible to R/S must have void return types. All results are returned
via predefined function arguments. R/S may crash if the code attempts to call a non-void
function.

• C code written for the shared DLL should not contain a main function.

Table 8. C representations for R/S data types.

R/S Object R S
logical int * long *
integer int * long *
single float * float *
double double * double *
complex Rcomplex * 1 struct{double re, im;} *
character char ** char **
name SEXP 2 char *
list SEXP * 2 char **
numeric double * double *

 1 Rcomplex is defined in Complex.h.
 2 SEXP is defined in Rinternals.h.

A normal cycle of C�R/S code development requires a C source file that defines

functions suitable for the interface DLL. Once the DLL has been created, the library must be
loaded into the R/S environment. This makes functions within the DLL available via the R/S call
.C(). We describe this process by using the Fibonacci example in Section 5.3.

Suppose that fib.dll contains the function fibonacci defined in Table 5. Then the
following short R session would load the library, find the 10th Fibonacci number, display the
result, and unload the library (good programming practice when a library is no longer needed):

> dyn.load("fib.dll")
> result <- .C("fibonacci", n = as.integer(10))
> print(result)
$n
[1] 55
> dyn.unload("fib.dll")

The .C call references the function "fibonacci" and its sole integer argument. We use the
name n in the R code to match the integer pointer *n in the C code (Table 5), but this naming
convention isn�t necessary. Both R and C must refer to an object of the same type, in this case a

 � 39 �

single integer. A conversion function (as.integer here) helps ensure the correct type. On
input, n contains 10. The call returns a list result, with a component for each function
argument. The C fibonacci function changes n from its input value (10) to the 10th Fibonacci
number (55), the value of n in the result.

 A similar session for S-PLUS would appear as follows:

> dll.load("fib.dll", "fibonacci", "cdecl")
> result <- .C("fibonacci", n = as.integer(10))
> print(result)
$n
[1] 55
> dll.unload("fib.dll")

S-PLUS requires more specific arguments for the library loading function: a vector of relevant
function names (here only "fibonacci") and a protocol for calling functions in the DLL (here
the C calling convention "cdecl").

5.6. Creating R Packages

The R project defines a standard for creating a package of functions, data, and
documentation. To build a package, you must have the following software installed on your
computer:
• R version 1.7.0 or later;
• Perl version 5 or later;
• the Microsoft HTML Help Workshop;
• various UNIX tools, including make, sh, cat, cp, diff, echo, mkdir, mv, rm, sed,

and any files needed to create a DLL from C source code (if any).
The Windows PATH should include the relevant directories to invoke all this software.

Anonymous (2003a) gives a complete technical description of the requirements for
building an R package, which typically includes code, data, and documentation. The input
components reside in various files and directories. For example, the PBS Mapping library
includes:
• \PBSmapping\DESCRIPTION, a text file that describes the package;
• \PBSmapping\R\ with R source code files (*.R);
• \PBSmapping\src\ with C source code files (*.c, *.h, *.rc);
• \PBSmapping\data\ with binary R data files (*.rda) created with the R save

function;
• \PBSmapping\man\ with documentation in text files (*.Rd, supported by Emacs with

ESS) that conform to a special R documentation format (Anonymous 2003a,b);
• \PBSmapping\inst\ with files and subdirectories that contain various documents, such

as this report in a PDF file.

 � 40 �

The R packaging utility uses Perl scripts for various tasks, such as converting R documentation
files (*.Rd) into various other formats, performing consistency checks, compiling C code, and
building archives for distribution. These archives use zip format (*.zip) for a binary
distribution and a UNIX compression format (*.tar.gz) for a source code distribution.

We have two suggestions for writing R code and documentation intended for a package.
First, R functions that begin with a period, considered hidden in the UNIX sense (Appendix C),
need no documentation. Second, examples in the documentation files must explicitly load any
required data using the data function. In PBS Mapping, for example, we make frequent use of
hidden functions to share code among the high level functions intended for the user. Our
examples load data objects like nepacLL, where necessary.

R technical documents (Anonymous 2003a,b) provide the best complete recipe for
building an R package. As an aid to readers who want a condensed version, we list the steps used
in building PBS Mapping. This recipe offers a prototype for building other packages.

1. Save each desired data object to a file (*.rda) using the save() function.

2. Create the file DESCRIPTION according the instructions in Anonymous (2003a).

3. Create the package�s directory structure, as described above. Place the relevant files in the

appropriate directories. The root directory name (here \PBSmapping) must match the
package name specified in DESCRIPTION.

4. Add a file with the standard name zzz.R to the \R subdirectory that defines the R function
.First.lib, which is invoked automatically when loading the package. In PBS Mapping,
this function has the definition

.First.lib <- function(lib, pkg) {
 library.dynam("PBSmapping", pkg, lib)}

where the command library.dynam loads PBSmapping.dll. We omit the extension
.dll because it is implied by the Windows operating system. (By contrast, UNIX uses
archive libraries *.a.)

5. In a DOS window, change into the parent directory for \PBSmapping. Issue the command

Rcmd CHECK PBSmapping

to check the package for errors. The command Rcmd.exe in the R distribution invokes the
necessary Perl scripts to accomplish various tasks.

6. Correct all errors found in step 5, and repeat the step until no errors occur. For additional
information on an error, look at the files in the \PBSmapping.check subdirectory.

 � 41 �

7. To create a binary package (PBSmapping.zip) that can be installed within the R GUI, run
the command

Rcmd BUILD --binary PBSmapping

Installing this file from the GUI requires no special software other than R itself.

8. To create a source package (PBSmapping.tar.gz) that can be installed from the
command line, run the command

Rcmd BUILD PBSmapping

To install the package from this source file, run the command

Rcmd INSTALL PBSmapping.tar.gz

Installing this file from the command line requires all the software listed at the beginning of
this section.

9. To remove the installed package, run the command

Rcmd REMOVE PBSmapping

This command potentially requires the software listed at the beginning of this section.

5.7. Creating S-PLUS 2000 Libraries

Insightful Corporation (www.insightful.com), formerly MathSoft Inc., defines a method
for creating an S-PLUS library of functions, data, and documentation (Anonymous 1999). This
task requires a computer with S-PLUS and a compression utility, such as WinZip. Our discussion
applies to S-PLUS 2000. The more recent version S-PLUS 6 introduces a new function
createChapter that automates parts of this process.

The S-PLUS documentation (Anonymous 1999) provides the best recipe for building an
S-PLUS 2000 library. As an aid to readers who want a condensed version, we list the steps used
in building PBS Mapping. These illustrate the process required to build other libraries.

1. In the S-PLUS library directory, create a subdirectory for the new library. We use

\PBSmapping, where the subdirectory name designates the library name.

2. Inside this new subdirectory, create the following subdirectories:

_Data
_Data_Help
_Prefs

 � 42 �

3. In an S-PLUS session, create or import all necessary functions and data objects. For example,
we use the command source("PBSmapping.R") to define our functions. Similarly, we
use read.table() to load data objects from text files.

4. Define the S function .First.lib, which runs automatically when the library is loaded. In

PBS Mapping, this function is

.First.lib <- function(library, section)
{
 dll.load("PBSmapping.dll",
 c("clip", "integrateHoles", "calcArea", ...), "cdecl")
}

The command dll.load loads PBSmapping.dll. The second argument specifies the
vector of DLL functions made available in S, where our notation �...� indicates that the
above list is incomplete. To call one of these functions within S, use .C(). The final
argument "cdecl" indicates the C calling convention for accessing DLL functions.

5. Load the new (empty) library by issuing the command

PBS.pos <- library(PBSmapping, first=T)

where PBS.pos specifies the position of the PBSmapping database in the search list.

6. Create a vector of all function and data object names to include in the library. For PBS

Mapping, these names appear in Appendices C�D, and the required vector is

PBS.objs <- c(".First.lib", ".addAxis", ".addLabels",
 ..., "addLines", "addPolys", ..., "worldLL", "worldLLhigh")

where our notation �...� indicates omissions from the complete alphabetical list. Then use
the following code to copy each library object into the PBS Mapping database:

for (i in 1:length(PBS.objs)) {
 assign(PBS.objs[i], get(PBS.objs[i]), where = PBS.pos)
}

If S-PLUS warns about masking existing objects, ignore these warnings.

7. S-PLUS libraries can contain documentation as text files in the _Data_Help

subdirectory. The name of each help file must match the true filename of the object it
describes. Obtain these filenames with the S command

for (i in 1:length(PBS.objs)) {
 print(PBS.objs[i]);
 print(true.file.name(PBS.objs[i], where = PBS.pos))
}

 � 43 �

8. At this point, steps 6 and 7 have altered the contents of \PBSmapping_Data and
\PBSmapping_Data_Help. Copy the file PBSmapping.dll into \PBSmapping,
and compress the entire \PBSmapping directory tree, with paths preserved, using a
program such as WinZip.

