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ABSTRACT

Shortreed, K.S. 2007. Limnology of Cultus Lake, British Columbia. Can. Tech. Rep.
Fish. Aquat. Sci. 2753: vi + 85 p.

From 2001 to 2003, we carried out a limnological investigation of Cultus Lake,
B.C. The lake was warm monomictic and thermally stratified from May-November each
year. Epilimnetic temperatures exceeded 20°C from June or July until September.
Average euphotic zone depths were 15.8 m, 2.5x deeper than average epilimnion
depths. Total phosphorus averaged 7.4 pg/L (8.9 pg/L at spring overturn) and average
values of a number of chemical variables were the highest ever recorded in B.C.
sockeye lakes. The seasonal average daily photosynthetic rate of 449 mg C-m2d™" was
also the highest ever recorded in these lakes. A range of chemical and biological
variables indicated that Cultus Lake is mesotrophic and much more productive than
most sockeye nursery lakes in B.C. The zooplankion community was abundant and
dominated by Daphnia throughout the year. Data from this and from an earlier study
indicate that Cultus Lake has warmed substantially in the last 75 yr and there are a
number of indications that its productivity has increased as well.

RESUME

Shortreed, K.S. 2007. Limnology of Cultus Lake, British Columbia. Can. Tech. Rep.
Fish. Aquat. Sci. 2753: vi + 85 p.

De 2001 a 2003, nous avons mené une étude limnologique dans le lac Cultus
(Colombie-Britannique). Le lac était monomictique chaud et thermiquement stratifié de
mai a novembre chaque année. La température de I'épilimnion dépassait les 20 °C de
juin/juillet a septembre. La zone euphotique mesurait en moyenne 15,8 m de
profondeur, soit 2,5 fois plus que I'épilimnion. La teneur en phosphore total était en
moyenne de 7,4 pg/L (8,9 pg/L pendant le brassage printanier), et les valeurs
moyennes de plusieurs variables chimiques étaient les plus élevées a avoir eté
enregistrées dans des lacs de séjour du saumon rouge de la Colombie-Britannique. Le
rendement photosynthétique saisonnier moyen de 449 mg C/m?/j était également le
plus élevé a avoir été répertorié dans ces lacs. D’aprés un éventail de variables
chimiques et biologiques, le lac Cultus est mésotrophe et beaucoup plus productif que
la plupart des lacs de sé&jour du saumon rouge de la Colombie-Britannique. La
communauté zooplanctonique était abondante et dominée par les Daphnia toute
I'année. Les données de cette étude ainsi que celles d’une étude antérieure montrent
que le lac Cultus s’est considérablement réechauffé au cours des 75 derniéres années,
et plusieurs indices donnent a penser que la productivité a augmenté également.



INTRODUCTION

Cultus Lake is located in British Columbia’s eastern Fraser Valley, approximately
10 km south of the city of Chilliwack. The lake and its surrounding drainage basin are
heavily utilized residential/recreational areas. Developed areas with summer cottages,
permanent homes, and businesses (including two golf courses) are located at the north
and south ends of the lake. Most of the lake’s shoreline is within either the Cultus Lake
Provincial Park or the Cultus Lake Municipal Park. Both these parks are popular
camping and day-use areas and receive about 1.5 million visitors annually. In summer,
the lake is one of the most heavily utilized recreational areas in British Columbia.

Since Cultus Lake and the surrounding area have been heavily utilized since
early in the 20™ century, there have been extensive modifications to the riparian and
littoral areas of the lake and its tributaries. These include channelization of tributary
streams, removal of riparian vegetation, shoreline alteration, installation of wharves and
piers, and placement of sand in riparian and littoral areas. Frosst Creek is the lake'’s
largest tributary and approximately 10 km? of its drainage basin are used for agriculture
(Chilliwack River Habitat Atlas, http://www.shim.bc.ca/atlases/Chilliwack/Index.cfm).
Logging has occurred in portions of Cultus Lake’s drainage basin at various times in the
past century, and in the past 20 yr approximately 5 km? of the 75 km? drainage basin
has been logged. Domestic use of fertilizers, agricultural runoff, and the extensive use
of septic tanks all have the potential to affect the quality of the water entering Cultus
Lake, but the magnitude of water quality changes, if any, is unknown.

In addition, a major change in the lake was the invasion of Eurasian watermilfoil
(Myriophyllum spicatum). Milfoil may have direct deleterious effects on sockeye salmon
by clogging spawning areas and may have indirect deleterious effects by contributing to
increases in piscivore numbers (Schubert et al. 2002). It was first observed in Cultus
Lake in 1977, and by 1988 it covered 22 ha of that portion of the lake’s littoral zone
<6 m in depth (Truelson 1988) (total littoral area <6 m in depth is 37 ha). In 2004, the
survey was repeated and watermilfoil coverage was found to have increased to 27 ha
(J. Hume, Fisheries and Oceans Canada, Cultus Lake Salmon Research Laboratory,
Cultus Lake, B.C., pers. comm.).

Cultus Lake is the natal and freshwater rearing area for a genetically distinct
stock of sockeye salmon (Schubert et al. 2002) which has several unusual
characteristics. Unlike most sockeye stocks, Cultus sockeye are exclusively lake
spawners. They also have a very protracted spawning migration, entering Cultus Lake
from early August until early December, with spawning taking place from late November
to December. Cultus sockeye are one of the most intensively studied sockeye stocks in
the world, and their escapements (numbers of adults returning to spawn) have been
monitored each year from 1925 until the present. As with most Fraser River sockeye
stocks, for most of the 20™ century escapements of Cultus sockeye were variable and
cyclical, with numbers ranging from highs of >70 thousand for a few years in the 1920’s
and 1930'’s to lows of <100 spawners in 1997 and 2004. For a variety of reasons
(Schubert et al. 2002), spawner numbers started to decline in the late 1960’s and then



declined precipitously in the late 1990’s. As a result of this decline, in 2002 the
Committee on the Status of Endangered Wildlife in Canada (COSEWIC) gave Cultus
sockeye an Endangered designation and recommended they be protected under
Canada’s Species at Risk Act (SARA). In 2005, the Government of Canada decided not
to protect Cultus sockeye under SARA, citing significant social and economic costs if
they were listed. Despite the lack of protection under SARA, a number of initiatives
have occurred since then to try to better understand and reverse the decline in Cultus
sockeye (Cultus Sockeye Recovery Team 2004).

Although major causes of the decline in Cultus sockeye were not thought to be
attributable to freshwater habitat, it was recognized that this needed to be confirmed.
Little was known of the current limnology of Cultus Lake and its continued suitability as
a rearing area for juvenile sockeye. Available limnological data on Cultus Lake were not
sufficient to adequately document the lake’s status and, in any case, had been collected
decades previously. Consequently, in 2001, DFO staff (Lakes Group, Salmon and
Freshwater Ecosystems Division) commenced a limnological investigation of Cultus
Lake. Objectives of the study were to document the lake’s current limnological status,
including productivity, limiting factors, phyto- and zooplankton biomass and community
structure, and the quality of the lake’s rearing habitat for juvenile sockeye. Further,
where possible, we would compare current limnological conditions in the lake with
previous studies. We carried out data collection from April of 2001 to March of 2003,
and results of the investigation are reported here.

DESCRIPTION OF STUDY LAKE

Cultus Lake lies at an elevation of 46 m approximately 10 km south of the city of
Chilliwack (Table 1). It lies in the coastal western hemlock biogeoclimatic zone — dry
maritime subzone (Meidinger and Pojar 1991). Based on the Koppen climate
classification system (Kottek et al. 2006), the climate is maritime temperate, with warm
summers and cool, wet winters. Total annual precipitation averages 1.57 m and daily
average temperatures range from 2.4°C in December and January to 18.3°C in August
(Environment Canada, Canadian Climate Normals 1971-2000,
http://www.climate.weatheroffice.ec.gc.ca/index.himl). The lake’s drainage basin has an
area of 75 km?, of which 16 km? lies in the United States.

Surface area of Cultus Lake is 6.3 km? and based on the most recent bathymetric
data (J. Hume, Fisheries and Oceans Canada, Cultus Lake Salmon Research
Laboratory, Cultus Lake, B.C., pers. comm.), it has a mean depth of 31 m. Maximum
recorded depth is 44 m. Cultus Lake is steep-sided, with a littoral zone area (based on
an average euphotic zone depth of 15.8 m) of only 0.9 km? and an area <6 m in depth of
only 0.4 km? (Fig. 1). The lake discharges into Sweltzer Creek, which travels 2.9 km
before emptying into the Chilliwack River. Downstream distance from Cultus Lake to
the Fraser River is 19 km, and it is a further 99 km to the mouth of the Fraser River.



