

Evaluation Report

ERC2012-01

Sedaxane

(publié aussi en français)

2 October 2012

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6604-E2 Ottawa, Ontario K1A 0K9 Internet: pmra.publications@hc-sc.gc.ca healthcanada.gc.ca/pmra Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.infoserv@hc-sc.gc.ca

ISSN: 1925-1238 (print) 1911-8082 (online)

Catalogue number: H113-26/2012-1E H113-26/2012-1E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2012

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.

Table of Contents

Overview	1
Registration Decision for Sedaxane	1
What Does Health Canada Consider When Making a Registration Decision?	1
What Is Sedaxane?	2
Health Considerations	2
Environmental Considerations	4
Value Considerations	5
Measures to Minimize Risk	5
What Additional Scientific Information Is Being Requested?	6
Other Information	6
Science Evaluation	7
1.0 The Active Ingredient, Its Properties and Uses	7
1.1 Identity of the Active Ingredient	7
1.2 Physical and Chemical Properties of the Active Ingredient and End-use Product	8
1.3 Directions for Use	10
1.4 Mode of Action	10
2.0 Methods of Analysis	10
2.1 Methods for Analysis of the Active Ingredient	10
2.2 Method for Formulation Analysis	11
2.3 Methods for Residue Analysis	11
3.0 Impact on Human and Animal Health	12
3.1 Toxicology Summary	12
3.1.1 <i>Pest Control Products Act</i> Hazard Characterization	16
3.2 Acute Reference Dose (ARfD)	17
3.3 Acceptable Daily Intake (ADI)	17
3.4 Occupational and Residential Risk Assessment	18
3.4.1 Toxicological Endpoints	18
3.4.2 Toxicological Endpoints	19
3.4.3 Occupational Exposure and Risk	20
3.4.4 Bystander Exposure and Risk	29
3.5 Food Residues Exposure Assessment	29
3.5.1 Residues in Plant and Animal Foodstuffs	29
3.5.2 Dietary Risk Assessment	30
3.5.3 Aggregate Exposure and Risk	31
3.5.4 Maximum Residue Limits	31
4.0 Impact on the Environment	31
4.1 Fate and Behaviour in the Environment	31
4.2 Environmental Risk Characterization	32
4.2.1 Risks to Terrestrial Organisms	33
4.2.2 Risks to Aquatic Organisms	34

5.0 Value		37
5.1 Effe	ectiveness Against Pests	37
5.2 Phy	totoxicity	39
5.3 Eco	nomics	39
5.4 Sus	tainability	39
5.4.1	Survey of Alternatives	39
5.4.2	Compatibility with Current Management Practices Including Integrated Pest Management	40
5.4.3	Information on the Occurrence or Possible Occurrence of the Development of Resistance	40
544	Contribution to Risk Reduction and Sustainability	40
6.0 Pest (Control Product Policy Considerations	40
61 Tox	ic Substances Management Policy Considerations	40
6.1 For	mulants and Contaminants of Health or Environmental Concern	40 41
7.0 Summ		<u>41</u>
71 Hu	nan Health and Safety	41
7.1 Hu	vironmental Risk	42
7.2 Env		43
80 Regul	atory Decision	43
List of Abbre	eviations	45
Appendix I	Tables and Figures	49
Table 1	Residue Analysis	49
Table 2	Toxicity Profile of End-use Product(s) Containing Sedaxane	51
Table 3	Toxicity Profile of Technical Sedaxane	54
Table 4	Toxicology Endpoints for Use in Health Risk Assessment for Sedaxane	62
Table 5	Integrated Food Residue Chemistry Summary	63
Table 6	Food Residue Chemistry Overview of Metabolism Studies and Risk	
	Assessment	88
Table 7	Major Transformation Products in Environmental Media	89
Table 9	Risks to Terrestrial Organisms (Screening Level Assessment)	93
Table 10	Risk to Birds and Mammals (Screening Level Assessment)	94
Table 11	Risks to Aquatic Organisms (Screening Level Assessment)	95
Table 12	Toxic Substances Management Policy Considerations-Comparison to TSMP	
	Track I Criteria	96
Table 13	Fungicidal active ingredients in alternative seed treatments registered for	
	crop diseases on the Sedaxane 500FS Fungicide, A17511B Seed Treatment	~-
	and A168/4F Seed Treatment Labels	97
Table 14	Use (label) claims for A168/4F Seed Treatment and A1/511B Seed Treatmen	t
T 11 15	proposed by applicant and whether acceptable or unsupported	. 100
Table 15	Sedaxane 500FS Fungicide use (label) claims proposed by applicant and whether acceptable or unsupported	101
Annendiv II	Supplemental Maximum Residue Limit Information International	. 101
	Situation and Trade Implications	103
Table 1	Comparison of Canadian MRLs. American Tolerances and Codex MRLs	. 105
14010 1	(where different)	103
References		. 105

Overview

Registration Decision for Sedaxane

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the *Pest Control Products Act* and Regulations, has granted conditional registration for the sale and use of Sedaxane Technical and A17511B Seed Treatment, containing sedaxane, difenconazole, metalaxyl-m and thiamethoxam, A16874F Seed Treatment, containing sedaxane, difenconazole and metalaxyl-m, and Sedaxane 500FS Fungicide, containing the technical grade active ingredient sedaxane, for use on seed from various crops including certain cereals (barley, wheat, oats, rye, and triticale), canola, and soybean to control or suppress soil and seed-borne diseases of seedlings and mature plants. A17511B Seed Treatment also contains an insecticide to suppress/control wireworm activity on certain cereal crops.

An evaluation of available scientific information found that, under the approved conditions of use, the product has value and does not present an unacceptable risk to human health or the environment.

Although the risks and value have been found acceptable when all risk reduction measures are followed, the applicant must submit additional scientific information as a condition of registration.

This Overview describes the key points of the evaluation, while the Science Evaluation provides detailed technical information on the human health, environmental and value assessments of Sedaxane Technical, A17511B Seed Treatment, A16874F Seed Treatment and Sedaxane 500FS Fungicide.

What Does Health Canada Consider When Making a Registration Decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable¹ if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The Act also requires that products have value² when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

[&]quot;Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment (for example most sensitive to environmental contaminants). These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides. For more information on how the PMRA regulates pesticides, the assessment process and risk-reduction programs, please visit the Pesticides and Pest Management portion of Health Canada's website at healthcanada.gc.ca/pmra.

What Is Sedaxane?

Sedaxane is the active ingredient present in three new seed treatment products: Sedaxane 500FS Fungicide (containing sedaxane), A17511B Seed Treatment (containing sedaxane, difenoconazole, metalaxyl-m, thiamethoxam) and A16874F Seed Treatment (containing sedaxane, difenoconazole, metalaxyl-m). Sedaxane is a preventative seed treatment with systemic properties that inhibits the normal respiration process in target pathogenic fungi. The new sedaxane-based products are intended for use on seed from various crops including certain cereals (barley, wheat, oats, rye, and triticale), canola, and soybean to control or suppress soil and seed-borne diseases of seedlings and mature plants. A17511B Seed Treatment also contains an insecticide (thiamethoxam) to suppress/control wireworm activity on certain cereal crops.

Health Considerations

Can Approved Uses of Sedaxane Affect Human Health?

Products containing sedaxane are unlikely to affect your health when used according to label directions.

Potential exposure to sedaxane may occur through the diet (food and water), when handling and applying the product or when entering treated sites. When assessing health risks, two key factors are considered: the levels where no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (for example, children and nursing mothers). Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose where no effects are observed. The health effects noted in animals occur at doses more than 100-times higher (and often much higher) than levels to which humans are normally exposed when pesticide products are used according to label directions.

In laboratory animals, the active ingredient sedaxane and its associated end-use products, A17511B Seed Treatment, A16874F Seed Treatment and Sedaxane 500FS Fungicide, were of low acute toxicity by the oral, dermal and inhalation routes of exposure. They were minimally irritating to the eyes and non-irritating to the skin, and did not cause allergic skin reactions. Consequently, no hazard signal words are required on the labels.

Health effects in animals given repeated doses of the active ingredient sedaxane included effects on the liver, endocrine organs and circulatory system. Sedaxane did not cause birth defects in animals. When sedaxane was given to pregnant or nursing animals, effects on the developing fetus (a slight increase in abortions) and juvenile animal (decreased spleen weight) were observed at doses that were toxic to the mother, indicating that the young do not appear to be more sensitive to sedaxane than the adult animal. Sedaxane caused functional effects, possibly related to the nervous system, at high doses in rats. There was no evidence that sedaxane damaged genetic material but it did, however, cause liver tumours in mice and liver, thyroid and uterine tumours in rats. A cancer risk assessment was conducted based on the uterine tumours found in rats as this was protective of the other tumour types.

The risk assessment protects against the effects of sedaxane by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

Residues in Water and Food

Dietary risks from food and water are not of concern.

Aggregate dietary intake estimates (food plus water) revealed that the general population and infants, the subpopulation which would ingest the most sedaxane relative to body weight, are expected to be exposed to less than 0.9% of the acceptable daily intake. Based on these estimates, the chronic dietary risk from sedaxane is not of concern for all population sub-groups. The lifetime cancer risk from the use of sedaxane is considered acceptable (5.9×10^{-7}) .

The acute aggregate (food and water) dietary intake estimate for each population subgroup ranged from 0.06% to 0.37% of the reference dose, which is not a health concern.

The *Food and Drugs Act* prohibits the sale of adulterated food, that is, food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Food containing a pesticide residue that does not exceed the established MRL does not pose an unacceptable health risk.

Residue trials conducted in the United States and Canada using sedaxane on barley, canola, soybean and wheat were acceptable. The MRLs for this active ingredient can be found in the Science Evaluation section of this Evaluation Document and in the Evaluation Reports under Application Numbers 2010-1525, 2010-1526, 2010-1527 and 2010-1529.

Occupational Risks From Handling Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment

Occupational risks are not of concern when Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment are used according to the proposed label directions, which include protective measures.

Workers treating seed with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment in commercial seed treatment facilities, workers treating seed on-farm and workers planting treated seed can come into direct contact with sedaxane residues on the skin. Therefore, the label specifies that workers treating and handling treated seed must wear the following personal protective equipment (PPE). In commercial seed treatment facilities, workers treating, bagging, sewing, stacking, and forklifting treated seed must wear cotton coveralls over a long-sleeved shirt and long pants and chemical-resistant gloves. In addition, workers cleaning treatment equipment in commercial seed treatment facilities must wear chemical-resistant coveralls over a long-sleeved shirt and long pants and chemical-resistant gloves. Workers treating on-farm and/or planting treated seed must wear a long-sleeved shirt, long pants and chemical-resistant gloves. For good hygiene purposes, it is also recommended for workers to wear a NIOSH approved dust mask during all job activities. Closed transfer is required for treating cereal seeds in commercial seed treatment facilities. Taking into consideration these label statements, the number of applications and the expectation of the exposure period for handlers and workers, the risk to these individuals is not a concern.

For bystanders, exposure is expected to be much less than that for workers and is considered negligible. Therefore, health risks to bystanders are not of concern.

Environmental Considerations

What Happens When Sedaxane Is Introduced Into the Environment?

When sedaxane is introduced into the environment as a seed treatment for canola and cereal grains it will adsorb to soil or be taken up into growing plants.

Based on the physical, chemical properties of sedaxane and environmental fate data, limited movement in soil is expected and leaching into groundwater or runoff into surface water is not predicted. Although birds and mammals may be exposed to sedaxane if they feed on treated seed, a risk assessment has shown that sedaxane poses practically no risk to birds or mammals even if a high amount of treated seed is ingested. Although Sedaxane is moderately to highly toxic to aquatic organisms, when sedaxane is used as a seed treatment limited exposure to the aquatic environment is expected.

Value Considerations

What Is the Value of Sedaxane 500FS Fungicide, A17511B Seed Treatment, and A16874F Seed Treatment?

Sedaxane 500FS Fungicide, A17511B Seed Treatment, and A16874F Seed Treatment are preventative seed treatments effective in the control or suppression of seed and soil-borne diseases in crops.

Sedaxane 500FS Fungicide, A17511B Seed Treatment, and A16874F Seed Treatment provide effective solutions to manage commercially important diseases such as rots (seed, root, crown, and foot), seedling blights, damping-off, seed-borne septoria, smuts, bunts and take-all. The multiple modes of fungicidal action found in A17511B Seed Treatment, and A16874F Seed Treatment provide benefits in terms of disease resistance management along with increased spectrum of disease protection. Moreover, because of recommended tank-mixes on all of the three products' labels and the insecticidal active ingredient in A17511B Seed Treatment, these three products provide options for simultaneous management of certain insect pests and fungal diseases.

Measures to Minimize Risk

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures on the labels of A17511B Seed Treatment, A16874F Seed Treatment and Sedaxane 500FS Fungicide to address the potential risks identified in this assessment are as follows.

Key Risk-Reduction Measures

Human Health

Because there is a concern with users coming into direct contact with Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment on the skin or through inhalation of spray mists and dust, the label specifies that workers treating seed and handling treated seed must wear the following PPE. In commercial seed treatment facilities, workers treating, bagging, sewing, stacking, and forklifting treated seed must wear cotton coveralls over a long-sleeved shirt and long pants and chemical-resistant gloves. In addition, workers cleaning treatment equipment in commercial seed treatment facilities must wear chemical-resistant coveralls over a long-sleeved shirt and long pants and chemical-resistant gloves. Workers treating on-farm and/or planting treated seed must wear a long-sleeved shirt, long pants and chemical-resistant gloves. For good hygiene purposes, it is also recommended for workers to wear a NIOSH approved dust mask during all job activities. Closed transfer is required for treating cereal seeds in commercial seed treatment facilities.

What Additional Scientific Information Is Being Requested?

Although the risks and value have been found acceptable when all risk-reduction measures are followed, the applicant must submit additional scientific information as a condition of registration. More details are presented in the Science Evaluation of this Evaluation Report or in the Section 12 Notice associated with these conditional registrations. The applicant must submit the following information within the time frames indicated.

Human Health

- DACO 4.3.6 Short-term inhalation toxicity study in rats.
- DACO 4.5.1, 4.8 Low and mid-dose assessments of ovarian follicle counts in the 2-generation reproductive toxicity study in rats.
- The final freezer storage stability study reports for sedaxane metabolites in crop commodities up to 24 months (Report T014683-05-REG), and for sedaxane residues in processed commodities up to 12 months (Report KP-2009-02) are required to support the maximum storage intervals of samples from the magnitude of the residues studies.

Other Information

As these conditional registrations relate to a decision on which the public must be consulted,³ the PMRA will publish a consultation document when there is a proposed decision on applications to convert the conditional registrations to full registrations or on applications to renew the conditional registrations, whichever occurs first.

The test data cited in this Evaluation Report (i.e. the test data relevant in supporting the registration decision) will be made available for public inspection when the decision is made to convert the conditional registrations to full registrations or to renew the conditional registrations (following public consultation). If more information is required, please contact the PMRA's Pest Management Information Service by phone (1-800-267-6315) or by e-mail (pmra.infoserv@hc-sc.gc.ca).

³

As per subsection 28(1) of the *Pest Control Products Act*.

Science Evaluation

Sedaxane

1.0 The Active Ingredient, Its Properties and Uses

1.1 Identity of the Active Ingredient

ingredient

Ac	ctive substance	Sedaxane
Fu	inction	Fungicide
Cł	nemical name	
1.	International Union of Pure and Applied Chemistry (IUPAC)	mixture of 2 <i>cis</i> -isomers 2'-[(1 <i>RS</i> ,2 <i>RS</i>)-1,1'-bicycloprop-2-yl]- 3-(difluoromethyl)-1-methylpyrazole-4-carboxanilide and 2 <i>trans</i> -isomers 2'-[(1 <i>RS</i> ,2 <i>SR</i>)-1,1'-bicycloprop-2-yl]-3- (difluoromethyl)-1-methylpyrazole-4-carboxanilide
2.	Chemical Abstracts Service (CAS)	1 <i>H</i> -pyrazole-4-carboxamide, <i>N</i> -[2-[1,1'-bicyclopropyl]-2-ylphenyl]-3-(difluoromethyl)-1-methyl-
CA	AS number	874967-67-6 (trans isomer: 599197-38-3 / cis isomer: 599194-51-1)
M	olecular formula	$C_{18}H_{19}F_2N_3O$
M	olecular weight	331.4
Sti	ructural formula	$\begin{array}{c} F \\ F $
Pu	rity of the active	98.0%

Evaluation Report - ERC2012-01 Page 7

1.2 Physical and Chemical Properties of the Active Ingredient and End-use Product

Technical Product—Sedaxane Technical

Property			Result			
Colour and physical state	Grey-beige so	lid				
Odour	Weak, aromat	Weak, aromatic				
Melting point	121.4°C	121.4°C				
Boiling point or range	>270°C					
Density	$1.23 \times 10^{3} \text{ kg/s}$	m ³ at 20°C				
Vapour pressure at 20°C	6.5 × 10 ⁻⁸ Pa					
Henry's law constant at 20°C	6.318×10^{9}					
Ultraviolet (UV)-visible spectrum	Solution	<u>λ [nm]</u>	$\epsilon [L/mol \times cm]$			
	Neutral	215	22068			
		225	17233			
		265	5996			
		295	874			
	Acidic	215	21860			
		225	17423			
		265	5683			
		295	851			
	Basic	216	21271			
		225	17393			
		265	5833			
		295	955			
	No absorption maximum between 340 nm and 750 nm was observed					
Solubility in water at 25°C	14 mg/L					
Solubility in organic solvents at 25°C	Solvent		<u>Solubility</u>			
(g/L)	Acetone		410			
	Dichlorometha	ane	500			
	Ethyl acetate		200			
	Hexane		0.41			
	Methanol		110			
	Octanol		20			
	Toluene		70			
<i>n</i> -Octanol-water partition coefficient (K_{ow})	$\log K_{\rm ow} = 3.3$					
Dissociation constant (p <i>K</i> _a)	No pK_a was for	und in the	range of 1.0 to 12.0			
Stability	Stable in nitro	gen or air.	Stable in the presence of aluminium, iron,			
(temperature, metal)	aluminium ace	tate and ir	on(II) acetate.			

Property	Result
Colour	Red
Odour	Very faint paint
Physical state	Liquid
Formulation type	Suspension
Guarantee	Difenoconazole 36.9 g/L nominal
	Thiamethoxam 30.7 g/L nominal
	Metalaxyl-M 9.5 g/L nominal
	Sedaxane 8 g/L nominal
Container material and description	1-1050 L plastic jugs or totes
Density	1.106 g/cm ³ at 20°C
pH of 1% dispersion in water	6.2
Oxidizing or reducing action	Not an oxidizing substance; not compatible with oxidizing agents
Storage stability	Stable at 20°C and a relative humidity of 50% for 14 months in fluorinated and non-fluorinated HDPE
Corrosion characteristics	No physical changes in the fluorinated and non-fluorinated HDPE test containers when stored at 20°C and a relative humidity of 50% for 14 months
Explodability	Product is not explosive

End-use Product—A17511B Seed Treatment

End-use Product—A16874F Seed Treatment

Property	Result				
Colour	Red				
Odour	Faint paint/weak aromatic				
Physical state	Liquid				
Formulation type	Suspension				
Guarantee	Difenoconazole 66.2 g/L nominal				
	Metalaxyl-M 16.5 g/L nominal				
	Sedaxane 13.8 g/L nominal				
Container material and description	1-1050 L plastic jugs or totes				
Density	1.124 g/cm ³ at 20°C				
pH of 1% dispersion in water	6.7-6.9				
Oxidizing or reducing action	Not an oxidizing substance; not compatible with oxidizing agents				
Storage stability	Stable at ambient temperature and relative humidity of 50% for one year in non-fluorinated HDPE				
Corrosion characteristics	No physical changes in the appearance of the packaging material (non- fluorinated HDPE) after one year at ambient temperature and relative humidity of 50%				
Explodability	Product is not explosive				

Property	Result
Colour	Beige
Odour	Aromatic
Physical state	Liquid
Formulation type	Suspension
Guarantee	500 g/L nominal
Container material and description	1-1050 L plastic jugs or totes
Density	1.167 g/cm ³ at 20°C
pH of 1% dispersion in water	6.70
Oxidizing or reducing action	Not an oxidizing or reducing substance
Storage stability	Stable at ambient temperature for at least one year in non-fluorinated HDPE
Corrosion characteristics	No physical changes in the non-fluorinated HDPE container during the one year storage stability study
Explodability	Product is not explosive

End-use Product—SEDAXANE 500FS Fungicide

1.3 Directions for Use

Sedaxane 500FS Fungicide, A17511B Seed Treatment, and A16874F Seed Treatment, are used for the control or suppression of seed and soil-borne diseases including rots (seed, root, crown, and foot), seedling blights, damping-off, seed-borne septoria, smuts, bunts and take-all on various cereal crops, canola, and soybean. A17511B Seed Treatment also contains an insecticide and is used to suppress/control wireworm activity on certain cereal crops. The products are preventative in nature as they are applied to seed before planting. Product application rates per 100 kg of seed range from 325-650 mL for A17511B Seed Treatment, 180-360 mL for A16874F Seed Treatment, and 5-10 mL of Sedaxane 500FS Fungicide. It should be noted that all of these product application rates provide the same amount of the active ingredient sedaxane per 100 kg of seed, i.e. 2.5-5.0 g. Various tank mixes are recommended for additional disease or insect control.

1.4 Mode of Action

Sedaxane disrupts the normal respiration process in target fungal cells by inhibiting mitochondrial functioning. It is an effective preventative active ingredient with some systemic activity. Uniform and complete seed coverage is necessary to ensure the highest level of disease protection.

2.0 Methods of Analysis

2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and the impurities in Sedaxane Technical have been validated and assessed to be acceptable for the determinations.

2.2 Method for Formulation Analysis

The methods provided for the analysis of the active ingredient(s) in the formulations have been validated and assessed to be acceptable for use as enforcement analytical methods.

2.3 Methods for Residue Analysis

High-performance liquid chromatography methods with tandem mass spectrometry (HPLC-MS/MS) were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to selectivity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in environmental media. Methods for residue analysis are summarized in Appendix I, Table 1.

The liquid chromatography analytical methods with tandem mass spectrometry (LC-MS/MS) GRM023.01A and GRM023.01B for the determination of sedaxane as the two isomers SYN508210 (trans) and SYN508211 (cis) in crop commodities; GRM023.03A for the determination of sedaxane as the two isomers SYN508210 and SYN508211, and the metabolites CSCD667584, CSCD658906, CSCD659089, CSCD668403, CSCD667555, CSCD465008 and CSCC210616 in crop commodities; GRM023.11A for the determination of sedaxane as the two isomers SYN508210 and SYN508211 and the metabolites CSCD659089, CSCD659089, CSCD659089, CSCD668403, CSCD659087, CSAA798670 and CSCD465008 in rotational crop commodities; GRM023.12A for the determination of CSCD465008 in soybean seed; and GRM006.08A for the determination of CSCD465008 and CSAA798670 in crop commodities are each acceptable for data gathering purposes. The extraction efficiencies of the methods were demonstrated. Specht (QuEChERs) multiresidue method P-14.141 (LC-MS/MS) is suitable for the enforcement of sedaxane, determined as the two sedaxane isomers SYN508210 and SYN508211 in crop commodities, based on acceptable method validation data and validation by an independent laboratory.

GRM023.10A (LC-MS/MS) is suitable for enforcement of sedaxane as the two isomers SYN508210 and SYN508211, and the metabolites CSCD658906 and CSCD659087 in livestock commodities, based on acceptable validation data, validation by an independent laboratory and demonstration of the extraction efficiency. Specht (QuEChERs) multiresidue method P-14.141 (LC-MS/MS) is suitable for the enforcement of sedaxane as the two isomers SYN508210 and SYN508211 in livestock commodities, based on acceptable validation data and validation by an independent laboratory.

The two isomers of sedaxane, SYN508210 and SYN508211, and the four plant metabolites CSCD667854, CSCD658906, CSCD667555 and CSCD465008 were subjected to the United States Food and Drug Administration MRM protocols (PAM I), and the methods were deemed inadequate to determine residues of sedaxane and the four specified metabolites.

3.0 Impact on Human and Animal Health

3.1 Toxicology Summary

A detailed review of the toxicological database for sedaxane was conducted. The database is comprehensive. The scientific quality of the data is high and the database is considered adequate to define the majority of the toxic effects that may result from exposure to sedaxane. However, a short-term inhalation toxicity study and ovarian follicle counts at the low and mid dose levels in a 2-generation reproductive toxicity study were not provided, and are being requested as conditions of registration. With the above exception, the studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices.

Sedaxane is a mitochondrial succinate dehydrogenase inhibitor, belonging to the pyrazole carboxamide class of pesticides. It is comprised of a mixture of trans and cis isomers at a ratio of 81-85% trans and 10-15% cis.

In a 28-day comparative toxicity study in rats of the trans isomer, cis isomer and a racemic 1:1 mixture of sedaxane, treatment-related increases in 16 β -hydroxy testosterone hydroxylation were observed, suggesting that these compounds may be inducers of CYP 2B metabolizing enzymes. The three test compounds caused decreased 16 α and 2 α hydroxy-testosterone hydroxylation in males but increases in females; both 16 α and 2 α are markers for the cytochrome isoenzyme CYP 2C11. The above findings were supported by increased CYP 2B and CYP 3A protein contents. The weakly elevated ethoxyresorufin-O-dealkylase (EROD) activity suggests that the individual isomers and a 1:1 isomeric mixture of sedaxane do not act as polycyclic aromatic hydrocarbon-type inducers. Further toxicokinetic analyses indicated similar profiles between the trans and cis isomers.

Oral metabolism studies with radiolabelled sedaxane in rats demonstrated that it is rapidly absorbed, extensively metabolized, and excreted primarily in the feces/bile after single doses of 1 or 80 mg/kg bw, or repeated doses of 1 mg/kg bw/day over 14 days. After a single dose, maximum plasma concentrations of total radioactivity were achieved at 1-6 h post dose and declined with estimated terminal half-life values ranging from 23-29 hours. Similar terminal half-life values of 21-40 hours were obtained for blood. There were no apparent differences in the pharmacokinetics for blood and plasma between the dose levels. Sedaxane was rapidly and widely distributed in the body. The highest radioactive residues, other than the gastrointestinal tract, were observed in the kidney, liver and fat within 5 hours of dosing. Total radioactivity remaining in the carcass was low at 96 hours after a single oral dose. With repeated dosing, there were small increases in the residues in the liver and kidney, compared to single dose administration. Following the cessation of dosing, all tissue concentrations declined and there was no evidence of bioaccumulation. Concentrations of radioactivity were only measurable at low levels in the liver, kidney and spleen at the final sampling time (day 42 after the 14th dose). There were no major sex- or dose-related differences in tissue distribution profiles. The main metabolic pathways involved demethylation, hydroxylation, oxidation and conjugation, affording an array of hydroxylated metabolites and metabolites formed by cleavage of the terminal cyclopropyl moiety. An equivalent range of metabolites of desmethyl sedaxane were also formed. The major fecal/biliary metabolites were identified as trans para phenol and

desmethyl trans para phenol metabolites, which together with the equivalent cis para phenol isomers accounted for approximately half of the administered dose (AD). Low levels (<1% AD) of a pyrazole amide metabolite were also detected in bile samples. The phenolic and hydroxy metabolites of sedaxane and desmethyl sedaxane were subject to glucuronic acid, sulphate and glutathione conjugation. Unchanged parent represented less than 10% of the administered dose in excreta. There were no major sex or dose related differences apparent in the qualitative metabolite profile for sedaxane. Elimination of sedaxane via respired volatiles or CO_2 was negligible.

Sedaxane and its associated end-use products, A17511B Seed Treatment (containing sedaxane, difenoconazole, metalaxyl-m and thiamethoxam), A16874F Seed Treatment (containing sedaxane, difenoconazole and metalaxyl-m) and Sedaxane 500FS Fungicide (containing sedaxane) were of low acute toxicity by the oral, dermal and inhalation routes of exposure in rats. They were minimally irritating to the eyes and non-irritating to the skin in rabbits, and were not dermal sensitizers in guinea pigs.

After 28 days of sedaxane dermal dosing in rats, no treatment-related dermal or systemic toxicity was observed at 1000 mg/kg bw/day.

A waiver request for a 90-day inhalation toxicity study in rats was submitted. Sedaxane is of low acute toxicity via the inhalation route of exposure in rats and has low vapour pressure. However, it still has the potential to form an aerosol during its use. Therefore, the 90-day inhalation toxicity study waiver was not granted and a 90-day rat inhalation toxicity study is required for sedaxane.

Following short-term repeated oral dosing in mice, decreased body weight, body weight gains and food efficiency, reduced bilirubin levels and increased liver and testes weights were observed in males at the limit dose. There were no treatment-related observations in female mice. In rats, the primary targets were the liver and thyroid after short-term dosing. In conjunction with body weight and food efficiency effects, there were also changes in clinical chemistry parameters (increased triglycerides, total protein, albumin and cholesterol levels), increased liver weights and histological effects such as hepatocyte pigmentation and centrilobular hepatocellular hypertrophy at higher doses. Treatment-related thyroid effects included decreased organ weights and follicular cell hypertrophy, predominantly in male rats. Decreased forelimb and/or hindlimb grip strength was observed in both sexes.

Following short-term repeated oral dosing in dogs, the primary target of sedaxane toxicity was the hematological system, including the spleen. In a 90-day toxicity study, decreased leukocytes, lymphocyte and/or monocyte counts were observed in females at the mid and high dose levels, while decreased spleen weights and cholesterol levels were seen in both sexes at the high dose. Decreased body weight and body weight gains (preceded by body weight loss) were observed down to the lowest dose tested in females (50 mg/kg bw/day) but were considered to be an equivocal effect since there were no body weight effects observed in the first 90 days of the 12 month toxicity study at the same dose level and 50 mg/kg bw/day was the NOAEL after a longer duration of dosing. Therefore, there was low concern for a lack of a NOAEL in female dogs after 90 days of sedaxane treatment. In a 12 month toxicity study in dogs, treatment-related

decreased body weights, body weight gains and food consumption, reduced cholesterol levels, decreased spleen weights and decreased testes weights were observed.

Following long-term dosing, decreased body weight, body weight gains and food efficiency were observed in mice and rats.

In a mouse oncogenicity study, statistically significant increases in hepatocellular adenomas and carcinomas were observed in the livers of male mice at the highest dose tested. The incidences of liver adenomas, carcinomas and combined adenomas and carcinomas exceeded the laboratory historical control ranges and there was no other corroborative liver histopathology observed. Other than the appearance of liver tumours, there was no durational effect of dosing observed in mice.

In a 104/105 week rat combined chronic/oncogenicity study in rats, treatment-related effects included thyroid follicular cell hypertrophy, follicular cell hyperplasia, epithelial desquamation and basophilic colloid. In the liver, the histological effects observed after 2 years were similar to those observed after short-term dosing, except for increased eosinophilic cell foci which were only noted after two years of sedaxane treatment. Decreased hindlimb grip strength was observed only in males in the long-term study. Other treatment-related findings included increases in thymus epithelial tubular hyperplasia and kidney inflammation/inflammatory cell infiltration, as well as decreased vaginal mucification in females. When compared to the short-term toxicity studies, there was an increased variety of thyroid histological lesions observed in rats at lower dose levels in the long-term study, suggesting a durational effect of dosing. Increased incidences of hepatocellular adenomas in the liver and follicular cell adenomas and carcinomas in the thyroid were observed in males at the high dose level. There was no corroborative liver histopathology but the thyroid tumours were associated with non-neoplastic lesions in the thyroid (follicular cell hyperplasia). In female rats, treatment-related uterine adenocarcinomas were observed at the highest dose tested. The incidence fell within the laboratory's historical control range, but it exceeded the incidence observed in 4 out of 5 control studies provided. In the absence of cancer mode of action information for any tumour type, a quantitative linear low dose extrapolation (Q_1^*) approach was used to analyze the tumour responses, and the incidence of uterine adenocarcinomas in rats was selected for the cancer risk assessment as it was the highest value of the four tumour types.

Sedaxane was not genotoxic in a standard battery of in vitro and in vivo assays.

In a 2-generation reproductive toxicity study in rats, treatment-related effects in the parental animals consisted of decreased body weights, body weight gains and food consumption, as well as increased liver weights. There was evidence of reproductive toxicity. Treatment-related decreased ovarian weights, reductions in ovarian follicle counts (primordial, growing, antral, corpora lutea) and an increased number of females in lactational diestrus (i.e. not cycling) were observed at the highest dose tested. The applicant considered the differences in ovarian follicle and corpora lutea counts to be an indirect consequence of high dose effects on pup and maternal body weights and the increased number of dams in lactational diestrus. Review of the individual animal data did not show a clear correlation between the presence of lactational diestrus in dams and decreased ovarian follicle counts. Amongst the high dose females assessed, only 4 of them

were in lactational diestrus and of those females, only one animal appeared to have lower ovarian follicle counts compared to controls and cycling females in the same dose group. The remaining females in the high dose group were cycling and had decreased ovarian follicle counts compared to the concurrent controls. Overall, based on the weight of evidence of related ovarian effects occurring at the high dose level in this 2-generation reproductive toxicity study and the presence of treatment-related endocrine effects in the sedaxane toxicological database, the changes in ovarian follicle counts were considered to be treatment-related and adverse. Low and mid dose ovarian follicle counts were not performed, which precluded the establishment of NOAEL for this endpoint; therefore, these data have been requested. In the meantime, a database uncertainty factor (UF_{DB}) has been applied to risk scenarios involving repeated exposure. Decreased pup body weights, delayed vaginal patency, increased anogenital distance in females, increased liver weights and decreased spleen weights were noted in offspring at the same dose level that parental effects were observed. The effects on sexual maturation were considered to be equivocal since the changes from controls were marginal.

