CSAS

Canadian Science Advisory Secretariat
Research Document 2011/133
Pacific Region

Updated Methods For Assessing Harvest Rules For Fraser River Sockeye Salmon (Oncorhynchus nerka)

SCCS

Secrétariat canadien de consultation scientifique
Document de recherche 2011/133
Région du Pacifique

Gottfried Pestal ${ }^{1}$, Ann-Marie Huang ${ }^{2}$, Alan Cass ${ }^{3}$
and the FRSSI Working Group
${ }^{1}$ SOLV Consulting Ltd., Vancouver, Canada
${ }^{2}$ Fisheries and Oceans Canada, Resource Management 100 Annacis Parkway, Unit 3 Delta, B.C., V3M 6A2
${ }^{3}$ Fisheries and Oceans Canada, Stock Assessment Division, Science Branch, Pacific Biological Station, Nanaimo, B.C., V9T 6N7

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

This document is available on the Internet at:

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

Ce document est disponible sur l'Internet à:
http://www.dfo-mpo.gc.ca/csas-sccs

TABLE OF CONTENTS

List of Tables iv
List of Figures iv
Abstract vi
Résumé vi
Acknowledgements vii
Preface vii
1 INTRODUCTION 1
1.1 Purpose of this Research Document 1
1.2 Population structure and life history of Fraser River sockeye salmon 1
1.3 Developing escapement strategies for Fraser River sockeye salmon 3
2 METHODS 5
2.1 Model overview 5
2.1.1 Intent 5
2.1.2 Current scope 5
2.2 Biological sub-model 6
2.2.1 Definitions 6
2.2.2 Estimates of spawning escapement. 7
2.2.3 Estimates of catch, en-route mortality, and recruitment 8
2.2.4 Spawner-recruit models 9
2.2.5 Bayesian parameter estimates 12
2.2.6 Prior assumptions about the productivity parameter α 13
2.2.7 Prior assumptions about the capacity parameter β_{0} 13
2.2.8 Prior assumptions about the cycle-interaction parameters β_{1}, β_{2}, and β_{3} 14
2.2.9 Assumptions about random variation 14
2.2.10 Comparing alternative spawner-recruit model forms 14
2.2.11 En-Route mortality 15
2.2.12 Productivity scenarios 16
2.2.13 Depensatory mortality and quasi-extinction thresholds 17
2.3 Harvest sub-model 17
2.3.1 Escapement strategies 17
2.3.2 Constraints imposed by run timing 18
2.4 Performance evaluation 19
2.4.1 Forward Simulations 19
2.4.2 Individual Stocks Vs. Management Groups 20
2.4.3 Performance Measures 20
2.4.4 Sensitivity Analyses 21
3 SAMPLE RESULTS 22
3.1 A note on interpretation 22
3.2 Bayesian parameter estimates 22
3.2.1 Model Selection 22
3.2.2 Spawner-Recruit Parameter Estimates 23
3.3 Exploring alternative types of management strategies 24
3.3.1 Base-Case Scenario 24
3.3.2 Changing Fixed Exploitation Rates 24
3.3.3 Changing Fixed Escapement Targets 25
3.3.4 Changing Cut-Back Point On TAM Rule - Summer 25
3.3.5 Changing Cap On TAM Rule - All 4 Management Groups 25
3.3.6 Changing Exploitation Rate Floor On TAM Rule - All 4 Management Groups 25
3.3.7 Effect Of Constraints Due To Overlap In Run-Timing 26
3.4 Sensitivity to alternative biological assumptions. 26
3.4.1 Productivity Scenarios 26
3.4.2 Alternative Spawner-Recruit Models 26
3.4.3 Assumptions About En-Route Mortality 27
3.4.4 Assumptions About Depensatory Mortality 27
3.5 Summary across sensitivity analyses 27
4 DISCUSSION 28
4.1 Alternative spawner-recruit models 28
4.2 Use of the FRSSI model 29
4.3 Next steps 31
REFERENCES 32
TABLES AND FIGURES 39
Appendix 1 : WinBUGS code for estimating Larkin parameters 101
Appendix 2: Detailed Bayes DIC results 102
Appendix 3: Spawner-recruit data 103
Appendix 4: Spawner-recruit summary figures 122

LIST OF TABLES

Table 1: Summary of spawner abundance and low escapement benchmarks for 19 stocks of Fraser River sockeye salmon 39
Table 2: DBE and contribution of non-model stocks for 4 management groups 40
Table 3: Summary of prior probability distributions used for estimates of spawner-recruit parameters. 41
Table 4: Comparison of alternative spawner-recruit model fits. 42
Table 5: Scope of some published simulation models for evaluating harvest strategies for Fraser River sockeye salmon. 43
LIST OF FIGURES
Figure 1: Matching stocks to conservation units 44
Figure 2: Total run, spawners, and recruitment for 19 stock of Fraser River sockeye salmon. 45
Figure 3: Total run, spawners, and recruitment for 12 stocks with long time series 46
Figure 4: Stock-specific patterns in spawner abundance for Early Stuart and Early Summer 47
Figure 5: Stock-specific patterns in spawner abundance for Summer and Late run. 48
Figure 6: Distribution of observed productivity for 19 stocks of Fraser River sockeye salmon. 49
Figure 7: Stock-specific patterns in productivity for 19 stocks of Fraser River sockeye salmon 50
Figure 8: Aggregate patterns in productivity and harvest for Fraser River sockeye salmon. 51
Figure 9: Flowchart of model contribution to annual planning process 52
Figure 10: Overview of model options. 53
Figure 11: Overview of processes included in the model, 54
Figure 12: Age composition of recruitment for 19 stocks of Fraser River sockeye salmon. 55
Figure 13: Comparison of spawner-recruit models currently available in the model. 56
Figure 14: Observed and estimated distributions for proportion of effective female spawners. 57
Figure 15: Patterns in difference between estimates (DBE) of potential and actual spawners. 58
Figure 16: Four alternative assumptions about \% DBE used in forward simulations 59
Figure 17: Sample pattern in productivity 60
Figure 18: Flowchart of alternative management strategies. 61
Figure 19: Shape of Total Allowable Mortality (TAM) rule. 62
Figure 20: Two options for approximating the harvest constraint due to timing overlap 63
Figure 21: Sample decision tree for Early Stuart. 64
Figure 22: Early Stuart - Spawner-recruit data 65
Figure 23: Early Stuart - Larkin fit parameters (3 lag terms) 66
Figure 24: Early Stuart - Larkin fit recruitment curves (3 lag terms) for 2 brood years. 67
Figure 25: Early Stuart - Larkin fit diagnostics (3 lag terms) 68
Figure 26: Parameter estimates for productivity, variability, and capacity - Larkin (3 lag terms) 69
Figure 27: Parameter estimates for delayed-density effects - Larkin (3 lag terms) 70
Figure 28: Parameter estimates for productivity, variability, and capacity - Mixed model forms 71
Figure 29: Parameter estimates for delayed-density effects - Mixed model forms. 72
Figure 30: Changing fixed exploitation rates 73
Figure 31: Changing fixed escapement targets - Manage individual stocks 74
Figure 32: Changing fixed escapement targets - Manage to most productive stock in a group 75
Figure 33: Changing cut-back point on Summer TAM rule. 76
Figure 34: Changing cap on TAM rule 77
Figure 35: Changing exploitation rate floor on TAM rules 78
Figure 36: Alternative assumptions about timing overlap - 2009 TAM Rules 79
Figure 37: Reduced productivity scenarios - 2009 TAM Rules 80
Figure 38: Reduced productivity scenarios - Changing fixed ER, half productivity 81
Figure 39: Reduced productivity scenarios - Changing TAM cap, half productivity 82
Figure 40: Larkin model illustration - Quesnel spawner trajectories with 30% fixed ER 83
Figure 41: Ricker model illustration - Quesnel spawner trajectories with 30\% fixed ER 84
Figure 42: Spawner trajectory illustration for Quesnel - Ricker vs. Larkin with 30\% fixed ER 85
Figure 43: Ricker illustration 2 - Quesnel spawner trajectories with 60% fixed ER and median ERM 86
Figure 44: Larkin illustration 2 - Quesnel spawner trajectories with 60% fixed ER, median ERM, and random variation. 87
Figure 45: Reduced productivity scenarios - 2009 TAM rules, Ricker. 88
Figure 46: Reduced productivity scenarios - 2009 TAM rules, Mixed SR model forms 89
Figure 47: Effect of en-route mortality assumptions under 60\% fixed ER. 90
Figure 48: Effect of depensatory mortality assumptions on sensitivity to changing ER. 91
Figure 49: Scenario comparisons - Early Stuart spawner abundance and catch 92
Figure 50: Scenario comparisons - Early Summer spawner abundance 1 93
Figure 51: Scenario comparisons - Early Summer spawner abundance 2 94
Figure 52: Scenario comparisons - Summer spawner abundance 95
Figure 53: Scenario comparisons - Late spawner abundance 1 96
Figure 54: Scenario comparisons - Late spawner abundance 2 97
Figure 55: Scenario comparisons - 4 management groups, low catch 98
Figure 56: Scenario comparisons - 4 Management groups, median catch 99
Figure 57: Median catch patterns - Changing fixed ER, 4 alternative assumptions 100

Correct citation for this publication:

Pestal, G., Huang, A-M., Cass, A. and the FRSSI Working Group. 2012. Updated Methods for Assessing Harvest Rules for Fraser River Sockeye Salmon (Oncorhynchus nerka). DFO Can. Sci. Advis. Sec. Res. Doc. 2011/133. viii + 175 p.

Abstract

The Fraser River Sockeye Spawning Initiative (FRSSI) has been an on-going process to develop guidelines for setting annual spawning and exploitation targets for Fraser River sockeye salmon stocks. The initiative began in early 2002, and has since evolved through a series of workshops and on-going feedback from stakeholders. A quantitative modeling tool has been used to support the planning process, and was reviewed by PSARC in 2003. The model has evolved substantially since then, and was reviewed again by CSAS in 2010. Changes include assumptions about spawner-recruit relationships (e.g. delayed density dependence effects), the range of strategies that can be explored (e.g. allowable mortality rules), mixedstock simulations (i.e. 19 stocks in 4 management groups), and additional biological mechanisms (e.g. environmental management adjustments, pre-spawn mortality, future patterns in productivity).

This Research Document provides an update on model expansions and revisions, and presents simulation results to illustrate the range of questions that can be explored with the model.

RÉSUMÉ

Le Projet de reproduction du saumon rouge du fleuve Fraser (PRSRFF) est un processus en continu en vue de l'élaboration de directives pour l'établissement de cibles annuelles en matière de production et d'exploitation pour les stocks de saumon rouge du fleuve Fraser. Le projet a commencé au début de 2002 et, depuis, s'est développé à l'aide d'une série d'ateliers et de rétroaction continue des intervenants. Un outil de modélisation quantitative a été utilisé à l'appui du processus de planification et a été passé en revue par le Comité d'examen des évaluations scientifiques du Pacifique (CEESP) en 2003. Le modèle a été considérablement modifié depuis et a de nouveau été passé en revue par le SCCS en 2010. Parmi les changements, il y a des hypothèses sur les relations reproducteurs-recrues (p. ex., effets tardifs de la dépendance à la densité), l'éventail de stratégies qui peuvent être examinées (p. ex., règles sur la mortalité admissible), des simulations pour les stocks mixtes (c.-à-d., 19 stocks dans 4 groupes de gestion) et des mécanismes biologiques additionnels (p. ex., ajustements pour la gestion environnementale, mortalité avant le frai, modèles futurs de productivité).

Ce document de recherche donne une mise à jour sur les ajouts et les révisions pour le modèle et il présente les résultats de la simulation afin d'illustrer l'éventail de questions pouvant être examinées à l'aide du modèle.

ACKNOWLEDGEMENTS

The simulation model described in this report is part of an on-going planning process, and many individuals have contributed over the last 8 years (e.g. annual workshop series, science reviews in 2003 and 2010). Paul Ryall (DFO), Mike Staley (IAS Ltd), Les Jantz (DFO), Jeff Grout (DFO), Diana McHugh (DFO), and Michael Folkes (DFO) have particularly guided model development as long-term members of the FRSSI Working Group. Mike Lapointe (PSC), Sue Grant (DFO), Carrie Holt (DFO), Catherine Michielsens (DFO), Merran Hague (DFO), and Dave Patterson (DFO) provided data and advice for this latest version of the model.

New spawner-recruit analyses by Ann-Marie Huang were done in conjunction with research for a graduate thesis supervised by Sean Cox (SFU). Al Cass (DFO) and Mike Staley (IAS Ltd.) served as advisors.

A draft version of this report was reviewed by the Salmon Subcommittee of the Centre for Science Advice - Pacific in May 2010. Carrie Holt (DFO) and Josh Korman (Ecometric Research Inc.) provided extensive comments in writing prior to the meeting.

PREFACE

Revisions resulting from the CSAS review include clarifications identified by the reviewers, more detail and additional analysis around spawner-recruit models as discussed in the meeting, and more extensive sensitivity analyses. Reviewer's comments, author's responses, and discussions during the meeting are documented in a proceedings report (DFO 2011a). A summary is included in the Science Advisory Report from the meeting (DFO 2011b).

Written reviews and comments during the CSAP meeting focused on methods (e.g. alternative approaches for estimating spawner-recruit parameters, range of options for simulating en-route mortality) and did not deal with sample results (e.g. whether the base case in the draft Research Document was considered plausible). Participants recognized that there is a separate planning process for using the modeling tool and having that type of discussion.

Revisions since the CSAP review were completed within the broader context of the 2009-2010 sockeye returns and informed by several on-going research and review processes. These include:

- The Working Paper Fraser sockeye (Oncorhynchus nerka) Wild Salmon Policy Evaluation of Stock Status: State and Rate by Grant et al. was reviewed by CSAP in November 2010, and has recently been published as Grant et al. (2011).
- Science reports and expert testimony under the Cohen Commission looked at population dynamics and harvest policies for Fraser River sockeye salmon (e.g. Peterman and Dorner 2011).

However, readers should note that the bulk of revisions on this Research Document was completed before the above processes had come to a conclusion, and before observations from 2009-2010 could be included in the spawner-recruit data sets.

Note: This report carries over some text from two previous reports (Cass et al. 2004, Pestal et al. 2008)

1 INTRODUCTION

1.1 PURPOSE OF THIS RESEARCH DOCUMENT

The Fraser River Sockeye Spawning Initiative (FRSSI) has been a multi-year collaborative planning process to develop a long-term escapement strategy for Fraser River sockeye salmon.

A simulation model to evaluate alternative harvest control rules for Fraser River sockeye salmon was reviewed by PSARC in June 2003. The resulting CSAS Research Document provided the background for a series of multi-interest stakeholder workshops (Cass et al. 2004).

The simulation model evolved considerably as the initiative progressed over years of collaborative development and implementation. The FRSSI process and its application to annual escapement planning are documented in Pestal et al. (2008).

Given the substantial amount of accumulated revisions to the model and its underlying assumptions since 2004, a review of the methods became once again necessary.

The objective of this Research Document is to:

- Review methods to evaluate the performance of alternative escapement strategies (i.e. harvest control rules) for stocks of Fraser River sockeye salmon.
- Explore the sensitivity of different escapement strategies to key sources of uncertainty (e.g. alternative population dynamics, patterns of productivity)

Methods documented in this Research Document support the evaluation of alternative management strategies, such as target levels of total allowable mortality that change with run size. These management strategies shape pre-season fishing plans, guide in-season management decisions, and provide a point of reference for post-season review.

1.2 POPULATION STRUCTURE AND LIFE HISTORY OF FRASER RIVER SOCKEYE SALMON

Sockeye salmon spawn in over 150 natal areas throughout the Fraser River watershed, ranging from near the estuary to as far as $1,300 \mathrm{~km}$ upstream. More than 270 groups of spawning sockeye have been identified in the watershed, each with a specific combination of spawning location and migration time (Holtby and Ciruna 2007). Sockeye are not persistently present at all of these sites, but were recorded there at least once in the available assessment data.
The Fraser River watershed is vast at over $220,000 \mathrm{~km}^{2}$, and the spawning migration is protracted from June to October, so that these spawning groups are aggregated into production units, called stocks, for the purpose of monitoring status (e.g. Cass et al. 2000) , developing forecasts (e.g. Grant et al. 2010), and analyzing population dynamics (e.g. Ricker 1997). Stocks are identified based on the geographic location of spawning streams and rearing lakes, as well as the timing of adult migration. Most of the system's recent production is accounted for by a few large stocks or stock groups: Birkenhead, Weaver, Chilko, Quesnel, Stellako, Stuart (Early and Late), Adams and Shuswap (Table 1). The model documented in this Research Document incorporates 19 distinct stocks that capture most spawning populations and most of the annual sockeye production. However, in some recent years, miscellaneous stocks that are not covered in the model have contributed $30-40 \%$ of the Early Summer run size (Table 2).

Stocks are further aggregated into management groups based on similar migratory timing during their return from the ocean. These management groups overlap to a varying degree each
year, and discrete harvest of individual stocks or stock aggregates downstream of terminal areas is not possible for three of four timing groups (p. 18).
The management groups are, in order of adult migration:

- Early Stuart: about 7 individual spawning sites in the Takla-Trembleur lake system, arriving in the lower Fraser River from late June to late July. Early Stuart is modelled as a single stock.
- Early Summer: about 75 individual spawning sites throughout the Fraser system, arriving in the lower Fraser River from mid-July to mid-August; Early Summer is modelled as 8 stocks (Bowron, Raft, Seymour, Fennel Creek, Scotch Creek, Gates, Nadina, Upper Pitt River). In annual implementation, escapement strategies for Early Summer are scaled up to account for the expected abundance of miscellaneous other stocks.
- Summer: about 12 individual spawning sites, mostly in the Chilko, Quesnel, Stellako and Stuart systems, arriving in the lower Fraser River from mid-July to early September.
- Late: about 160 individual spawning sites in the lower Fraser, Harrison-Lillooet, Thompson and Seton-Anderson systems, arriving in the river from late August to mid-October. The Late group is modelled as 6 stocks (Late Shuswap, Birkenhead, Cultus, Portage, Weaver, Harrison).

Finer distinctions have been used in recent years. For example, some components of the Late run were managed differently from the other components which were thought to experience a higher rate of en-route mortality (i.e. Birkenhead-type lates vs. true lates). Following a decision by the Fraser Panel in 2010, the Birkenhead-type lates were re-integrated into the Late management group, including the planning model described in this paper.

As implementation of the Wild Salmon Policy (DFO 2005) unfolds, the focus of salmon management is shifting to functionally distinct conservation units (CU). A methodology for delineating CUs has been established (Holtby and Ciruna 2007), but the resulting list of CUs is still undergoing scientific and public review (e.g. Grant et al. 2011). CUs for Fraser River sockeye salmon are generally based on rearing lakes and timing, which is reflected in the CU name (e.g. Takla/Trembleur-EStu). Figure 1 matches modelled stocks to CUs.

The life history of Fraser River sockeye salmon is complex, and has been intensively studied (e.g. Groot and Margolis 1991, Roos 1991, Ricker 1997). A brief summary follows: Fraser River sockeye salmon spawn in small streams, large rivers, or lakes. Juveniles generally rear in large lakes for one year as fry before migrating seaward as smolts, entering the Strait of Georgia and moving north along the continental shelf into the Gulf of Alaska. The majority of Fraser River sockeye salmon rear in the Gulf of Alaska for two winters before returning to the Fraser River as 4 -year old adults. The technical notation for this life cycle is 4_{2}, designating a total life span of four years, with the first 2 winters spent in the freshwater environment. Most Fraser sockeye return at age 4. A small but variable proportion of adults return as 5 -year olds, and some males also return as smaller 3-year olds called jacks. One notable exception are river-type Harrison sockeye, which don't rear in the lake and return as 3 or 4 year olds after spending 2 or 3 years in the ocean. Returning adults typically approach the North Coast of BC, and then migrate south to the Fraser River estuary.

Assumptions about the life history of Fraser River sockeye salmon strongly influence the simulated performance of alternative management strategies, with vigorous on-going debate about the following:

- Estimates of inherent productivity (i.e. recruits / spawner at low abundance)
- Estimates of productive capacity (i.e. abundance of spawners that maximizes recruitment)
- Effect of large spawner abundance in the brood year
- Effect of large spawner abundance in some previous year (i.e. cyclic dominance / delayed density dependence effects)
Section 2.2.4 covers these topics related to model structure and parameter estimates.

1.3 DEVELOPING ESCAPEMENT STRATEGIES FOR FRASER RIVER SOCKEYE SALMON

Pestal et al. (2008) summarize escapement planning for Fraser River sockeye salmon since the mid-1980s. A brief overview follows below. Implementation details are documented in the annual reports of the Fraser River Panel (e.g. PSC 2009).
Following the signing of the Pacific Salmon Treaty in 1985, a Rebuilding Plan was designed to increase annual escapements incrementally from historical levels (Collie et al. 1990, FRAPFMG 1995). A DFO task force identified Interim Escapement Goals between escapements observed at the time and estimated optimal escapements. A basic premise of the rebuilding plan was to increase escapements each year beyond brood year levels to maintain an increasing rebuilding trajectory towards interim escapement targets. In periods of high or increasing survival, these escapement targets can be met with little short-term economic losses. To meet rebuilding targets during years of low survival, a higher fraction of the run is allocated to escapement rather than catch.

An implementation plan was developed which identified:

- Lower bounds for annual target escapement designed to maintain escapements above brood year levels for Early Summer, Summer and Late Run aggregates.
- Lower bound for annual target escapement on the Early Stuart aggregate fixed at 66,000 spawners and then revised to 75,000 spawners through consultations.
- Upper bounds on annual target escapement for all aggregates based on a 65% exploitation rate ceiling.
This implementation plan guided escapement management from 1987 to 2002, but stocks and harvests didn't respond as hoped (Figure 2, Figure 3, Figure 4, Figure 5). Productivity fluctuated considerably (Figure 6, Figure 7), and has shown a marked overall decrease in recent years (Figure 8, top panel). In addition, harvest opportunities on abundant and productive stocks were constrained by less productive or less abundant stocks intercepted in the same fisheries (e.g. Interior Fraser River coho salmon, steelhead). Due to a combination of these factors, the management balance has shifted from catch to spawner abundance (Figure 8, middle and bottom panel). Larger total abundances and catches could likely have been achieved from the increased escapements of the 1990s and early 2000s if productivity had remained stable at the levels observed in the 1970s and 1980s. A recent review by Martell et al. (2008) even suggests that higher than recent exploitation rates may maximize long-term catch for the 9 most abundant stocks if optimal escapement levels were known. However, we consider it likely that spawner levels and resulting returns would have been much lower for many of the Fraser River sockeye salmon stocks if pre-1987 exploitation rates had been maintained in the face of reduced productivity. In Section 4.3 we identify future analyses to explore how the results of Martell et al. (2008) would be affected by including 10 more stocks with smaller population abundances, less data and different productivities (Figure 6) in a mixed-stock management setting, and with the added objective of avoiding low escapement on any component stock to preserve biological diversity within the Fraser aggregate.

Support for the rebuilding plan, as conceived in the 1980s, had diminished by the early 2000s due to a decline in catch, difficulty of accommodating multiple objectives, and the constraints of a strict rebuilding schedule (Cass et al. 2000, Pestal et al. 2008).

DFO initiated a review of the rebuilding plan in 2003 to address the growing concerns expressed by First Nations and stakeholders, as well as recommendations from the 2002 Ministerial review of Fraser River sockeye fisheries (DFO 2003). The mandate of the review process was to incorporate new information, integrate emerging policies such as the Wild Salmon Policy (DFO 2005), and establish a formal framework for setting annual escapement targets. Over the next 8 years DFO led a collaborative process, called the Fraser River Sockeye Spawning Initiative (FRSSI), and regularly brought together participants from First Nations, the commercial fishing industry, recreational fishing, environmental non-government organizations, the United States, and the provincial and federal governments.

The technical groundwork was laid through the development of a simulation model (Cass et al. 2004) which was refined over three years and six workshops, leading up to an intensive twoyear planning exercise that merged FRSSI into a pilot implementation of the integrated management processes envisioned under the Wild Salmon Policy (WSP).

Since 2006, the simulation model has been fully integrated into the annual management cycle for Fraser River sockeye, which is bracketed by two phases of public consultation, the postseason review in the fall and pre-season planning in the spring (Figure 9). Both of these consultations unfold as a combination of formal advisory processes (e.g. Integrated Harvest Planning Committee), bilateral meetings with First Nations, and townhall-style meetings with the general public (e.g. in coastal communities). Each year, the FRSSI model is used to examine a range of alternative escapement strategies for each management group. A shortlist of 3 to 5 options for each management group is selected based on pre-season expectations for each alternative and a summary of simulation results. These options are then presented for broad public review during the annual pre-season consultations (e.g. draft Integrated Fisheries Management Plan, annual technical memo). Occasionally, additional options are generated during the review process. One option is then included in the final management plan.

The ultimate goal was to converge on long-term strategy, so that the annual process would not be needed. However, each year there has been additional work identified through in-season implementation, post-season reviews, and pre-season consultations. Also, as part of the initial implementation in 2006, DFO committed to a major review and update after a full 4-year cycle of returns (e.g. the 2010 CSAS review, workshops in 2011, this Research Document).

The modelling framework developed for the Spawning Initiative is consistent with the biological principles outlined in the WSP. For example, the 19 stocks included in the simulation model closely match up with conservation units (Figure 1) and escapement strategies are evaluated based on the performance of individual stocks, not management groups. The lack of spawnerrecruit data for some CUs presents an on-going challenge for the operational aspects of the Wild Salmon Policy, but is much less of an issue for Fraser Sockeye (Table 2) than for other areas or species.

2 METHODS

2.1 MODEL OVERVIEW

2.1.1 Intent

The FRSSI model is intended as a formalized, quantitative tool for exploring the expected longterm performance of escapement strategies for Fraser sockeye under a wide range of alternative assumptions (e.g. population dynamics, future patterns in productivity). It is designed as a big-picture model to address long-term management questions, such as "Which types of strategies tend to be robust to uncertainty in population dynamics?" It does not address operational questions such as "What is the optimal fishing plan for next week, given the latest estimates of abundance, timing, and management adjustments?" Nor is it meant to be a predictive tool to answer questions such as "What will the return of sockeye be two years from now?" As an illustration, the FRSSI model can be thought of as similar to a regional planning tool that helps compare alternative transit plans for a region, rather than an engineering tool that simulates earthquake safety of alternative bridge designs.

The model is simply a thinking aid, a consistent way of linking and tracking some of the many considerations that are debated during the annual planning process. Alternative options and assumptions can be easily explored through a series of "what if?" scenarios. This process of exploring alternative strategies works best in a collaborative setting, but the inevitable complexities create substantial communication challenges in multi-stakeholder workshops and the broader public engagement processes.

Given this intent, the FRSSI model does not attempt to explicitly incorporate all of the biological mechanisms that are being investigated for Fraser River sockeye. There are other processes, with their own models, that deal with them in more detail. For example:

- Annual forecasting models for each stock to shape pre-season expectations (Grant et al. 2010)
- Pre-season fisheries planning model and management adjustment (MA) models that support deliberations of the Fraser River Panel (Cave and Gazey 1995, Patterson and Hague 2007, Macdonald et al. 2010)
- Population viability model for Cultus sockeye that supports the deliberations of the Cultus Recovery Team (Korman and Grout 2008)
- Conservation Unit (CU) viability models that support the development of benchmarks under the Wild Salmon Policy (Holt et al. 2009, Grant et al. 2011).
- Development of a more detailed in-season management model is currently being funded by DFO in collaboration with Simon Fraser University to assess conservation and management objectives for individual stocks as they move through a sequence of fishing areas in the ocean and within the Fraser watershed.

2.1.2 Current scope

The FRSSI model currently simulates 19 stocks of Fraser sockeye forward for 48 years and applies different long-term escapement strategies chosen by the user. It tracks the performance of management groups as well as individual stocks, and is set up to explore many variations of management approaches that are applied on an annual basis: (1) fixed escapement, (2) fixed exploitation rate, (3) varying total allowable mortality with run size. For each of these, the effect
of overlap in return timing can be evaluated. Harvest strategies are specified for management groups, but each stock can be assigned to different management groups or treated as an individual management group. All stocks within a management group are exposed to the same exploitation rate and environmental mortality, and catches are not attributed to any specific area or fishery.

The model allows users to confront a chosen strategy with a wide range of scenarios: (1) alternative spawner-recruit models, (2) alternative future patterns of productivity, (3) alternative assumptions about en-route mortality, and (4) alternative assumptions about pre-spawn mortality.

Figure 10 summarizes these options as a decision tree, where each branch represents one possible scenario to be explored.

The current model is not set up to address the following: (1) in-season management strategies, such as approaches for dealing with uncertain and changing forecasts, (2) alternative fishing plans, such as the timing and location of harvests (3) catch sharing across sectors or areas, and (4) annual adjustments to the long-term strategy.

Section 4.2 discusses the use of the FRSSI model and compares its scope to other models developed for a similar purpose.

2.2 BIOLOGICAL SUB-MODEL

2.2.1 Definitions

The primary data that describe the population dynamics are the estimates of annual spawning abundance and the total number of adult progeny that return 3 to 5 years later, regardless of whether they are caught in fisheries, perish during upriver migration, or survive to spawn. Spawner abundance is estimated directly using systematic surveys of the spawning population. Estimates of the catch removed from each stock, estimates of migration mortality, and estimates of spawner abundance are combined to estimate the total abundance of returning sockeye in a given year.

- Run = adults returning in a brood year (e.g. 2004)
- Catch = total estimated harvest in commercial, recreational, and aboriginal fisheries
- Total spawners = abundance of adults on the spawning grounds in a brood year (e.g. 2004)
- Difference between estimates (DBE) = difference between abundance estimated in the lower river at the Mission hydroacoustics site and abundance on the spawning grounds. Negative DBEs are assumed to be losses due to en-route mortality for the purposes of modeling.
- Effective female spawners = Number of females that successfully contributed to spawning
- Recruits = total adults produced from a brood year (e.g. 2004) and returning 3-5 years later (e.g. 2007 to 2009).
- Productivity = recruits per adult spawner (or per effective female spawner)

The next five sections summarize the current approach to estimating each of these quantities. Figure 11 illustrates how the simulation model links them together.

The simulation model currently includes 19 stocks (Table 1). For 12 of these stocks, escapement and catch by brood year have been routinely measured since 1948. Another 7 stocks with shorter time series of available data were added early in the FRSSI process to better reflect the mixed-stock challenges of management (e.g. differing productivity, more
uncertainty in spawner-recruit models). Appendix 3 lists available data for the 19 stocks, which account for 98% of the long-term average annual run size and escapement, but has ranged from a high of 100% to a low of 89% of the total run and 87% of the escapement in 2004 (Table 2).