Average annual daily flow in Sweltzer Creek is 3.54 m*/sec (Water Survey of
Canada, Hydat data base, hitp://www.wsc.ec.gc.ca). Seasonally, maximum flows occur
in late fall or winter after periods of intense rainfall (Fig. 2). Lesser peaks atiributable to
spring snowmelt occur in May or June and lowest annual flows occur in August or
September. The lake’s major tributary is Frosst Creek, which enters the lake at the
northern end of Lindell Beach (Fig. 1). Frosst Creek discharge averages 32% of the
total lake discharge at Sweltzer Creek. Annual water residence time of Cultus Lake
averages 1.8 yr (Table 1).

In the 1940’s, a number of aquatic macrophytes were reported to occur in Cultus
Lake (Ricker 1952). These included Chara sp., several species of pondweed
(Potamogeton spp.), coontail (Ceratophyllum demersum), a native milfoil species
(Myriophyllum sp.), and water buttercup (Ranunculus aquatalis var. capillaceus).
However, since Eurasian watermilfoil became established and dominant in the 1970’s
and 1980’s, the abundance and species composition of the native macrophyte
community has not been documented.

Cultus Lake has a diverse fish community and in addition to sockeye salmon, a
total of 19 fish species have been observed in the lake (Schubert et al. 2002). These
include six species of Pacific salmon and trout: chinook (O. tshawytscha), coho
(O. kisutch), chum (O. keta), pink (O. gorbuscha), cutthroat trout (O. clarki clarki), and
rainbow trout (O. mykiss). Other species include Dolly Varden (Salvelinus malma),
northern pikeminnow (Ptychocheilus oregonensis), threespine stickleback
(Gasterosteus aculeatus), redside shiner (Richardsonius balteatus), largescale sucker
(Catostomus macrocheilus), longnose dace (Rhinichthys cataractae), and peamouth
chub (Mylocheilus caurinus). Two species of lamprey (western brook — Lampetra
richardsoni and river - L. ayresi) have been observed in the lake, as well as three
sculpin species (prickly sculpin — Coftus asper, coastrange sculpin — C. aleuticus and
Cultus pygmy sculpin — Coftus sp.). Cultus pygmy sculpin are a very small (<52 mm)
limnetic form of C. aleuticus and have been listed as threatened by COSEWIC and
SARA, primarily because they are thought to be genetically distinct from the normal
form of C. aleuticus and because they are thought to occur only in Cultus Lake. On one
occasion, a white sturgeon (Acipenser transmontanus) was captured in Cultus Lake, but
that species is not thought to naturally occur or reproduce in the lake.

METHODS

We collected limnological data once monthly from April to November of 2001
(n=8) and from January to December of 2002 (n=12). In 2003, we sampled the lake
four times (January to March and August). On each sampling date, we sampled one
mid-lake location (station 1, Fig. 1). In addition, from January to December of 2002 we
sampled Frosst, Spring, and Sweltzer creeks for a number of chemical variables. At
every sampling date we used an Applied Microsystems Micro CTD 7079 to obtain
temperature and conductivity profiles from the surface to the bottom (approximately
40 m). Depths of the epilimnion and metalimnion were estimated by a visual inspection



of plotted temperature and depth data. We estimated water column stability with a
modified Schmidt stability function (Costella et al. 1983) using temperature and
conductivity data to a depth of 40 m.

We used a standard, white, 20-cm diameter, Secchi disk to measure water
clarity. A Li-Cor data logger (model LI-1000) equipped with a model LI-193SA spherical
guantum sensor was used to measure photosynthetic photon flux density (PPFD)
(400-700 nm) and determine euphotic zone depths (1% of surface light intensity). We
measured dissolved oxygen (DO) concentrations from the surface and 30 m with an
Oxyguard Handy Beta meter. In addition, on one occasion on August 21, 2003, DO
concentrations were measured at 11 depths from the surface to 30 m.

We carried out all water sampling between 0800 and 1100 h (PST). We used an
opaque, 6-L Van Dorn bottle to collect all water samples. Water was collected from
8 discrete depths from the surface to 30 m and later analyzed for nitrate and chlorophyll
concentrations. On most occasions, we collected replicate integrated samples
consisting of water from six depths within the euphotic (irophogenic) zone. On a few
occasions when thermal stratification was most pronounced (July-October of 2003), we
collected replicate integrated samples from within the epilimnion and from the bottom of
the epilimnion to the bottom of the euphotic zone. At all stations, we also collected a
hypolimnetic sample from a depth of 30 m. All collected water was kept cool and dark
until it was processed (filtered, frozen, or preserved), no more than 3 hr after collection.
Subsequent replicate analyses from the integrated samples included total dissolved
solids, chlorophyll, dissolved silica, phosphorus (total, dissolved, particulate, soluble
reactive, and turbidity blank), nitrogen (nitrate and ammonia), bacteria, and
phytoplankton. A single sample for total dissolved solids was also collected from each
integrated sample. In addition, on two dates in April and May of 2001, samples were
collected for later analysis of particulate carbon and particulate nitrogen.

Chemical analyses were carried out according to methods given in Stephens and
Brandstaetter (1983) and Stainton et al. (1977). For total phosphorus determination,
clean screw-capped test tubes were rinsed with sample, filled, capped, stored at 4°C,
and later analyzed using a molybdenum blue method after persulfate digestion. Water
for dissolved nitrate analyses was filtered through an ashed 47-mm diameter Advantec
Micro Filtration Systems (MFS) borosilicate microfiber filter (equivalent to a WWhatman
GF/F filter). Each filter was placed in a 47-mm Swinnex filtering unit (Millipore Corp.),
rinsed with 150 mL of distilled, deionized water (DDW), and then rinsed with
approximately 50 mL of sample. Other water samples for dissolved nutrient were kept
cool and dark for 2-4 h, filtered into clean, rinsed polyethylene bottles, and frozen. For
dissolved phosphorus determination, filtered water was treated as for total phosphorus,
including the use of turbidity blanks.

For determination of particulate phosphorus concentration, we filtered 1-L of
water through an ashed 47-mm diameter MFS filter, placed the filter in a clean
scintillation vial, and later analyzed it using the method of Stainton et al. (1977). For
determination of particulate carbon and particulate nitrogen concentrations, we filtered



200 mL of water through an ashed 25-mm diameter GFF filter, folded the filter in half,
place it in aluminum foil dishes and froze it. Later, PC and PN concentrations were
determined on a Perkin Elmer Model 240XA Elemental Analyzer. For chlorophyll
analysis, we filtered water through 47-mm diameter, 0.45-um Millipore HA filters, which
were then frozen. Filters were later macerated in 90% acetone and chlorophyll
concentration was determined using a Turner Designs Model 10-AU fluorometer.

Water for alkalinity determinations was placed in glass bottles that were filled
completely (one bottle from each sampling depth) and sealed. Within four hours of
collection, a Cole-Parmer Digi-Sense pH meter (Model 5986-10) and Ross combination
electrode were used to determine the pH and total alkalinity (mg CaCOa/L) of these
samples according to the standard potentiometric method of APHA (1998). Dissolved
inorganic carbon (DIC) concentrations were calculated indirectly from pH, temperature,
total dissolved solids, and bicarbonate alkalinity.

Water for bacterioplankton enumeration was collected in sterile scintillation vials
and preserved with two drops of formaldehyde. Bacterioplankton were later counted
with a Zeiss epifluorescent microscope using the DAPI method described by Robarts
and Sephton (1981). Ten random fields were counted on each filter and the counts
converted to numbers/mL.

For nano- and microphytoplankton enumeration and identification opaque
125-mL polyethylene bottles were rinsed with sample, filled, and fixed with 2 mL of
Lugol's iodine solution. Each sample was gently mixed and a subsample was settled
overnight in a settling chamber of 7-, 12-, or 27-mL capacity. Transects at 187.5x and
750x magnification were counted using a Wild M40 inverted microscope equipped with
phase contrast optics. Cells were identified as to genus or species, and assigned to
size classes.

Phototrophic picoplankton (cyanobacteria and eukaryotic algae <2 pm in
diameter) were enumerated using the method described by Maclsaac and Stockner
(1985). Within several hours of sample collection, 15 mL of sample water was filtered
through a 0.2-um Nuclepore filter counter-stained with Irgalan black. Filters were
placed in opaque petri dishes, air-dried, and stored in the dark at room temperature until
analyzed. During analysis, each filter was placed on a wet 40-um mesh nylon screen in
a filter holder, 1—2 mL of filtered DDW were added to the filter column, and the cells on
the filter were rehydrated for 3-5 min. Water was drawn through at a vacuum pressure
of 20-cm Hg, and the moist filter was placed on a glass slide with a drop of immersion
oil (Cargille Type B) and a coverslip. The Zeiss epifluorescence microscope used for
picoplankton enumeration was equipped with a 397-nm longwave-pass exciter filter and
a 560-nm shortwave-pass exciter filter, a 580-nm beam-splitter mirror and a 590-nm
longwave-pass barrier filter. Filters were examined at 1250X magnification under oil
immersion, and 20 random fields were counted.