In a rat developmental toxicity study, treatment-related maternal effects included decreased body weight gain or body weight loss, and decreased food consumption. No developmental toxicity (including teratogenicity) was observed up to the highest dose tested. In a rabbit developmental toxicity study, decreased maternal body weight gains or body weight loss, and decreased food consumption were noted. A slightly increased incidence of late-gestation abortions (incidences of 0, 1, 1, 2 in the control, low, mid, high doses respectively) and decreased fetal weights occurred at the same dose level where maternal toxicity was observed. There was no evidence of teratogenicity in rabbits. The abortions could not be specifically attributed to maternal or developmental toxicity and were not considered to represent a fetal sensitivity.

In an acute neurotoxicity study in rats, treatment-related functional effects included piloerection, reduced activity and decreased rearing in both sexes, ruffled fur and recumbency in males, and weakened condition, swaying gait, decreased activity, reduced muscle tone and decreased locomotor activity in females. In a rat subchronic neurotoxicity study, treatment-related decreased body weight, body weight gains, food consumption and food efficiency, along with decreased locomotor activity were observed in both sexes at the highest dose tested. There was no treatment-related histopathology observed in the central or peripheral nervous system in either of the neurotoxicity studies.

In a 28-day immunotoxicity study, sedaxane did not cause immunosuppression in male mice; however, increased spleen and thymus weights and increased IgM antibody-forming cells were observed at the limit dose. There was no histopathology observed. The toxicological significance of these findings is not known. The high coefficients of variation noted for the IgM data decreased the confidence in these results. A review of other repeat-dose toxicity studies indicated that immune effects generally occurred at high doses. In the 90-day and 12-month dog toxicity studies, decreased leukocyte parameters were noted in both sexes, while in the 2-generation reproductive toxicity study, decreased spleen weights were observed in offspring. In the 2-year combined chronic/oncogenicity study in rats, treatment-related increases in thymic epithelial hyperplasia were noted in females. Decreased thymus weights were observed after treatment with the cis isomer of sedaxane in females. Based on the weight of evidence, there were no residual concerns regarding immunotoxicity after sedaxane treatment.

Studies conducted with a major crop metabolite and aerobic soil transformation product, CSCD465008 (3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid) indicated that it is of low acute toxicity via the oral route in rats and not genotoxic in bacteria, mouse lymphoma cells or human lymphocytes. After short-term oral dosing with CSCD465008, there were no treatment-related effects up to the limit dose in rats. Overall, these results suggest that the CSCD465008 metabolite is not more toxic than sedaxane.

Results of the toxicology studies conducted on laboratory animals with sedaxane, one related metabolite and associated sedaxane end-use products are summarized in Appendix I, Tables 2 and 3. The toxicology endpoints for use in the human health risk assessment are summarized in Appendix I, Table 4.

Incident Reports

Since April 26, 2007, registrants have been required by law to report incidents, including adverse effects to health and the environment, to the PMRA within a set time frame. Information on the reporting of incidents can be found on the Pesticides and Pest Management portion of Health Canada's website. Incidents from Canada and the United States were searched for sedaxane, and any additional information submitted by the applicant during the review process was considered. As of December 5, 2011, there were no health-related incident reports for this active in the PMRA Incident Reporting database.

3.1.1 Pest Control Products Act Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, extensive data were available for sedaxane. The database contains the full complement of required studies including developmental toxicity studies in rats and rabbits and a reproductive toxicity study in rats. In the 2-generation reproductive toxicity study, there is residual uncertainty surrounding a critical endpoint, decreased ovarian follicle counts, since low and mid dose assessments were not performed and a NOAEL could not be established. This residual uncertainty has been addressed through the use of a database uncertainty factor (UF_{DB}) for repeated exposure scenarios.

With respect to potential prenatal and postnatal toxicity, there was no indication of increased susceptibility of the young compared to parental animals in the reproductive toxicity study. Vaginal opening was delayed and anogenital distance was increased in female offspring at the highest dose tested; however, these effects were marginal, occurring in the presence of maternal toxicity (liver, ovary and body weight effects) and were not considered to represent a serious effect. There were no treatment-related effects in the rat developmental toxicity study. A marginally increased incidence of late abortions was observed at the highest dose tested in the rabbit developmental toxicity study. Although abortions are considered a serious developmental

endpoint, the level of concern was tempered by the presence of maternal toxicity (body weight loss, decreased or no food consumption, reduced defecation), the low incidence of this finding, and the singular incidences of abortions in the laboratory's historical control database. The NOAEL of 100 mg/kg bw/day for abortions in the rabbit developmental toxicity study was considered to be a conservative endpoint and is considered to be sufficiently conservative to account for seriousness of the endpoint. Overall, there is a low concern for sensitivity of the young and effects on the young are well-characterized. Therefore, the *Pest Control Products Act* factor has been reduced to 1-fold.

3.2 Acute Reference Dose (ARfD)

General Population

To estimate acute dietary risk (1 day), the acute neurotoxicity study with a NOAEL of 30 mg/kg bw was selected for risk assessment. At the LOAEL of 250 mg/kg bw, piloerection, reduced activity, initial inactivity and decreased rearing were observed in both sexes, ruffled fur, recumbency, as well as decreased body weight, body weight gain and food consumption were observed in males and weakened condition, swaying gait, decreased activity, reduced muscle tone, as well as decreased locomotor activity were observed in females. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability have been applied. As discussed in the *Pest Control Products Act* Hazard Characterization section, the *Pest Control Products Act* factor has been reduced to 1-fold. **The composite assessment factor (CAF) is 100-fold.**

The ARfD is calculated according to the following formula:

ARfD (gen. pop) = $\frac{\text{NOAEL}}{\text{CAF}} = \frac{30 \text{ mg/kg bw}}{100} = 0.3 \text{ mg/kg bw of sedaxane}$

The ARfD provides a margin of 333 to the NOAEL for developmental toxicity in the rabbit and is thus considered protective of pregnant women and their fetuses.

3.3 Acceptable Daily Intake (ADI)

To estimate dietary risk of repeat exposure, the 2-generation reproductive toxicity study with a point of departure (POD) of 18 mg/kg bw/day was selected for risk assessment. At 143 mg/kg bw/day, decreased ovarian weights and decreased primordial follicles (P generation), growing and antral follicles (F₁ generation) and corpora lutea (P and F₁ generations) counts and increased females in lactational diestrous were observed. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability have been applied. As discussed above, there is residual uncertainty surrounding the ovarian follicle counts since low and mid dose assessments were not performed and a NOAEL could not be established. Accordingly, a 3-fold UF_{DB} has been applied to the lowest dose tested in the 2-generation reproductive toxicity study. This results in a lower point of departure than the 2-year combined chronic/oncogenicity study in rats. As discussed in the *Pest Control Products Act* Hazard Characterization section, the *Pest Control Products Act* factor was reduced to 1-fold. The **composite assessment factor (CAF) is 300-fold.**

The ADI is calculated according to the following formula:

$$ADI = POD = \frac{18 \text{ mg/kg bw/day}}{CAF} = 0.06 \text{ mg/kg bw/day of sedaxane}$$

The ADI provides a margin of 3333 to the dose at which a marginal increase in abortions occurred in rabbits and 2383 to the dose at which decreased spleen weights were observed in offspring in the 2-generation reproductive toxicity study.

Cancer Assessment

Sedaxane exhibits oncogenic potential. There were treatment-related thyroid follicular cell tumours and hepatocellular tumours in male rats, uterine adenocarcinomas in female rats and hepatocellular tumours in male mice. No mode of action information was provided for any of the tumour types. An adjusted unit risk value (Q_1^*) of 3.81×10^{-3} (mg/kg bw/day)⁻¹ for uterine adenocarcinomas in female rats was used for the cancer risk assessment as it was the highest value of the four tumour types.

3.4 Occupational and Residential Risk Assessment

3.4.1 Toxicological Endpoints

Short-, Intermediate-term Dermal

For short- and intermediate-term dermal risk assessment for adults, the 2-generation reproductive toxicity study in rats was selected. The existing short-term dermal toxicity study did not address the endpoint of concern thus necessitating the use of an oral study for risk assessment. At 143 mg/kg bw/day, decreased ovarian weights, decreased ovarian weights and decreased primordial follicles (P generation), growing and antral follicles (F₁ generation) and corpora lutea (P and F₁ generations) counts and increased females in lactational diestrous were observed. The point of departure was 18 mg/kg bw/day.

For occupational scenarios, the target Margin of Exposure (MOE) selected for this endpoint is 300. Ten-fold factors were applied each for interspecies extrapolation and intraspecies variability, along with an additional 3-fold uncertainty factor for database deficiency. This target MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

Short-, Intermediate-term Inhalation

For short- and intermediate-term inhalation risk assessment for adults, the 2-generation reproductive toxicity study in rats was selected. A short-term inhalation study was not available and therefore, an oral study was used for the risk assessment. At 143 mg/kg bw/day, decreased ovarian weights and decreased primordial follicles (P generation), growing and antral follicles (F_1 generation) and corpora lutea (P and F_1 generations) counts and increased females in lactational diestrous were observed. The point of departure was 18 mg/kg bw/day.

For occupational scenarios, the target MOE selected for this endpoint is 300. Ten-fold factors were applied each for interspecies extrapolation and intraspecies variability, along with an additional 3-fold uncertainty factor for database deficiency. This target MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

3.4.2 Toxicological Endpoints

Occupational exposure to Sedaxane 500 FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment is characterized as short- to intermediate-term and is predominantly by the dermal and inhalation routes.

3.4.2.1 Dermal Absorption

In support of the registration of Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment, the applicant submitted an in vivo dermal absorption study in rats and an in vitro dermal absorption study in rat and human skin. Together, these studies are referred to as a "triple pack". The submitted dermal penetration studies for sedaxane were of good quality and the 'triple pack' approach was considered for setting a dermal absorption value.

The three in vivo and in vitro dermal absorption studies were compared. The two in vitro studies were conducted with the same doses and conditions; therefore, the rat and human in vitro studies could be directly compared. The results of the in vitro studies showed that rat skin membranes are more permeable to sedaxane than human skin membranes. Comparing the in vivo and the in vitro studies, the doses used in the in vivo and in vitro studies were similar (approximately 5100, 250 and 25 μ g/cm² for the high, mid and low dose, respectively). However, the exposure duration used for the in vitro studies was 24 hours, which is different from the rat in vivo study (6 hours). Therefore, the results from the rat in vivo study and the rat in vitro study cannot be directly compared. As such, a "triple pack" approach could not be supported.

However, a dermal absorption could be derived from the rat in vivo study. Given the variability in actual deposition under field conditions, it is considered appropriate to derive an estimate of dermal absorption based on the low dose groups, as percent dermal absorption was greatest at the low dose level. In addition, since a longer post-exposure period provides more information about the fate of absorbable and absorbed dose over time, the dermal absorption was derived based on groups sacrificed at 120 hours. The dermal absorption estimate of 7% from the low dose group at 120 hours sacrifice was considered most appropriate to adopt for risk assessment purposes. Adopting 7% as the dermal absorption value for sedaxane is regarded as conservative since approximately 29% of this value was retained on the skin and it is unlikely that all of the skin residues will become systemically available.

3.4.3 Occupational Exposure and Risk

Canola and soybean seed can be treated with Sedaxane 500FS Fungicide in commercial seed treatment facilities. Cereal seed (barley, wheat, oat, rye and triticale) can be treated with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment, both in commercial seed treatment facilities and on-farm.

3.4.3.1 Commercial Seed Treatment Exposure

Individuals have potential for exposure to Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment, while treating seed in commercial seed treatment facilities. Chemical specific data for assessing human exposure during commercial seed treatment were not submitted. As such, surrogate exposure data have been used to estimate risk to workers in commercial seed treatment facilities.

3.4.3.1.1 Canola and Soybean Seed

Sedaxane 500FS Fungicide will be available in open jugs and for low-capacity commercial seed treatment facilities or closed transfer containers for high-capacity seed treatment operations. As such, worker exposure from seed treatment in both open pour and closed transfer commercial facilities were assessed.

For assessing seed treatment in low-capacity commercial facilities, the surrogate study used in the risk assessment was conducted in open pour commercial facilities. In the study, workers were treating soybean seed with Apron FL, containing 33% metalaxyl, at a target rate of 30 g a.i./100 kg seed. The average replicate length was approximately 3 hours. The following tasks were monitored: mixer/operator, bagger, and bag sewer. Three replicates were monitored per task. Dermal exposure for each worker was measured by passive dosimetry using a combination of an inner whole body dosimeter, hand rinses, and face/neck wipes. The inner dosimeter was worn underneath long clothes. All workers wore one layer of clothing and some wore more layers for warmth. Mixer/operators also wore goggles, chemical resistant gloves and aprons. Baggers wore thick cotton gloves for warmth. Some workers wore dust masks. Inhalation exposure for each worker was measured by means of a personal air sampling pump with a sampler consisting of a XAD-2 vapour collection tube and two glass fibre filters. Exposure values were normalized for the amount of active ingredient handled. The 90th percentile values from the Apron FL study were used in the risk assessment because of study limitations (small sample sizes, clothing and QA/QC irregularities).

For assessing seed treatment in high-capacity seed treatment operations, the surrogate study used in the risk assessment was conducted in 5 Canadian large closed-transfer commercial seed treatment facilities. In the study, workers were treating canola seed with Helix XTra Seed Treatment (Registration number 26638), containing thiamethoxam, at a target rate of 400 g a.i./100 kg seed. The average replicate length was approximately 9.65 hours. The following tasks were monitored: treating (n = 17), cleaning, bagging/sewing/stacking (n = 53) and forklift driving (n = 12). Dermal exposure for each worker was measured by passive dosimetry using a combination of an inner whole body dosimeter, hand rinses, and face/neck wipes. The inner dosimeter was worn underneath worker clothing. Treaters and cleaners wore chemical-resistant coveralls over a single layer and chemical-resistant gloves. Forklift drivers and bagger/sewer/stackers wore cotton coveralls over a single layer and chemical-resistant gloves. Inhalation exposure for each worker was measured by means of a personal air sampling pump with an OSHA Versatile Sampler (OVS) tube. Exposure values for treaters and bagger/sewer/stackers were normalized for the amount of active ingredient handled. Exposure values for cleaners were normalized for the application rate used in the study. However, it is uncertain that the normalized values are applicable for the Sedaxane 500FS Fungicide risk assessment, since there is a 80-fold difference between the application rates of the study (400 g a.i./100 kg seed) and the use of Sedaxane 500FS Fungicide (5 g a.i./100 kg). Therefore, risk estimates for cleaners were calculated using both the not normalized and normalized exposure values from the Helix study. For the Helix study, all phases were well conducted and reported and no significant limitations were identified. As such, arithmetic mean values were considered adequate for use in risk assessments.

The dust off data submitted by the applicant showed that canola seed treated with Sedaxane 500FS Fungicide + Helix Xtra was comparably dusty to the seed used in the two surrogate studies (soybean seed treated with Apron FL and canola seed treated with Helix Xtra). In addition, the dust off data showed that soybean seed treated with Sedaxane 500FS was less dusty than canola seed treated with Helix Xtra and comparably dusty to soybean seed treated with Apron FL. As such, the surrogate studies are not expected to underestimate exposure of the use from Sedaxane 500FS Fungicide on canola and soybean seed.

Tables 1 and 2 present the non-cancer and cancer risk estimates, respectively, for the commercial seed treatment of canola and soybean seed with Sedaxane 500FS Fungicide. The calculated margins of exposure (MOEs) were well above the target MOE of 300. Cancer risk for commercial workers treating canola and soybean seed was estimated by calculating the lifetime average daily dose (LADD). An exposure duration of 60 days was assumed for commercial treaters. Although this may be a high end estimate, this value was considered appropriate as soybean and canola seeds may be treated for several months. Calculated cancer risk estimates were less than 1×10^{-5} . As such, there are no risks of concern for treating canola and soybean seed with Sedaxane 500FS Fungicide in commercial facilities when workers wear the PPE worn in the surrogate studies. However, for treaters in closed transfer commercial seed treatment facilities, since calculated MOEs were well above the target MOE of 300 and cancer risk estimates destimates were well below 1×10^{-5} , treaters are not required to wear chemical-resistant coveralls. Instead, treaters are required to wear cotton coveralls over a single layer and chemical-resistant gloves.

Table 1Non-cancer risk estimates for workers treating canola and soybean seed in
commercial facilities with Sedaxane 500FS Fungicide

Worker tesk	Unit exposure (μg/kg a.i. handled) ¹			Application rate	Seed treated	Exposure	Calculated	
worker task	Dermal	Inhalation	Total ²	(kg a.i./kg seed)	(kg seed/ day)	bw/day) ³	MOE ⁴	
Small-scale open transfer commercial facilities (using Apron FL study unit exposure values)								
Canola								
Mixer/operator	211.49	4.85	19.65	0.00005	60000	8.42×10 ⁻⁴	21400	
Bagger	40.14	2.3	5.11	0.00005	60000	2.19×10 ⁻⁴	82200	
Bagger/sewer	96.1	37.21	43.94	0.00005	60000	1.88×10^{-3}	9560	
Soybean								
Mixer/operator	211.49	4.85	19.65	0.00005	216000	3.03×10 ⁻³	5940	
Bagger	40.14	2.3	5.11	0.00005	216000	7.88×10 ⁻⁴	22800	
Bagger/sewer	96.1	37.21	43.94	0.00005	216000	6.78×10 ⁻³	2660	
Large-scale	e closed trans	fer commerc	cial facilities	(using Helix stu	idy unit expos	ure values)		
Canola		,,						
Treater	7.36	0.27	0.785	0.00005	60000	3.37×10 ⁻⁵	535000	
Cleaner – not normalized*	19.4	1.54	2.90	0.00005	60000	2.90×10 ⁻³	6210	
Cleaner – normalized †	4.84×10 ⁻²	3.84×10 ⁻³	7.23×10 ⁻³	0.00005	60000	3.58×10 ⁻⁵	503000	
Bagger/sewer/stacker	1.29	0.25	0.340	0.00005	60000	1.46×10 ⁻⁵	1230000	
Forklift operator	0.72	0.105	0.155	0.00005	60000	6.66×10 ⁻⁶	2700000	
Soybean								
Treater	7.36	0.27	0.785	0.00005	216000	1.21×10^{-4}	149000	
Cleaner – not normalized*	19.4	1.54	2.90	0.00005	216000	2.90×10 ⁻³	6210	
Cleaner – normalized †	4.84×10 ⁻²	3.84×10 ⁻³	7.23×10 ⁻³	0.00005	216000	3.58×10 ⁻⁵	503000	
Bagger/sewer/stacker	1.29	0.25	0.340	0.00005	216000	5.25×10 ⁻⁵	343000	
Forklift operator	0.72	0.105	0.155	0.00005	216000	2.40×10^{-5}	751000	

¹ For small scale open transfer commercial facilities, the 90th percentile values of the Apron FL study on soybean seed were used. For large scale closed transfer commercial facilities, the arithmetic mean values were used from the Helix study.

² Total unit exposure = (Dermal unit exposure \times 7% dermal absorption) + Inhalation unit exposure

³ Exposure = (Total unit exposure × Application rate × Seed treated per day)/(70 kg bw × 1000 μ g/mg)

⁴ Based on NOAEL = 18 mg/kg bw/day, target MOE = 300

* Not normalized cleaner unit exposure values are in $\mu g/kg bw/day$; exposure = (total unit exposure)/(1000 $\mu g/mg$)

[†] Normalized cleaner unit exposure values are in (μg/kg bw/g a.i./100 kg seed); as such,

exposure = (total unit exposure \times 5 g a.i./100 kg seed)/(1000 μ g/mg)

Table 2 Cancer risk estimates for workers treating canola and soybean seed in commercial facilities with Sedaxane 500FS Fungicide

Worker task	ADD (mg/kg bw/day) ¹	Days of exposure	Working Duration (yrs)	LADD (mg/kg bw/day) ²	Cancer Risk ³		
Small-scale ope	n transfer commerc	ial facilities (us	ing Apron FL study	unit exposure value	s)		
Canola							
Mixer/operator	8.42×10 ⁻⁴	60	40	7.38×10 ⁻⁵	3×10 ⁻⁷		
Bagger	2.19×10 ⁻⁴	60	40	1.92×10 ⁻⁵	7×10 ⁻⁸		
Bagger/sewer	1.88×10 ⁻³	60	40	1.65×10 ⁻⁴	6×10 ⁻⁷		
Soybean							
Mixer/operator	3.03×10 ⁻³	60	40	2.66×10 ⁻⁴	1×10 ⁻⁶		
Bagger	7.88×10 ⁻⁴	60	40	6.91×10 ⁻⁵	3×10 ⁻⁷		
Bagger/sewer	6.78×10 ⁻³	60	40	5.94×10 ⁻⁴	2×10 ⁻⁶		
Large-scale cl	osed transfer comm	ercial facilities	(using Helix study u	init exposure values)			
Canola							
Treater	3.37×10 ⁻⁵	60	40	2.95×10 ⁻⁶	1×10 ⁻⁸		
Cleaner – not normalized	2.90×10 ⁻³	60	40	2.54×10 ⁻⁴	1×10 ⁻⁶		
Cleaner – normalized	3.58×10 ⁻⁵	60	40	3.14×10 ⁻⁶	1×10 ⁻⁸		
Bagger/sewer/stacker	1.46×10 ⁻⁵	60	40	1.28×10 ⁻⁶	5×10 ⁻⁹		
Forklift operator	6.66×10 ⁻⁶	60	40	5.84×10 ⁻⁷	2×10 ⁻⁹		
Soybean							
Treater	1.21×10 ⁻⁴	60	40	1.06×10 ⁻⁵	4×10 ⁻⁸		
Cleaner – not normalized	2.90×10 ⁻³	60	40	2.54×10 ⁻⁴	1×10 ⁻⁶		
Cleaner – normalized	3.58×10 ⁻⁵	60	40	3.14×10 ⁻⁶	1×10 ⁻⁸		
Bagger/sewer/stacker	5.25×10 ⁻⁵	60	40	4.60×10 ⁻⁶	2×10^{-8}		
Forklift operator	2.40×10 ⁻⁵	60	40	2.10×10 ⁻⁶	8×10 ⁻⁹		

¹ ADD = Absorbed daily dose = Exposure from Table 1

² LADD = Lifetime average daily dose = $(ADD \times Days \text{ of exposure} \times Working duration)$ ³ Based on $Q_1^* = 3.81 \times 10^{-3} (mg/kg bw/day)^{-1}$ ^(365 days/year × 75 years in lifetime)

3.4.3.1.2 Cereal Seed (Barley, Wheat, Oat, Rye and Triticale)

Cereals can be treated in commercial facilities. In eastern Canada, the majority of the cereal market (\sim 85–90%) consists of certified seed that is cleaned and treated (as required) at commercial seed treatment facilities, whereas in western Canada only 20% consists of commercially treated cereal seed. As such, the majority of cereal seed treated in Canada is treated on-farm. Both commercial and on-farm seed treatment applications to cereals occur "just in time", where seed is treated in batches as it is planted. Typically, seed is treated as it is transferred from the grain truck or seed bin and is not bagged.

For assessing commercial treatment of cereal seed, the surrogate study used in the risk assessment was conducted in closed-transfer commercial facilities. In the study, workers were treating wheat seed with Jockey Fungicide, containing 167g/L fluquinconazole and 31.2 g/L prochloraz, at target rates of 75 and 14 g a.i./100 kg seed, respectively. The monitoring period for treaters (n = 7) and cleaners (n = 8) was less than 35 minutes, whereas the monitoring period for baggers (n = 22) ranged from 3 to 8 hours. Dermal exposure for each worker was measured by passive dosimetry using a combination of an inner whole body dosimeter, hand rinses, and face/neck wipes. The inner dosimeter was worn underneath worker clothing. Treaters wore a

long-sleeved shirt, long pants and nitrile gloves. Cleaners wore Tyvek coveralls over a longsleeved shirt, long pants and nitrile gloves. Baggers wore a long-sleeved shirt and long pants. Inhalation exposure for each worker was measured by means of a personal air sampling pump with an IOM multi-dust sampler with a glass fibre filter. Exposure values were normalized for the amount of active ingredient handled. Exposure values for cleaners were normalized for the application rate used in the study. Since the application rates from the study (14 g a.i./100 kg seed) and for the proposed use (5 g a.i./100 kg) are similar, risk estimates for cleaners were calculated using normalized exposure values from the Jockey study. In addition, cleaner exposure was monitored for only 9 - 33 minutes in the study; as such, the risk estimates for cleaner and treater were combined to take into account workers who conduct both tasks during the workday. For the Jockey study, the arithmetic mean was used for all activities since there was an adequate number of replicates and the recoveries were sufficient. The highest value of the two actives monitored in the surrogate study was chosen for risk assessment purposes since it should not underestimate exposure.

The submitted dust off study did not measure dust off potential of Jockey-treated wheat seed. However, dust off of wheat seed treated with other formulations was measured. Sedaxane 500FS Fungicide-treated barley and oat seed had higher dust off potential than Austral Plus Net, containing 42.1 g/L, -treated wheat seed (1.6x higher for barley and 3.4x higher for oats). As such, the Jockey study may underestimate the exposure for the use of barley and oat seed with Sedaxane 500FS Fungicide. The dust off potential for A17511B Seed Treatment-treated barley seed and A16874F Seed Treatment-treated barley seed is 3x and 5.4x lower than that for Austral Plus Net-treated wheat seed, respectively. In addition, the dust off potential for A17511B Seed Treatment-treated oat seed and A16874F Seed Treatment-treated oat seed is comparable to that of Austral Plus Net-treated wheat seed. Therefore, the Jockey study is not expected to underestimate the exposure for the use of barley and oat seed with either A17511B Seed Treatment or A16874F Seed Treatment. No dust off data were submitted for wheat, rye and triticale.

Tables 3 and 4 present the non-cancer and cancer risk estimates, respectively, for the commercial seed treatment of cereals with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment. The calculated MOEs were well above the target MOE of 300. Cancer risk for commercial workers treating cereal seed was estimated by calculating the LADD. An exposure duration of 60 days was assumed for commercial treaters. Although this may be a high end estimate, this value was considered appropriate as cereal seed may be treated for several months. Calculated cancer risk estimates were less than 1×10^{-5} . As such, there are no risks of concern for treating cereal seed with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment in closed transfer commercial facilities when workers wear the PPE worn in the surrogate studies. Given the high MOE and low cancer risk, it was determined that further confirmatory dust off data for wheat, rye and triticale were not required.

Table 3Non-cancer risk estimates for workers treating cereal seed in commercial
facilities with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F
Seed Treatment

Worker task	Unit exposure (µg/kg a.i. handled) ¹			Application rate	Seed treated	Exposure (mg/kg	Calculated
	Dermal	Inhalation	Total ²	(kg a.i./kg seeu)	(kg seeu/uay)	bw/day) ³	MOL
Closed transfer commercial facilities (using Jockey study unit exposure values)							
Cereals (barley, wheat, oats, rye, and triticale)							
Treater	0.88	0.016	0.078	0.00005	325700	1.81×10 ⁻⁵	997000
Bagger	17.67	0.89	2.127	0.00005	325700	4.95×10 ⁻⁴	36400
Cleaner*	18.46	0.64	1.93	0.00005	325700	1.38×10 ⁻⁴	130000
Treater + Cleaner †	-	_	-	0.00005	325700	1.56×10 ⁻⁴	115000

¹ For closed transfer commercial facilities, the arithmetic mean values were used from the Jockey study

² Total unit exposure = (Dermal unit exposure \times 7% dermal absorption) + Inhalation unit exposure

³ Exposure = (Total unit exposure × Application rate × Seed treated per day)/(70 kg bw × 1000 μ g/mg)

⁴ Based on NOAEL = 18 mg/kg bw/day, target MOE = 300

* Cleaner unit exposure values are in ($\mu g/g a.i./100 kg$ seed); as such,

exposure = (total unit exposure \times 5 g a.i./100 kg seed)/(70 kg bw \times 1000 µg/mg)

 \dagger Assuming that a worker both treats and cleans in the same workday.

Table 4.Cancer risk estimates for workers treating cereal seed in commercial facilities
with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed
Treatment

Worker task	Vorker task ADD (mg/kg bw/day) ¹		Days of exposureWorking Duration (yrs)		Cancer Risk ³			
Closed transfer commercial facilities (using Jockey study unit exposure values)								
Cereals (barley, wheat, oats, rye, and triticale)								
Treater	1.81×10 ⁻⁵	60	40	1.58×10-6	6×10 ⁻⁹			
Bagger	4.95×10 ⁻⁴	60	40	4.34×10 ⁻⁵	2×10 ⁻⁷			
Cleaner	1.38×10 ⁻⁴	60	40	1.21×10 ⁻⁵	5×10 ⁻⁸			
Treater + Cleaner †	1.56×10 ⁻⁴	60	40	1.37×10 ⁻⁵	5×10 ⁻⁸			

¹ ADD = Absorbed daily dose = Exposure from Table 3

² LADD = Lifetime average daily dose = (ADD \times Days of exposure \times Working duration)

 $365 \text{ days/year} \times 75 \text{ years in lifetime}$

³ Based on $Q_1^* = 3.81 \times 10^{-3} (mg/kg bw/day)^{-1}$

3.4.3.2 On-Farm Seed Treatment Exposure

Individuals have potential for exposure to Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment while treating seed on-farm. Chemical specific data for assessing human exposure during on-farm seed treatment were not submitted. As such, surrogate exposure data have been used to estimate risk to workers in on-farm seed treatment facilities.

3.4.3.2.1 Canola and Soybean Seed

The registrant markets Sedaxane 500FS Fungicide to commercial canola and soybean seed treaters, as such, on-farm treatment of soybeans and canola with Sedaxane 500FS Fungicide was not assumed and not assessed.

3.4.3.2.2 Cereal Seed (Barley, Wheat, Oat, Rye and Triticale)

For on-farm seed treatment and planting of cereal seed, the Dividend 36FS, 3% difenconazole, study was considered appropriate to be used as a surrogate study in the risk assessment. The study measured 16 replicates treating and planting wheat seed on-farm. In all trials, wheat seed was treated with Dividend 36FS, containing difenoconazole, at a target rate of 24.8 g a.i./100 kg. Replicates were monitored for less than 3 hours to 8 hours. The product was open poured manually into the treatment equipment. Treated wheat seed was not bagged. Dermal exposure for each worker was measured by passive dosimetry using a combination of an inner whole body dosimeter, hand rinses, and face/neck wipes. The inner dosimeter was worn underneath worker clothing. Workers wore a single layer and neoprene gloves. Inhalation exposure was monitored using OVS samplers attached to a personal air sampling pump. The study had minor limitations and had acceptable field recoveries and sample size. As such, the arithmetic mean values from the study were adequate for risk assessment purposes.

The submitted dust off data showed that barley seed treated with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment was less dusty than wheat seeds treated with Dividend 36FS. In addition, the dust off data showed that oat seed treated with Sedaxane 500FS Fungicide was comparably dusty to wheat seed treated with Dividend 36FS. Oat seed treated with A17511B Seed Treatment or A16874F Seed Treatment was approximately 3x less dusty than wheat seed treated with Dividend 36FS surrogate study is not expected to underestimate on-farm exposure for barley and oats. However, dust off from wheat, rye and triticale seed treated with sedaxane-containing products was not measured in the submitted dust off study.

Tables 5 and 6 present the non-cancer and cancer risk estimates, respectively, for the on-farm treatment and planting with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment. The calculated MOEs were well above the target MOE of 300. Cancer risk for workers treating cereal seed on-farm was estimated by calculating the LADD. An exposure duration of 10 days was assumed for on-farm treaters. Cancer risk estimates were below 1×10^{-5} . As such, there are no risks of concern for on-farm treating and planting cereal seed with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment when workers wear the PPE worn in the surrogate study. Given the high MOE and low cancer risk, it was determined that further confirmatory dust off data for wheat, rye and triticale were not required.

Table 5Non-cancer risk estimates for workers on-farm treating and planting cereal
seeds with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F
Seed Treatment

Worker task	Unit exposure (μg/kg a.i. handled) ¹ Dermal Inhalation Total ²		Application rate (kg a.i./kg seed)	Seed treated (kg seed/ day) ²	Exposure (mg/kg bw/day) ³	Calculated MOE ⁴		
On-farm treating and planting (using Dividend study unit exposure values)								
Cereals (barley, wheat, oat, rye and triticale)								
On-farm treating/planting	407.34	223.03	251.54	0.00005	13600	2.44×10 ⁻³	7370	

¹ For on-farm treating and planting, the arithmetic mean values were used from the Dividend study

² Total unit exposure = (Dermal unit exposure \times 7% dermal absorption) + Inhalation unit exposure

³ Exposure = (Total unit exposure × Application rate × Seed treated per day)/(70 kg bw × 1000 μ g/mg)

⁴ Based on NOAEL = 18 mg/kg bw/day, target MOE = 300

Table 6Cancer risk estimates for workers on-farm treating and planting cereal seeds
with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed
Treatment

Worker task	ADD (mg/kg bw/day) ¹	Days of exposure	Working Duration (yrs)	LADD (mg/kg bw/day) ²	Cancer Risk ³	
On-farm treating and planting (using Dividend study unit exposure values)						
Cereals (barley, wheat, oat, rye and triticale)						
On-farm treating/planting	2.44×10 ⁻³	10	40	3.57×10 ⁻⁵	1×10 ⁻⁷	
1						

¹ ADD = Absorbed daily dose = Exposure from Table 5

² LADD = Lifetime average daily dose = $(ADD \times Days \text{ of exposure} \times Working duration)$

 $(365 \text{ days/year} \times 75 \text{ years in lifetime})$

³ Based on $Q_1^* = 3.81 \times 10^{-3} \text{ (mg/kg bw/day)}^{-1}$

3.4.3.3 Planting Exposure

Individuals have potential for exposure to Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment while planting treated seed. Chemical specific data for assessing human exposure during planting of treated seed were not submitted. As such, surrogate exposure data have been used to estimate risk to workers planting treated seed.

