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Abstract 

This paper deals with the estimation of the risk-return trade-off. We use a MIDAS model 
for the conditional variance and allow for possible switches in the risk-return relation 
through a Markov-switching specification. We find strong evidence for regime changes 
in the risk-return relation. This finding is robust to a large range of specifications. In the 
first regime characterized by low ex-post returns and high volatility, the risk-return 
relation is reversed, whereas the intuitive positive risk-return trade-off holds in the 
second regime. The first regime is interpreted as a “flight-to-quality” regime. 
 

JEL classification: G10, G12  
Bank classification: Economic and statistical models; Financial markets 

Résumé 

Notre étude porte sur l’estimation de la relation entre le risque et le rendement. À cette 
fin, nous estimons cette relation avec un modèle à changements de régimes markoviens 
en utilisant un modèle MIDAS pour la variance conditionnelle. Les résultats obtenus à 
partir de nombreuses spécifications militent fortement en faveur de changements de 
régimes dans la relation entre le risque et le rendement. Dans le premier régime, 
caractérisé par de faibles rendements ex post et une forte volatilité, la relation entre le 
risque et le rendement est négative; à l’inverse, la relation de ces deux éléments est 
positive dans le second régime comme le prévoit le modèle théorique. Le premier régime 
constitue selon nous un mouvement de report vers la qualité. 
 

Classification JEL : G10, G12,  
Classification de la Banque : Méthodes économétriques et statistiques; Marchés 
financiers 

 

 



1 Introduction

The Intertemporal Capital Asset Pricing Model (ICAPM) of Merton (1973) states that
the expected excess return on the stock market is positively related to its conditional
variance:

Et(Rt+1) = µ+ γVt(Rt+1), (1)

formalizing the intuition that a riskier investment should demand a higher expected return
(relative to the risk-free return). However, in the empirical literature, there is mixed evi-
dence on whether the parameter γ is indeed positive and statistically significant. Examples
include Ghysels, Santa-Clara, and Valkanov (2005), Guo and Whitelaw (2006), and Lud-
vigson and Ng (2007), who all find a positive risk-return trade-off.1 In contrast, Glosten,
Jagannathan, and Runkle (1993), using different GARCH specifications, find a negative
relation between risk and return. Similarly, Brandt and Kang (2004) model both the ex-
pected returns and conditional variance as latent variables in a multivariate framework and
find a negative trade-off. Alternatively, Yu and Yuan (2011) use data on investor sentiment
to study the risk-return trade-off. They find that expected returns and conditional vari-
ance are positively related in low-sentiment periods, but unrelated during high-sentiment
periods.

Omitted variables could play a role in explaining these conflicting results. For example,
Scruggs (1998) and Guo and Whitelaw (2006)) emphasize the need to include additional
variables in the risk-return relation to capture shifts in investment opportunities. Lettau
and Ludvigson (2001) suggest using the consumption-wealth ratio in the risk-return rela-
tion. Ludvigson and Ng (2007) instead include factors summarizing the information from
a large set of predictors, and Lettau and Ludvigson (2010) find that a positive risk-return
relation is uncovered using lagged mean and lagged volatility as additional predictors.

Another reason for the conflicting results reported in the literature is in the way that the
conditional variance is modelled. Indeed, if one wants to estimate the risk-return trade-off
over a long period of time, the conditional variance is not directly observable and must be
filtered out from past returns. An attractive approach is the one developed by Ghysels,
Santa-Clara, and Valkanov (2005). They introduce a new estimator for the conditional
variance - the MIDAS (MIxed DAta Sampling) estimator - where the conditional variance
depends on the lagged daily returns aggregated through a parametric weight function. The
crucial difference with rolling-window estimators of the conditional variance is that the
weights on lagged returns are determined endogenously and in a parsimonious way with
the MIDAS approach. In this paper, we follow the approach of Ghysels, Santa-Clara, and
Valkanov (2005) and use a MIDAS estimator of the conditional variance, since it is likely
that this estimator can more fully describe the dynamics of market risk.2 It is also a

1French, Schwert, and Stambaugh (1987) find a strong negative relation between the unpredictable
component of volatility and expected returns, whereas expected risk premiums are positively related to the
predictable component of volatility.

2Hedegaard and Hodrick (2013) point out a coding error in Ghysels, Santa-Clara, and Valkanov (2005),
which affected the estimated risk-return trade-offs, particularly in samples covering financial crises. See
Ghysels, Plazzi, and Valkanov (2013) for further discussion.
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convenient approach, since it permits us to easily model the dynamics of the risk-return
trade-off at different frequencies.

In this paper, we also consider regime changes in the parameter γ entering before
the conditional variance to reflect the possibility of a changing relationship between risk
and return.3 The relation between risk and return should not necessarily be linear. For
example, Backus and Gregory (1993) and Whitelaw (2000) show that non-linear models are
consistent with a general equilibrium approach. Campbell and Cochrane (1999) underline
the time-varying nature of risk premiums. In particular, Whitelaw (2000) estimates a
two-regime Markov-switching model with time-varying transition probabilities that include
aggregate consumption as a driving variable for the transition probabilities to account for
the changes in investment opportunities. He then finds a non-linear and time-varying
relation between expected returns and volatility. Alternatively, Tauchen (2004) criticizes
the reduced-form nature of the models that estimate the risk-return trade-off. He develops
a general equilibrium model where volatility is driven by a two-factor structure, with a risk
premium that is decomposed between risk premiums on consumption risk and volatility
risk.

More recently, Rossi and Timmermann (2010) proposed new evidence on the risk-return
relationship by claiming that the assumption of a linear coefficient entering before the
conditional variance is likely to be too restrictive. They use an approach based on boosted
regression trees and find evidence for a reversed risk-return relation in periods of high
volatility, whereas the relation is positive in periods of low volatility.4 They also propose to
model risk with a new measure, the realized covariance calculated as the product between
the changes in the Aruoba, Diebold, and Scotti (2009) index of business conditions and
the stock returns. We follow their approach and include this new measure of risk as a
conditioning variable for estimating the risk-return trade-off.

We estimate regime-switching risk-return relations using 1-week, 2-week, monthly and
quarterly returns, ranging from February 1929 to December 2010. Our empirical results
can be summarized as follows:

• There is strong evidence for regime changes in the risk-return relation, as supported
by the test for Markov-switching parameters recently introduced by Carrasco, Hu,
and Ploberger (2013).

• In the first regime characterized by low ex post returns and high volatility, the risk-
return relation is negative, whereas the risk-return relation is positive in the second
regime. This is consistent across all the frequencies that we consider and a wide
range of specifications (the inclusion of additional predictors, the use of time-varying
transition probabilities, the use of Student-t rather than normal innovations and the
use of an asymmetric MIDAS estimator of the conditional variance).

3While writing the current version of this paper, we became aware of independent and simultaneously
written work by Arago, Floros, and Salvador (2013) using a similar approach with European data.