At every sampling date, we measured in situ photosynthetic rates (PR) at
7 depths from the surface to below the euphotic zone. At each depth, two light and one



dark 147-mL glass bottles were filled, inoculated with approximately 137 kBq of a
'“C-bicarbonate stock solution, and incubated at the original sampling depth.
Incubations lasted 1.5-2 hr and were started between 0900 and 1100 h (PST). To
determine activity of the stock solution, we inoculated three scintillation vials containing
0.5 mL of 0.2 N NaOH with the "C-bicarbonate solution for later determination of its
activity. After incubation, bottles were placed in light-proof boxes and transported to the
field laboratory where filtration started <1 hr after incubation stopped. We filtered the
entire contents of each bottle through a 25-mm diameter MFS glass fiber filter
(equivalent to a Whatman GF/F) at a vacuum not exceeding 20-cm Hg. Filters were
placed in scintillation vials containing 0.5 mL of 0.5 N HCI and lids were left off the vials
for 6—8 hours. All vials were stored cool and in the dark. Within a few days of the
incubations, 10 mL of Scintiverse Il (Fisher Scientific) were added to each scintillation
vial. Activity in each vial was determined using a Beckman Coulter LS6500 liquid
scintillation counter. Quench series composed of the same scintillation cocktail and
filters used for samples were used to determine counting efficiency, and Strickland's
(1960) equation was used to calculate hourly PR. PR was converted from hourly o
daily rates using light data collected with a Li-Cor Model LI-1000 data logger and Li-Cor
190SA quantum sensors.

Replicate zooplankton samples were collected at every station with a 160-pym
mesh Wisconsin net (mouth area = 0.05 m?) hauled vertically from 30 m to the surface.
All samples were placed in 125-mL plastic bottles and preserved in a sucrose-buffered
4% formalin solution (Haney and Hall 1973). Zooplankton were counted, identified to
family or species using Balcer et al. (1984) and Pennak (1978), and measured with a
computerized video measuring system (MacLellan et al. 1993). Measurement of body
length was carried out as described by Koenings et al. (1987). Zooplankton biomass
(dry weight) was calculated with species-specific length-weight regressions adapted
from Bird and Prairie (1985), Culver et al. (1985), Stemberger and Gilbert (1987), and
Yan and Mackie (1987). We defined macrozooplankton as animals >250 ym in length.
Nauplii and rotifers were not counted.

Growing season averages of data collected at each station (with the exception of
PR) were calculated as time-weighted means of all sampling dates from May to
October, inclusive. Total seasonal PR at each station was calculated by integrating daily
PR over time, with the growing season defined as May 1 to October 31 (we assumed
that PR was zero on the first and last days of the growing season). Seasonal average
daily PR (PRmean) Was calculated by dividing total seasonal PR for each station by the
length of the growing season (180 days).

We determined areas of the lake and its drainage basin using Oziexplorer
mapping software (http:/www.oziexplorer.com) and digitized topographic maps
(1:50,000 in Canada and 1:100,000 in the United States).



RESULTS AND DISCUSSION

PHYSICS

Cultus Lake is warm monomictic and is thermally stratified for an extended period
each year. In our study, surface temperatures were lowest (5-6°C) in February or March
and highest (23°C) in July or August (Table 2, Fig. 3). They exceeded 18°C for 3-4
months each year. Water column stability was greatest in August and lowest from
January to March (Table 2, Fig. 3). The lake became thermally stratified in late April or
early May and remained stratified until late November (Fig. 4-6). Epilimnion depths
were seasonally variable, but during the period of strongest stratification
(July-September) they averaged a relatively shallow 6.4 m (Table 2). The depth of the
bottom of the metalimnion varied relatively little (range: 14-22 m) and averaged 16 m in
both 2001 and 2002. Hypolimnetic (20-40 m) temperatures varied relatively little,
ranging from 4.3°C in March of 2002 to 7.0°C in November of 2001.

Ricker (1937) carried out extensive temperature profiling in Cultus Lake from the
late 1920’s to the mid-1930’s. Comparison of his data with ours indicates the lake is
warmer now than it was 70 yr previously. With the exception of fall samples, mean
monthly surface and mean 0-10 m temperatures were warmer in our study (Fig. 7).
Average monthly temperatures of deep (20-40 m) water were also warmer in our study,
again with the exception of the late fall (Fig. 8). Average monthly water column stability
(Schmidt index, kg/s?) was similar for much of the year, but in our study it tended to be
higher in spring and summer (Fig. 8). Goodlad et al. (1974) reported on temperature
data collected in the 1960’s and early 1970’s. In 1971, summer epilimnion temperatures
did not exceed 20°C (Goodlad et al. 1974, their Fig. 2) and were slightly cooler then
than in the 1930’s or in our study. Goodlad et al. (1974) reported that seasonal
(May-October) temperature averages (n=12) for the 0-9 m depth integral were 15.5°C,
almost identical to the 0-9 m average of 15.8°C in our study. They also reported that the
average temperature of the 12-27 m depth integral was 7.5°C, which was similar to the
12-27 m average of 7.0°C in our study. The data indicate that there is relatively little
change in temperature regimes in the past 30 yr, but that there has been substantial
warming in the approximately 70 yr since the Ricker (1937) study. This warming is likely
due to climate change, since for the past 100 yr average annual minimum and
maximum air temperatures in the eastern Fraser Valley have been increasing (Taylor
and Langlois, 2000).

Cultus Lake has clear water, with seasonal average (May-October) Secchi
depths during our study ranging from 9.2-10.6 m (Table 2). Secchi depths tended to be
lowest in January-February and highest in fall or early winter (October-December)

(Fig. 9). Ricker (1937) reported Secchi disk values collected on two occasions only in
the fall of 1936, or 65 yr prior to our study. His Secchi depths were substantially deeper
than any recorded in our study, but there are insufficient data to categorically state there
have been actual changes in Cultus Lake water clarity (Fig. 9). Goodlad et al. (1974)
reported a multi-year (May-October, n=6) average Secchi depth of 10.5 m, virtually the
same as found in our study. They did not report the years in which their Secchi data



were collected, but it is most likely from the 1960’s, approximately 35 yr prior to our
study.

Average euphotic zone depth was 16.6 m in 2001 and 15.0 m in 2002. It had a
seasonal pattern similar to Secchi depth, with lowest values occurring early in the year
(January-March) and highest values in summer or fall (August-October) (Fig. 9). During
the period of stable thermal stratification (May-October), euphotic zones depths
averaged 2.5x deeper than epilimnion depths (Table 2). On average, euphotic zone
depths were 10 m deeper than epilimnion depths.

CHEMISTRY

Seasonal average trophogenic zone conductivities in Cultus Lake were
152-154 uS/cm, which are the highest yet recorded in a British Columbia sockeye
nursery lake (K. Shortreed, unpublished data) (Table 3). A similar average conductivity
of 167 uS/cm was reported in the early 1970’s by Goodlad et al. (1974). Conductivity
varied seasonally, with lowest values occurring in winter (January-March) and highest
values occurring in summer (August-September) (Fig. 10). Epilimnetic conductivities
were usually higher than those in the hypolimnion.

Cultus Lake had relatively high dissolved oxygen (DO) concentrations which
were well within the range required by aquatic life (Davis 1975). Surface DO averaged
9.9 mg/L (108% saturation) and average hypolimnetic DO was somewhat lower
(8.9 mg/L, or 71% saturation). Surface DO was highest in spring, declined somewhat in
the summer months, and increased again in fall (Fig. 10). From January to September,
epilimnetic and hypolimnetic DO concentrations were similar. However, in fall
hypolimnetic DO began to decline and was reduced to 6.1 mg/L by late December. This
was equivalent to only 50% saturation. However, only a few weeks later (mid-January)
overturn had occurred and DO was again >10 mg/L throughout the water column.
Progressive loss of hypolimnetic DO during the stratified period is a common
phenomenon in many lakes (Wetzel 2001) and is primarily due to biological oxidation of
organic matter.

Ricker (1937) collected detailed DO profiles in Cultus Lake from 1927-1935. To
make comparisons between those data and the less intensive DO data collected during
our study, we used data from 0 m and 30 m only. Seasonal surface DO concentrations
were virtually identical between the two studies, except that late winter
(January-February) concentrations were somewhat higher in the earlier study (Fig. 11).
However, hypolimnetic (30 m) DO was substantially lower in our study than in the
Ricker (1937) study (Fig. 11). These differences indicate that the intensity of oxidative
processes in the hypolimnion have increased substantially since the 1930’s. The most
plausible explanation for this increase is that the amount of organic matter reaching the
hypolimnion has increased. While increased phytoplankton biomass may account for
some of the increase, an additional source of organic matter reaching the hypolimnion is
Eurasian watermilfoil, which did not occur in Cultus Lake until the 1970’s and which now
occupies major portions of the lake’s littoral zone. (Schubert et al. 2002). While



hypolimnetic DO concentrations have not declined to levels which would deleteriously
affect fish (Brett and Blackburn 1981), we suggest that DO should be regularly
monitored to determine if the decline is continuing.

