

CSAS

SCCS

Canadian Science Advisory Secretariat	Secrétariat canadien de consultation scientifique
Research Document 2011/136	Document de recherche 2011/136
Pacific Region	Région du Pacifique

Moving towards the sustainable fisheries framework for Pacific herring: data, models, and alternative assumptions; Stock Assessment and Management Advice for the British Columbia Pacific Herring Stocks: 2011 Assessment and 2012 Forecasts. Vers un cadre pour la pêche durable au hareng du Pacifique : données, modèles et hypothèses; Évaluation des stocks de hareng de la Colombie-Britannique et avis pour la gestion: évaluation de 2011 et prévisions pour 2012.

S.J.D. Martell¹, J.F. Schweigert², V. Haist³, and J.S. Cleary²

¹UBC Fisheries Centre, 2202 Main Mall, Vancouver, B.C. V6T 1Z4

²Fisheries and Oceans Canada, Science Branch, Pacific Biological Station, Nanaimo, B.C. V9T 6N7

³Haist Consulting, 1262 Marina Way, Nanoose Bay, B.C. V9P PC1

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at: Ce document est disponible sur l'Internet à: www.dfo-mpo.gc.ca/csas-sccs

ISSN 1499-3848 (Printed / Imprimé) ISSN 1919-5044 (Online / En ligne) © Her Majesty the Queen in Right of Canada, 2012 © Sa Majesté la Reine du Chef du Canada, 2012

TABLE OF CONTENTS

LIST OF FIGURES	vii
LIST OF TABLES	ix
ABSTRACT	х
RÉSUMÉ	xi
EXECUTIVE SUMMARY	1
PART I: Moving towards the sustainable fisheries framework for Pacific herring: data,	
models, and alternative assumptions	3
INTRODUCTION	3
METHODS	5
RESULTS	10
DISCUSSION	23
PART II: Stock Assessment and Management Advice for the British Columbia Pacific	
PART II: Stock Assessment and Management Advice for the British Columbia Pacific Herring Stocks: 2011 Assessment and 2012 Forecasts	25
Herring Stocks: 2011 Assessment and 2012 Forecasts	25
Herring Stocks: 2011 Assessment and 2012 Forecasts	25 26
Herring Stocks: 2011 Assessment and 2012 Forecasts INTRODUCTION INTRODUCTION INTRODUCTION METHODS INTRODUCTION	25 26 43
Herring Stocks: 2011 Assessment and 2012 Forecasts INTRODUCTION INTRODUCTION INTRODUCTION METHODS INTRODUCTS RESULTS INTRODUCTION	25 26 43 86
Herring Stocks: 2011 Assessment and 2012 Forecasts INTRODUCTION INTRODUCTION METHODS METHODS MINOR STOCK AREAS	25 26 43 86 94
Herring Stocks: 2011 Assessment and 2012 Forecasts INTRODUCTION INTRODUCTION INTRODUCTION METHODS INTRODUCTION RESULTS INTRODUCTION MINOR STOCK AREAS INTRODUCTION OUTSTANDING ISSUES INTRODUCTION	25 26 43 86 94 95
Herring Stocks: 2011 Assessment and 2012 Forecasts	25 26 43 86 94 95 98
Herring Stocks: 2011 Assessment and 2012 Forecasts INTRODUCTION INTRODUCTION METHODS METHODS MINOR STOCK AREAS OUTSTANDING ISSUES MINOR STOCK AREAS REFERENCES APPENDIX A: Technical description of ISCAM	25 26 43 86 94 95 98 117

LIST OF FIGURES

Figure 1 B.C. herring major stock areas: Haida Gwaii (HG or QCI 2E), Prince Rupert District (PRD), Central Coast (CC), Strait of Georgia (SOG), West Coast Vancouver Island (WCVI), and minor stock areas: Area 2W and Area 27	4
Figure 2 True (thin line) and estimated (thick shaded line) spawning biomass (a), fish- ing mortality rates by gear (b), observed and predicted relative abundance (c), and	•
residuals between observed and predicted relative abundance (d) for the SOG herring	11
simulation with perfect information and a deterministic stock-recruitment relationship Figure 3 Estimates of precision and bias in key model parameters and MSY based ref-	11
erence points for 50 simulated data sets conditioned on the Strait of Georgia herring	
catch	12
Figure 4 Maximum likelihood estimates configuring the ISCAM model as similar as	
possible to the previous HCAM assessment.	15
Figure 5 Residuals based on configuring ISCAM to be similar to HCAM	16
Figure 6 A comparison of the estimated biomass and spawning biomass and fits to the	
survey data when q is either fixed at 1 for Survey 2 (panels a, b), or estimated using	
an informative prior with an expected mean of 0 and a log standard deviation of 0.274	
(panels c and d)	18
Figure 7 A comparison of fits to the survey data and estimated components of average	
mortality by year when M is allowed to vary via a random walk process or is estimated	
and assumed time invariant	19
Figure 8 Residuals in the age-composition data when gillnet selectivity is a function of	
mean weight-at-age (left column with q Fixed in each caption) and or is a logistic	
function of age and time invariant (right column with Fixed Gillnet in each caption)	20
Figure 9 A comparison of estimated spawning stock biomass between HCAM and IS-	
CAM for the five major stock assessment regions using data from 1951 to 2010 and	
setting up ISCAM similar to HCAM.	22
Figure 10 Historical catch of herring in the five major stock areas between 1951 and	
2011 for the winter purse seine fishery (dark bars), seine-roe fishery (grey bars), and	
gillnet fishery (light grey bars)	27
Figure 11 Spawning activity for Haida Gwaii (top panels) and Prince Rupert District (bot-	
tom) in 2011	29
Figure 12 Spawning activity for Central Coast (top left panel), Strait of Georgia (top right)	
in 2011 and west coast Vancouver Island (bottom).	30
Figure 13 Spawn survey index for Strait of Georgia between 1951 and 2011. The units	
are actual estimates of spawning biomass (1000s tonness), but only the trend infor-	
mation is used in the model fitting.	31
Figure 14 Spatial location and sample sizes of 2011 biosamples from commercial and	
research-charter programs in the north coast (top panel) and south coast (lower panel).	33
Figure 15 Proportions-at-age versus time for the winter purse seine fishery (top), seine	
roe fishery (middle) and the gillnet fishery (bottom) in Haida Gwaii.	35
Figure 16 Proportions-at-age versus time for the winter purse seine fishery (top), seine	
roe fishery (middle) and the gillnet fishery (bottom) in Prince Rupert District	36
Figure 17 Proportions-at-age versus time for the winter purse seine fishery (top), seine	
roe fishery (middle) and the gillnet fishery (bottom) in the Central Coast region	37