4The boosted regression trees approach is a statistical technique that combines tree-based methods (i.e.,
methods that partition the space of predictors in disjoint regions and then fit simple models in each of
these regions) with boosting (i.e., iterative methods designed to increase predictive power).
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• The first regime can be interpreted as a ”flight-to-quality” regime. This evidence
corroborates the findings in Ghysels, Plazzi, and Valkanov (2013), who document
that the Merton model holds over samples that exclude financial crises, in particular,
the Great Depression and/or the subprime mortgage financial crisis and the resulting
Great Recession. They also report that a simple flight-to-quality indicator, based
on the ex post extreme tail events, separates the traditional risk-return relation from
financial crises, which amount to fundamental changes in that relation. In this paper,
we show that a Markov switching regime model is indeed recovering a similar pattern.

The paper is structured as follows. Section 2 presents the model we use for estimating
the risk-return relation. Section 3 details the main results of the paper and provides a
comparison of the estimated conditional variances with GARCH specifications. Section 4
provides a sensitivity analysis across a wide range of models as well as an out-of-sample
forecasting exercise. Section 5 concludes.

2 Estimation of the risk-return trade-off with a Markov-

switching MIDAS model

If returns are normally distributed, the MIDAS estimation of the risk-return trade-off
is such that:

Rt+1 ∼ N(µ+ γV MIDAS
t , V MIDAS

t ) (2)

However, the assumption of a constant parameter γ can be too restrictive and could
miss changes in investment opportunities due to, for example, changes in the level of market
volatility. We therefore propose to model regime changes in the parameter γ through a
Markov-switching process that can account for time instability in the risk-return relation.
We also consider regime changes in the intercept µ to account for time variation in the
mean of the returns. Equation (2) then becomes:

Rt+1 ∼ N(µ(St+1) + γ(St+1)V
MIDAS
t , V MIDAS

t ) (3)

where St+1 is an M-state Markov chain defined by the following constant transition
probabilities:

pij = Pr(St+1 = j|St = i) (4)

M∑
j=1

pij = 1∀i, jε{1, ...,M} (5)

We use a MIDAS estimator for the conditional variance of the stock market, since it has
already proven to be a useful specification for the estimation of the risk-return trade-off (see,
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e.g., Ghysels, Santa-Clara, and Valkanov (2005)). The MIDAS estimator of the conditional
variance is based on the lagged daily returns, which are weighted via a parametric weight
function. Two popular choices in the literature are the beta polynomial and the exponential
Almon lag weight functions:

w(j; θ) =
( j
D

)κ1 − (1− j
D

)κ2−1∑K
j=0(

j
D

)κ1 − (1− j
D

)κ2−1
(6)

w(j; θ) =
exp(κ1j + κ2j

2)∑K
j=0 exp(κ1j + κ2j2)

(7)

The above weight functions can take a large variety of shapes depending on the value
of the two parameters κ1 and κ2. In this paper, we use daily absolute returns rather than
squared returns, since the use of absolute returns makes the estimated conditional variance
less sensitive to outliers. This is relevant, since we include periods of high volatility in our
estimation sample (1929–2010). In addition, Ghysels, Santa-Clara, and Valkanov (2006)
and Forsberg and Ghysels (2007) find that realized power (i.e., the daily sum of the 5-
minute absolute returns) is the best predictor of future volatility. The MIDAS estimator
of the conditional variance is then given by:

V MIDAS
t = N

D∑
d=0

wj|rt−d| (8)

where N is a constant that corresponds to the number of traded days at the frequency of
the expected returns to ensure that expected returns and conditional variance have the
same scale.5

The model is estimated by maximum likelihood via the EM algorithm, since this al-
gorithm performs well for estimating non-linear models (see, e.g., Hamilton (1990) and
Guérin and Marcellino (2013)).

Several papers estimate Markov-switching models for assessing the risk-return relation.
Whitelaw (2000) estimates a Markov-switching model with time-varying transition proba-
bilities with monthly aggregate consumption data and finds a non-linear and time-varying
risk-return relation. Mayfield (2004) introduces regime switching in a general equilibrium
model where market risk is characterized by periods of high and low volatility, which evolves
according to a Markov-switching process. He finds evidence for a shift in the volatility pro-
cess in 1940 and uncovers a positive risk-return trade-off. Kim, Morley, and Nelson (2004)
estimate a Markov-switching model for stock returns. They find evidence for a negative
and significant volatility feedback effect, which supports a positive risk-return trade-off in
normal times.

In particular, in a general equilibrium exchange economy, the sign of the risk-return
relation depends on the sign of the correlation between the marginal rate of substitution (or
”stochastic discount factor”) and the market return (see, e.g., Whitelaw (2000)). Therefore,

5N = {5, 10, 22, 66} for regressions at 1-week, 2-week, monthly and quarterly horizons.
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the parameter γ(St+1) entering before the conditional variance in equation (3) cannot be
directly interpreted as the coefficient of relative risk-aversion. Instead, γ(St+1) corresponds
to the product of the volatility of the stochastic discount factor and the correlation between
the stochastic discount factor and the market return.

3 Data and empirical results

3.1 Data

We use the S&P500 composite portfolio index, ranging from 1 February 1929 to 31
December 2010, as a proxy for stock returns. The daily returns are taken as 100 times
the daily percentage change in the index. The risk-free rate is obtained from the 3-month
Treasury bill, which is transformed at the daily frequency by appropriately compounding
it and then subtracted from the returns to obtain excess returns. We use excess returns in
the empirical analysis of the paper, but, for brevity, we refer to them as returns. The data
for stock returns are obtained from the Global Financial Data website. The risk-free rate
series from 1929 to 1933 are the “Yields on Short-Term U.S. Securities Three-Six Month
Treasury Notes and Certificates, Three Month Treasury” from the NBER Macrohistory
database. The risk-free rate from 1934 to 2010 is the 3-month Treasury bill taken from the
Federal Reserve website.

Table 1 shows summary statistics for monthly excess returns. We consider two estima-
tion samples: from February 1929 to December 2010 and from February 1964 to December
2010. Following Ghysels, Santa-Clara, and Valkanov (2005), we choose 1964 as the start
year for the subsample analysis. The average monthly excess return over the full sam-
ple sample is 0.399%, which is slightly higher than in the shorter estimation sample at
0.387%. The monthly excess returns over the full estimation sample also have higher stan-
dard deviation and a larger range than the shorter estimation sample. Figure 1 plots the
data.

3.2 MIDAS and GARCH estimates of the risk-return relation

The MIDAS estimator of the conditional variance aggregates past absolute daily returns
so that, to compute the conditional variance for a given month N , we use daily returns until
the last traded day of month N − 1. The past daily returns are aggregated with the beta
weight function, since Ghysels, Santa-Clara, and Valkanov (2006) find that it performs well
with S&P500 data.6 We then regress the returns of month N on the MIDAS estimator of
the conditional variance for month N to estimate the risk-return relation in equation (1).

The monthly realized absolute variance is computed from the within-month daily abso-
lute returns:

RV ARt+1 =
D∑
d=0

|rt+1−d|

6The use of an exponential Almon lag weight function yields qualitatively similar results.
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Table 1: Summary statistics for monthly U.S. excess stock returns

Statistic 1929:02 - 2010:12 1964:02 - 2010:12

Mean 0.399 0.387

Standard deviation 5.581 4.370

Minimum -29.991 -21.954

Maximum 42.207 15.989

Number of observations 983 563

The last two columns report the sample statistics. Data are the S&P 500 composite portfolio returns

obtained from the Global Financial Database website.