On one occasion (August 21 2003), we collected a detailed vertical DO profile
(Fig. 12). On this date, epilimnetic DO was 9.2 mg/L, there was a pronounced
metalimnetic DO peak (16.3 mg/L), and hypolimnetic DO declined to 7.2 mg/L at 30 m.
This was 108% oxygen saturation at the surface, 160% at the metalimnetic peak, and
58% at 30 m. This type of DO profile is termed positive heterograde (Wetzel 2001) and
is common in lakes where the euphotic zone is substantially deeper than the epilimnion,
allowing sometimes substantial photosynthesis to occur in the cooler metalimnion. In
the 1920’s and 1930’s, a metalimnetic DO peak also occurred in Cultus Lake (Ricker
1937), but DO concentrations at the peak were much lower (11.9 mg/L) (Fig. 12). This
suggests that metalimnetic photosynthetic rates were higher in our study than in the
1930’s.

Cultus Lake was alkaline on most sampling dates in our study and seasonal
average pH was 7.6 in 2001 and 7.8 in 2002 (Table 3). Seasonal variation was not
pronounced, but pH was highest (>8) in summer. In 1932, the May-October average
was 7.7 (Ricker 1937), almost the same as the average in our study. However, the
maximum recorded summer pH of 7.8 in the earlier study was lower than the maximum
in our study. The increase (from 7.8-8.1) in maximum summer pH between the two
studies could be a result of increased phytoplankton productivity. As with conductivity,
we found average concentrations of total dissolved solids (TDS) (101-106 mg/L), total
alkalinity (62-64 mg CaCOzs/L), and dissolved inorganic carbon (15.7-16.8 mg/L) were
the highest ever seen in B.C. sockeye lakes (K. Shortreed, unpublished data) (Table 3).

Concentrations of soluble reactive silica (SRS) averaged 1.8-2.0 mg Si/L
(Table 4). This is within the range commonly observed in B.C. sockeye lakes
(K. Shortreed, unpublished data) and within the range reported for Cultus Lake by
Ricker (1937). SRS exhibited some seasonality, with maximum annual concentrations
occurring in January or February and seasonal minima occurring in September or
October (Fig. 13). Seasonal minima were 1.7-1.8 mg Si/L, well above the concentration
(0.5 mg Si/L) at which silicon availability becomes limiting to diatom growth (Wetzel
2001).

Nitrate concentrations in Cultus Lake were unusually high for a B.C. sockeye
lake, with winter (January-February) values of >150 pg N/L and seasonal averages in
the euphotic (trophogenic) zone of 39-45 ug N/L (Table 4, Fig. 14). Euphotic zone
averages declined steadily from the winter peaks until seasonal minima of 12-14 pg N/L
were reached in August or September, after which they began to increase. We
collected vertical profiles of nitrate concentration on every sampling date (Fig. 15-17).
Nitrate concentrations were similar throughout the water column from January to April,
when epilimnetic concentrations started to decline. From August to October, a
pronounced nitracline occurred. In summer, nitrate became depleted (<1 pg N/L) for
more than half of the euphotic zone, with the result that the depth of depletion extended
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below the epilimnion, usually to near the bottom of the metalimnion (Fig. 17). The rapid
temperature change over the depth of the metalimnion in summer acts as a physical
barrier to vertical transport of hypolimnetic nitrate to the nutrient-depleted epilimnion.
Photosynthetic activity and subsequent nitrate depletion in the metalimnion strengthens
this barrier and reduces vertical transport even more. In the August-October period,
hypolimnetic nitrate concentrations usually increased (Table 4). The most likely cause
of this increase was water from Frosst and Spring creeks, which was colder (i.e. denser)
than Cultus Lake’s epilimnion and had much higher nitrate concentrations (see later
section on stream chemistry). Trophogenic zone ammonia concentrations exhibited
little seasonality and seasonal (May-October) averages were 6.6 pg N/L in 2001 and
5.3 ug N/L in 2002 (Table 4). Hypolimnetic averages were slightly lower (4.8 and

2.3 pg N/L in 2001 and 2002, respectively).

Spring (March-April) overturn total phosphorus (TP) was quite variable, with
concentrations over the whole water column of 6.3 pg/L in 2001, 11.7 pg/L in 2002, and
8.3 pg/L in 2003 (Table 4). Reasons for these annual differences are not known, but
these concentrations place the lake in the upper oligotrophic or lower mesotrophic
range (Vollenweider 1976). TP exhibited little seasonality, but tended to be higher in
2002 than in 2001 (Table 4, Fig. 18). Concentrations of total dissolved (TDP) and
soluble reactive (SRP) phosphorus were also higher early in 2002 than early in 2001 or
2003. For most of the study (April 2001- March 2003), SRP was <2 pg/L. Only in the
early part (February-April) of 2002 did higher concentrations occur (Table 4, Fig. 18).
Although there was some month-to-month variability, in both 2001 and 2002 average
TDP was 71% of TP. SRP averaged 16% of TP in 2001 and 21% in 2002.

In 37 lakes from B.C.’s north and central coasts (Shortreed et al. 2007), SRP
averaged 21% of TP, very similar to Cultus Lake, but average TDP was a lower 58% of
TP. However, data presented in that study were from single sampling dates in late
summer, rather than seasonal averages. Consequently, it is likely that nutrient data
would suggest more pronounced nutrient limitation than the seasonal averages for
Cultus Lake. Late summer data from Cultus Lake were more similar, with TDP
averaging 60% of TP. In a data set consisting of multiple years of seasonal data from a
suite of 28 B.C. sockeye lakes (K. Shortreed, unpublished data), TDP averaged 69% of
TP, very similar to the proportion found in Cultus Lake. Average SRP concentration in
this suite of lakes was 21% of TP, also very similar to that found in Cultus and the same
as that reported by Shorireed et al. (2007). In general, summer concentrations of both
SRP and nitrate were very low and suggest co-limitation of both nitrogen and
phosphorus (Suttle and Harrison 1988) for a portion of each growing season. However,
since spring concentrations of nitrate, TP, and SRP are higher than commonly seen in
other B.C. sockeye lakes (K. Shortreed, unpublished data), the degree of nutrient
limitation is likely somewhat less in Cultus Lake.

Particulate ratios of carbon, nitrogen, and phosphorus have been widely used to
estimate the magnitude of nutrient limitation in lakes or oceans (Redfield et al. 1963;
Hassett et al. 1997). Average C:N:P ratio of marine phytoplankton has been found to
be 103:16:1, while C:N:P ratios in lakes tend to be more variable but much higher (Elser
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and Hassett 1994; Shortreed and Morton 2000). In this study, we measured particulate
C and N on only two occasions (April and May of 2001), so particulate ratios cannot be
used to estimate the extent of seasonal nutrient limitation in Cultus Lake. However, on
these dates, when it would be expected that nutrient limitation would be at or near a
seasonal low, C:N:P ratios ranged from 245:21:1 to 300:32:1. These were very similar
to the average ratio of 314:31:1 found in Babine Lake (Shortreed and Morton 2000) and
to the average ratio of 304:25:1 found in the suite of 28 lakes mentioned previously

(K. Shortreed, unpublished data). These ratios are all indicative of severe P limitation
(Hecky et al. 1993), although the degree of limitation is much less than was observed in
a number of coastal B.C. lakes, where the ratio was 473:45:1 (Stockner and Shortreed
1985).

STREAM CHEMISTRY

In addition to the mid-lake station, in 2002 we sampled Frosst, Spring, and
Sweltzer creeks for a variety of chemical variables (Table 5). Sweltzer Creek is the
outlet of Cultus Lake. Frosst Creek is the lake’s major tributary and its drainage basin
of approximately 40 km? includes a portion of the Columbia Valley, which is an active
agricultural area. Spring Creek is a small groundwater-fed stream which starts
approximately 0.8 km from Cultus Lake. It passes through a golf course and a
residential area before discharging into the lake. Seasonal (May-October) average
temperatures ranged from 9.2°C in Frosst Creek to 20.9°C in Sweltzer Creek (Table 5).
Cultus Lake and Sweltzer Creek had similar temperatures for much of the year
(range: 5.2-24.9°C), but Sweltzer became slightly warmer in the summer months
(Table 5; Fig. 19). Spring Creek exhibited little seasonal variation in temperature,
ranging only from 8.2-10.4°C. Frosst Creek exhibited some seasonal variation, but for
most of the year it was substantially cooler than Sweltzer Creek or Cultus Lake.

