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Abstract 

A longstanding finding in the forecasting literature is that averaging forecasts from 
different models often improves upon forecasts based on a single model, with equal 
weight averaging working particularly well. This paper analyzes the effects of trimming 
the set of models prior to averaging. We compare different trimming schemes and 
propose a new one based on Model Confidence Sets that take into account the statistical 
significance of historical out-of-sample forecasting performance. In an empirical 
application of forecasting U.S. macroeconomic indicators, we find significant gains in 
out-of-sample forecast accuracy from our proposed trimming method. 

JEL classification: C53 
Bank classification: Econometric and statistical methods 

Résumé 

Les études consacrées au travail de prévision ont fait ressortir depuis longtemps que la 
moyenne des projections de plusieurs modèles a souvent un degré de précision plus élevé 
que les projections tirées d’un seul modèle, et qu’à ce titre, la technique qui consiste à 
établir une moyenne en pondérant les prévisions avec les mêmes coefficients donne de 
très bons résultats. Les auteurs se demandent ce qu’apporterait l’élagage de modèles 
avant le calcul des projections moyennes. À cette fin, ils comparent différentes méthodes 
d’élagage et proposent une nouvelle démarche (Model Confidence Set ou approche MCS) 
fondée sur la sélection de modèles selon un seuil de confiance défini par la valeur 
statistique de la qualité passée des prévisions hors échantillon. Un exercice empirique – la  
projection d’indicateurs macroéconomiques pour les États-Unis – leur permet de 
constater que leur démarche améliore de manière notable la précision des prévisions hors 
échantillon. 

Classification JEL : C53 
Classification de la Banque : Méthodes économétriques et statistiques 

 

 



1 Introduction

Since the original work of Bates and Granger (1969), a myriad of papers have ar-

gued that combining predictions from alternative models often improves upon forecasts

based on a single best model.1 In an environment where individual models are subject

to structural breaks and misspecified by varying degrees, a strategy that pools informa-

tion from the many models typically performs better than methods that try to select

the best forecasting model.2 To use this strategy, the forecaster faces two basic choices:

which models to include in the pool of models, and how to combine the model predic-

tions. With the ease of access to large macro panel data sets, a vast body of research

has investigated optimal model combination, yet have repeatedly found that a simple

average of the forecasts produced by individual predictors is a difficult benchmark to

beat, and commonly outperforms more sophisticated weighting schemes that rely on

the estimation of theoretically optimal weights. This is the forecast combination puzzle.

While there is a large literature examining model combination weights, Capistrán

et al. (2010) points out that little research has focused on how to choose the mod-

els to combine given a pool of potential models. Theoretically, if a potential model

has any information for forecasting, that information should be used. Nevertheless,

in small samples, when parameter estimation error is often pervasive, it is possible

that discarding predictions, that is assigning them zero weight, leads to better final

forecast combinations. Parameter estimation error will be particularly acute when, as

argued by Aiolfi and Timmermann (2006) and Hsiao and Wan (2011), the number of

1See Clemen and Winkler (1986), Clemen (1989), Makridakis and Winkler (1983), Stock and Watson
(2004), Timmermann (2006), among many others.

2See Hendry and Clements (2004) among many others.
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models is large relative to the sample size, as it is often the case with large macroe-

conomic datasets. In such cases, trimming models could lead to better estimates of

the remaining models’ combination weight. When the relevance of a particular model

is particularly small, and the estimation of its coefficients is subject to considerable

uncertainty, trimming these models prior to forecast combination should also lead to

better final combinations. Hence, the benefits of adding one additional variable to the

combination should be weighed against the cost of estimating additional parameters.

In this paper, we use model confidence sets, as proposed by Hansen et al. (2011)

in order to form forecast combinations conditional on model’s past out-of-sample per-

formance. We compare this method with the simpler and commonly-used approach of

fixing the proportion of models to keep, and discarding the remaining models without

regard for the statistical significance of differences in model accuracy. In the model

confidence approach, the number of models trimmed is not exogenously fixed by the

econometrician, but is determined by a statistical test comparing model accuracy. In

our application of forecasting macroeconomic indicators in the US, we use the often-used

approach of averaging the forecasts of many bivariate models,3 and find substantial im-

provements in forecast combination accuracy after trimming the set of potential models

to be combined with both schemes, but larger and more robust gains with the MCS

approach.

The idea of trimming the set of potential models before forecast combination is

not novel. Makridakis and Winkler (1983) studies the effects of adding forecasts to

a simple combination. They find that the marginal benefit of adding forecasts to a

3See, for example, Stock and Watson (2004); Faust et al. (2011); Wright (2009).
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simple combination decreases very rapidly once a relatively small number of forecasts

are included. In the same spirit, Timmermann (2006) argues that the benefit of adding

forecasts should be weighed against the cost of introducing increased parameter esti-

mation error. He considers three straightforward trimming rules: combining only the

top 75%, top 50% and top 25% models based on the models out-of-sample MSPE.4 The

author finds that aggressive trimming yields better results, in other words, that fewer

models included in the combination leads to better forecasts. In a stock return forecast-

ing context, Favero and Aiolfi (2005) also finds that aggressive trimming rules based

on model’s R2 improves forecasts. In their application, trimming 80% of the forecasts

leads to the best results. When combining forecasts from various models for inflation in

Norway, Bjørnland et al. (2011) argues that a strategy that combines only the 5% best

models leads to the best forecast combination. We add to this literature by proposing a

selection rule based on the Model Confidence Set that takes into account the statistical

significance of differences between model performance, and hence is more robust than

the simple strategy of ranking the models by their past performance. Whereas for the

fixed trimming method, significant gains are restricted to strategies that aggressively

trim 80% to 95% of the models, the MCS trimming rule results in significant accuracy

improvements for a wide range of parameters that govern the confidence level with

which the set of best models is identified. Monte Carlo evidence confirms the intuition

that forecast accuracy gains from trimming models based on their historical out-of-

sample performance arise mainly in environments where some of the models have a

very small predictive ability relative to others.

4Timmermann (2006) uses a recursive weighting scheme based on the MSE. We use a rolling window.
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The outline of the paper is as follows: Section 2 lays out the trimming schemes,

while Section 3 details the data and models. Section 4 discusses the benefits of trim-

ming under different combination methods and cutoffs, and presents the results of our

trimming exercise. Section 5 presents the results from a Monte Carlo study. Section

6 compares forecasts based on trimming to commonly used alternative data-rich fore-

casting methods. Finally, Section 7 concludes.