3.4.3.3.1 Canola and Soybean Seed

Commercially treated canola and soybean seed is bagged. During planting, workers load the treated seeds from bags into the planter. To address planting exposure from bagged canola and soybean seed, the Gaucho planting study was used as a surrogate. In the study, 15 replicates were monitored while planting treated corn seed from bags. The seeds were treated with Gaucho FS 350 or Gaucho FS 600, containing 350 g/L and 600 g/L imidacloprid, respectively. The workers in the study loaded treated seed from bags into the planter and sowed the seed using a closed cab tractor. Dermal exposure for each worker was measured by passive dosimetry using a combination of an inner whole body dosimeter, hand rinses, and face/neck wipes. The inner dosimeter was worn underneath worker clothing. Workers wore a single layer and chemical-resistant gloves. Inhalation exposure was monitored using IOM samplers attached to a

personal air sampling pump. The study was of good quality and had only minor limitations. As such, the arithmetic mean values from the study were adequate for risk assessment purposes. The submitted dust off data showed that canola seed treated with Sedaxane 500FS Fungicide + Helix Xtra and soybean seed treated with Sedaxane 500FS Fungicide were both significantly less dusty than Gaucho-treated corn seed (7x less dusty for canola and 28x less for soybean). Therefore, the Gaucho surrogate study is not expected to underestimate planting exposure for canola and soybean seed.

Tables 7 and 8 present the non-cancer and cancer risk estimates, respectively, for the planting exposure for canola and soybean seed treated with Sedaxane 500FS Fungicide. The calculated MOEs were well above the target MOE of 300. Cancer risk for workers planting canola and soybean seed was estimated by calculating the LADD. An exposure duration of 10 days was assumed for planters. Cancer risk estimates were below 1×10^{-5} . Considering the high MOEs and low cancer risk estimates, as well as the difference in dust off of the surrogate study seed and canola and soybean seed, it is expected that the risk from planting Sedaxane 500FS Fungicide-treated canola and soybean seed in open cab tractors is not of concern.

Table 7Non-cancer risk estimates for workers planting canola and soybean seeds
commercially treated with Sedaxane 500FS Fungicide

Wowhen tech Unit exposure (µg/kg a.i. handled) ¹		Application rate	Seed treated	Exposure	Calculated		
worker task	Dermal	Inhalation	Total ²	(kg a.i./kg seed)	(kg seed/day)	(mg/kg bw/day) ³	MOE ⁴
Planting commercially treated seed (using Zietz 2007 study unit exposure values)							
Canola							
Planting	1515	82.83	188.88	0.00005	600	8.09×10 ⁻⁵	222000
Soybean							
Planting	1515	82.83	188.88	0.00005	20000	2.70×10 ⁻³	6670

¹ For planting commercial treated seed, the arithmetic mean values were used from the Gaucho study

² Total unit exposure = (Dermal unit exposure \times 7% dermal absorption) + Inhalation unit exposure

³ Exposure = (Total unit exposure \times Application rate \times Seed treated per day)/(70 kg bw \times 1000 µg/mg)

⁴ Based on NOAEL = 18 mg/kg bw/day, target MOE = 300

Table 8Cancer risk estimates for workers planting canola and soybean seeds
commercially treated with Sedaxane 500FS Fungicide

Worker task	ADD (mg/kg bw/day) ¹	Days of exposure	Working Duration (yrs)	LADD (mg/kg bw/day) ²	Cancer Risk ³	
On-farm treating and planting (using Dividend study unit exposure values)						
Canola						
Planting	8.09×10 ⁻⁵	10	40	1.18×10-6	4.51×10 ⁻⁹	
Soybean						
Planting	2.70×10 ⁻³	10	40	3.94×10 ⁻⁵	1.50×10^{-7}	

 1 ADD = Absorbed daily dose = Exposure from Table 7

² LADD = Lifetime average daily dose = (ADD \times Daysof exposure \times Working duration)

 $(365 \text{ days/year} \times 75 \text{ years in lifetime})$

³ Based on $Q_1^* = 3.81 \times 10^{-3} (mg/kg bw/day)^{-1}$

3.4.3.3.2 Cereal Seed (Barley, Wheat, Oat, Rye and Triticale)

For cereal seed, the estimates of on-farm treating and planting using the Dividend 36FS study are expected to cover off planting of commercially treated seed, since the same amount is expected to be planted and the transfer of treated seed (bulk transfer into planters) is the same as on-farm planting.

3.4.4 Bystander Exposure and Risk

Bystander exposure should be negligible since the potential for drift is expected to be minimal when planting treated seed.

3.5 Food Residues Exposure Assessment

3.5.1 Residues in Plant and Animal Foodstuffs

Exposure to residues of the co-active ingredients difenoconazole, metalaxyl-m and thiamethoxam in food and drinking water is not expected to change from existing registered uses of these active ingredients. The use of difenoconazole and metalaxyl-m fits within the registered use pattern for these actives on wheat, barley, triticale, rye and oats. The use of thiamethoxam fits within the registered use pattern for this active on wheat, barley, triticale and rye, but not on oats. Although the use of thiamethoxam on oats is at a rate higher than the maximum rate registered, previously reviewed crop field trial data for thiamethoxam on cereals can support the increase in application rate.

The residue definition (RD) for enforcement and risk assessment in all crops (primary and rotational) is sedaxane. This residue definition applies only to seed treatment applications. Specht (QuEChERS) multiresidue method P-14.141 (LC-MS/MS) is acceptable as the enforcement method for residues of sedaxane, determined as the two isomers SYN508210 (trans) and SYN508211 (cis), in/on crop commodities. The freezer storage stability data indicate that residues of sedaxane, determined as the two isomers SYN508210 and SYN508211, are stable at approximately -18 °C for 24 months in wheat grain, wheat straw, spinach, potato, orange, lentils, and soybeans; residues of the metabolites CSCD667584, CSCD658906, CSCD659089, CSCD668403, CSCD667555, and CSCC210616 are stable at approximately -18 °C for 6 months in wheat grain, wheat straw, spinach leaves, potato tuber, orange (fruit), dried broad beans, and soybean seeds; residues of the metabolite CSCD465008 were stable at approximately -18 °C for 6 months in orange (fruit), dried broad beans, and soybean seeds; residues of the metabolites CSCD465008 and CSAA798670 are stable at approximately -18 °C for 12 months in wheat grain, wheat straw, barley forage, spinach leaves, carrot leaves, and carrot roots; residues of sedaxane, determined as the two isomers SYN508210 and SYN508211, are stable at approximately -20 °C for 6 months in processed commodities of wheat (flour, germ, and bran), soybean (meal, hulls, and oil) and orange (dried pulp, juice, and oil). Submission of the pending results for the metabolite CSCD465008 at 6 and 12 months are required to confirm the stability of CSCD465008 in soybean oil, meal and hulls. The final freezer storage stability study reports for sedaxane metabolites in crop commodities up to 24 months (Report T014683-05-REG), and for sedaxane residues in processed commodities up to 12 months (Report KP-2009-02) are

required to support the maximum storage intervals of samples from the magnitude of the residues studies. Residues of sedaxane and metabolites were not detected above the LOQ in the grain or seed, and processed commodities of barley, canola, soybean and wheat. Supervised residue trials conducted throughout the United States and Canada using end-use products containing sedaxane at GAP or at exaggerated rates in or on barley, canola, soybean and wheat are sufficient to support the proposed maximum residue limits (MRLs).

The residue definition in livestock is sedaxane, both for enforcement and risk assessment purposes. Specht (QuEChERs) multiresidue method P-14.141 (LC-MS/MS) is suitable for the enforcement of the two sedaxane isomers SYN508210 and SYN508211 in livestock commodities. GRM023.10A (LC-MS/MS) is suitable for enforcement of the two sedaxane isomers SYN508210 and SYN508211, and the metabolites CSCD658906 and CSCD659087 in livestock commodities. No data are required demonstrating the stability of sedaxane and metabolites during freezer storage given that samples during the dairy cattle feeding study were extracted and analyzed within 30 days. The data from the dairy cattle feeding study indicate that residues of sedaxane, determined as the two isomers SYN508210 and SYN50821, and the metabolites CDCD658906 and CSCD659087 are not expected above the limit of quantitation in the meat, meat by-products and milk as a result of feeding crops treated with sedaxane. Based on the results of the hen metabolism study and the estimated dietary burden, there is no reasonable expectation of finite residues of sedaxane in the meat, meat by-products and eggs of poultry from the uses of sedaxane.

3.5.2 Dietary Risk Assessment

Acute and chronic dietary risk assessments were conducted using the Dietary Exposure Evaluation Model (DEEM–FCIDTM, Version 2.14), which uses updated food consumption data from the United States Department of Agriculture's Continuing Surveys of Food Intakes by Individuals, 1994–1996 and 1998.

3.5.2.1 Chronic Dietary Exposure Results and Characterization

The basic chronic analysis assumed 100% crop treated, default processing factors (where available), and the proposed MRLs for all commodities. The basic chronic dietary exposure from all supported sedaxane food uses (alone) for the total population, including infants and children, and all representative population subgroups is $\leq 0.8\%$ of the acceptable daily intake (ADI). Aggregate exposure from food and water is considered acceptable. The PMRA estimates that chronic dietary exposure to sedaxane from food and water is 0.3% (0.000156 mg/kg bw/day) of the ADI for the total population. The highest exposure and risk estimate is for children 1-2 years old at 0.9% (0.000538 mg/kg bw/day) of the ADI. The lifetime cancer risk from the use of sedaxane (food and water) is considered acceptable (5.9×10^{-7}).

3.5.2.2 Acute Dietary Exposure Results and Characterization

The basic acute analysis assumed 100% crop treated, default processing factors (where available), and the proposed MRLs for all commodities. The basic acute dietary exposure for all supported sedaxane food (alone) uses is estimated to be 0.05-0.35% of the ARfD for all subpopulations (95th percentile, deterministic). Aggregate exposure from food and water is considered acceptable: 0.06% to 0.37% of the ARfD. The highest exposure and risk estimate is for children 1-2 years old at 0.37% (0.001122 mg/kg bw/day) of the ARfD.

3.5.3 Aggregate Exposure and Risk

The aggregate risk for sedaxane consists of exposure from food and drinking water sources only as discussed in the previous section.

3.5.4 Maximum Residue Limits

Table 3.5.1 Proposed Maximum Residue Limits

Commodity	Recommended MRL (ppm)
Barley; dry soybeans; oats; rye; rapeseed (canola); triticale; wheat	0.01
Eggs; fat, meat, and meat byproducts of cattle, goats, hogs, horses, poultry and sheep; milk	

4.0 Impact on the Environment

4.1 Fate and Behaviour in the Environment

Based on its physical-chemical properties, sedaxane is soluble in water, is not likely to volatilize from moist soil or water surfaces under field conditions, and is not likely to bioconcentrate or bioaccumulate in organisms. Sedaxane is expected to be stable to photolysis in both terrestrial and aquatic environments. The environmental fate data for sedaxane is summarized in Appendix 1, Table 8.

The most important route of dissipation for sedaxane residues in the terrestrial environment is expected to be adsorption to soil and possibly uptake into growing plants. Sedaxane is expected to be persistent when applied directly to soil, with three major transformation products, CSCC210616, CSCD465008 and CSAA798670, observed under aerobic soil conditions; no major transformation products were formed under anaerobic soil conditions (see Appendix 1, Table 7 for list of all transformation products). When sedaxane is applied to aerobic soil as a seed treatment the apparent half-life is decreased and sedaxane is moderately persistent due to sorption of sedaxane residues to the seed coat and uptake into the sprouting plant.

Due to its persistence in soil, sedaxane has potential to carry over to the next growing season after use. Considering the maximum application rate is low (10.91 g a.i./ha) and its resultant dissipation due to uptake in plant material, sedaxane residues are, however, not expected to carry over in the soil in measureable amounts. Interim results from a 5 year long soil accumulation trial showed no evidence of soil accumulation for sedaxane, CSCC210616, CSCD465008 and CSAA798670. In the case where the application rates were to increase and/or a different application method were used, a new soil accumulation study reflective of the new proposed application rates/methods may be required.

Laboratory studies on adsorption/desorption indicate that sedaxane has potential to be moderately mobile. One of the major biotransformation, CSCD465008, has the potential to be mobile in a variety of soils. CSCD465008 was found to be persistent and very water soluble. No corresponding studies were submitted for the minor transformation products CSAA798670 or CSCC210616, which are assumed to exist as the transformation products preceding CSCD465008 (see soil biotransformation pathway, Appendix 1, Figure 1).

Sedaxane was not found below the soil depth of 10 cm in field studies except in one sample. Measureable amounts of CSCC210616 were found in one instance in the top 10 cm soil layer. Otherwise, no residues of any transformation products were found. However, the soils were not analysed below the 30 cm soil depth. The leaching potential of sedaxane in the field is most probably offset by its adsorption to soil particles, therefore, the potential for groundwater contamination is expected to be limited.

Hydrolysis and biotransformation in aquatic systems are not expected to be important routes of transformation for sedaxane. Sedaxane is stable to hydrolysis, and although it can undergo photolysis in the aquatic environment, laboratory studies show it to be persistent in water/sediment systems. Three major transformation products were identified in photolysis studies. As sedaxane is incorporated into the soil when used as a seed treatment, the potential for sedaxane to enter the aquatic environment through runoff is expected to be limited.

4.2 Environmental Risk Characterization

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. Estimated environmental exposure concentrations (EECs) are concentrations of pesticide in various environmental media, such as food, water, soil and air. The EECs are estimated using standard models which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. Ecotoxicology information includes acute and chronic toxicity data for various organisms or groups of organisms from both terrestrial and aquatic habitats including invertebrates, vertebrates, and plants. Toxicity endpoints used in risk assessments may be adjusted to account for potential differences in species sensitivity as well as varying protection goals (i.e. protection at the community, population, or individual level).
Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ = exposure/toxicity), and the risk quotient is then compared to the level of concern (LOC = 1). If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level risk quotient is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints. Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

4.2.1 Risks to Terrestrial Organisms

Risk of sedaxane to terrestrial organisms was based upon evaluation of toxicity data for the following (see Appendix 1, Tables 9 and 10):

- 1 mammal species (acute oral and long term (reproduction) dietary exposure)
- 3 bird species (acute oral exposure, short- and long term (reproduction) dietary exposure)
- One bee species, four other arthropods and one earthworm species representing invertebrates (acute and long term exposure with technical grade active ingredient and end-use products)
- Ten crop species representing non-target plants

Earthworms and soil-dwelling arthropods

Sedaxane is not acutely toxic to earthworms up to the highest concentration tested (up to 1000 mg a.i./kg soil). The representative formulation of sedaxane, A16148F, did not adversely affect the fecundity of soil mites (*Hypoaspis aculeifer*) or the rove beetle (*Aleochara bilineata*) in any treatment groups up to 225 g A16148F/ha (137 µg sedaxane/kg dry soil). The screening level risk assessment was determined based on the EECs for the highest use rate scenario for sedaxane on triticale (10.91 g a.i./ha). The level of concern (LOC) was not exceeded for earthworms, soil mites or rove beetles (Appendix I, Table 9).

Bees (pollinators) and beneficial arthropods

Sedaxane was considered relatively non-toxic to bees on a contact basis. An acute oral toxicity test submitted for bees was determined to be not scientifically valid. Given that sedexane is not systemic, and as sedaxane is incorporated into the soil when used as a seed treatment the potential oral exposure of pollinators via pollen and nectar and contact exposures of beneficial arthropods are expected to be very limited. At this time additional studies on acute oral toxicity for bees are not being requested. Additional studies maybe required in the future if there are changes to the use pattern or application method.

A number of toxicity studies were submitted for beneficial insects using the representative formulation, A16148F. Effects on mortality and reproduction of the parasitoid wasp (*Aphidius rhopalosiphi*) were observed at 24.6 mL A16148F/ha. No significant effects on reproductive capacity were seen at rates up to 320 mL/ha for the predatory mite (*Typhlodromus pyri*).

Non-Target Plants

Very limited exposure to non-target terrestrial plants is expected due to the use of sedaxane as a seed treatment. Toxicity to non-target terrestrial plants was determined based on the review of a seedling emergence test in which no effects were noted in ten representative crop species at the highest application rate of 107 g a.i./ha using the A16148F seed treatment.

Birds and small wild mammals

No treatment related mortalities or clinical effects were observed in the acute oral and dietary exposure of sedaxane to various bird species including Northern bobwhite quail (*Colinus virginianus*), mallard duck (*Anas platyrhynchos*), and canary (*Serinus canaria*).

There was a slight, but significant (p < 0.05) adverse effect on Northern bobwhite reproduction (eggs cracked, ratio of number hatched to live 3-week embryos) at the highest treatment level tested.

No treatment-related effects were observed on the reproduction for mallard ducks (*Anas platyrhynchos*) although low egg productivity in the control groups resulted in control values being lower than the treatment groups for all egg production-related endpoints (i.e. eggs laid, eggs set, viable embryos, live 3-week embryos, number hatched, and 14-day survivors).

No treatment related mortalities were observed in acute oral exposure to rats. No treatment related effects were observed for rats in a two-generation reproductive study.

No mortality was observed during acute oral exposure of sedaxane to rats. A significant reduction in litter size was observed in the two-generation reproduction study.

The screening level risk assessment was performed with triticale as the surrogate seed type. The estimated dietary exposures and the toxicity endpoints were both expressed as the number of seeds consumed per day. The LOC was not exceeded for birds or mammals of any body weight for acute, dietary or reproductive exposures. The results of the risk assessment are presented in Appendix I, Table 10.

4.2.2 Risks to Aquatic Organisms

Risk of sedaxane to freshwater aquatic organisms was based upon the evaluation of toxicity data for the following:

- one invertebrate species; daphnid (acute and long term exposure)
- three fish species (acute and chronic)
- four algae species and one vascular plant species

Risk of sedaxane to marine aquatic organisms was based upon the evaluation of toxicity data for the following:

- one fish species (acute exposure)
- two invertebrate species (acute exposure); mysid (acute exposure) and mollusk (acute exposure)
- one algae species (acute exposure)

A summary of the freshwater and marine/estuarine toxicity data for sedaxane is presented in Appendix I, Table 11. For the assessment of risk, toxicity endpoints from the most sensitive species were used as surrogates for the wide range of species that can be potentially exposed to sedaxane.

The potential for over-land run-off of sedaxane to the aquatic environment is limited based on its use as a seed treatment. Nevertheless, the potential for adverse effects on aquatic organisms was assessed based on EECs using the equivalent input from the direct application of the seed treatment rate of sedaxane (10.91 g a.i./ha) to water. The result of the screening level risk assessment for aquatic organisms is presented in Appendix I, Table 11.

Aquatic Invertebrates

Sedaxane was not acutely toxic to freshwater aquatic invertebrates (*Daphnia magna*) and the only sublethal effect noted was immobility. Immobility was also observed in the acute toxicity test conducted on *Daphnia magna* with the transformation product CSCD465008.

The screening level risk assessment did not identify potential risks to freshwater aquatic species (Appendix I, Table 11).

Freshwater Fish

The toxicity of sedaxane to rainbow trout and common carp were used to assess potential for acute effects while potential effects from chronic exposure were assessed using results from studies on fathead minnow.

The screening level risk assessment was performed with the common carp (acute) and fathead minnow (chronic). The LOC to exposure to sedaxane was not exceeded for either the acute or chronic exposure scenarios (Appendix I, Table 11).

In an acute toxicity test of the transformation product CSCD465008 to rainbow trout (*Oncorhynchus mykiss*) some mortality was observed relative to the control group although no sub-lethal effects were observed and no risks were identified

Using toxicity endpoints for the most sensitive fish species with a 0.1 uncertainty factor as a surrogate for amphibians toxicity, potential effects on survival and reproduction were assessed. No potential risks to amphibians were identified in the screening level risk assessment.

Freshwater algae and vascular plants

Toxicity tests for sedaxane were performed on a variety of freshwater algae: the cyanobacterium *Anabaena flos-aquae*, the diatom algal species *Navicula pelliculosa*, the green alga *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*). No adverse effects were observed at any test level for *Anabaena flos-aquae* but inhibition as high as 98% in cell density was observed for *Navicula pelliculosa*. Significant inhibitory effects on the biomass, yield, growth rate, and cell density of *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*) were observed after 96 hours at concentrations of 2.2 mg a.i./L and greater. *Lemna gibba* showed growth inhibition upon exposure to sedaxane ranging from 8–84%, and the most sensitive endpoint was found to be dry weight. There were no morphological abnormalities in the control or three lowest test levels. In the remaining treatment groups, the fronds were smaller and yellow or brown as compared to the control. Furthermore, the roots were shorter and newly formed fronds were stunted at the two highest test levels.

The LOC was not exceeded in screening level assessment for any freshwater algae or vascular plants (Appendix I, Table 11).

Marine/estuarine species

Sedaxane was acutely toxic to mysid shrimp (*Mysidopsis bahai*) and this species was found to be the most sensitive marine invertebrate. Sublethal effects were noted in acute toxicity tests conducted on the eastern oyster, *Crassostrea virginica* (effects on shell growth), the sheepshead minnow, *Cyprinodon variegatus*, (lethargy, loss of equilibrium), the marine diatom *Skeletonema costatum* (inhibition of cell densities).

No sublethal effects were noted in an acute toxicity test conducted with CSCD465008 on *Pseudokirchneriella subcapitata*.

The screening level risk assessment did not identify potential risks to marine/estuarine aquatic species (Appendix I, Table 11).

5.0 Value

5.1 Effectiveness Against Pests

5.1.1.1 Efficacy claims for Sedaxane 500FS Fungicide

5.1.1.1.1 Control of seed decay, seedling blight and damping-off caused *Rhizoctonia solani* on barley, wheat, oats, rye, and triticale

A total of five trials conducted on wheat were provided where the efficacy of Sedaxane 500FS Fungicide against seed and seedling diseases caused by *Rhizoctonia* was tested. The trials were inoculated to ensure adequate disease pressure and pathogen identity. The product was shown to be effective in significantly increasing the number of emerging seedlings relative to untreated disease-inoculated seeds as well as maintaining stand counts and seedling health after emerging from the soil. Based on this demonstrated efficacy, a claim for control of *Rhizoctonia* causing seed decay, seedling blight, root rot and damping-off is accepted for the Sedaxane 500FS Fungicide label. Extension of this claim to include all other cereals was deemed acceptable on the basis that their seeds are very similar in terms of size and biology.

5.1.1.1.2 Control of seed decay, seedling blight and damping-off caused Rhizoctonia solani on canola

Evidence to support this claim for use on canola was presented in the form of six trials conducted in Canada where Sedaxane 500FS Fungicide was applied alone to seeds inoculated with *Rhizoctonia*. Sedaxane provided protection at all stages of seedling development where significant increases were shown in the number of emerging seedlings relative to untreated disease-inoculated seed. In addition, significant increases in fresh weights of young plants were used as indirect support for claims of improved seedling health. Based on these findings along with sedaxane efficacy demonstrated against these diseases in other crop seedlings, the claim for use on canola was deemed acceptable for inclusion on the Sedaxane 500FS Fungicide label.

5.1.1.1.3 Control of seed decay, seedling blight and damping-off caused *Rhizoctonia solani* on soybeans

Evidence to support this claim for use on soybean was presented in the form of six trials conducted in Canada where Sedaxane 500FS Fungicide was applied to soybean seeds inoculated with *Rhizoctonia*. Sedaxane provided protection at all stages of seedling development where significant increases were shown in the number of emerging seedlings relative to untreated disease-inoculated seed. In addition, direct assessments of seedling blight showed significant reductions in disease severity in a number of different instances under high disease pressure. Based on these findings, this claim for use on soybean was deemed acceptable for inclusion on the Sedaxane 500FS Fungicide label.

5.1.1.1.4 Control of loose smut on wheat and barley

Across seven trials conducted on barley, average levels of 97% and 99% control of loose smut, relative to untreated seeds, were observed on barley seeds treated with the low and high rates of sedaxane, respectively. Efficacy of sedaxane against loose smut in wheat was demonstrated in an additional two trials where disease was completely controlled by the lower rate of the active ingredient, 2.5 g/ha.

5.1.1.2 Efficacy claims for the pre-mixed products A17511B Seed Treatment and A16874F Seed Treatment

5.1.1.2.1 Control claims supported by efficacy demonstrated for Sedaxane 500FS Fungicide

Seven trials conducted on barley were submitted to demonstrate that loose smut control by the active ingredient sedaxane was not impacted by the presence of the other active ingredients found in the pre-mixed products A17511B Seed Treatment and A16874F Seed Treatment. Although these trials were conducted on loose smut of barley, there is no reason to expect that this finding does not apply to seed and seedling diseases of different crops caused by other pathogens where sedaxane was shown to be effective.

Based on this information, claims deemed acceptable for the Sedaxane 500 FS Fungicide label were accepted in support of the following control claims on both sedaxane-containing pre-mixed products: a) seedling blight, root rot, and damping-off in cereals caused by pathogens in the genus *Rhizoctonia*; b) loose smut on barley and wheat. The latter claim was extended to include all other cereals on the labels of the pre-mixed products based on similarities in sizes and biology of their seed.

5.1.1.2.2 Control and suppression claims supported by precedent registrations

Based on previously registered claims for the same diseases on other products containing only metalaxyl-m and difenoconazole, the following claims were supported for inclusion on the A17511B Seed Treatment and A16874F Seed Treatment labels:

- Control of general seed rots on cereals
- Control of seedling blight, root rot, and damping-off caused by *Fusarium*, and *Pythium* on cereals
- Control of seed-borne septoria on barley, rye and winter wheat
- Control of covered smut on barley and oats
- Control of false loose smut on barley
- Control of common bunt and dwarf bunt on rye and wheat
- Control of early season septoria leaf blotch on winter wheat
- Suppression of common root rot on cereals
- Suppression of crown and foot rot on barley, rye, triticale, and wheat
- Suppression of take-all on barley, rye, triticale, and wheat

The use directions on the registered products result in equivalent rates of all fungicidal active ingredients with the exception of sedaxane. There was no evidence to indicate a possible reduction in efficacy of metalaxyl-m and difenoconazole when sedaxane is included in a pre-mixed formulation. These claims all provide value by broadening the potential range of pathogens targeted by single applications of either A17511B Seed Treatment or A16874F Seed Treatment.

5.1.1.3 Control or suppression of wireworm on cereals

The claim for suppression/control of wireworm on barley, oats, rye, triticale and wheat was supported for inclusion on the A17511B Seed Treatment label based on the registered use pattern for thiamethoxam, difenoconazole and metalaxyl-m. No loss of insecticidal activity was expected with the addition of the fungicide sedaxane. Use claims were extrapolated to oats based on the similarity in seed sizes between barley, wheat and oats.

5.1.1.4 Tank mix claims

Various recommendations for tank-mixes with other products (fungicides and insecticides) were supported for inclusion on each of the sedaxane end-use products. All of the tank mixes were deemed acceptable as these were determined to be congruent with currently registered use directions on the tank-mix partner labels. Additionally, each of the tank mixes provided the benefit of either introducing a new mode of action in the management of a given pest or of increasing the potential range of pest protection from a single application.

5.2 Phytotoxicity

No crop injury attributable to applications of sedaxane products as seed treatments was reported in any of the efficacy trials.

5.3 Economics

No market analysis was done for this application.

5.4 Sustainability

5.4.1 Survey of Alternatives

The fungicidal active ingredients listed in Appendix I, Table 13 are found in products that are registered for control or suppression of diseases indicated on the labels for Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment.

5.4.2 Compatibility with Current Management Practices Including Integrated Pest Management

Recommended applications of Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment on labelled crops are not expected to interfere with any preventative measures employed to reduce disease pressure including IPM strategies.

5.4.3 Information on the Occurrence or Possible Occurrence of the Development of Resistance

Sedaxane is a member of the SDHI fungicide class (FRAC group 7 carboxamides). No cross resistance to any compound of a different fungicide class is expected but within the same fungicide class, cross-resistance may occur. SDHI fungicides are currently classified as bearing medium to high risk of disease resistance development by FRAC. In cases where pathogens with medium to high resistance risks are concerned, it is recommended that sedaxane alone is used in mixtures with an appropriate partner that is active in its own right against current field populations of the target pathogen at the applied dose. However, solo treatments of sedaxane can be used in cases where pathogens with low resistance risk are concerned such as *Rhizoctonia* and loose smut. FRAC has not reported resistance to any of the labelled diseases.

5.4.4 Contribution to Risk Reduction and Sustainability

The use of Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment fits well into IPM programs. Since sedaxane is for use in seed treatments, the amount of product that will be applied is small relative to other methods of application such as ground or foliar sprays. Sedaxane provides an effective management tool for seed and soil-borne diseases of significant economic impact to major crops in Canadian agriculture.

6.0 Pest Control Product Policy Considerations

6.1 Toxic Substances Management Policy Considerations

The Toxic Substances Management Policy (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances [those that meet all four criteria outlined in the policy, i.e., persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity and toxic as defined by the *Canadian Environmental Protection Act*].

During the review process, sedaxane and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03⁴ and evaluated against the Track 1 criteria (Appendix 1, Table 12). The PMRA has concluded Sedaxane does not meet all Track 1 criteria, and is not considered a Track 1 substance.

6.2 Formulants and Contaminants of Health or Environmental Concern

During the review process, contaminants in the technical and formulants and contaminants in the end-use products are compared against the *List of Pest control Product Formulants and Contaminants of Health or Environmental Concern* maintained in the *Canada Gazette*.⁵ The list is used as described in the PMRA Notice of Intent NOI2005-01⁶ and is based on existing policies and regulations including: DIR99-03; and DIR2006-02,⁷ and taking into consideration the Ozone-depleting Substance Regulations, 1998, of the *Canadian Environmental Protection Act* (substances designated under the Montreal Protocol). The PMRA has reached the following conclusions:

The end-use products, A17511B, A16874F and A16148C Seed Treatments contain a formulant which has low level contamination with chlorinated dioxin and furan Track 1 contaminants which are identified in the *Canada Gazette*. The PMRA is managing the presence of these contaminants in accordance with the Agency's strategy to prevent or minimize releases, with the ultimate goal of virtual elimination as described in DIR99-03. The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.

7.0 Summary

7.1 Human Health and Safety

The toxicology database submitted for sedaxane is comprehensive. The scientific quality of the data is high and the database is considered adequate to define the majority of the toxic effects that may result from exposure to sedaxane. A short-term inhalation toxicity study and ovarian follicle counts at the low and mid dose levels in a 2-generation reproductive toxicity study were not provided, and are being required as conditions of registration. There was no evidence of increased susceptibility of the young in reproduction or developmental toxicity studies. Sedaxane did not cause immunosuppression in mice. There was evidence of neurotoxicity at high doses in

⁴ DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy.

⁵ Canada Gazette, Part II, Volume 139, Number 24, SI/2005-114 (2005-11-30) pages 2641–2643: List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern and in the order amending this list in the Canada Gazette, Part II, Volume 142, Number 13, SI/2008-67 (2008-06-25) pages 1611-1613. Part 1 Formulants of Health or Environmental Concern, Part 2 Formulants of Health or Environmental Concern that are Allergens Known to Cause Anaphylactic-Type Reactions and Part 3 Contaminants of Health or Environmental Concern.

⁶ NOI2005-01, List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under the New Pest Control Products Act.

⁷ DIR2006-02, Formulants Policy and Implementation Guidance Document.

rats. In short-term and long-term studies on laboratory animals, the primary targets were the liver, endocrine organs and circulatory system. There was no evidence that sedaxane was genotoxic; however, there was evidence of oncogenicity in mice and rats after chronic dosing. The risk assessment protects against the toxic effects noted above by ensuring that the level of human exposure is well below the lowest dose at which these effects occurred in animal tests.

The nature of the residue in plants and animals is adequately understood. The residue definition (RD) for enforcement and risk assessment in all crops (primary and rotational) and animals is sedaxane. The use of sedaxane on crops listed on the labels do not constitute an unacceptable chronic or acute dietary risk (food and drinking water) to any segment of the population, including infants, children, adults and seniors. Sufficient crop residue data have been reviewed to recommend maximum residue limits. The PMRA recommends that the following maximum residue limits be specified for sedaxane:

Commodity	Recommended MRL (ppm)
Barley; dry soybeans; oats; rye; rapeseed (canola); triticale; wheat	0.01
Eggs; fat, meat, and meat byproducts of cattle, goats, hogs, horses, poultry and sheep; milk	

Workers treating seed with Sedaxane 500FS Fungicide, A17511B Seed Treatment or A16874F Seed Treatment and workers planting treated seed are not expected to be exposed to levels of sedaxane that will result in an unacceptable risk when Sedaxane 500FS, A17511B and A16874F are used according to label directions. The personal protective equipment on the product label is adequate to protect workers.

7.2 Environmental Risk

No unacceptable environmental risks are anticipated from the proposed use of sedaxane as a seed treatment.

Label revisions were required for A16874F and A16148B Seed Treatments as they contain additional active ingredients. This will maintain consistency with labels across products. Label statements are being required to inform users of risk to birds and mammals in order to help minimize risk from ingestion of treated seed. The end-use product A17511B Seed contains sedaxane, difenoconazole, metalaxyl-m, and thiamethoxam and A16874F Seed treatment contains sedaxane, difenoconazole, metalaxyl-m. As A17511B Seed treatment includes the neonicotinoid insecticide, thiamethoxam, a hazard statement specific to pollinators was also added to maintain consistency with other registered seed treatment products containing thiamethoxam (for example, Cruiser Maxx Cereals Seed Treatment Registration Number 29192 for use on cereal crops).

7.3 Value

The rationales based on precedent claims and data submitted to register Sedaxane 500FS Fungicide, A17511B Seed Treatment and A16874F Seed Treatment were sufficient in supporting the value of the products' uses for control or suppression of certain seed and soilborne diseases and insects in cereals, canola and soybean.