9. To install the library on another computer, uncompress this file into the library

subdirectory of the S-PLUS program directory. This creates the subdirectory tree
\PBSmapping. Move PBSmapping.dll from \PBSmapping into the S-PLUS bin
directory.

10. To remove the installed package, delete the \PBSmapping subdirectory tree from the

S-PLUS library directory, and remove PBSmapping.dll from the bin directory.

5.8. Building GUIs with Tcl/Tk in Python and R

Both Python and R can interface with Tcl/Tk to create graphical user interfaces (GUIs).
Python uses the module Tkinter, and R uses the package tcltk. Recent versions of both
languages include Tcl/Tk within their standard distributions. The following seven-line bilingual
example opens a window that displays the text message �Hello world!� and closes when a user
clicks the �Exit� button. Line 1 loads the appropriate module or library. Line 2 creates an empty
window. Line 3 creates the label �Hello world!�, and line 4 adds it to the window. Line 5 creates
an �Exit� button with the associated command to destroy the root window, and line 6 adds it to
the window. Finally, line 7 displays the window to the user.

Python Code

1. from Tkinter import *
2. root = Tk()
3. lblHello = Label(root, text="Hello world!")
4. lblHello.pack()
5. btnExit = Button(root, text="Exit", command=root.destroy)
6. btnExit.pack()
7. root.mainloop()

R Code

1. library(tcltk)
2. root <- tktoplevel()
3. lblHello <- tklabel(root, text="Hello world!")
4. tkpack(lblHello)
5. btnExit <- tkbutton(root, text="Exit",

 command=function() tkdestroy(root))
6. tkpack(btnExit)
7. tkfocus(root)

 � 44 �

ACKNOWLEDGEMENTS

 We thank Dr. Jim Uhl and Dr. Peter Walsh in the Computing Science Department,
Malaspina University-College, for encouraging and facilitating the role of students in applied
fisheries research. Without the dedicated work of these students, named in the Preface, we could
not have produced the software described here. We also acknowledge the work of Dr. Paul
Wessel and Dr. Walter Smith in compiling their valuable shoreline (GSHHS) database. Our
colleague Brian Krishka helped prepare the data objects surveyData, towData, and
towTracks. The PBS Mapping package could not exist without R and GCC. We express
admiration and gratitude to the remarkable teams that build, document, and distribute such
outstanding free software.

REFERENCES

Anonymous. 1998. The ellipsoid and the Transverse Mercator projection. Geodetic Information

Paper No. 1 (version 2.2). Ordnance Survey, Southampton, UK. 20 p. URL:
http://www.ordsvy.gov.uk/.

Anonymous. 1999. S-PLUS 2000 programmer�s guide. Data Analysis Products Division,

MathSoft, Seattle, WA. URL: http://www.insightful.com/support/doc_splus_win.asp.

Anonymous. 2003a. Writing R extensions. Version 1.7.1 (June 16, 2003). URL:

http://cran.r-project.org/doc/manuals/R-exts.pdf. See also the text file
readme.packages in the R root directory.

Anonymous. 2003b. Guidelines for Rd files. URL: http://developer.r-project.org/Rds.html.

(Document not dated, but accessed September 18, 2003.)

Becker, R.A., J.M. Chambers, and A.R. Wilks. 1988. The new S language: a programming

environment for data analysis and graphics. Wadsworth and Books/Cole. Pacific Grove,
CA.

Becker, R.A., and A.R. Wilks. 1993. Maps in S. Statistics Research Report 93.2. AT&T Bell

Laboratories, Murray Hill, NJ. 21 p. URL: http://www.research.att.com/areas/stat/doc/.

Becker, R.A., and A.R. Wilks. 1995 (rev. 1997). Constructing a geographical database. Statistics

Research Report 95.2. AT&T Bell Laboratories, Murray Hill, NJ. 23 p. URL:
http://www.research.att.com/areas/stat/doc/.

Devlin, K.J. 1998. The language of mathematics: making the invisible visible. W. H. Freeman

and Company. New York, NY. 344 p. (Reference taken from the first paperback printing
2000)

 � 45 �

Douglas, D.H., and T.K. Peucker. 1973. Algorithms for the reduction of the number of points
required to represent a digitized line of its caricature. Canadian Cartographer 10:
112-122.

Foley, J.D., A. van Dam, S.K. Feiner, and J.F. Hughes. 1996. Computer graphics principles and

practice: second edition in C. Addison-Wesley Publishing Co. Boston, MA.

Haigh, R., and J. Schnute. 1999. A relational database for climatological data. Canadian

Manuscript Report of Fisheries and Aquatic Sciences 2472. 26 p.

Hains, E. 1994. Point in polygon strategies. Chapter 1.4, p. 24-46 in: Heckbert, P.S. 1994.

Graphics Gems IV. Academic Press, San Diego, CA. 575 p.

Kernighan, B.W., and D.M. Ritchie. 1978. The C programming language. Prentice-Hall, Inc.

Edgewood Cliffs, NJ.

Kernighan, B.W., and D.M. Ritchie. 1988. The C programming language (second edition).

Prentice-Hall, Inc. New York, NY. 274 p. See the web sites:
http://cm.bell-labs.com/cm/cs/cbook/index.html, http://www.pseudorandom.org/kandr.

Knuth, D.E. 1984. The TeXbook. Addison-Wesley Publishing Company. Reading, MA. 483 p.

Lamport, L. 1986. LaTeX: a document preparation system. Addison-Wesley Publishing

Company. Reading, MA. 242 p.

Ousterhout, J.K. 1998. Scripting: higher level programming for the 21st century. Institute of

Electrical and Electronics Engineers (IEEE) Computer 31: 23-30. (Currently available at
http://home.pacbell.net/ouster/scripting.html)

Ritchie, D.M. 1993. The development of the C language. ACM SIGPLAN Notices 28: 201-208

(ACM HOPL-II Conference). Currently available at:
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html, with a related PDF file.

Rokne, J. 1996. The area of a simple polygon. p. 5-6 in: Arvo, J. 1996. Graphics Gems II.

Academic Press, San Diego, CA. 672 p.

Rossini, A., M. Maechler, K. Hornik, R.M. Heiberger, and R. Sparapani. 2001. Emacs Speaks

Statistics: a universal interface for statistical analysis. University of Washington
Biostatistics Paper Series, Paper 173. 24 p. (http://www.bepress.com/uwbiostat/paper173)

Rutherford, K.L. 1999. A brief history GFCATCH (1954-1995), the groundfish catch and effort

database at the Pacific Biological Station. Canadian Technical Report of Fisheries and
Aquatic Sciences 2299. 66 p.

 � 46 �

Schnute, J.T., R. Haigh, B.A. Krishka, and P. Starr. 2001. Pacific ocean perch assessment for the
west coast of Canada in 2001. Canadian Science Advisory Secretariat (CSAS) Research
Document 2001/138. 90 p.

Schnute, J.T., C.G. Wallace, and T.A. Boxwell. 1996. A relational database shell for marked

Pacific salmonid data (Revision 1). Canadian Technical Report of Fisheries and Aquatic
Sciences 2090A. 28 p.

Sebesta, R. 2002. Concepts of programming languages (5th edition). Addison-Wesley. Boston,

MA. 720 p.

Sinclair, C.A., and N. Olsen. 2002. Groundfish research cruises conducted by the Pacific

Biological Station, Fisheries and Oceans Canada, 1944-2002. Canadian Manuscript
Report of Fisheries and Aquatic Sciences 2617. 91 p.

Sipser, M. 1997. Introduction to the theory of computation. PWS Publishing Company. Boston,

MA. 396 p.

Starr, P.J., Krishka, B.A., and Choromanski, E.M. 2002. Trawl survey for thornyhead biomass

estimation off the west coast of Vancouver Island, September 15 � October 2, 2001.
Canadian Technical Report of Fisheries and Aquatic Sciences 2421. 60 p.

Stroustrup, B. 1985. The C++ programming language. Addison-Wesley Publishing Co. Reading,

MA.

van Rossum, G., and L. Wall. 2001. Programming Parrot in a nutshell. O�Reilly and Associates.

401 p. (Announced April 1, 2001 at http://www.oreilly.com/parrot/)

Venables, W.N., and B.D. Ripley. 1999. Modern applied statistics with S-PLUS (3rd Edition).

Springer-Verlag. New York, NY. 501 p.

Venables, W.N., and B.D. Ripley. 2000. S programming. Springer-Verlag. New York, 264 p.

Wessel, P., and W.H.F. Smith. 1996. A global, self-consistent, hierarchical, high-resolution

shoreline database, Journal of Geophysical Research 101: 8741-8743. URL:
http://www.soest.hawaii.edu/pwessel/pwessel_pubs.html.