2 Trimming Rules

Consider a situation where the forecaster has a toolbox of different models to forecast

a variable of interest y. Each model i implies a forecast ŷi. These models might

comprise naive autoregressions, Bayesian vector autoregressions, factor models, DSGE,

etc., among others. The question we address in this paper is how should the forecaster

decide which of the forecasts should be included in forming the forecast combination.

We propose a conditional forecast combination strategy based on the model confi-

dence set concept in Hansen et al. (2011). We first provide an introduction to the MCS

and then detail how we use it as a trimming device to parse models and form forecast

combinations conditional on the recent out-of-sample performance of each model. We

then contrast the results obtained with the MCS with a trimming rule that simply

ranks the models according to their out-of-sample forecasting performance and trims a

fixed share of the worst performing models.5

5See Bjørnland et al. (2011) for a recent application of this method to the combination of inflation forecasts
in Norway, as well as Timmermann (2006) for the US.
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2.1 Exogenous Trimming

In the fixed-rule trimming scheme, the number of forecasting models to be discarded

is exogenously fixed. To construct a conditional forecast combination, we rank the

models according to their past MSPE, discard a fixed proportion of models, and use

the remaining ones to form the set of best forecasts. It is important to note that while

the number of models to be discarded (and hence also combined) is exogenously fixed,

there is nothing constraining the procedure to discard the same models at each forecast

period. Different models will be trimmed and used according to their respective MSPE

rank in the periods preceding the forecasting period.

With this trimming rule, the forecaster has to decide the proportion of models to be

trimmed. We do a careful analysis of showing how the MSPE of the final combination

would change for the complete range of proportions.

2.2 The Model Confidence Set approach to Trimming

An important drawback of the simple trimming rule discussed above is that it does not

take into account the statistical significance of differences in the historical performance

of the forecasting models. In principle, one might easily conjecture a situation where the

best and worst forecasts have mean squared prediction errors that are not statistically

different from each other. Hence, we propose a trimming rule that takes into account

the statistical significance of the differences in model performance. We use Hansen

et al. (2011) model confidence set method to identify the set of best models. We then

trim the models that are excluded from the MCS prior to forecast combination. The

model confidence set approach is, from a frequentist perspective, a tool to summarize
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the relative performance of an entire set of models by determining which models can be

considered statistically superior, and at what level of significance. The interpretation

of a MCS for a set of models is analogous to a confidence interval for a parameter,

in the sense that the models covered by the MCS are those that can not be rejected

from the set of best models for a given level of confidence. By attaching p-values to

models, it is easy to ascertain at what level of significance individual models would be

in the set of superior models, and which would be eliminated as statistically inferior.

By eliminating models with the MCS, we examine a trimming method that has a clear

grounding in statistical theory. The MCS provides the analyst with a less arbitrary

trimming strategy that has a clear frequentist interpretation.

We keep Hansen et al. (2011) notation, and refer the reader to the original paper

for a more detailed exposition. The starting point for our application is a finite setM0

of forecasting models. The MCS aims at identifying the set M∗, such that:

M∗ = {i ∈M0 : ui,j ≤ 0 for all j ∈M0}

where ui,j = E(dij,t) is the expected loss differential between models and dij,t =

Li,t − Lj,t is the model loss differential, where in our application we choose Li,t − Lj,t

as the squared forecast error. That is, given the set of all forecasting models M0 in

the comparison set, the MCS searches for the set of models that cannot be rejected as

statistically inferior at a chosen level of confidence.

The MCS is based on the following algorithm: Starting from the set of all models

M0, repeatedly test the null hypothesis at significance level α of equal predictive ac-

curacy, H0,M : ui,j = 0 ∀i, j. If the null is rejected, the procedure eliminates a model
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fromM, and repeats until the null of no difference between models can not be rejected

at the chosen level of significance. The set M̂∗1−α with the remaining models is denoted

as the MCS, M∗.6

To test H0, which is done sequentially through the case when the null is not rejected,

we construct t-statistics based on d̄ij ≡ n−1
∑n

t=1 dij,t, the relative loss of model i

relative to model j. The pertinent test statistics are

tij =
d̄ij√
ˆvar(dij)

TM = max
i,j∈M

|tij |

The TR,M statistic imposes that whether or not the null of no difference in model

performance is rejected depends only on the model that has the greatest relative loss.

This statistic is particularly convenient in implementation because the decision rule of

which model to eliminate is given by eR,M = arg maxi∈M supj∈Mtij , that is the model

with the largest t-statistic. The t-statistic test is particularly useful since it does not

require the estimation of a large variance-covariance matrix of the forecast errors.

The asymptotic distribution of this test statistic is non-standard, as it depends on

the cross-section correlation of the t′ijs. In order to address these issues, the MCS pro-

cedure uses bootstrap methods to estimate the distribution of the test statistic. So that

estimates of the distribution reflect the persistence in the di,j,t, the MCS employs a sta-

tionary bootstrap, as proposed by Politis and Romano (1994). In our implementation,

6If the null is not rejected in the first round, M∗ =M0.
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the expected size of block depends on the forecast horizon.7

The p-values associated with each model in the setM reflect the sequential nature of

the testing. Defining p(i) as the p-value of the individual model i that gets eliminated

if the null is rejected, pmcs(i) = maxj≤i p(i). This definition accounts for the cases

where the p-values for individual models decreases relative to earlier models that have

been eliminated, but eliminated with a higher p-value than the current model to be

eliminated. The intuition is that if the model eliminated earlier in the sequential testing

has a relatively high p-value, the next model can not be eliminated with a higher

level of confidence, given the relatively lower confidence of the earlier elimination. By

convention, the p-value of the last surviving model in the set is defined to be 1.0 because

the test that the model is as good as itself can never be rejected. P-values constructed

in this way are convenient because, like standard p-values, each pmcs(i) allows one to

determine at which level of significance the model would be in the set of best models.

The MCS approach allows us to make statements about the significance level at

which models belong to the set of best models that are valid in the frequentist sense.

Thus, we are able to answer questions like: if one could observe a large number of

realizations of this sample, given a confidence level, what percentage of times would

you expect a particular model to be in the set of best models?