None of the sampling locations exhibited much seasonal variation in conductivity,
although in Frosst Creek highest conductivities occurred in summer (Fig. 19). Average
conductivity was lowest (100 pS/cm) in Frosst Creek and highest (238 pg/L) in Spring
Creek (Table 5). TDS also exhibited little seasonal variability except in Frosst Creek,
where lowest values occurred in spring and in late fall, most likely at times of higher
discharge (Fig. 2, 20). Average TDS ranged from 84 mg/L in Frosst Creek to 184 mg/L
in Spring Creek. DO exhibited little seasonal variation at any of the sampling locations,
although in Spring Creek there was a slight decline in DO through the year (Table 5,
Fig. 20). Average DO was relatively high (range: 10.8-13.3 mg/L) at all locations except
for Spring Creek, where the average was only 4.9 mg/L. SRS did not vary seasonally
except that Spring Creek concentrations increased in late fall (Table 5). Averages were
similar at all locations, ranging only from 2.0-2.6 mg/L.

Nitrate concentrations exhibited considerable variation both seasonally and
between stations. Sweltzer Creek and Cultus Lake had similar concentrations for much
of the year, although Sweltzer concentrations were lower in summer (Fig. 21). Frosst
Creek concentrations varied substantially, but were >500 pg N/L for much of the year.
Lowest nitrate concentrations in Frosst Creek occurred in late May and in late
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November, when seasonal peaks in discharge most likely occurred (Fig. 2). Spring
Creek nitrate did not vary seasonally. Average nitrate was lowest (26 pg N/L) in
Sweltzer Creek and highest (526 pg N/L) in Frosst Creek (Table 5). Unlike nitrate,
ammonia exhibited little seasonal variation and concentrations were similar at all
locations (Fig. 22). Average ammonia ranged from 3.6-6.7 ug N/L. Seasonal variation
in TP concentration was minimal, except that highest concentrations occurred in
summer in Spring Creek (Fig. 22). Average TP was highest in Spring Creek (13.1 pg/L)
and was similar (7.6-8.6 pg/L) at the other three locations (Table 5). TDP also exhibited
little seasonal variation and as with TP, average concentrations was higher (9.4 pg/L) at
Spring Creek than elsewhere, where the average was 6.0-6.4 pg/L. Highest
concentrations of SRP occurred in late winter in Cultus Lake and in Sweltzer Creek
(Fig. 23). Concentrations at these locations then declined slowly for the rest of the year.
The other two locations exhibited little seasonal variability. Seasonal (May-October)
average SRP was highest (4.5 pg/L) in Spring Creek and ranged from 1.8-2.5 pg/L at
the other locations (Table 5).

Nitrate concentrations in Frosst and Spring creeks were much higher than those
in Cultus Lake and much higher than in any B.C. sockeye lake. Sources of the
unusually high nitrate concentrations in Frosst and Spring creeks are unknown. While it
is possible that they are due to natural geologic features of the drainage basin, it is
more likely that anthropogenic inputs account for much of the high concentrations.
Approximately 10 km? of the Frosst Creek drainage basin is used for agriculture. As for
Spring Creek, in its short (0.8 km) length, it passes through both a golf course and a
residential area serviced by septic tanks. Nitrate concentrations in both creeks were
lower than those found in groundwater exposed to agriculture activities in the Fraser
Valley (Sylvestre et al. 2004), but they were much higher than the average groundwater
concentrations at a number of reference sites (i.e. those unaffected by agriculture) also
in the Fraser Valley.

For the entire growing season, water from both Frosst and Spring creeks was
much colder and had higher ion concentrations than the surface waters of Cultus Lake,
so it was substantially denser. Consequently, their inflows would sink rapidly on
entering Cultus Lake and likely contributed little to epilimnetic nitrogen loading during
the period of thermal stratification. The summer and fall increases in Cultus Lake'’s
hypolimnetic nitrate concentrations was likely due to input from Frosst, and to a lesser
extent, Spring creeks (Tables 4 and 5).

METALS

On one occasion in January of 2004, we collected a water sample for metals
analysis from one location approximately 350 m east of the mouth of Spring Creek. The
sampling location was 21 m from shore and the water depth at this location was 3.8 m.
The water sample was collected from 1 m above the bottom. Total metals were
analysed by Elemental Research (now Cantest) of North Vancouver, B.C. Although this
one sample is not likely to be representative of Cultus Lake as a whole, it constitutes the
only available data on metals content of Cultus Lake water, and so is presented here
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(Table 6). All measured metals were well below Health Canada’s maximum allowable
concentrations for Canadian drinking water quality, when given (http://hc-sc.gc.ca/). For
comparative purposes, we plotted Cultus Lake metals data against data from a number
of other B.C. lakes (E. Maclsaac, Fisheries and Oceans Canada, Simon Fraser
University, Burnaby, B.C., pers. comm.; K. Shortreed, unpublished data) (Fig. 24-25).
With two exceptions, concentrations of metals in Cultus Lake were within the range
seen in the other lakes. In Cultus Lake, magnesium concentration was slightly higher
than in the other lakes and strontium was substantially higher. Reasons for these
differences are unknown, but in these forms neither metal is thought to have any health
risks.

BACTERIA AND PHYTOPLANKTON

Seasonal variation in bacteria numbers was not pronounced, but highest
numbers generally occurred in summer (Fig. 26). Average numbers were
1.97 million/mL in 2001 and somewhat higher (2.93 million/mL) in 2002 (Table 7). The
2002 numbers are the highest ever recorded for a B.C. sockeye lake. The overall
average for data from 28 B.C. lakes (K. Shortreed, unpublished data) was far lower
(1.02 million/mL), as was the average (1.39 million/mL) for 37 central and north coast
lakes sampled once in late summer, when bacteria numbers were likely at their
seasonal peak (Shortreed et al. 2007). Based on a bacteria-based trophic classification
(Bird and Kalff 1984), average bacteria numbers in Cultus Lake place it in the lower
range of mesotrophy (1.7-6.5 million/mL).

Seasonal average concentrations of trophogenic zone chlorophyll were 2.32 ug/L
in 2001 and 2.01 pg/L in 2002 (Table 7). Distinct seasonal patterns were not apparent,
but lowest values generally occurred in winter and highest in summer and fall (Fig. 26).
These concentrations are well within the range that has been observed in many B.C.
sockeye lakes (Shortreed et al. 2001). Based on the chlorophyll-based trophic
classification of Forsberg and Ryding (1980), these concentrations place Cultus Lake in
the oligotrophic category (<3 pg/L). We found that a deep chlorophyll maximum (DCM)
persisted throughout the period of stable thermal stratification (June-July to October)
(Fig. 27-29). In 2001, the DCM occurred near the bottom of the euphotic zone and
concentrations at its peak were 6-8 pg/L from August to October. In 2002, the DCM
was shallower than in 2001 and peaks were not as high (4-6 pg/L). In August of 2003,
the DCM was again very similar to that observed in 2001 (Fig. 27-29). Summer
euphotic zone depths were shallower in 2002 than in 2001, which may account for the
shallower DCM in that year. Reasons for the difference in magnitude between 2002
and the other years are not clear. DCMs are relatively common in lakes and a number
of hypotheses have been put forward to explain their development and maintenance
(Pick et al. 1984; Shortreed and Stockner 1990). Given that in Cultus Lake the DCM
occurred at depths well below that of maximum photosynthetic rate (PR), it is apparent
that development and maintenance of the DCM was not entirely due to active
photosynthesis at depth. Its formation must have been partially due to passive
processes (i.e. accumulation of cells that were produced in shallower waters) (Jackson
et al. 1990).
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Seasonal patterns in PR were similar in both years, with highest values occurring
in summer and lowest in winter (Fig. 30). Average daily (May-October) photosynthetic
rates (PR) were 424 mg C-m?.d™" in 2001 and 473 mg C-m™-d™" in 2002 (Table 7).
These are the highest average PR values ever recorded for a B.C. sockeye lake
(Shortreed et al. 2001, 2007; K. Shortreed, unpublished data). Based on the PR-based
trophic classifications proposed either by Wetzel (2001) or Shortreed (2007), these PR
values place Cultus Lake well within the mesotrophic category. The shape of vertical
PR profiles was variable, but in most cases highest PR occurred at depths >5 m
(Fig. 31-35). This was no doubt due to the relatively deep euphotic zone and the
presence of a DCM for a portion of the year (Fig. 27-29). Average assimilation ratios
(ug C-ug Chi"-d™) in Cultus Lake were 14 and 20 in 2001 and 2002, respectively. This
was higher than the average of 9.2 for a number of B.C. sockeye lakes (K. Shortreed,
unpublished data) and indicates a high turnover rate (high trophic efficiency) within the
Cultus phytoplankton community (Wetzel 2001).