Whitehead, P., and E. Kramer. 2000. Perl: your visual blueprint for building Perl scripts. IDG

Books. Foster City, CA. 350 p.

Wirth, Niklaus. 1975. Algorithms + data structures = programs. Prentice-Hall. Englewood Cliffs,

NJ. 366 p.

 � 47 �

APPENDIX A. Distribution CD

This appendix lists the contents of the distribution CD. Its directory structure mirrors the
contents of this report, with entries for free Internet software, the PBS Mapping package, and
other utilities. We always provide links to web sites for downloading free software. Subject to
license restrictions, we also include the versions actually used by us. This allows users to
replicate our work, which might need revision for future software releases. If a license prevents
us from distributing software, we provide only links to the applicable web sites. Each directory
on the CD contains a file named 00ReadMe.txt or 00ReadMe.pdf that describes the
directory�s contents.

Table A1. Directories on the distribution CD, with brief descriptions of their contents.

Path Description
\FreeInternetSoftware Free software downloaded from the Internet
 \Compilers Compilers
 \C-C++ Dev-C++ 4.9.8.0
 \Fortran Fortran included in Dev-C++ 4.9.8.0
 \Pascal Dev-Pascal 1.9.2
 \ScriptingLanguages Scripting language interpreters
 \Parrot Parrot history
 \Perl Link to ActivePerl
 \Python Python 2.3
 \TclTk Link to ActiveTcl
 \ToolsForWindows Various tools for Windows
 \Emacs Emacs (text editor)
 \Gimp GIMP (image manipulation)
 \HTMLHelpWorkshop Link to Microsoft HTML Help Workshop (compiled help files)
 \TeX Link to MiKTeX (mathematical typesetting)
 \UNIXTools Link to Cygwin (UNIX tools)
\PBSmapping PBS Mapping Software for R/S
 \DataSets Datasets useful for mapping
 \R PBS Mapping R package for distribution
 \PBSmapping Directory tree to construct R package, as described in Section 5.6
 \S PBS Mapping S library for distribution
 \PBSmapping Directory tree to construct S library, as described in Section 5.7
 \src Source code

 � 48 �

Table A1. continued.

Path Description
\Utilities Utilities programmed at the Pacific Biological Station (PBS)
 \Database Database utilities
 \Mapping Mapping utilities
 \clipPolys Clip polysets
 \convUL Convert between UTM and Longitude/Latitude coordinates
 \findPolys Find the polygons containing events
 \gshhs2r Convert the GSHHS ASCII data format to our ASCII data format
 \OS Operating system utilities
 \dusage Disk Usage
 \src Source code
 \qcd Quickly Change Directory
 \src Source code
 \recent Recently Modified Files
 \src Source code
 \setenv Set Environment Variables
 \src Source code

 � 49 �

APPENDIX B. Free Software Technical Information

A few tricks can sometimes make the difference between ease and frustration when
installing and using a software application. This appendix documents technical information that
we found helpful for the applications discussed here.

Cygwin

 The Cygwin installer setup.exe (found at http://sources.redhat.com/cygwin/) provides
a GUI that downloads and installs Cygwin components via the Internet. The process allows you
to choose a download site, and we found reasonable response from a location called
�http://mirrors.kernel.org�. Accept all default options to obtain a minimal Cygwin working
environment. To include other packages, select them from the GUI during installation. Once the
installation is complete, add Cygwin�s bin folder to the system�s PATH, if you want the UNIX
tools available from all directories.

Emacs and Emacs Speaks Statistics

 Installation requires the two most recent zipped archives for Emacs and ESS. At the time
of writing, these are
• emacs-21.3-fullbin-i386.tar.gz, available at

http://ftp.azc.uam.mx/mirrors/gnu/windows/emacs/latest/;
• ess-5.1.24.zip, available at http://www.analytics.washington.edu/Zope/wikis/ess/.
Extract all compressed files from the Emacs archive into a suitable folder
(e.g., C:\Program Files\), making sure that the �Use folder names� option is selected.
This creates the subfolder \emacs-21.3. Next, extract files from the ESS archive to
C:\Program Files\emacs-21.3\. This creates the subfolder \ess-5.1.24.

 After extracting the above files, you need to create the file C:\.emacs containing the
following two lines:
 (load "C:/progra~1/emacs-21.3/ess-5.1.24/lisp/ess-site")
 (setq ess-fancy-comments nil)
Adjust the folder location in the first line to reference the path of your installation. Be sure to
place the file .emacs in the root directory of drive C, regardless of your Emacs installation
location. Also, be sure to use forward slashes in the first line of .emacs. (Note: Windows
Explorer may not allow you to create .emacs or rename a file to .emacs because there is no
string preceding the dot extension. In this case, create a temporary file e.txt with
Notepad.exe, then open a DOS window and type move c:\e.txt c:\.emacs.)

 You can run Emacs by double clicking runemacs.exe in
C:\Program Files\emacs-21.3\bin\runemacs.exe. Alternatively, if the Emacs�
bin directory is placed on your PATH, you can issue the command runemacs from a DOS
window in any directory.

 � 50 �

GSHHS Software

 The GSHHS software includes two programs that we use for manipulating data sets. The
first (gshhs.exe) converts binary data into text format. The second (gshhs_dp.exe) thins
binary data by reducing the number of points sensibly to produce a smaller binary file. Both
programs are distributed as C source code.

 For technical reasons related to the binary format, each program can be compiled in two
distinct ways: with or without defining a variable FLIP on the command line. We compiled two
versions of each program with the commands

 gcc -O3 -o gshhs.exe gshhs.c
 gcc -DFLIP -O3 -o gshhs-flip.exe gshhs.c
 gcc -O3 -o gshhs_dp.exe gshhs_dp.c
 gcc -DFLIP -O3 -o gshhs_dp-flip.exe gshhs_dp.c

where the string -flip in executable file names indicates that FLIP was defined by the
argument �-DFLIP� during compilation. Working with Windows on an Intel platform, we used
gshhs-flip.exe and gshhs_dp-flip.exe to process original binary data files. By
contrast, with binary data files previously thinned by us, we used gshhs.exe and
gshhs_dp.exe. For additional details, please refer to the GSHHS README file.

OpenOffice.org

 To install this package, go to http://www.openoffice.org/ and download the latest
Windows version (OpenOffice.org 1.1, at the time of writing) from a convenient mirror site. You
will obtain a fairly large ZIP file (currently about 65MB). Extract all compressed files to a
temporary folder. For the simplest single-user installation, navigate to this folder, and run
setup.exe. However, we suggest making a common installation of OpenOffice.org available
to all users on a workstation. To allow for this, open a command (DOS) window, navigate to the
temporary folder using cd or qcd (Section 3.1), issue the command setup.exe /net, and
select an installation directory, such as C:\Utils\OpenOffice. After this initial
workstation-specific installation, each user (including the initial user) can access the program
with a further one-time call to the set-up program:

 C:\Utils\OpenOffice\program\setup.exe

Choose the �Workstation� option rather than the �Local� option to ensure that each user takes
advantage of the common code directory. Each user can specify a distinct directory (such as
C:\Utils\OpenOffice\Jon) for relatively small local files.

Parrot

Probably you�ve already realised that Parrot came into existence as an elaborate April
Fools� Day hoax. We included it in this report because we enjoy the joke and find it
representative of humour in the hacker community. Languages like Perl and Python have strong
advocates who enjoy a friendly rivalry. Consequently, a union of these two approaches seems

 � 51 �

almost unthinkable, except perhaps on April 1, 2001. With its name inspired by the hoax, a
genuine Parrot project now exists to design an interpreter for languages that use dynamic
compilation to byte code. In the future, this engine could reside at the core of most scripting
languages, giving them a common implementation framework.

Pascal

Bloodshed Software (http://www.bloodshed.net/) offers a free Integrated Development
Environment (IDE) named Dev-Pascal. There are three IDE bundle options (i) no compiler,
(ii) the Free Pascal compiler, or (iii) the GNU Pascal compiler. Table B1 summarises the
differences between the two compilers. For option (iii), download the file
dev_gnu_pascal-1.9.2.exe or a more recent version from
http://www.bloodshed.net/devpascal.html. Run this program, and follow the on-screen
instructions.

Table B1. Chief differences between the Free Pascal and GNU Pascal compilers, abstracted
from information at http://www.freepascal.org/faq.html#FPandGNUPascal (section 1.3).

 Free Pascal GNU Pascal
Goal To implement a Borland

compatible Pascal compiler on as
many platforms as possible.

To implement a standards-based
portable Pascal compiler based on
POSIX.

Operating
Systems

Linux, FreeBSD, NetBSD, DOS,
Win32, OS/2, BeOS, SunOS
(Solaris), QNX and Classic Amiga;
for the moment limited to the Intel
and Motorola architectures.

Any system that can run the GNU
C compiler.

Compiler Source Written in Pascal.

Written in C.