Figure 1: Monthly excess stock returns, february 1929–december 2010
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where D is the number of traded days in month t+ 1. For brevity, from this point on, we
refer to realized absolute variance simply as realized variance.

Table 2 shows the empirical results for the linear estimates of the risk-return trade-
off using returns Rt+1 for the left-hand side of equation (1) ranging from the weekly to
the quarterly frequency. The results show a positive relation between expected returns
and conditional volatility for both the subsample and full-sample analyses and across all
frequencies for the expected returns Rt+1. However, the coefficient γ entering before the
conditional variance is not significant at the 10% level, except in the subsample analysis
at the 2-week horizon. R2

R is the coefficient of determination from regressing Rt+1 on the
MIDAS estimator of the conditional variance. The explanatory power for the returns is low
and typically increasing at lower frequency. The last column of Table 2 reports the R2

σ2 ,
which is obtained from the regression of the realized variance on the MIDAS estimator of
the conditional variance. MIDAS estimators of the conditional variance explain between
47.52% and 58.74% of the realized variance. Moreover, the predictive power of the MIDAS
estimators is higher at the monthly frequency. Indeed, Figure 2 shows that the monthly
MIDAS estimator of the conditional variance tracks the monthly realized variance very
well.

Figure 2: Midas and realized variances, february 1929–december 2010
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Table 2: Linear risk-return relation: Rt+1 ∼ N(µ+ γV MIDAS
t , V MIDAS

t )

µ γ LogL R2
R R2

σ2

(∗102)

Full-sample analysis: February 1929–December 2010

Quarterly 0.129 0.025 -1227.190 0.94% 57.38%
[0.030] [0.273]

Monthly 0.262 0.009 -2987.476 0.01% 58.74%
[1.334] [0.664]

2-week 0.088 0.013 -5562.106 0.02% 56.26%
[0.828] [0.750]

1-week 0.066 0.007 -9532.267 0.01% 50.56%
[1.750] [0.948]

Subsample analysis: February 1964–December 2010

Quarterly -0.327 0.034 -642.927 0.33% 47.52%
[-0.339] [1.418]

Monthly 0.271 0.008 -1593.271 0.10% 54.12%
[0.709] [0.285]

2-week -0.001 0.026 -2992.930 0.03% 54.08%
[-0.008] [2.214]

1-week 0.014 0.022 -5133.369 0.01% 48.71%
[0.783] [1.626]

The MIDAS estimator of the conditional variance is computed using 120 lags for the daily absolute

returns, which are aggregated with the beta polynomial weight function. T-statistics are computed from

the inverse of the outer product estimate of the Hessian and are reported in brackets. LogL is the value

of the log-likelihood function. R2
R is the coefficient of determination when regressing the returns on

VMIDAS
t and R2

σ2 is the coefficient of determination when regressing the realized variance on VMIDAS
t .
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Another way to model the conditional variance is to use GARCH specifications. The
GARCH-in-mean specification is another estimate of the risk-return trade-off (see, for ex-
ample, French, Schwert, and Stambaugh (1987) and Glosten, Jagannathan, and Runkle
(1993)). It is described by the following equations:

Rt = µ+ γV GARCH
t + εt (9)

V GARCH
t = ω + αε2t−1 + βV GARCH

t−1 (10)

The absolute GARCH-in-mean (ABSGARCH) specification is instead defined as:

(V ABSGARCH
t )1/2 = ω + α|εt−1|+ β(V ABSGARCH

t−1 )1/2 (11)

We use both Student-t innovations and Normal innovations and consider two different
sample sizes (1929–2010 and 1964–2010). Table 3 presents the results for the monthly
GARCH-in-mean and monthly absolute GARCH-in-mean specifications, estimated with
quasi-maximum likelihood via the EM algorithm. First note that the use of Student-t
innovations rather than Normal innovations increases the log likelihood by about 20 in
the full sample, which is a significant gain from estimating a single parameter ν. In the
shorter sample size, the increase in the log likelihood is lower (about 10). Second, the
estimates for γ - the parameter entering before the conditional variance - are positive in
each case. However, it is significant only with the absolute GARCH-in-mean specification
with Student-t and Normal innovations in the full sample period, 1929–2010. Finally, the
coefficients of determination R2

σ2s are roughly equivalent to their MIDAS counterparts and
the R2

R is higher, especially with Student-t innovations (see Table 2).

Figure 3 plots the ABSGARCH variance with the realized variance. Unlike the MI-
DAS variance, the ABSGARCH variance has difficulty accommodating the period of high
volatility, from 1929 to 1940.

3.3 MIDAS estimates of the regime-switching risk-return rela-
tion

Table 4 provides the estimates for the regime-switching risk-return relation described
by equation (3).7 For the full sample analysis (1929–2010), we find that for regressions
at the 1-week, 2-week and monthly horizons, the coefficient γ1 is negative and significant,
while the coefficient in the second regime γ2 is positive and significant. In both regimes,
the coefficients γ1 and γ2 tend to be higher in absolute value at higher frequency, which
indicates a steeper risk-return relation at higher frequencies. For the subsample 1964–2010,
we find qualitatively similar results.8

An attractive feature of Markov-switching models is their ability to endogenously gener-
ate probabilities of being in a given regime. The unconditional probabilities of being in the

7Note that considering only regime changes in the slope parameter γ yields qualitatively similar results.
8Table C1 in the appendix provides additional estimation results with different estimation window sizes.

The results reported are consistent with those of Table 4.
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Figure 3: absgarch and realized variances, march 1929–december 2010
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first regime are low (between 2.49% and 20.09%) and are - as expected - typically higher in
the full estimation sample (1929–2010) than in the shorter estimation sample (1964–2010).
Moreover, in the regime-switching case, the coefficients of determination R2

σ2s are roughly
equivalent to the linear case, and so are the R2

Rs. The monthly MIDAS conditional vari-
ance obtained from the regime-switching risk-return relation is very close to the monthly
realized variance (see Figure 4).

Figure 5 plots the weights attached to the lagged daily absolute returns at different
frequencies for the regime-switching risk-return relation. For the 1-week and 2-week hori-
zons, the weight function has a decreasing shape, whereas the weight function has a hump
shape at the monthly and quarterly horizons. In all cases, the weights are negligible after
80 trading days, which emphasizes the importance of including more than a month of daily
returns for measuring the conditional variance and the relevance of the MIDAS approach.

Figure 6 shows the estimated probability of being in the first regime (dotted line) and
the actual returns (solid line). The probability is high in periods of high volatility and low
returns. In particular, it peaks at one in all periods of financial turmoil.

To further understand the regime probabilities, we first run OLS regressions for the
smoothed probabilities of the first regime on the slope of the yield curve, the expected
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Figure 4: midas and realized variances, february 1929–december 2010
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returns, and the changes in volatility, and we control for business cycle conditions by
including the Aruoba, Diebold, and Scotti (2009) index of business cycle conditions (ADS
index) in the regression. Second, we use the same set of explanatory variables, but run
logistic regressions using as a dependent variable a dummy variable that takes on a value
of 1 if the smoothed probability of being in regime 1 is higher than 0.5 and 0 otherwise.
The results are reported in Table 5. First, expected returns always affect negatively and
significantly the regime probabilities. Second, an increase in volatility is positively related
to the regime probabilities. Third, the slope of the yield curve affects negatively and
significantly the regime probabilities, except at the 2-week and quarterly horizons for the
OLS regressions, where the coefficient on the slope of the yield curve is not significant at the
10% level. This means that when the slope of the yield curve becomes less steep (resulting
from a flight-to-quality episode, for example), the probability of the first regime increases.
This holds even when controlling for business cycle conditions, as defined by the Aruoba,
Diebold, and Scotti (2009) index of business cycle conditions.