Figure 18 Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in the Strait of Georgia.Figure 19 Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in the West Coast Vancouver	. 38
Island region	. 39
10 in the five major Stock Assessment Regions	. 40
Figure 21 Residual for the log difference between observed and predicted catch for the five major SARs for each gear type (Gear 1 = winter seine fishery, Gear 2 = seine-roe	
fishery, Gear 3 = gillnet fishery) Figure 22 Residual patterns for the log difference between observed and predicted spawn survey abundance for the five major SARs. Spawn survey data based on surface es- timates are show as solid lines and data based on diver surveys is shown as dashed	. 44
	. 45
Figure 23 Observed (points) and predicted (lines) spawn survey abundance data scaled by the MLE estimate of <i>q</i> for each of the five major SAR.	. 46
Figure 24 Residual difference between the observed and predicted proportions-at-age for HG for each of the three gear types.	. 48
Figure 25 Residual difference between the observed and predicted proportions-at-age	
for PRD for each of the three gear types	. 49
Figure 26 Residual difference between the observed and predicted proportions-at-age	50
for CC for each of the three gear types	. 50
for SOG for each of the three gear types.	. 51
Figure 28 Residual difference between the observed and predicted proportions-at-age	
for WCVI for each of the three gear types	. 52
weight-at-age) and spawning stock biomass (post fishery) for the five major stock areas.	. 54
Figure 30 Estimates of spawning biomass depletion (B_t/B_0) for each of the five major	. 54
stock areas.	. 55
Figure 31 Maximum likelihood estimates of the components of average total mortality for	
each of the five major stock areas.	. 57
Figure 32 Maximum likelihood estimates of age-specific selectivity coefficients for the winter seine fishery for each of the major stock areas.	. 58
Figure 33 Maximum likelihood estimates of age-specific selectivity coefficients for the	
seine-roe fishery for each of the major stock areas.	. 59
Figure 34 Estimates of selectivity for the gillnet fleet for each of the five major stock assessment regions.	. 60
Figure 35 Maximum likelihood estimates of age-2 recruits for each of the five major stock	. 00
areas and the asymptotic estimates of the 95% confidence interval.	. 62
Figure 36 Maximum likelihood estimates of age-2 recruits versus estimated spawning	
stock biomass in each of the five major assessment regions	. 63
predicted by the Beverton-Holt model and estimated spawning stock biomass.	. 64
Figure 38 Retrospective estimates of spawning stock biomass and estimates of unfished	2.
biomass (B_o shown as circles) for each of the five major stock assessment areas.	. 66

Figure 39 A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of	
leading parameters and derived variables used in reference point calculations for HG. 67 Figure 40 A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of	
leading parameters and derived variables used in reference point calculations for PRD. 68	
Figure 41 A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of	
leading parameters and derived variables used in reference point calculations for CC. 69	
Figure 42 A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of	
leading parameters and derived variables used in reference point calculations for SOG. 70	
Figure 43 A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of	
leading parameters and derived variables used in reference point calculations for WCVI. 71	
Figure 44 Pairs plot and marginal distributions for leading parameters in HG region (200	
random samples)	
Figure 45 Pairs plot and marginal distributions for leading parameters in PRD region (200 random samples)	
Figure 46 Pairs plot and marginal distributions for leading parameters in CC region (200	
random samples).	
Figure 47 Pairs plot and marginal distributions for leading parameters in SOG region (200	
random samples)	
Figure 48 Pairs plot and marginal distributions for leading parameters in WCVI region	
(200 random samples)	
Figure 49 Marginal posterior densities (histograms) and prior densities (lines) for the	
seven leading parameters and spawn survey scaler $(\ln(q))$ for each of the five major assessment regions	
Figure 50 Top Panels: probability of the spawning stock biomass in 2013 falling below the	
cutoff level versus the 2012 catch option. Middle Panels: probability of the spawning	
stock in 2013 being less than the spawning stock biomass in 2012 versus the 2012	
catch option. Bottom Panels: probability of the 2012 harvest rate (catch/3+ biomass)	
being greater than the target harvest rate of 0.2	
Figure 51 Catch and survey data for minor stock Areas 2W and Area 27	
Figure 52 Age composition data for Area 2W and Area 27 for the seine-roe fishery (Gear	
2) and the gillnet fishery (Gear 3)	
Figure 53 Maximum likelihood estimates of total biomass, spawning biomass, spawning depletion and fits to the spawn survey data for the two minor stock areas	
Figure 54 Maximum likelihood estimates of age-2 recruits, spawner-recruit relationships	
with the fitted Beverton Holt model and unfished reference points (B_o, R_o) , and the	
residuals between the estimated age-2 recruits and that predicted by the Beverton-	
Holt model	
Figure 55 Retrospective estimates of spawning stock biomass for each of the minor stock	
assessment areas.	
Figure 56 A systematic sample of 2000 points from a chain of length 1,000,000 from the	
joint posterior distribution for areas 2W and area 27	
Figure 57 Marginal distributions (bars) and priors (lines) for the leading parameters based on a systematic sample of 2000 points from a chain of length 1,000,000 from the joint	
posterior distribution for areas 2W and area 27	
Figure 58 Equilibrium yield (a), recruits (b), biomass (c) and spawner per recruit (ϕ_e/ϕ_E)	
(d) versus instantaneous fishing mortality F_e for two different values of the recruitment	
compensation ratio ($\kappa = 12$ solid lines, $\kappa = 4$ dashed lines)	