Language Borland Pascal dialect and
implements the Delphi Object
Pascal language.

Supports ISO 7185, ISO/IEC
10206 (most), ANSI/IEEE
770X3.160, Borland Pascal 7.0
(most).

Extensions Method, function, and operator
overloading.

Operator overloading.

TeX

 MiKTeX, a free implementation of TeX and related programs, provides utilities to
typeset TeX and LaTeX documents. We used MiKTeX to typeset Appendix D of this report and
convert it to a PDF file. To install MiKTeX, follow these steps:

1. Download the installation program (setup.exe) from http://www.miktex.org/setup.html.

 � 52 �

2. Review the installation procedure in HTML or PDF format, available from a link on the
home page. Currently, this points to:
http://www.ctan.org/tex-archive/systems/win32/miktex/setup/install.html.
The file install.pdf gives a concise summary.

3. Run setup.exe to download the required MiKTeX packages to a local directory, which
serves as a package repository. We have found the �Small� package set adequate for routine
typesetting. This involves about 100 compressed cab files, and the final installation occupies
over 100 MB on the hard drive. Add setup.exe to your repository directory, and
(optionally) include install.pdf for convenient reference.

4. Run setup.exe again from the repository to complete the installation. Again, we suggest
choosing the �Small� package set. Install MiKTeX for everyone (all users) on the
workstation, and accept the path to the repository.

5. You need to specify an installation path (e.g., C:\Utils\MiKTeX) and another optional
path for storing local font information (e.g., C:\Utils\MiKLocal). Ensure that no paths
involve the space character (as in \Program Files\). Another name (e.g., MiKTeX)
specifies the folder in the Program menu, reached via the Start menu.

6. The installation procedure automatically puts the MiKTeX bin folder (e.g.,
C:\Utils\MiKTeX\MiKTeX\bin) in first place on the PATH. You may want to demote
this placement.

7. The PDF utilities normally default to European A4 paper, rather than North American letter
size. Change this by modifying the text file pdftex.cfg, which (assuming the paths in
step 5) lies in the folder C:\Utils\MiKTeX\pdftex\config. Explicitly
• replace page_width 210 true mm with page_width 8.5 true in
• replace page_height 297 true mm with page_height 11 true in

8. MiKTeX automatically creates the folder C:\texmf\, apparently to store log files for
reporting bugs to the developers.

The MiKTeX package includes numerous utilities for typesetting, viewing, and

converting to PDF files. In particular
• tex.exe typesets a plain TeX file (*.tex) to produce a device-independent (DVI) binary

file (*.dvi);
• latex.exe typesets a LaTeX file (*.tex) to produce a DVI file;
• yap.exe, �yet another previewer�, visually displays a DVI file;
• pdftex.exe converts a plain TeX file (*.tex) to a PDF file;
• pdflatex.exe converts a LaTeX file (*.tex) to a PDF file.

 Unlike some commercial alternatives, MiKTeX does not provide a graphical user
interface (GUI) for editing, typesetting, and viewing TeX files. However, the AUCTeX
extension adds support for these actions to the Emacs editor. You can download AUCTeX from
the web site http://www.gnu.org/software/auctex/ by following the link to the latest �stable
version�. An additional Emacs extension, called preview-latex, gives typeset previews of selected
lines in the LaTeX source file. Download the latest version from the web site
http://preview-latex.sourceforge.net/ by navigating to the �download page�. Both AUCTeX and
preview-latex have complete documentation on their respective web sites.

 � 53 �

APPENDIX C. PBS Mapping Function Dependencies

This appendix documents function dependencies within the PBS Mapping package. All
functions appear as underlined entries in the alphabetised list. If a function depends on others,
the list of dependencies appears below the underlined name. Following a standard in UNIX and
R, functions whose name begins with a period (dot functions) are considered hidden from the
user, who would normally use only the non-hidden functions that call them. The names here
apply primarily to the R/S working environment, but functions designated �(C)� are implemented
in C source code and compiled in the DLL for the mapping package. These must be invoked
from R/S with the call .C(�).

.addAxis

.addLabels

.checkProjection

.clip
.validatePolySet
clip (C)

.createPolyProps
.validatePolyData

.fixGSHHSWorld
findPolys
fixPOS

.initPlotRegion

.integrateHoles
.validatePolySet
integrateHoles (C)

.plotMaps
.addAxis
.addLabels
.initPlotRegion
.validatePolySet
addLines
addPolys

.validateData

.validateEventData
.validateData

.validatePolyData

.validateData

.validatePolySet
.validateData

.validateXYData
.validateData

addLines
.checkProjection
.createPolyProps
.validatePolySet
clipLines

addPolys
.checkProjection
.createPolyProps
.integrateHoles
.validatePolySet
clipPolys

calcArea
.validatePolySet
calcArea (C)

clipLines
.clip

clipPolys
.clip

closePolys
.validatePolySet
closePolys (C)

combineEvents
.validateEventData

convUL
.validateXYData
convUL (C)

findPolys
.validateEventData
.validatePolySet
locateEvents (C)

fixBound
.validatePolySet

fixPOS
.validatePolySet
fixPOS (C)

locateEvents

locatePolys
.validatePolyData

makeGrid

makeProps
.validatePolyData

plotLines
.plotMaps

plotMap
.plotMaps

plotPolys
.plotMaps

 � 54 �

APPENDIX D. PBS Mapping Functions and Data

This appendix documents the R/S objects available in PBS Mapping, as
summarised in Table D1. Subsequent pages contain complete technical documentation
for every object, listed in alphabetical order. These descriptions come from .Rd files
written for the R documentation system, which generates corresponding LaTeX files that
typeset the pages here.

Table D1. Functions and data sets defined in the R/S PBS Mapping package, arranged
alphabetically within categories.

Category Object Description
User constant LANG Software environment ("R" or "S")

Plotting addLines Add a PolySet to an existing plot as polylines
 functions addPolys Add a PolySet to an existing plot as polygons
 plotLines Plot a PolySet as polylines
 plotMap Plot a PolySet as a map
 plotPolys Plot a PolySet as polygons

Computational calcArea Calculate areas of polygons
 functions clipLines Clip a PolySet as polylines
 clipPolys Clip a PolySet as polygons
 closePolys Close a PolySet
 combineEvents Combine measurements of events
 convUL Convert between UTM and LL projections
 findPolys Find polygons that contain events
 fixBound Fix boundary points of a PolySet
 fixPOS Fix the POS column of a PolySet
 locateEvents Locate events on the current plot
 locatePolys Locate polygons on the current plot
 makeGrid Make a grid PolySet
 makeProps Make polygon properties

Data sets nepacLL Northeast Pacific shoreline (normal resolution)
 nepacLLhigh Northeast Pacific shoreline (high resolution)
 pythagoras Pythagoras theorem diagram
 surveyData Survey data
 towData Tow data
 towTracks Tow track polylines
 worldLL World ocean shoreline (normal resolution)
 worldLLhigh World ocean shoreline (high resolution)

� 55 �

addLines Add a PolySet to an Existing Plot as Polylines

Description

Adds a PolySet to an existing plot, where each (PID, SID) set describes a unique polyline.

Usage

addLines (polys, xlim = NULL, ylim = NULL,

polyProps = NULL, lty = NULL, col = NULL, ...)

Arguments

polys PolySet to add (required).

xlim vector range of x-values.

ylim vector range of y-values.

polyProps PolyData specifying which polylines to plot and their properties. The data
in this object are superseded by plot properties passed as direct arguments.

lty numeric or character (R only) vector describing line types (cycled by PID).

col numeric or character (R only) vector describing colours (cycled by PID).

... additional par parameters for the lines function.

Details

The plotting routine does not connect the last vertex of each discrete polyline to the Þrst
vertex of that polyline. It clips polys to xlim and ylim before plotting.

See Also

addPolys, plotLines, plotMap, and plotPolys.

Examples

#--- create a PolySet to plot

polys <- data.frame(PID=rep(1, 4), POS=1:4, X=c(0, 1, 1, 0), Y=c(0, 0, 1, 1))

#--- plot the PolySet

plotLines(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5))

#--- add the PolySet to the plot (in a different style)

addLines(polys, lwd=5, col=3)

� 56 �

addPolys Add a PolySet to an Existing Plot as Polygons

Description

Adds a PolySet to an existing plot, where each (PID, SID) set describes a unique polygon.

Usage

addPolys (polys, xlim = NULL, ylim = NULL, polyProps = NULL,

border = NULL, lty = NULL, col = NULL, density = NA,

angle = NULL, ...)

Arguments

polys PolySet to add (required).

xlim vector range of x-values.

ylim vector range of y-values.

polyProps PolyData specifying which polygons to plot and their properties. The data
in this object are superseded by plot properties passed as direct arguments.

border numeric or character (R only) vector describing colours for the edges of
polygons (cycled by PID).

lty numeric or character (R only) vector describing line types (cycled by PID).

col numeric or character (R only) vector describing Þll colours (cycled by PID).

density numeric vector describing shading line densities (lines per inch, cycled by
PID).

angle numeric vector describing shading line angles (degrees, cycled by PID).