The spawner-recruit data used in this analysis are maintained by DFO Stock Assessment. For the most up-to-date version of the data, contact Sue Grant (Sue.Grant@dfo-mpo.gc.ca). Note that updated spawner-recruit data include additional years as well as revised estimates for earlier years.

A detailed CU-by-CU inventory of available data and formal status evaluation was reviewed by CSAP in November 2010, and was finalized in 2011 (Grant et al. 2011). Section 4.3 outlines proposed steps for incorporating the results of Grant et al. (2011) into the FRSSI model and process.

2.2.2 Estimates of spawning escapement

Since the late 1930s, escapements have been estimated annually for most of the individual spawning populations in the Fraser River watershed. Over 150 individual populations have been identified. The catch and spawning escapement data for these populations has historically been grouped into 19 stocks for management purposes (Section 1.2).
Between 1937 and 1985, the International Pacific Salmon Fisheries Commission (IPSFC) was responsible for estimating spawner abundance at spawning sites in the Fraser watershed. Experimental work developed during the early years of the IPSFC led to a two-tiered approach for estimating escapement (Atkinson 1944, Howard 1948, Schaefer 1951). Methods used by the IPSFC are described by Woodey (1984). Visual techniques were applied for small populations. For larger populations the estimates were based on mark-recapture experiments and to a lesser extent fence counts. The threshold for switching to these more intensive surveys was originally 25,000 , but was raised to 75,000 in 2004.
With the signing of the Pacific Salmon Treaty in 1985, DFO assumed the responsibility for spawner enumeration and has generally followed the approach developed by the IPSFC (Schubert 1998). Pestal and Cass (2009) summarize sampling sites and recent survey coverage.
Visual surveys are either ground or aerial-based and are the least accurate of methods used to estimate salmon spawning escapement. Typically, visual surveys underestimate the known abundance based on fence counts by 2-12 times (Symons and Waldichuk 1984). Expansion factors for Fraser sockeye have been developed by comparing visual estimates to known fence counts in an attempt to account for the bias in visual estimates (Woodey 1984, Schubert 1998). Schubert (1998) reports a factor of 1.8 has been used for Fraser sockeye to expand visual count data. Estimates of total escapement were calculated for river and lake spawning stocks as the product of the maximum daily count of live spawners, the cumulative recovery of carcasses to the day of peak live count and the expansion factor. In glacial systems or lake populations where live fish cannot be observed directly, escapement estimates were the product of the total carcasses recovered and an expansion factor that assumed that each person-day of survey effort recovered 5% of the population. For most populations, however, the reliability of visual survey estimates has not been verified and the uncertainty in accuracy and precision of the estimate is unknown but assumed to be large. Fence counts are considered the most reliable, but are used at relatively few locations for logistical and budgetary reasons (Schubert 1998). Errors in fence counts result from counting or measurement errors, for example, if the fence is breached or damaged from obstructions or high river discharge.

Mark-recapture estimates are potentially positively biased as a result of tag shedding, tagging induced mortality, and abnormal behavioral effects of tagged fish. In comparative studies on the Stellako River, mark-recapture estimate had estimation errors ranging from -1% to 18% compared to the fence counts (Schubert 2000). This error is less than the error reported in other studies where errors of 2-3 times were typical (Simpson 1984).
Alternative escapement estimation methods using DIDSON sonar technology have been assessed against traditional methods in recent years. Paired DIDSON / Mark-Recapture projects were conducted for Horsefly in 2005, 2006, and 2007, and for Chilko in 2006 and 2008 (Welch et al. 2007).
Sampling at the spawning sites provides estimates of the number of precocious males (jacks) and non-jack males and females. Female carcasses are sub-sampled to estimate the proportion of female spawners that contributed to spawning based on estimates of eggs retained in the sampled carcasses. The latter are categorized as "effective females". In some stocks, anomalously low spawning success has occurred in some years as a result of high prespawning mortality. For example, estimated effective females for Chilko sockeye in 1963 only constituted 38% of the total female population. High pre-spawning mortality of Chilko sockeye in 1963 was associated with high water temperatures and anomalous early river entry (Anon. 1964).

The FRSSI model includes spawner-recruit relationships based on either total spawners or effective females (Section 2.2.4)
Results presented in this paper use spawner data up to the 2008 return year (Appendix 3).

2.2.3 Estimates of catch, en-route mortality, and recruitment

Historic catch estimates from commercial fisheries are based on landing records on fish tickets from U.S. fisheries and dock tallies and fish sales from Canadian fisheries. The Pacific Salmon Commission (PSC) and formerly the IPSFC were responsible for estimating the catch by age and stock (Woodey 1987, Gable and Cox-Rogers 1993). Historically, the contribution of individual stocks has been estimated mainly by comparing freshwater growth patterns on scales from catch samples with the pattern from stocks of known origin, based on samples from spawning sites (Henry 1961, Gable and Cox-Rogers 1993).
Catch estimation errors of individual stocks in the historical database are the result of insufficient discrimination in scale patterns among stocks, unrepresentative sampling of the catch or spawning sites, or incorrect assumptions about the stock mixture used in the assessment models (Cass and Wood 1994, Gable and Cox-Rogers 1993). Biased estimates result from misallocation of the catch of one or more stocks in a mixture to other stocks in the mixture. The bias is larger for small stocks because proportional errors in large stocks within a mixture result in larger absolute errors in catch of small stocks. Catch allocation bias overestimates the abundance and productivity of small populations in years when catch allocation is based on scale growth patterns. Small stock bias still occurs when using DNA for stock identification, but the magnitude of the bias is smaller than when using scale analysis for stock identification (pers. comm. Steve Latham, Pacific Salmon Commission, Vancouver B.C.)
Other information used in stock discrimination include differences in age and size composition and historical data on run timing and spawning ground arrival data (Gable and Cox-Rogers 1993). The accuracy and precision in estimates of catch by stock depends on the number and size of stocks in the catch mixture and the uniqueness of scale patterns. The latter vary depending on variable annual juvenile growth conditions such as juvenile density (Goodlad et al. 1974).

Scale pattern analysis has been supplemented in recent years using parasite and genetic differences among stocks (Bailey and Margolis 1987, Beacham et al. 1987). DNA-based methods for identifying individual stocks in mixed stock fisheries have improved stock identification accuracy and precision, and are now being used routinely (pers. comm. Mike Lapointe, Pacific Salmon Commission, Vancouver B.C.).

Section 2.2.11 describes data on the difference between estimates (DBE) of sockeye in the lower Fraser River measured at the hydro-acoustic site at Mission, B.C. and estimates of the population at the spawning sites plus in-river catch above Mission. If the differences are considered to be real, that is, if there were actual mortalities that occurred as opposed to biases in estimation methods, then they are incorporated into estimates of total recruitment.

We simulate population dynamics based on two predominant age classes for each stock, with age-4 adults accounting for most of the recruitment in 17 of the 19 stocks (Figure 12). Exceptions are Upper Pitt, which return in higher proportions than other stocks as age-5 adults, and Harrison, which are immediate migrants and have a substantial component of mature 3_{1} adults (i.e. spent 2 years in the ocean, similar to age 4_{2} sockeye). Jacks contribute little to sockeye fisheries and their reproductive potential is unclear. Jacks are not used in the analysis as spawners, but they are included in the estimates of total recruits.

Results presented in this paper use recruits data up to the 2004 brood year (Appendix 3).

2.2.4 Spawner-recruit models

Spawner-recruit (SR) models predict the number recruits produced from the number of spawners in each brood year. Recruitment by brood year is adjusted to predict the run of age-4 and age-5 year-old sockeye in each return year. We focus on two alternative models: the Ricker model (Ricker 1954, Ricker 1997) and the Larkin model (Larkin 1971, Walters \& Staley 1987). SR models typically have 2 estimated parameters: productivity and capacity. Where additional data is available, more complex models can be developed to incorporate additional life stages (e.g. smolt abundance) or environmental factors (e.g. sea surface temperatures when young salmon first enter the ocean).
SR models differ depending on the assumptions they make about:

- Inherent productivity (i.e. recruits / spawner at low abundance)
- Productivity at very low escapement (e.g. is there a point at which production levels fail to provide sufficient recruits to recover due to mechanisms such as density-dependent predation (Section 2.2.13)
- Productivity at large escapement (e.g. is there a pronounced decrease in productivity if escapement exceeds capacity, due to mechanisms such as competition for spawning locations?)
- Interaction between cycle lines (e.g. does a large escapement last year affect survival of this year's brood, due to mechanisms such as reduced food availability and increased predator abundance? Or does periodic large escapement increase long-term production due to the increased marine nutrients transported into the watershed?)
The most widely applied model to quantify the population dynamics of Pacific salmon is the Ricker model.

The classical form of the Ricker model is:

```
log(\mp@subsup{R}{BY}{}/\mp@subsup{S}{BY}{})=\alpha-\beta S BY }\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.. Eq. 1
```

where recruits $\left(R_{B Y}\right)$ per spawner $\left(S_{B Y}\right)$ produced from a brood year are determined based on two parameters. The α parameter is the productivity at low run size (i.e. intrinsic growth rate of the stock) and β is a density-dependent parameter that describes the rate at which productivity decreases as spawner abundance ($S_{B Y}$) increases. An intuitive way to think about the density effect is:
$\beta=1 / S_{\text {max }}$ Eq. 2
where $S_{\text {max }}$ reflects the capacity of the stock (i.e. spawning abundance associated with maximum sustainable yield). Stocks with larger capacity have a smaller β, and less of a densitydependent drop in productivity. The Ricker model is dome-shaped with declining recruitment at higher stock sizes. Mechanisms that can lead to a Ricker-shaped stock-recruitment curve are cannibalism of juveniles by adults, disease transmission, over-crowding on the spawning sites and density-dependent growth coupled with size-dependent mortality (Hilborn and Walters 1992).

The formulation of the Ricker model in Eq. 1 was extended by Larkin (1971) to include crosscycle interactions, as follows:
$\log \left(R_{B Y} / S_{B Y}\right)=\alpha-\beta_{0} S_{B Y}-\beta_{1} S_{B Y-1}-\beta_{2} S_{B Y-2}-\beta_{3} S_{B Y-3} \ldots \ldots \ldots \ldots$. Eq. 3
In Eq. 3 the recruits per spawner $\left(R_{B Y} / S_{B Y}\right)$ produced from a brood year are the result of spawning stock in the brood year ($S_{B Y}$), but also depend on spawning abundance 1 to 3 years earlier. The lag terms ($\beta_{1}, \beta_{2}, \beta_{3}$) are surrogates for ecological mechanisms, discussed earlier, assuming that the magnitude of the effect (e.g. density dependent predation or disease outbreaks) is related to the abundance of spawners in the preceding years ($S_{B Y-1}, S_{B Y-2}$ and $S_{B Y-3}$). The classical Ricker model is a subset of the Larkin model wherein the additional lag terms are zero.

Figure 13 summarizes the differences between the Ricker and Larkin models. Other variations (e.g. only 1 lag term) are also conceivable and we evaluate a suite of alternatives (Section 2.2.10)

We explore these assumptions and their implications through varying up-front constraints on parameter estimates. For example, estimates of the capacity parameter can be constrained to some multiple of the highest observed spawner abundance (Sec 2.2.7). Similarly, lag terms describing the interaction between cycle lines can be estimated from the observed data or set to zero (i.e. alternative model structures). The remainder of this section briefly summarizes previous work on these aspects of Fraser sockeye population dynamics.
Of the 19 sockeye stocks in the watershed that are enumerated consistently, 8 have exhibited persistent cycles with a consistent peak in abundance every four years (Cass and Wood 1994) . If this pattern is very pronounced it is referred to as cyclic dominance. In these cases the dominant cycle line is the sequence of years with run size persistently larger than the other cycle lines. The sub-dominant line has moderate abundance, and off-year lines have extremely low abundance relative to the dominant and sub-dominant lines.

Despite 50 years of study, there is still no scientific consensus on the cause of cyclic patterns in the abundance of Fraser sockeye, but recent research points to a combination of biological mechanisms and past harvest patterns (Ward \& Larkin 1964, Walters \& Staley 1987, Cass \& Wood 1994, Ricker 1997, DFO 2006b). Various ecological hypotheses have been proposed, including interactions with predators, diseases, or parasites. Marine influences have been discounted because it is unlikely they could generate cycles where some stocks are dominant
one year, and some stocks are dominant the next. Reduced food availability imposed by dominant cycle lines on off-cycle years is also unlikely since growth rates of highly cyclic Fraser sockeye are highest in off-cycle lines. Human impacts can perpetuate or increase the cyclic pattern in abundance: In the past, off-cycles were consistently fished at higher relative rates than dominant and subdominant cycle lines. Some researchers have suggested that genetic factors, such as strongly inheritable age-at-maturity and age-dependent mortality, could maintain population cycles or at least slow the recovery of off-cycle lines, in combination with high fishing mortality (e.g. Walters and Woodey 1992).

In 2006, DFO hosted a technical workshop to assess alternative models for explaining the observed cyclic dynamics of some stocks (DFO 2006b). This workshop was a direct result of concerns raised by participants in the FRSSI process. The two main recommendations from the technical workshop were to change the escapement strategy to a fixed exploitation rate for run sizes above a certain threshold, and to use a more flexible model to calculate recruitment for all stocks based on the observed degree of interaction between cycle lines. Both of these recommendations have since been implemented in the simulation model.

Another on-going debate concerns potentially detrimental influences of large escapements (e.g. Walters et al. 2004, Clark et al 2007). The concern is that overall survival and growth of the offspring could be greatly reduced due to biological mechanisms such as competition (e.g. for spawning sites, prey, oxygen in the lake), disease outbreak, or increased predation. However, a broad review for Fraser sockeye found only declines in productivity at higher escapement levels, but no evidence of collapse, concluding that productive stocks should not suffer drastic reductions in recruitment as a result of management actions to protect weak stocks in mixedstock fisheries (Walters et al. 2004). These conclusions were supported by observations in 2005 and 2006, when offspring from the 2001 and 2002 spawners returned in reduced, but substantial numbers despite an on-going decline in productivity. However, individual stocks may have suffered pronounced density effects. For example, sockeye smolts migrating out of Quesnel Lake in 2004 were the smallest on record, resulting in severely reduced marine survival. These were the offspring of spawners in 2002, facing high densities at early life stages, but the observation may be confounded by low food availability in the lake at the same period. The productive capacity of Fraser River sockeye stocks is limited in the freshwater environment, either by available spawning habitat or by available lake rearing habitat. Several approaches have been used to estimate productive capacity for individual sockeye stocks, including available spawning area, lake productivity, and numerical estimates of the capacity parameter from population models (FRAP-FMG 1995, Shortreed et al. 2000, Bodtker et al. 2007). This information can be used to shape prior assumptions about density-dependent parameters in the spawner-recruit model (Section 2.2.5)

Uncertainty around the effects of large escapements is closely linked to yearly variability in environmental, marine and freshwater conditions, as well as the large uncertainty in estimates of productive capacity for Fraser sockeye stocks. The current management approach is based on the assumption that occasional large escapements likely reduce the efficiency of sockeye production in that year (i.e. smaller number of recruits per spawner), but do not cause stock collapses. Potential benefits of escapement spikes include increased genetic diversity (e.g. Schindler et al. 2010) and transport of marine nutrients into distant watersheds (e.g. Naiman et al. 2002, Uchiyama et al. 2008, Hill et al. 2009, Adkison 2010).

Theoretically, substituting effective female spawners for total spawners in the stock-recruitment relationship reduces both uncertainty in parameter estimates and bias due to underestimating spawner potential for years with a low proportion of effective females. The problem with using effective female escapement instead of total spawners is that recruitment and spawners are in different units. As shown by Collie and Walters (1987), the spawner-recruitment parameters
estimated using effective female spawners can be re-scaled to represent total sockeye in Eq. 1 and 3. However, we included the option to directly use parameters estimated for effective females by adding an extra step that accounts for sex ratio and spawning success (Figure 5).
The intent is to:

- Establish consistency with other work which is based on effective females (e.g. the forecasts developed by Grant et al. 2010).
- Maintain consistency with previous model versions, which are based on total spawners, to ensure we can compare the results.
- Encourage the planning process to explicitly consider assumptions about pre-spawn mortality, and set up the model to easily explore alternative future scenarios (e.g. increased PSM).
- Allow the planning process to explore the implications of basing decisions on one or the other approach. These implications range from technical aspects (e.g. What if different lag-terms appear significant? Are potential biases in SR data different if we use effective females?) to practical implementation (e.g. Should benchmarks be developed or redefined in terms of effective females? If so, what are the implications for setting management goals and annual implementation?).
We approximate the proportion of effective female spawners as the observed median \% effective females in deterministic simulations, or sample from fitted beta distributions in stochastic simulations. Figure 14 shows observed and fitted distributions for the 19 stocks, based on maximum-likelihood fit to a beta distribution (using "fitdistr()" in R, Venables and Ripley 2002).

2.2.5 Bayesian parameter estimates

Bayesian methods explicitly characterize the uncertainty in estimated parameters in the form of a probability distribution. By framing parameters as a distribution, rather than a single estimate, we can evaluate the expected performance of management decisions across a wide spectrum of alternative scenarios. Box and Tiao (1973) discuss the theoretical foundation for Bayesian methods in great detail. Theoretical aspects of Bayesian methods continue to be debated (e.g. Efron 1986, Gelman 1998, Bayarri and Berger 2004).
Bayesian methods have been widely applied in fisheries models. Punt and Hilborn (1997) provide a step-by-step description and review fisheries applications. Hilborn and Mangel (1997) discuss practical considerations for implementation. Recent applications include Schnute and Kronlund (2002), Gibson and Myers (2004), Su et al. (2004), Michielsens and Mcallister (2004), and Grant et al (2010).
One way to think of Bayesian estimates is that they first specify a range of hypothetically possible values and narrow it down to a range of plausible values using observed data. Specifically, we confront a prior assumption about some parameter (e.g. could be any number between 0 and 100) with some observed data (e.g. fifteen observations falling between 20 and 30) to arrive at a posterior distribution (e.g. could be any number between 0 and 100, but most likely falls between 20 and 30).
Each component of this analysis needs to be carefully considered. For example, bounds on the prior assumption define the range of parameter values that is considered hypothetically possible, and no amount of evidence in the form of observed data can push the resulting estimate outside of these bounds. Prior assumptions are often designed to be uninformative, such that they don't cut off any information contained in the observed data. Alternatively, prior
assumptions can bring in information from other sources (e.g. using estimate of lake productivity to shape estimates of a capacity parameter for a salmon stock, as in Bodtker et al. 2007).
To estimate stock-specific parameters for the spawner-recruit models in Eq. 1 and Eq. 3 we applied the Bayes inference Markov Chain Monte Carlo methodology described in Cass et al. (2004), which was adapted from Schnute et al. (2000). However, we have changed the computational implementation from the commercial software S-Plus to a combination of freeware programs: the statistics package R (R Development Core Team 2008) in combination with WinBUGS (Lunn et al. 2000), which uses a Gibbs sampler to approximate posterior distributions.

Appendix 1 documents the WinBUGS code used to derive the parameter estimates.
For forward simulations in the FRSSI model, 1,000 sets of stock-recruit parameters were subsampled from the Bayesian posterior distribution (55,000 total samples, not including 5,000 "burn-in"). All results were visually examined for convergence and checked for auto-correlation. For the purpose of assessing model parsimony, a sub-sample of 20,000 MCMC samples from a total of 150,000 total samples (not including 10,000 "burn-in") was used.

2.2.6 Prior assumptions about the productivity parameter α

Estimates of the productivity parameter α use a uniform prior, such that all values within a plausible range are considered equally likely at the start. The intent is to keep the prior uninformative, and to choose bounds on the uniform prior that do not cut off any part of the range indicated by the observed data. We chose alpha $\sim \mathrm{N}(0, \sigma)$ as the prior for all 19 stocks, with $\sigma=31.6$ to get a precision of $1 / \sigma^{2}=0.001$ in WinBugs (Table 3).

2.2.7 Prior assumptions about the capacity parameter $\boldsymbol{\beta}_{0}$

Prior assumptions about the capacity parameter β_{0} are shaped by assumptions about the value of $\mathrm{S}_{\text {max }}$, the spawning abundance that maximizes production, as specified in Eq. 2.

In previous versions of this model (Cass et al. 2004), $\mathrm{S}_{\max }$ was set to a uniform prior bounded by 0 and 100.

This approach has been modified to a lognormal prior distribution with the mean of $\mathrm{S}_{\text {max }}$ at $\mathrm{S}_{\text {high }}$ and upper bound of $3 \mathrm{~S}_{\text {high }}$ (Table 3), where $\mathrm{S}_{\text {high }}$ is the largest observed abundance. This informative prior is based on two considerations:

- Lognormal distribution allows for possibility of higher carrying capacities, but doesn't put equal weight on the high end of the distribution.
- Use the existing data to mildly inform the prior for each stock.

While the true current capacity of a stock may not have been fully reached within the available data set (e.g. Harrison), we consider it implausible that current $S_{\text {max }}$ would be greater than three times the largest spawner abundance recorded since the 1940s. Posterior estimates of β_{0} fell clearly within these bounds for the majority of stocks.

Further work is planned to explore how high the upper constraint needs to be to not constrain the estimates for populations like Early Stuart and Cultus, and to link these priors to biological analysis of each system's capacity (Section 4.3).

2.2.8 Prior assumptions about the cycle-interaction parameters $\boldsymbol{\beta}_{1}, \underline{\beta}_{2}$, and $\underline{\beta}_{3}$

Estimates of cycle-interaction parameters β_{1}, β_{2}, and β_{3} use positive uniform priors between 0 and 100, to reflect the assumption that all lag terms have either no effect or some negative effect on future survival within the 4 year cycle (Table 3).

2.2.9 Assumptions about random variation

The standard approach is to use log-normal errors (Hilborn and Walters 1992), such that
where ε is normally distributed with a mean of 0 , resulting in a log-normally distributed residuals on $R_{B y}$. Two concerns with log-normal errors were debated during the review of this paper.
One participant suggested that an assumption of log-normal error gives more weight to lower observations, and that the resulting model fits therefore do not reflect the population dynamics of dominant years in highly cyclic populations.
In forward simulations, a large positive residual can be randomly sampled for a year where spawner abundance is already large, leading to a very large spike in modeled recruitment, which may bias the performance measures. In the observed data, however, recruitment residuals are inversely proportional to spawner abundance (see plots of observed residuals in Appendix 4).
An alternative assumption is to use a additive errors such that

$$
\begin{equation*}
R_{B Y}=\alpha S_{B Y} \exp \left(\beta S_{B Y}\right)+\varepsilon \tag{Eq. 5}
\end{equation*}
$$

where ε is normally distributed with a mean of 0 .
We explored both error structures in model fitting (Section 3.2.2), but only show forward simulations based on log-normal residuals in this paper.

2.2.10 Comparing alternative spawner-recruit model forms

We explored 8 variations of spawner-recruit models:

- Ricker model (Eq. 2)
- Full Larkin model with three lag terms, where production from a brood year is influenced by the abundance in each of the three previous years (Eq. 3)
- Larkin with two lag terms, where production from a brood year is influenced by the abundance in the two previous years (β_{1}, β_{2},
- Larkin with 1 lag term $\left(\beta_{1}\right)$
- Larkin with lag 2 only (β_{2})
- Larkin with lag 3 only $\left(\beta_{3}\right)$
- Larkin with lag $1 \& 3\left(\beta_{1}, \beta_{3}\right)$
- Larkin with lag $2 \& 3\left(\beta_{2}, \beta_{3}\right)$

We also repeated all of the above assuming an additive error structure, rather than a log-normal error structure (Section 2.2.9)

We compare model fits using the Deviance Information Critieria (DIC) as described by Spiegelhalter et al. (2002) and implemented by Michielsens and McAllister (2004). The DIC accounts for the number of parameters being estimated, and thereby addresses concerns related to over-fitting. Without this aspect of the comparison, the Larkin model might appear to fit the data better simply due to the flexibility introduced by 3 additional parameters.

The intent of this comparison is not to choose a single "best" model on which to base planning decisions, but to investigate the relative weight of evidence for or against alternative assumptions. In practice, none of these alternative SR models can be completely eliminated from consideration, and we need to evaluate how sensitive alternative management strategies are to the range of most likely alternatives (Section 2.4.4). This approach is consistent with the recommendation by Spiegelhalter et al. (2002) that model selection should be part of a larger process considering the "robustness of its conclusions and its inherent plausibility", rather than relying solely on a statistical criterion.

The model fitting analysis presented in this paper is using the effective female dataset only. This is in keeping with the dataset used to forecast Fraser River Sockeye run sizes (Grant et al. 2010). We assume for the purposes of this paper that the model selection using total spawners would give the same set of candidate models as the analyses using effective females. This assumption should be explored in more detail at a later time.

In this paper, we illustrate the effect of some of these model variations (Section 3.4.2).

2.2.11 En-Route mortality

Since the early 1990s there have been some notable differences between estimates (DBE) of sockeye in the lower Fraser River measured at the hydro-acoustic site at Mission, B.C. and estimates of the population at the spawning sites plus in-river catch above Mission (Banneheka et al., 1995). The discrepancies potentially arise from a number of different sources, including: estimation error, unreported catch, and en-route mortality from adverse environmental conditions (MacDonald 2000, MacDonald et al. 2000, Patterson and Hague 2007, Macdonald et al 2010). Discrepancies are evaluated post-season, and if they are concluded to be due to mortalities (as opposed to biases in estimation techniques at either site), the DBE is incorporated into the recruitment data used in the spawner-recruit dataset (Section 2.2.3).
We use observed DBE data provided by lan Guthrie (PSC) to approximate en-route mortality in the forward simulations. Positive DBEs, where upstream estimates are larger than lower-river estimates are set to 0 , assuming negligible en-route mortality that year (Table 2). Figure 15 shows observed patterns in DBE.
Our current approach evolved as follows: Early in the process, during the 2004/05 planning workshops, the definition of harvest control rules shifted from exploitation rate to allowable mortality rate. This shift was intended to increase clarity for implementation, because en-route mortalities have to be estimated and deducted each year. If control rules are expressed in terms of exploitation rate, and adjusted to account for long-term average en-route mortality, then annual implementation would not respond to changing patterns (e.g. periods of high en-route mortality). With the current approach (i.e. TAM rules shown Figure 19), annual variability in enroute mortality is mostly absorbed by changing the exploitation rate, keeping the total mortality at the target level, and stabilizing the target level of spawner abundance for a given run size.

Note that we treat en-route mortality as distinct and independent from pre-spawn mortality (see discussion of effective female spawners at the end of Section 2.2.4).
As part of the methods review for this paper, we updated and re-examined the DBE data, and looked at incorporating a more explicit environmental component. However, we decided against
the added complexity of an environmental sub-model, and ended up with four alternative options for DBE in forward simulations (Figure 16). The base case samples from the observed distribution of \% DBE, with the alternative option to only sample from the worse half of the observations to account for the potential effects of climate change (Merran Hague, pers. Comm.). To reflect the possibility that harvest patterns influence the future distribution of \% DBE, two additional options are included based on the linear and log-linear simple regressions of actual vs. potential escapement.

In summary, en-route mortality can either be independent of abundance, or have a feedback loop with management through the abundance that passes into the river. If it is independent of abundance, it can be "like the past" or "like the worse half of the past". We expect that these four options are reasonable bookends for exploring the sensitivity of alternative strategies to enroute mortality assumptions.

Two of the three types of escapement strategy included in the model adjust the annual target exploitation rate based on \% DBE (Section 2.3).

2.2.12 Productivity scenarios

A recurring concern raised by participants in the FRSSI workshops relates to assumptions about future productivity of Fraser sockeye stocks. Any forward simulation using parameters estimated from observed data implies that the range of future outcomes (e.g. recruits per spawner at a given abundance of spawners) resembles the range observed in the past (Figure 6). However, this does not capture how productivity changes over time (Figure 7).

We include two options for exploring assumptions about future productivity. An abrupt and persistent loss of productivity across all stocks can be included by specifying a scaling parameter Z_{R} for the recruits calculated based on Eq. 1 or Eq. 3, such that:
$R_{B Y}=Z_{R} S_{B Y}\left(R_{B Y} / S_{B Y}\right)$
with $0 \leq z_{R} \leq 1$ and $R_{B Y} / S_{B Y}$ is calculated from Eq. 1 or Eq. 3 .
Proposed patterns in productivity over time and across stocks can be specified as a grid of scalars for each year and stock (Figure 17).
On-going work (Sue Grant, pers. comm.) is exploring the use of a Kalman filter (Dorner et al. 2008) to identify past patterns in productivity (i.e. estimating changes over time in the α parameter of Eq. 1 and Eq. 3).
Once these analyses are complete for all 19 stocks, the identified patterns can be fed directly into the FRSSI model by converting the each year's scalar on the α parameter into a scalar Z_{R} for use in Eq. 4:
$z_{R}=\frac{\exp \left(\alpha z_{\alpha}\right)}{\exp (\alpha)}$
Eq. 5
Note that z_{R} and z_{α} are intended to be equivalent, but serve a slightly different purpose. In previous years' planning processes we included z_{R} as a straight-forward scalar that is directly meaningful to workshop participants (i.e. 0.5 means half the recruits). We are now expecting the results of a more comprehensive analysis, which will produce trajectories of a parameters. For programming simplicity, we implement those patterns using the existing code, and Eq. 5 is intended to show that a pattern of z_{α} can be easily converted into a pattern of Z_{R}.