We use the MCS to trim models that do not belong to the set of best models as

selected by the MCS. To determine which models to use at a given point in time, we

use the MCS to test the accuracy of the models inM0 using a rolling training sample,

and let the MCS procedure indicate which models survive the elimination algorithm at

7For the 1-quarter ahead forecasts, we use a block size of 2 quarters. For the 2 and 4-quarter ahead
forecasts, we use blocksizes of 3 and 6 quarters, respectively.
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our chosen level of significance.

When constructing the model confidence set M̂∗ we perform a systematic analysis

to choose our baseline confidence level of α and then keep models with an associated

p-value greater than or equal to α. We based our choice of α on an analysis of results

for a range of α going from from 1 percent to 99 percent, as shown below.

3 Models and Combination Methods

In order to examine the benefits of trimming the number of available models before fore-

cast combination, we apply the trimming methods discussed above to the commonly-

used setting of averaging forecasts from many bi-variate models estimated from a panel

of macroeconomic data.8

The forecasts are based on linear AR models and one additional predictor per model.

Let t date the predictors, and yt be the annualized growth rate from t-1 to t, of the

variable to be forecasted and, xt, the n x 1 vector of predictors. yt+h is the h-quarter

ahead value of the cumulated growth rate to be forecasted, yt+h =
∑h

i=1 yt+i/h. We

estimate the models for h = 1, 2, and 4. For each individual series {xi,t}ni=1 in our

macroeconomic and financial panel, we estimate the following model for our variable of

interest:

yt+h = αi +
P∑
j=0

βiyt−j + γixi,t + εi,t+h (1)

The single predictor based models described above are estimated with rolling sam-

8See for example, Stock and Watson (2004); Faust et al. (2011); Wright (2009) among many others.
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ples. Hansen et al. (2011) recommends a rolling window to guard against non-stationarity

in the model’s loss differentials, which is a requirement when comparing loss functions

over time using the model confidence set approach. P is based on the Bayesian Infor-

mation Criteria (BIC) of the univariate AR, of Yt on its lags and is calculated for each

rolling sample, but is held fixed across each predictor based model i.

We use a in-sample rolling sample size of R quarters to estimate the parameters

of the models. We then generate a rolling training sample of S quarters that will

subsequently be used to weight the different models and to evaluate which models

should be trimmed. Our first forecast combination will be for period R + S + 1. As

baseline values, we use R = 40 and S = 20. In an supplemental appendix, we analyze

the effects of different choices of training sample.

3.1 Data

The macroeconomic data set of potential predictors we use consists of 126 economic

and financial variables. This large panel contains data on aggregate and disaggregate

macroeconomic data, surveys, and financial indicators. Table 1 details the series con-

tained in the panel. The panel starts in 1959Q3 and ends at 2010Q4. Table 1 also

details the transformations applied to each series to eliminate trends. The panel closely

resembles that of Stock and Watson (2002).

We use this dataset to predict measures of economic activity and inflation, namely:

Gross Domestic Product (GDP), Nonfarm Payroll (EMP), Industrial Production (IP),

Housing Starts (HST) and the Gross Domestic Product Deflator (DEF)9. As our base-

9We also examined the robustness of the results to other measures of inflation, namely CPI and PCE, and
found similar results across all measures.
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line exercise, we report results for a forecasting exercise with real-time data for these

series. The dataset was obtained at the Real-Time Dataset for the Macroeconomist at

the Federal Reserve Bank of Philadelphia. The macroeconomic panel was gleaned from

a number of data sources, but mostly from the St. Louis Fed FRED data base.

Unfortunately, there is not a real-time data set of macroeconomic variables that

covers all of our predictors over our whole sample to perform the exercise fully in real-

time. Nevertheless, as shown by Bernanke and Boivin (2003) and Faust and Wright

(2009), the use of real-time or revised data does not affect the relative forecast accuracy

of similar forecasting models as the ones in this paper.

3.2 Forecast Combination Methods

After estimating and selecting the individual models, we weight the predictions to

produce the final combined forecast. We form these combinations with and without

trimming in order to analyze the gains from the trimming methods described above. We

perform two commonly used forecast combination techniques to combine the forecasts

based on the individual models, as well as on the set of best predictors as chosen by

our trimming methods. Here we briefly describe these forecast combination methods.

The methods we use to combine forecasts from individual models are mostly weighted

averages of each of the individual forecasts. Let ŷi,t+h denote the i-th individual pseudo

out-of-sample forecast, estimated at time of predictor i’s availability in time t. The

combined forecast is constructed as:

ŷt+h =
m∑
i=1

wi,tŷi,t+h (2)
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where ŷt+h is the final combination forecast, wi,t is the weight assigned to each i

individual forecast, ŷi,t+h at period t.

3.2.1 Equal Weights

The simplest and often most effective forecast combination method is the simple mean

of the panel of forecasts. With this approach,

wi,t = 1/M, (3)

where M is the total number of models. Hence, all forecasts contribute with an equal

constant weight. Stock and Watson (2004) finds that the equal weights combination

for output forecasts produce forecasts that beat a series of more elaborate weighting

schemes when forecasting output growth in the G7.

3.2.2 Inverse MSE weights

We combine forecasting models by weighting by the inverse of each model’s MSPE.

By this method, models that have a lower mean squared prediction error get a higher

weight in producing the combined forecast. Because we want to consider the out of

sample performance of the models, we use a rolling training sample of S = 20 quarters

to calculate the out of sample MSPEs for the individual predictor based models.10

The sample gets rolled forward as each additional out of sample forecast is produced.

Calling v the number of periods in the rolling training sample, the weight for model i

used in forecasting period t is

10In a supplemental appendix we analyze the effect of different choices of training samples.
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wi,t =
MSE−1i,(t−1−v,t−1)∑M
i=1MSE−1i,(t−1−v,t−1)

. (4)

The weights will thus be bounded between 0 and 1.

4 Gains from Trimming

Figure 1 and 2 show the ratio of the trimmed forecast combination to the non-trimmed

forecast combination’s MSPE for the 1-year ahead forecasts for the fixed and MCS

trimming methods. The models are combined with equal weights. The figures for the

inverse MSPE weights are very similar to the equal weights ones. In a supplemental

appendix, we provide the same figures for the 1 and 2-quarters ahead forecasts. A ratio

smaller than 1 means that the trimmed forecast combination has a smaller MSPE than

the non-trimmed one. As each of the different trimming schemes here examined depend

on different choices for their implementation, we conduct a careful analysis in order to

map how the results vary with different cutoff options.