Figure 59 Example of a natural cubic spline interpolation for 15-selectivity coefficients based on estimating 6 nodes (true selectivity was based on a logistic function). In ISCAM the user specifies the number of nodes (e.g., 6 circles) to estimate; then the	
15 age-specific selectivity coefficients are interpolated using a natural cubic spline.	107
Figure 60 Example of a time-varying cubic spline (left) and bicubic spline (right) interpo-	
lation for selectivity based on data from the Pacific hake	108
Figure 61 Prior distributions used for $\ln(R_o), h, \ln(M), \ln(\bar{R}), \rho, \vartheta$ in the herring assess-	
ment models.	114
Figure 62 Distribution of the log of the simulated spawn index q estimates, overlaid with a	
normal distribution based on the mean and standard deviation of the simulated values.	147

LIST OF TABLES

Table 1 A comparison of key parameters from ISCAM and the HCAM model with the	
ISCAM model set up like HCAM.	14
Table 2 Summary statistics for alternative structural assumptions about the Strait of	
Georgia herring assessment from 1951 to 2010.	17
Table 3 Summary of biological samples collected and processed from all sources from	
the 2010/11 herring season	32
Table 4 Summary of biological samples collected and processed from commercial catch	
and test fishery charters from 2002/03-2010/11.	32
Table 5 Summary of maximum likelihood estimates for each of the five major stock areas	5. 53
Table 6 Maximum likelihood estimates of gillnet selectivity parameters. . <t< td=""><td>61</td></t<>	61
Table 7 Estimates of 2011 spawning biomass, B_0 , and depletion based on 2000 sys-	
tematic samples from the joint posterior distribution drawn from a chain of length	
1,000,000	78
Table 8 Estimated spawning stock biomass, age-4+ biomass and pre-fishery biomass	
for poor average and good recruitment, old cutoffs, and available harvest based on	
median values from the joint posterior distribution.	79
Table 9 Estimated spawning stock biomass, age-4+ biomass and pre-fishery biomass	
for poor average and good recruitment, new cutoffs (based on median value of $0.25B_0$	
estimated within the ISCAM model), and available harvest based on the median	
values from the joint posterior distribution.	79
Table 10 Decision table and risk metrics for HG.	80
Table 11 Decision table and risk metrics for PRD.	81
Table 12 Decision table and risk metrics for CC.	82
Table 13 Decision table and risk metrics for SOG.	83
Table 14 Decision table and risk metrics for WCVI.	84
Table 15 Summary of maximum likelihood estimates for the two minor stock areas	88
Table 16 Estimated spawning stock biomass, age-4+ biomass and pre-fishery biomass	
for poor average and good recruitment, cutoffs, and available harvest.	94
Table 17 Steady-state age-structured model assuming unequal vulnerability-at-age, age-	
specific natural mortality, age-specific fecundity and Beverton-Holt type recruitment.	99
Table 18 Partial derivatives, based on components in Table 17, required for the numerical	
calculation of F _{MSY} using (1).	102
Table 19 Statistical catch-age model using the Baranov catch equation, where R_0 and κ	
are the leading parameters that define population scale and productivity, respectively.	104
Table 20 An incomplete list of symbols, constants and description for variables used in	
ISCAM	105
Table 21 Summary of west coast North America herring egg loss literature.	144
Table 22 Estimates of the instantaneous daily egg loss rate (Z) from herring egg loss	
studies conducted in the Pacific Northwest.	145
Table 23 Criteria for selecting herring spawn survey data records for estimating days	
between spawning and surveys.	145
Table 24 Average number of days between spawn deposition and spawn survey by stock	
assessment region and year.	146
Table 25 Factors affecting the q prior and their assumed distributions.	

Table 26 Estimated means and standard deviations for the simulated q prior and natural	
log of the q prior.	47
Table 27 Observed catch by gear type and year for each stock	49
Table 28 Abundance for each survey by year for each stock	51

Correct citation for this publication:

Martell, S.J., Schweigert, J.F., Haist, V., and Cleary, J.S. 2012. Moving towards the sustainable fisheries framework for Pacific herring: data, models, and alternative assumptions; Stock Assessment and Management Advice for the British Columbia Pacific Herring Stocks: 2011 Assessment and 2012 Forecasts. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/136. xii + 151 p.

ABSTRACT

B.C. herring stocks are managed as five major and two minor stock areas. Accordingly, catch and survey information is collected independently for each of these seven areas and science advice is provided on the same scale. All available biological data on spawn deposition, size and age composition of the spawning stocks, as well as commercial harvest data, were used to determine current abundance levels. In recent years external reviewers have suggested substantial revisions to the herring assessment framework, including revisions to the catch-age model. As such, we present a new integrated statistical catch-age model (ISCAM) for jointly estimating the abundance of Pacific herring stocks and associated reference points (Part I). This includes simulation testing to demonstrate the model is capable of estimating all parameters and parameterization of the new assessment model as per the previous assessment model (Herring Catch Age Model, or HCAM) in order to compare parameter estimates and estimates of spawning stock biomass (using data from 1951:2010) between old (HCAM) and new (ISCAM) models. Part II of this document implements this new assessment framework using the data for the five major and two minor stock areas. Finally, we present pre-fishery biomass estimates and catch advice based on decision tables that utilize poor, average, and good age-3 recruitment forecasts as well as risk probability tables to inform decision making.