2.2.13 Depensatory mortality and quasi-extinction thresholds

A number of factors could result in depensatory mortality. For example, inbreeding may occur and result in increased mortality, spawner densities may be so low that fish cannot easily find mates, and predation may result in higher proportions of fish killed when densities are low. Depensatory mortality will accelerate population declines and increase their probability of extinction (McElhany et al. 2000).
Several approaches have been used to incorporate possible depensatory effects in the analysis of spawner-recruit data. Hilborn and Walters (1992) recommended including a power term in the Beverton-Holt model to represent the effects of predators. Liermann and Hilborn (1997) used a Bayesian hierarchical model to estimate the distribution describing the variability of depensation within various taxa. Routledge and Irvine (1999) introduced a cut-off value to allow for the effects of possible depensation at low abundance. Frank and Brickman (2000) were the first to introduce a S-R model that incorporated Allee effects by permitting a non-zero intercept representing recruitment failure. Chen et al. (2002) extended the standard Ricker function by incorporating an additional parameter and estimating the value of non-zero intercepts using S-R data. They found evidence for significant depensatory mortality in a northern BC coho population but not for Chilko sockeye.
Our purpose here is not to estimate depensatory mortality, but to include the option of simulating potential implications on the performance of alternative escapement strategies. If spawner abundance S falls below a critically low value S_{c}, users can specify an associated proportional reduction in recruitment. This is equivalent to a recent application for Cultus sockeye, which re-scales the Ricker curve if spawner abundance falls below a benchmark determined based on expert judgment (Bradford et al. 2011).
For forward simulations we chose an arbitrary value for S_{c} recognizing the difficulty in estimating it reliably and consistently for all 19 of the modelled stocks. As a base case, we set S_{c} to the lowest S value observed in the SR data set, because stocks were able to recover to much greater levels of abundance, at least given survival conditions at the time. We also explored larger Sc up to the low escapement benchmark (Section 2.4.3), and the combined effect of depensation with reduced productivity and increased en-route mortality.
Table 1 lists lowest observed spawner abundances and benchmarks for the 19 stocks.
Finally, we also added the option of quasi-extinction thresholds to the model in response to reviewer's comments. While computationally equivalent to our implementation of the depensation threshold, we included it as a separate mechanism to allow for reinforcing: depensation increases the frequency of crossing the quasi-extinction threshold.

2.3 HARVEST SUB-MODEL

2.3.1 Escapement strategies

The purpose of this model is to explore the expected long-term performance of different escapement strategies for Fraser sockeye under a wide range of alternative assumptions (e.g. population dynamics, future changes in productivity). During the annual management cycle, escapement strategies guide the annual balance sought between catch and abundance of spawners as run sizes vary from one year to the next and among stocks. In the model, these strategies are specified as quantitative control rules that prescribe a target level of exploitation rate for each management group.

Three types of escapement strategies are currently available in the model:

- Fixed escapement
- Fixed exploitation rate
- Target rate of allowable mortality that changes with run size (i.e. TAM rules).

Figure 18 shows the sequence of choices necessary to define a specific escapement strategy for each of these types.
TAM rules are designed around three fundamental considerations (Figure 19):

- Cap on total allowable mortality rate at larger run sizes to ensure robustness against uncertainty in population dynamics (e.g. capacity estimate), changing in-season information, and differing productivity among component stocks.
- Fixed escapement at low run sizes to protect the stocks and reduce process-related challenges at this critical stage (e.g. uncertain run size).
- ER floor at very low run size (e.g. for test fishing).

These TAM rules are consistent with the minimal requirements for harvest strategies to be compliant with the Precautionary Approach (DFO 2006a). Specifically, the target mortality is reduced as abundance drops from a healthy to a cautious zone, and target mortality is minimal if abundance is critically low.

The model runs on an annual time step for all three escapement strategies, and the resulting exploitation rate for each management group is applied without distinguishing fishery locations or open times (i.e. apply total exploitation rate to total run size, as illustrated in Figure 11).

Exploitation rate is applied without implementation error (i.e. target ER = actual ER), based on three considerations:

- Holt and Peterman (2008) compared target harvest rules and realized harvest rules for the 4 management groups of Fraser River sockeye from 1986 to 2003. They found that average discrepancies were small for 3 of the 4 management groups, and that annual discrepancies were correlated with environmentally-driven en-route mortality.
- TAM rules account for en-route mortality when converting TAM to a target ER, and can account for uncertainty by adjusting the cap on TAM. The model includes the option to explore outcome error (Holt and Peterman 2008) in total mortality by drawing independent samples for predicted en-route mortality, used to determine exploitation rate, and actual enroute mortality used to calculate spawner abundance.
- Finally, there have been changes in fishing patterns (e.g. terminal-areas demonstration fisheries) and new developments in in-season assessment (e.g. DIDSON, genetic stock identification), which will likely affect the pattern of implementation error in the future.

2.3.2 Constraints imposed by run timing

During the 2006 workshop series, participants requested to incorporate constraints imposed by timing overlap. The intent was to approximate the effect of choosing strategies that result in very different average exploitation rates for the 4 management groups. For example, participants pointed out that simulated long-term performance for individual management groups cannot be realized if strategies result in an average exploitation rate of 5-10\% for Early Summers (after accounting for average observed en-route mortality, Section 2.2.11) and an average exploitation rate of $55-60 \%$ on Summers (with much smaller average observed en-route mortality).
To approximate this, we included a step in the model that generates average timing curves on a daily time step, then calculates the realizable exploitation rates for each aggregate given two alternative types of overlap constraint. This approximated realizable ER is then applied at the
annual time step. Note that this step is trying to approximate the overall effect of overlap on different combinations of control rules for the 4 management groups.

Timing overlap is approximated based on long-term average migration timing through Area 20 (i.e. in a mixed-stock fishing area). Two alternative approaches for approximating the constraints imposed by timing overlap are included in the model:

- Abundance: Mixed-stock exploitation rate for each day is constrained by the smallest exploitation rate among those timing groups that contribute more than a user-specified percentage of the abundance (e.g. 10\%), and realizable catch in mixed-stock fisheries is calculated based on these revised exploitation rates.
- Window: Mixed-stock exploitation rate for each day is constrained by the smallest exploitation rate among those timing group that are present that day based on a time window that captures a user-specified portion of each run centered around the peak. Realizable catch in mixed-stock fisheries is calculated based on these revised exploitation rates.

The extent to which timing overlap constrains realizable harvest depends on the differences in target exploitation rate. If the same fixed exploitation rate were chosen for all management groups, there would be no overlap constraint. With a TAM rule, the difference in target ER is strongly influenced by assumptions about en-route mortality.

Figure 20 illustrates the difference between these two approaches. In both cases the intent is to reflect the implementation challenges introduced by management strategies that tend to result in widely differing target exploitation rates for the four management groups. The first option was chosen to approximate management practice at the time. During subsequent workshops, participants pointed out that a severely depleted management group would fail to act as a constraint if it never exceeds the user-specified \% of daily abundance. The second option was added to address these concerns. The implications of alternative "overlap constraints" are substantial. Figure 20 illustrates the difference for 1 simulated year in 1 sample scenario. Section 3.3.7 summarizes some sensitivity analyses. Note, however, that the FRSSI model is not a spatial model, and so it doesn't reflect TAC that could be available in more terminal areas (i.e. the overlap constraint reflects mixed-stock fisheries).

We explored other alternatives for approximating overlap constraints based on variable peak time and optimizing a sequence of daily exploitation rates. However, we chose not to include these analyses here, because the optimization found many different patterns of daily harvest rate that come very close to achieving the target ER on all management groups and result in minimal overlap constraints if the peak and spread of timing curves are perfectly known. Variability and uncertainty in run timing and spatial distinction in harvests goes beyond the scope of this model. Spatial and temporal variations in fishing patterns will be investigated as part of the new in-season model being developed (Section 2.1.1)

2.4 PERFORMANCE EVALUATION

2.4.1 Forward Simulations

We evaluate the expected performance of alternative escapement strategies over 48 years, seeding the simulations with the most recent available spawner abundances. All 19 stocks are projected forward concurrently, with some mechanisms applied to individual stocks (SR model, \% effective females, Section 2.2.4) and others applied to management groups (\% DBE Section 2.2.11, TAM rule - Section 2.3.1). Forward simulations avoid potential artifacts in the observed sequence of data, which may introduce biases, and add flexibility for exploring effects
of potential future patterns in productivity (Section 2.2.12), en-route mortality (Section 2.2.11) or pre-spawn mortality (Section 2.2.4)
The Bayesian approach for capturing parameter uncertainty and posterior sampling techniques, such as the MCMC approach of Gelman et al. (1995) used here, offer the advantage that complex parameter distributions can be naturally incorporated into policy analysis. To explicitly incorporate parameter uncertainty, a subsample of 1,000 stock-recruitment parameter sets for each stock was systematically subsampled from the original 55,000 MCMC samples (Section 2.2.5). For each parameter set sampled from the Bayes posterior distribution, the effect of applying an escapement strategy is simulated by generating trajectories of run size, catch, and spawner abundance in annual time steps.

2.4.2 Individual Stocks Vs. Management Groups

If escapement strategies are specified for management groups rather than individual stocks, the model reflects the complex interactions between individual stock dynamics and mixed-stock fisheries.

In single-stock fisheries there is a direct feedback between exploitation rate, future recruitment and ultimately the performance measures used to summarize conservation and socio-economic factors. Recruitment and performance in response to exploitation is only conditional on the underlying population dynamics of the stock.
A common exploitation rate applied to a stock mixture potentially affects future recruitment and performance of individual component stocks differently for a number of reasons. Productivity varies among stocks to the extent that a common harvest rule is not optimal for some or any of the stock components (Figure 6). This, of course, is the weak-stock challenge of mixed-stock fisheries. Differences in average productivity among stocks, as well as the stock-specific range of variation in productivity, are captured in the model through Bayesian statistical inference (Section 2.2.5). Stock-specific future patterns in productivity can also be explored (Section 2.2.12).

Mixed-stock fisheries models are more complex than single-stock models and the complexity increases with the number of stocks in the mixture given variations in timing among and within management groups, and the recruitment survival patterns among stocks. For example, Mueter et al. (2002) showed that correlations in survival patterns among Fraser sockeye stocks are weak, but significantly positive.
For simplicity, we assume that:

- Exploitation rates for each stock equal the exploitation rate applied to a management group, but stocks can be moved between management groups or treated as an individual management group.
- Temporal survival patterns between stocks are uncorrelated (i.e. stochastic residuals are sampled independently for each stock).

2.4.3 Performance Measures

The overarching goal of the FRSSI process is to seek a balance between the fundamental objectives of (1) meeting spawner abundance goals for individual stocks and (2) accessing the catch-related benefits from the management groups. However, there are many aspects to consider when interpreting the simulation results. Early on in the process, we moved away from optimizing a value function with user-supplied weightings to a more interactive exploration of alternative scenarios. Over the course of more than a dozen workshops the list of potentially
interesting variations of performance measures, requested by participants, grew steadily to over 300. We use the following subset for the sample results in this Research Document:

- Low escapement: Proportion of simulated years where the $4 y r$ running arithmetic average of spawner abundance falls below a stock-specific benchmark.
- Low catch: Proportion of simulated years where catch for an aggregate falls below a specified level.
The notions of low escapement and low catch can be quantified in many different ways, and even the Wild Salmon Policy offers a range of potential benchmark definitions that should be explored on a case-by-case basis (pages 17 and 18 of DFO 2005). Methods for determining WSP benchmarks for conservation units have been finalized (Holt et al. 2009, Holt 2009), but resulting benchmarks for the 19 stocks of Fraser sockeye are still under development (Grant et al. 2011).

Pending the completion of this work, we continue to use interim benchmarks developed during the 2006 planning process. Workshop participants reviewed alternative approaches for setting biological benchmarks and settled on a robust combination using the smallest and largest value resulting from 5 different definitions of low escapement (Table 1). These benchmarks are based on a combination of population dynamics (e.g. 20\% of the escapement that maximizes run size) and past observations (e.g. smallest observed 4yr average escapement). Benchmarks for identifying low catch for each management group are based directly on feedback received from workshop participants: Early Stuart - 15,000; Early Summer - 100,000; Summer - 600,000; Late - 300,000

2.4.4 Sensitivity Analyses

The simulation model has accumulated many alternative options in response to participants' requests during the collaborative workshops. We categorize alternative settings into choices related to the management strategy (e.g. fixed exploitation rate or TAM rule? exploitation rate fixed at 20% or 70% ?) and states of nature (e.g. cyclic interactions or not? en-route mortality average or worse than average?). Figure 10 visualizes these alternatives as a decision tree, with each path through the tree corresponding to one simulation scenario. The model lets us try out many alternative choices and confront them with a wide range of alternative states of nature (i.e. "what if?").

As an illustration, Figure 21 shows a decision tree for Early Stuart based on evaluating 2 options for each of the 3 types of escapement strategy under each of 8 different states of nature (i.e. sets of biological assumptions). The purpose of the planning process is to iteratively work through each of these steps and discuss the results with participants bringing different perspectives to the table. Given the intended use of this model in a collaborative planning process, we do not complete a full analysis along these lines in this Research Document. Rather, we illustrate the general properties of the model with three sets of results.
In the first set of results, we explore the following management choices for a base case of biological assumptions, which is summarized in Section 3.3.1:

- Vary fixed exploitation rate from 5% to 90%
- Vary fixed escapement target for each stock from Benchmark 2 (Table 1) up to ten times BM 2. For each of the management groups, the lowest resulting exploitation rate is then applied (i.e. harvest driven by the component stock that is least abundant relative to its target)
- Same as previous, but largest resulting exploitation rate applied to all component stocks of a management group (i.e. harvest driven by most abundant stocks)
- Vary cut-back point in Summer TAM rule from 10,000 to 5 Million
- Vary the cap on total allowable mortality for all 4 management groups from 40% to 90%
- Vary the exploitation rate floor in TAM rules for all 4 management groups from 2% to 40%
- Compare 3 different assumptions about run timing overlap for the 2009 TAM rules.

The second set of results looks at the following alternative biological assumptions:

- Effect of reduced productivity on performance of the three different types of management strategy
- Effect of alternative SR models on the performance of the three types of management strategy
- Effect of en-route mortality assumptions on the performance of different fixed ER strategies
- Effect of depensation assumptions on the performance of different fixed ER strategies

The third set of results compares the range of outcomes for different management options under 4 alternative biological scenarios:

- Larkin model, average productivity
- Ricker model, average productivity
- Larkin model, half productivity
- Ricker model, half productivity

3 SAMPLE RESULTS

3.1 A NOTE ON INTERPRETATION

The results presented in this chapter are intended to illustrate the range of questions that can be explored with this model (i.e. some of the many possible paths through the decision tree in Figure 10). The intent here is not to choose a particular spawner-recruit model, future scenario, suite of assumptions, or recommended management strategy. That will take place through the planning process. Our approach is consistent with the structure and content of Cass et al. (2004).

The results presented here use the same base case as the Working Paper presented in May 2010, but have been expanded to address reviewer's comments.

3.2 BAYESIAN PARAMETER ESTIMATES

3.2.1 Model Selection

Table 4 summarizes the DIC comparison for 16 alternative model fits for each of the 19 stocks. Appendix 2 lists the detailed results. We use Δ DIC > 5 as a cut-off for a significant difference in model fit.

Spiegelhalter et al. (2002) suggest using Burnham and Anderson's (2002) AIC criteria for DIC (e.g. within 1-2 of "best" are not significantly different, whereas values within 3-7 have much less support), but the WinBugs FAQ (www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml) suggests two breakpoints, which we have adopted. Model fits with:

- Δ DIC >10 are significantly different
- Δ DIC of 5 to 10 are most likely different
- $\Delta \mathrm{DIC}<5$ should be reported as candidate models.

For eight of the 19 stocks, the Ricker model with lognormal errors fits best, and the DIC does not identify any other plausible candidate models: Bowron, Raft, Cultus, Portage, Fennell, Gates, Nadina, and Harrison. For the remaining stocks, there are from 2 to 8 candidate models identified based on DIC. For only 4 of the 19 stocks the Ricker form can be rejected based on DIC: Late Shuswap, Early Stuart, Stellako, and Chilko. For all 19 stocks, the lognormal error models performed better than the normal error models.

3.2.2 Spawner-Recruit Parameter Estimates

Figure 22 to Figure 25 illustrate the sequence from spawner recruit data to the resulting Bayesian parameter estimates for Early Stuart. In this case, we chose the full Larkin model with 3 lag terms out of 4 Larkin variations with similar DIC values (Table 4).

Figure 22 shows the time series of total spawners, recruits, and recruits per spawner. The largest abundance of spawners and the largest recruitment were observed in the 1993 brood year, but productivity (i.e. recruits/spawner) was low that year, and even lower the year after (1994 brood year).

Figure 23 shows the resulting parameter estimates. The lag terms $\left(\beta_{1}\right.$ to $\left.\beta_{3}\right)$ are of similar magnitude as the capacity constraint for the brood year (β_{0}), indicating strong cycle line interactions (i.e. strong reduction in recruits/spawner for larger spawner abundances in previous years). The middle panel shows that the fitted model predicts the dominant years (i.e. which years have a spike in total number of recruits), but also shows the large uncertainty associated with trying to predict just how large the recruitment is.

Figure 24 compares the fitted SR curves to observed data.
Figure 25 shows the implications of including lag-terms in the spawner-recruit model. The top row shows the recruitment curves for each year (i.e. modeled recruitment at different levels of spawner abundance). Recruitment curves shift depending on spawner abundance in the three previous years. The large spawner abundance in 1993, combined with the strong 1-year lag term $\left(\beta_{1}\right)$, result in a recruitment curve that predicts very poor recruits/spawner for any level of spawner abundance in the 1994 brood year. Appendix 4 includes the same series of figures for the other 18 stocks.

Figure 26 to Figure 29 compare estimated spawner-recruit parameters across the 19 stocks, first using the full Larkin model with 3 lag terms for all stocks, and then using mixed model forms as marked in Table 4. Pending further analyses, we illustrate the effect of varying model form by stock using the following rationale:

- If DIC clearly favors one of the candidate models, use that model (i.e. use Ricker for the first 8 stocks listed in Table 4).
- If DIC identifies several plausible models, use the full Larkin whenever it is among the candidate models (i.e. for the remaining stocks, except one).
- Else use the Ricker model (i.e. for Weaver).

Figure 26 and Figure 28 highlight the challenge of mixed-stock management by identifying stocks with lower intrinsic productivity within a management group (top panel), with larger uncertainty in parameter estimates (middle panel), or larger capacity constraint (i.e. lower optimal spawner abundance in brood year).
Figure 27 and Figure 29 highlight stocks with strong lag-terms (relative to β_{0}).

3.3 EXPLORING ALTERNATIVE TYPES OF MANAGEMENT STRATEGIES

3.3.1 Base-Case Scenario

The following assumptions are used throughout all of the results shown, except for the explicitlystated variation explored in a particular section:

- Use full Larkin models with three lag terms and parameter estimates based on total spawners (Section 2.2.5).
- En-route mortality sampled from past observations (Section 2.2.11).
- No patterns in productivity (Section 2.2.12).
- No depensation (Section 2.2.13).
- No overlap constraint due to run-timing (Section 2.3.2).
- Random variation in recruitment and en-route mortality.

As the base case for this Research Document, we chose priors that were mostly uninformative in order to maintain a consistent approach for all 19 stocks and explore the implications of different data availability (Appendix 3). The same reasoning also applies to alternative assumptions about cycle-line interactions. For the base case, we start with the assumption that there is a potential interaction between cycle lines, and estimate the strength of that interaction based on observed data (i.e. Larkin model in Eq. 3). As a variation, we set the interaction parameters to 0 (i.e. Ricker model in Eq. 1) to see whether this influences estimates of the remaining parameters (i.e. α for productivity and β_{0} for capacity).

Sections 2.2.6 to 2.2.8 describe base case assumptions for each of the parameters in Eq. 3.

3.3.2 Changing Fixed Exploitation Rates

Figure 30 shows the expected effect of applying fixed exploitation rates ranging from 5% to 90\%.

Stock-specific differences in productivity (α) are reflected in the exploitation rate at which each stock approaches a high probability of low spawner abundances. Relative patterns can be directly compared across stocks (i.e. at which point does it hit a rapid change in performance), but comparisons of absolute values are confounded by cyclic patterns (i.e. off-cycle effect on performance measure) and choice of benchmark. Careful review on a case-by-case basis is necessary, but beyond the scope of this paper.
Broadly, Figure 30 shows that:

- Summer run stocks respond similarly to increasing exploitation rates, as is expected given their similarity in estimated productivity (Figure 26). Component stocks in the Early Summer and Late management groups exhibit a wider range of productivities, resulting in different levels of resilience to changes in exploitation rate.
- Probabilities of low escapement tend to sharply increase at exploitation rates somewhere between 40% to 70% (top panels), which is also the range that stabilizes catch (i.e. minimizes the probability of low catch) for each of the management groups (bottom left panel).
- Higher exploitation rates around $75-80 \%$ maximize long-term median catch for all 4 management groups, but median catch is highly sensitive to hitting the peak exactly (i.e. steep degradation in median catch if optimal exploitation rate is slightly exceeded.

3.3.3 Changing Fixed Escapement Targets

Figure 31 and Figure 32 summarize the performance of alternative fixed escapement targets for each stock, expressed as multiples of Benchmark 2 (Table 1). Performance depends on the relative productivity of component stocks as well as the management approach: If each stock is managed to its own target, risk comes only from how closely the management target is set to the benchmark. Performance in terms of escapement stabilizes at roughly 2-4 times BM 2 , depending on the stock (Figure 31). If, however, aggregates are managed based on the strongest component (i.e. max ER based on harvesting all fish over over the escapement target), then stock-specific differences in productivity are picked up strongly, because productive stocks tend to have more fish available for harvest over the escapement target, resulting in higher exploitation rate (Figure 32).
If stocks are managed individually, catches tend to be largest for escapement targets set to about double BM2, but increasingly stable as targets are reduced (Figure 31). If aggregates are managed to strongest component, Summer catches tend to be largest for triple BM2 (Figure 32).

3.3.4 Changing Cut-Back Point On TAM Rule - Summer

Figure 33 shows the effect of changing the cut-back point of the TAM Rule for the Summer management group (see Figure 19 for definition of TAM rules).

For this scenario, timing overlap does not impose a constraint, so the performance of the other 3 management groups is not influenced by changes in the Summer TAM rule (i.e. horizontal lines).

Probability of low escapement for Summer stocks is highly robust to changes in cut-back point, with only small changes in performance for large changes in cut-back point (e.g. 1 Million vs. 3 Million). Some of the results appear counter-intuitive at first, with one of the stocks worsening slightly as the cut-back point is pushed higher. However, this is due to the feedback between aggregate management and individual stock characteristics. As the cut-back point increases, aggregate abundance increases, raising aggregate exploitation rates, which in turn affects the least productive stocks in the mix.

Cut-back points below about 1.5 Million are expected to stabilize catch for the aggregate, while median catch is highly robust to different cut-back points up to about 3 Million. Compare this to the highly sensitive response of median catch to changes in fixed exploitation rate (Figure 30).

3.3.5 Changing Cap On TAM Rule - All 4 Management Groups

Figure 34 shows the effect of changing the cap on TAM rules. Performance is more sensitive to changing the cap than to changing the cut-back points (Figure 33). The response pattern for each stock is similar to the effect of increasing fixed exploitation rates (Figure 30), but buffered by the consideration of en-route mortality and the reduced ER in low-abundance years.

3.3.6 Changing Exploitation Rate Floor On TAM Rule - All 4 Management Groups

Figure 35 shows the effect changing the exploitation rate floor. Performance with respect to stock-specific escapement is quite robust, but shows a gradual worsening (i.e. higher probability
of low escapement) as the floor is pushed up. This is consistent with the results for the lower end of fixed exploitation rates explored above (Figure 30).

3.3.7 Effect Of Constraints Due To Overlap In Run-Timing

Figure 36 shows the effect of 2 alternative approximations for the constraints imposed by overlap in run timing, as described in Section 2.3.2. This particular example uses the 2009 TAM rule with either (1) no overlap, (2) 90% window for each timing group, and (3) 10% daily abundance. Timing overlap, as defined here, has little effect on the frequency of low escapement, but results in a drastic reduction in median catch from the Summer group. The effect on escapement patterns of component stocks is more pronounced under other assumptions (e.g. shorten the protected timing window, in combination with reduced productivity)

3.4 SENSITIVITY TO ALTERNATIVE BIOLOGICAL ASSUMPTIONS

3.4.1 Productivity Scenarios

Figure 37 to Figure 45 illustrate the effect of reduced productivity assumptions on various performance evaluations. All scenarios use the "immediate and permanent" option for including reduced productivity. More complex patterns will be explored as part of future FRSSI workshops.
Figure 37 shows how the expected performance of the 2009 TAM rule degrades as productivity decreases. Most stocks are resilient to some loss of productivity (i.e. up to about half), because the reduced productivity is absorbed by catch reductions up to that point (i.e. bottom right panel).
Figure 38 illustrates another way of taking productivity scenarios into account. The scenario is the same as in Figure 30, except with productivity set to half. The general patterns from the base case are retained, but shifted towards lower exploitation rates. For example, the fixed exploitation rate that maximizes median catch shifts from about 80% to about 60%.

Figure 39 applies the same approach to exploring the effect of changing the cap on TAM rules. The scenario is the same as in Figure 34, except with productivity set to half. The general patterns from the base case are maintained, but more pronounced.
Section 3.5 includes a more-detailed side-by-side comparison of average productivity versus half productivity.

3.4.2 Alternative Spawner-Recruit Models

Assumptions about delayed density effects (i.e. cycle interactions) have potentially important implications for shaping escapement strategies.
Figure 40 to Figure 42 illustrate the difference for Quesnel sockeye, using a simplified scenario with 30% fixed exploitation rate, without en-route mortality, and without random variation. The Larkin model with 3 lag terms creates strong and persistent cyclic patterns in escapement (Figure 40), while the Ricker model stabilizes abundance quickly as "off-cycle" lines rebuild (Figure 41). Figure 42 summarizes across the trajectories in Figure 40 and Figure 41. However, increased mortality on stock with Ricker-type dynamics can create strong cyclic patterns as well (e.g. 60\% fixed ER plus median en-route mortality, Figure 43, also without random variation). Figure 44 illustrates the effect of adding random variation to the Larkin trajectories shown in Figure 40.

This illustration emphasises the importance of improving estimates of lag-terms are for each stock (Section 2.2.5) and highlights the difficulty in trying to determine where a stock falls at any given point in time: Larkin-type or Ricker-type with harvest rates perpetuating cycles?

Figure 45 and Figure 46 show the expected performance of 2009 TAM rules under half productivity, using 2 different spawner-recruit models. Both can be compared to the corresponding base case (Figure 37).

3.4.3 Assumptions About En-Route Mortality

Figure 47 shows the effect of alternative assumptions about en-route mortality if the harvest strategy is a fixed exploitation rate of 60%. Four alternatives are included, as described in Section 2.2.11. These are (1) none, (2) sampling from observed, (3) linear regression, (4) loglinear regression.

Including ERM based on resampling (Option 2) has pronounced effects on probability of low escapement for Early Stuart, and lower productivity components of the Early Summer and Late groups. The Summer group has experienced low levels of ERM (Figure 15), and therefore including it has little influence of expected performance.

Note that this example emphasizes the effect of ERM, because harvests are not adjusted in response to ERM, as they would be under a TAM rule.

3.4.4 Assumptions About Depensatory Mortality

Figure 48 shows the effect of depensatory mortality assumptions. To illustrate the potential implications, this example uses BM 2 as the trigger point, which is typically much higher than the lowest observed escapement (Table 1).

Even with this trigger point, the level of depensatory mortality needs to exceed $30-40 \%$ for the lower productivity stocks to affect long-term performance. However, under reduced productivity scenarios the effect of depensation becomes more pronounced.

3.5 SUMMARY ACROSS SENSITIVITY ANALYSES

Figure 49 to Figure 56 summarize the range of outcomes for several harvest rule variations, described in Section 3.3, under four different biological assumptions (2 alternative spawnerrecruit models, 2 alternative productivity assumptions).

Each bar in these figures corresponds to one of the lines in the earlier figures. For example, the first bar in the top left panel of Figure 49 summarizes the information from the first panel of Figure 30 (i.e. Early Stuart, Changing fixed ER, Larkin SR model, average productivity).
To interpret these figures, note that:

- If a bar covers a wider range, then simulated long-term performance is more sensitive to changes in that aspect of a harvest strategy.
- If dark bars and light bars are very different, then simulated long-term performance is highly sensitive to assumptions about delayed-density effects (i.e. Larkin vs. Ricker).
- If the two panels in a row are very different, then simulated long-term performance is highly sensitive to assumptions about productivity.

Figure 49 summarizes sensitivity analyses for Early Stuart. Briefly:

- Fixed escapement policies and TAM rules are more robust in terms of avoiding low spawner abundances than fixed exploitation rate policies (top row). However, variations of these
strategies have a much more pronounced effect on expected performance under a reduced productivity scenario (top left panel vs. top right panel).
- Median long-term catch is highly sensitive to variations in all 3 types of harvest strategies (bottom row), and is strongly affected by productivity assumptions (bottom left vs. bottom right). The highest median catch achievable under any of the alternative strategies is reduced by about 80% if productivity is reduced by 50%.
- For all three types of harvest strategies, the median catch can be higher under the Ricker SR model than under the Larkin SR model, if productivity is average (white bars reach up higher in bottom left panel). However, the reverse happens under a reduced productivity scenario (bottom right panel). Under average productivity, the delayed-density effects reduce available harvest. However, delayed-density effects become less pronounced under a reduced productivity scenario, because there are fewer years with large escapements (i.e. reduce α parameter without changing capacity parameters $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$), and estimates of intrinsic productivity tend to be higher for Larkin fits (Section 3.2.2).

These observations hold generally true for the other stocks and management groups, but vary in the details due to differences in estimates productivity and capacity, and the mixture of stocks in a group:

- Stocks with lower estimates of intrinsic productivity (i.e. smaller α in Figure 26) tend to be more sensitive to reduced productivity scenarios (e.g. Raft and Upper Pitt in Figure 51, Cultus in Figure 54)
- Stocks with stronger estimated lag terms (i.e. larger β_{1}, β_{2}, or β_{3} in Figure 27) tend to show a more pronounced difference in performance when comparing the Ricker and Larkin SR models (dark bars vs. light bars). These differences also tend to be more pronounced under reduced productivity assumptions (e.g. Early Stuart in Figure 49, Scotch Creek in Figure 51, Late Shuswap in Figure 53)
Figure 57 compares the response of median annual catch to changes in fixed exploitation rate under four different biological assumptions. The results for Larkin fits are the same as shown the bottom right panels of Figure 30 (average productivity) and Figure 38 (half productivity). Also note that the first set of bars for each panel in Figure 56 corresponds to the vertical range of the curves in Figure 57. The patterns are similar for all 4 management groups. Specifically:
- Under average productivity, the highest achievable median catches are larger with the Ricker model (i.e. without cycle interactions) than with the Larkin model, but occur at a lower fixed exploitation rate.
- Under half productivity, the highest achievable median catches are much lower, and occur at lower exploitation rates.
- The fixed exploitation rate that maximizes median annual catch can differ as much or more between SR models than among productivity assumptions for the same SR model. This is particularly pronounced for Lates.