Cultus Lake phytoplankton exhibited considerable seasonal and annual variability
(Table 7, Fig. 36). Highest picoplankton numbers occurred in summer (up to
142 thousand/mL in August of 2002) and lowest in winter or spring (only
3.2 thousand/mL in May of 2001). Average picoplankton numbers in the trophogenic
zone were substantially higher in 2002 (81 thousand/mL) than in 2001
(48 thousand/mL) (Table 7). These averages are within the range commonly observed
for British Columbia and Yukon lakes (Stockner and Shortreed 1991). In late summer,
picoplankton numbers were near the top of the range found in a suite of B.C. lakes
located near the north and central coasts (Shortreed et al. 2007). Average
nanoplankton numbers were far lower than picoplankton numbers, ranging from
1,000/mL in 2002 to 1,500/mL in 2001. Seasonal variation in nanoplankton numbers
was much less pronounced than for picoplankton, but highest numbers also occurred in
summer (Table 7). Seasonal variation in microplankton numbers was unusual, with
highest volume occurring on the first sampling date each year (January of 2001 and
April of 2002) and highest numbers occurring in summer and early fall (Table 7).
Average microplankton volume was 69% of total phytoplankton volume. This was
similar to the average of 77% for a number of interior B.C. sockeye lakes (K. Shortreed,
unpublished data) and to the average of 74% reported by Shortreed et al. (2007) for 37
north and central coast lakes.

As in most B.C. sockeye lakes (Stockner and Shortreed 1991), the cyanobacteria
Synechococcus sp. was the dominant picoplankton. In Cultus Lake, it comprised an
average of 99% of total picoplankton numbers, with the remainder made up by a small
eukaryote. Of total Synechococcus numbers, 59% were unicellular, with a colonial form
making up the remainder. Stockner and Shortreed (1991) reported that colonial
Synechococcus made up a greater proportion of the total as lake productivity increased
(e.g. 10% in ultraoligotrophic Chilko Lake and 44% in more productive Shuswap Lake).
Colonial Synechococcus made up 40% of the total in Cultus Lake, providing a further
indication of Cultus Lake’s relatively high productivity. The dominant nanoplankion on
almost all sampling dates were the flagellates Chromulina sp. and Chroomonas acuta.
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Also common or abundant on some occasions were other flagellates (Chrysochromulina
and Ochromonas), a small diatom (Cyclotella glomerata), and the chlorophyceans
Crucigenia tetrapedia and Scenedesmus sp.

A number of larger diatom genera made up the bulk of the microplankton size
fraction. Prominent among these at various times were Urosolenia (formerly
Rhizosolenia), Cyclotella spp., Melosira spp. (primarily M. islandica), and to a lesser
extent, Asterionella formosa. Seasonal variation in diatom species composition was
similar in both study years, although numbers varied (Fig. 37). Maximum numbers of
Melosira occurred in winter or early spring. Melosira was the major contributor to the
seasonal peak in phytoplankton volume. In the mid-1930’s, Ricker (1938) found that
Melosira numbers peaked in March or April. It is unclear whether seasonal peak in
Melosira occurs earlier now than in the 1930'’s, or whether the difference is simply a
matter of annual variability. However, in 2002, when we sampled throughout the year,
the seasonal peak in M. islandica occurred in January. A lesser peak in A. formosa
abundance occurred later in spring (April-June), at the same time as observed by Ricker
(1938) in the mid-1930’s. Highest numbers of Cyclotella spp. occurred in summer or
early fall. Urosolenia did not exhibit much seasonal variation but was abundant
throughout the year (Fig. 37).

On occasion, other taxonomic groups made up substantial, but lesser (by
volume) portions of the microplankton community. These included Dinobryon spp. and
gelatinous colonies of small cells which we placed in the microplankton category
because of their large colony size. Highest numbers of these colonial forms occurred in
summer and early fall, and included Chrysosphaerella and the cyanobacteria
Aphanocapsa, Aphanothece, Coelosphaerium, and Gloeocystis. While not
heterocystous, some of these cyanobacteria are capable of fixing nitrogen (Wetzel
2001) and under some conditions can produce deleterious blooms. They are also a
less favorable food source for herbivorous zooplankton than many other phytoplankton
species (Porter 1973).

From July to October of 2002, we examined phytoplankton community structure
in both the epilimnion and in the DCM. Considerable differences in epilimnetic and
DCM phytoplankton species composition have been recorded in other lakes (Pick et al.
1984, Shortreed and Stockner 1990). However, in Cultus Lake phytoplankton species
composition in the epilimnion and at the DCM was similar. Higher chlorophyll
concentrations at the DCM were the result of increased abundance of the entire
community. This suggests that in Cultus Lake the DCM was caused primarily by
metalimnetic photosynthesis. If it was caused by more passive processes (i.e. sinking
of epilimnetic phytoplankton), faster-sinking species (i.e. diatoms) would likely have
predominated at the DCM (Shortreed and Stockner 1990).
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ZOOPLANKTON

Cultus Lake had an abundant zooplankton community, with seasonal average
macrozooplankton biomasses of 1,457 mg dry wi/m? in 2001 and 1,396 mg dry wi/m?in
2002 (Table 8). This was substantially higher than average zooplankton biomass in the
great majority of B.C. sockeye lakes (Shortreed et al. 2001, 2007; K. Shortreed,
unpublished data), although higher biomass has been recorded in a few of these lakes.
Highest seasonal biomass occurred in May, after which values generally declined until
fall (Table 8, Fig. 39). The large cladoceran Daphnia is the preferred prey item of
juvenile sockeye (Hume et al. 1996; Hampton et al. 2006), and in Cultus Lake it
comprised the majority of the community biomass on most sampling dates (Fig. 39). In
Lake Washington, Scheuerell et al. (2005) determined that juvenile sockeye fed almost
exclusively on Daphnia as soon as Daphnia numbers exceeded 0.4/L. In Cultus Lake,
Daphnia numbers substantially exceeded this threshold throughout our study, except on
one occasion in March of 2002 (Table 9). In Cultus Lake, Daphnia comprised >90% of
sockeye stomach contents on all dates for which we have data (five surveys carried out
from June-November in 1996, 2004, and 2005) (S. MacLellan, Fisheries and Oceans
Canada, Cultus Lake, B.C., pers. comm.). Seasonal average Daphnia biomass was
72% of total biomass, which is a higher proportion than in the majority of B.C. sockeye
lakes (Shortreed et al. 2001, 2007; K. Shortreed, unpublished data) (Table 8). The
copepod Diacyclops had the next highest biomass, making up an average of 14% of the
total in 2001 and 22% in 2002. In both study years, highest Diacyclops biomass
occurred in April. The calanoid copepod Epischura nevadensis, the cladoceran
Holopedium gibberum, and bosminid cladocerans (mostly Eubosmina coregoni with
smaller numbers of Bosmina longirostris) each had average biomasses of 5% or less of
the total (Table 8).

Expressed numerically, Diacyclops was the most abundant genera in Cultus
Lake, followed by Daphnia (Table 9). In the 1930’s (Ricker 1938) and the 1960’s
(Goodlad et al. 1974), Diacyclops (then called Cyclops) was also the most abundant
genus, with Daphnia the second most abundant. Timing of the seasonal maxima
appear to have been slightly different in the 1930’s. In our study, the Daphnia peak
occurred in May, while in the 1930’s the peak was in June. Similarly, in our study
maximum numbers of both Eubosmina and Diacyclops occurred in April, but in the
1930’s their peaks were in May. These difference in timing could have been due the
warmer spring water temperatures in our study (i.e. climate differences). In both
studies, highest Epischura numbers occurred in May (Table 8) (Ricker 1938). The large
predatory cladoceran Leptodora kindtii occurred in relatively small numbers in Cultus
Lake, with seasonal peaks of up to 750/m? or 20 mg dry wt/m? occurring in September
or October. L. kindtii was not observed in the 1930’s (Ricker 1938), but was noted in
the 1960’s (Goodlad et al. 1974).

Life-history strategies of Daphnia are variable, with some species or populations
overwintering as adult females and others producing diapausing eggs (ephippia) after
sexual reproduction in the fall (Gliwicz et al. 2001; Wetzel 2001). While little data have
been collected in winter from B.C. lakes, in almost all B.C. sockeye lakes for which we
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have growing season data (April-May to October-November), Daphnia numbers are at
their seasonal minima in spring (April-May) (e.g. Morton and Shortreed 1996; Malange
et al. 2005; K. Shortreed, unpublished data). In addition, numbers often rapidly decline
in fall. This strongly suggests that in these lakes Daphnia enter diapause in the fall and
spend the winter as ephippia. However, in Cultus Lake, Daphnia maintains a relatively
large overwinter population (as much as 975 mg dry wi/m? in late December of 2002).
This suggests that Cultus Lake may be a better rearing environment for juvenile
sockeye than the majority of B.C. sockeye lakes, since the preferred prey item is
available throughout the year. Further confirmation of the favourable winter/early spring
rearing environment in Cultus Lake is that growth of juvenile sockeye from fall to the
following spring (fall fry to smolts) is substantially greater in Cultus than in other lakes at
equivalent fish densities. At similar low densities, overwinter growth in Quesnel and
Shuswap lakes ranged from 1-3 g, while overwinter growth in Cultus Lake was 4.5-9 g
(J. Hume, Fisheries and Oceans Canada, Cultus Lake, B.C., pers. comm.).