RÉSUMÉ

Les stocks de hareng de la C.-B. sont gérés en fonction de cinq zones de stocks principales et de deux zones secondaires. En conséquence, l'information sur les prises et celle provenant des relevés est recueillie de facon indépendante pour le sept zones, et on formule des avis scientifiques pour chacune. On s'est servi de toutes les données biologiques disponibles sur la ponte, la composition selon l'âge et la taille des stocks reproducteurs ainsi que sur les prélèvements de la pêche commerciale pour déterminer les niveaux d'abondance actuels. Ces dernières années, des examinateurs externes ont suggéré que d'importantes révisions soient approtées au cadre d'évaluation du hareng, y compris au modèle des prises selon l'âge (ISCAM) pour estimer conjointement l'abondance des stocks de hareng du Pacifique et les points de référence connexes (partie I). Ce modèle comprend des essais de simulation pour démontrer que le modèle peut estimer tous les paramètres ainsi qu'une paramétrisation du nouveau modèle d'évaluation comme le précédent modèle d'évaluation (modèle des prises de hareng selon l'âge ou HCAM) pour que l'on puisse comparer les estimations des paramètres et les estimations de la biomasse du stock reproducteur (en utilisant les données de 1951 à 2010) entre l'ancien modèle (HCAM) et le nouveau (ISCAM). La partie II de ce document reflète le nouveau cadre d'évaluation avec des données des cinq zones de stocks principales et des deux zones secondaires. Finalement, nous présentons des estimations de la biomasse avant la pêche et un avis sur les prises fondé sur les tableaux sur les décisions qui utilisent les prévisions du recrutement à l'âge 3 faible, moyen et bon ainsi que sur les tableaux sur la probabilité du risque afin d'éclairer la prise de décision.

EXECUTIVE SUMMARY

Estimates of Pacific herring abundance in British Columbia (B.C.) waters is based on catch-age data and spawn survey abundance information. B.C. herring stocks are managed as five major and two minor stock areas. Accordingly, catch and survey information is collected independently for each of these seven areas and science advice is provided on the same scale. Data are then interpolated using a statistical catch-age model. This document is broken into two parts: Part I deals with moving the herring assessment framework towards Canada's sustainable fisheries framework and introduces a new integrated statistical catch-age model (ISCAM) for jointly estimating the abundance of Pacific herring stocks and associated reference points. Part II of this document implements this new assessment framework using data for the five major and two minor stock areas. Finally, we present pre-fishery biomass estimates and catch advice based on decision tables that utilize poor, average, and good age-3 recruitment forecasts as well as risk probability tables to inform decision making.

In Part I of this document we provide a brief description of the new assessment framework (a full technical description of the model is provided in Appendix A of this document). We present simulation testing with perfect information to demonstrate the model is capable of estimating all parameters. We further explore precision and bias in parameter estimates based on simulation data with both observation and process errors. We then parameterize the new assessment model such that the assumptions of the previous assessment model (Herring Catch Age Model, or HCAM) are mostly met and compare parameter estimates and estimates of spawning stock biomass (using data from 1951:2010). Using data from the Strait of Georgia only, we then compare alternative assumptions about the spawn survey scaling coefficient (q), natural mortality and selectivity, and examine how these alternative assumptions influence estimates of key parameters (unfished spawning biomass, steepness, average natural mortality).

In Part II of this document we present updated data from the herring fisheries and surveys in 2011, a brief description of the analytical methods used to construct the decision tables, and present the results of the application of the new assessment model (ISCAM) to the 2011 data. New this year are improvements to the parameterization of gillnet selectivity and inclusion of a Bayesian prior for the dive survey spawn index (q). The development of this prior is detailed in Appendix C. To summarize the overall fit to the model, maximum likelihood estimates of derived quantities and residuals between observed and predicted variables are used. Retrospective analysis (i.e., the sequential removal of the most recent data) is used as a diagnostic for model misspecification. Catch advice (decision tables) are based on the median values of random samples from the joint posterior distribution and not the maximum likelihood estimates. Visual inspection of the trace plots from the posterior samples and pair plots were used to judge if the samples were taken from a stationary distribution. Historically, catch advice was based on cutoff values that were derived from 1996 estimates of the unfished biomass (B₀, cutoff values are set at 0.25B₀). This assessment provides updated estimates of B₀ and presents catch advice based on new cutoff values. An alternative decision table, where catch advice is based on old cutoffs, is also presented, as are risk probability tables to inform decision making.

Median estimates of the 2011 spawning stock biomass is as follows: Haida Gwaii (HG) – 16,579 t, Prince Rupert District (PRD) – 27,046 t, Central Coast (CC) – 14,666 t, Strait of Georgia (SOG) – 125,261 t, and West Coast Vancouver Island (WCVI) – 14,679 t.

Abundance forecast for the 2012 fishing season, also referred to as pre-fishery biomass estimates, are based on the median values of random samples from the joint posterior distribution. Abundance and recruitment forecasts are as follows: HG (poor) – 9,618 t, PRD (average) – 27,492 t, CC (poor) – 11,357 t, SOG (good) – 138,448 t, and WVCI (poor) – 15,321 t.

Implementation of the current harvest control rule (HCR) advises no fishing in HG under poor recruitment and no fishing in CC under poor and average recruitment. Average recruitment is assumed for PRD while good recruitment is predicted for SOG (based on the West Coast Vancouver Island offshore trawl survey, Appendix E). Accordingly, a sustainable harvest is permissible in both these areas. Implementation of the herring HCR to the WCVI stock assuming poor recruitment (from the West Coast Vancouver Island offshore trawl survey) advises limited fishing activity. The estimated maximum available harvest based on a 20% harvest rate combined with updated cutoff values set at $0.25B_0$ and recruitment forecasts is as follows: HG –0 t, PRD – 5,498 t, CC –0 t, SOG – 27,690 t, and WVCI – 427 t. Median estimates of the 2011 spawning stock biomass for the minor stock areas is: Area 27 – 5,398 t and Area 2W – 1,124 t. Catch advice for minor areas is based on a 10% fixed exploitation rate with no cutoffs, assuming average recruitment. Accordingly, the estimated maximum available harvest is 540 t for Area 27 and 112 t for Area 2W (assuming average recruitment).