4 DISCUSSION

4.1 ALTERNATIVE SPAWNER-RECRUIT MODELS

Spawner-recruit dynamics for Fraser sockeye have been intensively studied, but as yet there is no agreement on whether populations are intrinsically cyclic or not, and whether harvesting could initiate cycles or is a perpetuating mechanism (Larkin \& Hourston 1964, Walters \& Staley

1987, Cass \& Wood 1994, DFO 2006b, Myers et al. 1998, Ward \& Larkin 1964, Martell et al. 2008)

In addition to uncertainty in the form of the underlying dynamics, there is also substantial uncertainty in the parameter estimates for each model form. We account for this uncertainty by sampling from the Bayesian posterior distributions rather than using a best estimate (Section 2.2.5).

One approach proposed during the CSAP review is to use the full Larkin model for all stocks and "let the data speak" regarding the relative importance of cycle-line interactions (DFO 2011a). We use this as the base case for the sample results presented in Sections 3.3 and 3.4. However, a more detailed stock-by-stock review of spawner-recruit dynamics should be completed, because the extra terms in the Larkin model increase concerns related to over-fitting and parameter estimates may change as statistically insignificant terms are dropped. One approach proposed during the CSAP review is to estimate Larkin model lag-terms from different subsets of the spawner-recruit data to check which are persistently significant. We recommend this as a priority for future work, concentrating on the models that were identified as being most parsimonious by the DIC results (Section 4.3).

4.2 USE OF THE FRSSI MODEL

The model presented in this Research Document, as well as the planning process it supports, focuses on long-term strategies and doesn't attempt to capture all of the operational complexities of in-season management. The model assumes that one strategy is going to be adopted and applied for 48 years, which is not likely in practice. However, previous versions of this model have proven sufficient to explore and illustrate the long-term differences between major categories of escapement strategies applied to the 4 management groups of Fraser sockeye. For example, during previous planning processes the model showed advantages of a strategy that responds to run size compared to fixed escapement strategies or fixed exploitation rate strategies (Section 3.5).
The particular choices made in the initial scoping of the FRSSI model were shaped by the existing decision process for Fraser sockeye. Revisions and extensions over the years mirrored the progression of debate among participants at various levels of the process (Steering Committee, Working Group, Workshops, annual review of draft IFMP, Fraser Panel)
Discussions around annual model revisions helped with highlighting alternative hypotheses and brought practical considerations into the analytical work. For example, the TAM rule was adapted to specify a fixed escapement in the middle range (bottom panel of Figure 19), rather than a linear reduction in allowable mortality rate (top panel of Figure 19).
The model has now gone through 4 incarnations in 3 different programming languages over the course of 8 years, and has been adapted to support discussions during the pre-season planning process. For example, the approach of optimizing a value function based on multi-attribute weightings elicited from workshop participants has shifted towards a collaborative exploration of alternative scenarios. Essentially, use of the FRSSI model moved from the approach exemplified by Hilborn and Walters (1977) towards the process envisioned by Schnute and Richards (2001) through sustained interaction with a fairly stable group of workshop participants, greatly expanding the scope of alternative assumptions along the way.

In terms of scope, the FRSSI model went through the following major changes:

- Added 7 more stocks with shorter data sets (for a total of 19)
- Added alternative population models (Cycle-Aggregate model, Larkin model)
- Added alternative types of harvest strategies (TAM rules)
- Switch from optimizing a harvest strategy based on a value function to collaborative evaluation of different strategies across a range of contingencies
- Added options for approximations of timing overlap between management groups
- Added options for stock-specific patterns in productivity
- Added options for en-route mortality, pre-spawn mortality, depensatory mortality, and quasiextinction thresholds.

Table 5 compares the current scope of the FRSSI model to six other published models used to evaluate harvest strategies for Fraser River sockeye salmon. The FRSSI model includes more stocks and more alternatives for biological mechanisms than these six other analyses. This broader scope is a direct result of the multi-year workshop series, where participants identified a prioritized list of model extensions each year and then reviewed the implementation the following year.

The model offers many options (Figure 10), which present a challenge for communication. However, these options simply reflect the many questions being asked about alternative strategies for the management of Fraser River sockeye fisheries, and the model helps us explore expected implications in a collaborative process. Based on the options developed through this process (Pestal et al. 2008), revised harvest strategies have been implemented since the 2006 brood year. Fundamental changes from the previous management approach include:

- Escapement strategies for a given year are based on a target mortality rate, not on a fixed escapement target. Estimates of spawning capacity are highly uncertain for some stocks, and harvest strategies based on target mortality rates should be more robust to this uncertainty.
- Escapement strategies respond to run size, but do not change for different cycle years. Under the 1987 Rebuilding Plan, a different interim escapement goal was identified for each cycle line. Under the Spawning Initiative, off-cycle years in cyclic stocks are simply treated as an instance of low abundance, with the target mortality rate based on the shape of the escapement strategy.
- Escapement strategies specify target levels of total mortality rates. When put into practice, these strategies need to take into account en-route mortality. The proportion of each run available for harvest, the target exploitation rate, is determined by deducting projected enroute mortalities from the allowable total mortality.
- The requirement to stay above brood year escapement was removed to account for the fluctuating productivity of many stocks; and
- Escapement strategies are explicitly based on simulated long-term performance relative to explicitly stated management objectives (e.g. keep 4 yr average above benchmark)

Despite new data and new analyses, future planning processes will always have to rely on the approach of testing alternative strategies against multiple working hypotheses (e.g. Hilborn and Mangel 1997, Hilborn 1997, Francis 1997, Schnute and Richards 2001), such as the illustration for Early Stuart in Figure 21.

In an ideal setting we would be able to identify a type of strategy with fairly robust performance across a balance of multiple objectives, even when confronted with multiple alternative working hypotheses about the biology of Fraser sockeye and a wide range of plausible future changes. In practice, however, we find that a strategy may perform very well in terms of one of the objectives for some stocks under one of the working hypotheses, but perform very poorly in
terms of the other objectives for the remaining stocks. For example, a strategy that results in the highest average catches from productive stocks also tends to increase the year-to-year variability in catch and increase the probability of low escapements on less productive stocks. Similarly, a strategy that performs well under one working hypothesis may perform very poorly under an alternative working hypothesis that may be considered less likely, but is still plausible.
Balancing these considerations over the long-term, and finding approaches for dealing with annual variability and uncertainty, requires on-going constructive debate and collaboration.

Finally, workshop participants frequently requested a more extensive socio-economic analysis to provide additional context for the interpretation of simulated catch trajectories. A simplified sharing algorithm was used to roughly partition catch by sector (as described in Appendix 2 of Pestal et al. 2008). This rough catch partitioning was then used as the basis for a detailed economic comparison of three alternative management strategies in a pilot study (Gislason 2006). Future extensions of this work will require a process to review the details of the economic analysis that is analogous to the repeated science reviews of the biological model (Cass et al. 2004, Pestal et al. 2008, this Research Document).

4.3 NEXT STEPS

We identify seven priority areas for on-going work in support of future planning processes:

- Incorporate existing information on freshwater capacity into the beta priors.
- Explore risk management approaches to uncertainty in SR models and assess the risk of being wrong in assumptions about delayed-density effects (e.g. what if we manage a Rickertype stock based on Larkin model assumptions?).
- Revise the performance measures and modeled stocks used in the FRSSI model (Section 2.4.3) to be consistent with status metrics and CUs being developed under the WSP (Holt et al. 2009, Grant et al. 2011).
- Explore alternative approaches for random variation in forward simulations. For example, should there be a constraint on the multiplicative error, or on calculated recruitment? A constraint on simulated recruits could be based on observed recruitment (e.g. 2 or 3 times largest observed), or some multiple of what's been modelled in the previous two cycles in the simulation.

Several work-intensive analyses were debated during the review process. While these go beyond the scope of the current Research Document, it may be appropriate to initiate requests for science advice to address them in detail. These analyses include:

- Updated estimates of productive capacity for Fraser sockeye salmon lakes. This is important for some stocks where the stock-recruit data is insufficient for purposes of estimating reliable stock-recruit parameters.
- Develop a plausible suite of stock-specific future patterns in productivity and alternative sample distributions for en-route mortality (e.g. based on climate scenarios). These would inform FRSSI model simulations as well as other planning processes (e.g. Fraser Panel).
- Further analyses of alternative spawner-recruit models and the implications of using them in forward simulations to represent the dynamics of individual stocks. These would inform FRSSI model simulations as well as Fraser sockeye forecasts and WSP BM.
- Full forward evaluation of 2010 TAM rules under all combinations of assumptions in the updated model (e.g. all identified variations of spawner-recruit models).
- Retrospective analysis of FRSSI TAM rule performance ("What would have likely happened if 2010 TAM rules had been used since 1987, given observed recruitment patterns"). This work would expand upon the review by Martell et al. (2008) with additional stocks, uncertainty in capacity, new data, and the added objective of avoiding low escapement on any component stocks.

REFERENCES

Adkison MD. 2010. Models of the effects of marine-derived nutrients on salmon (Oncorhynchus spp.) population dynamics). Can. J. Fish. Aquat. Sci. 67:5-15.

Anonymous. 1964. Annual Report 1963. Intern. Pac. Sal. Fish. Comm. New Westminster, Canada. 46p.
Atkinson CE. 1944. The problem of enumerating spawning populations of sockeye salmon, p. 37-44 In: International Pacific Salmon Fisheries Commission Annual Report 1943. New Westminster, B.C.

Bailey RE and L Margolis. 1987. Comparison of parasite fauna of juvenile sockeye salmon (Oncorhynchus nerka) from southern British Columbia and Washington State lakes. Can. J. Zool. 65:420-431.

Banneheka SG, RD Routledge, IC Guthrie, and JC Woodey. 1995. Estimation of in-river fish passage using a combination of transect and stationary hydro-acoustic sampling. Can. J. Fish. Aquat. Sci. 52: 335-343.

Bayarri MJ and JO Berger. 2004. The Interplay of Bayesian and Frequentist Analysis. Statistical Science 19(1): 58-80.

Beacham TD, AP Gould, RE Whithler, CB Murray, and LW Barner. 1987. Biochemical genetic survey and stock identification of chum (Oncorhynchus keta) in British Columbia. Can. J. Fish. Aquat. Sc. 44: 1702-1713.

Bodtker KM, RM Peterman, and MJ Bradford. 2007. Accounting for Uncertainty in Estimates of Escapement Goals for Fraser River Sockeye Salmon based on Productivity of Nursery Lakes in British Columbia, Canada. North American Journal of Fisheries Management 27:286-302.

Box GEP and GC Tiao .1973. Bayesian inference in statistical analysis. Addison-Wesley. Reading, Mass.

Bradford MJ, JMB Hume, RE Withler, D Lofthouse, S Barnetson, S Grant, M Folkes, N Schubert, A-M Huang. 2011. Status of Cultus Lake sockeye salmon. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/123. vi + 44 p. Available online at http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2010/2010 123-eng.html

Burnham KP and DR Anderson. 2002. Model selection and multimodal inference: a practical information-theoretic approach. 2nd ed. Springer Verlag.

Cass AJ and CC Wood. 1994. Evaluation of the depensatory fishing hypothesis as an explanation for population cycles in Fraser River sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 51:1839-1854.

Cass A, M Folkes, G Pestal. 2004. Methods for assessing harvest rules for Fraser River sockeye salmon. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/025. (Available on-line at www.dfo-mpo.gc.ca/csas/Csas/publications/ResDocs-DocRech/2004/2004 025 e.htm)

Cass A, JT Schnute, LJ Richards, A Macdonald. 2000. Stock status of Fraser River sockeye. DFO Can. Sci. Advis. Sec. Res. Doc. 2000/068. Available on-line at http://www.dfompo.gc.ca/Library/245510.pdf

Cave JD and WJ Gazey. 1994. A Preseason Simulation Model for Fisheries on Fraser River Sockeye Salmon (Onchorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 51: 1534-1549

Chen DG, JR Irvine, and AJ Cass. 2002. Incorporating allele effects in fish stock-recruitment models and applications for determining reference points. Can. J. Fish. Aquat. Sci. 59: 242-249.

Clark R, M Willette, S Fleischman, and D Eggers. 2007. Biological and fishery-related aspects of overescapement in Alaskan sockeye salmon Oncorhynchus nerka. ADF\&G Special Publication 07017.

Collie JS and CJ Walters. 1987. Alternative recruitment models of Adams River sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Sci. 44: 1551-1561.

Collie JS , RM Peterman and CJ Walters. 1990. Experimental harvest policies for a mixed-stock fishery: Fraser River sockeye salmon, (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 47:145-155.

DFO. 2003. Review of the 2002 Fraser River Sockeye Fishery - Report by the External Steering Committee. Available on-line at http://www.dfo-mpo.gc.ca/Library/272296.pdf

DFO. 2005. Canada's policy for conservation of wild Pacific salmon. (Available on-line at: www.pac.dfo-mpo.gc.ca/publications/pdfs/wsp-eng.pdf)

DFO. 2006a. A harvest strategy compliant with the precautionary approach. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2006/023. Available on-line at http://www.dfo-mpo.gc.ca/csas/Csas/status/2006/SAR-AS2006 023 E.pdf.

DFO. 2006b. Workshop to assess population dynamics of cyclic Fraser River sockeye and implications for management. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2006/004. Available on-line at http://www.dfo-mpo.gc.ca/Library/324076.pdf

DFO. 2011a. Regional Science Advisory Process on Cultus Lake Sockeye Stock Status, 2010 Barkley Sound Sockeye Forecast, 2010 West Coast Vancouver Island Chinook Abundance Forecast, and Fraser River Sockeye Spawning Initiative; May 26-27 2010. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2011/013. Available online at http://www.dfo-mpo.gc.ca/csas-sccs/Publications/Pro-Cr/2011/2011 013-eng.html

DFO. 2011b. Guidelines for applying updated methods for assessing harvest rules for Fraser River sockeye salmon (Oncorhynchus nerka). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2010/070. Available online at www.dfo-mpo.gc.ca/csas-sccs/Publications/SARAS/2010/2010 070-eng.html

Dorner B, RM Peterman, and SL Haeseker. 2008. Historical trends in productivity of 120 Pacific pink, chum, and sockeye salmon stocks reconstructed by using a Kalman filter. Can. J. Fish. Aquat. Sci. 65(9): 1842-1866.

Efron B. 1986. Why Isn't Everyone a Bayesian? The American Statistician 40(1): 1-5.
Francis RICC. 1997. How should fisheries scientists and managers react to uncertainty about stock-recruit relationships? Can. J. Fish. Aquat. Sci. 54: 982-983.

Frank K and D Brickman. 2000. Allee effects and compensatory population dynamics within a stock complex. Can. J. Fish. Aquat. Sci. 57(3): 513-517.

FRAP-FMG. 1995. Fraser River Sockeye Salmon. Prepared by the Fraser River Action Plan Fishery Management Group. Dept. of Fisheries and Oceans. 55p.
Gable J and S Cox-Rogers. 1993. Stock identification of Fraser River sockeye salmon: methodology and management application. Pacific Salmon Commission Tech. Rep. 5. 36p.
Gelman A, JB Carlin, HS Stern, and DB Rubin. 1995. Bayesian data analysis. Chapman and Hall, London, U.K.

Gelman A .1998. Some Class-Participation Demonstrations for Decision Theory and Bayesian Statistics. The American Statistician 52(2):167-174.

Gibson AJF and RA Myers. 2004. Estimating reference fishing mortality rates from noisy spawner-recruit data. Canadian Journal of Fisheries and Aquatic Sciences 61: 17711783

Gislason GS. 2006. Fraser River sockeye management: Socio-economic implications. Report prepared for Fisheries \& Oceans Canada. GSGislason \& Associates Ltd. Vancouver, BC
Goodlad IC, TW Gjernes, and EL Brannon. 1974. Factors affecting sockeye salmon (Oncorhynchus nerka) growth in four lakes in the Fraser River system. J. Fish. Res. Board Can. 31: 871-892.
Grant SCH, CGJ Michielsens, EJ Porszt, and AJ Cass. 2010. Pre-season run size forecasts for Fraser River Sockeye salmon (Oncorhynchus nerka) in 2010. CSAS Res. Doc. 2010/042. Available on-line at http://www.dfo-mpo.gc.ca/Library/341025.pdf.
Grant SCH, BL MacDonald, TE Cone, CA Holt, AJ Cass, EJ Porszt, JMB Hume, and LB Pon. 2011. Evaluation of Uncertainty in Fraser Sockeye (Oncorhynchus nerka) Wild Salmon Policy Status using Abundance and Trends in Abundance Metrics, 2011/087. Available online at http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocsDocRech/2011/2011 087-eng.html
Groot C and L Margolis. 1991. Pacific Salmon Life Histories. Vancouver. UBC Press.
Henry KA. 1961. Racial identification of Fraser River sockeye salmon by means of scales and its application to salmon management. Int. Pac. Salmon Fish. Comm. Bull. XII: 97p.
Hilborn R. 1997. Recruitment paradigms for fish stocks. Can. J. Fish. Aquat. Sci 54: 984-985
Hilborn R and M Mangel. 1997. The Ecological Detective: Confronting Models with Data. Monographs in Population Biology 28. Princeton University Press.
Hilborn R and CJ Walters. 1977. Differing goals of salmon management on the Skeena River. Journal of the Fisheries Research Board of Canada, 1977, 34:(1) 64-72
Hilborn, R. and C. J. Walters 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall. New York.

Hill AC, JA Stanford, and PR Leavitt. 2009. Recent sedimentary legacy of sockeye salmon (Oncorhynchus nerka) and climate change in an ultroligotrophic, glacially turbid British Columbia nursery lake. Can. J. Fish. Aquat. Sci. 66: 1141-1152.
Holt, C.A. 2009. Evaluation of Benchmarks for Conservation Units in Canada's Wild Salmon Policy: Technical Documentation. Can. Sci. Advis. Sec. Res. Doc. 2009/059. Available on-line at: http://www.dfo-mpo.gc.ca/CSAS/Csas/Publications/ResDocsDocRech/2009/2009 059 e.htm

Holt CA and RM Peterman. 2008. Uncertainties in population dynamics and outcomes of regulations in sockeye salmon fisheries: implications for management. Canadian Journal of Fisheries and Aquatic Sciences 65(7):1459-1474

Holt CA, AJ Cass, B Holtby, and B Riddell. 2009. Indicators of status and benchmarks for conservation units in Canada's wild salmon policy. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/058. Available on-line at http://www.dfo-mpo.gc.ca/Library/339096.pdf

Holtby LB and KA Ciruna. 2007. Conservation Units for Pacific salmon under the Wild Salmon Policy. DFO Can. Sci. Advis. Sec. Res. Doc. 2007/070. Available on-line at: www.dfo-mpo.gc.ca/CSAS/Csas/Publications/ResDocs-DocRech/2007/2007 070 e.htm

Howard GV. 1948. Problems in enumeration of populations of sockeye salmon. Part 1. A study of tagging methods in the enumeration of sockeye salmon populations. International Pacific Salmon Fisheries Commission Bulletin II: 4-66.

Korman J and J Grout. 2008. Cultus Lake Sockeye population viability analysis. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/072. Available on-line at: www.dfo-mpo.gc.ca/CSAS/Csas/Publications/ResDocs-DocRech/2008/2008 072 e.htm

Larkin PA. 1971. Simulation studies of the Adams River sockeye salmon, Oncorhynchus nerka. J. Fish. Res. Board Can. 28: 1493-1502.

Larkin PA and AS Hourston. 1964. A Model for Simulation of the Population Biology of Pacific Salmon. J. Fish. Res. Board Can.21(5): 1245-1265.

Liermann M. and R Hilborn. 1997. Depensation in fish stocks: a hierarchic Bayesian metaanalysis. Can. J. Fish. Aquat. Sci. 54(9): 1976-1984.
Lunn DJ, A Thomas, N Best, and D Spiegelhalter. 2000. WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10:325--337.

MacDonald JS. 2000. Mortality during the migration of Fraser River sockeye salmon (Oncorhynchus nerka): a study of the effect of ocean and river environmental conditions in 1997. Can. Tech. Repo. Fish. Aquat. Sci. 2315: 120 p.

Macdonald JS, DA Patterson, MJ Hague, and IC Guthrie. 2010. Modeling the influence of environmental factors on spawning migration mortality for sockeye salmon fisheries management in the Fraser River, British Columbia. Trans. Am. Fish. Soc. 139:768-782.

MacDonald JS, MGG Foreman, T Farrell, IV Williams, J Grout , AJ Cass, JC Woodey, H Enzenhofer, C Clarke, R Houtman, EM Donaldson, and D Barnes. 2000. The influence of extreme water temperatures on migrating Fraser River sockeye salmon (Oncorhynchus nerka) during the 1998 spawning season. Can. Tech. Rep. Fish. Aquat. Sci. 2326: 117 p. Available online at http://www.dfompo.gc.ca/Library/250022\ T2326.pdf
Marsden AD, SJD Martell, and UR Sumaila. 2009. Retrospective bioeconomic analysis of Fraser River sockeye salmon fishery management. Fisheries Research 97: 32-41

Martell SJD, CJ Walters, and R Hilborn. 2008. Retrospective analysis of harvest management performance for Bristol Bay and Fraser River sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci 65(3): 409-424.

McElhany P, MH Ruckleshaus, MJ Ford, TC Wainwright, and EP Bjorkstedt. 2000. Viable salmonid populations and the rehabilitation of evolutionarily significant units. NOAA Technical Memorandum NMFS-NWFSC-42.

Michielsens C and M McAllister. 2004. A Bayesian hierarchical analysis of stock-recruit data: quantifying structural and parameter uncertainties. Can. J. Fish. Aquat. Sci. 61(6): 10321047.

Mueter FJ, DM Ware, and RM Peterman. 2002. Spatial correlation patterns in coastal environmental variables and survival rates of Pacific salmon in the Northeast Pacific Ocean. Fisheries Oceanography. 11(4):205-218.
Myers RA, G Mertz, JM Bridson, and MJ Bradford. 1998 Simple dynamics underlie sockeye salmon (Oncorhynchus nerka) cycles. Can. J. Fish. Aquat. Sci. 55: 2355-2364.
Naiman RJ, RE Bilby, DE Schindler, and JM Helfield. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399-417.

Pacific Salmon Commission. 2009. Report of the Fraser River Panel to the Pacific Salmon Commission on the 2005 Fraser River Sockeye and Pink Salmon Fishing Season. Available on-line at http://www.psc.org/publications annual fraserreport.htm

Patterson DA and MJ Hague. 2007. Evaluation of long range summer forecasts of lower Fraser River discharge and temperature conditions. Can. Tech. Rep. Fish. Aquat. Sci. 2754: vii +34 p .

Pestal G and AJ Cass. 2009. Using Qualitative Risk Evaluations to Prioritize Resource Assessment Activities for Fraser River Sockeye. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/071. Available on-line at www.dfo-mpo.gc.ca/CSAS/Csas/Publications/ResDocsDocRech/2009/2009 071 e.htm

Pestal G, P Ryall, and AJ Cass. 2008. Collaborative Development of Escapement Strategies for Fraser River Sockeye: Summary Report 2003 - 2008. Can. Man. Rep. Fish. Aquat. Sci. 2855: viii + 84 p. Available online at http://www.dfo-mpo.gc.ca/Library/334450.pdf

Peterman RM and B Dorner. 2011. Fraser River sockeye production dynamics. Cohen Commission Tech. Rept. 10. 133p. Vancouver, B.C. www.cohencommission.ca

Punt, A.E. and R. Hilborn. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Reviews in Fish Biology and Fisheries 7, 35-63.

R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online at http://www.Rproject.org.

Ricker WE. 1954. Stock and Recruitment. J. Fish. Res. Board Can. 11: 559-623.
Ricker WE. 1997. Cycles of abundance among Fraser River sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 54: 950.968
Roos JF. 1991. Restoring Fraser River salmon. Pacific Salmon Commission, Vancouver, BC.
Routledge RD and JR Irvine. 1999. Chance fluctuations and the survival of small salmon stocks. Can. J. Fish. Aquat. Sci. 56(8): 1512-1519.

Schaefer MB. 1951. A study of the spawning populations of sockeye salmon in the Harrison River system, with special reference to the problems of enumeration by means of marked members. International Pacific Salmon Fisheries Commission Bulletin IV: 207p.

Schindler DE, R Hilborn, B Chasco, CP Boatright, TP Quinn, LA Rogers, and MS Webster. 2010. Population diversity and the portfolio effect in an exploited species. Nature 465: 609-612.

Schnute JT and AR Kronlund. 2002. Estimating salmon stock-recruitment relationships from catch and escapement data. Canadian Journal of Fisheries and Aquatic Sciences 59: 433-449

Schnute JT and LJ Richards. 2001. Use and Abuse of models. Can. J. Fish. Aquat. Sci. 58: 1017

Schnute JT, AJ Cass, and LJ Richards. 2000. A Bayesian decision analysis to set escapement goals for Fraser River sockeye salmon. Can. J. Aquat. Sci. 57: 962-979.

Schubert ND. 1998. The 1994 Fraser River sockeye salmon (Oncorhynchus nerka) escapement. Can. Tech. Rep. Fish. Aquat. Sci. 2210: 62p.

Schubert ND. 2000. The 1994 Stellako River sockeye salmon (Oncorhynchus nerka) escapement: evaluation of poled Petersen and stratified mark-recapture estimates of a known population. Can. Tech. Rep. Fish. Aquat. Sci. 2303. 56p.
Shortreed KS, Hume JMB, and JG Stockner .2000. Using Photosynthetic Rates to Estimate the Juvenile Sockeye Salmon Rearing Capacity of British Columbia Lakes. Pages 505-521 in Knudsen EE, Steward CR, Macdonald DD, Williams JE, and DW Reiser, editors. Sustainable Fisheries Management: Pacific Salmon, CRC Press, Lewis Publishers, Boca Raton, Florida.

Simpson K. 1984. The accuracy of mark-recapture estimates of escapement. In P.E.K. Symons and M. Waldichuk (eds). Proceedings of the workshop on stream indexing for salmon escapement estimation, West Vancouver, B.C., 2-3 February 1984. Can. Tech Rep. Fish. Aquat. Sci. 1326: 209-225.

Spiegelhalter DJ, NG Best, BR Carlin, and A van der Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology 64: 583-616.
Su ZM, Peterman RM, and Haeseker SL. 2004. Spatial hierarchical Bayesian models for stockrecruitment analysis of pink salmon (Oncorhynchus gorbuscha). Canadian Journal of Fisheries and Aquatic Sciences 61: 2471-2486

Symons PEK. and M Waldichuk (eds). 1984. Proceedings of the workshop on stream indexing for salmon escapement estimation, West Vancouver, B.C., 2-3 February 1984. Can. Tech Rep. Fish. Aquat. Sci. 1326. 258p.

Uchiyama T, BP Finney, and MD Adkison. 2008. Effects of marine-derived nutrients on population dynamics of sockeye salmon (Oncorhynchus nerka).

Venables WN and BD Ripley. 2002. Modern Applied Statistics with S. Fourth edition. Springer.
Walters CJ and MJ Staley. 1987. Evidence against the existence of cyclic dominance in Fraser River sockeye salmon (Onchorhynchus nerka). In: H. D. Smith, L. Margolis and C. C. Wood, editors. Sockeye salmon (Onchorynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96: 375-384.

Walters CJ, and JC Woodey. 1992. Genetic models for cyclic dominance in sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 49: 281.292.

Walters C, LeBlond P, Riddell B. 2004. Does Over-Escapement Cause Salmon Stock Collapse? Technical Paper. Vancouver, BC: Pacific Fisheries Resource Conservation Council.

Ward FJ and PA Larkin, 1964. Cyclic Dominance in Adams River Sockeye Salmon. International Pacific Salmon Fisheries Commission, Progress Report: 116.

Welch P, K Benner and B Leaf. 2007. Calibration of Assessment Methods for Fraser River Sockeye Salmon (Oncorhynchus nerka) Spawning Populations (25,000 to 75,000) in the Horsefly, Stellako and Adams River Systems. Project Completion Report For Southern Boundary Restoration and Enhancement Fund of the Pacific Salmon Commission
Woodey JC. 1984. Escapement estimation in the management of Fraser River sockeye salmon, p. 121-132 In: Symons PEK and M Waldichuk (eds.) Proceedings of the workshop on stream indexing for salmon escapement estimation, West Vancouver, B.C., 2-3 February 1984. Can. Tech. Rep. Fish. Aquat. Sci. 1326.
Woodey JC. 1987. In-season management of Fraser River sockeye salmon (Oncorhynchus nerka): meeting multiple objectives. In: H.D. Smith, L. Margolis, and C.C. Wood (eds). Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

TABLES AND FIGURES

Table 1: Summary of spawner abundance and low escapement benchmarks for 19 stocks of Fraser River sockeye salmon.
Note the wide range of observed spawner abundances and skewed distribution for stocks with pronounced 4 -year cycles in abundance (e.g. compare median to largest 10% for Quesnel and Late Shuswap). Appendix 3 lists all of the included data (up to 2008), and Appendix 4 includes time-series plots of spawner abundance. The * denotes the 12 stocks with long time-series of high-quality data that were used early in the model development. The remaining 7 stocks were added in response to participants' feedback (Section 2.2.1).