8.0 Regulatory Decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act* and Regulations, has granted conditional registration for the sale and use of Sedaxane Technical and A17511B Seed Treatment, containing sedaxane, difenconazole, metalaxyl-m and thiamethoxam, A16874F Seed Treatment, containing sedaxane, difenconazole and metalaxyl-m, and Sedaxane 500FS Fungicide, containing the technical grade active ingredient sedaxane, for use on seed from various crops including certain cereals (barley, wheat, oats, rye, and triticale), canola, and soybean to control or suppress soil and seed-borne diseases of seedlings and mature plants. A17511B Seed Treatment also contains an insecticide to suppress/control wireworm activity on certain cereal crops.

An evaluation of available scientific information found that, under the approved conditions of use, the product has value and does not present an unacceptable risk to human health or the environment.

Although the risks and value have been found acceptable when all risk-reduction measures are followed, as a condition of these registrations, additional scientific information is being requested from the applicant. For more details, refer to the Section 12 Notice associated with these conditional registrations. The applicant will be required to submit this information within the time frames indicated below.

NOTE: The PMRA will publish a consultation document at the time when there is a proposed decision on applications to convert these conditional registrations to full registrations or on applications to renew the conditional registrations, whichever occurs first.

Human Health

- DACO 4.3.6 Short-term inhalation toxicity study in rats.
- DACO 4.5.1, 4.8 Low and mid dose assessments of ovarian follicle counts in the 2-generation reproductive toxicity study in rats.
- The final freezer storage stability study reports for sedaxane metabolites in crop commodities up to 24 months (Report T014683-05-REG), and for sedaxane residues in processed commodities up to 12 months (Report KP-2009-02) are required to support the maximum storage intervals of samples from the magnitude of the residues studies.

List of Abbreviations

8	male
9	female
μg	micrograms
AD	administered dose
ADD	absorbed daily dose
ADI	acceptable daily intake
ads	adsorption
AFC	antigen forming cells
a.i.	active ingredient
ALT	alanine transaminase
AOPWIN	Atmospheric Oxidation Program
AR	applied radioactivity
ARfD	acute reference dose
AST	aspartate aminotransferase
AUC	area under the curve
BAF	bioaccumulation factor
BBCH	Biologische Bundesanstalt, Bundessortenamt and Chemical Industry
BCF	bioconcentration factor
bw	body weight
bwg	body weight gain
CAF	composite assessment factor
CAS	Chemical Abstracts Service
CEPA	Canadian Environmental Protection Act
C.I.	confidence interval
cm	centimetres
C _{max}	plasma peak concentration
CO_2	carbon dioxide
CV	coefficient of variation
CYP	cytochrome P450 enzyme (alphanumeric suffixes denote families and sub-
	families
d	day(s)
DAP	days after planting
DAT	days after treatment
des	desorption
DT_{50}	dissipation time 50% (the dose required to observe a 50% decline in
	concentration)
DT_{90}	dissipation time 90% (the dose required to observe a 90% decline in
	concentration)
dw	dry weight
EC_{25}	effective concentration on 25% of the population
EC_{50}	effective concentration on 50% of the population
EEC	estimated environmental concentration
EP	end-use product
EROD	ethoxyresorufin-O-dealkylase
F_1	first generation

fc	food consumption
fe	food efficiency
FRAC	Fungicide Resistance Action Committee
g	gram
GAP	good agricultural practices
GD	gestation day
GUS	groundwater ubiquity score
h	hour(s)
ha	hectare(s)
HAFT	highest average field trial
HDPE	high density polyethylene
HPLC-MS/M	Shigh performance liquid chromatography with tandem mass spectrometry
IgM	immunoglobulin M
IOM	Institute of Occupational Medicine
IPM	Integrated Pest Management
IUPAC	International Union of Pure and Applied Chemistry
kg	kilogram
K _{FOC}	soil sorption constant normalised for organic carbon
$K_{ m ow}$	<i>n</i> -octanol-water partition coefficient
L	litre
LADD	lifetime average daily dose
LC_{50}	lethal concentration 50%
LC-MS/MS	liquid chromatography with tandem mass spectrometry
LD	lactation day
LD_{50}	lethal dose 50%
LLMV	lowest level of method validation
LOAEL	lowest observed adverse effect level
LOAEC	low observed adverse effect concentration
LOC	level of concern
LOQ	limit of quantitation
m	metre(s)
MAS	maximum average score
mg	milligram
MIS	maximum irritation score
mL	millilitre
MOE	margin of exposure
MRL	maximum residue limit
MRM	multiresidue methods
MTD	maximum tolerated dose
NAFIA	North American Free Trade Agreement
NIOSH	National Institute for Occupational Safety and Health
nm	nanometre(s)
NUAEL	no observed adverse effect level
NUAEC	no observed adverse effect concentration
NUEK	no observed effect rate
NZW	New Zealand white
OVS	OSHA Versatile Sampler

Р	parental generation
Ра	pascal
PAMI	Pesticide Analytical Manual Volume I
PBI	plantback interval
PHI	preharvest interval
p <i>K</i> a	dissociation constant
PMRA	Pest Management Regulatory Agency
POD	point of departure
PPE	personal protective equipment
ppm	parts per million
Q_1^*	cancer potency factor
QA	quality assurance
QC	quality control
QuEChERS	Quick, Easy, Cheap, Effective, Rugged and Safe
RD	residue definition
RPT	rumen-protected tryptophan
RQ	risk quotient
SDHI	succinate dehydrogenase inhibitor
SFO	single first order
SI	stimulation index
TG	triglyceride
TGAI	technical grade active ingredient
T _{max}	time of maximum concentration
TRR	total radioactive residue
TSMP	Toxic Substances Management Policy
UF	uncertainty factor
USEPA	United States Environmental Protection Agency
UV	ultraviolet
v.p.	vapour pressure
v/v	volume per volume dilution
wt	weight

Appendix I Tables and Figures

Table 1Residue Analysis

Matrix	Method ID	Analyte	Method Type	LOQ	Reference
Plant	Specht	trans		0.05 ppm per analyte	1897777
	(QuEChERS) Multriresidue Method	(SYN508210) and cis (SYN508211) isomers of sedaxane	LC-MS/MS (enforcement)		PMRA Document Number: 1897771
	Γ-14.141	(SYN524464) ^a			PMRA Document Number: 1897769
				0.05 ppm per sedaxane isomer (GRM023.01A and	1897776 PMRA Document
		SYN508210 SYN508211 CSCD667584		GRM023.01B);	Number: 1897783
	GRM023.01A GRM023.01B (re-write of GRM023.01A) GRM023.03A	CSCD658906 CSCD659089	LC-MS/MS	(GRM023.03A)	Number: 1897782
		CSCD668403 CSCD667555 ^b	(data gathering)		PMRA Document Number: 1897781
		CSCD465008 CSCC210616			PMRA Document Number: 1897774
				PMRA Document Number: 1897786	
		SYN508210		0.05 ppm per sedaxane	1897773
	CDM022 11 A	CDCD659089	LC-MS/MS	1somer; 0.01 ppm per metabolite	PMRA Document Number: 1897779
GRM023.11A	CSCD668403 CSCD659087 CSAA798670 CSCD465008	(data gathering)		PMRA Document Number: 1897976	

Matrix	Method ID	Analyte	Method Type	LOQ	Reference
				0.01	1897790
GRM023.12		CSCD465008	LC-MS/MS		PMRA Document Number: 1897778
			(duta gamering and emoreement)		Number: 1897787
					PMRA Document Number: 1897786
	GRM006.08A	CSCD465008	LC-MS/MS	0.01	1897784
	UKW000.00A	CSAA798670	(data gathering)		
Livestock	Specht			0.05 ppm per sedaxane isomer	1897777
(QuEChERS) Multriresidue	SYN508210 SYN508211	LC-MS/MS (enforcement)		PMRA Document Number: 1897772	
	P-14.141				PMRA Document Number: 1897785
				0.05 ppm per sedaxane isomer:	1897780
	CDM022 10A	SYN508210 SYN508211	LC-MS/MS	0.01 ppm per metabolite	PMRA Document Number: 1897770
GRM023.10A	CSCD658906 CSCD659087	(enforcement)		PMRA Document Number: 1897788	
					PMRA Document Number: 1897937
Soil	GRM023.02A	SYN508210	HPLC-MS/MS $330 \rightarrow 131 \text{ m/z}$	0.0001 mg/kg	1897801,
		SYN508211	$330 \rightarrow 131 \text{ m/z}$		189/803, 189//91
	GRM023.04A	CSCC210616	HPLC-MS/MS $176 \rightarrow 156 \text{ m/z}$		1897798, 1897794, 1897806
	GRM023.05A	CSCD465008	HPLC-MS/MS $161 \rightarrow 141 \text{ m/z}$	0.0005 mg/kg	1897796, 1897792
		CSAA798670	$175 \rightarrow 91 \text{ m/z}$		

Matrix	Method ID	Analyte	Metho	od Type	LOQ	Reference
Sediment	Extended from	soil				
Water	GRM023.06A	SYN508210	HPLC-MS/MS	$330 \rightarrow 131 \text{ m/z}$	0.05 μg/L	1897912, 1897809
		SYN508211		$330 \rightarrow 131 \text{ m/z}$		
		CSCC210616		$176 \rightarrow 136 \text{ m/z}$		
		CSCD465008		$161 \rightarrow 141 \text{ m/z}$		
		CSAA798670		$175 \rightarrow 91 \text{ m/z}$		

^a Technical sedaxane is a mixture of trans and cis isomers, SYN 508210 and SYN508211, in the ratio of ~6:1.

^b Total CSCD667555 includes contribution from the N-malonyl conjugate (CSCD667556) which is hydrolyzed to the N-glucoside (CSCD667555) under mild basic conditions.

Table 2 Toxicity Profile of End-use Product(s) Containing Sedaxane

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons)

Study Type/Animal/PMRA #	Study Results
A17511B Seed Treatment	
Acute oral toxicity	Female $LD_{50} > 5000 \text{ mg/kg bw}$
	Low toxicity
Sprague-Dawley rats	
PMR A #1808260	
A cute dermal toxicity	ID > 5050 mg/kg hy
Acute definal toxicity	LD ₅₀ > 5050 mg/kg 0w
Sprague-Dawley rats	Low toxicity
~F-1811 - 11119 - 111	
PMRA #1898270	
Acute inhalation toxicity	$LC_{50} > 2.59 \text{ mg/L}$
(nose-only)	Low toxicity
Sprague-Dawley rats	
PMRA #1898271	

Study Type/Animal/PMRA #	Study Results
Dermal irritation	MAS = 0, $MIS = 0$
	Non-irritating
NZW rabbits	
PMRA #1898272	
Eye irritation	MAS = 1.7, MIS = 6
NZW rabbita	Minimally Irritating
INZ W TADDILS	
PMRA #1898273	
Dermal sensitization	Non-sensitizer
(Buehler)	
Hartley guinea pigs	
D. (D. A. //1000074	
PMRA #1898274	
A outo oral toxicity	Equals $ID > 5000 \text{ mg/kg by}$
Acute of al toxicity	$\frac{1}{1000} = \frac{1}{1000} = 1$
Sprague-Dawley rats	Low toxicity
Spragae Danie, rais	
PMRA #1898326	
Acute dermal toxicity	$LD_{50} > 5050 \text{ mg/kg bw}$
	Low toxicity
Sprague-Dawley rats	
PMRA #1898328	
Acute inhalation toxicity	$LC_{50} > 2.63 \text{ mg/L}$
(nose-only)	Low toxicity
Sprague-Dawley rats	
DMD A #1909220	
PMKA #1898330	

Study Type/Animal/PMRA #	Study Results
Dermal irritation	MAS = 0, MIS = 0
	Non-irritating
NZW rabbits	
PMR 4 #1898332	
Eve irritation	MAS = 1.7 MIS = 11
	Minimally irritating
NZW rabbits	
PMRA #1898333	
Dermal sensitization	Non-sensitizer
(Buenner)	
Hartley guinea pigs	
PMRA #1898334	
Sedaxane 500FS Fungicide	
Acute oral toxicity	Female $LD_{50} = 2975 \text{ mg/kg bw} (95\% \text{ C.I. } 844->20 000 \text{ mg/kg bw})$
Spragua Dawlay rata	Low toxicity
Sprague-Dawley rats	
PMRA #1898367	
Acute dermal toxicity	$LD_{50} > 5050 \text{ mg/kg bw}$
	Low toxicity
Sprague-Dawley rats	
PMRA #1898368	
Acute inhalation toxicity	$LC_{50} > 2.56 \text{ mg/L}$
(nose-only)	Low toxicity
Sprague-Dawley rats	
PMRA #1898369	

Study Type/Animal/PMRA #	Study Results
Dermal irritation	MAS = 0, MIS = 0.67
	Non-irritating
NZW rabbits	
PMRA #1898370	
Eye irritation	MAS = 1.3
	Minimally irritating
NZW rabbits	
PMRA #1898371	
Dermal sensitization	Non-sensitizer
(Buehler)	
Hartley guinea nigs	
ranne, Barrea hiBo	
PMRA #1898372	

Table 3Toxicity Profile of Technical Sedaxane

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted)

Study Type/Animal/PMRA #	Study Results
Acute oral toxicity	Female $LD_{50} = 5000 \text{ mg/kg bw} (95\% \text{ C.I. } 2513-9210 \text{ mg/kg bw})$
	Low toxicity
Wistar rats	
PMRA #1897844	
Acute dermal toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
	Low toxicity
Wistar rats	
PMRA #1897848	
Acute inhalation toxicity	$LC_{50} > 5.244 \text{ mg/L}$
(nose-only)	Low toxicity
Wistar rats	
PMRA #1897850	

Study Type/Animal/PMRA #	Study Results
Dermal irritation	MAS = 0, MIS = 0
N77887 11 1	Non-irritating
NZW rabbits	
PMRA #1897853	
Eye irritation	MAS = 0.89
NZW rabbits	Minimally irritating
INZ W Tabbits	
PMRA #1897856	
Dermal sensitization	SI < 3 Non consister
(LLNA)	ivon-sensitizer
CBA/CaBkl mice	
DMD A #1907959	
Metabolism/Toxicokinetics -	Absorption: Sedaxane was rapidly and extensively absorbed (>87% of total
single and repeated dose, oral	recovered radioactivity). Maximum plasma concentrations of total radioactivity
gavage	were achieved at 1-6 h post dose and declined with estimated terminal half-life
XX7. /	values ranging from 23-29 hours. Similar terminal half-life values of 21-40 hours
wistar rats	were obtained for blood. At both dose levels, systemic exposure was similar for males and females
	indies and remains.
PMRA #1897819, 1897822,	Distribution: Tissue distribution of radiolabelled sedaxane was extensive in rats.
1897824, 1897827, 1897829,	Tissue concentrations were highest in the liver, kidney and fat. With repeated
1897832, 1897834	Following the cessation of dosing all tissue concentrations declined with no
	evidence of any persistence. There were no pronounced sex differences in tissue
	distribution or depletion profiles between the sexes or following single or
	repeated doses.
	Metabolism: Sedaxane was extensively metabolized via demethylation
	hydroxylation, oxidation and conjugation affording an array of hydroxylated
	metabolites and metabolites formed by cleavage of the terminal cyclopropyl
	moiety. An equivalent range of metabolites of desmethyl sedaxane was also
	and desmethyl trans para phenol metabolites, which together with the equivalent
	cis para phenol isomers accounted for approximately half of the administered
	dose (AD). Low levels (<1% AD) of a pyrazole amide metabolite were also
	detected in bile samples. The phenolic and hydroxy metabolites of sedaxane and
	desmethyl sedaxane were subject to glucuronic acid, sulphate and glutathione
	were no major sex or dose related differences apparent in the qualitative
	metabolite profile for sedaxane.
	Example in The routes and rates of exercises were similar in male and formula and
	and at both dose levels. Over 2 days post dosing males and females excreted
	>93% AD. The major route of excretion was via the feces/bile (79-88% AD),
	while urinary excretion accounted for 12-19% AD. Elimination of sedaxane via
	respired volatiles or CO_2 was negligible. There were no apparent differences in
	excremon between the sexes, between the dose levels or after repeated dosing.

Study Type/Animal/PMRA #	Study Results
28-day dermal	NOAEL = 1000 mg/kg bw/day
Wistar rats	LOAEL not established
PMRA #1897885	
90-day inhalation	The waiver request was not granted. Criteria for low acute toxicity (US EPA
	Category IV) and low volatility were met; however, based on the expected inhalation scenarios for sedayane FPs, this risk is not considered to be adequately.
PMRA #1943343	characterized via the available repeat-dose oral toxicity studies.
28-day dietary (supplemental)	Effect levels were not established since this was a range-finding supplemental
CD-1 mice	study.
	No treatment-related effects were observed.
D) (D A 10070 (2	
PMRA #189/863	Effect levels were not established since this was a range-finding supplemental
20-day capsule (supplemental)	study.
Beagle dogs	
	At $\geq 100 \text{ mg/kg bw/day}$, \uparrow hepatocellular vacuolation (\updownarrow)
PMRA #1897860	At 300 mg/kg bw/day, 1 liver weight, enlarged liver, hepatocellular hypertrophy
	and vacuolation (\Im); \downarrow bwg, fc, cholesterol, phospholipid (\Im)
00. day dietary	$NOAEI = 567/1167 ma/ka hw/day \sqrt{2}/9$
50-day dictary	$100 \text{ALL} = 30771107 \text{ mg/kg ownday } 07 \pm$
CD-1 mice	LOAEL = 1455/not established mg/kg bw/day (\Im/\Im), based on \downarrow bw, bwg, fe,
	total bilirubin; \uparrow adjusted liver and testes weights (\circlearrowleft). No treatment-related
PMRA #1897869	effects in females.
90-day dietary toxicity	NOAEL = 72.9/85.7 mg/kg bw/day 1
Wistar rats	$I \cap A \in I = 299.6/315.3 \text{ mg/kg bw/day } A^{\circ}/\odot \text{ based on } bw + fc + fe^{\uparrow}$
10 10 mil 1 mb	centrilobular hypertrophy, \uparrow pigmentation in the liver, \uparrow TG, \uparrow total protein, \uparrow
DMD A #1907977	liver weight; \uparrow prothrombin time, \uparrow plasma albumin (\circlearrowleft); \uparrow platelet counts, \uparrow
PMRA #189/800	cholesterol, \downarrow heart wt (\bigcirc)
90-day dietary toxicity	NOAEL = 24.8/28.5 mg/kg bw/day 0/2
Wistar rats	LOAEL = 168.0/186.0 mg/kg bw/day \Im/Q , based on \downarrow forelimb grip strength;
	\downarrow bw, \downarrow bwg, \downarrow fc, \downarrow hindlimb grip strength (\bigcirc)
PMRA #1897873	
90-day capsule	NOAEL = 150/not established ∂/Q
Beagle dogs	$104EL = 400/50 \text{ mg/kg bw/day}$ $\frac{3}{2}$ based on by the bwg the second
Deagle dogs	count. \downarrow cholesterol, \downarrow spleen weights (\mathcal{J}); \downarrow bw, \downarrow bwg (\mathcal{Q})
D. (D.). //1005050	
PMRA #1897878	NOAEI = 50 mg/kg hw/day
12-monui capoulo	TOTALE JUING/Kg Uw/day
Beagle dogs	LOAEL = 200 mg/kg bw/day, based on \downarrow bw, \downarrow bwg, \downarrow fc, \downarrow cholesterol, \downarrow
	spleen weights, ↓ testes weight
PMRA #1897881	

Study Type/Animal/PMRA #	Study Results
80-week dietary	NOAEL = $157/185 \text{ mg/kg bw/day} \sqrt[3]{9}$
CD-1 mice	LOAEL = 900/1001 mg/kg bw/day $\sqrt[3]{9}$, based on \downarrow bw, \downarrow bwg, \downarrow fe; \uparrow liver weight, \uparrow hepatocellular adenomas, carcinomas and combined hepatocellular
PMR 4 #1897905	adenomas and carcinomas (\eth); \checkmark bw, \downarrow bwg, \downarrow fe (\updownarrow)
1 WIKA #1077705	Evidence of oncogenicity in males at a dose that approached the limit dose (900 mg/kg bw/day). Dosing was considered adequate.
104/105-week dietary (with 53- week chronic toxicity)	NOAEL = 11/14 mg/kg bw/day ∂/Q
Wistar rats	LOAEL = 67/86 mg/kg bw/day \mathcal{J}/\mathcal{Q} , based on \uparrow liver weight, \uparrow liver eosinophilic cell foci, \uparrow thyroid follicular cell hypertrophy, \uparrow thyroid follicular epithelial desquamation, \uparrow thyroid basophilic colloid; \downarrow hind grip strength and \uparrow hepatocyte hypertrophy (\mathcal{J}): by \downarrow by \downarrow by \mathcal{A} LT. \mathcal{A} ST (\mathcal{Q})
PMRA #1897899	hyperuophy (\bigcirc), \checkmark bw, \downarrow bwg, AL1, AS1 (\ddagger)
	Evidence of oncogenicity [thyroid follicular cell adenomas, hepatocellular adenomas (♂); uterine adenocarcinomas (♀)]. Dosing was considered adequate.
1-generation reproduction	Effect levels were not established since this was a range-finding supplemental
(supplemental)	study.
Wistar rats	Parental toxicity:
	At 150 mg/kg bw/day, \downarrow bw, \downarrow bwg, \downarrow fc, \uparrow liver weights, \uparrow abnormally darkened livers (\bigcirc)
PMRA #1897909	At 360 mg/kg bw/day, \downarrow bw, \downarrow bwg, \downarrow fc (\circlearrowleft)
	Reproductive toxicity:
	At 360 mg/kg bw/day (exceeded MTD), \downarrow implantation sites, \downarrow # pups born
	Offspring toxicity: At 50 mg/kg bw/day, \downarrow fc At 150 mg/kg bw/day, \downarrow bw, \uparrow liver weights At 360 mg/kg bw/day (exceeded MTD), \downarrow bw, \downarrow bwg, \uparrow liver weight. \uparrow # pup deaths LD 0-4, \downarrow mean litter size, \downarrow viability index, \downarrow lactation index, \uparrow missing pups (presumed cannibalized) Pups were kept with their mothers until LD 28 at which time, they were scarrificand

Study Type/Animal/PMRA #	Study Results
2-generation reproduction	Parental toxicity:
(dietary)	NOAEL = $41/46 \text{ mg/kg bw/day} \sqrt[3]{\phi}$,
Wiston asta	LOAEL = $120/143 \text{ mg/kg bw/day} \Im/\Im$, based on \checkmark bw, \downarrow bwg, \downarrow fc, \uparrow liver
wistar rats	weight, \top centrilobular heptocellular hypertrophy; enlarged liver (\bigcirc)
PMRA #1897908	Reproductive toxicity: NOAEL = 120 mg/kg bw/day $\stackrel{\frown}{\bigcirc}$ LOAEL = not established $\stackrel{\frown}{\bigcirc}$
	In the absence of low (18 mg/kg bw/day) and mid (46 mg/kg bw/day) dose ovarian follicle data, a NOAEL was not determined in \bigcirc and a conservative POD of 18 mg/kg bw/day was considered to be a potential LOAEL. At 143 mg/kg bw/day, \downarrow ovarian weight, \downarrow primordial follicles (P), growing and antral follicles (F ₁), ovarian corpora lutea (P), \uparrow lactational diestrous
	Offspring toxicity:
	NOAEL = 46 mg/kg bw/day ∂/Q
	LOAEL = 143 mg/kg bw/day \mathcal{O}/\mathcal{Q} , based on \checkmark pup bw, delayed vaginal patency
	(F ₁ ; equivocal), $+$ anogenital distance (\downarrow ; equivocal), $+$ liver weight (histopathology not conducted), \downarrow spleen weight (histopathology not conducted)
	Evidence of reproductive toxicity
Developmental toxicity (gavage;	Effect levels were not established since this was a range-finding supplemental
supplemental)	study.
Wistar rats	Maternal toxicity.
PMRA #1897911	At 200 mg/kg bw/day, ↓ bwg when corrected for gravid uterine weight), ↓ fc At ≥500 mg/kg bw/day (exceeded MTD), ↑ clinical signs (↓ activity, ruffled fur, poor clinical condition, lateral recumbency, uncoordinated movements), ↓ bw, bw loss, ↓ fc Animals were sacrificed for humane reasons prior to study termination.
	At 750 mg/kg bw/day, 1 death (GD 11)
	Developmental toxicity:
	No treatment-related external or visceral malformations or variations.
Developmental toxicity (gavage)	Maternal NOAEL = 100 mg/kg bw/day
Wistor rote	Maternal LOAEL = 200 mg/kg bw/day, based on \downarrow bw, \downarrow bwg, \downarrow fc
wistal fats	Developmental NOAEL = 200 mg/kg bw/day
PMRA #1897910	Developmental LOAEL not established
Developmental toxicity (gavage;	Effect levels were not established since this was a range-finding supplemental
supplemental)	study.
NZW rabbits	Maternal toxicity:
1.2.11 10010	At $\geq 100 \text{ mg/kg bw/day}$, \uparrow liver weight (histopathology was not conducted)
	At \geq 300 mg/kg bw/day, \downarrow defecation, \downarrow bwg, \downarrow fc
PMRA #1897913	At 500 mg/kg bw/day, \uparrow mortality preceded by bw loss, \downarrow fc, \downarrow defecation and/or soft stool, \downarrow bw
	Developmental toxicity:
	No treatment-related external or visceral malformations or variations.

Study Type/Animal/PMRA #	Study Results
Developmental toxicity (gavage)	Maternal NOAEL = 100 mg/kg bw/day
NZW rabbits	Maternal LOAEL = 200 mg/kg bw/day, based on slight \uparrow abortions preceded by bw loss, \downarrow /no fc, \downarrow defecation, \downarrow bwg/bw loss, \downarrow fc
PMRA #1897912	Developmental NOAEL = 100 mg/kg bw/day Developmental LOAEL = 200 mg/kg bw/day, based on slight ↑ abortions, ↓ fetal weight
	Evidence of developmental toxicity
Gene mutations in bacteria	Negative
PMRA #1897888	
Gene mutations in mammalian cells in vitro	Negative
PMRA #1897892	
Chromosome aberrations in vitro	Negative
<i>PM</i> RA #1897890	
Unscheduled DNA synthesis (in vivo)	Negative
<i>PM</i> RA #1897897	
Micronucleus assay (in vivo)	Negative
PMR A #1897894	
28-day immunotoxicity (T-cell dependent antibody response of splenocyte assay) Supplemental CD-1 mice	Effect levels were not established since this was a supplemental study. High CV's were noted for the IgM data, which resulted in limited confidence in the study. At 1080 mg/kg bw/day, \uparrow relative spleen weight, \uparrow thymus weight; \uparrow IgM AFC/10 ⁶ Spleen cells, \uparrow IgM AFC/Spleen (×10 ³)
PMRA #1897837	

Study Type/Animal/PMRA #	Study Results				
28-day comparative toxicity of	Effect levels were not established since this was a supplemental study.				
the trans isomer, cis isomer and a racemic 1:1 mixture of sedaxane (dietary; supplemental) Wistar rats	The cis and trans isomers and sedaxane caused $\uparrow 16\beta$ hydroxylation of testosterone, consistent with being potent inducers of CYP 2B isoforms. The three test compounds caused $\downarrow 16\alpha$ and 2α testosterone hydroxylation in males but increases in females. Both 16α and 2α are markers for the cytochrome isoenzyme CYP 2C11. The above findings were supported by \uparrow CYP 2B and CYP 3A contents. The weakly \uparrow EROD activity suggests that the cis and trans isomers and				
PMRA #1897840	sedaxane do not act as polycyclic aromatic hydrocarbon-type inducers. Toxicokinetics: $T_{max} = 12-20$ h; no obvious differences between the trans and cis isomers. C_{max} and AUC were ~10-fold lower in the cis isomer group vs. trans isomer group.				
28-day toxicity (range-finding for the acute neurotoxicity	Effect levels were not established since this was a range-finding supplemental study.				
study, supplemental)	At 80 mg/kg bw/day, \uparrow piloerection (2-8 h post-dose), \uparrow hunched posture, spasms, reduced activity also noted sporadically				
Wistar rats	At \geq 1000 mg/kg bw/day, \uparrow reduced activity, hunched posture, spasms, piloerection, uncoordinated movements (peak effect at 3 h post-dose), \downarrow bw, \downarrow bwg				
PMRA #1897917					
Acute neurotoxicity (gavage)	NOAEL = 30 mg/kg bw				
Wistar rats	LOAEL = 250 mg/kg bw, based on reduced activity, decreased rearing, initial inactivity, piloerection; ruffled fur, recumbency, \downarrow bw, \downarrow bwg, \downarrow fc (\circlearrowleft); weakened condition, swaying gait, decreased activity, reduced muscle tone, \downarrow total distance (locomotor activity), \downarrow rearing (\updownarrow)				
PMRA #1897914					
28-day range-finding study for the 90-day neurotoxicity	Effect levels were not established since this was a range-finding supplemental study.				
(dietary; supplemental)	At $\geq 154/156$ mg/kg bw/day \Im/\Im , \downarrow fe; \downarrow bw, \downarrow bwg, \downarrow fc (\Im) At 360 mg/kg bw/day \Im , \downarrow bwg, \downarrow fc (\Im)				
Wistar rats					
PMRA #1897919					
90-day neurotoxicity (dietary)	NOAEL = 66/80 mg/kg bw/day \Im/\Im				
Wistar rats	LOAEL = 260/303 mg/kg bw/day ∂/φ , based on \downarrow bw, \downarrow bwg, \downarrow fc, \downarrow fe, \downarrow locomotor activity				
PMRA #1897918					

Study Type/Animal/PMRA #	Study Results
Metabolite Studies - CSCD465	008
Acute oral	Female $LD_{50} > 2000 \text{ mg/kg bw}$
	Low Toxicity
Wistar rats	
PMRA #1897921	
28-day dietary	NOAEL = 1018/1107 mg/kg bw/day $\sqrt[n]{}$
	LOAEL not established
Wistar rats	
PMRA #1897920	
Cono mutationa in hostoria	Negative
Gene mutations in bacteria	
PMRA #1897924	
Gene mutations in mammalian	Negative
cells in vitro	
PMRA #1897922	
Chromosome aberrations in vitro	Negative
PMRA #1897923	

Toxicology Endpoints for Use in Health Risk Assessment for Sedaxane Table 4

Exposure Scenario	Study	Point of Departure and Endpoint	CAF ¹ or Target MOE
Acute dietary general population	Acute neurotoxicity study (rats)	NOAEL = 30 mg/kg bw Clinical signs, decreased body weight, body weight gain and food consumption in males. Clinical signs, decreased activity, reduced muscle tone and decreased locomotor activity in females.	100
	ARfD = 0.3 mg/kg bw		
Repeated dietary	2-generation reproductive toxicity study (rats)	$POD^2 = 18 \text{ mg/kg bw/day}$ Decreased ovarian weight; decreased primordial follicles (P), growing and antral follicles (F ₁), ovarian corpora lutea (P); increased lactational diestrous at 143 mg/kg bw/day	300
		Low and mid dose ovarian follicle counts were not assessed.	
	ADI = 0.06 mg/kg bw/day	1	
Short-term to intermediate-term dermal ³ and inhalation ⁴	2-generation reproductive toxicity study (rats)	$POD^2 = 18 \text{ mg/kg bw/day}$ Decreased ovarian weight; decreased primordial follicles (P), growing and antral follicles (F ₁), ovarian corpora lutea (P); increased lactational diestrous at 143 mg/kg bw/day	300
		Low and mid dose ovarian follicle counts were not assessed.	
Cancer	80-week oncogenicity study (mice) & 104/105- week chronic/oncogenicity study (rats)	Sedaxane exhibits oncogenic potential. There were treatment-related thyroid follicular cell tumours and hepatocellular tumours in male rats, uterine adenocarcinomas in female rats and hepatocellular tumours in male mice. An adjusted unit risk value (Q_1^*) of 3.81×10^{-3} $(mg/kg bw/day)^{-1}$, for uterine adenocarcinomas was used for the cancer risk assessment and is protective of the other tumour types.	

¹ CAF (composite assessment factor) refers to a total of uncertainty and *Pest Control Products Act* factors for assessments; MOE refers to a target MOE for occupational assessments

dietary 2

3

POD (point of departure) Since an oral NOAEL was selected, a dermal absorption factor (7%) was used in a route-to-route extrapolation 4

Since an oral NOAEL was selected, an inhalation absorption factor of 100% (default value) was used in route-toroute extrapolation.