PART I: MOVING TOWARDS THE SUSTAINABLE FISHERIES FRAMEWORK FOR PACIFIC HERRING: DATA, MODELS, AND ALTERNATIVE ASSUMPTIONS.

INTRODUCTION

There are four major objectives of this paper: (1) to describe in detail an alternative integrated statistical catch-age model (ISCAM), (2) examine parameter estimation performance using ISCAM, (3) perform a side-by-side comparison of the previous HCAM and ISCAM on the five major herring stocks, and (4) explore alternative assumptions about selectivity, catchability, and natural mortality using ISCAM. The most recent assessment of B.C. herring stocks was conducted in 2010 using the Herring Catch Age Model (HCAMv2) which is documented in Cleary and Schweigert (2010). Furthermore, a review sponsored by the Herring Research and Conservation Society (HRCS) was conducted June 17-18, 2010 in Nanaimo, B.C. where an expert panel addressed specific questions about the current implementation of the HCAMv2 model and suggested recommendations for each of the questions. This paper also attempts to address some of the points brought up in the review.

B.C. herring are currently managed as five major stocks and 2 minor stocks (Figure 1). Annual catch advice for each of these areas is based on current estimates of stock status, and a 20% exploitation rate if the stock is above the cutoff level for the five major stocks and a 10% exploitation rate for the two minor stocks. Cutoff levels for the five major stocks are $0.25B_o$, and estimates of unfished biomass were established first in 1985 (Haist et al., 1986). Estimates of B_o were updated most recently in 1996. Although Cleary and Schweigert (2010) presented marginal posterior distributions for B_o for the 2010 HCAM assessment, revised cutoffs were not implemented. Existing cutoff levels are currently thought to be more conservative than the current default Limit Reference Point of $0.4B_{MSY}$ (DFO, 2006). However, estimates of B_o and MSY based reference points have not been examined for Pacific herring for some time. In this paper we also describe the methods for updating estimates of B_o and MSY based reference points for the Strait of Georgia herring under alternative structural assumptions (see point (4) in the previous paragraph).

We do not provide a detailed description of HCAM in this paper and we refer the reader to Schweigert et al. (2009) and Cleary and Schweigert (2010). We first begin with a description of the input data required and assumptions about the data, followed by a detailed description of the analytical methods and assumptions in ISCAM. We then present the analytical methods and assumptions for exploring alternative hypotheses about selectivity, catchability and natural mortality, followed by a description of the elements that make up the joint posterior distribution (i.e., likelihoods, priors, and penalties). Parameter estimation and quantifying uncertainty is carried out using AD Model Builder (ADMB Project, 2009). We then explore estimation performance in ISCAM using simulation experiments where the model is used to generate simulated observations with known parameter values, followed by parameter estimates. Finally, we present forecasts of pre-fishery biomass and available harvest options using the cutoffs (e.g., reproduce Table 5 in Cleary and Schweigert, 2010) as well as available harvest options described by the Sustainable Fisheries Framework (DFO, 2009), based on (DFO, 2006), for comparison.

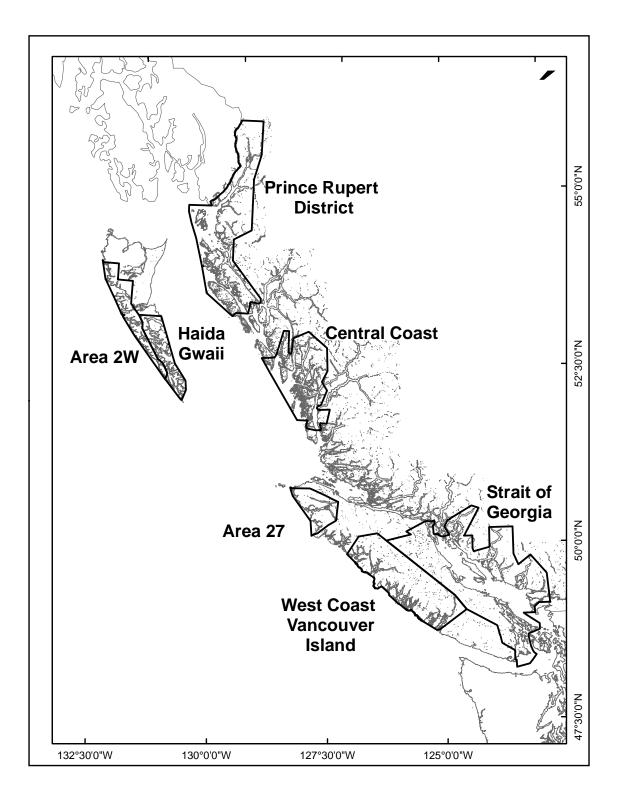


Figure 1. B.C. herring major stock areas: Haida Gwaii (HG or QCI 2E), Prince Rupert District (PRD), Central Coast (CC), Strait of Georgia (SOG), West Coast Vancouver Island (WCVI), and minor stock areas: Area 2W and Area 27.