Therefore, in the first regime - characterized by high volatility and low ex post returns
- we find that there is a reversed risk-return relation with a low premium for volatility.
In contrast, in the second regime, a positive and significant risk-return relation holds. In
addition, the first regime can be interpreted as a flight-to-quality regime, since the slope
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Figure 5: Weights for the midas estimator of the conditional vari-
ance (regime-switching risk-return relation) at different frequencies,
february 1929–december 2010

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 11 21 31 41 51 61 71 81 91 101 111

Monthly 2-week

1-week Quarterly

of the yield curve appears to be negatively related to the regime probabilities of the first
regime. As noted earlier, this evidence corroborates the findings in Ghysels, Plazzi, and
Valkanov (2013), who estimate the risk-return relationship using a simple flight-to-quality
indicator.

We now compare the different estimated variance processes in Table 6. Panel A reports
the means, variances and goodness-of-fit measures for the MIDAS (for both linear and
non-linear cases) and ABSGARCH conditional variances using the realized variance as a
benchmark. The goodness-of-fit measure is computed as one minus the sum of the absolute
differences between the estimated conditional variance and the realized variance divided by
the sum of the realized variance. The means and the variances of the MIDAS estimators
of the conditional variances are close but slightly below the mean and the variance of the
realized variance. The mean and variance of the ABSGARCH variance are instead strongly
higher than the mean and variance of the realized variance. The goodness-of-fit measure
is higher for the MIDAS estimators of the conditional variance than the ABSGARCH
variance. This finding is particularly acute in the full sample, which is expected since the
ABSGARCH variance has difficulty accommodating the high volatility episodes of the late
1920s and 1930s.
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Table 4: Regime-switching risk-return relation: Rt+1 ∼ N(µ(St+1) + γ(St+1)V
MIDAS
t , VMIDAS

t )

p11 p22 µ1 µ2 γ1 γ2 LogL R2
R R2

σ2 P (St = 1)
(∗102) (∗102)

Full-sample analysis: February 1929 - December 2010

Quarterly 0.516 0.907 -13.106 -1.845 0.006 0.135 -1174.979 1.99% 52.76% 16.13%
[4.475] [32.219] [-4.143] [-1.738] [0.159] [4.377]

Monthly 0.255 0.934 -2.610 0.158 -0.346 0.066 -2915.114 0.02% 54.17% 8.11%
[3.352] [43.215] [-1.548] [0.517] [-3.223] [2.827]

2-week 0.269 0.938 -2.228 -0.137 -0.459 0.122 -5407.312 0.01% 56.38% 7.86%
[4.464] [72.979] [-2.810] [-0.886] [-6.281] [4.993]

1-week 0.315 0.914 -0.387 -0.088 -0.747 0.174 -9271.982 0.01% 50.79% 11.11%
[6.454] [37.292] [-0.843] [-1.009] [-9.878] [4.016]

Subsample analysis: February 1964 - December 2010

Quarterly 0.647 0.911 -5.256 -2.342 -0.035 0.138 -632.893 0.30% 50.48% 20.09 %
[3.402] [13.357] [-0.829] [-1.496] [-0.319] [3.444]

Monthly 0.202 0.944 -1.551 0.208 -0.303 0.043 -1583.303 0.02% 53.23% 6.54%
[1.059] [22.766] [-0.530] [0.446] [-1.360] [1.157]

2-week 0.104 0.977 -1.716 -0.039 -0.789 0.061 -2951.106 0.04% 53.75% 2.49%
[1.039] [99.000] [-1.092] [-0.441] [-3.072] [3.322]

1-week 0.273 0.961 -0.238 -0.033 -0.924 0.094 -5070.936 0.01% 48.51% 5.08%
[3.005] [50.523] [-0.212] [-0.487] [-4.557] [4.675]

The MIDAS estimator of the conditional variance is calculated using 120 lags for the daily absolute

returns, which are aggregated with the beta polynomial weight function. T-statistics are calculated from

the inverse of the outer product estimate of the Hessian and are reported in brackets. LogL is the value

of the log-likelihood function. R2
R is the coefficient of determination when regressing the returns on

VMIDAS
t and R2

σ2 is the coefficient of determination when regressing the realized variance on VMIDAS
t .

p11 and p22 are the transition probabilities of staying in the first and second regime, respectively.

P (St = 1) is the unconditional probability of being in the first regime.
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Table 5: Explaining the regime probabilities P (St+1)

(Slope of the ∆V MIDAS
t+1 Rt+1 ADSt+1

yield curve)t+1

Panel A: OLS regression

1-week -0.006*** 0.016*** -0.039*** -0.009**

2-week -0.003 0.007*** -0.021*** -0.004

Monthly -0.007** 0.001 -0.023*** -0.011**

Quarterly -0.010 0.001 -0.024*** -0.098***

Panel B: Logistic regression

1-week -0.372*** 0.331 -1.450*** 0.286

2-week -1.163*** 0.019 -1.378*** 1.625***

Monthly -0.591* 0.010 -1.086*** 0.229

Quarterly -0.375* 0.004 -0.287*** -1.308***

Panel A reports the results of OLS regressions of the estimated smoothed probability of being in the first

regime P (St+1) on the level of the slope of the yield curve, the changes in the MIDAS estimator of the

conditional variance ∆VMIDAS
t+1 , the returns Rt+1 and the level of the ADS index of business cycle

conditions ADSt+1. Panel B reports results of logistic regressions using a dummy variable as a dependent

variable and the same set of explanatory variables. The dummy variable takes on a value of 1 if the

smoothed probability of being in regime 1 is higher than 0.5 and 0 otherwise. The slope of the yield curve

is defined as the difference between the yields on a 10-year Treasury bond and the yields on a 3-month

Treasury bill. *, **, *** indicate significance at the 10% level, 5% level and 1% level, respectively. We

use only the subsample 1964–2010, since we do not have data for the ADS index and the weekly slope of

the yield curve for the entire sample.
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Figure 6: Monthly returns and probabilities of being in the first regime,
february 1929–december 2010
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Panel B of Table 6 reports the cross-correlation matrix for the MIDAS (for both the lin-
ear and non-linear cases), the ABSGARCH conditional variances and the realized variance.
The MIDAS conditional variance in the linear case exhibits the highest correlation with
the realized variance for both samples. Not surprisingly, the MIDAS conditional variances
in the linear and non-linear cases are very highly correlated. The ABSGARCH conditional
variance is the second best correlated with the realized variance, although they have smaller
goodness-of-fit values than the MIDAS conditional variances (see the last column of Panel
A).