NATURE OF THE RESI	DUE IN CA	NOLA	PMRA # 1897931							
Radiolabel Position	[phenyl-U-	[phenyl-U- ¹⁴ C]-sedaxane and [pyrazole-5- ¹⁴ C]-sedaxane								
Test Site	The treated	The treated canola seeds were sown into containers filled with sandy loam soil and								
	maintained	l in a glasshouse with artificial ligh	nting.							
Treatment	Seed treat	Seed treatment								
Rate	9.65-9.73	9.65-9.73 g a.i./100 kg seeds								
End-use product	Flowable of	Flowable concentrate (A14635)								
Pre-harvest Interval	Canola wa	Canola was harvested at maturity, 131-161 days after treatment and sowing on the								
	same day.									
Matrix	PHI	[phenyl-U- ¹⁴ C]-sedaxane	[pyrazole-5- ¹⁴ C]-sedaxane							
	(days)	TRR (ppm)	TRR (ppm)							
		Direct Determination	Direct Determination							
Canola, seed	131- 161	<0.002	<0.002							
The total radioactive residu	es (TRRs) ir	a canola were determined directly b	by combustion. Residues of sedaxane							
were not translocated into c	canola proge	ny seed following treatment.								
NATURE OF THE RESI	DUE IN MA	AIZE	PMRA # 1897930							
Radiolabel Position	[phenyl-U-	- ¹⁴ C]-sedaxane and [pyrazole-5- ¹⁴ C	C]-sedaxane							
Test Site	The treated maintained	The treated maize seeds were sown into containers filled with sandy loam soil and maintained in a glasshouse with artificial lighting.								
Treatment	Seed treat	Seed treatment								
Rate	123.5-131	123.5-131.0 g a.i./100 kg seeds								
End-use product	Flowable of	Flowable concentrate (A14635)								
Pre-harvest Interval	Treated sw	veet corn and maize were harvested	d 75-76 days (sweet corn forage, kernels							
	and cobs), 83-85 days (maize forage) and 103-107 days (maize stover, kernels and									
	cobs) after	the seeds were treated and sown of	on the same day.							
Matrix	PHI	[phenyl-U- ¹⁴ C]-sedaxane	[pyrazole-5- ¹⁴ C]-sedaxane							
	(days)	(days) TRR (ppm) TRR (ppm)								
		Direct Determination	Direct Determination							
Sweet corn, forage	75	0.028	0.046							
Sweet corn, cob	75-76	0.001	0.003							
(husks removed)		0.001	0.007							
Sweet corn, kernel	75-76	<0.001	0.005							
Maize, forage	83-85	0.027	0.057							
Maize, stover	103-107	0.070	0.087							
Maize, cob	103-107	0.006	0.006							
(nusks removed)	102 107	0.001	0.008							
The TDD a determined dire	103-107									
investigated	ctly by com	bustion, in sweet corn and malze co	ommodifies were not further							
NATURE OF THE DESI	DUE IN WI	IFAT	DMDA # 1907030 and 1907033							
RATURE OF THE RESH	Inhonyl II	14 Cl and average and [nurrage] a 5 14 Cl	T WIKA # 1037350 and 1037355							
Tost Site	The treater	- Cj-sedaxale and [pyrazole-3- C	- J-Seudxalle							
1 est sile	and mainte	ined in a glasshouse with artificial	lighting							
Treatment	Seed treat	ment	п п <u>д</u> пциц <u>д</u> .							
1 IIIIIIII	Seed treatment									
Rate	41 5-42 5	σai/100 kg seeds								
Rate	41.5-42.5	g a.i./100 kg seeds								
Rate End-use product	41.5-42.5 Flowable of	g a.i./100 kg seeds concentrate (A14635)	(forage) 48-55 days (hav) and 105 111							

Table 5 Integrated Food Residue Chemistry Summary

			[phenyl-U- ¹⁴	ole-5-	¹⁴ C]-sedaxane				
Matrix		PHI (days)	TRR	(ppm)		TRR	(ppm)	
			Direct]	ndirect	Direct	;	Indirect	
			Determination	Det	ermination	Determina	tion	Determination	
Wheat, forage		27	0.435		0.451	0.610		0.606	
Wheat, hay		48-55	0.762		0.730	1.042		1.041	
Wheat, straw		105-111	1.005	1.132		0.805		0.884	
Wheat, grain		105-111	0.005	Not	applicable	0.007		Not	
								applicable	
The TRRs were	determined	directly by co	mbustion and indi	rectly	by summation	on of the rad	ioacti	vity in the	
extracts and nor	n-extractable	e solids. Due to	the low levels of	radio	activity in th	e grain (0.00	5-0.0	07 ppm), samples	
were not further	r investigate	d.			•				
Metabolites	Maj	or Metabolite	es (> 10% TRR)		Mino	or Metaboli	tes (<	10% TRR)	
Identified									
Radiolabel	[phenyl	-U- ¹⁴ C]-	[pyrazole-5- ¹⁴ C]-	[phenyl	-U- ¹⁴ C]-	[p	yrazole-5- ¹⁴ C]-	
Position	seda	xane	sedaxane		seda	xane		sedaxane	
Wheat, forage	seda	xane;	sedaxane:		CSCD6	67584*;	C	CSCD667584*:	
, 0	CSCD6	58906*;	CSCD658906*:		CSCD6	59087* [´]	C	CSCD659089*;	
	CSCD6	59089*;					C	CSCD668403*;	
	CSCD6	68403*;					C	CSCD659087*;	
							(CSCC210616;	
								CSCD465008	
Wheat, hay	seda	xane;	sedaxane;		CSCD6	67584*;	C	CSCD667584*;	
			CSCD658906*		CSCD658906*;		C	CSCD659089*;	
					CSCD6	59089*;	C	CSCD668403*;	
					CSCD6	68403*;	C	CSCD659087*;	
					CSCD6	59087*		CSCC210616	
Wheat, straw	seda	xane;	sedaxane;		CSCD667584*;		C	CSCD667584*;	
	CSCD658906* CSCD6		CSCD658906		CSCD659089*;		C	CSCD659089*;	
					CSCD668403*;		C	CSCD668403*;	
					CSCD6	59087*	C	CSCD659087*;	
							(CSCC210616;	
							(CSCD465008/	
								CSAA798670	
*Total of the fre	ee and conju	gated forms.							

		[phen]	yl-U- ¹⁴ (C]-sedaxane	[pyrazole-5-	- ¹⁴ C]-sedaxane
Matrix	PHI		TRR (j	ppm)	TRR	(ppm)
	(days)	Direc	t	Indirect	Direct Determinati	on Indirect
		Determina	ation	Determination		Determination
Soybean,	28	0.132		0.138	0.123	0.123
forage						
Soybean, hay	35-42	0.419	l.	0.354	0.427	0.438
Soybean, seed	96-103	0.009	l	0.009	0.054	0.055
The TRRs were	determined	directly by co	ombusti	on and indirectly by	y summation of the rad	ioactivity in the
extracts and nor	n-extractable	e solids. The T	RRs in	the extracts of soyl	bean seed (phenyl label	l) were not further
investigated.						
Metabolites	Ma	ajor Metabol	ites (> 1	10% TRR)	Minor Metabol	ites (< 10% TRR)
Identified						
Radiolabel	[pheny	/l-U- ¹⁴ C]- [py		razole-5- ¹⁴ C]-	[phenyl-U- ¹⁴ C]-	[pyrazole-5- ¹⁴ C]-
Position	sed	axane		sedaxane	sedaxane	sedaxane
Soybean,	seda	sedaxane;		sedaxane;	CSCD667584;	CSCD667584;
forage	CSCD	CSCD667555; 0		SCD667555;	CSCD658906;	CSCD658906;
	CSCD667556		C	SCD667556	CSCD659089	CSCD659089;
						CSCD465008;
						CSCC210616
Soybean, hay	seda	axane;		sedaxane;	CSCD667584;	CSCD667584;
	CSCD	CSCD667555; C		SCD667555;	CSCD658906;	CSCD658906;
	CSCI	D667556 C		SCD667556	CSCD659089	CSCD465008;
						CSCC210616
Soybean, seed	Not a	nalyzed	CSC	D465008 (sugar	Not analzyed	CSCD465008;
				conjugate)		CSCD465008
						(aspartic acid
						conjugate)

End-use product	Flowable concentrate (A14635)										
Pre-harvest	Swiss chard	Swiss chard was harvested 49 days after the seeds were treated and sown on the same day.									
Interval											
Matrix	PHI	[p	nenyi-U-	CJ-sedaxan	e	pyrazoi	e-5-	CJ-sedaxane			
	(days)		TRR	(ppm)		Т	'RR ((ppm)			
Swiss chard	49	Di	rect	Indir	ect	Direct		Indirect			
		Detern	nination	Determi	nation	Determinati	on	Determination			
		0.0	491	0.045	52	0.0586		0.0556			
The TRRs were deter extracts and non-extra	mined directl actable solids	y by comt	oustion and	indirectly b	y summa	tion of the radi	oacti	vity in the			
Metabolites Identified	Major	Major Metabolites (> 10% TRR)Minor Metabolites (< 10% TRR)									
Radiolabel	[phenyl-I	[nhenyl-IJ- ¹⁴ C]- [nyrazole-5- ¹⁴ C]- [nhenyl-IJ- ¹⁴ C]- [nyrazole-5- ¹⁴ C]-									
Position	sedax	ane	seda	ixane	se	daxane	u	sedaxane			
Swiss chard	sedax	ane	sedaz	kane*;	CSCD667584;			CSCD667584;			
	CSCD465008*: CSCD658906/ CSCD658906						CSCD658906/				
			CSCC210616*		CSCD659089 ¹ *·		C	CSCD659089 ¹ *:			
				-	CSC	D668403*	(CSCD668403*:			
					0.50		(CSAA798670*			
*Total of the free and	conjugated f	orms. ¹ Te	ntative assi	gnment.	•						

Formulation used	for trial	A14950A							
Application rate a	ind	Soybean seeds pre-coated with phenyl- and pyrazole- radiolabeled sedaxane were							
timing		planted in bare soil and were allowed to germinate. The seeding rate was 90-93							
. 8		seeds/plot in order to achieve the target application rate of 100 σ a i /ha. The actual							
		secus/pior in order to admete the target application rate of 100 g a.i./ha. The actual application rates were $99-113$ g a i /ha. The source plants were out and re tilled							
		back into the soil within	0.7 days prior to n	lant of the secondar	v crops After				
		tilling the southean plan	ts back into the soil	seeds were planted	as follows: lettuce				
		(30, 151, and 365, day)	DDI) redich (20 1	20 and 265 day DI	DI) and wheat (20				
		$(50^{-}, 151^{-} and 505^{-} uay$	The 265 day DDI a	20- allu 303-uay Fl	d into the original				
		120- and 505-day PDI).	in a na na tilling of a	eeds were re-plante	u mto the original				
		50-day PBI plots requir	ing no re-tilling of s	oydean plants.					
		PBI = plantback interva	(100/ TDD)	3.61 3.6 4.1 1	• (. 100/ TDD)				
Metabolites Ide	entified	Major Metabolites	(> 10% TRR)	Minor Metabol	ites (< 10% TRR)				
Matrix	PBI	[phenyl-U- ¹⁴ C]-	pyrazole-5-	[phenyl-U- ¹⁴ C]-	[pyrazole-5- ¹⁴ C]-				
T	(days)	sedaxane	CJ-sedaxane	sedaxane	sedaxane				
Lettuce,	30	sedaxane;	CSAA/986/0*;	None	sedaxane;				
Immature		CSCD668403	CSCD465008*		CSCD668403				
	151	sedaxane;	CSAA/986/0*;	CSCD658906	sedaxane				
		CSCD659087	CSCD465008*						
	365	sedaxane	CSAA/986/0*;	CSCD659087;	None				
	• •		CSCD465008*	CSCD659089					
Lettuce, Mature	30	CSCD659089	sedaxane;	None	None				
			CSAA798670*;						
			CSCD465008*						
	151	None	CSAA798670*;	sedaxane;	sedaxane;				
			CSCD465008*	CSCD659089	CSCC210616				
	365	sedaxane	CSAA798670*;	CSCD659087	-				
			CSCD465008*						
Radish Foliage	30	sedaxane;	sedaxane;	None	CSCD659089				
		CSCD668403;	CSCD668403;						
		CSCD659089	CSCD465008;						
			CSCC210616						
	120	CSCD668403;	CSCD465008*;	sedaxane	sedaxane;				
		CSCD659087;	CSCC210616		CSCD668403*;				
		CSCD659089			CSCD659087*;				
					CSCD659089;				
					CSCD658906*;				
					CSAA798670*;				
	365	CSCD668403	CSCD465008*	None	CSCC210616				
Radish Root	30	sedaxane	sedaxane	None	None				
	120	sedaxane	sedaxane:	None	None				
	120	Sedundite	CSCD465008*-	rione	1 (one				
			CSCC210616						
	365	Not analyzed	CSCD465008*·	Not analyzed	sedaxane				
	505	rtot unuryzed	CSCC210616	1 tot unury 200	Seduxune				
Wheat Forage	30	CSCD668403*·	CSCD668403*·	sedaxane.	sedaxane.				
Wheat I brage	50	CSCD659089*	CSCD659089*	CSCD659087*	CSCD659087*				
		CSCD057007	CSAA798370*	CSCD057007	CDCD057007				
			CSCD465008*						
	120	sedavane.	CSCD668403*·	CSCD650087*	sedavane.				
	120	CSCD668403*·	CSCD650080*	050000007	CSCD650087*				
		CSCD000403*,	CSA A 709670*		CSCD03900/*				
		CSCD039089*	$CSCD4(5000)^*$;						
			CSCD403008*						

	365	CSCD668403*:	CSCD668403*:	sedaxane	sedaxane:
		CSCD659087*;	CSCD659089*;	20000000	CSCD659087*
		CSCD659089*	CSAA798670*;		
			CSCD465008*		
Wheat, Hay	30	CSCD668403*;	CSCD668403*;	sedaxane;	sedaxane;
-		CSCD659089*	CSCD659089*;	CSCD659087*	CSCD659087*
			CSAA798670*;		
			CSCD465008*		
	120	CSCD659087*;	CSCD668403*;	None	CSCD659087*
		CSCD659089*	CSCD659089;		
			CSAA798670;		
			CSCD465008		
	365	CSCD668403*;	CSCD668403*;	sedaxane;	CSCD659087*;
			CSAA798670*;	CSCD659087*;	CSCD659089*;
			CSCD465008*	CSCD659089*;	CSCD658906;
				CSCD658906	CSCC210616
Wheat ,Straw	30	CSCD668403*;	CSCD659089*;	sedaxane;	sedaxane;
		CSCD659089*	CSAA798670*;	CSCD659087*	CSCD668403*;
			CSCD465008*		CSCD659087*;
	120	CSCD668403*;	CSCD668403*;	sedaxane;	sedaxane;
		CSCD659089*	CSCD659089*;	CSCD659087*	CSCD659087*
			CSAA798670*;		
			CSCD465008*		
	365	CSCD668403*;	CSCD659089*;	sedaxane	sedaxane;
		CSCD659087*;	CSAA798670*		CSCD668403*;
		CSCD659089*			CSCD659087*;
					CSCD465008*
Wheat, grain	30		Not anal	yzed	
	120	Not analyzed	CSCD465008*	Not analyzed	None
	365		Not anal	yzed	
*Total of the free a	ind conjuga	ted forms.			

Metabolites Ide	ntified	Major Metabolit	es (>10% TRR)	Minor Metabolites (<10% TRR)						
Matrix	PBI (days)	[phenyl-U- ¹⁴ C]- sedaxane	[pyrazole-5- ¹⁴ C]-sedaxane	[phenyl-U- ¹⁴ C]- sedaxane	[pyrazole-5- ¹⁴ C]- sedaxane					
Lettuce, Immature	29	sedaxane	sedaxane; CSCD465008/ CSAA798670	CSCD667584	CSCD667584; CSCD659089					
	90	Sedaxane; CSCD667584	sedaxane; CSCD465008/ CSAA798670	CSCD659089; CSCD668403	CSCD667584; CSCD659089					
	300	Not analyzed	CSCD465008/ CSAA798670	Not analyzed	sedaxane; CSCD667584					
Lettuce, Mature	29	sedaxane	sedaxane; CSCD465008/ CSAA798670	CSCD667584	CSCD667584; CSCD659089; CSCD6687403					
	90	sedaxane	sedaxane; CSCD465008/ CSAA798670	CSCD667584; CSCD659089; CSCD668403	CSCD667584; CSCD659089					
	300	Not analyzed	CSCD465008/ CSAA798670	Not analyzed	sedaxane; CSCD667584					
Turnip, Leaves	29	sedaxane	CSCD465008*; CSCC210616*	CSCD667584; CSCD658906*; CSCD659089*; CSCD668403*; CSCD659087*	sedaxane; CSCD667584*; CSCD6598906*; CSCD659089*; CSCD659087*; CSAA798670*					
	90	sedaxane	CSCD465008*; CSAA798670*	CSCD667584; CSCD659089*	sedaxane; CSCD667584; CSCD659089*; CSCC210616*					
	300	None	CSCD465008/ CSAA798670	sedaxane; CSCD667584; CSCS659089	sedaxane; CSCD667584; CSCD659089; CSCC210616					
Turnip, Roots	29	sedaxane	sedaxane; CSCD465008/ CSAA798670	CSCD667584; CSCD658906; CSCD659089	CSCD667584; CSCD658906					
	90	sedaxane; CSCD667584	sedaxane; CSCD465008/ CSAA798670	CSCD658906	CSCD667584					
	300		Not analyzed							

Appendix I

		•			
Wheat, Forage	29	sedaxane;	sedaxane;	CSCD667584;	CSCD667584;
		CSCD659089*	CSCD659089*;	CSCD658906*;	CSCD658906*;
			CSAA798670*	CSCD668403*	CSCD668403*;
					CSCD659087;
					CSCD465008*;
					CSCC210616*
	90	sedaxane;	sedaxane;	CSCD667584;	CSCD667584;
		CSCD659089*;	CSCD465008*;	CSCD658906*;	CSCD658906*;
			CSAA798670*;	CSCD668403*;	CSCD659089*;
			CSCD465008*	CSCD659087*	CSCD668403*;
					CSCD659087*;
					CSCC210616*
	300	sedaxane	sedaxane;	CSCD667584;	CSCD667584;
			CSCD465008*	CSCD658906*;	CSCD658906*;
				CSCD659089*;	CSCD659089*;
				CSCD668403*;	CSCD668403*;
				CSCD659087*	CSCD659087*;
					CSAA798670*;
					CSCC210616*
Wheat, Hay	29	sedaxane	sedaxane	CSCD667584;	CSCD667584;
				CSCD658906*;	CSCD658906*;
				CSCD659089*;	CSCD659089*;
				CSCD668403*;	CSCD668403*;
				CSCD659087*	CSCD659087*;
					CSCD465008*;
					CSAA798670*;
					CSCC210616*
	90	sedaxane	sedaxane;	CSCD667584;	CSCD667584;
			CSCD465008*;	CSCD658906*;	CSCD658906*;
			CSAA798670*	CSCD659089*;	CSCD659089*;
				CSCD668403*;	CSCD668403*;
				CSCD659087*	CSCD659087*;
					CSCC210616*
	300	sedaxane	sedaxane	CSCD667584;	CSCD667584;
				CSCD658906*;	CSCD658906*;
				CSCD659089*;	CSCD659089*;
				CSCD668403*;	CSCD668403*;
				CSCD659087*	CSCD659087*;
					CSCD465008*;
					CSAA798670*;
					CSCC210616*

Appendix I

		i	1	i	i
Wheat, straw	29	sedaxane;	sedaxane	CSCD667584;	CSCD667584;
		CSCD659089*		CSCD658906*;	CSCD658906*;
				CSCD668403*;	CSCD659089*;
				CSCD659087*	CSCD668403*;
					CSCD659087*;
					CSCD465008*;
					CSAA798670*;
					CSCC210616*
	90	sedaxane	sedaxane;	CSCD667584;	CSCD667584;
			CSCD465008*;	CSCD658906*;	CSCD658906*;
			CSAA798670*	CSCD659089*;	CSCD659089*;
				CSCD668403*;	CSCD668403*;
				CSCD659087*	CSCD659087*;
					CSCC210616*
	300	sedaxane;	sedaxane	CSCD667584;	CSCD667584;
		CSCD659089*		CSCD658906*;	CSCD658906*;
				CSCD668403*;	CSCD659089*;
				CSCD659087*	CSCD668403*;
					CSCD659087*;
					CSCD465008*;
					CSAA798670*;
					CSCC210616*
Wheat, grain	29	sedaxane;	None	CSCD659089	sedaxane;
_		CSCD667584			CSCD667584;
					CSCD659089;
					CSCD465008/
					CSAA798670
	90	None	None	sedaxane;	sedaxane;
				CSCD667584;	CSCD667584;
				CSCD659089	CSCD659089
	300		Not	analyzed	•

NATURE OF THE RESI	DUE IN LAYING HE	2N	PMRA #	1897936		
Five laying hens ea [phenyl-U- ¹⁴ C]-sec poor health and w based on feed dry 18.7-21.6 ppm (pl throughout the stud The birds were sad subcutaneous fat w analysis.	ach were dosed orally i laxane. One hen dosed vas not included in th matter) and dosing co- henyl label) and 18.1 dy (yolk and white we crificed approximately vith skin attached, and	by gelatin capsule with d with the phenyl labe e study. The nominal ontinued for 14 consec -23.5 ppm (pyrazole re separated); excreta 12 hours after the fin muscle (combined leg	n either [py eled sedaxa dose rate cutive days label). Eg and cage w hal dose. S s and thigh	razole-5- ¹ ane was sa was 12 n s. The act gs were of vash were amples of , and brea	¹⁴ C]-sedaxane or with acrificed early due to ng/kg/day (calculated ual mean doses were collected twice daily collected once daily. f liver, peritoneal fat, st) were collected for	
Matrices		% of	Administ	ered Dose	e (Mean)	
		[phenyl-U- ¹⁴ C]-	sedaxane	[pyraz	ole-5- ¹⁴ C]-sedaxane	
Excreta		89.03		U v	93.75	
Cage Wash		5.30			4.35	
Egg White (Day 9-14 Comp	posite)	< 0.01			0.01	
Egg Yolk (Day 9-14 Compo	osite)	0.03			0.03	
Partially Formed Eggs		0.02			0.02	
Abdominal Fat		< 0.01		<0.01		
Liver		0.04			0.03	
Muscle (Leg and Thigh)		Not report	Not reported		Not reported	
Muscle (Muscle Breast)		Not report	ted		Not reported	
Metabolites identified	Major Metaboli	tes (>10% TRR)	Minor Metabo		lites (<10% TRR)	
Radiolabel Position	[phenyl-U- ¹⁴ C]-	[pyrazole-5- ¹⁴ C]-	[phenyl-U- ¹⁴ C]-		[pyrazole-5- ¹⁴ C]-	
	sedaxane	sedaxane	sedar	xane	sedaxane	
Egg Yolk	CSCD658906*	CSCD658906*	edax CSCD6 CSCD6	ane; 67584; 59090*	sedaxane; CSCD667584; CSCD659090*; CSCD668404/ CSCD659087*; CSCD659089*	
Egg White	sedaxane; CSCD667584	-	-		sedaxane; CSCD667584	
Muscle	sedaxane	-	CSCD6	667584	sedaxane; CSCD667584	
Liver	CSCD658906*	CSCD658906*	CSCD6 CSCD6 CSCD6	59090*; 68404/ 59087*	CSCD659090*; CSCD668404/ CSCD659087*	
Abdominal Fat	sedaxane	sedaxane	CSCD6	67584	CSCD667584	
Skin and Fat	sedaxane	sedaxane	CSCD6	67584	CSCD667584	
*Total of the free and conju	gated forms.					

soybean following incubation with rumen fluid. Extracts of soya hay were incubated with a buffered mineral solution (RPT medium) containing rumen fluid (9:1, v/v) at 39°C and under a CO_2 atmosphere. The reactions were terminated after 0, 4, 24, 48 and 96h of incubation, respectively. A control experiment, contained only soya hay extract and the buffered mineral solution (RPT medium), was run concurrently with the rumen fluid experiment in order to assess the effect of RPT medium on the soya metabolites in the absence of the rumen fluid. The results indicate that rumen microflora have the capability to cleave the *N*-linked glucose and malonyl glucose conjugates of desmethyl sedaxane (CSCD667584) rapidly and quantitatively.

Matrices	% of Administered Dose					
	[phenyl-U- ¹⁴ C]-sedaxane [py			zole-5- ¹⁴ C]-sedaxane		
Urine			26.10			18.39
Feces	49.	.44		62.05		
Total Excreted			75.	.54		80.44
Milk (Total Days 1-7)			0.	11		0.13
Muscle			Not app	licable*]	Not applicable*
Fat			Not app	licable*]	Not applicable*
Kidney			0.	01		< 0.01
Liver			0.1	22		0.16
GI Tract Contents			9.	28		6.20
Bile			0.	08		0.17
*Whole tissue not collected	ed.					
Metabolites identified	Major Metabolit	tes (> 1	0% TRR)	Minor Metal	oolites ((< 10% TRR)
Radiolabel Position	[phenyl-U- ¹⁴ C]-	[pyr	azole-5- ¹⁴ C]-	[phenyl-U- ¹⁴ C]-		[pyrazole-5- ¹⁴ C]-
	sedaxane	S	edaxane	sedaxane		sedaxane
Fat	sedaxane;	s	edaxane;	-		-
	CSCD667584	CS	CD667584			
Kidney	CSCD658906*;	CSC	CD658906*;	CSCD659090*;		CSCD659090*;
	CSCD659088*;	CS	CD668404/	CSCD6590)89*	CSCD659088*;
	CSCD668404/	CS	CD659087*			CSCD659089*
	CSCD659087*					
Liver	CSCD658906*	CD	CD658906*	sedaxan	e;	sedaxane;
				CSCD667:	584;	CSCD667584;
				CSCD6590	90*;	CSCD659090*;
				CSCD6590	88*;	CSCD668404/
				CSCD6684	404/	CSCD659087*;
				CSCD6590	87*;	CSCD659089*
				CSCD6590)89*	
Milk	-		-	CSCD6589	06*;	CSCD667584;
				CSCD6590	88*;	CSCD658906*;
				CSCD6684	404/	CSCD659088*;
				CSCD6590)87*	CSCD668404/
						CSCD659087*

STORAGE STABILITY- CROP AND PROCESSED COMMODITIES	PMRA # 1897927; 1897925; 1897928; 1897929
The storage stability data indicate that residues of the two sedaxane isomers (SY)	N508210 and SYN508211) are
stable at \leq -18 °C for 24 months in wheat grain, wheat straw, spinach, potato, oran	nge, lentils, and soybeans.
The interim results of the 24-month study indicate that residues of the metabolite	s CSCD667584_CSCD658906
CSCD659089 CSCD668403 CSCD667555 and CSCC210616 are stable at <-18	$^{\circ}$ C for 6 months in wheat grain
wheat straw spinach leaves notato tuber orange (fruit) dried broad beans and s	ovbean seeds: and residues of
when shaw, spinder leaves, point tuber, orange (nuc), and orange (fruit), and so $CSCD465008$ are stable at a ≤ -18 °C for 6 months in orange (fruit), dried broad	heans and southean seeds
$c_{5}c_{5}c_{5}c_{5}c_{5}c_{5}c_{5}c_{5}$	beans, and soybean seeds.
The storage stability data indicate that residues of CSCD465008 and CSAA7986 months in wheat grain, wheat straw, barley forage, spinach leaves, carrot leaves,	70 are stable at \leq -18 °C for 12 and carrot roots.
The interim results of the 12-month study indicate that residues of SYN508210 a	nd SYN508211 are stable at
approximately -20 °C for 6 months in processed commodities of wheat (flour ge	rm and bran) soybean (meal
hulls and oil) and orange (dried nuln juice and oil) (PMRA No. 1897929)	ini, and oran), soybean (mear,
nuns, and ony and orange (arred pup, juice, and on) (1 wich 100, 1097929).	
The interim 4-month results of the 12-month study for the metabolite CSCD4650	08 in sovhean processed
commodities (hulls meal and oil) are inconclusive. The results for the 6- and 12-	month storage intervals are
needed to confirm the stability of this metabolite in sovbean processed commodities	ies
STORAGE STABILITY, LIVESTOCK COMMODITIES	PMRA # 1897971
A storage stability study was not submitted and is not required for the purposes of	f these submissions. It is stated
in DIR98-02 (Section 5- Storage Stability Data) that storage stability data will no	t be needed for samples stored
frozen for less than 30 days. During the dairy cattle feeding study, the maximum	interval of frozen storage prior
to extraction were 20 days for milk samples including skimmed milk and cream	and 17 days for tissue samples
to extraction were 20 days for milk samples, meruding skinnled milk and clean,	and 17 days for ussue samples.

CROP FIELD TRIALS ON BARLEY	PMRA # 1897954, 1897952
	and 1898338

A sufficient number of trials were conducted in NAFTA representative Regions in order to evaluate the magnitude of sedaxane residues in/on barley.

US Trials

A flowable concentrate formulation of sedaxane (SYN524464 FS) was applied as a seed treatment to barley at a target rate of 5 g a.i./100 kg seed. Prior to application of the test material, the seed received a maintenance treatment of fungicide and/or insecticide. Single control and duplicate treated samples of barley hay were harvested from each plot 45 days after planting (DAP), and barley straw and grain were harvested at maturity. At one trial site, a decline study was undertaken for barley hay, straw and grain.

Canadian Trials

Barley seed were treated with a flowable concentrate formulation of sedaxane (A16148C) at a target rate of 5 g a.i./100 kg seed. Single control and duplicate treated samples of barley hay were collected at growth stages BBCH 73-85, except for one untreated sample at BBCH 59, from 60-77 days after planting. Samples of barley grain and straw were collected at commercial harvest (BBCH 87-99), from 95-119 DAP. At one trial site, a decline study was undertaken for barley hay, straw and grain.

Side-by-side field trials were also conducted in Canada for sedaxane in/on barley target rate of 5-5.2 g a.i./100 kg seed) when used as a seed treatment combination product with two other currently registered active ingredients (sedaxane/ difenoconazole/metalaxyl-M FS formulation) or three other currently registered active ingredients (sedaxane/difenoconazole/metalaxyl-M/thiamethoxam FS formulation). Residues of sedaxane were determined in barley hay and grain.

For all trials, barley samples were analyzed for residues of sedaxane (as the 2 isomers SYN50810 and SYN508211), and the metabolites CSCD667584, CSCD658906, CSCD667555 (including contribution from the N-malonyl conjugate CSCD667556) and CSCD465008 using Method GRM023.03A (LC-MS/MS). The LOQ was 0.005 ppm for each sedaxane isomer and 0.01 ppm for each metabolite. Given the residue definition is sedaxane, both for enforcement and risk assessment, only the combined residues of the two sedaxane isomers, SYN508210 and SYN508211, are reported.

For the residue decline trial conducted in the US, total sedaxane residues (SYN508210 and SYN508211) did not accumulate in barley hay; and were not detected above the LOQ in/on straw and grain at any sampling interval.

Commodity	Total application (g a.i./100 kg seed)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.			
Total Sedaxane Residues (SYN508210 + SYN508211)											
US Trials											
Barley,	5	24	< 0.01	< 0.025	< 0.025	0.010	0.013	0.006			
Forage											
Barley,		24	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
Straw											
Barley,		24	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
Grain											
Canadian Tr	ials										
Barley, Hay	5-5.2	36	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
Barley,		24	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
Straw											
Barley,		36	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
Grain											

For the residue decline trial conducted in Canada, residues of sedaxane (SYN508210 and SYN508211) were not detected above the LOQ in/on barley hay, grain or straw at any sampling interval.

CROP FIELI	CROP FIELD TRIALS ON CANOLAPMRA # 1897960and 1897968										
A sufficient nu of sedaxane re	A sufficient number of trials were conducted in NAFTA representative Regions in order to evaluate the magnitude of sedaxane residues in/on canola.										
<u>US Trials</u> A flowable co target rate of 7 maintenance th maturity (84 to	<u>US Trials</u> A flowable concentrate formulation of sedaxane (SYN524464 FS) was applied as a seed treatment to canola at a target rate of 7.5 g a.i./100 kg seed. Prior to application of the test material, the canola seed also received a maintenance treatment of insecticide. Single control and duplicate treated canola seed samples were collected at maturity (84 to 232 DAP). A residue decline study was conducted at one trial site.										
Canadian Tria Canola seeds v g a.i./100 kg so commercial ha	<u>Canadian Trials</u> Canola seeds were treated with a flowable concentrate formulation (A16148C) of sedaxane, at a target rate of 5.9 g a.i./100 kg seed. Single control and duplicate treated samples of canola seed were collected at normal commercial harvest (BBCH 89), 91-132 DAP. A residue decline study was conducted at two trial sites.										
For all trials, c SYN508211), N-malonyl cor was 0.005 ppn sedaxane, both SYN508210 a	anola samples w and the metabol njugate CSCD66 n for each sedax n for enforcemer nd SYN508211,	vere analy lites CSC 57556) ar ane isom nt and risl , are repo	yzed for resi D667584, C ad CSCD465 er and 0.01 j k assessment rted.	dues of se SCD658 5008 usin ppm for e t, only the	edaxane (as th 906, CSCD66 g Method GR ach metabolit e combined re	the 2 isomers SY 7555 (includin M023.03A (LC e. Given the re- sidues of the tw	7N50810 and g contribution f 2-MS/MS). The sidue definition vo sedaxane iso	rom the LOQ is mers,			
In the residue than the LOQ	decline trials co in/on seed at all	nducted i sampling	n the US and g intervals.	d Canada	, residues of t	he two sedaxan	e isomers were	each less			
Commodity	Total application (g a.i./100 kg seed)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.			
Total Sedaxa	ne Residues (SY	/N50821	0 + SYN508	8211)							
US Trials											
Canola, Seed	7.5	16	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
Canadian Tri	als				·						
Canola, Seed	5.9	32	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0			
CROP FIELI	D TRIALS ON	SOYBE	AN				PMRA # 18	897964			

A sufficient number of trials were conducted in NAFTA representative Regions in order to evaluate the magnitude of sedaxane residues in/on soybean.

US Trials

A flowable concentrate formulation of sedaxane (SYN524464 FS) was applied as a seed treatment to soybean at a target rate of 40 g a.i./100 kg seed. Prior to application of the test material, the soybean seed also received a maintenance treatment of fungicide. Single control and duplicate treated samples of soybean forage and hay were harvested from each plot 45 DAP, and soybean seed was harvested at maturity. A residue decline study was conducted at two trial sites for soybean forage, hay and seed.

Soybean samples were analyzed for residues of sedaxane (as the 2 isomers SYN50810 and SYN508211), and the metabolites CSCD667584, CSCD658906, CSCD667555 (including contribution from the N-malonyl conjugate CSCD667556) and CSCD465008 using Method GRM023.03A (LC-MS/MS). The LOQ was 0.005 ppm for each sedaxane isomer and 0.01 ppm for each metabolite. Given the residue definition is sedaxane, both for enforcement and risk assessment, only the combined residues of the two sedaxane isomers, SYN508210 and SYN508211, are reported. For those samples analyzed multiple times, the mean was taken.

The residue decline data indicated that there was no accumulation of sedaxane residues in treated soybean forage, hay and seed samples.