Frequency histograms of Daphnia length indicate that on a number of our
sampling dates there was a distinct bimodal distribution in length. This was most
pronounced in winter and early spring (Fig. 40-47). One explanation for this would be
the presence of more than one Daphnia species. Goodlad et al. (1974) reported that
Cultus Lake contained both D. longiremis and D. rosea. Since D. rosea is larger than
D. longiremis (Goodlad et al. 1974, Gillooly and Dodson 2000), the presence of both
these species could explain the bimodal length distribution. D. longiremis prefers cold
water and often is restricted to hypolimnetic waters (Bertilsson et al. 1995; Lindstrom
2001), while D. rosea can reproduce successfully in warmer water (Burns and Rigler
1967). Consequently, in Cultus Lake these two species could co-exist and be spatially
separated for much of the year. However, recent examinations of Cultus Lake plankton
samples indicate that the only abundant Daphnia species is D. thoratfa (G. Green, Royal
B.C. Museum, Victoria, B.C., pers. comm.; S. MacLellan, Fisheries and Oceans
Canada, Cultus Lake, B.C., pers. comm.). The switch from multiple Daphnia species to
a single species could be due to increased competition because of reduced predation
on Daphnia (Gliwicz 2001). In Cultus Lake, predation pressure (i.e. densities of
planktivorous fish) was far higher in the 1960’s and 1970’s than in our study (Schubert
et al. 2002). Inthe 1920’s, D. pulex was the only Daphnia species identified from Cultus
Lake (Foerster 1925), but given that this species is common in small ponds and rarely
dominant in large lakes, this identification is uncertain.

In Lake Washington, Edmondson and Litt (1982) found that D. thorata was the
most common Daphnia species when Epischura was abundant, and suggested that
D. thorata may be less susceptible to Epischura predation than other Daphnia species.
In our study, seasonal maximum numbers of Epischura were up to 33,000/m? (1.1/L),
whereas Goodlad et al. (1974) listed it as rare. Increases in Epischura numbers could
potentially be a contributing factor to a change in Cultus Lake’s Daphnia community.
With regard to the bimodal length distribution, Gliwicz et al. (2001) found a similar
bimodal Daphnia length distribution in a Polish lake. They found that some Daphnia
overwintered as adult (i.e. relatively large) females that reproduced throughout the
winter. This could explain the presence of two cohorts in Cultus Lake. The rapid
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increase in Daphnia numbers in April-May would be due to reproduction from this
population as well as from hatching ephippia.

REARING CAPACITY

The PR model (Hume et al. 1996, Shortreed et al. 2000, Cox-Rogers et al. 2004)
was developed as a tool to predict a lake’s sockeye productive capacity when sufficient
data were not available to directly estimate capacity (e.g. fry/spawner over a wide range
of escapements). The main input to the PR model is seasonal average daily integrated
PR (mg C:'m?d™") (PRmean). The May-October seasonal average is computed with PR
assumed to be 0 on May 1 and October 31. In 2001 and 2002, PRmean Was 424 and
473 mg dry wt/m?, respectively. This was an average PR of 449 mg C-m?2d™ + 48(2SE).
Total seasonal phytoplankton carbon uptake (t C-lake™yr") (PRit) Was calculated by
multiplying PRnean by lake area and by growing season length (standardized as May 1-
Oct 31). Given the longer growing season in Cultus Lake, it may be appropriate to use
a longer growing season than May 1-Oct 31. However, the extent to which a longer
growing season affects rearing capacity is not known, so at present we have not made
any adjustments to PR predictions. Average PRia in Cultus Lake was 507 t C.

Several adjustments to PR model predictions may be required if the limnetic
community contains planktivores other than juvenile sockeye, or if a portion of the
sockeye population emigrates as age-2 smolts (Cox-Rogers et al. 2004; Shortreed et al.
2007). In Cultus Lake, we reduced PRita applicable to model predictions from 507 to
463t C-lake™yr", based on the biomass of limnetic planktivores other than juvenile
sockeye, and based on approximately 1% of smolts emigrating as age-2’s (J. Hume,
Fisheries and Oceans Canada, Cultus Lake, B.C., pers. comm.). Non-sockeye
planktivores in Cultus Lake were primarily threespine sticklebacks (Gasterosteus
aculeatus), with periodic occurrences of redside shiners (Richardsonius balteatus) and
pygmy sculpins (Coftus sp.). Kokanee were present but rare. After these adjustments,
PRital Wwas used in the model to estimate maximum potential smolt biomass and the
escapement needed to produce that biomass (Cox-Rogers et al. 2004).

In addition to planktivorous fish, limnetic macroinvertebrates may compete with
juvenile sockeye for zooplankton prey and further reduce a lake’s productive capacity.
Low numbers (maximum observed density was 25/m?) of the large predatory cladoceran
Leptodora kindtii occurred in Cultus Lake. Leptodora are exclusively carnivorous
(Branstrator 1998) and as adults eat a broad range of prey, including Daphnia
(Branstrator and Lehman 1991). Consequently, at some life-history stages they can be
at least partial competitors with juvenile sockeye. However, in Cultus Lake Leptodora
are also frequently found in the stomachs of juvenile sockeye (S. MacLellan, Fisheries
and Oceans Canada, Cultus Lake, B.C., pers. comm.). This constitutes a “trophic
triangle” where Lepfodora is both a competitor and a prey item for the same species
(Lunte and Luecke 1990; Hyatt et al. 2005). Consequently, it is extremely difficult to
ascertain the extent to which macroinvertebrates affect Cultus Lake’s sockeye rearing
capacity. Given these difficulties, and given the generally low density of Lepfodora in
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Cultus Lake, we made no adjustments to rearing capacity estimates because of its
presence.

The resulting PR model prediction for Cultus Lake, including weighting the
prediction by the long-term average sex ratio of 57% female spawners, (Schubert et al.
2002) is that an optimum escapement of 75,000 spawners would produce up to
4.6 million smolts. This is similar to the maximum observed escapement and to the
maximum observed smolt output (4 million smolts from 71 thousand spawners). A direct
estimate of rearing capacity provided by the relationship between smolt biomass and
female spawner numbers suggests that the optimum escapement to Cultus Lake is
somewhat lower (50,000 spawners) (Cox-Rogers et al. 2004). In that study, it was
suggested that the discrepancy between the two predictions of optimum escapement
could be due to other constraints on fish production. In Cultus Lake, that could be the
large number of piscivores (predominantly Ptychocheilus oregonensis) present in the
lake. Another factor contributing to lower fish production could be the parasitic copepod
Salmincola californiensis, which is known to cause mortality in juvenile sockeye salmon
(Kabata and Cousens 1977). ltis rare in B.C. sockeye lakes, but does occur in Cultus
Lake. The amount of mortality it causes in Cultus Lake is unknown, but it is frequently
observed on juvenile sockeye (J. Hume, Fisheries and Oceans Canada, Cultus Lake,
B.C., pers. comm.).

QUALITY OF CULTUS LAKE REARING ENVIRONMENT

Since sockeye fry tend to avoid temperatures >18°C (Lebrasseur et al. 1978), for
much of the growing season (app. mid-June to mid-October), Cultus Lake’s epilimnion
is not favorable sockeye habitat. However, temperatures in the meta- and hypolimnion
are within sockeye temperature preferences. The lake’s deep euphotic zone enables
substantial phytoplankton production to occur below the epilimnion, which in turn
contributes to the development of a metalimnetic chlorophyll maximum. As a result,
zooplankton can find a suitable food supply below the warm epilimnion. Consequently,
sockeye fry can graze effectively below the epilimnion, ameliorating the effect of the
warm surface waters.

Photosynthetic rates and a number of chemical variables indicate Cultus Lake
has the highest productivity yet recorded in a B.C. sockeye lake. Variables commonly
used to categorize trophic status (e.g. PR, chlorophyll, TP, bacteria) place the lake
either at the upper end of oligotrophy or lower end of mesotrophy. The widely used
trophic state index (TSI) developed by Carlson (1977) has a scale of 0 to 100, and
oligotrophic lakes have a value <30. The TSI value for Cultus Lake was 34, placing the
lake near the boundary between oligotrophy and mesotrophy.