METHODS

ANALYTICAL METHODS

We present a new stock assessment platform for the assessment of B.C. Pacific herring. This platform is based on the general statistical catch age model first described by Fournier and Archibald (1982). The software platform used is called ISCAM, which stands for integrated Statistical Catch Age Model. The source code and documentation for ISCAM is freely available from https://sites.google.com/site/iscamproject/, or from a subversion repository at http://code.google.com/p/iscam-project/. The subversion repository is more likely to be up to date; whereas, the project website has periodic updates with corresponding version numbers. Ideally, the results of this report could easily be repeated just by downloading the necessary software and using the data and control files presented in the appendix of this paper. A complete technical description of ISCAM is provided in Appendix A of this report.

At times this document reads more like a users manual for the ISCAM software and this is intentional as we expect that reviewers may wish to repeat the efforts to verify model results. The details of the analytical equations are identified in Appendix , and the text herein will often refer to how to implement the scenario in the software itself.

In short, for each stock two input files are required for ISCAM : (1) a data file that contains the historical catch, spawn survey, life-history and age-composition information, and (2) a control file that specifies initial parameter values, priors, selectivity options, and various other controls that specify options for time-varying natural mortality, type of recruitment model, etc. Each major and minor stock has its own data and control file and these are provided in Appendix B such that these results can be verified by an independent reviewer using the ISCAM software.

Estimated model parameters includes the initial numbers-at-age, annual age-2 recruits, annual fishing mortality rates for each gear, selectivity parameters, natural mortality rates, parameters that describe the observation error and process error variance, and the unfished age-2 recruits and the steepness of the stock recruitment relationship. The total number of estimated parameters differs for each stock assessment region depending on the number of years of active fishing, assumptions about selectivity, and the number of assumed nodes in natural mortality rates.

SUSTAINABLE FISHERIES FRAMEWORK REFERENCE POINTS

The Sustainable Fisheries Framework provides the basis for ensuring Canadian fisheries are conducted in a manner which support conservation and sustainable use. The framework incorporates existing fisheries management policies along with new and evolving policies. The framework consists of two main elements: conservation and sustainable use policies, and planning and monitoring tools. The conservation and sustainable use policies incorporate the precautionary and ecosystem approaches to fisheries management.

The general framework for developing a harvest strategy that is compliant with the precautionary approach is to divide the stock into three stock status zones; healthy, cautious, and critical zones

(DFO, 2006). In this work we define these stock status thresholds as $0.4B_{MSY}$ and $0.8B_{MSY}$ when crossing from the critical-cautious zone and cautious-healthy zone, respectively. A critical component to this interpretation is the definition of B_{MSY} . In the case of a single fishing fleet using a fixed gear, B_{MSY} is normally defined as the spawning stock biomass that would, on average, support the largest surplus yield. In the case of multiple fishing fleets, each using a different gear with different selectivities, the definition of B_{MSY} is more complex and is a function of allocation of mortality to each gear type. For example, if one gear harvest fish at a much younger age than the other gear, an increase in allocation to the gear that catches younger sexually immature fish will shift B_{MSY} upwards. Also, changes in selectivity over time (perhaps due to changes in growth) will result in changing B_{MSY} . This precise definition for B_{MSY} increases the difficulty in estimating reference points when there are non-stationary parameters in the model (i.e., time-varying natural mortality rates, selectivity, growth in the case of Pacific herring).

Estimates of reference points are based on equilibrium calculations (see Appendix A), where the average natural mortality rate over the time period in question is used along with the most recent empirical estimates of weight-at-age and fecundity. In lieu of any formal allocation arrangements for the gear-types that harvest herring, the ratios of average catch over the past 20 years for each gear type, in each SAR (stock assessment region), are used for allocation purposes and calculating MSY based reference points.

SIMULATION TESTING

The purpose of conducting simulation testing is two fold: (1) to demonstrate that the model is capable of estimating model parameters given perfect information, and (2) to examine precision and bias in parameter estimates (and corresponding management quantities) in the presence of observation and process errors. To conduct simulation testing using ISCAM, the following command line option -sim 1234 is used, where 1234 is a unique random number seed. There is also a special seed number -sim 000 that generates data with no error. That is the simulation model is deterministic, the relative abundance data are directly proportional with 0 observation error, and the age-composition data replicates precisely the true vulnerable proportions-at-age. The simulation model is conditioned on the historical catch data specified in the data file, and the true parameter values used to simulate the data are those that are specified in the control file.

Estimation performance with perfect information

When simulating data with perfect information, there are a couple of things that need to be highlighted when trying to estimate parameters from data that contain no error. First, the phases for the precision and variance partitioning parameters (ϑ and ρ) should be set to a negative number. There are no error in the data, therefore, there is no need to estimate the variance terms for the error distributions. Second, in the control file, the initial value for the precision (ϑ) should be set to an extremely large number (e.g., 4999.999, assuming the upper bound is 5000). The reason to set this number large is to minimize the slight bias due to the lognormal bias correction in the stock recruitment relationship (i.e., the $-0.5\tau^2$ term in T19.13, or T19.14). The control file used to simulate the fake data is provided in Appendix B.

Bias & precision with observation & process errors

To determine bias and precision of parameter estimates when the model is confronted with both observation error and process error, a series of Monte Carlo trials are performed and \log_2 ratios are used to measure the distribution of estimated parameters ($\hat{\theta}$) from the true value(θ). The \log_2 ratio

is zero when $\hat{\theta} = \theta$, is 1 when $\hat{\theta} = 2\theta$, and is -1 when $\hat{\theta} = 0.5\theta$. Box plots are used to examine the distribution of 50 trials where a unique random number seed is used for each trial. For the purposes of the simulation experiments only, we assume that the proportion of the total variance associated with observation error is known ($\rho = 0.25$) and estimate the total variance. The total precision is set to 2.50 which is equivalent to a total standard deviation of 0.4 (i.e., 1/2.50=0.4). The control file used for the Monte Carlo procedures is provided in Appendix B.