Commodity	Total application (g a.i./100 kg seed)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.				
Total Sedaxa	Total Sedaxane Residues (SYN508210 + SYN508211)											
US Trials												
Soybean, Forage	40	40	< 0.01	< 0.065	< 0.05	0.01	0.012	0.009				
Soybean, Hay		40	< 0.01	0.43	0.31	0.01	0.027	0.071				
Soybean, Seed		40	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	0				
CROP FIELD TRIALS ON WHEAT PMRA#1897942, 1897947 and 1897335												

A sufficient number of trials were conducted in NAFTA representative Regions in order to evaluate the magnitude of sedaxane residues in/on wheat.

US Trials

A flowable concentrate formulation of sedaxane (SYN524464 FS) was applied as a seed treatment to wheat at a target rate of 5 g a.i./100 kg seed. Prior to application of the test material, the seed received a maintenance treatment of fungicide and insecticide. Single control and duplicate treated samples of wheat forage and hay were harvested from each plot 45 days after planting (DAP), and wheat straw and grain were harvested at maturity. A residue decline study was conducted for forage, hay, grain and straw at two trial sites.

Canadian Trials

Wheat seeds were treated with sedaxane (500FS) at a target rate of 5 g a.i./100 kg seed. Single control and duplicate treated samples of wheat forage were collected at growth stages BBCH 22-41 (31-50 DAP). Samples of wheat hay were collected at BBCH 61-85 (51-86 DAP), and wheat straw and grain samples were collected at normal commercial harvest (BBCH 89-99; 97-130 DAP). A residue decline study was conducted for forage, hay, grain and straw at two trial sites.

Side-by-side field trials were also conducted in Canada for sedaxane in/on wheat (target 5-5.2 g a.i./100 kg seed) when used as a seed treatment combination product with two other currently registered active ingredients (sedaxane/difenoconazole/metalaxyl-M FS formulation) or three other currently registered active ingredients (sedaxane/difenoconazole/metalaxyl-M/thiamethoxam FS formulation). Residues of sedaxane were determined in wheat forage and grain.

For all the trials conducted in the US and Canada, wheat samples were analyzed for residues of sedaxane (as the 2 isomers SYN50810 and SYN508211), and the metabolites CSCD667584, CSCD658906, CSCD667555 (including contribution from the N-malonyl conjugate CSCD667556) and CSCD465008 using Method GRM023.03A (LC-MS/MS). The LOQ was 0.005 ppm for each sedaxane isomer and 0.01 ppm for each metabolite. Given the residue definition is sedaxane, both for enforcement and risk assessment, only the combined residues of the two sedaxane isomers, SYB508210 and SYN508211, are reported. For those samples that underwent multiple analyses, the mean was calculated.

For the residue decline trials conducted in the US, total residues of sedaxane (SYN 508210 and SYN508211) did not accumulate in wheat forage and hay; and were not detected above the LOQ in grain and straw.

For the residue decline trials conducted in Canada, residues of sedaxane (SYN508210 and SYN508211) were not detected above the LOQ in/on wheat forage, hay, grain and straw at any sampling interval.

Commodity	Total application (g a.i./100 kg seed)	n	Min.	Max.	HAFT	Median (STMdR)	Mean (STMR)	Std. Dev.
Total Sedaxar	ne Residues (SY	(N50821	0 + SYN508					
US Trials								
Wheat,	5	40	< 0.01	< 0.015	< 0.015	0.01	0.011	0.001
Wheat, Hay		40	< 0.01	< 0.065	< 0.045	0.01	0.017	0.012
Wheat, Straw		40	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0
Wheat, Grain		40	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0
Canadian Tri	als			•				
Wheat, Forage	5-5.2	44	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	0
Wheat, Hay		32	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0
Wheat, Straw		32	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	0
Wheat, Grain		44	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0
CROP FIELI) TRIALS- OA	TS, RYE	E, TRITICA	LE				
No residue dat However, give commodities fi study, the crop	a were submitteen that residues of the wheat control of the wheat control of the trial residues of the trial r	d for crop of sedaxa rop field ue data fo	ne were not trials, and th or sedaxane	quantified at the TRF on wheat c	sedaxane on in the grain As were low an be extend	and were low in the grain fro led to oats, rye	in the associated om the corn met and triticale.	friticale. I feed abolism
FIELD ACCU	JMULATION	IN ROTA	ATIONAL	CROPS-		PM	RA # 1897977	
A limited field	rotational crop	study cor	nsisting of ty	vo trials wa	as conducted	l in two NAFT	A growing regi	ons
During these trials, bare ground was treated once with a flowable concentrate formulation of sedaxane (SYN524464) and incorporated into the soil at two applications rates: 8.40-9.07 g a.i./ha and 30.6-31.6 g a.i./ha. At each site, three rotational crops (spinach, radish and wheat) were planted at 60-72, 123-132, or 266-274 day plantback intervals (PBIs) in plots treated at the two rates. Spinach leaves, radishes (roots and tops), and wheat (forage, hay, straw, and grain) were harvested at typical agricultural intervals. Control crops were planted and harvested concurrently in non-treated plots. Spinach, radish and wheat samples were analyzed for residues of sedaxane (as the 2 isomers SYN508210 and SYN50821), and the metabolites CSCD659089, CSCD668403, CSCD465008, CSCD659087 and CSAA798670 using the LC-MS/MS analytical methods GRM023.03A and GRM023.11A. The LOQ, defined as the lowest level of method validation (LLMV), was 0.005 ppm each for SYN508210 and SYN508211, and 0.01 ppm for each of								
Results from this study indicate that residues of each sedaxane isomer (determined as SYN508210 and SYN508211), and the five metabolites were all below the method LOQ/LLMV (<0.005 ppm for each of the sedaxane isomers and <0.01 ppm for each of five metabolites) in/on spinach, radish, and wheat commodities at all PBIs of ~60, 120, and 270 days after application.								
Test Site	TOOD AND I	- <u></u> - 51	Derbye	hire United	d Kingdom	TWIKA	π 107/7/3	
Treatment			Seed tr	eatment	arxinguoin			
Rate			40 g a.i	./100 kg se	eds (target)			
End-use prod	uct		100FS	formulation	n (A14635B))		
Pre-harvest in	nterval		Barley	grain was c	collected at r	ormal comme	rcial harvest (Bl	BCH 89).

	508210 and SYN508211), and metabolites	s (CSCD667584,		
CSCD058900, CSCD059089, CSCD00840	3, CSCD667555- including contribution fro	om the N-malonyl		
conjugate CSCD557556, CSCC210616, and	d CSCD465008) were each below the LOQ	(<0.005 ppm for isomers		
and <0.01 ppm for each metabolite) in/on a	Il samples of barley grain, and the processed	d fractions cleaned grain,		
offal, abrasion dust, pot barley, bran and flo	bur. Therefore, processing factors could not	be determined.		
PROCESSED FOOD AND FEED- BAR	LEY PMR	A # 1897954		
Test Site	Northwood and Carrington, North Dakota			
Treatment	Seed Treatment			
Rate	15 g a.i./100 kg seed (target)			
End-use product	Flowable concentrate (SYN524464 FS)			
Pre-harvest interval	Barley grain was harvested at normal matu	ırity.		
Residues of the two sedaxane isomers (SYN	J508210 and SYN508211), and metabolites	s (CSCD667584,		
CSCD658906, CSCD667555- including contribution from the N-malonyl conjugate CSCD557556 and				
CSCD465008) were each below the LOQ (<0.005 ppm for isomers and <0.01 ppm for each metabolite) in/on the				
processed fractions pearled barely, flour and bran. Therefore, processing factors could not be determined.				
PROCESSED FOOD AND FEED- CANOLA PMRA#1897960				
Test Site	Carrington and Adrian, North Dakota			
Treatment	Seed Treatment			
Rate	22.5 g a.i./100 kg seeds (target)			
End-use product	Flowable concentrate (SYN524464 FS)			
Pre-harvest interval Canola seed were harvested at maturity, 100-109 DAP.				
Residues of the two sedaxane isomers (SYN	1508210 and SYN508211) and metabolites	(CSCD667584,		
CSCD6568906, CSCD667555- including c	ontribution from the N-malonyl conjugate (SCD557556, and		
CSCD465008) were each below the LOQ (< 0.005 ppm for isomers and < 0.01 ppm for	each metabolite) in/on all		
samples of canola seed, meal, and refined oil. Therefore, processing factors could not be determined.				
PROCESSED FOOD AND FEED- CANOLA PMRA#1897968				
Test Site	Spruce View, Alberta and Rosthem, Saska	atchewan		
Treatment	Seed treatment			
Rate	15 g a.i./100 kg seed (target)			
End-use product	Flowable concentrate (A16148C)			
Pre-harvest interval	Canola seed were collected at normal com	mercial harvest.		
The processing study was not completed size	the residues of the two sedaxane isomers (S	YN508210 and		
The processing study was not completed since residues of the two sedaxane isomers (SYN508210 and				
SYN508211) and metabolites (CSCD66758	4, CSCD658906, CSCD667555- including	contribution from the N-		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00	contribution from the N- 05 ppm for isomers and		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sam	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr	contribution from the N- 05 ppm for isomers and nent application of		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all san sedaxane at an exaggerated rate. Therefore,	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined	contribution from the N- 05 ppm for isomers and nent application of		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sat sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN	contribution from the N- 05 ppm for isomers and ment application of 		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sat sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore,	contribution from the N- 05 ppm for isomers and nent application of 		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sat sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sat sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target)	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sat sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS)	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sar sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity.	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia		
SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sat sedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval Residues of the two sedaxane isomers (SYN	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. V508210 and SYN508211) and metabolites	contribution from the N- 05 ppm for isomers and nent application of 		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all same sedaxane at an exaggerated rate. Therefore,	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. J508210 and SYN508211) and metabolites particulated of the N-malonyl conjugate C	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sams sedaxane at an exaggerated rate. Therefore,	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. IS08210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C 0.005 ppm for isomers and <0.01 ppm for 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all satisedaxane at an exaggerated rate. Therefore,	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 nples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. V508210 and SYN508211) and metabolites portribution from the N-malonyl conjugate C <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sansedaxane at an exaggerated rate. Therefore,	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatriprocessing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. J508210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ossing factors could not be		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sansedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval Residues of the two sedaxane isomers (SYN CSCD6568906, CSCD667555- including cc CSCD465008) were each below the LOQ (csamples of soybean seed, meal, hulls and resix subsamples of seed and in one sample exdetermined.	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. IS08210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate O <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO ach of meal and hulls. Therefore, the proces 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sansedaxane at an exaggerated rate. Therefore,	4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. V508210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO ach of meal and hulls. Therefore, the proces	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be PMRA#1897942		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all satisedaxane at an exaggerated rate. Therefore,	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatriprocessing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. V508210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LOA ach of meal and hulls. Therefore, the process AT Carrington, North Dakota and Bagley, Io 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be PMRA#1897942 wa		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all satisedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval Residues of the two sedaxane isomers (SYN CSCD6568906, CSCD667555- including care CSCD465008) were each below the LOQ (resamples of soybean seed, meal, hulls and resix subsamples of seed and in one sample exist subsamples of seed and in one sample exist site PROCESSED FOOD AND FEED- WHE Test Site	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatr processing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. J508210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO ach of meal and hulls. Therefore, the process AT Carrington, North Dakota and Bagley, Io Seed Treatment 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be PMRA#1897942 wa		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all sansedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval Residues of the two sedaxane isomers (SYN CSCD6568906, CSCD667555- including ccSCD465008) were each below the LOQ (samples of soybean seed, meal, hulls and re six subsamples of seed and in one sample endetermined. PROCESSED FOOD AND FEED- WHE Test Site Treatment	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatriprocessing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. ISO8210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C 0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO ach of meal and hulls. Therefore, the process AT Carrington, North Dakota and Bagley, Io Seed Treatment 15 g a.i./100 kg seed (target) 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be PMRA#1897942 wa		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all satisedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval Residues of the two sedaxane isomers (SYN CSCD6568906, CSCD667555- including cc CSCD465008) were each below the LOQ (samples of soybean seed, meal, hulls and re six subsamples of seed and in one sample exdetermined. PROCESSED FOOD AND FEED- WHE Test Site Treatment Residues of product Pre-harvest interval Residues of the two sedaxane isomers (SYN CSCD6568906, CSCD667555- including cc CSCD465008) were each below the LOQ (samples of soybean seed, meal, hulls and re six subsamples of seed and in one sample exdetermined. PROCESSED FOOD AND FEED- WHE Test Site Treatment Rate End-use product	 4, CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatriprocessing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. S08210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C 0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO ach of meal and hulls. Therefore, the proces AT Carrington, North Dakota and Bagley, Io Seed Treatment 15 g a.i./100 kg seed (target) Flowable concentrate (SYN524464 FS) 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be PMRA#1897942 wa		
The processing study was not completed sing SYN508211) and metabolites (CSCD66758 malonyl conjugate CSCD557556, and CSC <0.01 ppm for each metabolite) in/on all satisedaxane at an exaggerated rate. Therefore, PROCESSED FOOD AND FEED- SOYI Test Site Treatment Rate End-use product Pre-harvest interval Residues of the two sedaxane isomers (SYN CSCD6568906, CSCD667555- including cd CSCD465008) were each below the LOQ (cd samples of soybean seed, meal, hulls and re six subsamples of seed and in one sample endetermined. PROCESSED FOOD AND FEED- WHE Test Site Treatment Rate End-use product	 A. CSCD658906, CSCD667555- including D465008) were each below the LOQ (<0.00 mples of canola seed following a seed treatriprocessing factors could not be determined BEAN Northwood, North Dakota and Sycamore, Seed treatment 120 g a.i./100 kg seed (target) Flowable concentrate (SYN24464 FS) Soybean seed was collected at maturity. S08210 and SYN508211) and metabolites ontribution from the N-malonyl conjugate C <0.005 ppm for isomers and <0.01 ppm for fined oil, except for CSCD465008 at the LO ach of meal and hulls. Therefore, the process AT Carrington, North Dakota and Bagley, Io Seed Treatment 15 g a.i./100 kg seed (target) Flowable concentrate (SYN524464 FS) Wheat grain was collected at normal mat 	contribution from the N- 05 ppm for isomers and nent application of PMRA#1897964 Georgia (CSCD667584, CSCD557556, and each metabolite) in/on all OQ (0.01 ppm) in one of ssing factors could not be PMRA#1897942 wa		

Residues of the two sedaxane isomers (SYN508210 and SYN508211) and metabolites (CSCD667584, CSCD6568906, CSCD667555- including contribution from the N-malonyl conjugate CSCD557556, and CSCD465008) were each below the LOQ (<0.005 ppm for isomers and <0.01 ppm for each metabolite) in/on all samples of wheat grain, flour, bran, germ, middling and shorts. Therefore, processing factors could not be determined.

 LIVESTOCK FEEDING – DAIRY CATTLE
 PMRA # 1897971

 Three groups of lactating dairy cows (with 3 cows/group) were dosed orally with capsules containing sedaxane at three target doses equivalent to 0.1, 0.5 and 2 ppm in the diet (on a dry-weight basis) for 28 consecutive days. In addition, two control cows were dosed with blank gel capsules containing no sedaxane. The actual dose rates in the feed were 0.11, 0.54 and 2.15 ppm.

The cows were milked twice daily, and milk samples were composited daily for each cow. Samples of milk from study days -1, 1, 2, 3, 5, 7, 10, 14, 17, 21, 24, and 28 from all dose groups were taken for analysis. In addition, milk collected from one high dose animal on days 1, 3, 7, 14, 21, and 28 was also separated into cream and skimmed milk samples. Animals were sacrificed ~22-24 hours after the final dose on Study Day 28. Samples of liver, kidney, fat (mesenterial, perirenal, and subcutaneous) and muscle (round and loin) were collected from each cow.

Milk and tissue samples were analyzed for residues of the two sedaxane isomers (SYN508210 and SYN508211), and the para-phenol metabolite (CSCD658906) and the para-phenol-desmethyl metabolite (CSCD659087) using Analytical Method GRM023.10A (LC-MS/MS). The LOQs for all matrices are 0.005 ppm each for SYN508210 and SYN508211 (0.01 ppm total), and 0.01 ppm each for CSCD658906 and CSCD659087.

Residues of SYN508210, SYN508211, and CSCD659087 were below the LOQ in kidney and liver samples from all three doses. However, while residues of CSCD658906 were also below the LOQ (<0.01 ppm) in liver and kidney samples from the low and mid dose groups, they were somewhat above the LOQ in two of the three liver samples (0.0101-0.0273 ppm) and two of the three kidney samples (0.0121-0.0175 ppm) from the high dose group. Muscle and fat samples were analyzed from the high dose group only. These analyses indicated that residues of SYN508210, SYN508211, CSCD658906 and CSCD659087 were all below the respective LOQs in muscle and fat.

The estimated dietary burdens are 0.02 ppm for beef cattle, 0.14 ppm for dairy cattle and 0.01 ppm for swine. These are considered to be conservative estimates of the potential exposure to residues of sedaxane given that the US soybean field trials were conducted at exaggerated rates. Based on these residue data in dairy cattle commodities, finite residues of sedaxane are not anticipated in the meat, meat byproducts and milk of cattle from the approved uses of sedaxane.

LIVESTOCK FEEDING – LAYING HENS

A poultry feeding study with sedaxane was not submitted. During the hen metabolism study, animals were dosed with sedaxane at ~ 18.1-23.4 ppm in the diet. This dosage used corresponds to $1.8-2.3 \times 10^3$ the estimated dietary burden in poultry (i.e., 0.01 ppm). Finite residues of sedaxane are therefore not anticipated in the fat, meat, meat byproducts and eggs of poultry from the approved uses of sedaxane.

Table 6Food Residue Chemistry Overview of Metabolism Studies and Risk
Assessment

PLANT STUDIES					
RESIDUE DEFINITION FOR EN Primary crops Rotational crops	FORCEMENT	Seda:	xane		
RESIDUE DEFINITION FOR RIS Primary crops	SK ASSESSMENT	Seda	xane		
Rotational crops					
METABOLIC PROFILE IN DIVI	ERSE CROPS	The metabolism of sec soybean, wheat a	daxane was similar in nd Swiss chard.		
	ANIMAL STU	DIES			
ANIMALS		Rumi	nant		
RESIDUE DEFINITION FOR EN	FORCEMENT	Seda:	xane		
RESIDUE DEFINITION FOR RI	SK ASSESSMENT	Seda:	xane		
METABOLIC PROFILE IN ANIN (goat, hen, rat)	MALS	Yes			
FAT SOLUBLE RESIDUE		Yes, based on the log K_{ow} of 3.3. However, the TRRs did not concentrate in the fat samples analyzed from the goat and hen metabolism studies.			
DIETARY RISK FROM FOOD A	ND WATER				
		ESTIMATED RISK % of ACCEPTABLE DAILY INTAKE (ADI)			
	POPULATION	Food Only	Food and Water		
Basic chronic non-cancer dietary	All infants < 1 year	0.3	0.5		
risk	Children 1–2 years	0.8	0.9		
ADI = 0.06 mg/kg bw/day	Children 3 to 5 years	0.6	0.7		
Estimated chronic drinking	Children 6–12 years	0.3	0.4		
water concentration = $1.9 \ \mu g = i \ /I$	Youth 13–19 years	0.2	0.2		
1.7 µg a.i., L	Adults 20–49 years	0.1	0.2		
	Adults 50+ years	0.1	0.2		
	Females 13-49 years	0.1	0.2		
	Total population	0.2	0.3		

	POPULATION	ESTIMAT % of ACUTE REFER	ED RISK ENCE DOSE (ARfD)
		Food Only	Food and Water
Basic acute dietary exposure analysis, 95 th percentile	All infants < 1 year	0.19	0.26
ARfD = 0.3 mg/kg bw	Children 1–2 years	0.35	0.37
	Children 3 to 5 years	0.22	0.25
Estimated acute drinking water concentration = $1.9 \ \mu g a.i./L$	Children 6–12 years	0.15	0.16
	Youth 13–19 years	0.08	0.10
	Adults 20–49 years	0.06	0.08
	Adults 50+ years	0.05	0.06
	Females 13-49 years	0.06	0.07
	Total population	0.12	0.14
Basic Cancer Assessment (Q ₁ * = 0.00381) Estimated acute drinking water concentration = 1.9 μg a.i./L	Total Population	4.4 × 10 ⁻⁷	5.9 × 10 ⁻⁷

Table 7 Major Transformation Products in Environmental Media

Parent or transformation product - identity	DT ₅₀ s and/or maximum % AR Soil	DT ₅₀ s and or maximum % AR Water	DT ₅₀ s and or maximum % AR Sediment
Sedaxane, trans isomer shown (SYN508210) HF ₂ C HF ₂ C H	Aerobic soil:Aerobic soil:as seedtreatment, pyrazolelabel, DT_{50} :71-160daysAerobic soil:as seedtreatment, phenyllabel, DT_{50} :58-105daysAerobic soil:bareground treatment,pyrazolelabel, DT_{50} :296-377daysAerobic soil:bareground treatment,bothlabelsl, DT_{50} :60-367days	Water Direct photolysis DT ₅₀ : Aquatic photolysis DT ₅₀ : 45.6 days at 40°N - both labels Indirect photolysis (natural waters) DT ₅₀ : 17 days at 50°N, phenyl and pyrazole labels) Aerobic DT ₅₀ : 3.3-3.6 days, Total system DT ₅₀ : >179 days Anaerobic DT ₅₀ : 14.2 – 18.5 days, Total system DT ₅₀ : 179 > 2(0 days)	Aerobic system - Rapid partitioning from water to sediment: <i>ca</i> 40% applied sedaxane in water phase 7 DAT. Sediment: sedaxane <i>ca</i> 2% applied 0 DAT and 83-88% 70 DAT
		- > 500 days	(extrapolated)

CSCD465008 HF ₂ C N N H	Aerobic soil: 32% Aerobic soil biotrans study using 5008 as test substance yielded DT_{50} s of 40- 157 days (SFO)	Not reported, although aquatic biotransformation study reported 15 minor transformation products (max. 1% AR)	Aquatic biotransformation study reported 15 minor transformation products (max. <1% AR). No standards
CSCD667584 (SYN545722)	aerobic soil: max 4.9% AR (81 DAT)	Not reported, although aquatic biotransformation study reported 15 minor transformation products (max. 1% AR)	Identified as U14, max. reported as 0.05% AR at 70 DAT, but detected at 0.04% AR at 179 DAT in aerobic water/sediment system and reached 0.3% AR at 361 DAT in anaerobic water/sediment system
CSCD728931	aerobic soil: max 8.0% AR (80 DAT)		Not reported i.e. no reference standard used in analysis
CSAA798670 (SYN449410)	Aerobic soil: 15.4%AR Soil photolysis: 0.8- 1.8% AR	Direct Aqueous photolysis:12% AR max (sterile buffer solution) Indirect aqueous photolysis: 26% AR (sterile natural water)	Not reported i.e. no reference standard used in analysis
CSCC210616 (SYN508272)	Aerobic soil: 2.1% AR 241 DAT *unidentified minor transformation products noted in soil photolysis study	Direct aqueous photolysis: 1.6% AR @ 21 and 34 DAT *Indirect aqueous photolysis: 5.4% AR @ 28 DAT	Reference standard was reported in aerobic/anaerobic water/sediment system study. Not identified although as many as 15 minor transformation products reported.
CSCD668094	*unidentified minor transformation products noted in soil photolysis study	Direct Aqueous photolysis: 5% AR max (sterile buffer solution) *Indirect Aqueous photolysis: 15% AR max (sterile natural water)	Not reported i.e. no reference standard used in analysis

Table 8	Fate and Behaviour in the Environment

Study	Test substance	Value	Major Transformation	PMRA#
			products	
Abiotic				
transformation				
Phototransformation	sedaxane	DT ₅₀ : 213 – 311 days		1897989
on soil				
				PMRA
				Document
				Number:
Dl t tur u . C. uur . ti . u		5.1.1		189/988
Phototransformation	sedaxane	5.1 nours		189/990
In all Distance formation		(AOPWIN)		
Diotransformation in	aadaxana	DT : 60 = 267 days	CSCD465008	
aerobic soil	seuaxane	DT_{50} . 00 – 507 days	CSAA798670	
Biotransformation in	CSCD46500	DT_{90} . not observed DT_{190} . 101 157 days		1807002
aerobic soil	8	DT_{50} : not observed		109/992
Biotransformation in	sedavane	DT_{90} : 375 days		1897987
anaerobic soil	treated seed	DT_{50} : not observed		1077707
Mobility				
Adsorption /	sedaxane	ads: 2.96 – 22.56 L/kg	very highly mobile	1898007
desorption in soil		des: $4.60 - 34.15$ L/kg		10,000,
1				
Adsorption /	CSCD46500	ads: 0.02-0.10 L/kg	very highly mobile	1898009
desorption in soil	8	des: 0.06 – 0.10 L/kg		
Soil leaching	sedaxane	conducted using		1898010
		tropical soils, results		
		not relevant to Canada		
Volatilization	sedaxane	$v.p. = 6.5 \times 10^{-8} Pa$		1897765
		Henry's Law constant:		
		6.318×10^{5}		
Field studies	1	DT 110 121 1		100000
Field dissipation	sedaxane	$D1_{50}$: 119 – 131 days		1898002
		$DT \cdot 426 = 440 \text{ dava}$		189/998
Long torm (5 year)	A14625D	$D1_{90}$. 450 – 440 days	Voor 1: oll	1909006
Soil Accumulation	(100 FS)	0.073 mg/kg 127 DAT	transformation	1070000
Study	annlied as	0.075 mg/kg, 127 DA1	products <i oo<="" td=""><td></td></i>	
Study	treated seed	Year 2 [·] max_residues –	Products DOQ	
		0.0008 mg/kg 112	CSCD798670.	
		DAT	Year 2, 112 DAT.	
			0.0025 mg/kg	

Study	Test substance	Value	Major Transformation	PMRA#
Study type	Test material	Value	Major Transformation products	PMRA#
Abiotic transformation				
Hydrolysis		stable (>365 days)	none	1898011
Phototransformation in water	sedaxane	Direct: $DT_{50} = 45.6$ days adjusted for dark control,12-hour/day photoperiod, 40 °N latitude Indirect: $DT_{50} - 16.5$ days adjusted for dark control,12-hour/day photoperiod, 40 °N latitude	CSAA798670 CSCD668095 CSCD668094	1898012
Biotransformation				
Biotransformation in aerobic water systems	sedaxane	867 – 950 days	none	1898014
Biotransformation in anaerobic water systems	sedaxane	1945 – 4909 days	none	1898014

Table 9 Risks to Terrestrial Organisms (Screening Level Assessment)

Organism	Exposure	Endpoint value	Uncertainty factor	EEC	RQª	LOC Exceeded
-	-		applied	-	_	
Invertebrates						
Earthworm	14d-Acute	>1000 mg a.i./kg	2	0.005 mg	1.0×10^{-05}	no
		dw soil		a.i./kg soil		
Bee	48h-Oral	4.22 μg a.i./bee	1	0.0109 kg	2.3×10^{-03}	no
	(invalid study)	(4.73 kg a.i./ha)		a.i./ha		
						oral exposure
						not expected
	48h-Contact	98.2 µg a.i./bee	1	0.0109 kg	9.9×10^{-05}	no
		(109.98 kg a.i./ha)		a.i./ha		
						contact
						exposure not
						expected
Predatory	48h-Contact	24.6 mL EP/ha	1	5.0E-06 g	4.1×10^{-07}	no
arthropod		(12.3 g a.i./ha)		a.i./kg soil		
Parasitic	7d-Contact	320 mL EP/ha	1	5.0E-06 g	3.1×10^{-08}	no
arthropod		(160 g a.i./ha)		a.i./kg soil		
Predatory	Reproductive	NOEC < 0.000060	1	5.0E-06 g	8.3x10 ⁻⁰²	no
arthropod		g a.i./kg soil dw		a.i./kg soil		

Organism	Exposure	Endpoint value	Uncertainty factor applied ¹	EEC	RQ ^a	LOC Exceeded
Rove beetle	Reproductive	LOEC (# offspring) ≥0.000060 g a.i./kg dry soil	n/a	5.0E-06 g a.i./kg soil	8.3x10 ⁻⁰²	no
Vascular plants						
Vascular plant	21d-Seedling	EC ₂₅ >107 g	1	10.91 g	0.10	no
	emergence	a.i./ha		a.i./ha		

^a Risk Quotient (RQ) = exposure/toxicity

Table 10 Risk to Birds and Mammals (Screening Level Assessment)

Generic body weight of organism (kg)	Exposure (# seeds consumed/day)	Toxicity (# seeds consumed/day required to reach toxicity endpoint)	LOC ^a
	I	Birds	
Small hind		Acute: > 7266	< 0.02
Small bird	168	Dietary: > 1785	< 0.09
0.02		Reproduction: 1797	0.09
Madiana hind		Acute: > 36329	< 0.02
Medium bird	657	Dietary: > 8924	< 0.07
0.1		Reproduction: 8987	0.07
Lorgo hird		Acute: > 363291	< 0.005
Large bird	1917	Dietary: > 89241	< 0.02
1		Reproduction: 89873	0.02
	Ma	mmals	
Small mammal	72	Acute: 2.82x10 ³	0.02
0.015	/3	Reproduction: 3.89x10 ³	0.02
Medium mammal	140	Acute: >6.59x10 ³	0.02
0.035	149	Reproduction: 9.08x10 ²	0.16
Large mammal	2267	Acute: 2.6x10 ⁴	0.09
		Reproduction: 7.59x10 ⁴	0.03

^a Level of Concern (LOC)

Organism	Exposure	Endpoint value	EEC	RQ ^a	Risk
Freshwater species	-	Value	-	-	-
Daphnia magna	48h-Acute	5.96 mg a.i./L	0.0014 mg	2.35x10 ⁻⁰⁴	negligible
	21d-Chronic	0.75 mg a.i./L	a.i./L	1.87×10^{-03}	negligible
Rainbow trout	96h-Acute	1.0 mg a.i./L		1.40×10^{-03}	negligible
Common carp	96h-Acute	0.62 mg ai/L		2.26×10^{-03}	negligible
Fathead minnow	33d- Early life stage (Chronic)	0.165 mg ai/L		8.48x10 ⁻⁰³	negligible
Freshwater alga	96h-Acute	1.6 mg a.i./L		8.75x10 ⁻⁰⁴	negligible
(Pseudokirchneriella					
subcapitata)					
Vascular plant	7d-Dissolved	2.7 mg a.i./L		5.19x10 ⁻⁰⁴	negligible
Marine species	1	1			r
Crustacean	96h-Acute	1.5 mg a.i./L	0.0014 mg	9.33×10^{-04}	negligible
Mysidopsis bahia			a.i./L		
Mollusk	96h-Acute	3.5 mg a.i./L		4.00×10^{-04}	negligible
Crassostrea virginica					
sheepshead minnow	Acute	$EC_{50} = 4.2 \text{ mg}$		3.33×10^{-04}	negligible
(Cyprinodon		a.i./L			
variegatus)					
Marine alga	Acute	EC ₅₀ >6.0 mg		2.33×10^{-04}	negligible
Skeletonema costatum		a.i./L			
Amphibians	Lowest acute	0.62 mg ai/L/10	0.007 mg	0.11	negligible
Î	fish endpoint	= 0.062 mg	a.i./L		
	used as	a.i./L	(assuming 15		
	conservative		cm water		
	surrogate		body)		

Table 11	Risks to Aquati	c Organisms	(Screening]	Level Assessment)
	Itions to riquit	c of gambins		

^a Risk Quotient (RQ) = exposure/toxicity

Table 12Toxic Substances Management Policy Considerations-Comparison to TSMP
Track 1 Criteria

TSMP Track 1	TSMP Track 1		Active Ingredient	
Criteria	Criterion value		Endpoints	
CEPA toxic or CEPA	Yes		Yes	
toxic equivalent ^a				
Predominantly	Yes		Yes	
anthropogenic ^b		•		
Persistence ^c :	Soil	Half-life	Half-life = 367 days (aerobic soil)	
		≥182		
		days		
	Water	Half-life	Half-life = 18.5 days	
		≥ 182	(anaerobic)	
		days		
	Sediment	Half-life	Half-life = 867 - 4909 days	
		\geq 365		
		days		
	Air	Half-life \geq	Half-life or volatilisation is not an important route	
		2 days or	of dissipation and long-range atmospheric transport	
		evidence	is unlikely to occur based on the vapour pressure	
		of long	$(6.5 \times 10^{-8} \text{ Pa})$ and Henry's Law Constant (6.318×10^{9}) .	
		range		
		transport		
Bioaccumulation ^d	$Log K_{ow} \ge 5$	5	3.3	
	$BCF \ge 5000$		97	
	$BAF \ge 5000$)	not available	
Is the chemical a TSMP Track 1 substance (all		ince (all	No, does not meet all TSMP Track 1 criteria.	
four criteria must be met)?				

^a All pesticides will be considered CEPA-toxic or CEPA toxic equivalent for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (i.e., all other TSMP criteria are met).

^b The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

^c If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

^d Field data (for example, BAFs) are preferred over laboratory data (for example, BCFs) which, in turn, are preferred over chemical properties (for example, Log K_{ow}).