Figure 7 provides further insights about the variance processes under scrutiny. Panels
A, B and C plot the MIDAS conditional variances (both in the linear and non-linear
cases) and the ABSGARCH variance against the realized variance with a 45◦ line, which
indicates a perfect fit with the realized variance. The MIDAS variances show no clear sign
of asymmetry (panels A and B), whereas Panel C shows that the ABSGARCH variance
tends to overestimate the realized variance. Finally, Panel D plots the MIDAS variance in
the regime-switching case against the MIDAS variance in the linear case: this shows that
the MIDAS variances are very close to each other.
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Table 6: Comparison of the monthly variance processes

Panel A: Summary Statistics

Full-sample analysis: February 1929 - December 2010

Estimator Mean Variance Goodness-of-fit
(x104) (x108)

Realized 16.376 133.302 -
MIDAS (linear) 16.170 104.876 0.722
MIDAS (MS) 16.180 109.682 0.706
ABSGARCH 27.836 2271.446 0.138

Subsample analysis: February 1964 - December 2010

Estimator Mean Variance Goodness-of-fit
(x104) (x108)

Realized 14.583 73.508 -
MIDAS (linear) 15.198 72.466 0.734
MIDAS (MS) 15.221 70.093 0.734
ABSGARCH 15.346 132.171 0.647

Panel B: Correlations

Full-sample analysis: February 1929 - December 2010

Realized MIDAS (linear) MIDAS (MS) ABSGARCH

Realized 1 - - -
MIDAS (linear) 0.766 1 - -
MIDAS (MS) 0.736 0.988 1 -
ABSGARCH 0.759 0.715 0.706 1

Subsample analysis: February 1964 - December 2010

Realized MIDAS (linear) MIDAS (MS) ABSGARCH

Realized 1 - - -
MIDAS (linear) 0.736 1 - -
MIDAS (MS) 0.730 0.996 1 -
ABSGARCH 0.734 0.762 0.770 1

Panel A reports summary statistics for the MIDAS estimated conditional variances, the realized variance

and the ABSGARCH conditional variances with Student-t innovations. The goodness-of-fit measure is

calculated as one minus the sum of absolute differences between the estimated variance process and the

realized variance divided by the sum of realized variance. Panel B reports a cross-correlation matrix for

the different variance processes under scrutiny.
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Figure 7: Scatterplots of the monthly variances, february 1929–december
2010
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3.4 Testing for Markov switching

Testing for parameter changes in Markov-switching models is difficult, since, under the
null hypothesis of constant parameters, (i) the transition probabilities are not identified
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and (ii) the scores of the log likelihood are identically equal to zero. Hansen (1992) and
Garcia (1998) proposed tests for Markov switching but these tests require the estimation of
the model under the alternative hypothesis and are often computationally very expensive.
Recently, Carrasco, Hu, and Ploberger (2013) introduced a new test for Markov-switching
parameters that requires only the estimation of the model under the null hypothesis of con-
stant parameters. Appendix A describes in detail the Carrasco, Hu, and Ploberger (2013)
test for Markov-switching parameters. Table 7 reports their test statistics for regressions at
1-week, 2-week, monthly and quarterly horizons and the corresponding 5% bootstrapped
critical values.

There is overwhelming evidence for regime changes in the risk-return relation, since the
null hypothesis is rejected at the 5% level in all cases. Note that the test statistics are
higher for the full sample estimates (1929–2010) than in the shorter sample (1964–2010).
This is expected, since the full-sample contains periods of higher volatility and is thus more
prone to exhibit non-linear behaviour. Moreover, the test statistics are higher with higher-
frequency data for both samples, which indicates that the evidence for regime switching is
stronger at higher frequencies.

Note that the above test requires the parameters to be constant under the null hypoth-
esis; thus, we cannot test a 3-regime model against a 2-regime model. Nevertheless, we
report in Appendix B goodness-of-fit measures for these two models and the linear model.
First, the linear model is always outperformed in terms of SIC by the Markov-switching
models. Second, for the subsample period, 1964–2010, the 2-regime model is preferred at
the quarterly and monthly horizons, since it obtains the lowest SIC for these regressions,
whereas the 3-regime model gets the lowest SIC at the 1-week and 2-week horizons. Third,
the 3-regime model always obtains the lowest SIC for the full-sample estimates. However,
the three regime-switching parameters γ(St+1) are not all significant at the 10% level at
the monthly and quarterly horizons. In addition, the SIC tends to overestimate the true
number of regimes (see, e.g., Smith, Naik, and Tsai (2006)), particularly when parameter
changes are small.

Finally, we also consider models with switches in all parameters of the model (that is,
µ, γ and the MIDAS parameters κ1 and κ2). In this way, the weight function also changes
across regimes. The SICs for these models are reported in the fifth column of the table
in Appendix B, which shows that these models are always outperformed by the regime-
switching models with constant parameters κ1 and κ2 (except for the subsample analysis
at the monthly horizon).

We therefore decide to keep the model with two regimes and regime changes in the
parameters µ and γ in subsequent analysis.
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Table 7: Tests of regime switching in the risk-return relation

Carrasco et al. 5% bootstrapped
test statistic critical values

Full-sample analysis: February 1929-December 2010

Quarterly 9.265 2.724

Monthly 14.126 3.443

2-week 21.456 4.522

1-week 54.707 5.605

Subsample analysis: February 1964-December 2010

Quarterly 4.358 2.445

Monthly 3.987 3.060

2-week 6.044 3.807

1-week 17.121 4.397

This table shows the Carrasco, Hu, and Ploberger (2013) test statistics and the corresponding 5%

bootstrapped critical values. Under the null hypothesis, there is no regime switching in the risk-return

relation. The bootstrapped critical values are based on 1,000 Monte Carlo repetitions. Appendix A

describes the test in detail.
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4 Sensitivity analysis

4.1 Additional predictors in the risk-return relation

The lack of conditioning variables is often cited as a source of misspecification for the es-
timates of the risk-return trade-off (see, e.g., the literature review in Lettau and Ludvigson
(2010)). Guo and Whitelaw (2006) use two additional predictors: the consumption-wealth
ratio from Lettau and Ludvigson (2001) and the stochastically detrended risk-free rate to
approximate the hedge component of Merton’s (1973) model. Ludvigson and Ng (2007)
use factors extracted from a large macroeconomic and financial database to enlarge the
information set. Both studies conclude that including additional predictors allows the
uncovering of a positive risk-return trade-off.

Table 8 presents the results when we include as additional predictors the lagged returns
Rt, the slope of the yield curve Slopet, the dividend-price ratio (D/P )t and the realized
covariance Covt in the risk-return relation. The realized covariance measure is computed
as the product between the daily changes in the Aruoba, Diebold, and Scotti (2009) index
of business cycle conditions and the expected returns. Rossi and Timmermann (2010) show
that the changes in the ADS index are highly correlated with the changes in consumption;
the realized covariance can then be seen as an approximation for the time-varying risk
premium on consumption that is likely to be important for the estimation of the risk-
return trade-off, as emphasized by Tauchen (2004). More generally, it can be seen as a
way of controlling for business cycle conditions. Monthly realized covariance is calculated
as follows:

Covt =
N∑
i=1

∆ADSi,t ∗Ri,t

where ∆ADSi,t is the daily change in the ADS index on day i of month t, and Ri,t is the
corresponding stock return.