The simulation testing presented here is not very extensive in that only a single scenario based on the catch time series in the Strait of Georgia and an arbitrary parameter set θ was used to explore bias and precision. In practicality, additional simulation testing should be conducted preferably using the MLE estimates of $\hat{\theta}$ as true parameter values to determine if the data and model structure combined are informative about the true parameter values. It is possible to obtain a spurious results based on the choice of θ used in simulation trials.

COMPARISON OF HCAM WITH ISCAM

There are a number of different statistical assumptions and structural differences between the previous assessments using HCAM (Herring Catch Age Model) and ISCAM. Here we briefly summarize the differences and similarities between the two approaches, and we first attempt to formulate the ISCAM model to be as similar as possible to the last implementation of HCAM used in Cleary and Schweigert (2010).

The objective function in the HCAM model has four major components to it: 1) the likelihood of the age composition data, 2) the likelihood of the commercial catch data, 3) the likelihood of the spawn data, and 4) the prior densities for estimated model parameters. The following subsections describe how ISCAM was set up to best approximate HCAM.

For the gillnet fishery, HCAM implements a time varying selectivity scheme as a function of the average weight-at-age. A similar implementation was also developed in ISCAM. For the remainder of this paper and especially in the Figures, the definitions for Gear is as follows: Gear 1 = winter purse seine fishery, Gear 2 = seine-roe fishery, Gear 3 = gillnet fishery.

Age-composition data

There are two alternative likelihoods specified for the age-composition data in HCAM (see Table 8 in Appendix B in Cleary and Schweigert, 2010); a multinomial likelihood (T8.1), and a robust normal approximation to the multinomial(T8.2). In ISCAM, a multivariate logistic negative

log-likelihood for age-composition data is used (see equation 10 above); this likelihood weights age-composition data based on the conditional maximum likelihood estimate of the variance. Whereas, the multinomial likelihoods weights data based on the effective sample size; the effective sample size is normally determined iteratively by examining the distributions of residuals relative to other sources of information that the model is fit to (see Gavaris and Ianelli, 2002, for full details).

In addition, ISCAM requires a minimum observed proportion in each age class to reduce the influence on the likelihood of observations from extremely weak cohorts that would be difficult to detect due to measurement errors. We assume in years and ages where the observed proportion is less than 2%, the consecutive ages are grouped into a single age-class which reduces the effective number of age-classes (this is some what analogous to a plus group). For example, assume the age-proportions in 1970 of age-2 and age-3 fish are 3.5% and 0.1%, respectively. If the user specifies a minimum proportion of 2% then ISCAM will treat these observations as 3.6% age 2-3 fish in 1970. Pooling the data this way has been shown to reduce the influence of measurement errors on weak cohorts (Richards et al., 1997).

Commercial catch data

In the HCAM assessment, commercial catch was assumed to be known with a high degree of certainty; observation errors were assumed lognormal, and the standard deviation specified in the code is fixed at 0.0707 (variance of 0.005) for all three gear types. To implement these assumptions in ISCAM we fix the assumed standard deviation for the catches in the last phase to 0.0707 for each of the gear-types for all years. In other words, we assume that errors in estimating the catch by gear-type are constant over the 1951-2011 time period.

Spawn survey data

For the Strait of Georgia spawn survey, the assumed standard deviations in HCAM were specified at 0.35 and 0.3 for the pre- (1051-1987) and post- (1988 onwards) periods. To carry out the same assumptions in ISCAM the relative weights for the pre and post 1988 survey data were fixed at 1.0 and 1.1666, respectively. In ISCAM the total error (or precision=1/(std. dev.)) is estimated and partitioned into components of observation error (spawn survey residuals) and process error (recruitment deviations). To implement the same observation error and process errors in ISCAM (standard deviations of 0.35 and 0.8, respectively for observation errors and process errors in HCAM) the total precision was fixed at $\vartheta = 1/1.15$, and the proportion assigned to observation error was fixed at $\rho = 0.35/1.15$. The total variance is calculated as $(0.35^2 + 0.8^2)^{-1}$.

Specification of prior distributions

Starting with the prior density for natural mortality in HCAM, the average natural mortality rate is assumed to be normal with a mean of 0.45, and a standard deviation of 0.2 (see Table 3 in Cleary and Schweigert, 2010). The average natural mortality rate in ISCAM is estimated in the log scale; using a normal prior for the $\ln(M)$ is equivalent to a lognormal prior for M. A lognormal prior is appropriate for this parameter as natural mortality rates must be positive; however, there

is no equivalent analytical transformation to the normal distribution that was used in the HCAM assessment. Here we have specified a normal prior for $\ln(M)$ with a log mean of $\ln(0.45) = -0.7985$ and a log standard deviation of 0.4 to approximate the variance specified in the normal distribution used in the previous HCAM assessment. Note that the use of a lognormal prior for natural mortality rates will result in a slight downward bias in the maximum likelihood estimate of natural mortality rates. Based on the prior distribution described above, the mode of this distribution is approximately equivalent to M = 0.38.

The base HCAM model also allows for a random walk in natural mortality rate implemented as:

$$M_t = \begin{cases} \psi, \quad t = t' \\ M_{t-1} \exp(d_t^M), t > t' \end{cases}$$

where d_t^M are annual natural mortality deviations that are assumed to be normally distributed with a mean 0 and a standard deviation of 0.10, and ψ is an estimated initial value for natural mortality. The implementation of time varying natural mortality is similar in ISCAM in that it is a random walk process, but the components of the objective function include a prior for the initial value of M (as specified in the previous paragraph) and that the first differences between natural mortality deviations are normally distributed. Again, this structure allows natural mortality rates to drift away from central tendency (i.e., a biased random walk) and long-term changes in M could have profound effects on reference point calculations. HCAM assumed an unbiased random walk and the central tendency of d_t is 0; whereas, ISCAM assumes a biased random walk and the first differences in annual natural mortality deviations were assumed to have a mean 0 and a standard deviation of 0.10.