... additional par parameters for the polygon function.

Details

The plotting routine connects the last vertex of each discrete polygon to the Þrst vertex
of that polygon. It supports both borders (border, lty) and Þlls (col, density, angle).
It clips polys to xlim and ylim before plotting.

See Also

addLines, plotLines, plotMap, and plotPolys.

� 57 �

Examples

#--- create a PolySet to plot

polys <- data.frame(PID=rep(1, 4), POS=1:4, X=c(0, 1, 1, 0), Y=c(0, 0, 1, 1))

#--- plot the PolySet

plotPolys(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5), density=0)

#--- add the PolySet to the plot (in a different style)

addPolys(polys, col=3)

calcArea Calculate the Areas of Polygons

Description

Calculates the areas of polygons found in a PolySet.

Usage

calcArea (polys, sumPID = FALSE)

Arguments

polys PolySet to use.

sumPID Boolean value; if TRUE, sum across SIDs within each PID.

Details

If SID exists in the input data and sumPID = FALSE, then the output contains a row for
each (PID, SID) where SID corresponds to an outer boundary. If sumPID = TRUE, then the
output contains a row for each PID.

Value

PolyData with columns PID, SID (may be missing), and area.

Examples

#--- load the data (if using R)

if (exists("LANG") && LANG == "R")

data(nepacLL)

#--- convert LL to UTM so calculation makes sense

attr(nepacLL, "zone") <- 9

nepacUTM <- convUL(nepacLL)

#--- calculate and print the areas

print(calcArea(nepacUTM))

� 58 �

clipLines Clip a PolySet as Polylines

Description

Clips a PolySet, where each (PID, SID) set describes a unique polyline.

Usage

clipLines (polys, xlim, ylim)

Arguments

polys PolySet to clip.

xlim vector range of x-values.

ylim vector range of y-values.

Details

For each discrete polyline, vertices 1 and N are not connected. The POS values for each
vertex will be recalculated, with the old values saved in a column named oldPOS. If a new
vertex is added, its oldPOS value will be NA.

Value

A new data frame containing the input data, with some points added or removed. A new
column oldPOS records the original POS value for each vertex.

See Also

clipPolys.

Examples

#--- create a triangle to clip

polys <- data.frame(PID=rep(1, 3), POS=1:3, X=c(0,1,0), Y=c(0,0.5,1))

#--- clip the triangle in the X direction, and plot the results

plotLines(clipLines(polys, xlim=c(0,.75), ylim=range(polys[, "Y"])))

� 59 �

clipPolys Clip a PolySet as Polygons

Description

Clips a PolySet, where each (PID, SID) set describes a unique polygon.

Usage

clipPolys (polys, xlim, ylim)

Arguments

polys PolySet to clip.

xlim vector range of x-values.

ylim vector range of y-values.

Details

For each discrete polygon, vertices 1 and N are connected. The POS values for each vertex
will be recalculated, with the old values saved in a column named oldPOS. If a new vertex
is added, its oldPOS value will be NA.

Value

A new data frame containing the input data, with some points added or removed. A new
column oldPOS records the original POS value for each vertex.

See Also

clipLines.

Examples

#--- create a triangle that will be clipped

polys <- data.frame(PID=rep(1, 3), POS=1:3, X=c(0,1,.5), Y=c(0,0,1))

#--- clip the triangle in the X direction, and plot the results

plotPolys(clipPolys(polys, xlim=c(0,.75), ylim=range(polys[, "Y"])))

� 60 �

closePolys Close a PolySet

Description

Closes a PolySet of polylines to form polygons.

Usage

closePolys (polys)

Arguments

polys PolySet to close.

Details

Generally, run fixBound before this function. The ranges of a PolySet�s X and Y columns
deÞne the boundary. For each discrete polygon, this function determines if the Þrst and
last points lie on a boundary. If both points lie on the same boundary, it adds no points.
However, if both points lie on different boundaries, one or two corners may be added to
the polygon.

When the boundaries are adjacent, one corner will be added as follows:

� top boundary + left boundary implies add top-left corner;
� top boundary + right boundary implies add top-right corner;
� bottom boundary + left boundary implies add bottom-left corner;

� bottom boundary + right boundary implies add bottom-right corner.

When the boundaries are opposite, Þrst add the corner closest to a starting or ending poly-
gon vertex. This determines a side (left-right or bottom-top) that connects the opposite
boundaries. Then, add the other corner of that side to close the polygon.

Value

A data frame identical to polys, except for possible additional corner points.

See Also

fixBound and fixPOS.

� 61 �

Examples

#--- 4 corners

polys <- data.frame(PID=c(1, 1, 2, 2, 3, 3, 4, 4),

POS=c(1, 2, 1, 2, 1, 2, 1, 2),

X = c(0, 1, 2, 3, 0, 1, 2, 3),

Y = c(1, 0, 0, 1, 2, 3, 3, 2))

plotPolys(closePolys(polys))

#--- 2 corners and 1 opposite

polys <- data.frame(PID=c(1, 1, 2, 2, 3, 3, 3),

POS=c(1, 2, 1, 2, 1, 2, 3),

X = c(0, 1, 0, 1, 5, 6, 1.5),

Y = c(1, 0, 2, 3, 0, 1.5, 3))

plotPolys(closePolys(polys))

combineEvents Combine Measurements of Events

Description

Combines measurements associated with events that occur in the same polygon.

Usage

combineEvents (events, locs, FUN = mean, bdryOK = TRUE)

Arguments

events EventData with at least four columns (EID, X, Y, Z).

locs LocationSet usually resulting from a call to findPolys.

FUN a function that produces a scalar from a vector (e.g., mean, sum).

bdryOK Boolean variable that determines whether or not to include boundary points.

Details

Combines measurements associated with events that occur in the same polygon. Each
event (EID) has a corresponding measurement Z. The locs data frame (usually output
from findPolys) places events within polygons. Thus, each polygon (PID, SID) determines
a set of events within it, and a corresponding vector of measurements Zv. The function
returns FUN(Zv), a summary of measurements within each polygon.

Value

PolyData with columns PID, SID (if in locs), and Z.

� 62 �

See Also

findPolys, locateEvents, locatePolys, makeGrid, and makeProps.

Examples

#--- create an EventData data frame: let each event have Z = 1

events <- data.frame(EID=1:10, X=1:10, Y=1:10, Z=rep(1, 10))

#--- example output from findPolys where 1 event occurred in the first

#--- polygon, 3 in the second, and 6 in the third

locs <- data.frame(EID=1:10, PID=c(rep(1, 1), rep(2, 3), rep(3, 6)),

Bdry=rep(0, 10))

#--- sum the Z column of the events in each polygon, and print the result

print(combineEvents(events=events, locs=locs, FUN=sum))

convUL Convert Coordinates between UTM and Lon/Lat

Description

Converts coordinates between UTM and Lon/Lat.

Usage

convUL (xydata)

Arguments

xydata matrix/data frame (e.g., a PolySet or EventData) with columns X and Y.

Details

xydata must have two attributes: projection equal to "LL" or "UTM", and zone equal to
a number from 1 to 60. The projection attribute describes the current projection of the
xydata, and the zone attribute describes the UTM zone that the data are in or will be
in. If any of these attributes are missing or have inappropriate values, the function stops.
The X and Y columns of xydata will be converted from "LL" to "UTM" or vice-versa. After
the conversion, the data frame�s attributes will be adjusted accordingly.

Value

A data frame identical to xydata, except that the X and Y columns will contain the results
of the conversion.

� 63 �

Examples

#--- load the data (if using R)

data(nepacLL)

#--- ensure the attributes are set

attr(nepacLL, "projection") <- "LL"

attr(nepacLL, "zone") <- 9

#--- perform the conversion

nepacUTM <- convUL(nepacLL)

findPolys Find the Polygons that Contain Events

Description

Find the polygons in a PolySet that contain events speciÞed by EventData.

Usage

findPolys (events, polys)

Arguments

events EventData to use.

polys PolySet to use.

Details

The resulting data frame, a LocationSet, contains the columns EID, PID, SID (if in polys),
and Bdry, where an event (EID) occurs in a polygon (PID, SID) and SID does not correspond
to an inner boundary. The Boolean variable Bdry speciÞes if an event lies on a polygon�s
edge. Note that if an event lies properly outside of all the polygons, then a record with
(EID, PID, SID) does not occur in the output. It may happen, however, that an event
occurs in multiple polygons. Thus, the same EID can occur more than once in the output.

Value

A LocationSet.

See Also

combineEvents, locateEvents, locatePolys, makeGrid, and makeProps.