Stock ID		Stock	Observed Range of Total Spawners									Low Escapement BM (Compare to 4yr Avg)			
		$\begin{aligned} & \text { \# of } \\ & \text { Obs } \end{aligned}$	Min	$\begin{array}{r} \text { Lower } \\ \text { 10th } \end{array}$	Lower	Median	Upper		Max	Lowest 4yr Avg					
		Quarter			Quarter		Upper 10th	BM1 BM2							
	1		* E. Stuart	61	1,522	4,657	21,044	38,807		117,445	234,219	688,013	10,218	10,200	50,300
	4	* Bowron	61	836	1,501	2,560	6,395	12,780	25,205	35,000	1,514	1,500	4,900		
	14	Fennell	42	9	220	1,681	5,709	9,901	15,195	32,279	483	500	2,200		
	16	Gates	41	70	777	2,582	7,181	14,838	28,899	99,470	2,401	1,100	3,500		
	17	Nadina	36	1,625	2,179	3,665	9,547	22,952	55,253	194,381	9,094	2,000	9,100		
	18	Pitt	61	3,560	9,290	13,412	18,673	37,747	55,380	131,481	11,229	3,400	11,200		
$\begin{aligned} & \frac{\lambda}{2} \\ & \stackrel{\lambda}{\widetilde{W}} \end{aligned}$	5	* Raft	61	464	1,279	2,714	6,244	9,988	18,369	66,292	2,572	2,500	5,200		
	15	Scotch	29	107	605	2,156	4,609	14,772	75,222	144,199	2,186	900	4,000		
	8	* Seymour	61	1,323	2,802	5,709	11,971	44,588	78,371	272,041	9,087	9,100	19,000		
	7	* Chilko	61	17,308	55,675	120,104	305,853	544,364	825,837	1,037,737	164,485	66,400	164,500		
	2	* Late Stuart	60	35	1,620	6,315	25,562	157,197	372,859	1,363,826	29,499	29,500	78,300		
	6	* Quesnel	61	49	111	308	10,222	278,961	1,349,263	3,510,789	7,803	7,800	154,500		
	3	* Stellako	61	15,763	36,700	42,099	86,688	138,794	185,641	371,604	37,018	22,700	45,400		
$\xrightarrow[\pm]{ \pm}$	10	* Birkenhead	61	11,905	18,213	30,656	48,916	83,787	189,445	335,630	23,175	19,700	39,300		
	11	* Cultus	61	52	418	1,227	9,055	16,919	25,922	47,779	1,053	1,000	7,300		
	19	Harrison	61	313	2,202	4,239	8,259	19,717	33,044	388,605	3,555	2,000	4,100		
	12	* Portage	54	9	89	1,118	3,724	9,071	17,321	31,343	1,301	100	1,300		
	13	Weaver	43	2,756	11,621	25,442	42,002	59,165	74,903	294,083	19,488	8,600	19,800		
	9	* L. Shuswap	61	164	1,395	3,606	21,113	1,144,115	2,026,693	5,532,263	320,500	111,100	320,500		

Table 2: DBE and contribution of non-model stocks for 4 management groups.
Differences between estimates (DBE) of sockeye in the lower Fraser River and on the spawning grounds potentially arise from a number of different sources (Section 2.2.11). Discrepancies are evaluated post-season, and if they are concluded to be real, the DBE is incorporated into the recruitment data used in the spawner-recruit dataset (Section 2.2.3). We use observed DBE data (provided by the PSC) to approximate en-route mortality in the forward simulations. Positive DBEs, where upstream estimates are larger than lower-river estimates are excluded from the table and set to 0 for the calculation, assuming negligible en-route mortality that year. Figure 15 shows observed patterns in DBE. Contribution of nonmodel stocks is the \% of annual abundance not attributed to one of the 19 stocks listed in Table 1.

Year	\% Difference between estimates			
	Early Stuart	Early Summer	Summer	Late
1977	-	27\%	0\%	
1978	41\%	0\%	14\%	0\%
1979	37\%	19\%	2\%	-
1980	-	24\%	7\%	
1981	31\%	13\%	12\%	-
1982	-	16\%	0\%	1\%
1983	54\%	48\%	0\%	-
1984	-	0\%	19\%	
1985	0\%	0\%	0\%	-
1986	-	0\%	23\%	23\%
1987	4\%	39\%	0\%	-
1988	0\%	53\%	0\%	-
1989	0\%	51\%	0\%	-
1990	16\%	25\%	16\%	0\%
1991	27\%	45\%	0\%	-
1992	63\%	45\%	27\%	-
1993	0\%	0\%	0\%	-
1994	82\%	37\%	29\%	0\%
1995	26\%	0\%	7\%	-
1996	32\%	10\%	0\%	66\%
1997	70\%	46\%	2\%	41\%
1998	81\%	54\%	40\%	43\%
1999	83\%	65\%	14\%	59\%
2000	41\%	0\%	0\%	90\%
2001	16\%	13\%	0\%	76\%
2002	56\%	15\%	-	8\%
2003	54\%	29\%	22\%	12\%
2004	90\%	73\%	70\%	64\%
2005	50\%	53\%	37\%	58\%
2006	22\%	61\%	29\%	-
2007	56\%	8\%	11\%	48\%
2008	16\%	43\%	6\%	85\%
2009	39\%	49\%	17\%	31\%
2010	39\%	20\%	0	0

\% Contribution of non-model stocks (| = 4\%)

Early Summer		Late		Total											
\% of run	\% of esc	\% of run	\% of esc	\% of run	\% of esc										
4\%	3\%	1\%	1\%	0\%	0\%										
4\%	4\%	1\%	1\%	1\%	1\%										
2\%	1\%	0\%	0\%	0\%	0\%										
9\%	8\% \|		1\%	1\%	1\%	1\%									
1\%	1\%	1\%	1\%	0\%	0\%										
13\%	14\% \|			5\%	6\% \|	5\%	5\% \|								
7\%	6\% \|	0\%	0\%	1\%	1\%										
13\%	11\% \|		1\%	1\%	1\%	2\%									
9\%	7\% \|	1\%	2\%	0\%	0\%										
14\%	12\% \|		0\%	0\%	1\%	1\%									
11\%	11\% \|		0\%	0\%	1\%	1\%									
20\%	22\% \|					1\%	1\%	3\%	4\%						
8\%	6\% \|	1\%	1\%	0\%	0\%										
10\%	9\% \|		3\%	3\%	2\%	3\%									
5\%	5\% \|	1\%	1\%	1\%	1\%										
14\%	16\% \|			1\%	1\%	2\%	2\%								
5\%	4\% \|	0\%	0\%	0\%	0\%										
32\%	34\% \|								3\%	4\%	4\%	4\% \|			
13\%	13\% \|			1\%	1\%	1\%	1\%								
15\%	17\% \|				1\%	2\%	2\%	3\%							
10\%	13\% \|			1\%	2\%	0\%	0\%								
28\%	21\% \|					0\%	0\%	2\%	1\%						
11\%	10\% \|		0\%	0\%	1\%	1\%									
17\%	22\% \|					6\%	25\% \|						4\%	6\%	
15\%	16\% \|	I	3\%	12\% \|			1\%	1\%							
27\%	25\% \|						0\%	1\%	2\%	1\%					
27\%	21\% \|					1\%	2\%	3\%	3\%						
31\%	30\% \|							14\%	24\% \|					11\%	13\%
45\%	38\% \|									2\%	1\%	4\%	3\%		
21\%	18\% \|				1\%	1\%	3\%	2\%							
28\%	25\% \|						2\%	2\%	4\%	4\% \|					
27\%	40\% \|									3\%	8\% \|		7\%	10\% \|	

Table 3: Summary of prior probability distributions used for estimates of spawner-recruit parameters.

All Stocks

		95% Probability	
	Median	Interval	
Parameter	0	-62 to 62	
Productivity (alpha)	50	2.5 to 97.5	
1 year lag term (beta1)	50	2.5 to 97.5	
2 year lag term (beta2)	50	2.5 to 97.5	
3 year lag term (beta2)			

Stock-Specific Capacity Priors (Beta0)

	Uniform Prior 95\% Prob. Int			Lognormal Prior 95\% Prob. Int		
Stock	Median	2.50\%	97.50\%	Median	2.50\%	97.50\%
L. Shuswap	0.7	0.4	14	0.4	0.1	2.6
Quesnel	1.1	0.6	24	0.7	0.2	4.3
L. Stuart	1.7	0.9	35	1.0	0.3	6.3
Chilko	3.3	1.7	69	2.0	0.6	13
E. Stuart	5.2	2.7	106	3.1	0.9	19
Harrison	9.4	4.8	194	5.6	1.7	35
Stellako	10	5.1	204	5.9	1.8	37
Birkenhead	10	5.2	207	6.0	1.9	38
Weaver	17	8.9	356	10	3.2	65
Seymour	18	9.5	378	11	3.4	69
Upper Pitt	28	14	566	16	5.1	103
Nadina	31	16	626	18	5.6	114
Scotch	40	20	813	24	7.3	149
Cultus	67	34	1,372	40	12	251
Raft	72	37	1,480	43	13	271
Gates	112	58	2,296	67	21	420
Bowron	123	63	2,532	74	23	463
Portage	131	67	2,694	78	24	493
Fennell	131	68	2,695	78	24	493

Table 4: Comparison of alternative spawner-recruit model fits.
Eight alternative model forms were fitted under 2 different assumptions about random errors (Section 2.2.10). Model forms differ in the number of lag terms to capture delayed-density dependence. The Ricker model has no lag terms, the full Larkin model has 3 lag terms, and the Larkin model variations have one or two lag-terms, as labeled. The default assumption for random error is a lognormal distribution (L), but a normal error (N) distribution was also tested. Model comparisons are based on the difference in the Deviance Information Criterion (DIC). Models within 5 of the lowest DIC are considered plausible candidate models (Section 3.2.1), and are shaded in the table. Full results are included in Appendix 2. X marks the models used for the "Mixed Model" scenario in Section 3.4.2.

	Ricker		Larkin		Larkin 1		Larkin 2		Larkin 3		Larkin 1,2		Larkin 2,3		Larkin 1,3		Number of Candidate Models
	L	N	L	N	L	N	L	N	L	N	L	N	L	N	L	N	
Bowron	X																1
Raft	X																1
Cultus	X																1
Portage	X																1
Fennell	X																1
Gates	X																1
Nadina	X																1
Harrison	X																1
L. Shuswap			X														2
Scotch			X														2
Quesnel			X														3
Weaver	X																3
E. Stuart			X														4
Stellako			X														4
Chilko			X														5
Seymour			X														5
Upper Pitt			X														5
L. Stuart			X														8
Birkenhead			X														8

Table 5: Scope of some published simulation models for evaluating harvest strategies for Fraser River sockeye salmon.

General	FRSSI Model	Collie et al. 1990	Korman \& Grout 2009	Holt \& Peterman 2008	Dorner et al. 2009	Martell et al. 2008	Marsden et al. 2009
	Population Unit Stocks	Stocks	Stocks	Stocks	Stocks	Stocks	Stocks
	Number 19	$8(+2)^{\text {e }}$	1	1	16	9	9

Biological Components

Ricker model Yes Larkin model Yes Productivity changes Yes
En-route mortality Yes
Pre-spawn mortality Yes
Depensatory mortality Yes

Yes
No

Yes f
No
Yes
No
Yes
Yes

Yes	Yes
Yes	No
No	Yes
No	No
No	No
No	No

Yes	Yes
Yes	Yes
No	No

Management Options

Fixed ER target Yes
Fixed escapement target Yes Abundance-based rules Yes

ER trajectories No Management groups Yes Overlap between groups Yes Hatchery Supplementation No

Habitat Improvement No

Yes
No
No
Yes
Yes
No
No
No

Yes
Yes
Yes
Yes
No
No
Yes
Yes

No	No
No	Yes
Yes	No
No	No

Yes	Yes
Yes	No
No	No
No	No
Yes	Yes
No	No
No	No
No	No

Performance Evaluation

Optimization	No
Forward Sim	Y Yes
Retrospective Sim	$\mathrm{Approx}^{\mathrm{d}}$
Allocation	No^{c}
Socio-economic	No^{c}

Yes
No
Yes
No
No

No
Yes
No
No
No

No	No
Yes	Yes
No	No
No	No
No	No

Yes a	Yes a
No	No
Yes	Yes
No	No b
No	Yes

a) Assuming perfect knowledge ahead of time
b) Based on past effort and estimates of catchability
c) Separate analysis based on simplified sharing algorithm (e.g. Gislason 2006)
d) Can specify pattern in productivity, but not specific sequence of anomalies
e) Includes 8 stocks and 2 miscellaneous groups
f) Uses Ricker model to predict juveniles, then marine mortality to get recruits

Figure 1: Matching stocks to conservation units.
Stocks included in the model are marked in bold. CUs which contribute a substantial share of a stock's abundance are also marked in bold. This figure is based on Grant et al. (2011), which provides an updated list of CUs and a summary of available data for each.

Run - 19 stocks (where available)

Spawners - 19 stocks (where available)

Recruits - 19 stocks (where available)

Figure 2: Total run, spawners, and recruitment for 19 stock of Fraser River sockeye salmon. Note that run, spawners, and recruits are all for the same year (i.e. run returning that year, spawner abundance that year, and recruits produced by those spawners). Totals include all data available for a year, with more stocks included in the later part of the time series. Figure 3 extracts only those 12 stocks with long time series. Trend lines (in red) show 4-year running averages. Table 1 lists the component stocks, and Appendix 3 lists the available data for each stock.

Run-12 stocks

Spawners - 12 stocks

Recruits - 12 stocks

Figure 3: Total run, spawners, and recruitment for 12 stocks with long time series Note that run, spawners, and recruits are all for the same year (i.e. run returning that year, spawner abundance that year, and recruits produced by those spawners). Trend lines (in red) show 4-year running averages. Table 1 lists the component stocks (marked by *), and Appendix 3 lists the available data for each stock.

Figure 4: Stock-specific patterns in spawner abundance for Early Stuart and Early Summer
Each panel shows the observed pattern in total spawners, expressed as percent ranks to emphasize comparisons against the long-term median. The figures are analogous to a time series of log-scaled residuals, but with a more direct visual interpretation.

1952196019681976198419922000200819521960196819761984199220002008

Figure 5: Stock-specific patterns in spawner abundance for Summer and Late run.

Each panel shows the observed pattern in total spawners, expressed as percent ranks to emphasize comparisons against the long-term median. The figures are analogous to a time series of log-scaled residuals, but with a more direct visual interpretation.

Recruits per Spawner

Figure 6: Distribution of observed productivity for 19 stocks of Fraser River sockeye salmon. Boxes show the median and capture half of the observations. Whiskers mark the most extreme point within 1.5 box-lengths of the box. Stocks are sorted roughly in order of return timing. Management groups are marked by colour: Early Stuart (white), Early Summer (grey), Summer (white), Late (grey). Note that these ranges do not correct for density effects (i.e. SR fits).

Figure 7: Stock-specific patterns in productivity for 19 stocks of Fraser River sockeye salmon. Each panel shows the available estimates of 4-year running average of recruits/spawner from 1940 to 2010 (i.e. trend in generational average for the values in Figure 6). The most recent brood year in the data set is 2004. High outliers in the 4-year average are most likely due to estimation errors, and are cut off (Portage, Late Stuart). Note that individual outliers are not excluded from the calculation of 4-yr running average (e.g. early part of Fennel Creek time series pulled up by 1970 outlier). Appendix 4 shows the full time series for each stock. Note that these patterns do not separate out density effects (i.e. SR fits).

Recruits/Spawner

Spawners / Run

Potential Spawners / Run

Figure 8: Aggregate patterns in productivity and harvest for Fraser River sockeye salmon. Totals include all data available for a year, with more stocks included in the later part of the time series. Trend lines (in red) show 4-year running averages. Potential spawning escapement is reconstructed, based on estimated in-river mortality (Section 2.2.11). Note that the R/S pattern does not separate out density effects (i.e. SR fits).

Figure 9: Flowchart of model contribution to annual planning process
The technical working group uses the FRSSI model to test alternative escapement strategies against a range of biological assumptions. The results support deliberations of workshop participants, which in turn help identify a suite of options for the annual escapement plan (Section 1.3). Note that the FRSSI model does not address annual implementation details, such as abundance estimates, migration conditions, or weekly fishing plans (Section 2.1.1)

Figure 10: Overview of model options.
Alternative options in the model (i.e. user-specified settings) can be grouped into choices related to the management strategy (grey box) and assumptions about the high-level mechanisms intended to approximate major steps in the life history of Fraser sockeye (i.e. recruitment, en-route mortality, \% effective females). Each path trough this decision tree constitutes one simulation scenario. At each fork in the path there are n possible variations (n varies; for example, fixed exploitation rate can be set to any number between 0\% and 100\%, but sample results in Section 3.3.2 are based on 5% increments up to 90%).

Figure 11: Overview of processes included in the model.

Figure 12: Age composition of recruitment for 19 stocks of Fraser River sockeye salmon. Only the two predominant age classes are shown. Stocks are sorted by ID number (Table 1)

Ricker Model

Characteristics:

- steepest at origin ("intrinsic growth rate")
- dome shape (R / S declines at larger S)
- no effect of previous years' S

Distinguishing feature:
Assumes that all year lines have the same capacity and are independent of each other. Cyclic patterns were propagated by harvest patterns, and current off-cycles can rebuild.

Need to estimate 2 parameters:

- productivity at low run size(a)
- density effect in brood year ($\beta 0$)

Larkin Model

Characteristics:

- steepest at origin ("intrinsic growth rate")
- dome shape (R / S declines at larger S)
- influenced by previous years' S

Distinguishing feature:
Assumes that year lines influence each other.
Cyclic patterns can be due to lagged density effects, but can be exaggerated by harvest patterns.

Need to estimate up to 5 parameters:

- productivity at low run size(α)
- density effect in brood year ($\beta 0$)
- density effect - previous year ($\beta 1$)
- density effect - 2 years ago ($\beta 2$)
- density effect - 3 years ago (33)

Figure 13: Comparison of spawner-recruit models currently available in the model.

Figure 14: Observed and estimated distributions for proportion of effective female spawners.
Simulations use maximum-likelihood fit to beta distribution (Section 2.2.4)

Figure 15: Patterns in difference between estimates (DBE) of potential and actual spawners.
The three panels for each management group show observed frequency (left) and time trend (middle) in observed \% DBE, and a scatterplot (right) of actual vs. potential spawning escapement. Simple linear (dashed line) and log-linear (solid line) regression fits are included.

Figure 16: Four alternative assumptions about \% DBE used in forward simulations.
The base case samples from the observed distribution of \% DBE (median shown by thick solid line), with the alternative option to only sample from the worse half of the observations (median = thick dashed line). To reflect the possibility that harvest patterns influence the future distribution of \% DBE, two additional options are included based on the linear (thin dashed line) and loglinear (thin solid line) fits shown Figure 15.

Figure 17: Sample pattern in productivity
The model allows users to specify hypothetical patterns of future productivity for each stock. One sample pattern with regular periods of reduced productivity is shown as an illustration. Larger dots indicate productivity closer to past observations. Initial seeding of forward simulations uses "like the past".

Figure 18: Flowchart of alternative management strategies.

Figure 19: Shape of Total Allowable Mortality (TAM) rule.
Note: Optional floors on exploitation rate (e.g. 2\%) are applied after the TAM rule, and are not shown on this figure.

Figure 20: Two options for approximating the harvest constraint due to timing overlap.
The top panel shows simulated run sizes for the 4 management groups in one year in one of the simulation trajectories, converted to a timing curve based on average timing and spread in Area 20. The panels below show the realizable exploitation rate and catch under 2 alternatives for approximating overlap constraint (Section 2.3.2)

Figure 21: Sample decision tree for Early Stuart.
As an illustration, imagine that a multi-stakeholder working group has identified 2 options for each of the 3 types of escapement strategy under each of 8 different states of nature (i.e. sets of biological assumptions). Each scenario is evaluated in 1,000 forward simulations over 48 years using different spawner-recruit (SR) parameter estimates to capture uncertainty. Comparisons of simulated performance can then inform discussions among the working group about the merits and drawbacks of alternative choices.

Figure 22: Early Stuart - Spawner-recruit data
Trend lines (in red) show 4yr running averages. Box plots show the range of observations for each $4 y r$ cycle line. Appendix 3 lists the data. Appendix 4 includes the same figure for the other 18 stocks.

Fitted (-) vs. Observed (o)

Residuals

Figure 23: Early Stuart - Larkin fit parameters (3 lag terms)
Top row shows estimates for parameters in a full Larkin mode using total spawners. The middle panel shows observed recruitment (dots), recruitment modelled using alternative parameter estimates (thick lines) and uncertainty bands (thin lines). Bottom panel shows residuals (modelled - observed recruits).

Figure 24: Early Stuart - Larkin fit recruitment curves (3 lag terms) for 2 brood years.
Recruitment curves in the bottom panels show the median (thick red line), 50\% of the distribution (dark gray shading), and 90% of the distribution to capture uncertainty in parameter estimates. For context, the figures show observed data (red point in bottom panels, vertical lines in top panels), and a replacement line with 1 recruit / spawner. Recruitment curves shift depending on the spawner abundances observed in the 3 previous years (gray shading in top panels).

Figure 25: Early Stuart - Larkin fit diagnostics (3 lag terms)
Top row shows the recruitment curves for each year (i.e. modeled recruitment at different levels of spawner abundance). Recruitment curves shift depending on spawner abundance in the three previous years, as illustrated in Figure 24. Remaining diagnostics plots show error distributions. Note: Spawners = Total Spawners.

Productivity (α)

Capacity Constraint - Brood year (β_{0})

Figure 26: Parameter estimates for productivity, variability, and capacity - Larkin (3 lag terms) Distributions show 500 parameter sets sampled from the Bayesian posterior distribution (Section 2.2.5), based on log-normal priors for $\beta 0$ and uniform priors for the other β parameters. Boxes show the median and capture half of the sample. Whiskers mark the most extreme point within 1.5 box-lengths of the box. Stocks are sorted roughly in order of return timing. Management groups are marked by colour: Early Stuart (white), Early Summer (grey), Summer (white), Late (grey). All estimates using total spawner abundance.

Index of 1 year lag capacity constraint $\left(\beta_{1} / \beta_{0}\right)$

Index of 2 year lag capacity constraint $\left(\beta_{2} / \beta_{0}\right)$

Index of 3 year lag capacity constraint $\left(\beta_{3} / \beta_{0}\right)$

Figure 27: Parameter estimates for delayed-density effects - Larkin (3 lag terms)
Distributions show 500 parameter sets sampled from the Bayesian posterior distribution (Section 2.2.5), based on log-normal priors for $\beta 0$ and uniform priors for the other β parameters. Lag terms are scaled relative to $\beta 0$. Boxes show the median and capture half of the sample. Whiskers mark the most extreme point within 1.5 boxlengths of the box. Stocks are sorted roughly in order of return timing. Management groups are marked by colour: Early Stuart (white), Early Summer (grey), Summer (white), Late (grey). All estimates using total spawner abundance.

Productivity (α)

Capacity Constraint - Brood year (β_{0})

Figure 28: Parameter estimates for productivity, variability, and capacity - Mixed model forms Distributions show 500 parameter sets sampled from the Bayesian posterior distribution (Section 2.2.5), based on log-normal priors for $\beta 0$ and uniform priors for the other β parameters. Boxes show the median and capture half of the sample. Whiskers mark the most extreme point within 1.5 box-lengths of the box. Stocks are sorted roughly in order of return timing. Management groups are marked by colour: Early Stuart (white), Early Summer (grey), Summer (white), Late (grey). All estimates using total spawner abundance. Model forms as in Table 4.

Figure 29: Parameter estimates for delayed-density effects - Mixed model forms
Distributions show 500 parameter sets sampled from the Bayesian posterior distribution (Section 2.2.5), based on log-normal priors for $\beta 0$ and uniform priors for the other β parameters. Lag terms are scaled relative to $\beta 0$. Boxes show the median and capture half of the sample. Whiskers mark the most extreme point within 1.5 boxlengths of the box. Stocks are sorted roughly in order of return timing. Management groups are marked by colour: Early Stuart (white), Early Summer (grey), Summer (white), Late (grey). All estimates using total spawner abundance. Model forms as in Table 4.

Figure 30: Changing fixed exploitation rates
The top five rows show Prob(4yr Avg Esc < BM2) for each stock, with BM 2 listed in Table 1. Bottom left panel show Prob(Catch < Low catch BM) for each management group, with low catch benchmarks listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 31: Changing fixed escapement targets - Manage individual stocks
Fixed escapement targets for each stock are expressed as multiples of BM2, listed in Table 1. The 5 top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with low catch benchmarks listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1)

Figure 32: Changing fixed escapement targets - Manage to most productive stock in a group
Fixed escapement targets for each stock are expressed as multiples of BM2, listed in Table 1. The 5 top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with low catch benchmarks listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 33: Changing cut-back point on Summer TAM rule.
Cut-back point is defined as in Figure 19.TAM rules for other management groups are as in 2009 management plan. The 5 top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 34: Changing cap on TAM rule
Cap is defined as in Figure 19. Cut-back points and ER floors are as in 2009 management plan. The five top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 35: Changing exploitation rate floor on TAM rules
$E R$ floor is defined as in Figure 19. Cut-back points and ER caps are as in 2009 management plan. The five top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Gates (ESum)

Raft (ESum)

Birkenhead (Lat)

Weaver Creek (Lat)

Bowron (ESum)

Fennel Creek (ESum)

T	1	1	1
1	1.5	2	2.5

Portage (Lat)

Figure 36: Alternative assumptions about timing overlap - 2009 TAM Rules
Overlap constraints are $1=$ "none", $2=" 90 \%$ of migration window", $3=$ "more than 10% of daily abundance"; as in Figure 20. TAM rules are as in 2009 management plan. The five top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 37: Reduced productivity scenarios - 2009 TAM Rules
The five top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1). Productivity ranges from "like the past" (scalar=1) to severe loss (scalar $=0.05$, only 5% of modeled recruits actually return).

Figure 38: Reduced productivity scenarios - Changing fixed ER, half productivity
The five top panels show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Early Stuart (EStu)

T	1	1
0.4	0.6	0.8
Gates (ESum)		

1		
1	0.6	0.8

Raft (ESum)

Chilko (Sum)

Birkenhead (Lat)

Nadina (ESum)

Stellako (Sum)

Harrison (Lat)

Weaver Creek (Lat)

Late Stuart (Sum)

Figure 39: Reduced productivity scenarios - Changing TAM cap, half productivity
The four top panels show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 40: Larkin model illustration - Quesnel spawner trajectories with 30% fixed ER The sparklines show 160 sample trajectories, each one for a different set of spawner-recruit parameters sampled from the Bayesian posterior distribution (no random variation).

Figure 41: Ricker model illustration - Quesnel spawner trajectories with 30\% fixed ER
The sparklines show 160 sample trajectories, each one for a different set of spawner-recruit parameters sampled from the Bayesian posterior distribution (no random variation).

Figure 42: Spawner trajectory illustration for Quesnel - Ricker vs. Larkin with 30\% fixed ER Summary of the sparklines in Figure 40 and Figure 41 (no random variation).

Figure 43: Ricker illustration 2 - Quesnel spawner trajectories with 60% fixed ER and median ERM The sparklines show 160 sample trajectories, each one for a different set of par estimates. (60% fixed $E R$ plus median en-route mortality, no random variation)

 Whawh whulubl whum

 W"wnem Whtum whulullall whulduldal WhllWUWM

Figure 44: Larkin illustration 2 - Quesnel spawner trajectories with 60% fixed ER, median ERM, and random variation.
The sparklines show 160 sample trajectories, each one for a different set of par estimates. (60% fixed $E R$ plus median en-route mortality, random variation in recruitment)

Figure 45: Reduced productivity scenarios - 2009 TAM rules, Ricker
The four top panels show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1). Productivity ranges from "like the past" (scalar=1) to severe loss (scalar $=0.05$, only 5% of modeled recruits actually return). This figure differs from Figure 37 only in the $S R$ model form.

Figure 46: Reduced productivity scenarios - 2009 TAM rules, Mixed SR model forms
The four top panels show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1). Productivity ranges from "like the past" (scalar=1) to severe loss (scalar $=0.05$, only 5% of modeled recruits actually return). This figure differs from Figure 37 only in the SR model form. Mixed models as marked in Table 4.

Figure 47: Effect of en-route mortality assumptions under 60\% fixed ER.
ERM settings are $1=$ "none", $2=" 0 b s ", 3=" a b d _l o g ", 4=" a b d _l i n " ;$ as in Figure 16. TAM rules are as in 2009 management plan. The five top rows show Prob(4yr Avg Esc < BM2) for each stock. Bottom left panel shows Prob(Catch < Low catch BM) for each management group, with BM listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Gates (ESum)

Raft (ESum)

Chilko (Sum)

Birkenhead (Lat)

-50\%				
-30\%				
-10\%				
	1	1	1	1
0	0.2	0.4	0.6	0.8

Late Stuart (Sum)

Portage (Lat)

Depensatory Loss

Figure 48: Effect of depensatory mortality assumptions on sensitivity to changing ER.
The five top rows show Prob(4yr Avg Esc < BM2) for each stock, with BM 2 listed in Table 1. Bottom left panel show Prob(Catch < Low catch BM) for each management group, with low catch benchmarks listed in Section 2.4.3. Bottom right shows median catch. All other settings as in Base Case 1 (Section 3.3.1).

Figure 49: Scenario comparisons - Early Stuart spawner abundance and catch
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 50: Scenario comparisons - Early Summer spawner abundance 1
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 51: Scenario comparisons - Early Summer spawner abundance 2
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 52: Scenario comparisons - Summer spawner abundance
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 53: Scenario comparisons - Late spawner abundance 1
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 54: Scenario comparisons - Late spawner abundance 2
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 55: Scenario comparisons - 4 management groups, low catch
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 56: Scenario comparisons - 4 Management groups, median catch
Each bar shows the range of a performance measure. Each panel has 5 sets of bars, each set corresponding to one scenario that varies an aspect of a harvest strategy (Figure 30 to Figure 35). Each set of bars compares the range of results for Larkin (L) and Ricker (R) SR fits. Each row of plots compares two productivity assumptions side-by-side.

Figure 57: Median catch patterns - Changing fixed ER, 4 alternative assumptions
Each panel shows the effect of changing fixed ER from 5% to 90% under 4 alternative assumptions: Ricker (line) or Larkin (circles) SR models with average (thick line) or half (thin line) productivity. A vertical line marks the peak in median catch for each alternative, and the horizontal arrow shows the range of fixed ER that maximizes median annual catch across the 4 alternatives.

APPENDIX 1 : WINBUGS CODE FOR ESTIMATING LARKIN PARAMETERS

```
#Larkin Model
model{
    for( i in 4:N) {
                R_Obs[i] ~ dlnorm(R[i],tau_R) # likelihood function
                R[i] <- RS_log[i] + log(S[i]) # prediction model
            # Larkin model
            RS_log[i] <-alpha - beta0 * S[i] -beta1*S[i-1] -beta2*S[i-2]-beta3*S[i-3]
            # model checking section (residuals, replicated data, p-values)
            resid[i] <- log(R_Obs[i]) - R[i]
            Rep[i] ~ dlnorm(R[i],tau_R)
            Pvalue[i] <- step(Rep[i]-log(R_Obs[i]) )
    }
# Larkin model priors
    alpha ~ dnorm(0,0.001) # prior for Larkin a
    beta0 <- 1/Smax # relationship between capacity parameter and the
    number of spawners at maximum recruitment
                            # prior for Larkin }\mp@subsup{\beta}{0}{}\mathrm{ with upper constraint sShi
    Smax~ dlnorm(log_Shi,1)l(,sShi)
    sShi <- 3*Shi
    log_Shi<- log(Shi)
    beta1 ~ dunif(0,100) # prior for Larkin }\mp@subsup{\beta}{1}{
    beta2 ~ dunif(0,100) # prior for Larkin }\mp@subsup{\beta}{2}{
    beta3 ~ dunif(0,100) # prior for Larkin }\mp@subsup{\beta}{3}{
    tau_R ~ dgamma(0.001,0.001) # prior for precision parameter
    sigma <- 1 / sqrt(tau_R) # transform precision to standard deviation
}
WinBUGS
notation Description
data based inputs
R_Obs[i] observed recruits from broodyear i
S[i] spawners on the grounds in year i
Shi highest number of spawners in dataset
```


APPENDIX 2: DETAILED BAYES DIC RESULTS.