As shown by Stock and Watson (2007) and Tulip (2009), the predictable component

of these macroeconomic series was significantly reduced during the GM, especially in

the case of inflation. Hence, the majority of the fluctuations in these series are mainly

driven by idiosyncratic shocks, which cannot be predicted. For this reason,, we also split

the results into two sub-samples: a pre-Great Moderation (from 1975Q4 to 1984Q4)

and the Great Moderation period (1985Q1 to 2007Q2). We have chosen to end the

Great Moderation period slightly before the beginning of the financial crisis, and the

Great Recession that followed it. Not surprisingly, the forecasting errors for this period
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are dramatically higher than the ones from the GM. Hence, for obvious reasons, we

have decided not to merge this period within the Great Moderation sub period. We

discuss the evidence for each of the trimming methods below in more detail.

4.1 Gains from Fixed trimming

Figure 1 shows the MSPE of the trimmed forecast combinations relative to the non-

trimmed forecast combinations using the equal weights combination scheme, so a ratio

below 1 indicates the trimmed forecast outperforms its non trimmed counterpart. We

start by trimming all but the 2% best performing models. All of the ratios converge

to one when all models are kept. The figures for each of the indicators clearly show

that very aggressive trimming is required to improve forecasts over the simple average

combination scheme. In order to achieve sizable gains from trimming, when choosing

an exogenous fixed proportion of models to be trimmed, one needs to trim a large share

of the models. For all the variables forecasted in this paper, a fixed rule that trims

around 90% of the models, and hence combines fewer than 10% of the models, provides

the most accurate forecast combination. With this level of trimming, one can achieve

sizable reductions of around 25% in MSPE over combining all models predictions. As

we discussed above, other papers have also found that aggressive trimming rules tend

to be superior. Favero and Aiolfi (2005) advocates trimming 80% of the models when

forecasting stock returns. When forecasting inflation in Norway, Bjørnland et al. (2011)

finds that trimming 95% of the worst models generates better combinations than trim-

ming a more modest, but still sizable, 50% of the models. Our results corroborate these

previous findings. Based on this analysis, as our benchmark we choose a fixed trimming
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rule that keeps only the top 10% of models when we compare this approach to other

data-rich forecasting alternatives.

The most aggressive rule trims 98% of the models, combining only the remaining

2%, or the top 3 models only, given the size of our dataset. This most aggressive level

trimming (98%) does not appear to be optimal for most of the variables we forecast,

indicating that using very few models to forecast usually produces subpar results.

The figures show that for all variables the gains from trimming differ markedly

across the forecasting periods. For all forecasting horizons, gains from trimming prior

to the GM are substantially higher than during the GM. Again, this is consistent with

the forecasting literature that shows that the predictable component of macroeconomic

variables virtually disappeared during the Great Moderation, so most of the gains from

trimming occurred before that period.

4.2 Gains from MCS trimming

In this section, we analyze the effectiveness of Hansen et al. (2011) Model Confidence

Set approach as a trimming device. When using the MCS to trim the set of worst

forecasts, one must choose with what level of confidence (α) one wishes to select the set

of best models, and implicitly trim those not in this set. Choosing a low α will result

in fewer models being trimmed, whereas a high α induces more models to be trimmed.

The intuition for this is that at low α only models that have very low p-values, i.e.

those for which there is strong evidence against the null, are rejected from the set of

best models. At higher α, more models can potentially be rejected from the set of best

models.
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Compared to the fixed trimming method, a key advantage of the MCS approach

to trimming is that one chooses a confidence level, a concept with clear interpretation

in statistical theory. Given the confidence level, if the data is not informative, many

models will be included in the set of best models, as the MCS will have difficulty

distinguishing between the models and few of them will be trimmed. On the other

hand, if the data is informative, the set of best models will be comprised of fewer

models. Given the chosen level of confidence, one does not fix the proportion of models

to be discarded without any regard to the statistical significance of the forecasts, in

contrast to the fixed trimming above.

We provide a complete picture of the gains of trimming with the MCS using p-values

varying from 1% to 99%. Figure 2 shows the ratio of MCS-trimmed to non-trimmed

forecasts where forecasts are combined by equal weighting. Again, a ratio smaller than

one means that trimming leads to better final combinations than averaging the whole

set of forecasts. For all variables, with the exception of GDP deflator, there are U

shape gains in forecasting accuracy from trimming. With a p-value of 1%, only the

very strongly statistically inferior forecasts that get a p-value between zero and 1% are

discarded. Hence, differences between the MCS-trimmed and non-trimmed combina-

tions are small, as evidenced by the fact that most of the ratios start approximately

at one. As we increase the level of significance required to select a forecast to the set

of best forecasts, more forecasts are trimmed and the gains from MCS trimming in-

crease. The highest gains from trimming are achieved with p-values between 30% and

60%. Above this 60% level, increasing the p-value cutoff leads to worse forecasts for all

variables we analyze. Based on this we choose a baseline cutoff p-value of 50% for our

17



comparison between the trimmed forecast combinations and other data-rich forecasting

methods.

A difference between the MCS and fixed-trimming is the robustness of the results.

Whereas in the latter approach, only when a very high trimming cutoff is selected,

thus discarding a large share of the forecasts, are there sizable accuracy gains; for the

MCS trimming results are relatively unchanged for a wide range of p-values cutoffs. By

taking into account the significance of the statistical differences between the forecasts,

one is able to select more carefully which models should be trimmed. Note that it could

be the case that a cutoff p-value of 50% might actually trim more or less than 90% of

the models, depending on the informativeness of the data.

As with fixed trimming, the forecasting gains from MCS-trimming arise more strongly

prior to the Great Moderation period. For p-values in the interval of 20% to 70%, the

forecasting gains for the one-year horizon are of the order of 30% during the first sub-

sample for all variables but GDP, where the gains are in excess of 50%. Results for the

whole period are more modest, generally around 10% less than the gains from trimming

prior to the GM.