� 64 �

Examples

#--- create some EventData: a column of points at X = 0.5

events <- data.frame(EID=1:10, X=.5, Y=seq(0, 2, length=10))

#--- create a PolySet: two squares with the second above the first

polys <- data.frame(PID=c(rep(1, 4), rep(2, 4)), POS=c(1:4, 1:4),

X=c(0, 1, 1, 0, 0, 1, 1, 0),

Y=c(0, 0, 1, 1, 1, 1, 2, 2))

#--- run findPolys and print the results

print(findPolys(events, polys))

fixBound Fix the Boundary Points of a PolySet

Description

The ranges of a PolySet�s X and Y columns deÞne its boundary. This function Þxes a
PolySet�s vertices by moving vertices near a boundary to the actual boundary.

Usage

fixBound (polys, tol)

Arguments

polys PolySet to Þx.

tol numeric vector (length 1 or 2) specifying a percentage of the ranges to use
in deÞning �near� to a boundary. If tol has two elements, the Þrst speciÞes
the tolerance for the x-axis and the second the y-axis.

Value

A data frame identical to the input, except for possible changes in the X and Y columns.

See Also

closePolys and fixPOS.

Examples

#--- set up a long horizontal and long vertical line to extend the plot�s

#--- limits, and then try fixing the bounds of a line in the top-left

#--- corner and a line in the bottom-right corner

polys <- data.frame(PID=c(1, 1, 2, 2, 3, 3, 4, 4),

POS=c(1, 2, 1, 2, 1, 2, 1, 2),

X = c(0, 10, 5, 5, 0.1, 4.9, 5.1, 9.9),

� 65 �

Y = c(5, 5, 0, 10, 5.1, 9.9, 0.1, 4.9))

polys <- fixBound(polys, tol=0.0100001)

plotLines(polys)

fixPOS Fix the POS Column of a PolySet

Description

Fixes the POS column of a PolySet by renumbering it using sequential integers.

Usage

fixPOS (polys)

Arguments

polys PolySet to Þx.

Details

The POS values of each (PID, SID) set are renumbered as either 1 to N or N to 1, depending
on the order of POS (ascending or descending) in the input data. POS values in the input
must be properly ordered (ascending or descending), but they may contain fractional
values. For example, POS = 2.5 might correspond to a point manually added between
POS = 2 and POS = 3. All other columns remain unchanged.

Value

A data frame with the same columns as the input, except for possible changes to the POS
column.

See Also

closePolys and fixBound.

Examples

#--- create a PolySet with broken POS numbering

polys <- data.frame(PID = c(rep(1, 10), rep(2, 10)),

POS = c(seq(2, 10, length = 10), seq(10, 2, length = 10)),

X = c(rep(1, 10), rep(1, 10)),

Y = c(rep(1, 10), rep(1, 10)))

#--- fix the POS numbering

polys <- fixPOS(polys)

#--- print the results

print(polys)

� 66 �

LANG Specify the Software�s Environment

Description

SpeciÞes the language (R/S) in which the mapping software will run.

Usage

LANG

Details

If LANG = "R", the mapping software will run in the R interpreter. If LANG = "S", it will
run in the S-PLUS interpreter.

Value

"R" or "S", depending on which environment the software will run in.

locateEvents Locate Events on the Current Plot

Description

Locates events on the current plot (using the locator function).

Usage

locateEvents (EID, n = 512, type = "p", ...)

Arguments

EID vector of event IDs (optional).

n maximum number of points to locate.

type one of "n", "p", "l", or "o". If "p" or "o", then the points are plotted; if
"l" or "o", then the points are joined by lines.

... additional par parameters for the locator function.

� 67 �

Details

Allows the user to deÞne events with mouse clicks on the current plot via the locator
function. The arguments n and type are the usual parameters for the locator function.
If EID is supplied, then n = length(EID).

On exit from locator, suppose the user deÞned m points. If EID was not speciÞed, then
the output data frame will contain m events. However, if EID was speciÞed, then the
output data frame will contain length(EID) events, and both X and Y will be NA for
events EID[(m+1):n].

Value

EventData with columns EID, X, and Y.

See Also

combineEvents, findPolys, locatePolys, makeGrid, and makeProps.

Examples

#--- define five events on the current plot, numbering them 10 to 14

events <- locateEvents(EID = 10:14)

locatePolys Locate Polygons on the Current Plot

Description

Locates polygons on the current plot (using the locator function).

Usage

locatePolys (pdata, n = 512, type = "o", ...)

Arguments

pdata PolyData (optional) with columns PID and SID (optional), with two more
optional columns n and type.

n maximum number of points to locate.

type one of "n", "p", "l", or "o". If "p" or "o", then the points are plotted; if
"l" or "o", then the points are joined by lines.

... additional par parameters for the locator function.

� 68 �

Details

Allows the user to deÞne polygons with mouse clicks on the current plot via the locator
function. The arguments n and type are the usual parameters for the locator function,
but they may be individually speciÞed for each (PID, SID) set in a pdata object.

If a pdata object is supplied, columns other than PID, SID, n, and type are ignored. If
pdata includes n, then an outer boundary has n > 0 and an inner boundary has n < 0.

On exit from the locator function, suppose the user deÞned m vertices for a given discrete
polygon. For that polygon, the X and Y columns will contain NAs where POS = (m+1):n
for outer-boundaries and POS = (|n|-m):1 for inner-boundaries.

If a pdata object is not supplied, the output has only one polygon with a PID equal to
1. One inner-boundary polygon (POS goes from n to 1) can be generated by supplying a
negative n.

If type = "o" or type = "l", a line connecting the last point back to the Þrst point is
drawn.

Value

A PolySet.

See Also

combineEvents, findPolys, locateEvents, makeGrid, and makeProps.

Examples

#--- define one polygon with up to 5 vertices on the current plot

events <- locatePolys(n = 5)

makeGrid Make a Grid of Polygons

Description

Makes a grid of polygons, using PIDs and SIDs according to the input arguments.

Usage

makeGrid (x, y, byrow = TRUE, addSID = FALSE)

� 69 �

Arguments

x vector of X coordinates (of length m).

y vector of Y coordinates (of length n).

byrow Boolean; if TRUE, increment PID along X.

addSID Boolean; if TRUE, include an SID column in the resulting PolySet.

Details

Makes a grid of polygons, labeling those polygons according to byrow and addSID.

� byrow = TRUE and addSID = FALSE implies PID = i+ (j − 1)×m
� byrow = FALSE and addSID = FALSE implies PID = j + (i− 1)× n
� byrow = TRUE and addSID = TRUE implies PID = i, SID = j
� byrow = FALSE and addSID = TRUE implies PID = j, SID = i

Value

A PolySet with columns PID, SID (if addSID = TRUE), POS, X, and Y. The PolySet is a set
of rectangular grid cells with vertices:
(xi, yj), (xi+1, yj), (xi+1, yj+1), (xi, yj+1).

See Also

combineEvents, findPolys, locateEvents, locatePolys, and makeProps.

Examples

#--- make a 10 x 10 grid

polyGrid <- makeGrid(x=0:10, y=0:10)

#--- plot the grid

plotPolys(polyGrid, density=0)

makeProps Make Polygon Properties

Description

Appends a column for a polygon property (e.g., border or lty) to PolyData based on
measurements in its Z column.

Usage

makeProps (pdata, breaks, propName="col", propVals=1:(length(breaks)-1))

� 70 �

Arguments

pdata PolyData with a Z column.

breaks either a vector of cut points or a scalar denoting the number of intervals
to cut Z.

propName name of the new column to append to pdata.

propVals vector of values to associate with Z breaks.

Details

Acts like the cut function to produce PolyData suitable for the polyProps plotting argu-
ment (see plotMap, plotLines, plotPolys, addLines, and addPolys). The Z column of
pdata is equivalent to the data vector x of the cut function.

Value

PolyData with the same columns as pdata plus an additional column propName.

See Also

combineEvents, findPolys, locateEvents, locatePolys, and makeGrid.

Examples

#--- create a PolyData object

pd <- data.frame(PID=1:10, Z=1:10)

#--- using 3 intervals, create a column named �col� and populate it with

#--- the supplied values

makeProps(pdata = pd, breaks = 3, propName = "col",

propVals = c(1:3))

nepacLL Shoreline of the Northeast PaciÞc Ocean (Normal Resolution)

Description

PolySet of polygons for the northeast PaciÞc Ocean shoreline.