Eight alternative model forms were fitted under 2 different assumptions about random errors (Section 2.2.10). Model forms differ in the number of lag terms to capture delayed-density dependence. The Ricker model has no lag terms, the full Larkin model has 3 lag terms, and the Larkin model variations have one or two lag-terms, as labeled. The default assumption for random error is a lognormal distribution (L), but a normal error (N) distribution was also tested. Model comparisons are based on the difference in the Deviance Information Criterion (DIC). Models within 5 of the lowest DIC are considered plausible candidate models (Section 3.2.1), and are highlighted in the table.
deltaDIC Cut-off
5

	Ricker		Larkin		Larkin 1		Larkin 1,2		Larkin 1,2,3		Larkin 2		Larkin 2,3		Larkin 1,3		
	L	N	L	N	L	N	L	N	L	N	L	N	L	N	L	N	min DIC
E. Stuart	-80.9	-4.21	-86	-8.65	-85.4	-6	-81.3	-5.88	-79.8	-3.63	-86.8	-9.31	-80.3	-6.49	-84.7	-7.25	-86.833
L. Stuart	-34.7	130.8	-33.3	104.6	-35	101.4	-32.9	116.3	-31.4	123	-34.9	102.7	-31.3	118	-33.3	103.6	-34.961
Stellako	25.48	38.34	6.076	23.41	25.14	35.85	26.94	38.21	3.478	23.36	26.69	36.27	5.035	24.11	4.023	22.95	3.478
Bowron	-283	-225	-268	-207	-271	-211	-271	-209	-270	-209	-269	-209	-269	-207	-268	-209	-283.048
Raft	-308	-275	-295	-262	-295	-259	-297	-265	-296	-263	-295	-263	-296	-264	-294	-260	-307.987
Quesnel	-161	235.4	-165	118.8	-142	212.2	-154	180.5	-152	210.1	-154	137	-162	182.4	-160	129.7	-165.255
Chilko	124.9	165.1	121.9	160.5	119.4	157.9	123.7	160.2	125.2	161.2	120.4	159.2	125.1	161.8	121.2	159.3	119.362
Seymour	-168	-78.3	-167	-76.4	-163	-79.1	-164	-70	-159	-70.2	-166	-77.3	-163	-68.4	-167	-78.1	-168.41
L. Shuswap	-33.6	243.4	-39.7	218.8	-33.1	218.3	-33.5	229.5	-29.9	228.6	-37.8	220.5	-32.4	230.2	-32.5	216	-39.711
Birkenhead	1.176	37.83	2.113	39.01	0.291	36.98	3.987	38.57	4.205	37.85	1.254	38.33	4.795	39.51	1.549	37.55	0.291
Cultus	-283	-185	-267	-170	-270	-169	-270	-174	-269	-170	-268	-171	-268	-172	-268	-168	-283.272
Portage	-245	-175	-223	-159	-225	-162	-221	-161	-220	-160	-224	-161	-219	-158	-224	-160	-245.048
Weaver	1.183	10.37	8.1	15.89	7.892	13.91	8.824	14.46	4.929	12.66	9.79	16.11	6.999	14.41	6.103	14.09	1.183
Fennell	-222	-197	-202	-180	-200	-179	-202	-181	-200	-180	-202	-181	-202	-180	-201	-180	-221.943
Scotch	-125	-65.3	-126	-82.2	-114	-69.6	-110	-56.5	-112	-59.7	-115	-69	-112	-59	-121	-84.1	-126.451
Gates	-171	-118	-155	-105	-145	-105	-151	-109	-149	-104	-150	-107	-155	-107	-149	-103	-170.546
Nadina	-128	-64.3	-115	-55.7	-116	-54.5	-117	-58	-117	-54	-115	-57.1	-117	-56.5	-116	-52.3	-128.388
Upper Pitt	-185	-180	-185	-169	-177	-169	-185	-171	-178	-170	-185	-170	-186	-171	-179	-169	-186.169
Harrison	-208	-139	-192	-132	-195	-132	-196	-133	-195	-130	-194	-134	-194	-132	-193	-134	-207.986

APPENDIX 3: SPAWNER-RECRUIT DATA

Stock ID	Stock Name
1	Early Stuart
2	Late Stuart
3	Stellako
4	Bowron
5	Raft
6	Quesnel
7	Chilko
8	Seymour
9	Late Shuswap
10	Birkenhead
11	Cultus
12	Portage
13	Weaver Creek
14	Fennel Creek
15	Scotch Creek
16	Gates
17	Nadina
18	Upper Pitt River
19	Harrison

1 Early Stuart $\quad\|\|\mid=1 / 10$ of max for each variable																																																																																																															
Max	1,671,741	688,013	386,816	1,814,783																																																																																																											
Avg	315,809	93,389	44,030	313,620																																																																																																											
Min	12,731	1,522	793	10,031																																																																																																											
Year	Run	Spawners Eff	Effective Females	Recruits																																																																																																											
1948	NA	19,979	10,859	198,153 \|																																																																																																											
1949	NA		168,471 \|										1,036,926 \|																																																																																																		
1950	NA	59,104 \|		25,658	241,666 \|																																																																																																										
1951	NA	60,423 \|		29,787 \|		173,654 \|																																																																																																									
1952	NA	29,925 \|	15,483 \|	88,600 \|																																																																																																											
1953	1,048,757 \|																	154,036 \|					78,332 \|						540,891 \|																																																																																		
1954	241,825 \|				35,050 \|	18,010 \|	155,823 \|																																																																																																								
1955	158,998 \|		2,159	1,397	27,467																																																																																																										
1956	93,523 \|	25,020 \|	16,662 \|	110,394 \|																																																																																																											
1957	548,612 \|									234,850 \|										119,278 \|									1,222,913 \|																																																																																		
1958	157,678 \|		38,807 \|	22,196 \|	103,107 \|																																																																																																										
1959	26,525	2,670	1,297	20,835																																																																																																											
1960	103,397 \|	14,447	7,401	74,149 \|																																																																																																											
1961	1,225,877 \|																				198,921 \|								87,809 \|						255,842 \|																																																																												
1962	108,532 \|	26,716 \|	14,075 \|	75,785 \|																																																																																																											
1963	14,944	4,607	2,590	92,554 \|																																																																																																											
1964	76,708 \|	2,390	1,300	42,887																																																																																																											
1965	256,325 \|				23,045 \|	11,242	417,211 \|																																																																																																								
1966	71,082 \|	10,830	5,959	84,786 \|																																																																																																											
1967	99,548 \|	21,044	11,167	339,693 \|																																																																																																											
1968	28,197	1,522	793	10,423																																																																																																											
1969	432,919 \|						109,655 \|				48,687 \|			1,375,518 \|																																																																																																	
1970	84,989 \|	32,578 \|	15,806 \|	182,136 \|																																																																																																											
1971	326,153 \|					95,940 \|				45,612 \|			431,210 \|																																																																																																		
1972	24,188	4,657	2,253	32,232																																																																																																											
1973	1,367,393 \|																							299,892 \|												153,870 \|											1,352,015 \|																																																																
1974	187,232 \|			39,518 \|	21,603 \|	145,244 \|																																																																																																									
1975	426,227 \|							65,752 \|		26,248 \|		223,085 \|																																																																																																			
1976	44,187	11,761	6,792	31,877																																																																																																											
1977	1,343,698 \|																						117,445 \|					53,381 \|				761,694 \|																																																																															
1978	146,425 \|		50,004 \|		20,005 \|	72,852 \|																																																																																																									
1979	222,745 \|			92,746 \|				36,172 \|		107,936 \|																																																																																																					
1980	32,300	16,939	7,361	63,501 \|																																																																																																											
1981	755,703 \|												129,457 \|					67,227 \|					350,141 \|																																																																																								
1982	80,159 \|	4,557	2,158	27,816																																																																																																											
1983	90,997 \|	23,867 \|	13,121 \|	188,892 \|																																																																																																											
1984	56,091 \|	45,201 \|	21,868 \|	242,028 \|																																																																																																											
1985	356,844 \|						234,219 \|										116,610 \|									1,208,877 \|																																																																																					
1986	46,024	28,584 \|	15,219 \|	145,942 \|																																																																																																											
1987	178,007 \|			148,194 \|						75,970 \|					525,920 \|																																																																																																
1988	223,990 \|				179,807 \|							88,069 \|	I				379,269 \|																																																																																														
1989	1,211,856 \|																	384,799 \|													211,039 \|													1,138,789 \|																																																																			
1990	154,872 \|		97,035 IIII	47,063 \|			166,086 \|																																																																																																								
1991	512,486 \|									141,119 \|						85,454 \|						144,459 \|																																																																																									
1992	350,827 \|						66,098 \|		36,564 \|		100,376 \|																																																																																																				
1993	1,151,645 \|																				688,013 \|																													\|				386,816																													1,814,783 \|																												
1994	204,097 \|			29,125 \|	14,498 \|	29,030																																																																																																									
1995	138,323 \|		122,856 \|					57,322 \|				189,600 \|	I																																																																																																		
1996	96,397 \|	87,570 \|			41,063 \|			464,146 \|																																																																																																							
1997	1,671,741 \|																											266,941 \|											73,417 \|					147,572 \|																																																																			
1998	189,780 \|			32,570 \|	9,375	28,692																																																																																																									
1999	171,629 \|			24,552	8,189	30,566																																																																																																									
2000	378,192 \|						89,858 \|			35,334 \|		135,874 \|																																																																																																			
2001	214,191 \|			170,981 \|						82,849 \|						252,006 \|	I																																																																																														
2002	62,663 \|	24,637 \|	12,939 \|	24,566																																																																																																											
2003	30,276	13,166	6,932	10,031																																																																																																											
2004	137,101 \|		9,281	5,253	37,815																																																																																																										
2005	219,696 \|			98,537 \|				51,183 \|			NA																																																																																																				
2006	55,988 \|	35,816 \|	15,914 \|	NA																																																																																																											
2007	12,731	5,347	2,376	NA																																																																																																											
2008	34,036	29,867 \|	14,446 \|	NA																																																																																																											

Max	$5,163,174$
Avg	567,905
Min	2,147

1,363,826 132,071
744,565
67,026
$5,327,124$
558,360
327

Year	Run	Spawners Ef	Effective Females	Recruits																																																																																																									
1948	NA	NA	NA	327																																																																																																									
1949	NA	107,752 \|		39,085	1,530,202 \|																																																																																																								
1950	NA	5,843	1,834	39,681																																																																																																									
1951	NA	4,364	1,247	63,810																																																																																																									
1952	NA	35	16	3,973																																																																																																									
1953	1,527,145 \|								368,634 \|								78,689 \|			1,552,239 \|																																																																																									
1954	36,886	5,470	2,687	137,965																																																																																																									
1955	58,590	7,582	3,274	51,345																																																																																																									
1956	12,413	913	466	46,102																																																																																																									
1957	1,548,251 \|								531,108 \|											300,029 \|												1,329,884 \|																																																																													
1958	138,477	23,619	13,152	54,677																																																																																																									
1959	52,900	8,225	4,090	7,392																																																																																																									
1960	15,466	2,396	1,307	9,617																																																																																																									
1961	1,360,396 \|							410,887 \|									194,469 \|							778,478 \|																																																																																					
1962	55,027	18,643	9,073	45,069																																																																																																									
1963	7,080	3,222	1,092	12,049																																																																																																									
1964	8,034	1,816	824	3,101																																																																																																									
1965	773,362 \|				214,943 \|				122,789 \|				1,124,519 \|																																																																																																
1966	51,082	9,027	4,164	74,079																																																																																																									
1967	13,888	1,629	897	16,556																																																																																																									
1968	2,147	389	179	31,299																																																																																																									
1969	1,103,957 \|					207,014 \|				114,306 \|				1,625,590 \|																																																																																															
1970	94,021	14,978	8,027	70,838																																																																																																									
1971	8,145	1,535	725	66,770																																																																																																									
1972	40,187	7,341	3,411	18,766																																																																																																									
1973	1,607,170 \|									214,230 \|				116,706 \|				666,098 \|																																																																																											
1974	91,651	14,190	7,371	50,716																																																																																																									
1975	65,527	14,229	5,679	215,116 \|																																																																																																									
1976	16,470	2,898	1,674	3,339																																																																																																									
1977	661,599 \|			146,459 \|			75,890 \|			1,357,741 \|																																																																																																			
1978	56,784	12,738	7,115	79,447																																																																																																									
1979	215,365 \|	31,918	16,711	6,854																																																																																																									
1980	3,921	946	286	21,440																																																																																																									
1981	1,314,560 \|							249,494 \|					120,124 \|				2,033,901 \|																																																																																												
1982	113,596	16,758	8,681	60,989																																																																																																									
1983	15,782	2,246	1,451	17,944																																																																																																									
1984	21,440	1,228	672	14,744																																																																																																									
1985	1,978,203 \|											274,621 \|						159,101 \|						3,507,629 \|																																																																																					
1986	107,988	28,715	15,044	816,561 \|																																																																																																									
1987	23,116	6,472	2,393	380,071 \|																																																																																																									
1988	26,026	7,117	3,638	208,786 \|																																																																																																									
1989	3,367,350 \|														575,697 \|										327,096 \|																																																																																				
1990	858,898 \|				189,079 \|				111,747 \|				389,823 \|																																																																																																
1991	376,655 \|		76,860 \|	40,200 \|	109,581																																																																																																								
1992	322,645 \|	19,513	12,422	135,399																																																																																																									
1993	5,163,174 \|																												1,363,826 \|																													\|			744,565																													3,764,256 \|																			
1994	517,217 \|			76,462 \|	40,717 \|	115,440																																																																																																							
1995	108,095	34,362	17,181	133,454																																																																																																									
1996	150,838	62,991 \|	27,297	1,023,000 \|																																																																																																									
1997	3,255,574 \|																			907,652 \|																			415,149 \|																430,895 \|																																																						
1998	620,406 \|			138,397 \|			67,836 \|		277,262 \|																																																																																																				
1999	100,749	61,574 \|	33,801 \|	133,622																																																																																																									
2000	849,458 \|	I		454,397 \|										226,267 \|									913,822 \|																																																																																						
2001	564,418 \|			351,569 \|							179,540 \|							505,343 \|																																																																																											
2002	343,512 \|	34,498	17,820	125,952																																																																																																									
2003	131,907	36,647	19,212	21,783																																																																																																									
2004	884,765 \|					83,418	51,370 \|		284,071 \|																																																																																																				
2005	458,862 \|		293,124 \|						164,657 \|						NA																																																																																														
2006	211,304 \|	27,504	14,283	NA																																																																																																									
2007	20,631	8,487	4,144	NA																																																																																																									
2008	269,580 \|	146,569 \|			57,879 \|		NA																																																																																																						

3 Stellako	III $=1 / 10$ of max for each variable																																																																																						
Max	1,852,392	371,604	200,541	1,904,124																																																																																			
Avg	469,977	105,909	52,692	465,579																																																																																			
Min	59,073	15,763	9,242	49,132																																																																																			
Year	Run	Spawners Ef	Effective Females	Recruits																																																																																			
1948	NA	15,763	9,242	207,177 \|																																																																																			
1949	NA	104,720 \|								40,228 \|						179,876 \|																																																																							
1950	NA	145,021 \|											77,415 \|											939,117 \|																																																															
1951	NA	96,076 \|							51,413 \|							455,367 \|																																																																							
1952	NA	40,384 \|			19,920 \|		110,701 \|																																																																																
1953	200,034 \|			42,134 \|			20,388 \|			174,245 \|																																																																													
1954	910,135 \|													141,859 \|										72,273 \|									1,211,299 \|																																																						
1955	384,791 \|						51,739 \|				29,937 \|				629,796 \|																																																																								
1956	195,306 \|			38,438 \|			22,276 \|			246,735 \|																																																																													
1957	176,197 \|		38,522 \|			18,044 \|		151,843 \|																																																																															
1958	1,158,256 \|																		112,251 \|									61,581 \|									340,460 \|	I																																																	
1959	670,552 \|									79,305 \|						41,872 \|					541,420 \|																																																																		
1960	247,499 \|				38,880 \|			22,718 \|			164,514 \|																																																																												
1961	171,234 \|		46,863 \|			18,136 \|		147,402 \|																																																																															
1962	331,106 \|					124,485 \|										44,532 \|	I				589,505 \|																																																																		
1963	531,152 \|							138,794 \|										41,535 \|						727,926 \|																																																															
1964	170,113 \|		30,890 \|		16,182 \|		177,837 \|																																																																																
1965	158,301 \|		39,385 \|			20,479 \|			243,651 \|																																																																														
1966	583,074 \|									101,529 \|								51,509 \|							359,906 \|																																																														
1967	731,057 \|											91,480 \|							32,467 \|				550,524 \|																																																																
1968	184,315 \|		30,368 \|		13,680 \|		129,822 \|																																																																																
1969	238,902 \|			49,211 \|			25,629 \|			253,245 \|																																																																													
1970	348,976 \|	I			45,797 \|		26,727 \|			234,108 \|																																																																													
1971	554,728 \|								39,691 \|			20,147 \|			509,267 \|																																																																								
1972	144,381 \|		36,700 \|		20,386 \|			756,214 \|																																																																															
1973	240,736 \|			30,404 \|		15,424 \|		85,901 \|																																																																															
1974	246,689 \|			41,275 \|			23,718 \|			303,122 \|																																																																													
1975	513,105 \|								175,941 \|														68,451 \|									1,904,124 \|																																																							
1976	711,237 \|											150,734 \|												65,299 \|									244,357 \|																																																						
1977	122,420 \|	23,047 \|	10,894 \|	265,700 \|III																																																																																			
1978	295,694 \|	I		58,898 \|				32,528 \|				437,405 \|	I																																																																										
1979				623,924 \|																																																																																			
1980	284,339 \|				72,050 \|					28,477 \|				755,406 \|																																																																									
1981	237,504 \|	I	21,826 \|	12,030 \|	285,898 \|	I																																																																																	
1982	445,024 \|							69,420 \|					34,888 \|					357,773 \|																																																																					
1983	526,984 \|								121,692 \|									61,357 \|									1,257,480 \|																																																												
1984	681,128 \|											60,957 \|				32,672 \|				1,011,189 \|																																																																			
1985	455,291 \|							42,099 \|			21,968 \|			128,742 \|																																																																									
1986	362,232 \|					77,177 \|						44,611 \|						561,845 \|																																																																					
1987	1,144,418 \|																	211,085 \|																98,179 \|													435,676 \|																																								
1988	903,283 \|														367,702 \|																												\|		200,541																													991,499 \|													
1989	364,112 \|				43,179 \|			15,926 \|		222,287 \|																																																																													
1990	476,408 \|							93,920 \|	I					56,536 \|									951,836 \|																																																																
1991	470,053 \|						94,884 \|							54,400 \|								336,569 \|																																																																	
1992	648,446 \|										97,979 \|							55,190 \|								868,461 \|																																																													
1993	553,471 \|								91,071 \|							42,858 \|						309,844 \|																																																																	
1994	956,333 \|															136,709 \|											63,628 \|									682,889 \|																																																			
1995	388,978 \|	I				122,676 \|									41,176 \|						183,959 \|																																																																		
1996	771,677 \|											332,207 \|																								167,671 \|																						811,994 \|																													
1997	202,078 \|			55,357 I\|			23,264 \|			125,173 \|																																																																													
1998	835,157 \|												185,641 \|														97,011 \|														637,997 \|																																														
1999	216,713 \|			138,137 \|											66,125 \|								174,462 \|																																																																
2000	692,039 \|											371,604 \|																															\|			195,418																														717,671 \|											
2001	245,067 \|			151,409 \|											61,635 \|									287,128 \|																																																															
2002	561,079 \|									322,711 \|																										177,668 \|																										248,375 \|																									
2003	277,491 \|				78,093 \|	11			43,879 \|						49,132																																																																								
2004	678,056 \|										86,688 \|						53,805 \|								248,252 \|																																																														
2005	273,546 \|				175,299 \|														102,347 \|															NA																																																					
2006	307,985 \|				147,189 \|											79,884 \|											NA																																																												
2007	59,073	41,328 \|			19,649 \|		NA																																																																																
2008	228,384 \|			159,737 \|											73,837 \|											NA																																																													

4 Bowron $\quad\|\|\mid=1 / 10$ of max for each variable																																																																																																								
Max	207,472	35,000	16,178	214,316																																																																																																				
Avg	39,575	9,577	4,559	40,345																																																																																																				
Min	3,098	836	275	3,822																																																																																																				
Year	Run	Spawners Eff	ffective Females	Recruits																																																																																																				
1948	NA	25,205 \|																					12,826 \|																						80,266 \|																																																											
1949	NA	22,283 \|																			10,721 \|																			62,791 \|																																																																
1950	NA	16,146 \|														7,298 \|														75,548 \|																																																																										
1951	NA	21,731 \|																		10,039 \|																		103,821 \|																																																																		
1952	NA	18,645 \|															8,568 \|																43,304 \|																																																																							
1953	63,296 \|									13,277 \|											5,734 \|										75,579 \|																																																																									
1954	65,743 \|									10,515 \|									4,566 \|								66,916 \|																																																																													
1955	113,084 \|															9,350 \|								4,471 \|								96,955 \|																																																																								
1956	36,995 \|	I			6,994 \|	I			3,639 \|						38,484 \|	III																																																																																								
1957	77,555 \|											12,011 \|										6,416 \|											41,966 \|																																																																							
1958	67,991 \|									14,843 \|												8,297 \|															18,155 \|																																																																			
1959	95,916 \|												29,247 \|																						61,865 \|																																																																					
1960	31,875 I\|			7,620 \|	I				3,506 \|	I				17,733 \|																																																																																										
1961	51,949 \|							7,449 \|	I				3,675 \|						28,148 \|																																																																																					
1962	18,914 \|		6,286 \|	I			3,219 \|					21,327 \|																																																																																												
1963	56,625 \|								25,141 \|																				11,468 \|																				214,316 \|																																																							
1964	22,678 \|			1,500 \|	690	27,507 \|																																																																																																		
1965	27,292 \|			2,659 \|		1,170 \|		17,849 \|																																																																																																
1966	20,163 \|		2,470 \|		1,151 \|		22,249 \|																																																																																																	
1967	207,472 \|																											31,695 \|																										13,991 \|																								206,494 \|																										
1968	34,781 \|					3,611 \|			1,710 \|			44,642 \|																																																																																												
1969	18,861 \|		3,872 \|			1,936 \|			17,211 \|																																																																																															
1970	22,349 \|			1,305	497	16,197 \|																																																																																																		
1971	194,910 \|																										25,497 \|																				10,761 \|																		124,507 \|																																							
1972	49,906 \|							4,138 \|			1,969 \|			16,971 \|																																																																																										
1973	23,623 \|			4,558 \|			2,012 \|			10,662 \|																																																																																														
1974	17,034 \|		1,850 \|	1,046 \|	17,431 \|																																																																																																			
1975	124,161 \|																	29,700 \|																								14,735 \|																										122,780 \|																																				
1976	17,206 \|		2,250 \|	1,069 \|	7,112																																																																																																			
1977	10,649 \|	2,500 \|		1,214 \|		15,396 \|																																																																																																		
1978	15,948 \|		3,141 \|		1,678 \|			40,627 \|	I																																																																																															
1979				29,984 IIII																																																																																																				
1980	8,028 \|	2,894 \|		1,376 \|		45,170 \|																																																																																																		
1981	5,875	1,170 \|	562 \|	16,532 \|																																																																																																				
1982	49,424 \|							1,647 \|	990 \|	5,277																																																																																														
1983	16,438 \|		6,451 \|					3,484 \|						38,556 \|																																																																																										
1984	53,651 \|							10,461 \|								4,909 \|									50,603 \|																																																																															
1985	20,513 \|		6,395 \|	I			3,030 \|	I			19,177 \|																																																																																													
1986	4,891	3,118 \|		1,396 \|		21,198 \|																																																																																																		
1987	38,820 \|					11,071 \|									5,660 \|										22,592 \|																																																																															
1988	46,654 \|						12,780 \|										7,405 \|													13,050 \|																																																																										
1989	22,328 \|			2,534 \|		1,367 \|		12,842 \|																																																																																																
1990	23,422 \|			7,860 \|	I				5,065 \|									31,130 \|																																																																																						
1991	18,807 \|		4,920 \|				2,460 \|				48,807 \|																																																																																													
1992	15,958 \|		2,560 \|		1,117 \|		12,883 \|																																																																																																	
1993	6,326	1,184 \|	592 \|	20,467 \|																																																																																																				
1994	26,858 \|			4,380 \|			1,845 \|			10,849 \|																																																																																														
1995	59,839 \|								34,417 \|																												\|	13,487																									27,391 \|																																									
1996	11,707 \|	8,176 \|							4,054 \|							26,776 \|																																																																																								
1997	19,274 \|		4,811 \|				2,119 \|			5,024																																																																																														
1998	10,289 \|	4,751 \|				2,830 \|					17,001 \|																																																																																													
1999	29,198 \|				8,238 \|						3,295 \|						19,734 \|																																																																																							
2000	22,954 \|			13,440 \|											6,720 \|	I										25,283 \|																																																																														
2001	7,416 \|	5,842 \|	I			2,752 \|	I			6,825																																																																																														
2002	14,961 \|		8,770 \|							4,505 \|								7,674 \|																																																																																						
2003	25,463 \|			6,752 \|					3,038 \|					3,822																																																																																										
2004	23,887 \|			836	418	6,225																																																																																																		
2005	5,829	1,649 \|	825 \|	NA																																																																																																				
2006	9,671 \|	1,501 \|	614 \|	NA																																																																																																				
2007	4,157	2,069 \|	1,023 \|	NA																																																																																																				
2008	3,098	1,005	275	NA																																																																																																				

5 Raft	\|II = 1/10 of max for each variable																																																																																																															
Max	142,932	66,292	27,668	115,396																																																																																																												
Avg	31,958	8,849	4,127	32,933																																																																																																												
Min	1,510	464	198	1,461																																																																																																												
Year	Run	Spawners Ef	Effective Females	Recruits																																																																																																												
1948	NA	10,359 \|				5,524 \|	I			63,337 \|																																																																																																						
1949	NA	6,113 \|		2,109 \|		39,626 \|																																																																																																										
1950	NA	6,404 \|		1,917 \|		45,556 \|																																																																																																										
1951	NA	8,544 \|			3,365 \|			47,653 \|																																																																																																								
1952	NA	15,617 \|							5,116 \|					51,182 \|																																																																																																		
1953	37,449 \|							7,904 \|			3,600 \|			32,124 \|																																																																																																		
1954	42,435 \|								9,988 \|				5,352 \|					50,488 \|																																																																																														
1955	40,631 \|								5,079 \|		2,905 \|			60,522 \|																																																																																																		
1956	59,176 \|												9,037 \|				5,180 \|					27,140 \|																																																																																										
1957	35,526 \|							6,860 \|			3,314 \|			21,015 \|																																																																																																		
1958	40,810 \|								10,214 \|				6,235 \|						23,143 \|																																																																																													
1959	63,790 \|											10,210 \|				5,232 \|					23,614 \|																																																																																											
1960	25,425 IIIII	5,513 \|		2,690 \|		16,948 IIII																																																																																																										
1961	28,760 \|	I				7,293 \|			3,014 \|			24,325 \|																																																																																																				
1962	24,602 \|	I			7,613 \|			4,197 \|				40,549 \|																																																																																																				
1963	21,010 \|				8,683 \|			2,693 \|		9,817 \|																																																																																																						
1964	17,944 \|			5,177 \|		2,666 \|		48,724 \|																																																																																																								
1965	24,308 \|					6,624 \|		2,669 \|		20,626 \|																																																																																																						
1966	39,740 \|								6,244 \|		2,666 \|		23,539 \|																																																																																																			
1967	12,152 \|		1,279	358	9,658 \|																																																																																																											
1968	41,065 \|								8,089 \|			3,455 \|			106,397 \|																																																																																																	
1969	27,547 \|	III	5,537 \|		2,577 \|		14,370 \|																																																																																																									
1970	22,206 \|				4,462 \|		1,205 \|	8,860 \|																																																																																																								
1971	11,060 \|		801	223	12,361 \|																																																																																																											
1972	102,664 \|																			11,048 \|				4,507 \|				57,821 \|																																																																																				
1973	15,727 \|			2,714 \|	1,345 \|	9,361 \|																																																																																																										
1974	12,043 \|		2,383	1,479 \|	12,223 \|																																																																																																											
1975	10,180 \|		2,609 \|	1,391 \|	6,716 \|																																																																																																											
1976	59,753 \|												8,665 \|			3,976 \|				19,926 \|																																																																																												
1977	2,583	617	198	5,917 \|																																																																																																												
1978	19,271 \|				2,493 \|	1,343 \|	18,748 \|																																																																																																									
1979	6,164 \|	1,758	693	3,039																																																																																																												
1980	19,616 \|				5,418 \|		2,056 \|		51,723 \|																																																																																																							
1981	4,312	815	312	8,639 \|																																																																																																												
1982	15,077 \|			2,992 \|	1,533 \|	3,770																																																																																																										
1983	7,902 \|	2,780	1,821 \|	5,601 \|																																																																																																												
1984	49,712 \|										19,086 \|								6,701 \|							47,055 \|																																																																																						
1985	11,150 \|		3,637 \|	1,922 \|		4,533 \|																																																																																																										
1986	3,791	2,095	1,080 \|	3,013																																																																																																												
1987	4,441	1,436	723	3,820																																																																																																												
1988	35,407 \|							19,851 \|								9,207 \|									50,175 \|																																																																																							
1989	16,868 \|			1,647	925 \|	11,299 \|																																																																																																										
1990	4,598	630	412	2,544																																																																																																												
1991	1,510	464	264	1,461																																																																																																												
1992	44,211 \|									8,236 \|			4,112 \|				67,359 \|																																																																																															
1993	15,749 \|			5,047 \|		2,934 \|			33,202 \|																																																																																																							
1994	5,545 \|	1,712	800	28,472 \|																																																																																																												
1995	1,848	1,040	682	27,270 \|																																																																																																												
1996	65,906 \|													46,592 \|																					21,381 \|																						112,592 \|																																																							
1997	24,410 \|					6,093 \|		2,367 \|		51,264 \|																																																																																																						
1998	15,571 \|			7,198 \|			3,585 \|			16,238 \|																																																																																																						
1999	47,072 \|									6,979 \|	I	3,499 \|			61,149 \|																																																																																																	
2000	93,799 \|																				66,292 \|																															\|				27,668																													115,396 \|																											
2001	48,675 \|										32,498 \|														16,025 \|																	96,695 \|																																																																						
2002	30,278 \|						18,369 \|								8,402 \|									42,833 \|																																																																																								
2003	37,804 \|							10,040 \|				4,890 \|					8,475 \|																																																																																															
2004	142,932 \|																													5,611 \|		3,244 \|			67,284 \|																																																																													
2005	87,357 \|																		26,456 \|											16,967 \|																	NA																																																																	
2006	37,794 \|							6,073 \|		3,442 \|			NA																																																																																																			
2007	25,240 \|	III	14,353 \|						8,064 \|								NA																																																																																															
2008	47,043 \|									10,406 \|				3,562 \|			NA																																																																																															