4.3 Which models are chosen?

In the previous section, we investigated the gains in forecasting accuracy of restricting

the set of models to be combined by either choosing a fixed proportion of models to

be discarded prior to combination, or by using the Model Confidence Set to choose the

set of best forecasts, hence taking into account the statistical significance of differences

between the forecasts. In this section, we highlight the frequency with which the models
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are selected. Are some of the models persistently chosen to the set of best forecasts? If

so, which are those models? Are the differences in selection rate between the best and

worst models large?

Figures 3 and 4 show the proportion of times in our out-of-sample forecasting ex-

ercise each of the 126 models is selected to the set of best forecasts with the MCS and

the fixed trimming approach, respectively, for the 1-year ahead forecasts. In the MCS

approach shown in Figure 4, the models are selected with a p-value of 50%, whereas in

the fixed approach we keep the 10% best models. The models (x-axis) are sorted from

lowest to highest proportion rates (y-axis). Under both schemes, a subset of models are

never selected to the set of best forecasts, followed by a larger group with increasing

selection rates. Finally, on the other point of the spectrum, there is a small group

of models with significantly higher selection rates. Therefore, there appears to be a

significant persistence in the out-of-sample forecasting performance of good and bad

models.

Next, we investigate which are the models most frequently selected. Table 6 shows

the five most frequently chosen models for the 1-year ahead forecasts with both trim-

ming methods, again using our baseline cutoffs. A general pattern emerges: Models

that include housing and interest rate spreads are the most commonly selected for all

economic activity variables forecasted. For inflation, the top models are the ones that

include measures of employment, housing and economic activity in general.
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5 Monte Carlo Evidence

In the previous sections, we showed that there are substantial gains in forecasting

accuracy from carefully trimming the set of models based on their past out-of-sample

forecasting performance before forecast combination. In order to shed more light into

the benefits of our trimming approach, we conducted a monte carlo study along the

lines of Inoue and Kilian (2008). We posit that there are N=50 predictors for yt+1. The

simulations are based on 500 replications, with T = 150.

The data generating process (DGP) for yt+1 is given by:

yt+1 = β′xt + εt+1 (5)

where εt+1 ∼ NID(0,1). We generate 50 random predictors with two methods. The

first assumes that the predictors are independent:

xit ∼ NID(050×1, I50)

while the second takes into account the factor structure in the data. We assume

that the DGP for the X’s is driven by three common factors and idiosyncratic shocks:

xit = FitΛi + εit

where Λ is constructed based on a subset of 50 series from the initial panel of

predictors, covering real activity, prices, housing and financial variables. Fit is generated

from a standard normal distribution.
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Following Inoue and Kilian (2008), we propose five different scenarios for the slope

parameter vector:

Design B1. β = c1[1, 1, 1, ..., 1]′

Design B2. β = c2[50, 49, 48, ..., 1]′

Design B3. β = c3[1, 1/2, 1/3, ..., 1/50]′

Design B4. β = c5[11×10, 01×40]
′

Design B5. β = c6[e
−1, e−2, e−3, ..., e−50]′

In design B1, all variables are equally important predictors of yt+1. In such an

environment, one would not expect to find any gains from trimming the set of potential

predictors based on their past forecasting performance, as all predictors should on

average have equal predictive power. In all other designs, the predictive power of

the 50 generated predictors are significantly different. In design B4, a small group

of variables (ten) have equal importance, whereas the majority of predictors have no

importance at all (zero loadings). In designs B2, B3 and B5, we incorporate smooth

decays in the relative importance of each xi. Whereas in design B2 this decay is

slow, in design B5 (exponential), it is very fast, meaning that few variables will have

relatively high predictive power for yt, whereas a significant number of predictors will

have approximately zero forecasting power. One would expect that the gains from

trimming the set of predictors should be particularly large in situations like the ones

proxied by design B5. As in Inoue and Kilian (2008), the scaling constant c1 are

chosen such that the the population R2 of the forecasting models are the same across
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all designs. We show the results for a R2 of 25% and 50%.

After generating the series with each design, we compare the performance of untrimmed

forecast combination and the trimmed forecast combinations, both with equal weights.

For the fixed trimming, we examine performance with three different cutoff choices: 95,

75 and 50% of the worst performing models are trimmed. Given the higher computa-

tional cost of trimming with the model confidence set approach, we restrict ourselves

to our baseline cutoff choice of a p-value of 50%.

Tables 2 to 4 show the results for fixed trimming for a cutoff of 90, 75 and 50% of the

worst performing models, respectively. The results for the MCS trimming are shown

in Table 5. A ratio smaller than one means that the trimmed forecast combination’s

MSPE is smaller than the untrimmed one. It is clear from the tables that the gains

from trimming are larger for designs B3 and B5 for the independent predictors and

B3, B4, and B5 for the predictors that are based on the factor structure. Both these

designs have a fast monotonic decrease in gains of accuracy as the importance of the

predictors relative to the errors (R2) decreases.

The pattern of results for fixed trimming resembles the one we find in our empir-

ical exercises. The more aggressive strategy, the one that only keeps the 10% best

performing models performs better than softer trimming rules. Discarding 50% of the

worst performing models leads to negligible gains in forecasting performance with in-

dependent predictor and minor gains with predictors based on the factor structure.

Finally, it is also noteworthy that trimming with the model confidence set leads to

bigger improvements in forecasting performance in the monte carlo setting than with

fixed trimming in the case of independent predictors. In the case of predictors based

22



on the factor structure, keeping the top ten percent of models performs slightly better

than the model confidence set approach, though both lead to significant forecasting

gains compared using all of the predictions.

The monte carlo indicates that greater gains from trimming are expected when

many of the predictors have weak forecasting power, a common situation in economic

forecasting. Hence, by assigning weak forecasts a weight of zero, one benefits from a

better bias-variance trade-off. The bias from under fitting is more than compensated

by the fall in estimation uncertainty.

6 Forecast Combination and Other Data-Rich

Forecasts

We have shown in the previous section that, in our application, trimming the set of

models can lead to significant improvements in forecast combinations. In this section

we address how these trimmed forecast combinations compared to other competing

data-rich forecasting methods. We do this comparison by forming model confidence

sets over the pool of forecasts based on each trimming and combination schemes and

other commonly used data-rich forecasting methods.