The slope of the yield curve is taken as the difference between the 10-year Treasury
bond and the 3-month Treasury bill. The dividend-price ratio is the difference between
the log of dividends and the log of prices, where dividends are 12-month moving sums of
dividends. The data for the 10-year Treasury bond and the dividend-price ratio are from
Robert Schiller’s website.

Note that, unlike a large part of the literature, we consider returns sampled from the
weekly to the quarterly frequency to describe more precisely the dynamics of the risk-
return trade-off. The results suggest the following.9 First, across all the frequencies that
we consider, the risk-return relation is reversed in the first regime, while it is positive in the
second regime. Second, the risk-return relation is typically steeper at higher frequencies,
since the coefficients entering before the conditional variance are higher in absolute value
at higher frequencies. Third, expected returns, the dividend-price ratio and the slope of
the yield curve enter positively and significantly in the risk-return relation at the quarterly
horizon. Overall, the results do not differ much from Table 4, suggesting that the detected
regime-switching risk-return relation is robust to the inclusion of additional predictors.

9Note that the full-sample analysis does not include Covt as an additional predictor, since the ADS
index of business cycle conditions is not available before 1960. Likewise, we do not include the slope of the
yield curve and the dividend-price ratio at the 1-week and 2-week horizons because of data availability.
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4.2 Controlling for asymmetries in stock returns

Modelling asymmetries in the process for conditional variance is potentially important,
since one can expect different responses of the conditional variance following negative or
positive shocks. For example, Glosten, Jagannathan, and Runkle (1993) find that the sign
of the risk-return trade-off becomes negative when allowing for a different effect of positive
and negative returns on the conditional variance. Ghysels, Santa-Clara, and Valkanov
(2005) instead introduce the asymmetric MIDAS estimator of the conditional variance,
which gives different weights to the lagged returns depending on whether they are positive or
negative. They find that negative returns initially have a stronger effect on the conditional
variance, but this effect dies away quickly; whereas positive returns have a smaller effect
initially, but are more persistent.

The asymmetric MIDAS estimator of the conditional variance is given by:

V ASYMIDAS
t = N [φ

∞∑
d=0

wd(κ
−
1 , κ

−
2 )1−t−d|rt−d|+ (2− φ)

∞∑
d=0

wd(κ
+
1 , κ

+
2 )1+

t−d|rt−d|] (12)

where 1−t−d is the indicator function for {rt−d < 0} and 1+
t−d is the indicator function for

{rt−d ≥ 0}.

Table 9 shows the results when estimating a linear and regime-switching risk-return
relation at the monthly frequency with an asymmetric MIDAS estimator of the conditional
variance. First, the results are broadly consistent with Table 4. In the linear case, the
coefficients γ entering before the conditional variance are not significant at the 10% level for
both the full-sample and subsample analyses. In the regime-switching case, the risk-return
relation is reversed in the first regime, while the traditional positive risk-return trade-off
holds in the second regime. Moreover, the coefficient φ, which governs the weights allocated
to the negative returns, is higher than 1 in all cases, suggesting that negative returns have
a stronger impact on the conditional variance than positive returns. In addition, the
restrictions κ+1 = κ−1 , κ+2 = κ−2 , φ = 1 are rejected and therefore asymmetric MIDAS is not
rejected by the data.

Figure 8 plots the weights attached to the positive and negative returns, the overall
asymmetric weights and the symmetric weights for a regime-switching risk-return relation.
The positive weights have a bell shape with a maximum effect on the conditional variance
after about 20 trading days. The negative returns have a maximum effect on the conditional
variance initially and the effect dies away after 80 trading days.10 Overall, the symmetric
and asymmetric weights are relatively close to each other.

10We find the same shapes for the weight functions when we use Student-t rather than Normal innova-
tions and the exponential Almon lag weight function rather than the beta polynomial weight function for
aggregating the lagged daily absolute returns. We use 80 daily lagged returns for estimating the asym-
metric MIDAS estimator of the conditional variance, since we encountered convergence problems of the
algorithm when we included more than 80 daily lagged returns.
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Figure 8: weights for the asymmetric midas estimator of the conditional
variance (regime switching risk-return relation), february 1929–december
2010
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4.3 The risk-return trade-off with Student-t innovations

As an additional robustness check, we use a Student-t rather than a Normal distribution
for the innovations since the Student-t distributions can better account for outliers that
are present in stock returns. The log-likelihood function is then written as:

LT (θ) =
T∑
t=1

lt(θ) (13)

where

lt+1(θ) = lnΓ(
1 + ν

2
)−lnΓ(

ν

2
)−0.5ln(π(ν−2))−0.5ln(V MIDAS

t )−(ν + 1)

2
ln(1+

εt+1(St+1)
2

(ν − 2)V MIDAS
t

)

and
εt+1(St+1) = Rt+1 − µ(St+1)− γ(St+1)V

MIDAS
t

Γ(.) is the Gamma function, ν are the degrees of freedom for the Student-t innovations and

θ is the vector of parameters to be estimated. The maximum likelihood estimates ˆθMLE

are obtained with the EM algorithm and are reported in Table 10.
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First, the coefficient γ1 is always negative, whereas the coefficient γ2 is always positive
in the second regime. Both coefficients are significant across all the frequencies that we
consider (except for γ1 in the subsample analysis at the quarterly horizon). This is in line
with the results reported in Table 4. However, in absolute terms, the coefficients γ1 are
smaller than they are in Table 4 (except at the quarterly frequency). This is not surprising
since the use of Student-t innovations - unlike Normal innovations - makes the estimates
less sensitive to outliers. As a result, the first regime now captures periods with less volatile
and less negative returns. This translates into higher unconditional probabilities of being
in the first regime. Conversely, the coefficients γ2 are typically higher than they are in
Table 4, since the second regime captures fewer episodes of negative returns and moderate
volatility, which are now mostly associated with the first regime.

The R2
σ2s are comparable to those reported in Table 4, except for regressions at the

monthly and quarterly frequencies, where the coefficients of determination for the realized
variance R2

σ2 are higher for the full-sample (1929–2010) estimates.

Table 11 shows the results when regressing the smoothed probabilities of being in the
first regime on the slope of the yield curve, the expected returns, the changes in volatility
and the Aruoba, Diebold, and Scotti (2009) index of business cycle conditions. We also
report in Table 11 results for logistic regressions using as a dependent variable a dummy
variable that takes on a value of 1 if the smoothed probability of being in regime 1 is higher
than 0.5 and zero otherwise. First, the coefficients for the slope of the yield curve are
negative (except at the 1-week horizon for OLS regressions and the 1-week and monthly
horizons for logistic regressions). Second, the changes in volatility affects positively the
regime probabilities (except at the 1-week horizon). Third, the coefficients on expected
returns are negative and strongly significant, which is consistent with the results reported
in Table 5. The coefficient on the ADS index of business cycle conditions is negative and
significant (except at the 2-week horizon in the case of logistic regressions). Overall, the
results are broadly consistent with those presented in Table 5 in that the first regime tends
to be characterized by a flattening of the yield curve, a weakening of economic activity and
an increase in volatility owing to negative returns.