6 Quesnel $\quad\|\|\mid=1 / 10$ of max for each variable																																																																																						
Max	12,161,405	3,510,789	1,740,472	12,544,246																																																																																		
Avg	1,380,161	365,248	177,480	1,356,472																																																																																		
Min	194	49	9	165																																																																																		
Year	Run	Spawners Eff	ffective Females	Recruits																																																																																		
1948	NA	100	48	618																																																																																		
1949	NA	30,664	19,209	486,378																																																																																		
1950	NA	398	264	2,048																																																																																		
1951	NA	49	9	413																																																																																		
1952	NA	184	51	562																																																																																		
1953	463,443 \|	110,917	47,564	610,245 \|																																																																																		
1954	2,014	299	146	10,692																																																																																		
1955	413	63	30	180																																																																																		
1956	6,464	80	38	1,133																																																																																		
1957	604,123 \|	223,667 \|	134,562 \|		999,533 \|																																																																																	
1958	10,912	1,863	1,269	3,412																																																																																		
1959	198	65	29	165																																																																																		
1960	10,894	292	123	1,475																																																																																		
1961	989,607 \|		302,565 \|		69,990 \|	1,240,890 \|																																																																																
1962	3,536	1,078	566	7,287																																																																																		
1963	194	83	40	956																																																																																		
1964	45,950	254	77	2,812																																																																																		
1965	1,195,837 \|		364,706 \|			105,401 \|	1,667,172 \|																																																																															
1966	7,859	1,753	1,040	7,462																																																																																		
1967	956	119	24	1,761																																																																																		
1968	16,973	699	333	428																																																																																		
1969	1,652,135 \|				278,961 \|		78,639	1,640,832 \|																																																																														
1970	7,953	1,368	388	20,339																																																																																		
1971	2,146	171	16	747																																																																																		
1972	6,910	111	46	865																																																																																		
1973	1,626,582 \|				278,311 \|		112,538 \|	2,336,434 \|																																																																														
1974	28,107	4,459	2,587	31,024																																																																																		
1975	756	193	105	1,865																																																																																		
1976	6,497	305	209	1,233																																																																																		
1977	2,326,885 \|					516,199 \|				160,712 \|		3,878,522 \|																																																																										
1978	33,233	8,614	4,349	196,724																																																																																		
1979	3,564	511	238	6,011																																																																																		
1980	9,679	308	98	2,446																																																																																		
1981	3,810,928 \|									748,621 \|						332,306 \|					9,786,652 \|																																																																	
1982	245,363	39,841	20,053	555,386 \|																																																																																		
1983	12,612	2,155	1,098	40,412																																																																																		
1984	25,962	914	551	6,953																																																																																		
1985	9,553,856 \|																							1,349,263 \|											694,708 \|											12,544,246 \|																																								
1986	712,295 \|	181,467 \|	94,844 \|	2,532,784 \|																																																																																		
1987	87,912	20,546	11,238	176,592																																																																																		
1988	46,737	6,832	4,185	26,342																																																																																		
1989	12,161,405 \|																								1,870,820 \|													940,610 \|														10,641,495 \|																																		
1990	2,716,516 \|						488,259 \|				259,597 IIII	3,283,634 \|	I	I																																																																								
1991	287,552	46,259	24,862	151,175																																																																																		
1992	96,025	5,862	3,046	29,214																																																																																		
1993	10,340,080 \|																								2,620,454 \|																						1,507,416 \|																								6,851,040 \|															
1994	3,236,300 \|							659,499 \|					356,244 \|						2,477,091 \|																																																																			
1995	436,433 \|	216,109 \|	116,916 \|		167,306																																																																																	
1996	82,090	41,187	21,719	90,690																																																																																		
1997	6,446,284 \|															1,858,652 \|															904,886 \|															4,692,773 \|																																								
1998	2,666,551 \|						1,179,252 \|										534,587 \|									4,739,875 \|																																																												
1999	332,450	189,360 \|	106,950 \|	810,586																																																																																		
2000	117,802	63,703	37,162	53,810																																																																																		
2001	4,381,602 \|										3,510,789 \|																													\|		1,740,472																													3,701,006 \|															
2002	4,800,147 \|											3,062,151 \|																										1,312,599 \|																					640,265 \|																											
2003	853,991 \|		279,170 \|		148,465 \|		143,876																																																																															
2004	271,722	10,222	6,628	13,042																																																																																		
2005	3,592,160 \|								1,447,381 \|												777,707 \|													NA																																																				
2006	723,165 \|	169,768 \|	90,415 \|	NA																																																																																		
2007	119,068	75,100	33,777	NA																																																																																		
2008	68,161	7,091	2,471	NA																																																																																		

8 Seymour $\quad \|| |=1 / 10$ of max for each variable

Max	823,255	272,041	108,279	824,169
Avg	134,308	32,080	15,051	132,489
Min	7,831	1,323	311	1,944

Year	Run	Spawners Ef	Effective Females	Recruits																																																																																																	
1948	NA	3,889	1,280	29,658																																																																																																	
1949	NA	10,772 \|	3,476	34,705																																																																																																	
1950	NA	11,049	4,697 \|	162,026 \|																																																																																																	
1951	NA	24,320 \|		11,505 \|			68,943 \|																																																																																														
1952	NA	5,963	2,780	11,249																																																																																																	
1953	26,526	5,692	2,907	45,268																																																																																																	
1954	169,597 \|						24,774 \|		12,852 \|			461,522 \|																																																																																									
1955	68,057 \|		8,971	5,178 \|	310,002 \|																																																																																																
1956	12,160	2,490	1,102	12,763																																																																																																	
1957	69,000 \|		10,870 \|	7,416 \|		24,583																																																																																															
1958	429,330 \|															78,371 \|								44,285 \|												195,518 \|																																																																	
1959	317,483 \|										52,310 \|				25,773 \|							175,980 \|																																																																															
1960	12,088	2,901	1,862	8,837																																																																																																	
1961	20,357	3,622	1,957	32,923 \|																																																																																																	
1962	201,147 \|							57,836 \|						28,664 \|							176,546 \|																																																																																
1963	175,764 \|						71,654 \|							26,742 \|							114,086 \|																																																																																
1964	9,120	2,745	1,321	18,498																																																																																																	
1965	28,815 \|	6,089	2,550	34,890 \|																																																																																																	
1966	177,006 \|						28,698 \|			12,943 \|			141,828 \|																																																																																								
1967	116,094 \|				13,361 \|	7,264 \|		220,851 \|																																																																																													
1968	19,851	3,838	2,064	22,108																																																																																																	
1969	35,869 \|	7,176	3,276	14,875																																																																																																	
1970	139,811 \|					11,971 \|	3,603	226,369 \|																																																																																													
1971	218,158 \|							19,028 \|		9,463 \|		135,310 \|																																																																																									
1972	26,273	2,802	1,418	56,785 \|																																																																																																	
1973	15,232	2,704	1,150	24,800																																																																																																	
1974	225,046 \|								44,588 \|				25,868 \|							248,730 \|																																																																																	
1975	134,549 \|				36,828 I\|			16,844 \|				180,684 \|																																																																																									
1976	58,818 \|		8,306	4,898 \|	18,422																																																																																																
1977	25,734	5,709	2,883	70,046 \|																																																																																																	
1978	249,042 \|									62,808 \|						30,757 \|								261,925 \|																																																																													
1979	175,050 \|						49,306 \|	I			24,866 \|						135,614 \|																																																																																				
1980	22,335	8,309	4,616	52,848																																																																																																	
1981	54,756 \|	11,359 \|	5,354 \|	30,875 \|																																																																																																	
1982	272,372 \|									63,271 \|						27,219 \|							508,455 \|																																																																														
1983	97,986 \|			29,831 \|			14,014 \|			272,460 \|																																																																																											
1984	87,664 \|			17,172 \|	9,148 \|		36,017 \|																																																																																														
1985	36,716\|	5,620	2,684	43,576 \|																																																																																																	
1986	499,854 \|																		126,166 \|												57,069 \|														824,169 \|																																																								
1987	274,809 \|										84,315 \|									41,081 \|											442,220 \|																																																																						
1988	44,371 \|	16,781 \|	7,989 \|		10,843																																																																																																
1989	33,250 \|	5,507	2,864	18,877																																																																																																	
1990	823,255 \|																													272,041 \|																												\|			108,279																														278,827 \|										
1991	427,423 \|															128,253 \|														60,845 \|																95,565 \|																																																							
1992	34,900 \|	5,742	3,586	17,906																																																																																																	
1993	20,761	10,119 \|	4,950 \|	8,716																																																																																																	
1994	272,278 \|									64,038 \|							19,151 \|					172,547 \|																																																																															
1995	90,723 \|			48,746 \|					23,928 \|						66,040 \|																																																																																						
1996	26,383	21,654 \|		9,590 \|		39,470 \|																																																																																															
1997	9,029	2,254	836	1,944																																																																																																	
1998	172,367 \|						34,048 \|			14,548 \|				214,404 \|																																																																																							
1999	66,985 \|		18,895 \|		10,072 \|		133,931 \|																																																																																														
2000	34,691 \|	25,465 \|		11,860 \|			59,563 \|																																																																																														
2001	8,605	6,892	3,743 \|	19,042																																																																																																	
2002	210,570 \|							113,408 \|											55,465 \|														507,957 \|																																																																				
2003	109,587 \|			31,345 \|			18,483 \|					12,366																																																																																									
2004	86,533 \|			1,323	762	6,904																																																																																															
2005	16,798	3,590	2,326	NA																																																																																																	
2006	501,926 \|																		107,941 \|											57,783 \|																NA																																																							
2007	20,507	9,979 \|	5,905 \|	NA																																																																																																	
2008	7,831	1,350	311	NA																																																																																																	

Late Shuswap $\quad||\mid=1 / 10$ of max for each variable

Max	15,110,393	5,532,263	2,845,464	15,869,336																																																																																					
Avg	2,199,677	647,524	321,206	2,161,609																																																																																					
Min	2,659	164	83	1,388																																																																																					
Year	Run	Spawners Eff	ffective Females	Recruits																																																																																					
1948	NA	10,356	8,502	28,330																																																																																					
1949	NA	3,606	2,011	40,793																																																																																					
1950	NA	1,271,381 \|						583,045 \|	I				9,944,058 \|																																																																												
1951	NA	143,498	82,097	529,582 \|																																																																																					
1952	NA	7,317	4,211	17,932																																																																																					
1953	623,812 \|	3,472	1,623	31,027																																																																																					
1954	9,325,573 \|																	2,026,693 \|										1,067,603 \|											15,869,336 \|																																																		
1955	564,055 \|	63,859	44,632	865,520 \|																																																																																					
1956	18,289	3,321	2,103	7,974																																																																																					
1957	746,422 \|	2,809	1,651	3,163																																																																																					
1958	15,110,393 \|																											3,297,045 \|																	1,644,152 \|																	2,213,808 \|																											
1959	909,161 \|	134,826	89,270	382,302																																																																																					
1960	8,114	1,907	1,322	2,549																																																																																					
1961	127,110	1,150	854	8,147																																																																																					
1962	2,086,042 \|				1,144,115 \|						651,863 \|						2,925,312 \|																																																																								
1963	386,642	158,468	80,244	3,131,346 \|																																																																																					
1964	2,659	604	345	19,626																																																																																					
1965	97,559	2,087	1,332	24,808																																																																																					
1966	2,820,125 \|					1,280,308 \|						660,849 \|						4,051,932 \|																																																																							
1967	3,144,289 \|						844,896 \|				402,412 \|				3,184,223 \|																																																																										
1968	22,588	3,686	2,713	21,961																																																																																					
1969	125,541	5,985	3,166	29,860																																																																																					
1970	3,982,320 \|								1,524,303 \|								785,282 \|								5,580,907 \|	I																																																															
1971	3,143,039 \|						289,908 \|	158,976 \|	702,125 \|																																																																																
1972	32,300	4,192	2,155	44,505																																																																																					
1973	202,978	3,808	2,467	67,868																																																																																					
1974	5,397,611 \|										1,150,772 \|						619,123 \|						7,050,422 \|																																																																		
1975	715,459 \|	167,381	85,544	1,026,264 \|																																																																																					
1976	42,506	4,780	3,072	14,170																																																																																					
1977	211,326	12,510	6,027	93,645																																																																																					
1978	6,891,681 \|													1,897,353 \|										1,014,761 \|										9,657,108 \|																																																							
1979	1,039,295 \|		299,547	162,142 \|	1,499,666 \|																																																																																				
1980	14,747	2,498	1,816	23,307																																																																																					
1981	212,923	10,314	5,959	9,470																																																																																					
1982	9,366,352 \|																		3,060,235 \|																1,568,605 \|																9,464,846 \|																																						
1983	1,655,793 \|			211,365 \|	100,256 \|	1,980,917 \|																																																																																			
1984	38,141	4,346	2,409	33,174																																																																																					
1985	89,787	1,468	806	13,723																																																																																					
1986	9,223,742 \|																		2,345,230 \|												1,068,479 \|											10,934,052 \|																																															
1987	2,125,988 \|				617,343 \|			319,734 \|			3,903,932 \|																																																																														
1988	48,992	5,011	3,558	8,220																																																																																					
1989	72,317	563	380	13,135																																																																																					
1990	10,638,002 \|																						3,717,673 \|																						1,745,709 \|																			7,770,211 \|																									
1991	4,086,523 \|								1,255,852 \|						616,033 \|						866,189 \|																																																																				
1992	62,092	12,996	6,640	19,909																																																																																					
1993	36,347	1,395	765	15,366																																																																																					
1994	7,603,407 \|															1,409,211 \|							686,190 \|							2,610,200 \|																																																											
1995	991,547 \|	428,875 \|		210,969 \|		771,591 \|																																																																																			
1996	31,054	12,466	5,492	61,532																																																																																					
1997	24,420	1,072	597	34,711																																																																																					
1998	2,590,229 \|					1,389,271 \|							680,650 \|							7,248,023 \|																																																																					
1999	770,717 \|	343,540 \|	138,247 \|	698,913 \|																																																																																					
2000	51,951	855	164	1,388																																																																																					
2001	149,532	4,861	2,141	8,890																																																																																					
2002	7,142,670 \|														5,532,263 \|																													\|		2,845,464																														7,509,787 \|													
2003	697,945 \|	381,278 \|		189,793 \|		138,420																																																																																			
2004	22,768	2,994	2,234	1,558																																																																																					
2005	75,289	21,113	11,792	NA																																																																																					
2006	7,394,430 \|														2,897,709 \|															1,170,725 \|												NA																																															
2007	175,092	61,043	32,296	NA																																																																																					
2008	12,198	164	83	NA																																																																																					

10 Birkenhead																																																																																																												
Max	1,645,000	335,630	197,896	1,815,929																																																																																																								
Avg	384,265	80,757	43,804	382,014																																																																																																								
Min	54,042	11,905	5,510	13,338																																																																																																								
Year	Run	Spawners Eff	ffective Females	Recruits																																																																																																								
1948	NA	83,787 \|	IIIII		54,755 \|								207,185 II\|																																																																																															
1949	NA	70,504 \|						43,328 \|						306,824 \|																																																																																														
1950	NA	64,440 \|					41,370 \|						241,164 \|																																																																																															
1951	NA	21,296 \|	13,590 \|		215,197 \|																																																																																																							
1952	NA	47,041 \|				24,744 \|			243,943 \|																																																																																																			
1953	277,921 \|					42,491 \|			16,287 \|		155,190 \|																																																																																																	
1954	241,810 \|				18,213 \|	8,635 \|	174,476 \|																																																																																																					
1955	163,996 \|		14,553 \|	8,185 \|	274,765 \|																																																																																																							
1956	267,364 \|				49,754 \|				27,156 \|				277,412 \|																																																																																															
1957	163,859 \|		14,536 \|	7,068 \|	73,969 \|																																																																																																							
1958	209,572 \|			15,166 \|	5,510	128,540 \|																																																																																																						
1959	273,459 \|				26,159 \|		11,388	267,850 \|																																																																																																				
1960	229,571 \|				36,838 \|			19,198 \|		168,764 \|																																																																																																		
1961	110,107 \|		31,681 \|		10,550 \|	128,515 \|																																																																																																						
1962	131,644 \|		26,369 \|		14,311 \|		102,483 \|																																																																																																					
1963	255,230 \|				48,893 \|				20,769 \|			455,767 \|																																																																																																
1964	188,770 \|			48,908 \|				27,978 \|				365,682 \|																																																																																																
1965	109,135 \|	16,230 \|	9,769 \|	163,688 \|																																																																																																								
1966	200,785 \|			20,116 \|	13,462 \|		316,227 \|																																																																																																					
1967	337,100 \|						39,876 \|			17,580 \|		491,588 \|																																																																																																
1968	332,046 \|						57,947 \|					31,042 \|				285,105 \|																																																																																												
1969	267,383 \|				37,382 \|			14,324 \|		791,608 \|																																																																																																		
1970	238,082 \|				30,656 \|		19,252 \|		736,053 \|																																																																																																			
1971	491,308 \|								24,629 \|		16,143 \|		368,545 \|																																																																																															
1972	359,172 \|						54,516 \|				26,202 \|			519,125 \|																																																																																														
1973	616,194 \|											56,653 \|					28,374 \|	I		216,524 \|																																																																																								
1974	880,175 \|															119,637 \|										85,495 \|												722,909 \|																																																																						
1975	354,038 \|						61,538 \|					23,315 \|			120,109 \|																																																																																													
1976	528,870 \|									77,305 \|						50,023 \|							616,213 \|																																																																																					
1977	247,970 \|	I		23,845 \|		12,799 \|	425,661 \|																																																																																																					
1978	466,395 \|								94,782 \|								48,158 \|							664,732 \|																																																																																				
1979	351,482 \|					60,988 \|					35,482 \|					414,741 \|																																																																																												
1980	524,681 \|										78,613 \|							32,786 \|				163,172 \|																																																																																						
1981	439,405 \|								49,023 \|				27,175 \|				266,159 \|																																																																																											
1982	627,225 \|										119,738 \|										72,353 \|									1,815,929 \|																																																																														
1983	413,274 \|							44,029 \|			21,113 \|			806,674 \|																																																																																														
1984	246,496 \|				40,245 \|			23,227 \|			467,656 \|																																																																																																	
1985	190,989 \|			11,905 \|	5,758	244,631 \|																																																																																																						
1986	1,645,000 \|																												335,630 \|																													\|		197,896																													1,211,967 \|																			
1987	926,526 \|															164,849 \|														89,432 \|													988,553 \|																																																																	
1988	525,069 \|									166,591 \|														75,535 \|											923,851 \|																																																																									
1989	262,065 \|				29,334 \|		15,739 \|																																																																																																					
1990	983,804 \|																	166,773 \|															97,112 \|														238,613 \|																																																													
1991	1,047,153 \|																	293,626 \|																									152,083 \|																					120,668 \|																																												
1992	522,057 \|									185,908 \|															93,443 \|														98,306																																																																					
1993	1,638,660 \|																												244,954 \|																						151,096 \|																						573,466 \|																																			
1994	375,783 \|						39,234 \|			22,315 \|			67,413 \|																																																																																															
1995	87,005 \|	39,871 \|			18,430 \|		170,525 \|																																																																																																					
1996	121,470 \|		56,112 \|					27,848 \|				78,931 \|																																																																																																
1997	228,234 \|				50,202 \|				23,275 \|			30,582																																																																																																
1998	406,934 \|							295,669 \|																										173,045 \|																									618,373 \|																																																	
1999	186,244 \|			48,916 \|			26,268 \|			83,528 \|																																																																																																		
2000	63,091	13,842 \|	8,333 \|	101,965																																																																																																								
2001	62,556	44,450 \|			28,361 \|				191,674 \|																																																																																																			
2002	225,740 \|				189,445 \|															107,481 \|																633,756 \|																																																																								
2003	452,736 \|								309,878 \|																										152,651 \|																								13,338																																																	
2004	99,983 \|	37,617 \|			17,516 \|		76,602 \|																																																																																																					
2005	149,258 \|		53,546 \|				27,116 \|				NA																																																																																																	
2006	583,865 \|										266,459 \|																					137,364 \|																			NA																																																									
2007	136,045 \|		93,480 \|								54,290 \|								NA																																																																																									
2008	54,042	19,500 \|	6,784 \|	NA																																																																																																								

11 Cultus \|		$=1 / 10$ of max for each variable																																																																																				
Max	277,696	47,779	29,903	277,284																																																																																		
Avg	39,679	10,675	5,916	40,360																																																																																		
Min	108	52	17	80																																																																																		
Year	Run	Spawners Ef	Effective Females	Recruits																																																																																		
1948	NA	12,746 \|								6,671 \|	III		39,076 \|																																																																									
1949	NA	9,055 \|					5,617 \|					39,151 \|																																																																										
1950	NA	29,928 \|																		18,582 \|																		105,287 \|																																																
1951	NA	12,677 \|							9,034 \|									174,068 \|																																																																				
1952	NA	17,833 \|											11,331 \|											44,424 \|																																																														
1953	42,368 \|				11,543 \|							4,939 \|	I		63,669 \|																																																																							
1954	105,162 \|											22,036 \|													10,496 \|										65,195 \|																																																			
1955	166,202 \|																25,922 \|															16,743 \|															277,284 \|																																							
1956	38,023 \|				13,718 \|								8,486 \|								37,505 \|																																																																	
1957	75,214 \|								20,375 \|												12,260 \|											28,083 III																																																						
1958	64,096 \|						13,324 \|								7,031 \|							50,913 \|																																																																
1959	277,696 \|																										47,779 \|																										\|	I	29,903																												52,194 \|			
1960	36,444 \|			17,640 \|											9,449 \|									23,503 \|																																																														
1961	31,338 \|			13,396 \|								6,567 \|						6,148																																																																				
1962	47,647 \|					26,997 \|																16,384 \|																36,007 \|																																																
1963	52,211 \|					20,303 \|												10,524 \|										138,448 \|																																																										
1964	24,249 \|		11,067 \|						5,798 \|					70,603 \|																																																																								
1965	6,892	2,455 \|	1,515 \|	20,986 \|																																																																																		
1966	39,308 \|				16,919 \|										8,630 \|								45,065 I\|																																																															
1967	132,823 \|														33,198 \|																				17,209 \|																	110,501 \|																																		
1968	72,233 \|							25,314 \|																13,889 \|													42,454 \|																																																	
1969	25,707 \|		5,942 \|			2,970 \|		6,477																																																																														
1970	47,795 I\|III	13,941 \|								7,622 \|							45,857 I\|																																																																					
1971	97,142 \|									9,128 \|					4,638 \|				50,701 \|																																																																			
1972	49,978 \|					10,366 \|						5,410 \|					30,360 \|																																																																					
1973	5,941	641	302	713																																																																																		
1974	47,470 \|					8,984 \|					4,999 \|					29,718 \|																																																																						
1975	48,202 \|	I			11,349 \|							6,856 \|						115,787 \|																																																																				
1976	30,377 \|			4,435 \|		2,693 \|		6,129																																																																														
1977	1,119	82	38	1,571																																																																																		
1978	35,140 \|			5,076 \|			2,947 \|		73,948 \|																																																																													
1979	109,671 \|											109,906 \|																																																																										
1980	6,490	1,657 \|	900	4,825																																																																																		
1981	6,294	256	134	1,544																																																																																		
1982	70,773 \|							16,725 \|										9,599 \|									18,831 \|																																																											
1983	106,803 \|											19,944 \|												11,490 \|										96,326 \|																																																				
1984	6,845	720	389	9,321 \|																																																																																		
1985	1,848	424	195	2,431																																																																																		
1986	12,842 \|	3,210 \|		2,020 \|		10,488 \|																																																																																
1987	100,936 \|										32,162 \|																			16,220 \|																65,855 \|																																								
1988	10,114 \|	861	455	7,825																																																																																		
1989	2,222	418	220	10,745																																																																																		
1990	10,419 \|	1,860 \|	944	24,767 \|																																																																																		
1991	65,018 \|							20,157 \|											9,850 \|									17,363 \|																																																										
1992	7,505	1,203	698	1,880																																																																																		
1993	11,107 \|	1,063	571	160																																																																																		
1994	23,266 \|		4,399 \|		2,524 \|		10,408 \|																																																																															
1995	19,089 \|		10,316 \|						4,279 \|				15,414 \|																																																																									
1996	2,442	2,022 \|	723	4,365																																																																																		
1997	156	88	35	716																																																																																		
1998	10,503 \|	1,959 \|	955	6,025																																																																																		
1999	13,840	12,427 \|							4,800 \|				2,852																																																																									
2000	5,837	1,227	470	80																																																																																		
2001	698	515	180	212																																																																																		
2002	5,974	4,873 \|			2,375 \|		5,292																																																																															
2003	2,885	1,939 \|	662	728																																																																																		
2004	108	52	17	NA																																																																																		
2005	402	112	57	NA																																																																																		
2006	5,015	3,509 \|		1,305 \|	NA																																																																																	
2007	934	538	210	NA																																																																																		
2008	1,192	338	145	NA																																																																																		

\|I	$=1 / 10$ of max for each variable																																																																																						
Max	202,593	31,343	15,201	210,984																																																																																			
Avg	46,723	6,448	3,346	42,423																																																																																			
Min	742	9	5	47																																																																																			
Year	Run	Spawners Ef	Effective Females	Recruits																																																																																			
1953	NA	50	24	394																																																																																			
1954	NA	3,369 \|			1,729 \|			38,700 \|																																																																															
1955	NA	41	20	4,392																																																																																			
1956	NA	NA	NA	NA																																																																																			
1957	NA	40	20	47																																																																																			
1958	35,962 \|					4,791 \|				2,749 \|					25,645 \|																																																																								
1959	NA	572	286	5,565																																																																																			
1960	NA	NA	NA	NA																																																																																			
1961	NA	23	12	2,723																																																																																			
1962	24,872 \|			11,935 \|											6,326 \|												72,180 \|																																																												
1963	NA	2,011 \|	1,116 \|		58,437 \|																																																																																		
1964	NA	9	5	624																																																																																			
1965	NA	981	589 \|	3,463																																																																																			
1966	72,325 \|										31,343 \|																														\|				15,201																														31,339 \|												
1967	56,440 \|								4,025 \|			1,983 \|			4,286																																																																								
1968	742	86	51	1,046																																																																																			
1969	3,651	963	491	34,582 \|																																																																																			
1970	30,871 \|				3,873 \|			2,139 \|				58,068 \|																																																																											
1971	4,308	281	155	18,043 \|																																																																																			
1972	4,999	190	98	15,283 \|																																																																																			
1973	32,060 \|				3,963 \|			1,688 \|			91,287 \|																																																																												
1974	58,801 \|								8,475 \|								4,843 \|									42,611 \|																																																													
1975	17,939 \|		3,175 \|			1,631 \|			15,753 \|																																																																														
1976	23,928 \|			1,042	753 \|	7,590 \|																																																																																	
1977	82,341 \|												7,610 \|							3,923 \|							39,989 \|																																																												
1978	41,513 \|						9,978 \|									3,963 \|							111,703 \|																																																																
1979	15,089 \|		3,575 \|			2,023 \|			52,692 \|																																																																														
1980	8,100	1,800	996	12,225 \|																																																																																			
1981	39,750 \|					5,855 \|					2,951 \|					20,069 \|																																																																							
1982	100,971 \|														23,867 \|																						11,734 \|																							210,984 \|																											
1983	63,045 \|									7,747 \|							4,909 \|									37,358 \|																																																													
1984	12,420 \|	1,710 \|	941 \|	50,565 \|																																																																																			
1985	17,289 \|		1,765 \|	960 \|	25,840 \|																																																																																		
1986	202,593 \|																											14,291 \|													6,212 \|											71,594 \|																																			
1987	49,008 \|							6,820 \|						3,766 \|							63,044 \|																																																																		
1988	25,630 \|			1,068 \|	797 \|	21,096 \|																																																																																	
1989	49,583 \|							7,900 \|						5,067 \|																																																																									
1990	69,041 \|											18,336 \|																			8,415 \|																		50,970 \|	I																																					
1991	65,213 \|									12,053 \|											7,292 \|													15,891 \|																																																					
1992	17,361 \|		2,706 \|		1,378 \|		17,136 \|																																																																																
1993	190,877 \|																										19,760 \|																		9,829 \|																			174,902 \|																							
1994	63,474 \|									9,270 \|								3,890 \|							127,670 \|																																																														
1995	17,588 \|		7,875 \|							4,319 \|								40,314 \|																																																																					
1996	14,118 \|		3,422 \|			1,759 \|			86,511 \|																																																																														
1997	171,626 \|																								9,766 \|									5,056 \|									41,499 \|																																												
1998	130,209 \|																		25,179 \|																								11,873 \|																							18,053 \|																					
1999	40,228 \|					6,264 \|					2,079 \|				9,078 \|																																																																								
2000	86,582 \|													1,269 \|	671 \|	12,829 \|																																																																							
2001	43,064 \|						3,150 \|			1,851 \|			18,610 \|																																																																										
2002	18,931 \|		14,953 \|														8,001 \|															48,191 \|																																																							
2003	8,824 \|	4,940 \|				3,179 \|						5,210																																																																											
2004	13,572 \|		1,287 \|	778 \|	5,695																																																																																		
2005	18,593 \|		12,082 \|											8,261 \|															NA																																																										
2006	48,183 \|							18,882 \|																		10,971 \|																				NA																																									
2007	4,835	1,699 \|	849 \|	NA																																																																																			
2008	6,002	97	63	NA																																																																																			

13 Weaver Creek ||| = $1 / 10$ of max for each variable

Max	$1,338,092$	294,083	115,031	$1,505,995$
Avg	371,305	49,062	23,197	364,686
Min	59,471	2,756	616	42,717