We consider two additional data-rich forecasting methods. The first one is the com-

monly used factor model, as in Stock and Watson (2002). By summarizing the vast

amount of information in our panel of series into few common factors, it allows the

breadth of information to be incorporated in a linear forecasting model in a parsimo-

nious way. Finally, we also compare the combinations with a Bayesian Model Averaging
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approach that has previously been shown to provide competitive forecasts. We briefly

provide more information about these methods below.

6.1 Factor Forecasts

Following Stock and Watson (2002) and Forni et al. (2000), among many others, we

estimate principal component based forecasts from our panel of macroeconomic series

and use the estimated factors in Factor Augmented Autoregressions of the form

yt+h = α+

p∑
i=0

ρiyt−i +
m∑
j=1

γjfjt + εt+h (6)

where {fjt}mj=1 are the first m principal components of our panel of macroeconomic

series {xit}ni=1. Like for the individual predictor models, p is chosen by the BIC.

Since there are periods when very few models are chosen to the model confidence set,

we restricted ourselves to forecasting with only the first principal component, and fix

m = 1. We standardize all variables prior to extracting the principal components so

that each variable has a zero mean and unit variance. Common factors give us another

option of using the vast amount of information in the panel, without expanding the

number of parameters in the model beyond feasibility.

6.2 Bayesian Model Averaging

A growing number of papers have shown the usefulness of Bayesian Model Averaging

(BMA) at producing macroeconomic forecasts. Koop and Potter (2004) shows that

BMA provide appreciable accuracy gains over forecasting with a single model, more so
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than factor forecasts. Wright (2008, 2009) show that BMA is a useful alternative for

forecasting the exchange rate and inflation in the US, respectively. Finally, Faust et al.

(2011) argues that credit spreads are strong predictors of economic activity in the US

using a BMA approach.

Consider individual models given by the representation:

yt+h = α+

p∑
j=0

βyt−j + γixi,t + εt+h (7)

Every model uses only one variable xi at a time, has the same number of lags

p chosen by the BIC criteria, and εt ∼ N(0, σ2). As is common in the literature,

we assign a prior that each individual model is equally likely to be the true model.

Hence, P (Mi) = 1/n, where n is the number of models in the pool. For the model

parameters, the assigned priors follow Fernandez et al. (2001) and were used in a

forecasting environment by Faust and Wright (2009) and Wright (2008), among others.

The priors for β and σ are uninformative and proportional to 1/σ. The prior for γi is

given by Zellner (1986)’s g-prior, N(0, φσ2(X ′X)−1). The hyperparameter φ governs

the strength of the prior. Higher values of φ are associated with a less dogmatic prior.

We use a φ = 4 as our baseline.

The BMA forecast for each individual model i at time t will be given by

ỹit+h = α̂+
P∑
j=0

β̂yt−j + γ̃ixi,t (8)

where γ̃i = ( φ
1+φ)γ̂i represents the posterior mean of γi and β̂ is the OLS estimator

of β.
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The marginal likelihood of each individual model i is given by

P (D|Mi) ∝
[

1

1 + φ

]−1
2

∗
[

1

1 + φ
SSRi +

φ

1 + φ
SSEi

]− (T−P )
2

(9)

where SSR is the sum of squared residuals from the restricted regression of y on its

own lags and SSE is the squared residuals from the unrestricted regression of y on its

own lags and x.

The final BMA forecast will be given by

ỹt+h =
M∑
i=1

P (Mi|D)ỹit+h (10)

where P (Mi|D) is the posterior probability of the i-th model. Hence the BMA

forecast is the weighted average of individual forecasts, where the weights are given by

each model’s posterior probability:

P (Mi|D) =
P (D|Mi)P (Mi)∑n
j=1 P (D|Mj)P (Mj)

. (11)

Even though the theoretical justification for BMA relies on strictly exogenous re-

gressors and i.i.d errors, conditions not met in our application, the papers cited above

show that BMA provides good forecasts in similar setups.

6.3 Inference

In order to compare the performance of the forecast combinations, before and after trim-

ming, to the above mentioned alternative data-rich forecasts, we make use of Hansen
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et al. (2011) Model Confidence Set a second time. M0, the initial set of all models,

consists here of 12 different models: (i) four data-rich forecasts without trimming (EW

combination, inverse MSE weights combination, factor and BMA forecasts), (ii) the

same initial set of forecasts after fixed trimming with a baseline cutoff of 10%11, and

finally, (iii) the same initial set of forecasts after MCS trimming with a p-value cutoff

of 50%.12

The MCS selects the set of best models by attaching p-values to each these different

forecasts. As in the previous section, we use the stationary bootstrap of Politis and

Romano (1994) with 10,000 replications when constructing the p-values. The results

below give the MSPE and p-value for each of the models included in M0.

6.4 Results

In the tables below, we show how the forecast combinations compare with the factor

and BMA forecasts before and after trimming. We concentrate our analysis in the

1-year ahead forecasts, and provide additional evidence for the 1 and 2-quarter ahead

horizons in a supplemental appendix. Table 7 shows the 1-year ahead MSPE as well as

MCS p-value for all the 12 models included inM0. The first table shows results for the

full sample, whereas the next two tables split the results between the forecasts prior

to the Great Moderation (1974Q4 to 1984Q4) and the Great Moderation (1985Q1 to

2007Q2).13

11For this comparison, we only keep the 10% best models.
12Only models that receive a p-value of 50% or higher associated with the null hypothesis that the model

belongs to the set of best models are kept.
13While we include the recent great recession period in the full sample results, we exclude the recent

recession from the Great Moderation period.
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Several results emerge from this exercise. Among the four data-rich forecasts with-

out trimming, we see that BMA has the lowest MSPE for all predicted variables. Wright

(2009) also finds that BMA forecasts are generally more accurate for US inflation than

simple averaging. This result is quite consistent across subsamples, and especially

strong before the GM and for forecasts made during recessions. Nevertheless, the re-

sults show that after trimming, there are minimum to no gains in using BMA to forecast

the variables here examined. As a matter of fact, in sharp contrast to the other combi-

nation methods (EW and inverse MSE) trimming leads to very small, or even losses in

forecast accuracy in BMA forecasts. This result is also consistent across subsamples.

This can be explained by the fact that the models being trimmed are the ones that

receive a very small posterior weight in the final BMA forecast. Hence, trimming those

models leads to little or no difference in the final BMA forecast.