Table 13Fungicidal active ingredients in alternative seed treatments registered for
crop diseases on the Sedaxane 500FS Fungicide, A17511B Seed Treatment
and A16874F Seed Treatment Labels

Diseases	Crops	Active Ingredients	
		(Resistance Management Group)	
seed rots	cereals (barley, oats, rye	carbathiin (7)	
	and/or wheat)	carbathiin (7) + thiram $(M3)$	
		difenoconazole (3) + metalaxyl (4)	
		ipconazole (3)	
		metalaxyl(4) + tebuconazole(3)	
		prothioconazole (3)	
		tebuconazole (3)	
		tebuconazole (3) + thiram (M3)	
		thiram (M3) + triticonazole (3)	
		triticonazole (3)	
seedling blight, root	cereals (barley, oats, rye	carbathiin (7) + thiram (M3)	
rot, or damping-off	and/or wheat)	difenoconazole (3) + metalaxyl (4)	
caused by		fludioxonil (12)	
<i>Fusarium</i> or		metalaxyl (4) + prothioconazole (3) +	
Rhizoctonia		tebuconazole (3)	
		metalaxyl (4) + tebuconazole (3)	
		prothioconazole (3)	
		tebuconazole (3)	
		tebuconazole (3) + thiram (M3)	
		thiram (M3) + triticonazole (3)	
		triticonazole (3)	
seedling blight, root	cereals (barley, oats, rye	carbathiin (7) + thiram (M3)	
rot, or damping-off	and/or wheat)	difenoconazole (3) + metalaxyl (4)	
caused by		metalaxyl (4) + prothioconazole (3) +	
Fusarium		tebuconazole (3)	
		metalaxyl (4) + tebuconazole (3)	
		tebuconazole (3) + thiram (M3)	
		thiram (M3) + triticonazole (3)	
seed decay,	soybean	azoxystrobin (11)	
seedling blight or		captan (M4)	
damping-off caused		arcarbathin (7) + thiram (M3)	
by Rhizoctonia		fludioxonil (12)	
		$\frac{1}{1} + \frac{1}{1} + \frac{1}$	
		metalaxyl (4)	
		metalaxyl (4) + trifloxystrobin (11)	
		thiram (M3)	

Diseases	Crops	Active Ingredients
	1	(Resistance Management Group)
seed decay.	canola	azoxystrobin (11)
seedling blight or		Bacillus subtilis, MBI 600 (44)
damping-off caused		carbathiin (7) + metalaxyl (4) + thiram $(M3)$
by Rhizoctonia		carbathiin (7) + metalaxyl (4) +
		trifloxystrobin (11)
		carbathiin (7) + thiram (M3)
		difenoconazole (3) + fludioxonil (12) +
		metalaxyl (4)
		fludioxonil (12)
		iprodione (2) + thiram (M3)
		trifloxystrobin (11)
seed-borne septoria	barley, rye, winter wheat	carbathiin (7) + thiram (M3)
-		difenoconazole (3) + metalaxyl (4)
		metalaxyl(4) + tebuconazole(3)
		tebuconazole (3) + thiram (M3)
covered smut	barley, oats	carbathiin (7)
		carbathiin (7) + thiram $(M3)$
		difenoconazole (3) + metalaxyl (4)
		ipconazole (3)
		mancozeb (M3)
		maneb (M3)
		metalaxyl (4) + prothioconazole (3) +
		tebuconazole (3)
		metalaxyl(4) + tebuconazole(3)
		prothioconazole (3)
		tebuconazole (3)
		tebuconazole (3) + thiram $(M3)$
		thiram (M3) + triticonazole (3)
		triadimenol (3)
		triticonazole (3)
false loose smut	barley	carbathiin (7)
		carbathiin (7) + thiram (M3)
		difenoconazole (3) + metalaxyl (4)
		ipconazole (3)
		mancozeb (M3)
		maneb (M3)
		metalaxyl (4) + prothioconazole (3) +
		tebuconazole (3)
		prothioconazole (3)
		tebuconazole (3)
		tebuconazole (3) + thiram (M3)
		thiram (M3) + triticonazole (3)
		triadimenol (3)
		triticonazole (3)

Diseases	Crops	Active Ingredients
trava la aga arrevt	harlary acts mys and/on	(Resistance Wanagement Group)
true loose smut	barley, oats, rye and/or	$\frac{\text{carbatnin}(7)}{1 + 1 + 1 + 1 + 1 + 1}$
	wneat	$\frac{\text{carbatnin}(7) + \text{thiram}(M3)}{1 + (2) + (1 + 1)(4)}$
		$\frac{\text{difenoconazole}(3) + \text{metalaxyl}(4)}{1 + (2)}$
		ipconazole (3)
		metalaxyl (4) + prothioconazole (3) + tehuconazole (3)
		$\frac{1}{10000000000000000000000000000000000$
		prothioconazole (3)
		tobuconazole (3)
		tebuconazole (3) + thiram $(M3)$
		triadimonal (2)
		triticonazola (2)
aamman raat rat	barlay agts rya and/ar	arbathiin (7)
	wheat	$\frac{\text{Carbathiin}(7)}{\text{Carbathiin}(7) + \text{thiram}(M2)}$
	wilcat	difenseonazola (2) + matalayyl (4)
		inconazola (2)
		manah (M2)
		111111111111111111111111111111111111
		tehuconazole (3)
		$\frac{1}{1} \frac{1}{1} \frac{1}$
		prothioconazole (3)
		tebuconazole (3)
		tebuconazole (3) + thiram $(M3)$
		thiram $(M3)$ + triticonazole (3)
		triadimenol (3)
		triticonazole (3)
fusarium crown and	harley rye triticale	difenoconazole (3) + metalaxyl (4)
foot rot	winter and spring wheat	inconazole (3)
1001101	whiter und spring wheat	metalaxyl (4) + prothioconazole (3) +
		tebuconazole (3)
		metalaxyl(4) + tebuconazole(3)
		prothioconazole (3)
		tebuconazole (3)
		tebuconazole (3) + thiram $(M3)$
		thiram $(M3)$ + triticonazole (3)
		triticonazole (3)
take-all	harley rye triticale	difencentazole (3) + metalaxyl (4)
	winter and spring wheat	triadimenol (3)

Diseases	Crops	Active Ingredients (Resistance Management Group)
aamman hunt	rue winter and spring	ourbathiin (7)
	Tye, white and spring	
	wheat	$\operatorname{carbathin}(7) + \operatorname{thiram}(M3)$
		difenoconazole (3) + metalaxyl (4)
		maneb (M3)
		metalaxyl (4) + prothioconazole (3) +
		tebuconazole (3)
		metalaxyl(4) + tebuconazole(3)
		prothioconazole (3)
		tebuconazole (3)
		tebuconazole (3) + thiram $(M3)$
		thiram (M3) + triticonazole (3)
		triticonazole (3)
dwarf bunt	rye and winter wheat	carbathiin (7) + thiram (M3)
		difenoconazole (3) + metalaxyl (4)
		mancozeb (M3)
		triadimenol (3)
septoria leaf blotch	winter wheat	difenoconazole (3) + metalaxyl (4)

Table 14Use (label) claims for A16874F Seed Treatment and A17511B SeedTreatment proposed by applicant and whether acceptable or unsupported

Proposed use claim	Supported Use
To control general seed rots on barley, oats, rye, triticale, winter wheat and spring wheat, apply A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control seedling blight, root rot, and damping-off caused by seed- and soil- borne <i>Fusarium</i> spp., <i>Rhizoctonia</i> spp., or <i>Pythium</i> spp. on barley, oats, rye, triticale, winter wheat and spring wheat, apply A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control seed-borne septoria on barley, rye, and winter wheat, apply A17511B Seed Treatment at a rate of 650 mL per 100 kg of seed or A16874F Seed Treatment at a rate of 360 mL per 100 kg of seed. To control covered smut on barley and oats, apply A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed Treatment at a	Supported as proposed
rate of 180-360 mL per 100 kg of seed of A10074F Seed Treatment at a rate of 180-360 mL per 100 kg of seed. To control false loose smut on barley, apply A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control (true) loose smut on barley, oats, triticale, winter wheat and spring wheat, apply A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed Treatment at a rate of 180-360 mL per 100 kg of seed.	

Appendix I

	0 ()
Proposed use claim	Supported
	Use
To suppress common root rot on barley, oats, rye, triticale, winter wheat and	
spring wheat, apply A17511B Seed Treatment at a rate of 325-650 mL per	
100 kg of seed or A16874F Seed Treatment at a rate of 180-360 mL per 100	
kg of seed.	
To suppress fusarium crown and foot rot on barley, rye, triticale, winter wheat	
and spring wheat, apply A17511B Seed Treatment at a rate of 325-650 mL per	
100 kg of seed or A16874F Seed Treatment at a rate of 180-360 mL per 100	
kg of seed.	
To suppress take-all on barley, rye, triticale, winter wheat and spring wheat,	
apply A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or	
A16874F Seed Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control common bunt on rye, winter wheat and spring wheat, apply	
A17511B Seed Treatment at a rate of 325-650 mL per 100 kg of seed or	
A16874F Seed Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control dwarf bunt on rye and winter wheat, apply A17511B Seed	
Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed	
Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control dwarf bunt on rye and winter wheat, apply A17511B Seed	
Treatment at a rate of 325-650 mL per 100 kg of seed or A16874F Seed	
Treatment at a rate of 180-360 mL per 100 kg of seed.	
To control early season septoria leaf blotch on winter wheat, apply A17511B	
Seed Treatment at a rate of 650 mL per 100 kg of seed or A16874F Seed	
Treatment at a rate of 360 mL per 100 kg of seed.	
To control wireworm on barley, oats, rye, triticale, winter wheat and spring	
wheat, apply A17511B Seed Treatment at a rate of 650 mL per 100 kg of	
seed.	
To suppress wireworm on barley, oats, rye, triticale, winter wheat and spring	
wheat, apply A17511B Seed Treatment at a rate of 325 mL per 100 kg of	
seed.	

Table 15Sedaxane 500FS Fungicide use (label) claims proposed by applicant and
whether acceptable or unsupported

Proposed use claim	Supported Use
To control (true) loose smut on barley and wheat, apply Sedaxane 500FS Fungicide as a seed treatment at a rate of 5-10 mL per 100 kg seed.	Supported as
<i>solani</i> on barley, wheat, oats, rye, triticale, canola, and soybeans, apply Sedaxane 500FS Fungicide as a seed treatment at a rate of 5-10 mL per 100 kg	proposed
seed.	

Appendix II Supplemental Maximum Residue Limit Information—International Situation and Trade Implications

MRLs may vary from one country to another for a number of reasons, including differences in pesticide use patterns and the locations of the field crop trials used to generate residue chemistry data. As per Table 1, the proposed MRLs differ from the corresponding tolerances established in the United States (tolerances listed in 40 CFR Part 180 by pesticide). In the US, residues of sedaxane in/on triticale are covered under the tolerance established for sedaxane in/on wheat grain, and tolerances are not established for sedaxane in/on any livestock commodity. Currently, Codex¹ MRLs (Codex MRLs searchable by pesticide or commodity) have not been established for sedaxane in/on any commodity.

Table 1Comparison of Canadian MRLs, American Tolerances and Codex MRLs
(where different)

Food Commodity	Canadian MRL (ppm)	American Tolerance (ppm)	Codex MRL (ppm)
Triticale	0.01	No tolerance established*	No MRL
			established
Fat of cattle, goats, hogs,	0.01	No tolerance established	No MRL
horses, poultry and sheep			established
Meat of cattle, goats, hogs,	0.01	No tolerance established	No MRL
horses, poultry and sheep			established
Meat byproducts of cattle,	0.01	No tolerance established	No MRL
goats, hogs, horses, poultry and sheep			established
Eggs	0.01	No tolerance established	No MRL
			established
Milk	0.01	No tolerance established	No MRL
			established

*Residues of sedaxane in/on triticale are covered under the tolerance established for sedaxane in/on wheat grain.
References

A. List of Studies/Information Submitted by Registrant

1.0 Chemistry

PMRA Document Number: 1897733 Reference: 2010, SYN524464 - GJR - Document J - Confidential Information, DACO: 2.11.1, 11.2,2.11.3,2.11.4,2.12.1,2.12.2,2.13.3,2.13.4,2.16,4.2.9,4.3.8,4.4.5,4.5.8,4.8, Document J,IIA 1.10.1,IIA 1.10.2,IIA 1.11.1,IIA 1.11.2,IIA 1.12,IIA 1.8.1,IIA 1.8.2, IIA 1.9.1.1,I

PMRA Document Number: 1897765 Reference: 2010, Sedaxane - Physico-Chemical Studies of pure and technical Substance (Section 1), DACO: 2.13.2,2.14.1,2.14.10,2.14.11,2.14.12,2.14.13,2.14.14, 2.14.2, 2.14.3,2.14.4,2.14.5,2.14.6,2.14.7,2.14.8,2.14.9,2.16,8.2.3.2,8.2.3.3,8.2.3.3,2,8.2.3.3,3, IIA 2.1.1,I

PMRA Document Number: 1897766 Reference: 2009, Sedaxane tech. - Assay by liquid chromatography, DACO: 2.13.1, IIA 4.2.1

PMRA Document Number: 1897767 Reference: 2009, Sedaxane - Validation of analytical method SA-44/1, DACO: 2.13.1,IIA 4.2.1

PMRA Document Number: 2027762 Reference: 2011, Impurities of Human Health or Environmental Concern, DACO: 2.13.4 CBI

PMRA Document Number: 2031316 Reference: Frink, C. 1996. A perspective on metals in soils. Journal of Soil Contamination 5(4): 329-359. DACO: 2.16

PMRA Document Number: 2038023 Reference: 2011, Sedaxane - Statement on Final Report (Study 119375) concerning mass spectrum, DACO: 2.13.2,IIA 2.5.1.4

PMRA Document Number: 2046166 Reference: 2011, Impurities - Clarification Response, DACO: 2.13.4 CBI

PMRA Document Number: 2059047 Reference: 2011, Sedaxane Technical - Clarification Response - Impurties of Human Health or Environmental Concern and Batch Data, DACO: 2.13.3,2.13.4 CBI PMRA Document Number: 2059721 Reference: 2010, SYN524464 - GJR - Document J - Confidential Information, DACO: 2.11.1,2.11.2,2.11.3,2.11.4,2.12.1,2.12.2,2.13.3,2.13.4,2.16,4.2.9,4.3.8,4.4.5, 4.5.8,4.8,Document J,IIA 1.10.1,IIA 1.10.2,IIA 1.11.1,IIA 1.11.2,IIA 1.12,IIA 1.8.1, IIA 1.8.2,IIA 1.9.1.1,I

PMRA Document Number: 2059722 Reference: 2010, Sedaxane - Confidential Studies, DACO: 2.13.3,2.13.4,2.16, Document J,IIA 1.11.1,IIA 1.11.2,IIA 1.12,IIA 4.2.3 CBI

PMRA Document Number: 2062165 Reference: 2011, Sedaxane: Determination of [CBI REMOVED] Content in Five Production Batches by [CBI REMOVED], DACO: 2.13.3 CBI

PMRA Document Number: 1897791 Reference: 2009, Independent Laboratory Validation of the Analytical Method GRM023.02A, Residue Method for Determination of SYN524464 as SYN508210 and SYN508211 in Soil, DACO: 8.2.2.1,IIA 4.4

PMRA Document Number: 1897792 Reference: 2010, Amended - SYN524464 - Validation of an Analytical Method for Determination of CSCD465008 and CSAA798670 in Soil, DACO: 8.2.2.1,IIA 4.4

PMRA Document Number: 1897794 Reference: 2010, Amended - SYN524464 - Validation of an Analytical Method for Determination of CSCC210616 in Soil, DACO: 8.2.2.1,IIA 4.4

PMRA Document Number: 1897796

Reference: 2009, SYN524464 - Analytical Method for the Determination of Residues of the Metabolites CSCD465008 and CSAA798670 in Soil. Final Determination by LC-MS/MS, DACO: 8.2.2.1,IIA 4.4

PMRA Document Number: 1897798

Reference: 2009, SYN524464 - Analytical Method for the Determination of Residues of the Metabolite CSCC210616 in Soil. Final Determination by LC-MS/MS, DACO: 8.2.2.1,IIA 4.4

PMRA Document Number: 1897801 Reference: 2008, SYN524464 - Residue Method for the Determination of Residues of SYN524464 as SYN508210 and SYN508211 in Soil, DACO: 8.2.2.1, IIA 4.4

PMRA Document Number: 1897803

Reference: 2008, Amended - SYN524464 - Validation of an Analytical Method for the Determination of SYN524464 as SYN508210 and SYN508211 in Soil, DACO: 8.2.2.1, IIA 4.4

PMRA Document Number: 1897806

Reference: 2009, Independent Laboratory Validation of the Analytical Method GRM023.04A, SYN524464 - Analytical Method for the Determination of Residues of the Metabolite SYN508272 in Soil - Final Determination by LC-MS/MS, DACO: 8.2.2.1, IIA 4.4

PMRA Document Number: 1897809

Reference: 2009, SYN524464 - Validation of the Analytical Method GRM023.06A for the Determination of Residues of SYN508210 and SYN508211 and the Metabolites CSCC210616, CSCD465008 and CSAA798670 in Water., DACO: 8.2.2.3,IIA 4.5

PMRA Document Number: 1897812

Reference: 2010, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 and the Metabolites CACC210616, CSCD465008 and CSAA798670 in Water. Final Determination by LC-MS/MS., DACO: 8.2.2.3,IIA 4.5

PMRA Document Number: 1898266

Reference: 2010, A17511B - Physico-chemical studies of the formulation (Section 1), DACO: 3.5.1,3.5.11,3.5.12,3.5.2,3.5.3,3.5.6,3.5.7,3.5.8,3.5.9,3.7,IIIA 2.1,IIIA 2.15, IIIA 2.2.1,IIIA 2.2.2,IIIA 2.3.1,IIIA 2.3.3,IIIA 2.4.2,IIIA 2.5.2,IIIA 2.6.1

PMRA Document Number: 1898267 Reference: 2010, Determination of CGA169374, CGA293343, CGA329351 and SYN524464 in A17511B, DACO: 3.4.1,IIIA 5.2.1

PMRA Document Number: 1898268 Reference: 2010, A17511B - Validation of analytical method SF-316-1, DACO: 3.4.1, IIIA 5.2.1

PMRA Document Number:1934622 Reference: 2009, A17511B – [CBI REMOVED] - Part of Document H, DACO: 3.2.1,3.3.1,3.3.2,IIIA 1.4.4 CBI

PMRA Document Number:1934623 Reference: 2009, Specification – [CBI REMOVED], Blend, DACO: 3.2.1,3.3.1,3.3.2, IIIA 1.4.4 CBI

PMRA Document Number: 2027776 Reference: 2011, Formulation Process, DACO: 3.2.2 CBI

PMRA Document Number: 2027779 Reference: 2011, A17511B – Content of Active Ingredient(s) and Corrosion Characteristics in Fluorinated HDPE After Storage for 1 Year at 20 C, DACO: 3.5.10,3.5.14 PMRA Document Number: 2027780 Reference: 2011, A17511B - Content of Active Ingredient(s) and Corrosion Characteristics in Nonfluorinated HDPE after Storage for 1 Year at 20 C, DACO: 3.5.10,3.5.14

PMRA Document Number: 2029498 Reference: 2011, A17511B Seed Treatment: Clarification 2: DACO 3.3.2 - Statement of Product Specification Form (OECD IIIA 1.4.1, 1.4.2, 1.4.3.1, 1.4.4), DACO: 3.3.2 CBI

PMRA Document Number: 1898319 Reference: 2010, A16874F - Physico-chemical studies of the formulation (section 1), DACO: 3.5.1,3.5.10,3.5.11,3.5.12,3.5.2,3.5.3,3.5.6,3.5.7,3.5.8,3.5.9,3.7,8.2.2.1,8.2.3.6, IIIA 2.1,IIIA 2.15,IIIA 2.2.1,IIIA 2.2.2,IIIA 2.3.1,IIIA 2.3.3,IIIA 2.4.1,IIIA 2.4.2,IIIA 2.

PMRA Document Number: 1898322 Reference: 2009, Determination of CGA169374, CGA329351, SYN524464 in A16874F, DACO: 3.4.1,IIIA 5.2.1

PMRA Document Number: 1898324 Reference: 2009, A16874F - Validation of analytical method SF-339/1, DACO: 3.4.1, IIIA 5.2.1

PMRA Document Number: 2016081 Reference: 2011, Difenconazole/Metalaxyl-M/Sedaxane FS (066.2/016.5/013.8) (A16874F) - One Year Storage Stability at Ambient Temperature and Corrosion Characteristics - Addendum to MRID No. 47919745, DACO: 3.5.10,IIIA 2.7.2

PMRA Document Number: 2027657 Reference: 2011, Formulation Process, DACO: 3.2.2 CBI

PMRA Document Number: 2029511 Reference: 2011, A16874F Seed Treatment: Clarification 2: DACO 3.3.2 - Statement of Product Specification Form (OECD IIIA 1.4.1, 1.4.2, 1.4.3.1, 1.4.4), DACO: 3.3.2 CBI

PMRA Document Number: 1898364 Reference: 2010 A 16148C - Physico-chemical st

Reference: 2010, A16148C - Physico-chemical studies of the formulation (Section 1), DACO: 3.5.1,3.5.10,3.5.11,3.5.12,3.5.14,3.5.2,3.5.3,3.5.6,3.5.7,3.5.8,3.5.9,3.7,8.2.2.1, 8.2.2.2,8.2.3.6,IIIA 2.1,IIIA 2.10.1,IIIA 2.10.2,IIIA 2.13,IIIA 2.15,IIIA 2.2.1, IIIA 2.2.2,III

PMRA Document Number: 1898365 Reference: 2008, Determination of SYN524464 in A16148C and A16148F, DACO: 3.4.1,IIIA 5.2.1

PMRA Document Number: 1898366 Reference: 2008, A16148C - A16148F - Validation of analytical method SF-311-1, DACO: 3.4.1, IIIA 5.2.1 PMRA Document Number: 2029342 Reference: 2011, Formulation Process, DACO: 3.2.2 CBI

PMRA Document Number: 2029526 Reference: 2011, Sedaxane 500FS Fungicide: Clarification 2: DACO 3.3.2 – Statement of Product Specification Form (OECD IIIA 1.4.1, 1.4.2, 1.4.3.1, 1.4.4), DACO: 3.3.2 CBI

2.0 Human and Animal Health

PMRA Document Number: 1897819 Reference: 2009, SYN524464 - Tissue Depletion in the Rat Following Single Oral Administration of 1 mg or 80 mg [Pyrazole-5-14C]-SYN524464/kg, DACO: 4.5.9, IIA 5.1.1

PMRA Document Number: 1897822

Reference: 2009, SYN524464 - Excretion and Tissue Distribution in the Rat Following Single Oral Administration of 1 mg or 80 mg [Pyrazole-5-14C]-SYN524464/kg, DACO: 4.5.9,IIA 5.1.1

PMRA Document Number: 1897824 Reference: 2009, Amended - SYN524464 - Excretion in Bile Duct Cannulated Rats Following Single Oral Administration of 1 mg or 80 mg [pyrazole-5-14C] SYN524464/kg, DACO: 4.5.9,IIA 5.1.1

PMRA Document Number: 1897827

Reference: 2009, SYN524464 - Pharmacokinetics in the Rat Following a Single Oral Administration of 1 mg or 80 mg [Pyrazole-5-14C]-SYN524464/kg, DACO: 4.5.9, IIA 5.1.1

PMRA Document Number: 1897829 Reference: 2009, Amended - SYN524464 - Excretion in Bile Duct Cannulated Rats Following Single Oral Administration of 1 mg or 80 mg [phenyl-U-14C] SYN524464/kg, DACO: 4.5.9, IIA 5.1.1, IIA 5.1.2

PMRA Document Number: 1897832

Reference: 2009, SYN524464 - Investigation of the Nature and Identity of Radiolabelled Metabolites Present in Plasma, Urine, Faeces and Bile Collected from Rats Following Oral Administration of [14C]-SYN524464, DACO: 4.5.9,IIA 5.1.1,IIA 5.1.2

PMRA Document Number: 1897834

Reference: 2009, SYN524464- Tissue Distribution and Elimination in the Rat Following Repeated Daily Oral Administration of 1 mg [Pyrazole-5-14C]-SYN524464/kg, DACO: 4.5.9,IIA 5.1.3 PMRA Document Number: 1897837 Reference: 2010, SYN524464 - A 28-Day Dietary Immunotoxicity Study in Male Mice, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10

PMRA Document Number: 1897840 Reference: 2010, Amended - SYN508210, SYN508211 and SYN524464 - 28 Day Comparative Study in the Rat, DACO: 4.2.9,4.3.8,4.4.5,4.5.8,4.8,IIA 5.10

PMRA Document Number: 1897844 Reference: 2008, SYN524464 - Acute oral toxicity study in the rat, DACO: 4.2.1, IIA 5.2.1

PMRA Document Number: 1897848 Reference: 2007, SYN524464 - Acute Dermal Toxicity Study In The Rat, DACO: 4.2.2,IIA 5.2.2

PMRA Document Number: 1897850 Reference: 2008, SYN524464 - 4-hour acute inhalation toxicity study in the rat, DACO: 4.2.3,IIA 5.2.3

PMRA Document Number: 1897853 Reference: 2007, Amended - SYN524464 - Primary Skin Irritation In The Rabbit, DACO: 4.2.5,IIA 5.2.4

PMRA Document Number: 1897856 Reference: 2007, Amended - SYN524464 - Primary Eye Irritation In The Rabbit, DACO: 4.2.4,IIA 5.2.5

PMRA Document Number: 1897858 Reference: 2007, SYN524464 - Local Lymph Node Assay In The Mouse, DACO: 4.2.6,IIA 5.2.6

PMRA Document Number: 1897860 Reference: 2008, SYN524464 - 4-Week Oral (Capsule) Toxicity Study in the Beagle Dog, DACO: 4.3.3,IIA 5.3.1

PMRA Document Number: 1897863 Reference: 2008, SYN524464 - 4 Week Mouse Dietary Preliminary Study, DACO: 4.3.3,IIA 5.3.1

PMRA Document Number: 1897866 Reference: 2007, SYN524464A - 90 day dietary toxicity study in rat, DACO: 4.3.1, IIA 5.3.2

PMRA Document Number: 1897869 Reference: 2008, SYN524464 - 90 Day Mouse Preliminary Carcinogenicity Study, DACO: 4.3.1,IIA 5.3.2 PMRA Document Number: 1897873 Reference: 2009, Amended - SYN524464 - 13 Week Rat Dietary Toxicity Study, DACO: 4.3.1,IIA 5.3.2

PMRA Document Number: 1897878 Reference: 2008, SYN524464 - 13-Week Oral (Capsule) Toxicity Study in the Beagle Dog, DACO: 4.3.2,IIA 5.3.3

PMRA Document Number: 1897881 Reference: 2009, SYN524464 - 52-Week Oral (Capsule) Toxicity Study in the Dog, DACO: 4.3.2,IIA 5.3.4

PMRA Document Number: 1897885 Reference: 2009, SYN524464 - 28-dat Dermal Toxicity (Semi-Occlusive) Study in the Wistar Rat, DACO: 4.3.5,IIA 5.3.7

PMRA Document Number: 1897888 Reference: 2009, Amended - SYN524464 - Salmonella Typhimurium And Escherichia Coli Reverse Mutation Assay, DACO: 4.5.4,IIA 5.4.1

PMRA Document Number: 1897890 Reference: 2009, Amended - SYN524464 - Chromosome Aberration Study in Human Lymphocytes In Vitro, DACO: 4.5.6,IIA 5.4.2

PMRA Document Number: 1897892 Reference: 2009, Amended - SYN524464 - Cell Mutation Assay At The Thymidine Kinase Locus (TK+/-) In Mouse Lymphoma L5178Y Cells, DACO: 4.5.5,IIA 5.4.3

PMRA Document Number: 1897894 Reference: 2010, AMENDED SYN524464 - Micronucleus Assay In Bone Marrow Cells Of The Mouse, DACO: 4.5.7,IIA 5.4.4

PMRA Document Number: 1897897 Reference: 2009, SYN524464 - In vivo Liver Unscheduled DNA Synthesis (UDS) Assay, DACO: 4.5.8,IIA 5.4.5

PMRA Document Number: 1897899 Reference: 2010, SYN524464 - 104 Week Rat Dietary Carcinogenicity Study with Combined 52 Week Toxicity Study, DACO: 4.4.1,4.4.2,4.4.4,IIA 5.5.1,IIA 5.5.2

PMRA Document Number: 1897905 Reference: 2010, SYN524464 - 80 Week Mouse Dietary Carcinogenicity Study, DACO: 4.4.3,IIA 5.5.3

PMRA Document Number: 1897908 Reference: 2010, SYN524464- Two-Generation Reproduction Toxicity Study in the Han Wistar Rat, DACO: 4.5.1,IIA 5.6.1 PMRA Document Number: 1897909 Reference: 2009, SYN524464- Oral (Dietary) Multigeneration Range Finding Study in the Rat, DACO: 4.5.1,IIA 5.6.1

PMRA Document Number: 1897910 Reference: 2009, Amended - SYN524464-Prenatal Developmental Toxicity Study in the Han Wistar Rat, DACO: 4.5.2,IIA 5.6.10

PMRA Document Number: 1897911 Reference: 2009, Amended - SYN524464-Dose Range-Finding Prenatal Developmental Toxicity Study in the Han Wistar Rat, DACO: 4.5.2,IIA 5.6.10

PMRA Document Number: 1897912 Reference: 2010, SYN524464 - A Prenatal Developmental Toxicity Study in New Zealand White Rabbits, DACO: 4.5.3,IIA 5.6.11

PMRA Document Number: 1897913 Reference: 2010, SYN524464 - A Dose Range-Finding Prenatal Developmental Toxicity Study in New Zealand White Rabbits, DACO: 4.5.3,IIA 5.6.11 PMRA Document Number: 1897914 Reference: 2009, SYN524464 - Acute Oral (Gavage) Neurotoxicity Study in Rats, DACO: 4.5.12,IIA 5.7.1

PMRA Document Number: 1897917 Reference: 2008, SYN524464 - Preliminary Acute Oral Neurotoxicity Study Rat, DACO: 4.5.12,IIA 5.7.1

PMRA Document Number: 1897918 Reference: 2009, SYN524464 - 90-Day Neurotoxicity (Dietary) Study in the Rat, DACO: 4.5.13,IIA 5.7.4

PMRA Document Number: 1897919 Reference: 2009, SYN524464 - 28-Day Dietary Toxicity Study in the Rat, DACO: 4.5.13,IIA 5.7.4

PMRA Document Number: 1897920 Reference: 2008, CSCD465008 - A 28-Day Oral (Dietary) Study in Wistar Rats, DACO: 4.8,IIA 5.8

PMRA Document Number: 1897921 Reference: 2008, CSCD465008 - Acute Oral Toxicity Study in the Rat (Up and Down Procedure), DACO: 4.8,IIA 5.8

PMRA Document Number: 1897922 Reference: 2008, CSCD465008 - Cell Mutation Assay At The Thymidine Kinase Locus (TK +/-) In Mouse Lymphoma L5178Y Cells, DACO: 4.8,IIA 5.8 PMRA Document Number: 1897923 Reference: 2008, CSCD465008 - Chromosome Aberration Test in Human Lymphocytes In Vitro, DACO: 4.8,IIA 5.8

PMRA Document Number: 1897924 Reference: 2008, CSCD465008 - Salmonella Typhimurium and Escherichia Coli Reverse Mutation Assay, DACO: 4.8,IIA 5.8

PMRA Document Number: 1934651 Reference: 2010, Sedaxane Technical - Response to Questions Regarding the Use of a 50% Preparation in Dermal Sensitization Studies, DACO: 4.2.6,IIA 5.2.6

PMRA Document Number: 1934652 Reference: 2005, Sedaxane Technical - Response to the Request for a 90 Day Inhalation Study, DACO: 4.3.6,IIA 5.3.6

PMRA Document Number 1934653 Reference: 2005, Acrylamide - 28 Day Oral Neurotoxicity (Gavage) Validation Study in Rats, DACO: 4.5.13,IIA 5.7.4

PMRA Document Number:1934654 Reference: 2010, Neurotoxicity Testing, DACO: 4.5.13,IIA 5.7.4

PMRA Document Number: 1943343 Reference: 2010, Sedaxane - Request for Waiver of EPA Conditional Requirement for a 90-Day Inhalation Study, DACO: 4.3.6,IIA 5.3.6

PMRA Document Number: 1967960 Reference: 2010, IIA 5.3.3 - Response - PMRA Sedaxane 90d dog study, DACO: 4.3.2,IIA 5.3.3

PMRA Document Number: 1967961 Reference: 2010, IIA 5.6.1 - Response - PMRA Sedaxane Reproduction study, DACO: 4.5.1,IIA 5.6.1

PMRA Document Number: 1967962 Reference: 2010, IIA 5.6.1 - References for Response - Reproduction study, DACO: 4.5.1, IIA 5.6.1

PMRA Document Number: 1967963 Reference: 2008, BF10007 - SYN524464 - Validation of the Assay for the Determination of SYN524464 in Dietary Formulations, DACO: 4.5.1,IIA 5.6.1

PMRA Document Number: 1967964 Reference: 2008, BF10008 - SYN524464 - Validation of the Formulation Procedure for SYN524464 in Dietary Formulations and Assessment of Formulation Stability, DACO: 4.5.1,IIA 5.6.1 PMRA Document Number: 1967965 Reference: 2008, Amended - B77501- SYN524464 - Full Validation of an Analytical Method for the Determination of SYN524464 in 0.5% Carboxymethylcellulose Aqueous Solution (w/v) and Diet, DACO: 4.5.12,4.5.2,IIA 5.6.10,IIA 5.7.1

PMRA Document Number: 1967966

Reference: 2009, C23415 - SYN524464 - Supplementary Validation of Analytical Method for the Determination of SYN524464 in 0.5% Carboxymethylcellulose Aqueous solution (w/v) and Diet, DACO: 4.5.12,4.5.2,IIA 5.6.10,IIA 5.7.1

PMRA Document Number: 1967967 Reference: 2010, IIA 5.6.11 - Response - PMRA Sedaxane Rabbit teratogenicity study, DACO: 4.5.3,IIA 5.6.11

PMRA Document Number: 1967968 Reference: 2010, IIA 5.7.1-5.7.4 - Response - PMRA Sedaxane Neurotox studies, DACO: 4.5.12,4.5.13,IIA 5.7.1,IIA 5.7.4

PMRA Document Number: 2032399 Reference: 2011, Historic Control Data - 104-Week Studies in Han Wistar Rat,

DACO: 4.4.1,4.4,4,11A 5.5.1 PMRA Document Number: 2032401 Reference: 2011, Historic Control Data - 80-Week Studies in CD-1 Mice, DACO: 4.4.3,11A 5.5.3