4.4 Time-varying transition probabilities

In this subsection, we consider the use of time-varying transition probabilities, since (i)
we have provided evidence that some variables can explain the pattern of the probability
of being in a given regime; (ii) it can help us to better understand the regime probabilities;
and (iii) it could improve the fit with respect to Markov-switching models with constant
transition probabilities. Filardo (1994) relaxes the assumption of constant transition prob-
abilities and uses logistic functions to bound the transition probabilities between 0 and 1.
The transition probability matrix P is then given by:

P =

[
p11t = q(zt) p12t = 1− p(zt)

p21t = 1− q(zt) p22t = p(zt)

]
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Table 11: Explaining the regime probabilities P (St+1)

(Slope of the ∆V MIDAS
t+1 Rt+1 ADSt+1

yield curve)t+1

Panel A: OLS regression

1-week 0.002* -0.019*** -0.094*** -0.003*

2-week -0.001 0.004 -0.065*** -0.023***

Monthly -0.004 0.002* -0.045*** -0.022***

Quarterly -0.021* 0.001* -0.028*** -0.056***

Panel B: Logistic regression

1-week 0.017 -0.516* -6.636*** -0.322**

2-week -0.143 0.089 -2.703*** -0.081

Monthly 0.013 0.050 -2.250*** -0.667*

Quarterly -0.367 0.059* -0.727** -0.735*

Panel A reports the results of OLS regressions of the estimated smoothed probability of being in the first

regime P (St+1) on the level of the slope of the yield curve, the changes in the MIDAS estimator of the

conditional variance ∆VMIDAS
t+1 , the returns Rt+1 and the level of the ADS index of business cycle

conditions ADSt+1. Panel B reports results of logistic regressions using a dummy variable as a dependent

variable and the same set of explanatory variables. The dummy variable takes on a value of 1 if the

smoothed probability of being in regime 1 is higher than 0.5 and 0 otherwise. The slope of the yield curve

is defined as the difference between the yields on a 10-year Treasury bond and the yields on a 3-month

Treasury bill. *, **, *** indicate significance at the 10% level, 5% level and 1% level, respectively. We

use only the subsample 1964–2010, since we do not have data for the ADS index and the weekly slope of

the yield curve for the entire sample.
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where

q(zt) =
exp(θ1 + θ2zt)

1 + exp(θ1 + θ2zt)

and

p(zt) =
exp(θ3 + θ4zt)

1 + exp(θ3 + θ4zt)

We alternate the slope of the yield curve (Slopet+1), the dividend-price ratio ((D/P )t+1),
the lagged returns (Rt) and the realized covariance measure (Covt+1) calculated as the
product between the changes in the ADS index and the returns as the driving variable for
the transition probabilities. All regressions are sampled at the monthly frequency.

Table 12 displays the results. First, the coefficients γ1 and γ2 are close to the estimates
reported in Table 4: across all indicators, the risk-return relation is negative in the first
regime and positive in the second regime. None of the indicators enters significantly for
explaining the transition probabilities of the first regime, whereas all indicators enter sig-
nificantly at the 5% level in explaining the transition probabilities of the second regime
(except for the slope of the yield curve for the full-sample analysis and the dividend-price
ratio for the subsample analysis).

Table 12 also reports a likelihood ratio test for the statistical significance of the time-
varying transition probabilities. Under the null hypothesis of constant transition probabil-
ities, θ2 = θ4 = 0. The null hypothesis of no time variation in the transition probabilities
cannot be rejected at the 5% level when using the slope of the yield curve (full-sample
analysis) and the dividend-price ratio (subsample analysis). This provides mixed evidence
for the use of time-varying transition probabilities for estimating the risk-return trade-off
with regime switching, but, overall, confirms the robustness of our results.

4.5 Out-of-sample forecasting exercise

In this section, we look at the forecasting performance of the MIDAS estimators for
forecasting realized volatility. We use the MIDAS estimators from both the linear and
regime-switching risk-return relation and we use as a benchmark a standard AR(1) model
for realized variance following Ludvigson and Ng (2007). Unlike Welch and Goyal (2008)
and Campbell and Thompson (2008), who study the prediction of excess returns, we con-
centrate our analysis on the prediction of realized variance, since the MIDAS approach is
primarily designed for modelling the conditional variance.

The design of the out-of-sample forecasting exercise is the following. The first estimation
sample extends from February 1929 to December 1969 so that we first forecast the realized
volatility for January 1970. We then expand the sample size recursively until we reach
the end of the sample at December 2010. Therefore, the evaluation sample extends from
January 1970 to December 2010. We concentrate our analysis on one-step-ahead forecasts.
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We forecast 1-week, 2-week, 3-week and monthly realized volatility, and compute relative
mean squared forecast error (RMSE) and relative mean absolute forecast error (RMAE):

RMSE =

∑T
t=1(V

MIDAS
t+1|t −RV ARt+1)

2∑T
t=1(V

AR(1)
t+1|t −RV ARt+1)2

RMAE =

∑T
t=1 |V MIDAS

t+1|t −RV ARt+1|∑T
t=1 |V

AR(1)
t+1|t −RV ARt+1|

where V MIDAS
t+1|t is the one-step-ahead MIDAS forecast of the realized variance RV ARt+1,

and V
AR(1)
t+1|t is the one-step-ahead forecast of the realized variance RV ARt+1 from an AR(1)

model. Table 13 presents the results. For monthly forecasts, the AR(1) model outperforms
both MIDAS conditional forecasts. At the monthly horizon, the MIDAS forecasts from the
linear risk-return relation are better than the MIDAS forecasts obtained from the regime-
switching risk-return relation. However, at the 1-week horizon, MIDAS forecasts are better
than the forecasts from the AR(1) model. The MIDAS forecasts from the regime-switching
risk-return relation are (slightly) better than the ones from the linear risk-return relation.
This reasonably confirms the in-sample evidence, since we found more evidence for regime
switching at the 1-week frequency than at the monthly frequency (see Table 7).
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Table 13: Forecasting realized volatility: One-step-ahead forecast

Model RMSE RMAE

1-week MIDAS (linear) 0.920 0.915
MIDAS (MS) 0.915 0.913

2-week MIDAS (linear) 1.078 1.015
MIDAS (MS) 1.072 1.013

3-week MIDAS (linear) 1.196 1.043
MIDAS (MS) 1.185 1.039

Monthly MIDAS (linear) 1.178 1.097
MIDAS (MS) 1.292 1.128

This table reports the relative mean squared forecast error (RMSE) and the relative mean absolute

forecast error (RMAE) for forecasting one-step-ahead realized volatility. The two competing models -

MIDAS (linear) and MIDAS (MS) - are two MIDAS estimators of the conditional variance: one is

estimated from a linear risk-return relation and the other one is estimated from a Markov-switching (MS)

risk-return relation. The benchmark model is a standard AR(1) model for realized volatility. The first

estimation sample goes from February 1929 to December 1969 and is recursively expanded until we reach

the end of the sample at December 2010.
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5 Conclusions

This paper provides evidence for time instability in the risk-return relation. We allow
for regime changes in the risk-return relation through regime switching in the parameter
entering before the conditional variance as well as in the intercept of the risk-return relation.
The conditional variance is modelled with a MIDAS estimator, which is less prone to
misspecifications than GARCH models. We consider as a dependent variable the U.S. excess
stock returns ranging from the weekly to the quarterly frequency and use two different
estimation samples: (i) from February 1929 to December 2010 and (ii) from February 1964
to December 2010. We find strong statistical evidence for regime changes in the risk-
return relation using the test recently introduced by Carrasco, Hu, and Ploberger (2013)
for Markov-switching parameters.