Usage

data(nepacLL)

� 71 �

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each
vertex within a given polygon, X = longitude coordinates, and Y = latitude coordinates.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

Polygon data from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shore-
line) database. We thinned the full resolution GSHHS binary data with a tolerance of 0.2
km and then converted it to ASCII data using the supplied software (gshhs dp.exe and
gshhs.exe, respectively). Using a Perl script (gshhs2r.pl), we then converted this ASCII
format to ours, removed the lakes, islands in lakes, and ponds in islands, and Þltered out
any islands with fewer than 15 vertices. From our format, we then clipped the data to
170◦ ≤ x ≤ 250◦ and 34◦ ≤ y ≤ 72◦ (the GSHHS coordinates roughly span 0◦ to 360◦).
Finally, we subtracted 360◦ from all of the remaining x-values, so that the Greenwich
meridian becomes 0◦ and the northeast PaciÞc Ocean has negative x-values corresponding
to latitudes west of 0◦.

References

Wessel, P., and W.H.F. Smith. 1996. A global, self-consistent, hierarchical, high-resolution
shoreline database, Journal of Geophysical Research 101: 8741-8743.
http://www.soest.hawaii.edu/pwessel/pwessel_pubs.html

See Also

nepacLLhigh, pythagoras, towData, towTracks, surveyData, worldLL, and worldLLhigh.

nepacLLhigh Shoreline of the Northeast PaciÞc Ocean (High Resolution)

Description

PolySet of polygons for the northeast PaciÞc Ocean shoreline.

Usage

data(nepacLLhigh)

� 72 �

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each
vertex within a given polygon, X = longitude coordinates, and Y = latitude coordinates.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

Polygon data from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shore-
line) database. We thinned the full resolution GSHHS binary data with a tolerance of 0.1
km and then converted it to ASCII data using the supplied software (gshhs dp.exe and
gshhs.exe, respectively). Using a Perl script (gshhs2r.pl), we then converted this ASCII
format to ours and removed the lakes, islands in lakes, and ponds in islands. From our
format, we then clipped the data to 170◦ ≤ x ≤ 250◦ and 34◦ ≤ y ≤ 72◦ (the GSHHS
coordinates roughly span 0◦ to 360◦). Finally, we subtracted 360◦ from all of the remaining
x-values, so that the Greenwich meridian becomes 0◦ and the northeast PaciÞc Ocean has
negative x-values corresponding to latitudes west of 0◦.

References

Wessel, P., and W.H.F. Smith. 1996. A global, self-consistent, hierarchical, high-resolution
shoreline database, Journal of Geophysical Research 101: 8741-8743.
http://www.soest.hawaii.edu/pwessel/pwessel_pubs.html

See Also

nepacLL, pythagoras, towData, towTracks, surveyData, worldLL, and worldLLhigh.

plotLines Plot a PolySet as Polylines

Description

Plots a PolySet as polylines.

Usage

plotLines (polys, xlim = NULL, ylim = NULL,

plt = c(0.11, 0.98, 0.12, 0.88), polyProps = NULL, lty = NULL,

col = NULL, main = "Map", xlab = NULL, ylab = NULL,

axes = TRUE, tckLab = TRUE, tck = 0.014, tckMinor = 0.5 * tck, ...)

� 73 �

Arguments

polys PolySet to plot (required).

xlim vector range of x-values.

ylim vector range of y-values.

plt four element numeric vector (x1, x2, y1, y2) giving the coordinates of
the plot region measured as a fraction of the Þgure region.

polyProps PolyData specifying which polylines to plot and their properties. The data
in this object are superseded by plot properties passed as direct arguments.

lty numeric or character (R only) vector describing line types (cycled by PID).

col numeric or character (R only) vector describing colours (cycled by PID).

main string title for the plot.

xlab string caption for the x-axis.

ylab string caption for the y-axis.

axes Boolean value; if TRUE, plot axes.

tckLab Boolean vector (length 1 or 2) indicating whether or not to label the major
tick marks. If a two-element vector is given, the Þrst element describes the
tick marks on the x-axis and the second element describes those on the
y-axis.

tck numeric vector (length 1 or 2) describing the length of tick marks as a
fraction of the smallest dimension. If tckLab = TRUE, these tick marks
will be automatically labelled. If a two-element vector is given, the Þrst
element describes the tick marks on the x-axis and the second element
describes those on the y-axis.

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a frac-
tion of the smallest dimension. These tick marks may not be automatically
labelled. If a two-element vector is given, the Þrst element describes the
tick marks on the x-axis and the second element describes those on the
y-axis.

... additional par parameters for the lines function.

Details

Plots a PolySet, where each (PID, SID) set describes a unique polyline. To do so, it does
not connect the last vertex of each set to the Þrst vertex of that set. This function ignores
the aspect ratio. Furthermore, it clips polys to xlim and ylim before plotting.

See Also

addLines, addPolys, plotMap, and plotPolys.

� 74 �

Examples

#--- create a PolySet to plot

polys <- data.frame(PID=rep(1, 4), POS=1:4, X=c(0, 1, 1, 0), Y=c(0, 0, 1, 1))

#--- plot the PolySet

plotLines(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5))

plotMap Plot a PolySet as a Map

Description

Plots a PolySet as a map, using the correct aspect ratio.

Usage

plotMap (polys, xlim = NULL, ylim = NULL,

plt = c(0.11, 0.98, 0.12, 0.88), polyProps = NULL, border = NULL,

lty = NULL, col = NULL, density = NA, angle = NULL, bgCol = NULL,

main = "Map", xlab = NULL, ylab = NULL, axes = TRUE, tckLab = TRUE,

tck = 0.014, tckMinor = 0.5 * tck, ...)

Arguments

polys PolySet to plot (required).

xlim vector range of x-values.

ylim vector range of y-values.

plt four element numeric vector (x1, x2, y1, y2) giving the coordinates of
the plot region measured as a fraction of the Þgure region.

polyProps PolyData specifying which polygons to plot and their properties. The data
in this object are superseded by plot properties passed as direct arguments.

border numeric or character (R only) vector describing colours for the edges of
polygons (cycled by PID).

lty numeric or character (R only) vector describing line types (cycled by PID).

col numeric or character (R only) vector describing Þll colours (cycled by PID).

density numeric vector describing shading line densities (lines per inch, cycled by
PID).

angle numeric vector describing shading line angles (degrees, cycled by PID).

bgCol numeric or character (R only) scalar to colour the background of the plot.

main string title for the plot.

xlab string caption for the x-axis.

� 75 �

ylab string caption for the y-axis.

axes Boolean value; if TRUE, plot axes.

tckLab Boolean vector (length 1 or 2) indicating whether or not to label the major
tick marks. If a two-element vector is given, the Þrst element describes the
tick marks on the x-axis and the second element describes those on the
y-axis.

tck numeric vector (length 1 or 2) describing the length of tick marks as a
fraction of the smallest dimension. If tckLab = TRUE, these tick marks
will be automatically labelled. If a two-element vector is given, the Þrst
element describes the tick marks on the x-axis and the second element
describes those on the y-axis.

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a
fraction of the smaller of the width or height of the plotting region. These
tick marks may not be automatically labelled. If a two-element vector
is given, the Þrst element describes the tick marks on the x-axis and the
second element describes those on the y-axis.

... additional par parameters for the polygon function.

Details

Plots a PolySet, where each (PID, SID) set describes a unique polygon. To do so, it
connects the last vertex of each set to the Þrst vertex of that set. This function supports
both borders (border, lty) and Þlls (col, density, angle). It can also be used to draw
only borders or only Þlls by supplying the appropriate arguments. Unlike plotLines and
plotPolys, this function uses the aspect ratio supplied by the projection attribute of
polys. In the absence of this attribute, it uses a default aspect ratio of 1:1. Finally, it
clips polys to xlim and ylim before plotting.

See Also

addLines, addPolys, plotLines, and plotPolys,

Examples

#--- create a PolySet to plot

polys <- data.frame(PID=rep(1, 4), POS=1:4, X=c(0, 1, 1, 0), Y=c(0, 0, 1, 1))

#--- plot the PolySet

plotMap(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5), density=0)

� 76 �

plotPolys Plot a PolySet as Polygons

Description

Plots a PolySet as polygons.

Usage

plotPolys (polys, xlim = NULL, ylim = NULL,

plt = c(0.11, 0.98, 0.12, 0.88), polyProps = NULL, border = NULL,

lty = NULL, col = NULL, density = NA, angle = NULL, bgCol = NULL,

main = "Map", xlab = NULL, ylab = NULL, axes = TRUE, tckLab = TRUE,

tck = 0.014, tckMinor = 0.5 * tck, ...)

Arguments

polys PolySet to plot (required).

xlim vector range of x-values.

ylim vector range of y-values.

plt four element numeric vector (x1, x2, y1, y2) giving the coordinates of
the plot region measured as a fraction of the Þgure region.

polyProps PolyData specifying which polygons to plot and their properties. The data
in this object are superseded by plot properties passed as direct arguments.

border numeric or character (R only) vector describing colours for the edges of
polygons (cycled by PID).

lty numeric or character (R only) vector describing line types (cycled by PID).

col numeric or character (R only) vector describing Þll colours (cycled by PID).

density numeric vector describing shading line densities (lines per inch, cycled by
PID).

angle numeric vector describing shading line angles (degrees, cycled by PID).

bgCol numeric or character (R only) scalar to colour the background of the plot.

main string title for the plot.

xlab string caption for the x-axis.

ylab string caption for the y-axis.

axes Boolean value; if TRUE, plot axes.

tckLab Boolean vector (length 1 or 2) indicating whether or not to label the major
tick marks. If a two-element vector is given, the Þrst element describes the
tick marks on the x-axis and the second element describes those on the
y-axis.