There are also substantial accuracy gains from trimming the panel used in the

factor forecasts. As previous research by Bai and Ng (2008) has shown, pre-screening

the predictors prior to factor estimation and forecast leads to more accurate final factor

forecasts. As we were constrained to consider factor forecasts that include only the first

common factor, the unconstrained factor forecast is not competitive with the remaining

forecast combination methods. Nevertheless, after trimming with either method, the

factor forecast estimated with the subset of data included in the set of best models

is competitive, and provides the most accurate forecast for industrial production and

inflation.

The MCS-trimmed forecast combinations perform very well when compared to this

set of forecasts. For most of the variables, the trimmed forecasts combined with either

28



EW or MSPE weights are the most accurate forecasts given our baseline cutoffs. MCS

trimmed and combined with equal weights outperforms the simple average of models

for all of the indicators. Also noteworthy is that once the pool of models is trimmed

with the MCS, applying weights other than equal weights to the remaining models has

very little benefits, if any, for the resulting combined forecast for each of the macro

series.

As previous research has shown, and our results in the section above corroborated,

the predictable component of macroeconomic variables was significantly diminished

during the Great Moderation. As recently argued by Edge and Gürkaynak (2011),

this unpredictability is expected when monetary policy is characterized by a strong

stabilizing rule, as was the case during that period. Hence, tables 8 and 9 present the

model comparisons for these two periods separately. One manifestation of the fall in

predictability of the macroeconomic series here examined is the reduction in MSPE

dispersion between the 12 different models. Prior to the GM, there was sufficient

information in order to distinguish the forecast performance of the various models.

Hence, fewer models are included in the set of best forecast at a 10 and 25% confidence

level. During the Great Moderation, the differences in MSPE between the best and

worst forecasting model was significantly decreased.

6.4.1 Evidence from Recessions and the Great Recession

As we start our empirical exercise in 1974Q4, our forecasts cover multiple recessions,

including the recent Great Recession starting in the third quarter for 2007. A large

literature has argued for important nonlinearities in the forecasting performance of
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models. Periods of recession juxtaposed to stable environments are a primary example

of when one would expect nonlinearities in model performance. Chauvet and Potter

(2012) find that the performance of a series of GDP forecasting models deteriorates

significantly during recessions.

In this section we single out the forecasts made during periods identified as reces-

sions by the National Bureau of Economic Research (NBER), and compare how both

trimming methods perform during these periods. Table 10 shows the MSPE of each of

the forecasting schemes, as well as the associated p-value of being in the set of best fore-

casts. As one would expect, the MSPE of these forecasts are considerably higher than

the ones from the whole sample. Nevertheless, we again find a substantial improvement

in the MSPE of the forecast combinations after trimming with both methods.

7 Conclusion

In this paper, we proposed the use of model confidence sets to form conditional forecast

combination strategies. In an environment where the econometrician has access to a

large number of models, we have compared the performance of this proposed method to

the more common approach of ranking the models and deciding on a fixed fraction to

be discarded, without any regard for the statistical significance of differences between

the models.

We show that substantial gains in forecast accuracy can be achieved by discarding

the worst performing models before combining the forecasts. We argue that the model

confidence set approach offers a more robust procedure for selecting the forecasting
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models based on their out-of-sample performance. Applying the MCS to a set of fore-

casts derived from a large dataset of the US economy, we find that models including

housing and interest rate spreads are among the most frequently selected predictors

for changes in real activity, whereas the most commonly selected models for inflation

forecasting also include measures of employment.

We find that the forecasting gains were concentrated mainly during the less stable

environment before the Great Moderation. Given the increase in economic volatility

since the beginning of the Great Recession, the substantial gains from trimming could

reemerge.
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Table 1: Variables and Transformations in our Large Dataset
Variable Transf Variable Transf
Moody’s AAA Bond Yield 2 Civilian Unemployed: 27 Weeks and over 5
Moody’s AAA Bond Spread 2 Civilian Labor force 5
Avg.Hourly earnings: Construction 5 Avg. Duration of Unemployment 5
Avg.Hourly earnings: Manufacturing 5 Exchange Rate: Switzerland 5
Avg.Weekly Hours: Manufacturing 1 Exchange Rate: Japan 5
Avg.Weekly Overtime Hours: Manufacturing 2 Exchange Rate: UK 5
Moody’s BAA Bond Yield 2 Exchange Rate: Canada 5
Moody’s BAA Bond Spread 2 S&P Price Dividend Ratio 5
ISM Manufacturing PIM Composite Index 1 S&P Earning Price Ratio 5
ISM Manufacturing Employment Index 1 Real Compensation per Hour 5
ISM Manufacturing Inventory Index 1 Corporate Profits after tax 5
ISM Manufacturing New Orders Index 1 Real Disposable personal income 5
ISM Manufacturing Production Index 1 Real Exports 5
ISM Manufacturing Prices Index 1 Real Final Sales Domestic Products 5
Avg.Weekly Hours: Nondurable Goods 1 Real Gross Domestic Product 5
Avg.Weekly Hours: Durable Goods 1 Real Government Expenditures 5
S&P Returns 1 Real Government Expenditures: Federal Government 5
Fama-French Factor: RmRf 1 Real Government Expenditures: State and Local 5
Fama-French Factor: SMB 1 Real Imports 5
Fama-French Factor: HML 1 Real Compensation per hour: Business Sector 5
Fed Funds Rate 2 Unit Labor Cost: Business Sector 5
1-Year Yield 2 Unit Labor Cost: Nonfarm Business 5
5-Year Yield 2 Real Personal Consumption Expenditures: Services 5
10-Year Yield 2 Real Personal Consumption Expenditures: Durables 5
3-Month Treasury Bill 2 Real Personal Consumption Expenditures: Nondurables 5
6-Month Treasury Bill 2 Real Investment: Structures 5
6-Month minus 3-Month Spread 1 Real Investment: Equipment and Softwares 5
1-Year minus 3-Month Spread 1 Real Investment: Nonresidential Structures 5
10-Year minus 3-Month Spread 1 Real Investment: Residential Structures 5
Personal Saving Rate 2 Nonfarm Business: hours all persons 5
Unemployment Rate 2 Nonfarm Buiness: output per hour all persons 5
U Michigan Consumer Expectations 2 Commercial and Industrial Loans 6
Nonborrowed Reserves: Depository Institutions 3 M1 - Money Stock 6
Nonborrowed Reserves: DI + Term Auction Credit 3 M2 - Money Stock 6
Housing Starts 4 St.Louis Adjusted Monetary Base 6
Housing Starts: Midwest 4 Board of Governors Adjusted Monetary Base 6
Housing Starts: Northeast 4 Board of Governors Adjusted Total Reserves 6
Housing Starts: South 4 PPI: All items 6
Housing Starts: West 4 PPI: Crude Materials 6
Nonfarm Payroll 5 PPI: Finished Foods 6
All Employees: Durable Goods 5 PPI: Industrial Commodities 6
All Employess: Manufacturing 5 PPI: Intermediate Materials 6
All Employees: Nondurable Goods 5 CPI: All items 6
All Employees: Services 5 CPI: Core 6
All Employees: Construction 5 PCE: All items 6
All Employees: Government 5 PCE: Excluding Food and Energy 6
All Employees: Mining 5 PCE: Motorvehicles 6
All Employees: Retail Trade 5 PCE: Food 6
All Employees: Wholesale Trade 5 PCE: Furniture 6
All Employees: Finance 5 PCE: Clothing 6
All Employees: Trade, Transp and Utilities 5 PCE: Gas 6
Excess Reserves of Depository Institutions 5 PCE: Nondurables 6
Industrial Production Index 5 PCE: Housing 6
Industrial Production: Business Equipment 5 PCE: Health care 6
Industrial Production: Consumer Goods 5 PCE: Transportation 6
Industrial Production: Durable Consumer Goods 5 PCE: Recreation 6
Industrial Production: Final Goods 5 PCE: Other 6
Industrial Production: Materials 5 Price of Investment: Structures 6
Industrial Production: Nondurable Goods 5 Price of Investment: Equipament 6
Industrial Production: Durable Materials 5 Price of Investment: Residential Structures 6
Industrial Production: Nondurable Materials 5 Price of Exports 6
Civilian Unemployed: 15 Weeks and over 5 Price of Imports 6
Civilian Unemployed: 15 to 26 Weeks 5 Price of Federal Government Expenditures 6
Civilian Unemployed: 5 to 14 Weeks 5 Price of State and Local Government Expenditures 6
Civilian Unemployed: Less than 5 Weeks 5 Gross Domestic Product Deflator 6