In the first regime, we find that the risk-return relation is reversed. Conversely, in the
second regime, we uncover the traditional positive risk-return relation. The regime prob-
abilities for the first regime are associated with a decline in stock returns, an increase in
volatility and a flattening of the yield curve, which is concomitant with flight-to-quality
episodes. Our findings help to explain why the literature has reported conflicting results
and are qualitatively close to the recent contribution of Rossi and Timmermann (2010).
Our results are also robust to a wide range of modifications: (i) the inclusion of addi-
tional predictors, (ii) the use of Student-t rather than Normal innovations, (iii) the use of
time-varying rather than constant transition probabilities, and (iv) an asymmetric MIDAS
estimator of the conditional variance.
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Appendix A: We describe here the Carrasco, Hu, and Ploberger (2013) test for
Markov-switching parameters.

Denote l
(1)
t,θ and l

(2)
t,θ the first and second derivatives of the log-likelihood function with

respect to the regime-switching parameters θ (where θ = (µ, γ)).11

Owing to the presence of the nuisance parameters β that are not identified under the null
hypothesis of no Markov switching, the Carrasco, Hu, and Ploberger (2013) test statistic
for Markov-switching parameters TS can be constructed as a sup-type test, that is:

sup TS = sup
1

2

(
max

(
0,

ΓT√
ε̂∗′ ε̂∗

))2

where

ΓT =
1

2
√
T

T∑
t=1

γt(β) ,

γt(β) = tr

((
l
(2)
t,θ + l

(1)
t,θ l

(1)′

t,θ

)
E[ηtη

′
t]

)
+ 2

∑
s<t

tr

(
l
(1)
t,θ l

(1)′

s,θ E[ηtη
′
t]

)
,

ε̂∗ =
ε̂√
T

and ε̂ is the vector of residuals from the OLS regression of 1
2
γt(β) on the entire vector of

derivatives and ηt is the latent variable.

We find the maximum value of TS using a fixed range of values for ρ ∈ [−0.98, 0.98]
with increments of 0.01.

We compute critical values with bootstrapping techniques. We first generate M data
series using the maximum likelihood estimates as true parameter values such that:

y
(m)
t ∼ N(µ̂+ γ̂V MIDAS

t , V MIDAS
t )

where m is the mth sample. We then estimate each of the M samples with maximum
likelihood and compute the test statistic by maximizing TS(m) over a fixed range of values
for ρ ∈ [−0.98, 0.98]. The 5% bootstrapped critical value is then calculated as the 95th

percentile of the distribution of the M test statistics TS(m).

11Note that here we kept the MIDAS parameters κ1 and κ2 constant, since the first derivatives with
respect to these parameters are often zero, which is problematic when we regress γt(β) on the vector of
derivatives.
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Appendix B: Comparison of linear, 2-regime and 3-regime models for the risk-return
trade-off

M = 1 M = 2 M = 2 M = 3 at least one γ(St+1)
switch in is not significant
κ1 and κ2 when M = 3

Full-sample analysis: February 1929 - December 2010

Quarterly LogL -1227.190 -1174.979 -1178.063 -1151.743 YES
SIC 2464.439 2370.074 2381.272 2338.690

Monthly LogL -2987.476 -2915.114 -2926.598 -2887.108 YES
SIC 5986.922 5854.169 5883.121 5816.111

2-week LogL -5562.106 -5407.312 -5421.151 -5362.068 NO
SIC 11137.531 10841.261 10875.599 10770.749

1-week LogL -9532.267 -9271.982 -9304.984 -9160.942 NO
SIC 19079.056 18573.009 18646.277 18372.714

Subsample analysis: February 1964 - December 2010

Quarterly LogL -642.927 -632.893 -633.033 -627.604 YES
SIC 1294.942 1283.960 1288.785 1287.013

Monthly LogL -1593.271 -1583.303 -1580.036 -1579.456 YES
SIC 3197.544 3188.610 3187.578 3197.419

2-week LogL -2992.930 -2951.106 -2951.495 -2939.819 NO
SIC 5998.212 5926.914 5933.868 5922.866

1-week LogL -5133.369 -5070.936 -5084.024 -5042.182 NO
SIC 10280.293 10168.9819 10201.936 10131.809

LogL is the value of the log-likelihood function, SIC is the Schwarz Information Criterion. The fifth

column reports the LogL and SIC for the models with switches in µ, γ and the MIDAS parameters κ1

and κ2 so that the weight function aggregating the lagged daily returns also changes across regimes. The

last column indicates whether or not at least one parameter γ(St+1) entering before the conditional

variance is significant at the 10% confidence level when a 3-regime model is estimated. Entries in bold

outline the model with the lowest SIC for each regression.
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Appendix C: Additional robustness checks

We report below the additional estimation results of the risk-return trade-off for the
regime-switching risk-return relation with a MIDAS estimator of the conditional variance:

• We stop the estimation in December 2000 for both the full-sample and subsample
analyses following Ghysels, Santa-Clara, and Valkanov (2005) and Mayfield (2004) so
that we do not include the 2007–2009 financial crisis in the estimation sample.

• We consider estimates of the risk-return trade-off at the weekly frequency for two
short estimation samples, 2001–2010 and 2007–2010.

• We use as a proxy for stock returns data from the CRSP rather than the S&P 500
composite portfolio.

• We use a model with an NBER dummy variable entering before the estimate of
the conditional variance. The NBER dummy variable takes a value of 1 if the U.S.
economy is in recession and a value of 0 is the U.S. economy is in expansion, according
to the NBER business cycle dating committee.12

• We use a credit spread (defined as the difference between the yields on the Moody’s
Corporate bond (all industries - BAA) and the yields on the 10-year U.S. Treasury
bond) instead of the slope of the yield curve as an additional predictor in the risk-
return relation.

• We use the realized variance instead of a MIDAS estimator for the conditional vari-
ance.

First, the results shown in Panel A of Table C1 are consistent with the results reported
previously, indicating that the choice of the estimation window does not appear to drive
our results. Second, using the CRSP value-weighted portfolio as a proxy for stock market
returns yields comparable results to those obtained using the S&P500 composite portfolio
index. Third, in the full-sample case, estimating the risk-return relation with an NBER
dummy variable entering before the estimate of the conditional variance to take into account
the fluctuations of the business cycle also yields an inverted risk-return relation during U.S.
recessions, while the risk-return relation remains positive during U.S. expansions. Fourth,
using the lagged realized variance as a proxy for the conditional variance (instead of a
MIDAS estimator) does not qualitatively affect the results. Finally, using the credit spread
as an additional predictor in the risk-return relation yields similar results to when using
the slope of the yield curve.

12Nyberg (2012) estimates a regime-switching GARCH model where regime changes are based on an
NBER business cycle indicator to study the risk-relation over the U.S. business cycle. He uses post-WWII
data, and finds that a positive risk-return trade-off holds over both phases of the U.S. business cycle.
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