� 77 �

tck numeric vector (length 1 or 2) describing the length of tick marks as a
fraction of the smallest dimension. If tckLab = TRUE, these tick marks
will be automatically labelled. If a two-element vector is given, the Þrst
element describes the tick marks on the x-axis and the second element
describes those on the y-axis.

tckMinor numeric vector (length 1 or 2) describing the length of tick marks as a
fraction of the smaller of the width or height of the plotting region. These
tick marks may not be automatically labelled. If a two-element vector
is given, the Þrst element describes the tick marks on the x-axis and the
second element describes those on the y-axis.

... additional par parameters for the polygon function.

Details

Plots a PolySet, where each (PID, SID) set describes a unique polygon. To do so, it
connects the last vertex of each set to the Þrst vertex of that set. This function supports
both borders (border, lty) and Þlls (col, density, angle). It can also be used to draw
only borders or only Þlls by supplying the appropriate arguments. This function ignores
the aspect ratio. Furthermore, it clips polys to xlim and ylim before plotting.

See Also

addLines, addPolys, plotLines, and plotMap.

Examples

#--- create a PolySet to plot

polys <- data.frame(PID=rep(1, 4), POS=1:4, X=c(0, 1, 1, 0), Y=c(0, 0, 1, 1))

#--- plot the PolySet

plotPolys(polys, xlim=c(-.5,1.5), ylim=c(-.5,1.5), density=0)

pythagoras Pythagoras� Theorem Diagram Data

Description

PolySet of shapes to prove Pythagoras� Theorem: a2 + b2 = c2.

Usage

data(pythagoras)

Format

4 column data frame: PID = primary polygon ID, POS = position of each vertex within a
given polyline, X = X coordinates, and Y = Y coordinates. Attributes: projection = 1.

� 78 �

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

An artiÞcal construct to illustrate the proof of Pythagoras� Theorem using trigonometry.

See Also

nepacLL, nepacLLhigh, towTracks, towData, surveyData, worldLL, and worldLLhigh.

surveyData Survey Data

Description

PolyData of PaciÞc ocean perch (POP) tow information (1966-89).

Usage

data(surveyData)

Format

Data frame consisting of 9 columns: PID = primary polygon ID, POS = position of each
vertex within a given polygon, X = longitude coordinates, Y = latitude coordinates, trip
= trip ID, tow = tow number in trip, catch = catch of POP (kg), effort = tow ef-
fort (minutes), depth = Þshing depth (m), and year = year of survey trip. Attributes:
projection = "LL", zone = 9.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

The GFBio database, maintained at the PaciÞc Biological Station (Fisheries and Oceans
Canada, Nanaimo, BC V9T 6N7), archives catches and related biological data from com-
mercial groundÞsh Þshing trips and research/assessment cruises off the west coast of British
Columbia (BC).

The POP (Sebastes alutus) survey data were extracted from GFBio. The data extraction
covers bottom trawl surveys that focus primarily on POP biomass estimation: 1966-89 for

� 79 �

the central BC coast and 1970-85 for the west coast of Vancouver Island. Additionally, a
1989 cruise along the entire BC coast concentrated on the collection of biological samples.
Schnute et al. (2001) provide a more comprehensive history of POP surveys including the
subset of data presented here.

References

Schnute, J.T., R. Haigh, B.A. Krishka, and P. Starr. 2001. PaciÞc ocean perch assessment
for the west coast of Canada in 2001. Canadian Science Advisory Secretariat Research
Document 2001/138, 90 p.

See Also

nepacLL, nepacLLhigh, pythagoras, towData, towTracks, worldLL, and worldLLhigh.

towData Tow Track Data

Description

PolyData of tow information for a longspine thornyhead survey (2001).

Usage

data(towData)

Format

Data frame consisting of 8 columns: PID = primary polygon ID, POS = position of each
vertex within a given polygon, X = longitude coordinates, Y = latitude coordinates, depth
= Þshing depth (m), effort = tow effort (minutes), distance = tow track distance (km),
catch = catch of longspine thornyhead (kg), and year = year of survey. Attributes:
projection = "LL", zone = 9.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

The GFBio database, maintained at the PaciÞc Biological Station (Fisheries and Oceans
Canada, Nanaimo, BC V9T 6N7), archives catches and related biological data from com-
mercial groundÞsh Þshing trips and research/assessment cruises off the west coast of British
Columbia (BC). The longspine thornyhead (Sebastolobus altivelis) survey data were ex-
tracted from GFBio. Information on the Þrst 45 tows from the 2001 survey (Starr et al.
2002) are included here. Effort is time (minutes) from winch lock-up to winch release.

� 80 �

References

Starr, P.J., B.A. Krishka, and E.M. Choromanski. 2002. Trawl survey for thornyhead
biomass estimation off the west coast of Vancouver Island, September 15 - October 2,
2001. Canadian Technical Report of Fisheries and Aquatic Sciences 2421, 60 p.

See Also

nepacLL, nepacLLhigh, pythagoras, towTracks, surveyData, worldLL, and worldLLhigh.

towTracks Tow Track Polyline Data

Description

PolySet of geo-referenced polyline tow track data from a longspine thornyhead survey
(2001).

Usage

data(towTracks)

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each
vertex within a given polyline, X = longitude coordinates, and Y = latitude coordinates.
Attributes: projection = "LL", zone = 9.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

The longspine thornyhead (Sebastolobus altivelis) tow track spatial coordinates are avail-
able at the PaciÞc Biological Station (Fisheries and Oceans Canada, Nanaimo, BC V9T
6N7). The geo-referenced coordinates of the Þrst 45 tows from the 2001 survey (Starr et
al. 2002) are included here. Coordinates are recorded once per minute between winch
lock-up and winch release.

References

Starr, P.J., B.A. Krishka, and E.M. Choromanski. 2002. Trawl survey for thornyhead
biomass estimation off the west coast of Vancouver Island, September 15 - October 2,
2001. Canadian Technical Report of Fisheries and Aquatic Sciences 2421, 60 p.

� 81 �

See Also

nepacLL, nepacLLhigh, pythagoras, towData, surveyData, worldLL, and worldLLhigh.

worldLL Shorelines of the World (Normal Resolution)

Description

PolySet of polygons for the global shorelines.

Usage

data(worldLL)

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each
vertex within a given polygon, X = longitude coordinates, and Y = latitude coordinates.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

Polygon data from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shore-
line) database. We thinned the full resolution GSHHS binary data with a tolerance of 5.0
km and then converted it to ASCII data using the supplied software (gshhs dp.exe and
gshhs.exe, respectively). Using a Perl script (gshhs2r.pl), we then converted this ASCII
format to ours, removed the lakes, islands in lakes, and ponds in islands, and Þltered out
any islands with fewer than 15 vertices.

References

Wessel, P., and W.H.F. Smith. 1996. A global, self-consistent, hierarchical, high-resolution
shoreline database, Journal of Geophysical Research 101: 8741-8743.
http://www.soest.hawaii.edu/pwessel/pwessel_pubs.html

See Also

nepacLL, nepacLLhigh, pythagoras, towTracks, towData, surveyData, and worldLLhigh.

� 82 �

worldLLhigh Shorelines of the World (High Resolution)

Description

PolySet of polygons for the global shorelines.

Usage

data(worldLLhigh)

Format

Data frame consisting of 4 columns: PID = primary polygon ID, POS = position of each
vertex within a given polygon, X = longitude coordinates, and Y = latitude coordinates.

Note

In R, the data must be loaded using the data function. In S, the data are loaded auto-
matically on demand.

Source

Polygon data from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shore-
line) database. We thinned the full resolution GSHHS binary data with a tolerance of 1.0
km and then converted it to ASCII data using the supplied software (gshhs dp.exe and
gshhs.exe, respectively). Using a Perl script (gshhs2r.pl), we then converted this ASCII
format to ours, removed the lakes, islands in lakes, and ponds in islands, and Þltered out
any islands with fewer than 15 vertices.

References

Wessel, P., and W.H.F. Smith. 1996. A global, self-consistent, hierarchical, high-resolution
shoreline database, Journal of Geophysical Research 101: 8741-8743.
http://www.soest.hawaii.edu/pwessel/pwessel_pubs.html

See Also

nepacLL, nepacLLhigh, pythagoras, towTracks, towData, surveyData, and worldLL.