Year	Run	Spawners Ef	Effective Females	Recruits																																																																																																										
1966	NA	19,489	9,860 \|		76,161																																																																																																									
1967	NA	22,581 \|		10,619 \|		88,405																																																																																																								
1968	NA	3,799	2,202	155,396 \|																																																																																																										
1969	NA	58,727 \|				30,604 \|					412,913 \|																																																																																																			
1970	NA	10,435 \|	5,004 \|	384,039 \|																																																																																																										
1971	82,203	4,990	2,656	155,284 \|																																																																																																										
1972	154,227 \|			25,738 \|		15,027 \|			350,142 \|																																																																																																					
1973	389,606 \|								48,541 \|				24,885 \|						274,667 \|	I																																																																																										
1974	420,933 \|									64,093 \|						28,099 \|							284,880 \|																																																																																							
1975	151,690 \|			29,736 \|			16,033 \|				169,860 \|																																																																																																			
1976	340,808 \|							49,932 \|	I			28,243 \|	I					304,434 \|																																																																																												
1977	274,831 \|						52,627 \|					28,510 \|							235,763 \|																																																																																											
1978	268,428 \|	I				75,171 \|							42,315 \|											1,366,185 \|																																																																																						
1979	200,964 \|				45,026 IIII	25,702 \|						141,028 \|																																																																																																		
1980	275,796 \|						73,830 \|							43,285 \|											364,714 \|																																																																																					
1981	250,979 \|					42,002 \|	I		22,627 \|					270,292 \|																																																																																																
1982	1,201,868 \|																									294,083 \|																											\|			115,031																												1,505,995 \|																										
1983	302,470 \|						39,341 \|				27,380 \|	I					239,991 \|																																																																																													
1984	346,248 \|							59,602 \|						30,435 \|							635,778 \|																																																																																									
1985	245,733 \|					37,019 \|			22,773 \|					69,300 \|																																																																																																
1986	1,338,092 \|																												110,738 \|											41,837 \|										42,717																																																												
1987	448,634 \|										59,968 \|						30,106 \|							220,718 \|																																																																																						
1988	594,647 \|													49,258 \|					27,623 \|							513,778 \|																																																																																				
1989	101,711 \|		17,167	10,620 \|		765,938 \|																																																																																																								
1990	59,471 \|	16,365	8,524 \|		634,660 \|																																																																																																									
1991	198,747 \|				38,121 \|			18,710 \|				65,545 \|																																																																																																		
1992	365,168 \|								58,686 \|					28,480 \|							753,217 \|																																																																																									
1993	873,383 \|																		84,456 \|								34,019 \|								500,654 \|																																																																											
1994	672,610 \|														64,956 \|						35,516 \|									715,932 \|																																																																																
1995	77,637 \|	33,125 \|			10,905 \|		266,443 \|																																																																																																							
1996	640,946 \|														72,070 \|							26,849 \|							383,413 \|																																																																																	
1997	509,510 \|											25,504 \|		10,724 \|		215,997 \|	I																																																																																													
1998	766,084 \|																57,091 \|					29,811 \|							566,885 \|																																																																																	
1999	239,693 \|					34,634 \|			13,106 \|		246,929 \|																																																																																																			
2000	446,928 \|										6,613	2,732	114,132 \|																																																																																																	
2001	225,093 \|					19,915 \|		8,035 \|		196,083 \|																																																																																																				
2002	524,062 \|											101,033 \|										36,269 \|									242,830 \|																																																																															
2003	248,940 \|					49,488 \|					24,681 \|						188,799 \|																																																																																													
2004	168,587 \|			25,379 \|		13,967 \|			102,858 \|																																																																																																					
2005	155,708 \|			48,516 \|				23,597 \|						NA																																																																																																
2006	277,878 \|						39,781 \|				13,618 \|			NA																																																																																																
2007	149,581 \|			37,300 \|			15,825 \|				NA																																																																																																			
2008	119,683 \|		2,756	616	NA																																																																																																									

14 Fennel Creek																																																																																							
Max	69,236	32,279	15,223	78,650																																																																																			
Avg	26,125	7,098	3,895	25,888																																																																																			
Min	1,003	9	5	586																																																																																			
Year	Run	Spawners Eff	ffective Females	Recruits																																																																																			
1967	NA	916	294	15,201 \|																																																																																			
1968	NA	954	577 \|	15,037 \|																																																																																			
1969	NA	52	22	881																																																																																			
1970	NA	9	5	740																																																																																			
1971	NA	1,293 \|	306	16,707 \|																																																																																			
1972	14,846 \|						1,931 \|	1,030 \|		29,007 \|																																																																													
1973	1,058	205	83	1,106																																																																																			
1974	1,003	140	70	586																																																																																			
1975	15,603 \|						4,005 \|			2,181 \|				62,451 \|																																																																									
1976	29,190 \|												4,090 \|	I	2,373 \|				22,761 \|																																																																				
1977	1,764	355	174	10,484 \|																																																																																			
1978	1,105	107	46	2,390																																																																																			
1979		15,565 \|												8,046 \|												18,386 \|																																																													
1980	23,293 \|										8,437 \|							4,413 \|								36,205 \|																																																													
1981	10,031 \|				2,076 \|	1,069 \|		3,947 \|																																																																															
1982	5,296 \|		1,132 \|	656 \|	11,140 \|																																																																																		
1983	9,144 \|			4,977 \|				2,596 \|					39,122 \|																																																																										
1984	43,562 \|																		11,021 \|										6,291 \|												49,442 \|																																														
1985	4,680 \|		1,598 \|	696 \|	33,819 \|																																																																																		
1986	10,433 \|				6,024 \|					3,324 \|						35,411 \|																																																																							
1987	38,191 \|																16,633 \|															9,211 \|																	78,650 \|																																						
1988	45,929 \|																			26,927 \|																								13,098 \|																									50,650 \|																		
1989	30,062 \|												3,988 \|			2,813 \|					19,804 \|																																																																		
1990	43,296 \|																			11,862 \|												6,702 \|													22,803 \|																																										
1991	68,149 \|																													20,554 \|																			11,944 \|																								14,854 \|														
1992	56,756 \|																									9,139 \|								5,959 \|											50,629 \|																																										
1993	20,431 \|								7,546 \|							4,928 \|									42,656 \|																																																														
1994	20,406 \|								5,919 \|					3,507 \|						13,865 \|																																																																			
1995	18,960 \|								11,245 \|										5,986 \|											37,010 \|																																																									
1996	46,989 \|																				32,279 \|																													\|		15,223																														13,827 \|					
1997	36,539 \|														9,000 \|								4,326 \|								6,261 \|																																																								
1998	18,848 \|								8,741 \|								4,966 \|									13,140 \|																																																													
1999	40,391 \|														5,697 \|				3,333 \|					43,525 \|																																																															
2000	15,045 \|	I				10,155 \|									4,623 \|									60,597 \|																																																															
2001	8,113 \|			5,721 \|					3,302 \|						11,861 \|																																																																								
2002	11,829 \|					7,198 \|						4,847 \|									76,212 \|																																																																		
2003	34,407 \|														9,087 \|								5,226 \|										13,693 \|																																																						
2004	69,236 \|																													2,718 \|		1,568 \|			8,898 \|																																																				
2005	13,930 \|						4,220 \|	I	2,760 \|	I			NA																																																																										
2006	69,185 \|																													11,117 \|										8,038 \|																NA																															
2007	19,719 \|								11,212 \|									6,783 \|													NA																																																								
2008	10,262 \|				2,270 \|		210	NA																																																																															

Max	315,105	99,470	17,840	319,543																																																																																					
Avg	54,259	13,496	4,393	55,275																																																																																					
Min	4,217	70	14	412																																																																																					
Year	Run	Spawners Ef	Effective Females	Recruits																																																																																					
1968	NA	10,113 \|			3,835 \|	I				82,665 \|	I																																																																														
1969	NA	777	359	4,766																																																																																					
1970	NA	78	14	412																																																																																					
1971	NA	426	115	12,647 \|																																																																																					
1972	NA	8,323 \|		3,128 \|					132,613 \|																																																																																
1973	4,217	795	351	14,685 \|																																																																																					
1974	5,248	70	37	2,972																																																																																					
1975	11,901 \|	1,982	1,246 \|		19,756 \|																																																																																				
1976	129,455 \|												17,133 \|					8,820 \|													73,230 \|																																																										
1977	11,328 \|	2,582	1,174 \|	21,324 \|																																																																																					
1978	9,148	258	129	1,647																																																																																					
1979	18,924 \|	3,828	1,648 \|		18,266 \|																																																																																				
1980	68,525 \|						25,088 \|							11,032 \|																			79,631 \|																																																								
1981	20,047 \|	4,670 \|	1,908 \|			18,129 \|																																																																																			
1982	6,288	930	439	9,701																																																																																					
1983	17,608 \|	7,384 \|		3,055 \|					28,098 \|																																																																																
1984	77,380 \|							28,899 \|								9,072 \|															137,919 \|																																																										
1985	19,424 \|	4,578 \|	2,031 \|			131,962 \|																																																																																			
1986	10,321	3,572 \|	1,879 \|			27,349 \|																																																																																			
1987	28,806 \|		9,417 \|		4,105 \|						27,833 \|																																																																														
1988	121,761 \|											44,913 \|													17,840 \|																														319,543 \|																																		
1989	142,321 \|												16,963 \|				9,794 \|														53,094 \|																																																										
1990	32,839 \|			5,374	3,304 \|	I			15,949 \|																																																																																
1991	32,755 \|			9,040 \|		4,618 \|							21,685 \|																																																																												
1992	315,105 \|																												41,747 \|												9,224 \|															195,433 \|																																	
1993	43,840 \|				17,952 \|					9,089 \|															67,524 \|																																																																
1994	23,281 \|		3,360 \|	1,706 \|		34,364 \|																																																																																			
1995	32,130 \|		7,181 \|		4,533 \|							23,459 \|																																																																													
1996	177,767 \|																99,470 \|																													\|			14,150																							198,058 \|																	
1997	63,368 \|						6,498 \|	1,877 \|			13,409 \|																																																																														
1998	35,566 \|			7,248 \|		2,442 \|				4,812																																																																															
1999	33,872 \|		4,135	1,765 \|		42,642 \|																																																																																			
2000	190,293 \|																		88,647 \|																									16,571 \|																										92,002 \|																			
2001	20,535 \|	12,921 \|			4,008 \|						50,246 \|																																																																														
2002	7,523	2,173	1,144 \|	13,001 \|																																																																																					
2003	38,916 \|			9,811 \|		5,036 \|								4,761																																																																											
2004	89,834 \|								9,606 \|		5,484 \|									49,579 \|																																																																					
2005	48,716 \|				15,150 \|				8,850 \|														NA																																																																		
2006	17,999 \|	2,858	1,456 \|		NA																																																																																				
2007	4,915	2,555	1,079 \|	NA																																																																																					
2008	41,380 \|			14,838 \|				1,754 \|		NA																																																																															

||| $=1 / 10$ of max for each variable

Max	451,557	194,381	65,444	546,597
Avg	81,361	21,858	9,044	81,525
Min	3,824	1,625	846	3,186

Year	Run	Spawners Ef	Effective Females	Recruits																																																																																																												
1973	NA	16,720 \|		9,638 \|				73,354 \|																																																																																																								
1974	NA	3,730	2,074	20,212 \|																																																																																																												
1975	NA	15,309 \|		8,359 \|			158,876 \|																																																																																																									
1976	NA	1,625	846	7,274																																																																																																												
1977	NA	16,858 \|		9,260 \|				132,049 \|																																																																																																								
1978	26,098	2,584	1,527	31,247 \|																																																																																																												
1979	152,834 \|										55,681 \|								20,415 \|									101,373 \|																																																																																				
1980	13,148	3,017	1,518	21,372 \|																																																																																																												
1981	125,386 \|								18,912 \|		10,924 \|					76,800 IIII																																																																																																
1982	34,976 \|		2,349	1,423	6,775																																																																																																											
1983	86,683 \|					26,876 \|				15,419 \|							149,731 \|																																																																																															
1984	33,498 \|		7,070 \|	3,501 \|	24,917 \|																																																																																																											
1985	78,545 \|					13,807 \|		7,722 \|			46,853 \|																																																																																																					
1986	8,977	3,545	2,048	20,838 \|																																																																																																												
1987	139,891 \|								37,624 \|					15,150 \|						191,036 \|																																																																																												
1988	31,813 \|		8,744 \|	4,304 \|	57,739 \|																																																																																																											
1989	45,734 \|			4,940	2,653	20,016 \|																																																																																																										
1990	21,538 \|	6,033	3,404 \|	15,734																																																																																																												
1991	175,659 \|											61,074 \|									33,360 \|														56,339 \|																																																																													
1992	68,657 \|				7,728 \|	2,355 \|	104,713 \|																																																																																																									
1993	24,667 \|	9,595 \|	4,797 \|		56,702 \|																																																																																																											
1994	19,657 \|	2,008	1,076	18,358 \|																																																																																																												
1995	47,970 \|			23,998 \|			8,403 \|			65,517 \|																																																																																																						
1996	63,955 \|				38,654 \|					18,093 \|								546,597 \|																																																																																														
1997	101,188 \|						9,499 \|	2,681 \|	3,186																																																																																																							
1998	15,180 \|	3,705	1,983	4,879																																																																																																												
1999	73,967 \|				10,338	5,026 \|		11,388																																																																																																								
2000	451,557 \|																														194,381 \|																															\|				65,444																																259,537 \|														
2001	97,489 \|						54,824 \|								17,875 \|								96,125 \|																																																																																									
2002	4,655	1,925	1,031	6,180																																																																																																												
2003	12,345	3,163	1,678	3,705																																																																																																												
2004	233,547 \|															22,603 \|			13,773 \|						219,368 \|																																																																																							
2005	74,010 \|				21,834 \|			12,140 \|					NA																																																																																																			
2006	53,863 \|			8,655 \|	4,487 \|		NA																																																																																																									
2007	3,824	1,741	1,006	NA																																																																																																												
2008	200,870 \|													65,754 \|										10,174 \|				NA																																																																																				

18 Upper Pitt River ||| = $1 / 10$ of max for each variable

Max	203,986	131,481	72,407	217,474
Avg	73,150	28,249	13,772	72,902
Min	8,622	3,560	2,088	9,117

Year	Run	Spawners Ef	ffective Females	Recruits																																																																																							
1948	NA	55,380 \|													20,340 \|								122,720 \|																																																																				
1949	NA	9,290 \|		4,449	20,778 \|																																																																																						
1950	NA	40,061 \|									13,312 \|					146,337 \|																																																																											
1951	NA	37,837 \|								17,922 \|							120,302 \|																																																																										
1952	NA	48,899 \|											21,904 \|									71,842 \|																																																																					
1953	102,064 \|															18,673 \|				9,303 \|			25,807 \|																																																																				
1954	105,924 \|															17,624 \|				8,332 \|			51,094 \|																																																																				
1955	96,805 \|													17,950 \|				11,221 \|				164,991 \|																																																																					
1956	118,493 \|																32,094 \|							11,107 \|				68,770 \|																																																															
1957	44,620 \|						12,335 \|		5,130 \|		29,207 I\|																																																																																
1958	51,050 \|							10,381 \|		6,658 \|		16,147 \|																																																																															
1959	91,535 \|													15,731 \|			6,096 \|		61,976 \|																																																																								
1960	114,761 \|																	24,510 \|	I			12,493 \|					33,277 I\|																																																																
1961	44,072 \|						11,158 \|		6,525 \|		102,366 \|																																																																																
1962	38,721 \|	I			16,580 \|			8,460 \|			57,275 \|																																																																																
1963	24,957 \|			12,680 \|		5,749 \|		142,935 \|																																																																																			
1964	46,082 \|						13,756 \|			6,313 \|		191,918 \|																																																																															
1965	53,763 \|							6,966 \|	3,368 \|	38,984 \|																																																																																	
1966	100,163 \|														20,842 \|				10,723 \|				77,701 \|																																																																				
1967	121,828 \|																10,282 \|		5,236 \|		67,780 \|																																																																						
1968	102,267 \|														16,988 \|			8,189 \|			105,539 \|																																																																						
1969	158,842 \|																						25,073 \|					11,710 \|				61,083 \|																																																											
1970	48,638 \|							6,642 \|	3,098	55,281 \|																																																																																	
1971	77,235 \|											15,452 \|			6,663 \|		217,474 \|																																																																										
1972	81,841 \|												13,412 \|			6,569 \|		122,915 \|																																																																									
1973	76,625 \|											11,895 \|		4,744 \|	29,176 \|																																																																												
1974	74,089 \|										20,581 \|				8,854 \|			135,238 \|																																																																									
1975	124,762 \|																		39,920 \|									21,369 \|								85,230 \|																																																							
1976	203,986 \|																												36,525 \|								19,467 \|								105,338 \|																																														
1977	56,665 \|								13,852 \|			7,791 \|			34,586 \|																																																																												
1978	70,731 \|										24,786 \|					14,109 \|					34,854 \|																																																																						
1979	145,893 \|																	37,542 \|								20,307 \|								38,236 \|																																																									
1980	34,838 \|					17,101 \|			9,169 \|			16,913 \|																																																																															
1981	106,816 \|															25,327 \|					13,224 \|					34,272 \|																																																																	
1982	29,956 \|				8,708 \|	5,086 \|		18,265 \|																																																																																			
1983	27,896 \|				16,852 \|			10,074 \|				62,053 \|																																																																															
1984	45,180 \|						15,797 \|			8,755 \|			75,696 \|																																																																														
1985	8,622 \|	3,560	2,088	23,208 III																																																																																							
1986	36,196 \|					29,177 \|						12,283 \|					40,001 \|																																																																										
1987	25,747 \|			13,637 \|			5,503 \|		21,968 \|																																																																																		
1988	68,939 \|										37,747 \|								17,876 \|							61,300 \|																																																																	
1989	63,157 \|								16,037 \|			5,583 \|		16,609 \|																																																																													
1990	23,421 \|			12,202 \|		5,701 \|		9,117 \|																																																																																			
1991	40,959 \|						22,500 \|					10,867 \|				33,888 \|																																																																											
1992	17,185 \|		9,129 \|		4,335 \|	100,553 \|																																																																																					
1993	63,675 \|									22,835 \|					9,040 \|			102,923 \|																																																																									
1994	13,220 \|	9,500 \|		4,365 \|	34,714 \|																																																																																						
1995	9,248 \|	5,500 \|	2,352	52,971 \|																																																																																							
1996	62,069 \|									50,077 \|											19,451 \|								150,961 \|																																																														
1997	87,030 \|												35,798 \|								14,996 \|						96,262 \|																																																																
1998	91,252 \|													76,888 \|																	47,612 \|																			133,321 \|																																									
1999	38,855 \|					35,961 \|								19,390 \|								142,614 \|																																																																					
2000	65,492 \|									42,638 \|									18,584 \|							111,288 \|																																																																	
2001	141,955 \|																					131,481 \|																														\|				$\quad 72,407$ \|																													54,820 \|						
2002	118,367 \|																90,280 \|																			39,416 \|															69,160 \|																																								
2003	123,415 \|																		78,229 \|																	39,927 \|																13,786 \|																																							
2004	159,989 \|																					60,942 \|													33,796 \|													41,620 \|																																											
2005	76,754 \|											62,047 \|														33,243 \|												NA																																																					
2006	72,421 \|										38,816 \|								21,346 \|								NA																																																																
2007	44,547 \|						41,829 \|									19,926 \|								NA																																																																			
2008	22,809 \|			16,921 \|			6,186 \|		NA																																																																																		

19 Harrison \|		$=1 / 10$ of max for each variable																																																																																								
Max	421,280	388,605	211,552	386,967																																																																																						
Avg	55,674	22,947	12,077	55,596																																																																																						
Min	2,312	313	172	1,963																																																																																						
Year	Run	Spawners Ef	Effective Females	Recruits																																																																																						
1948	NA	26,162 \|		14,577 \|		43,283																																																																																				
1949	NA	8,000	4,372	37,073 \|																																																																																						
1950	NA	33,044 \|		18,216 \|		78,099 \|	III																																																																																			
1951	NA	17,145 \|	13,181 \|	122,022 \|																																																																																						
1952	NA	25,794 \|	17,215 \|		23,054 \|																																																																																					
1953	73,919 \|					21,030 \|	7,641 \|	9,784																																																																																		
1954	132,871 \|									28,800 \|		16,869 \|		14,797																																																																												
1955	36,499 \|		5,595	3,405	141,038 \|																																																																																					
1956	6,865	2,586	1,266	96,858 \|																																																																																						
1957	13,698	3,793	1,820	60,554 \|																																																																																						
1958	68,766 \|				14,701 \|	6,404	59,892 \|																																																																																			
1959	168,094 \|										27,868 \|		17,692 \|		41,545 \|																																																																											
1960	34,971 \|		17,210 \|	7,076 \|	29,451 \|																																																																																					
1961	90,445 \|						42,773 \|			21,725 \|			13,225 \|																																																																													
1962	14,932 \|	8,162	4,197	50,812 \|																																																																																						
1963	57,173 \|				22,258 \|	9,803 \|	87,825 \|																																																																																			
1964	4,991	2,202	1,101	51,177 \|																																																																																						
1965	42,684 \|			15,034 \|	7,779 \|	20,432 \|																																																																																				
1966	69,955 \|				32,646 \|		9,295 \|	55,444 \|																																																																																		
1967	81,431 \|					20,548 \|	12,672 \|	50,935 \|																																																																																		
1968	15,484 \|	5,379	2,854	17,838 \|																																																																																						
1969	54,978 \|			14,959	7,559 \|	7,302																																																																																				
1970	34,391 \|		12,666	6,471	39,763 \|																																																																																					
1971	42,468 \|			3,790	1,970	84,459 \|																																																																																				
1972	6,370	1,346	794	1,963																																																																																						
1973	23,962 \|	3,060	1,571	37,681 \|																																																																																						
1974	82,138 \|					16,920 \|	8,709 \|	40,338 \|																																																																																		
1975	24,329 \|	5,987	3,381	128,650 \|																																																																																						
1976	33,066 \|		5,130	2,933	44,728 \|																																																																																					
1977	11,558	2,246	1,374	24,058 \|																																																																																						
1978	57,214 \|				19,717 \|	10,488 \|	41,193 \|																																																																																			
1979	149,185 \|							45,615 \|			20,234 \|		10,895																																																																													
1980	17,260 \|	5,092	2,262	14,393 \|																																																																																						
1981	14,998 \|	3,193	1,788	17,869 \|																																																																																						
1982	34,647 \|		9,189	4,686	28,956 \|																																																																																					
1983	23,841 \|	4,239	2,132	17,919 \|																																																																																						
1984	13,443	1,267	689	5,265																																																																																						
1985	9,678	5,097	1,825	14,476 \|																																																																																						
1986	32,605 \|		7,265	4,145	9,610																																																																																					
1987	13,622	5,228	2,686	46,184 \|																																																																																						
1988	5,263	1,544	947	4,013																																																																																						
1989	16,393 \|	2,934	1,998	13,564 \|																																																																																						
1990	7,412	4,515	1,888	129,502 \|																																																																																						
1991	44,707 \|			15,000 \|	7,958 \|	38,111 \|																																																																																				
1992	2,312	313	172	3,736																																																																																						
1993	74,831 \|					3,258	2,271	19,096 \|																																																																																		
1994	72,172 \|					9,515	6,087	20,682 \|																																																																																		
1995	34,202 \|		16,618 \|	6,758	49,813 \|																																																																																					
1996	17,864 \|	15,379 \|	8,255 \|	7,560																																																																																						
1997	4,737	1,418	1,084	82,240 \|																																																																																						
1998	21,933 \|	4,496	3,013	64,475 IIII																																																																																						
1999	51,334 \|			8,577	5,592	91,504 \|																																																																																				
2000	14,859 \|	4,343	1,745	12,173																																																																																						
2001	90,043 \|						15,309 \|	8,335 \|	386,967 \|																																																																																	
2002	63,163 \|				41,542 \|			24,384 \|			276,837 \|																																																																															
2003	82,956 \|					8,259	6,043	104,854 \|																																																																																		
2004	57,833 \|				2,106	986	143,000 \|																																																																																			
2005	421,280 \|																												388,605 \|																												\|				211,552																													NA
2006	209,463 \|													168,259 \|											90,943 \|											NA																																																						
2007	191,321 \|													128,295 \|									57,444 \|								NA																																																											
2008	41,115 \|		6,717	4,411	NA																																																																																					

APPENDIX 4: SPAWNER-RECRUIT SUMMARY FIGURES
 Nadina - Observed Data

Rec/Spn - Nadina

Figure A.1a: Observed Data - Nadina

Fitted (-) vs. Observed (o)

Residuals

Figure A.1b: Larkin Model Fits - Nadina

Nadina

Obs (o) and Sim (-) Median Error vs. Rec

Figure A.1c: Delayed-density effects and error structure - Nadina

Spawners - Bowron

Recruits - Bowron

Figure A.2a: Observed Data - Bowron

Fitted (-) vs. Observed (0)

Residuals

Figure A.2b: Larkin Model Fits - Bowron

Figure A.2c: Delayed-density effects and error structure - Bowron

Seymour - Observed Data

Rec/Spn - Seymour

Figure A.3a: Observed Data - Seymour

By Cycle Line

By Cycle Line

By Cycle Line

Seymour - Larkin Model Fits

Fitted (-) vs. Observed (0)

Residuals

Figure A.3b: Larkin Model Fits - Seymour

Seymour

Figure A.3c: Delayed-density effects and error structure - Seymour

Figure A.4a: Observed Data - Gates

Gates - Larkin Model Fits

Fitted (-) vs. Observed (o)

Residuals

Figure A.4b: Larkin Model Fits - Gates

Gates

Figure A.4c: Delayed-density effects and error structure - Gates

Upper Pitt River - Observed Data

Spawners - Upper Pitt River

Recruits - Upper Pitt River

Figure A.5a: Observed Data - Upper Pitt River

Upper Pitt River - Larkin Model Fits

Fitted (-) vs. Observed (o)

Residuals

Figure A.5b: Larkin Model Fits - Upper Pitt River

Upper Pitt River

Figure A.5c: Delayed-density effects and error structure - Upper Pitt River

Recruits - Fennel Creek

Rec/Spn - Fennel Creek

Figure A.6a: Observed Data - Fennel Creek

Fitted (-) vs. Observed (o)

Figure A.6b: Larkin Model Fits - Fennel Creek

Fennel Creek

Figure A.6c: Delayed-density effects and error structure - Fennel Creek

Scotch Creek - Observed Data

Spawners - Scotch Creek

Recruits - Scotch Creek

Figure A.7a: Observed Data - Scotch Creek

By Cycle Line

By Cycle Line

By Cycle Line

Scotch Creek - Larkin Model Fits

Fitted (-) vs. Observed (0)

Residuals

Figure A.7b: Larkin Model Fits - Scotch Creek

Scotch Creek

Figure A.7c: Delayed-density effects and error structure - Scotch Creek

Figure A.8a: Observed Data - Raft

Raft - Larkin Model Fits

Productivity
Variability
Capacity Constraints

Fitted (-) vs. Observed (0)

Residuals

Figure A.8b: Larkin Model Fits - Raft

Raft

Figure A.8c: Delayed-density effects and error structure - Raft

Spawners - Stellako

Figure A.9a: Observed Data - Stellako

Stellako - Larkin Model Fits

Fitted (-) vs. Observed (o)

Residuals

Figure A.9b: Larkin Model Fits - Stellako

Stellako

Figure A.9c: Delayed-density effects and error structure - Stellako

Late Stuart - Observed Data

Spawners - Late Stuart

Recruits - Late Stuart

Rec/Spn - Late Stuart

Figure A.10a: Observed Data - Late Stuart

By Cycle Line
-
$\begin{array}{cccc}- & \square & & \\ \text { 戸 } & \square & \text { 三 } & \\ \text { CL1 } & \text { CL2 } & \text { CL3 } & \text { CL4 }\end{array}$

By Cycle Line

By Cycle Line
-

Late Stuart - Larkin Model Fits

Fitted (-) vs. Observed (o)

Residuals

Figure A.10b: Larkin Model Fits - Late Stuart

Late Stuart

Figure A.10c: Delayed-density effects and error structure - Late Stuart

Quesnel - Observed Data

Spawners - Quesnel

Rec/Spn - Quesnel

Figure A.11a: Observed Data - Quesnel

By Cycle Line

By Cycle Line

Fitted (-) vs. Observed (o)

Residuals

Figure A.11b: Larkin Model Fits - Quesnel

Quesnel

Figure A.11c: Delayed-density effects and error structure - Quesnel

Chilko - Larkin Model Fits

Fitted (-) vs. Observed (0)

Residuals

Figure A.12b: Larkin Model Fits - Chilko

Chilko

Figure A.12c: Delayed-density effects and error structure - Chilko

Spawners - Harrison

Recruits - Harrison

Rec/Spn - Harrison

By Cycle Line
-

By Cycle Line

By Cycle Line
-
-

Figure A.13a: Observed Data - Harrison

Fitted (-) vs. Observed (o)

Residuals

Figure A.13b: Larkin Model Fits - Harrison

Obs (o) and Sim (-) Median Error vs. Rec

Figure A.13c: Delayed-density effects and error structure - Harrison

Spawners - Portage

Recruits - Portage

Rec/Spn - Portage

By Cycle Line

By Cycle Line

By Cycle Line
-

Figure A.14a: Observed Data - Portage

Fitted (-) vs. Observed (o)

Residuals

Figure A.14b: Larkin Model Fits - Portage

Portage

Figure A.14c: Delayed-density effects and error structure - Portage

Late Shuswap - Observed Data

Spawners - Late Shuswap

Recruits - Late Shuswap

Figure A.15a: Observed Data - Late Shuswap

By Cycle Line

By Cycle Line

By Cycle Line

- -

$-$

Late Shuswap - Larkin Model Fits

Productivity
Variability
Capacity Constraints

Fitted (-) vs. Observed (0)

Residuals

Figure A.15b: Larkin Model Fits - Late Shuswap

Late Shuswap

Obs (o) and Sim (-) Median Error vs. Rec

Figure A.15c: Delayed-density effects and error structure - Late Shuswap

Birkenhead - Observed Data

Figure A.16a: Observed Data - Birkenhead

Figure A.16b: Larkin Model Fits - Birkenhead

Birkenhead

Figure A.16c: Delayed-density effects and error structure - Birkenhead

Rec/Spn - Weaver Creek

Figure A.17a: Observed Data - Weaver Creek

Fitted (-) vs. Observed (o)

Residuals

Figure A.17b: Larkin Model Fits - Weaver Creek

Figure A.17c: Delayed-density effects and error structure - Weaver Creek

Cultus - Observed Data

Spawners - Cultus

Recruits - Cultus

Rec/Spn - Cultus

By Cycle Line

By Cycle Line
-

By Cycle Line

Figure A.18a: Observed Data - Cultus

Cultus - Larkin Model Fits

Fitted (-) vs. Observed (0)

Figure A.18b: Larkin Model Fits - Cultus

Cultus