PMRA Document Number: 2058568 Reference: 2011, Sedaxane Technical - Clarification Response - Toxicology, DACO: 4.5.3,4.5.9,4.8

PMRA Document Number: 2058569 Reference: 2008, Historical Control Data - Kalamazoo NZW Rabbits, DACO: 4.8

PMRA Document Number: 2058570 Reference: 2008, Historical Control Summary of Clinical Pathology Values, DACO: 4.8

PMRA Document Number: 2058571 Reference: 2008, Historical Control Summary of Organ Weights, DACO: 4.8

PMRA Document Number: 2058572 Reference: 2008, Wistar Rats - Functional Observational Battery (WIL-WISTAR) WIL Research Laboratories - Historical Control Data, DACO: 4.8

PMRA Document Number: 2061141 Reference: 2011, 4.5.3-1 - Clarification Reponse - Toxicology, DACO: 4.5.3 PMRA Document Number: 1898269 Reference: 2009, Difenoconazole/Thiamethoxam/Mefenoxam/Sedaxane FS (A17511B) -Acute Oral Toxicity Study in Rats, DACO: 4.6.1,IIIA 7.1.1

PMRA Document Number: 1898270 Reference: 2009, Difenoconazole/Thiamethoxam/Mefenoxam/Sedaxane FS (A17511B) -Acute Dermal Toxicity Study in Rats, DACO: 4.6.2,IIIA 7.1.2

PMRA Document Number: 1898271 Reference: 2009, Difenoconazole/Thiamethoxam/Mefenoxam/Sedaxane FS (A17511B) -Acute Inhalation Toxicity Study in Rats, DACO: 4.6.3,IIIA 7.1.3

PMRA Document Number: 1898272 Reference: 2009, Difenoconazole/Thiamethoxam/Mefenoxam/Sedaxane FS (A17511B) -Acute Dermal Irritation Study in Rabbits, DACO: 4.6.5,IIIA 7.1.4

PMRA Document Number: 1898273 Reference: 2009, Difenoconazole/Thiamethoxam/Mefenoxam/Sedaxane FS (A17511B) -Acute Eye Irritation Study in Rabbits, DACO: 4.6.4,IIIA 7.1.5

PMRA Document Number: 1898274 Reference: 2009, Difenoconazole/Thiamethoxam/Mefenoxam/Sedaxane FS (A17511B) -Skin Sensitization Study in Guinea Pigs, DACO: 4.6.6,IIIA 7.1.6

PMRA Document Number: 1898326 Reference: 2009, Difenoconazole,Metalaxyl-M,Sedaxane FS (A16874F) - Acute Oral Toxicity Study in Rats, DACO: 4.6.1,IIIA 7.1.1

PMRA Document Number: 1898328 Reference: 2009, Difenoconazole,Metalaxyl-M,Sedaxane FS (A16874F) - Acute Dermal Toxicity Study in Rats, DACO: 4.6.2,IIIA 7.1.2

PMRA Document Number: 1898330 Reference: 2009, Difenoconazole, Metalaxyl-M, Sedaxane FS (A16874F) - Acute Inhalation Toxicity Study in Rats, DACO: 4.6.3, IIIA 7.1.3

PMRA Document Number: 1898332 Reference: 2009, Difenoconazole,Metalaxyl-M,SYN524464 FS (A16874F) - Acute Dermal Irritation Study in Rabbits, DACO: 4.6.5,IIIA 7.1.4

PMRA Document Number: 1898333 Reference: 2009, Difenoconazole, Metalaxyl-M, Sedaxane FS (A16874F) - Acute Eye Irritation Study in Rabbits, DACO: 4.6.4, IIIA 7.1.5

PMRA Document Number: 1898334 Reference: 2009, Difenoconazole,Metalaxyl-M,Sedaxane FS (A16874F) - Skin Sensitization Study in Guinea Pigs, DACO: 4.6.6,7.4.1,7.4.2,7.4.6,IIIA 8.3.1 PMRA Document Number: 1898367 Reference: 2008, SYN524464 FS (A16148C) - Acute Oral Toxicity Study in Rats, DACO: 4.6.1,IIIA 7.1.1

PMRA Document Number: 1898368 Reference: 2008, SYN524464 FS (A16148C) - Acute Dermal Toxicity Study in Rats, DACO: 4.6.2,IIIA 7.1.2

PMRA Document Number: 1898369 Reference: 2008, SYN524464 FS (A16148C) - Acute Inhalation Toxicity Study in Rats, DACO: 4.6.3,IIIA 7.1.3

PMRA Document Number: 1898370 Reference: 2008, SYN524464 FS (A16148C) - Acute Dermal Irritation Study in Rabbits, DACO: 4.6.5,IIIA 7.1.4

PMRA Document Number: 1898371 Reference: 2008, SYN524464 FS (A16148C) - Acute Eye Irritation Study in Rabbits, DACO: 4.6.4,IIIA 7.1.5

PMRA Document Number: 1898372 Reference: 2008, SYN524464 FS (A16148C) - Skin Sensitization Study in Guinea Pigs, DACO: 4.6.6,IIIA 7.1.6

PMRA Document Number:1108518 Reference: 1999, On Farm Exposure Operator Study with DIVIDEND 36 FS Seed Treatment on Wheat., DACO: 5.4

PMRA Document Number:1168258 Reference: 1993, Worker Exposure to Apron Flowable while Treating Seed Commercially – Amendment#1.(AE-91-512 Amended Report;Volume#37).(Maxim 480FS), DACO: 5.4

PMRA Document Number:1349637 Reference: 2000, Occupational Risk Exposure Assessment for HELIX 289FS., DACO: 5.4

PMRA Document Number:1571553 Reference: 2007, Determination of Operator Exposure to Imidacloprid During Loading/Sowing of Gaucho Treated Maize Seeds Under Realistic Field Conditions in Germany and Italy, DACO: 5.4

PMRA Document Number:15772278

Reference: 2009, Fluquinconazole and Prochloraz: Determination of operator exposure during cereal seed treatment with Jockey fungicide in Germany, United Kingdom and France, DACO: 5.4

PMRA Document Number: 1898373 Reference: 2009, SYN524464 FS (A16148C) - In Vivo Dermal Absorption Study in the Rat, DACO: 5.8,IIIA 7.6.1

PMRA Document Number: 1898374 Reference: 2009, SYN524464 FS (A16148C) - In Vitro Absorption Through Rat Epidermal Membranes Using [Pyrazole-5-14C]-SYN524464, DACO: 5.8,IIIA 7.6.2

PMRA Document Number: 1898375 Reference: 2009, SYN524464 FS (A16148C) - In Vitro Absorption Through Human Epidermal Membranes Using [Pyrazole-5-14C]-SYN524464, DACO: 5.8,IIIA 7.6.2

PMRA Document Number: 1898388

Reference: 2010, A16148C - GJR - MIII Section 3, DACO: 0.9.1, 12.7, 4.6.1, 4.6.2, 4.6.3, 4.6.4, 4.6.5, 4.6.6, 4.6.7, 4.6.8, 4.7.1, 4.7.2, 4.7.3, 4.7.4, 4.7.5, 4.7.6, 4.7.7, 4.8, 4.9, 5.10, 5.11, 5.12, 5.14, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, Document M, IIIA 7.1.1, IIIA 7.1.2, IIIA 7.1.3, IIIA 7.1.4

PMRA Document Number:1934640

Reference: 2010, Sedaxane (SYN 524464): Laboratory Dust-Off Measurements of Canola, Soybean, and Cereal Seeds Treated with Sedaxane-Containing Formulations, DACO: 5.10,5.6,5.7,5.9,IIIA 7.5.4

PMRA Document Number:1934641 Reference: 2010, Sedaxane 500FS Fungicide - Response to Questions - Worker Exposure, DACO: 5.10,5.6,5.7,5.9,IIIA 7.5.4

PMRA Document Number: 1897930 Reference: 2007, SYN524464 - Translocation of Radioactive Residues in Spring Wheat, Soybean and Maize, DACO: 6.3,IIA 6.2.1

PMRA Document Number: 1897931 Reference: 2009, SYN524464 - Uptake & Translocation of Radioactive Residues in Canola, DACO: 6.3,IIA 6.2.1

PMRA Document Number: 1897932 Reference: 2010, [14C]SYN524464 - Metabolism in Soya (Analytical Phase Only), DACO: 6.3,IIA 6.2.1

PMRA Document Number: 1897933 Reference: 2010, [14C]-SYN524464: Metabolism in Spring Wheat (Analytical Phase Only), DACO: 6.3,IIA 6.2.1

PMRA Document Number: 1897934 Reference: 2009, Amended - SYN524464 - Metabolism in Swiss Chard, DACO: 6.3,IIA 6.2.1 PMRA Document Number: 1897936 Reference: 2010, SYN524464 - Metabolism of [14C]-SYN524464 in the Laying Hen, DACO: 6.2,IIA 6.2.2

PMRA Document Number: 1897937 Reference: 2009, Amended - SYN524464 - Metabolism of [14C]-SYN524464 in the Lactating Goat, DACO: 6.2,IIA 6.2.3

PMRA Document Number: 1897769

Reference: 2010, SYN524464 - Independent Laboratory Validation of the QuEChERS Multi-Method for the Determination of Residues of SYN524464 (SYN508210 and SYN508211) in Plant Matrices, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897770

Reference: 2009, Validation of Analytical Method GRM023.10A for Determination of Residues of SYN508210 and SYN508211 and Metabolites CSCD658906 and CSCD659087 in Animal Tissues, Blood, Milk and Poultry Eggs by LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897771

Reference: 2009, SYN524464 - Validation of the Residue Analytical Method QuEChERS and Modifications Thereof for the Determination of Residues of SYN524464 Parent Isomers (SYN508210 and SYN508211) in Crops, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897772

Reference: 2009, SYN524464 - Validation of the Residue Analytical Method QuEChERS and Modifications Thereof for the Determination of Residues of SYN524464 Parent Isomers (SYN508210 and SYN508211) in Animal Matrices and Body Fluids, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897773

Reference: 2010, SYN524464 - Validation of the Residue Analytical Method GRM023.11A for the Determination of Residues of SYN524464 (SYN508210 and SYN508211 and its Rotational Crop Metabolites) in Crops, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897774

Reference: 2009, SYN524464 - Validation of the Residue Analytical Method GRM023.03A for the Determination of Residues of SYN524464 (SYN508210 and SYN508211 and its Metabolites) in Crops, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897776

Reference: 2008, SYN524464 - Validation of an Analytical Method for the Determination of Residues of SYN508210 and SYN508211 in Plant Matrices, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897777

Reference: 2007, Determination of Pesticide Residues in Plant Matrices with Acetonitrile Extraction and Dispersive Solid-Phase Extraction (QuEChERS Method) using LC-MS/MS and GC-MS technique., DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897778

Reference: 2010, SYN524464 - Residue Method for the Determination of Combined Residues of CSCD465008 from Free and Conjugated CSCD465008 in Soybean Seed, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897779

Reference: 2010, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 and Metabolites CSCD659089, CSCD668403, CSCD659087, CSAA798670 and CSCD465008 in Rotational Crops by LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897780

Reference: 2009, SYN524464 - Analytical Method for Determination of Residues of SYN508210 and SYN508211 and Metabolites CSCD658906 and CSCD659087 in Animal Tissues, Blood, Milk and Poultry Eggs by LC-MS_MS, DACO: 7.2.1,7.2.4, IIA 4.3

PMRA Document Number: 1897781

Reference: 2010, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 and the Metabolites CSCD667584, CSCD658906, CSCD659089, CSCD668403, CSCD667555, CSCD465008 and CSCC210616 in Crops. Final Determination by LC-MS/MS, DACO: 7.

PMRA Document Number: 1897782

Reference: 2009, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 in Crops. Final Determination by LC-MS/MS, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897783

Reference: 2008, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 in Crops. Final Determination by LC-MS/MS., DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897784 Reference: 2008, SYN520453 - Validation of a Method (GRM006.08A) for the Determination of CSCD465008 and CSAA798670 in Crops, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897785

Reference: 2010, SYN524464 - Independent Laboratory Validation of the QuEChERS Method for the Determination of Residues of SYN524464 (SYN508210 and SYN508211) in Animal Matrices by LC/MS/MS Analysis., DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897786 Reference: 2010, Amended - [14C]SYN524464 - Radiovalidation of Residue Analytical Methods GRM023.03A and GRM023.12A, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897787

Reference: 2010, SYN524464 - Validation of the Residue Analytical Method GRM023.12A for the Determination of Residues of Metabolite CSCD465008 from Free and Conjugated CSCD465008 in Soybean Seed, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897788 Reference: 2009, SYN524464 - Independent Laboratory Validation of Analytical Method GRM023.010A, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897790

Reference: 2010, SYN524464 - Independent Laboratory Validation of Draft Method GRM023.12A, SYN524464 - Residue Method for the Determination of Combined Residues of CSCD465008 from Free and Conjugated CSCD465008 in Soybeans, DACO: 7.2.1,7.2.4,IIA 4.3

PMRA Document Number: 1897925 Reference: 2010, SYN524464 - Storage Stability of Residues of CSCD667584, CSCD658906, CSCD659089, CSCD668403, CSCD667555, CSCD465008 and CSCC210616 in Plant Matrices, DACO: 7.3,IIA 6.1.1

PMRA Document Number: 1897927

Reference: 2010, SYN524464 - Storage Stability Study of Residues of SYN508210 and SYN508211 in Wheat (Grain & Straw), Spinach, Soybeans, Lentils, Citrus and Potato, DACO: 7.3,IIA 6.1.1

PMRA Document Number: 1897928

Reference: 2009, SYN520453- Storage Stability of CSCD465008 and CSAA798670 in Cereals (Wheat Grain, Wheat Straw, Barley Forage), Spinach Leaves and Carrots (Leaves and Roots) During Storage at < -18C for up to One year Amendment No1 to interim Report-6 Months, DACO: 7.3,IIA 6.1.1

PMRA Document Number: 1897929

Reference: 2010, SYN524464 - Stability of SYN508210 and SYN508211 in Processed Commodities during Frozen Storage Pending Analysis, DACO: 7.3,IIA 6.1.1

PMRA Document Number: 1897942

Reference: 2010, SYN524464 - Magnitude of the Residues in Wheat Following Seed Treatment Application, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1

PMRA Document Number: 1897947

Reference: 2010, SYN524464 (A16148C) - Residue Levels on Wheat (Forage, Hay, Grain and Straw) from Trials Conducted in Canada during 2008, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.1

PMRA Document Number: 1897952 Reference: 2010, SYN524464 (A16148C) - Residue Levels on Barley (Hay, Grain and Straw) from Trials Conducted in Canada during 2008, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.2

PMRA Document Number: 1897954 Reference: 2010, SYN524464 - Magnitude of the Residues in Barley Following Seed Treatment Application, DACO: 7.4.1,7.4.2,7.4.6,IIA 6.3.2

PMRA Document Number: 1897960 Reference: 2010, SYN524464 - Magnitude of the Residues in Canola Following Seed Treatment Application, DACO: IIA 6.3.4

PMRA Document Number: 1897964 Reference: 2010, SYN524464 - Magnitude of the Residues in Soybeans Following Seed Treatment Application, DACO: IIA 6.3.4

PMRA Document Number: 1897968 Reference: 2010, SYN524464 (A16148C) - Residue Levels on Canola Seed from Trials Conducted in Canada during 2008, DACO: 7.5,7.6,IIA 6.4.1

PMRA Document Number: 1897971 Reference: 2009, SYN524464 - Magnitude of Residues in Milk and Tissues of Dairy Cows Following Multiple Oral Administrations of SYN524464, DACO: 7.5,7.6,IIA 6.4.2

PMRA Document Number: 1897973 Reference: 2010, SYN524464 - Residue study on spring barley and processed specimens in the United Kingdom in 2008 following seed treatment, DACO: 7.4.5,IIA 6.5.3

PMRA Document Number: 1897974 Reference: 2010, [14C]SYN524464: Uptake and Metabolism in Confined Rotational Crops, DACO: 7.3,7.4.4,7.8,IIA 6.6.2

PMRA Document Number: 1897976 Reference: 2010, 14C-SYN524464 - Uptake and Metabolism in Confined Rotational Crops, DACO: 7.3,7.4.4,7.8,IIA 6.6.2

PMRA Document Number: 1897977 Reference: 2010, SYN524464 - Field Accumulation in Rotational Crops (60, 120, and 270-Day PBI), DACO: 7.3,7.4.4,7.8,IIA 6.6.3

PMRA Document Number: 1897981 Reference: 2008, SYN524464 - Investigation of the Effect of Rumen Fluid on N-glucose Conjugates in Soybean, DACO: 7.1,7.8,IIA 6.7.1 PMRA Document Number: 1898335

Reference: 2010, Sedaxane, Difenoconazole, Metalaxyl-M FS (A16874F) and Sedaxane, Difenoconazole, Metalaxyl-M, Thiamethoxam FS (A17511A) - Residue Levels on Wheat (Forage and Grain), DACO: 7.4.1,7.4.2,7.4.6,IIIA 8.3.1

PMRA Document Number: 1898338 Reference: 2010, Sedaxane, Difenoconazole, Metalaxyl-M FS (A16874F) and Sedaxane, Difenoconazole, Metalaxyl-M, Thiamethoxam FS (A17511A) - Residue Levels on Barley (Hay and Grain), DACO: 7.4.1,7.4.2,7.4.6,IIIA 8.3.2

PMRA Document Number:1943355 Reference: 2010, SYN508210 and SYN508211 and CSCD667584, CSCD658906, CSCD667555 and CSCD465008 MRM PAM Test, DACO: 7.2.1,7.2.2,7.2.3,7.2.4,7.2.5,IIIA 5.3.1

3.0 Environment

PMRA Document Number: 1897743 Reference: Report No. LIIA Sec 6-01, Sedaxane - GJR _ Document LII Section 6 -Ecotoxicology, 9-MAR-10

PMRA Document Number: 1897754 Reference: Report No.: MIIA Sec 5-01, Sedaxane - GJR - Document MII Section 5 - Fate and Behaviour, 10-MAR-10

PMRA Document Number: 1897756 Reference: Report No.: MIIA Sec 6-01, Sedaxane - GJR - Document MII Section 6 -Ecotoxicology, 23-MAR-10

PMRA Document Number: 1897758 Reference: Report No. Document N-02, Sedaxane - GJR - Document N - Endpoint List, 06-APR-10

PMRA Document Number: 1897760 Reference: Report No. Document N-01, Sedaxane - GJR - Document N - Overall Summary and Assessment (TierIII), 06-APR-10

PMRA Document Number: 1897767 Reference: Report No.: IIA 4.2.1-02, Sedaxane - Validation of analytical method SA-44/122-SEP-09

PMRA Document Number: 1897814 Reference: Report No.: IIA 4.7-02, SYN524464 - Validation of the Analytical Method GRM023.09A for the Determination of Residues of SYN508210 and SYN508211 in Air, 14-DEC-09 PMRA Document Number: 1897817 Reference: Report No.: IIA 4.7-01, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 in Air. Final Determination by LC-MS/MS, 11-FEB-10

PMRA Document Number: 1897791 Reference: Report No.: IIA 4.4-03, Independent Laboratory Validation of the Analytical Method GRM023.02A, Residue Method for Determination of SYN524464 as SYN508210 and SYN508211 in Soil, 11-FEB-09

PMRA Document Number: 1897792 Reference: Report No.: IIA 4.4-08, Amended - SYN524464 - Validation of an Analytical Method for Determination of CSCD465008 and CSAA798670 in Soil, 05-FEB-10

PMPMRA Document Number: 1897794 Reference: Report No.: IIA 4.4-05, Amended - SYN524464 - Validation of an Analytical Method for Determination of CSCC210616 in Soil, 04-FEB-10

PMRA Document Number: 1897796 Reference: Report No.: IIA 4.4-07, SYN524464 - Analytical Method for the Determination of Residues of the Metabolites CSCD465008 and CSAA798670 in Soil. Final Determination by LC-MS/MS, 23-NOV-09

PMRA Document Number: 1897798 Reference: Report No.: IIA 4.4-04, SYN524464 - Analytical Method for the Determination of Residues of the Metabolite CSCC210616 in Soil. Final Determination by LC-MS/MS, 23-NOV-09

PMRA Document Number: 1897801 Reference: Report No.: IIA 4.4-01, SYN524464 - Residue Method for the Determination of Residues of SYN524464 as SYN508210 and SYN508211 in Soil. 10-OCT-08

PMRA Document Number: 1897803

Reference: Report No.: IIA 4.4-02, Amended - SYN524464 - Validation of an Analytical Method for the Determination of SYN524464 as SYN508210 and SYN508211 in Soil, 28-AUG-08

PMRA Document Number: 1897806

Reference: Report No.: IIA 4.4-06, Independent Laboratory Validation of the Analytical Method GRM023.04A, SYN524464 - Analytical Method for the Determination of Residues of the Metabolite SYN508272 in Soil - Final Determination by LC-MS/MS, 04-MAR-09

PMRA Document Number: 1897809

Reference: Report No.: IIA 4.5-02, SYN524464 - Validation of the Analytical Method GRM023.06A for the Determination of Residues of SYN508210 and SYN508211 and the Metabolites CSCC210616, CSCD465008 and CSAA798670 in Water, 4-DEC-09

PMRA Document Number: 1897812

Reference: Report No.: IIA 4.5-01, SYN524464 - Analytical Method for the Determination of Residues of SYN508210 and SYN508211 and the Metabolites CACC210616, CSCD465008 and CSAA798670 in Water. Final Determination by LC-MS/MS, 11-FEB-10

PMRA Document Number: 1898011 Reference: Report No.: IIA 7.5-01, Amended - SYN524464 - Hydrolysis of [Phenyl-U-14C]-labelled material under laboratory conditions, 23-JUL-07

PMRA Document Number: 1897988 Reference: Report No.: IIA 7.1.3-02, [Phenyl-U-14C] SYN524464 - Soil Surface Photolysis at 20°C, 19-SEP-08

PMRA Document Number: 1897989 Reference: Report No.: IIA 7.1.3-01, [Pyrazolel-5-14C] SYN524464 - Soil Surface Photolysis at 20°C, 28-OCT-08

PMRA Document Number: 1898012 Reference: Report No.: IIA 7.6-01, Amended - SYN524464 - Aqueous Photolysis in Sterile Buffer Solution and Sterile Natural Water, 28-JAN-08

PMRA Document Number: 1897990 Reference: Report No.: IIA 7.10-01, Sedaxane - Calculation of half-life by reaction with atmospheric hydroxyl radicals, 22-JAN-10

PMRA Document Number: 1897982

Reference: Report No.: IIA 7.1.1-04, [14C]-SYN524464 - Identification of a Metabolite formed in Study NC/07/015: [14C]-SYN524464 Rate of Degradation in Three Soils at 20°C, 15-MAR-10

PMRA Document Number: 1897983 Reference: Report No.: IIA 7.1.1-05, [14C-pyrazole-labelled]-SYN524464 - Rate of Degradation of [14C]-SYN524464 in Brazilian Soils, 11-MAR-10

PMRA Document Number: 1897984 Reference: Report No.: IIA 7.1.1-02, Amended - Route and Rate of Degradation of 14C-Pyrazole-Labelled SYN524464, Applied as Treated Seed, in One Soil under Aerobic Laboratory Conditions at 20°C, 15-DEC-09

PMRA Document Number: 1897985

Reference: Report No.: IIA 7.1.1-01, SYN524464 Route and rate of degradation of 14C-Phenyl-labelled SYN524464, applied as treated seed, in four soils under aerobic laboratory conditions at 20°C, 19-DEC-08 PMRA Document Number: 1897986 Reference: Report No.: IIA 7.1.1-03, [14C]SYN524464 - Rate of Degradation in Three Soils at 20°C, 30-NOV-09

PMRA Document Number: 1897991 Reference: Report No.: IIA 7.2.3-01, Amended - SYN520453 - Rate of Degradation of 14C-Pyrazole Ring-Labelled CSCD465008, a Soil Metabolite of SYN520453, in Three Soils under Aerobic Laboratory Conditions at 20°C, 13-AUG-08

PMRA Document Number: 1897992 Reference: Report No.: IIA 7.2.3-02, Amended - 14C-CSCD465008/Rate of degradation in three soils, 28-JUL-08

PMRA Document Number: 1897987 Reference: Report No.: IIA 7.1.2-01, SYN524464 - Metabolism of [Phenyl-U-14C] Labeled SYN524464 Treated Seeds under Aerobic/Anaerobic Laboratory Conditions in One Soil at 20°C, 24-OCT-07

PMRA Document Number: 1898013 Reference: Report No.: IIA 7.7-01, SYN524464 - Ready biodegradability in a manometric respirometry test, 11-DEC-07

PMRA Document Number: 1898014 Reference: Metabolism and Rate of Degradation of [Phenyl-U-14C]labelled SYN524464 under Aerobic and Anaerobic Laboratory Conditions in Aquatic Systems, 23-OCT-08

PMRA Document Number: 1898007 Reference: SYN524464-Adsorption / Desorption of [Phenyl-U-14C]-labelled SYN524464 on six soils (Gartenacker, Marsillargues, 18-Acres, Visalia, Washington, and Champaign), 28-JAN-08

PMRA Document Number: 1898008 Reference: [14C-pyrazole-labeled]-SYN524464 - Adsorption/Desorption of [14C]-SYN524464 in Four Brazilian Soils, 04-MAR-10

PMRA Document Number: 1898009 Reference: Adsorption / Desorption of 14C-pyrazole ring labelled CSCD465008 a soil metabolite of SYN520453 on three soils (Gartenacker, Marsillargues and 18-Acres), 08-JUN-07

PMRA Document Number: 1898010 Reference: [14C-pyrazole]-SYN524464 - Mobility of [14C]-SYN524464 in Brazilian Soils, Soil Column Leaching method, 04-MAR-10

PMRA Document Number: 1898056 Reference: SYN524464- Acute toxicity to the earthworm *Eisenia fetida*, 17-JUL-07 PMRA Document Number: 1898058 Reference: Amended - SYN524464 tech .- Sublethal toxicity to the earthworm *Eisenia fetida*, 17-NOV-09

PMRA Document Number: 1898050 Reference: SYN524464 - Acute contact and oral toxicity to the honeybee (*Apis mellifera*), 27-FEB-07

PMRA Document Number: 1898052 Reference: SYN524464 FS (A16148F) - A rate-response laboratory bioassay of the effects of fresh residues on the predatory mite, *Typhlodromus pyri (Acari: Phytoseiidae)*, 02-DEC-09

PMRA Document Number: 1898053 Reference: SYN524464 FS (A16148F) - Effects on the reproduction of the predatory mite *Hypoaspis aculeifer*, 27-FEB-09

PMRA Document Number: 1898054 Reference: SYN524464 FS (A16148F) - Chronic toxicity (ER50) to the rove beetle *Aleochara bilineata Gyll.* under extended laboratory conditions, 09-MAR-09

PMRA Document Number: 1898051 Reference: SYN524464 FS (A16148F) - A rate-response laboratory bioassay of the effects of fresh residues on the parasitic wasp *Aphidius rhopalosiphi (Hymenoptera, Braconidae)*, 18-NOV-09

PMRA Document Number: 1898022 Reference: SYN524464 - Determination of effects on soil microflora activity, 27-JUL-07

PMRA Document Number: 1898041 Reference: SYN524464 - Acute toxicity to the cladoceran *Daphnia magna* under static conditions, 13-DEC-06

PMRA Document Number: 1898042 Reference: CSCD465008 - Acute Toxicity to *Daphnia magna* in a 48-Hour Immobilization Test, 29-NOV-07

PMRA Document Number: 1898043 Reference: SYN524464 - Effect on survival and reproduction of *Daphnia magna* in a semi-static test over three weeks, 17-AUG-07

PMRA Document Number: 1898024 Reference: SYN524464 - A 96-hour shell deposition test with the eastern oyster (*Crassostrea virginica*), 08-APR-08 PMRA Document Number: 1898025 Reference: SYN524464 - A 96-hour acute toxicity test with the sheepshead minnow (*Cyprinodon variegatus*), 08-APR-08

PMRA Document Number: 1898026 Reference: SYN524464 - A 96-hour flow-through acute toxicity test with the saltwater mysid (*Americamysis bahia*), 15-FEB-08

PMRA Document Number: 1898028 Reference: SYN524464 - Acute toxicity to rainbow trout (*Oncorhynchus mykiss*) in a 96hour static test. 09-MAY-08

PMRA Document Number: 1898029 Reference: SYN524464 - Acute toxicity to fathead minnow (*Pimephales promelas*), 19-JAN-07

PMRA Document Number: 1898030 Reference: SYN524464 - A 96-hour static acute toxicity test with the common carp (*Cyprinus carpi*o), 26-SEP-08

PMRA Document Number: 1898032 Reference: CSCD465008 - Acute Toxicity to Rainbow Trout (*Oncorhynchus mykiss*) In A 96-Hour Static Test, 29-NOV-07

PMRA Document Number: 1898033 Reference: SYN524464 - An early life-stage toxicity test to fathead minnow (*Pimephales promelas*), 16-APR-08

PMRA Document Number: 1898034 Reference: Amended - SYN524464 - Determination of the Accumulation and Elimination of [14C]SYN524464 in Rainbow Trout (*Oncorhynchus mykiss*), 24-MAR-10

PMRA Document Number: 1898015 Reference: SYN524464 - An acute Oral Toxicity Study with the Canary (*Serinus canaria*) 03-FEB-10

PMRA Document Number: 1898016 Reference: SYN524464 - An Acute Oral Toxicity study with the Northern Bobwhite 22-JUL-09

PMRA Document Number: 1898017 Reference: SYN524464 - An acute oral toxicity study with the Northern Bobwhite using a sequential testing procedure, 27-JUL-07

PMRA Document Number: 1898018 Reference: SYN524464 - A Dietary LC50 study with the Northern Bobwhite, 27-JUL-07 PMRA Document Number: 1898019 Reference: SYN524464 - A Dietary LC50 study with the Mallard, 27-JUL-07

PMRA Document Number: 1898020 Reference: SYN524464 - A reproduction study with the mallard, 27-JUN-08

PMRA Document Number: 1898021 Reference: SYN524464 - A reproduction study with the Northern bobwhite, 27-JUN-08

PMRA Document Number: 1898044 Reference: CSCD465008 - Toxicity to *Pseudokirchneriella subcapitata* (formerly *Senenastrum capricornutum*) in a 96-hour algal growth inhibition test, 05-DEC-07

PMRA Document Number: 1898045 Reference: SYN524464 - Toxicity to *Anabaena flos-aquae* in a 96-hour algal growth inhibition test, 14-DEC-07

PMRA Document Number: 1898046 Reference: SYN524464 - Toxicity to *Navicula pelliculosa* in a 96-hour algal growth inhibition test, 14-DEC-07

PMRA Document Number: 1898047 Reference: SYN524464 - Toxicity to *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*) in a 96-hour algal growth inhibition test, 17-AUG-07

PMRA Document Number: 1898048 Reference: SYN524464 - A 96-hour toxicity test with the marine diatom (*Skeletonema costatum*), 24-JAN-08

PMRA Document Number: 1898027 Reference: SYN524464(A16148F) - Toxicity effects on the seedling emergence of ten species of plants, 11-AUG-08

PMRA Document Number: 1898049 Reference: SYN524464 - Toxicity to the aquatic higher plant *Lemna gibba* in a 7-day semi-static growth inhibition test, 17-AUG-07

PMRA Document Number: 1897993

Reference: Amended - SYN524464 - Dissipation of SYN524464 after Application as a Seed Treatment on Wheat Seed and In-Furrow Treatments under Simulated Spring Wheat Production Conditions from Representative Field Locations across the US,20-JAN-10

PMRA Document Number: 1897996

Reference: SYN520453 - Storage stability of SYN534968, SYN534969 and the metabolites CSCD459488 and CSCD465008 residues in soils stored deep frozen for up to two years 25-JAN-10

PMRA Document Number: 1897998 Reference: SYN524464 - Soil Dissipation Study with Treated Spring Wheat Seeds in Italy in 2007-2009, 29-JAN-10

PMRA Document Number: 1898002 Reference: SYN524464 - Soil Dissipation Study with Treated Spring Wheat Seeds in Northern France in 2007-2009, 28-JAN-10

PMRA Document Number: 1898003 Reference: CSAA798670 - Stability of CSAA798670 in Soil under Freezer Storage Conditions, 19-JAN-10

PMRA Document Number: 1898004 Reference: CSCC210616 - Stability of CSCC210616 in Soil under Freezer Storage Conditions, 16-MAR-10

PMRA Document Number: 1898005 Reference: SYN524464 - Stability of SYN508210 and SYN508211 in Soil under Freezer Storage Conditions, 21-JAN-10

PMRA Document Number: 1898006 Reference: SYN524464 - 5 Years Long Term Soil Accumulation Study with Treated Spring Wheat/Maize Seeds in Italy in 2007-2012, 29-JAN-10

4.0 Value

PMRA Document Number: 1898257 Reference: 2010, A17511B - GJR - MIII Section 7 – Canada, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1, 10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.4, 10.6, 12.7

PMRA Document Number: 1898308 Reference: 2010, A16874F - GJR - MIII Section 7 - Australia, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1, 10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.4, 10.6, 12.7

PMRA Document Number: 1898309 Reference: 2010, A16874F - GJR - MIII Section 7 – Canada, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1, 10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.4, 10.6, 12.7

PMRA Document Number: 1898395 Reference: 2010, A16148C - GJR - MIII Section 7 – Canada, DACO: 10.2.3.1, 10.2.3.2, 10.2.3.3, 10.2.3.4, 10.3.1, 10.3.2, 10.3.3, 10.4, 10.5.1, 10.5.2, 10.5.4, 10.6, 12.7

PMRA Document Number:1980457

Reference: 2010, Report Summary: Rhizobia Compatibility of SYN524464 (A16148C), DACO: 10.2.3.2