Phytoplankton community composition in Cultus Lake is favorable for grazing
herbivores (i.e. abundant pico- and nanoplankton). There is an abundant zooplankton
community made up of an unusually high proportion of Daphnia, the preferred prey item
of juvenile sockeye. Further, unlike most B.C. lakes, in Cultus Lake Daphnia is present
throughout the year, enabling substantial overwinter growth to occur. While planktivore
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numbers were low during our study, earlier studies (Foerster 1924, Ricker 1937,
Goodlad et al. 1974) found that Daphnia remained abundant even when planktivore
densities were far higher, providing further confirmation Cultus Lake Daphnia are highly
productive. The favorable conditions are reflected in the large size of Cultus Lake
sockeye smolts. In recent years, when fish densities and grazing pressure have been
low, average smolt weight has been 13.4 g (n=6) (J. Hume, Fisheries and Oceans
Canada, Cultus Lake, B.C., pers. comm.). Even in the 1950’s and 1960’s, when grazing
pressure was much higher, smolts tended to be relatively large (5.2 g, n=8) (Schubert
et al. 2002).

While there is legitimate concern about the extensive and increasing societal use
of Cultus Lake and its drainage basin, the lake currently provides a suitable
environment for juvenile sockeye. This is not to say there are not a number of
habitat-related issues which have the potential to, or currently are, deleteriously
affecting the lake’s spawning or rearing environments. Most of these were listed by
Schubert et al. (2002) and include increasing abundance of Eurasian watermilfoil
(destruction of spawning habitat, increased pikeminnow numbers), predation by
northern pikeminnow, mortality from parasite (S. californiensis) infestation, and
pollutants in sediments, groundwater, and the lake itself (septic tanks, fertilizer use,
outboard motors). The decline in hypolimnetic DO concentrations merits close
attention, since the rate of decline could accelerate if nutrient loading increases further
(i.e. increasing human activity) and the growing season lengthens (i.e. climate change).
However, at present the limnetic zone of Cultus Lake provides a favorable nursery area
for juvenile sockeye.

CURRENT AND PAST PRODUCTIVITY

Cultus Lake is unique among B.C. lakes in that there were detailed limnological
investigations (Foerster 1925; Ricker 1937, 1938) carried out early in the 20" century,
70-80 yr prior to our study. Further, fish counting fences have provided accurate
escapement numbers for most years from the 1920’s to the present. In addition,
accurate smolt numbers are available for many of the same years (Schubert et al.
2002). While some of the methods used in the early limnological investigations resulted
in data that are not comparable with results from our study, there are still a number of
variables which are directly comparable with those from our 2001-2002 study.

Temperature data from the earlier investigations were highly detailed and are
readily comparable to our data. They indicate that for most of the year, both the shallow
and deep waters of Cultus Lake are warmer now than they were early in the 20"
century (Figs. 7 and 8). Combined with long-term increases in air temperatures in the
Fraser Valley (Taylor and Langlois, 2000), there is convincing evidence that climate
change has affected the physical environment of Cultus Lake. This is in agreement with
trends for northern hemisphere lakes for which long-term observations are available
(Magnuson et al. 2000).
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Water clarity (as Secchi depth) was recorded on only two occasions in the earlier
study (Ricker 1937), but it was substantially greater (by 24%, or 3.2 m) than Secchi
depths recorded at comparable times of the year in 2001 and 2002 (Fig. 9). While only
two measurements do not allow any definitive conclusions to be drawn, the data do
suggest that the lake is less clear now than in the past, which is indicative of higher
algal productivity and biomass.

Ricker (1937) also carried out extensive DO profiling in the years 1927-1935.
Surface DO concentrations from those years were quite similar to those in our study,
which indicates that methods were comparable (Fig. 11). However, for most of the year
deep (30 m) DO was much lower in our study, indicating that the amount of organic
matter reaching the hypolimnion is greater now than in the past. This could indicate
greater phytoplankton biomass and productivity, but is no doubt at least partially due to
the large increase in macrophyte biomass since the earlier study. Summer DO profiles
exhibited a distinct metalimnetic peak in both our study and that of Ricker (1937).
However, the magnitude of the peak was much greater in our study, indicating
increased phytoplankton productivity (Fig. 12). Summer pH levels were also slightly
higher in our study, further suggesting increased phytoplankton activity.

While differences in methods make it impossible to make quantitative
comparisons in zooplankton numbers, seasonal changes in relative abundances
indicate that timing of spring peaks in the dominant genera (Daphnia, Diacyclops, and
Epischura) is approximately one month earlier now than in the 1930’s (Fig. 39; Ricker
1938). The increased lake temperatures in the early part of the year (i.e. climate
change) could be the explanation for the change in timing.

Finally, mean weight of Cultus smolts from years of comparable escapements (a
range of 800-7000 female spawners) were 40% larger from 1990-2003 (n=4,
mean=10.6 g) than from 1925-1937 (n=8 mean=7.5 g) (Fig. 48). These differences
were significant (f-test, p<0.05; J. Hume, Fisheries and Oceans Canada, Cultus Lake,
B.C., pers. comm.) and further suggest an increase in productivity since the 1930’s.

Since sockeye escapements were far lower during our study and in the years
preceding it than they were in most years of the earlier studies, input from marine-
derived nutrients was lower before and during our study. This decrease in the annual
nutrient load to Cultus Lake should have resulted in lower productivity (i.e.
oligotrophication). However, the data indicate that productivity is now greater than it
was during the 1920’s and 1930's. It is probable that nutrient loading from
anthropogenic sources (septic tanks, agriculture, and domestic fertilizer) is much higher
than it was during the earlier study, more than making up for reduced loading of marine
nutrients. Climate change (i.e. warming) has no doubt also played a role in the
apparent increase in productivity over the last 70 years.
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Table 1. Salient morphometric and bathymetric data from Cultus Lake.

Variable
1:50,000 map number 92H4, 92G1
Latitude (°N) 49°03.3'
Longitude (°W) 121°59.0'
Elevation (m) 46
Surface area (km?) 6.3
Shoreline length (km) 13.3
Shoreline development 1.5
Drainage basin area (km?) 75
Distance from Cultus Lake to the Chilliwack River (km) 2.9
Distance from Cultus Lake to the Fraser River (km) 19
Distance from Cultus Lake to the mouth of the Fraser River (km) 118
Mean depth (m) 31
Maximum depth (m) 44
Total annual precipitation (cm)® 157
Water residence time (yr) 1.8

@ . Environment Canada, 1971-2000 Canadian climate normals



30

Table 2. Selected physical data from the Cultus Lake investigation. Means are
time-weighted growing season (May-October) averages.

Schmidt  Epilimnion Surface Turbidity = Secchi  Euphotic zone
Date stability index depth (m) temperature (°C) (NTU) depth (m) depth (m)

18-Apr-01 244 iso 8.2 0.49 6.9 17:9
24-May-01 1,020 3.6 15.8 9.9 17.6
19-Jun-01 1,405 7.0 17.2 9.5 16.0
18-Jul-01 2,176 7.3 19.9 1.9 17.2
16-Aug-01 2,683 3:5 22.5 14.5 16.7
4-Sep-01 2,341 78 20.1 9.9 16.2
2-Oct-01 1,923 9.8 17.8 13.1 16.6
6-Nov-01 563 16.0 10.6 10.6 18.1
Mean 1,985 6.5 19.2 10.6 16.6
22-Jan-02 168 iso 5.9 1.12 3.3 10.0
26-Feb-02 179 iso 52 3.08 4.0 93
25-Mar-02 180 iso 6.3 0.86 7.2 14.6
30-Apr-02 379 5.0 10.0 0.39 6.2 13.3
30-May-02 819 2.0 15.1 11.0 17.3
27-Jun-02 1,920 2.6 21.8 6.0 16.4
23-Jul-02 2,422 4.2 23.0 6.1 12.5
28-Aug-02 2,695 5.8 22.2 8.5 13.3
25-Sep-02 1,924 9.4 18.1 13.6 15.3
24-Oct-02 1,178 10.9 14.2 12.6 19.2
20-Nov-02 513 203 10.5 11.4 15.0
19-Dec-02 227 iso 7.6 8.1 19.4
Mean 2,017 5.7 20.0 9.2 15.0
15-Jan-03 168 iso 6.2 8.1 14.2
12-Feb-03 171 iso 6.2 8.3 11.9
13-Mar-03 176 iso 5.8 6.5 14.4

21-Aug-03 15.2
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Fig. 1. Bathymetric map of Cultus Lake showing the limnological sampling station and
the location of the three streams sampled in 2002.
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complete for these years only.
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Fig. 29. Chlorophyll profiles obtained during 2003.
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Fig. 34. Vertical profiles of daily PR obtained in 2002. Numbers in brackets are
integrated daily values (mg C-m?-d™).
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Fig. 37. Seasonal variation in numbers of the major diatom genera.
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Fig. 41. Length-frequency histograms of Daphnia length (mm) from 2001.
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Fig. 43. Length-frequency histograms of Daphnia length (mm) from 2002.
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Fig. 44. Length-frequency histograms of Daphnia length (mm) from 2002.
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Fig. 45. Length-frequency histograms of Daphnia length (mm) from 2002.
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Fig. 46. Length-frequency histograms of Daphnia length (mm) from 2002.
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Fig. 47. Length-frequency histograms of Daphnia length (mm) from 2003.
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