Note: This table shows our dataset, as well as the transformation applied to each one of the series: 1-No change, 2-log,
3-1st difference, 4-2nd difference, 5-1st difference of log, 6-2nd difference of logs.
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Table 2: Monte Carlo: Fixed Trimming - 10%

Independent Predictors Factor-based Predictors
R2=25 R2=50 R2=25 R2=50

B1 0.99 0.98 0.97 0.87
B2 0.99 0.97 0.93 0.87
B3 0.97 0.90 0.88 0.65
B4 0.99 0.96 0.86 0.62
B5 0.96 0.87 0.87 0.60

Note: This table shows the ratio of MSPE of trimmed-combination over untrimmed-combinations with Equal
Weights.

Table 3: Monte Carlo: Fixed Trimming - 25%

Independent Predictors Factor-based Predictors
R2=25 R2=50 R2=25 R2=50

B1 0.99 0.98 0.98 0.93
B2 0.99 0.98 0.96 0.92
B3 0.98 0.96 0.92 0.79
B4 0.99 0.97 0.91 0.78
B5 0.98 0.95 0.91 0.77

Note: This table shows the ratio of MSPE of trimmed-combination over untrimmed-combinations with Equal
Weights.

Table 4: Monte Carlo: Fixed Trimming - 50%

Independent Predictors Factor-based Predictors
R2=25 R2=50 R2=25 R2=50

B1 0.99 0.99 0.99 0.98
B2 0.99 0.99 0.98 0.97
B3 0.99 0.98 0.97 0.92
B4 0.99 0.99 0.97 0.92
B5 0.99 0.98 0.97 0.92

Note: This table shows the ratio of MSPE of trimmed-combination over untrimmed-combinations with Equal
Weights.
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Table 5: Monte Carlo: MCS Trimming - Pvalue=50%

Independent Predictors Factor-based Predictors
R2=25 R2=50 R2=25 R2=50

B1 1.00 1.00 0.98 0.89
B2 1.01 0.99 0.97 0.91
B3 0.99 0.91 0.94 0.74
B4 1.00 0.99 0.92 0.72
B5 0.96 0.83 0.93 0.69

Note: This table shows the ratio of MSPE of trimmed-combination over untrimmed-combinations with Equal
Weights.
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Figure 1: Ratio of Fixed Trimmed to Untrimmed Forecast Combination - 4Q Forecasts
GDP IP
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Notes: This figure shows the MSPE ratio of trimmed to non-trimmed forecast combinations with equal
weights (y-axis) for different fixed shares of models combined (x-axis). Three sets of results are shown in the
graphs: (All) for the whole forecasting period, (PGM) for the period pre-Great Moderation, (GM) for the
period of the Great Moderation. A ratio smaller than one means that the trimmed-forecast combination has
a smaller MSPE than the combination with the full set of models.
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Figure 2: Ratio of MCS Trimmed to Untrimmed Forecast Combination - 4Q Forecasts
GDP IP
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Notes: This figure shows the MSPE ratio of trimmed to non-trimmed forecast combinations with equal
weights (y-axis) for different p-values for the MCS (x-axis). Three sets of results are shown in the graphs:
(All) for the whole forecasting period, (PGM) for the period pre-Great Moderation, (GM) for the period of
the Great Moderation. A ratio smaller than one means that the trimmed-forecast combination has a smaller
MSPE than the combination with the full set of models.
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Figure 3: Proportion of time each variable is selected for the Fixed set of best forecasts: 1Y
Forecasts with practice sample of 5 years
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Notes: This figure displays the selection rate of the models to the set of best models selected by the 10%
fixed cutoff, sorted from lowest selection rate to highest.
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Figure 4: Proportion of time each variable is selected for the MCS set of best forecasts: 1Y
Forecasts with practice sample of 5 years
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Notes: This figure displays the selection rate of the models to the set of best models selected by the MCS
with a pvalue of 50%, sorted from lowest selection rate to highest.
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