Annual recruitment deviations in the HCAM implementation were assumed to be normally distributed on a log scale with a mean of zero and a standard deviation of 0.8. To set up an equivalent assumption in ISCAM, the total variance (ϑ) and ratio of the total variance (ρ) that explains observation error in the spawn survey must be specified *a priori*. In the HCAM model the variance terms for the observation errors and process errors are not estimated and assumed to be known; the standard deviation for recruitment variation was set at 0.8 and the standard deviation for observation errors in the spawn survey was fixed at 0.35 and 0.3 for the pre and post 1988 data, respectively. These variance terms can be estimated within the ISCAM model, or treated as fixed constants; however, ISCAM estimates the total error and partitions it into observation (σ) and process error (τ) components. To make the same assumptions about the error terms in ISCAM as those that were used in HCAM the following values were used $\vartheta = 1/1.15 = .8695$, and $\rho = 0.3043$, and the weights assigned to the post- (1988 onwards) spawn data were set at 1.1666 and 1.0 for the pre- (1951-1988) spawn data.

The prior for steepness in HCAM was based on a lognormal distribution with a log mean of 0.67 and a standard deviation of 0.17. For the Beverton-Holt stock recruitment model, steepness must lie in the interval of $0.2 < h \le 1.0$; a Beta distribution is an appropriate density function for this parameter. In the ISCAM implementation, a Beta distribution is used and to approximate the distribution used in the HCAM model, the shape and rate parameters specified are 10.0 and 4.925373, respectively. These values corresponds to a mean of 0.67 and a standard deviation of 0.1178 for the Beta prior.

The last informative prior that is not explicit in the table of priors in the HCAM model is the scaling parameter (q) for the spawn survey. The spawn survey data are broken into two separate time

series, pre- and post-1988 when the survey switched from a surface estimate to dive surveys for estimating total egg deposition. In the HCAM implementation, a very informative prior for q in the post 1988 period was used where the mean was fixed at q = 1.0 and not permitted to vary (i.e., $\sigma_q = 0$). The scaling parameter in the first period was then freely estimated using an uninformative prior. Again, to emulate these assumptions in ISCAM a normal prior for $\ln(q)$ with a mean =0 and a standard deviation of 0.001 was used for the post-1988 data and a uninformative prior for the pre-1988 data.

RESULTS

SIMULATION TESTING

Model validation against perfect information

Given perfect information about trends in relative abundance and age composition information, and a deterministic stock-recruitment relationship, ISCAM was able to estimate 216 parameters without any substantial errors. Estimation performance is easily demonstrated by comparing estimates of spawning biomass and fishing mortality rates to the true values that were used to simulate the data. As shown in Figure 2 estimates of spawning biomass and fishing mortality rates were exactly the same as the true values. There is no measurable difference between the observed and predicted trends in the relative abundance information (Figures 2cd).

Residuals between the observed and predicted age-composition data (not shown) were also extremely small and are easily summarized by the conditional maximum likelihood estimates of the residual variance $\hat{\tau}^2$ for the winter seine fishery $\hat{\tau}^2 = 2.49e - 03$, the seine roe fishery $\hat{\tau}^2 = 1.25e - 27$, and the gillnet fishery $\hat{\tau}^2 = 1.24e - 27$.

This perfect fit to the data is used only to judge if the code is syntactically correct and to determine if it is capable of estimating model parameters exactly given perfect information. In the following section, observation errors and process errors are introduced to determine bias and precision in parameter estimates.

Bias & precision with observation & process errors

In the simulation experiments conducted with both observation error and process error included in the simulated data, there was no appreciable bias in the estimates of unfished recruitment $(\ln(R_o))$ and the natural mortality rate $(\ln(M))$, the average recruitment $(\ln(\bar{R}))$ and the initial recruitment $(\ln(\dot{R}))$, as shown in Figure 3. There was, however, a very slight upward bias in the estimate of the steepness parameter for the Beverton-Holt stock recruitment relationship. Also, steepness was estimated with the least amount of precision. The estimability of steepness depends on many factors including the precision of the observations, but also the history of exploitation, the true value of steepness and the natural mortality rate (Conn et al., 2010).

It's not surprising to see a slight upward bias in *h* for these simulations because the true value of natural mortality was set quite high (M = 0.45) along with steepness (h = 0.8). These high values

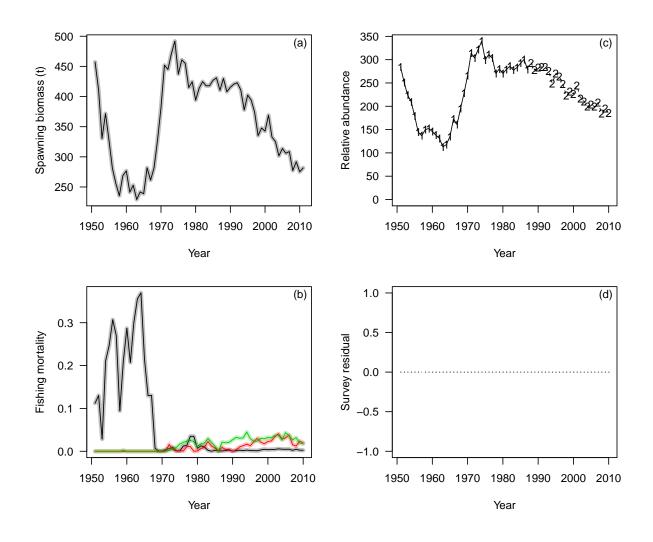


Figure 2. True (thin line) and estimated (thick shaded line) spawning biomass (a), fishing mortality rates by gear (b), observed and predicted relative abundance (c), and residuals between observed and predicted relative abundance (d) for the SOG herring simulation with perfect information and a deterministic stock-recruitment relationship.

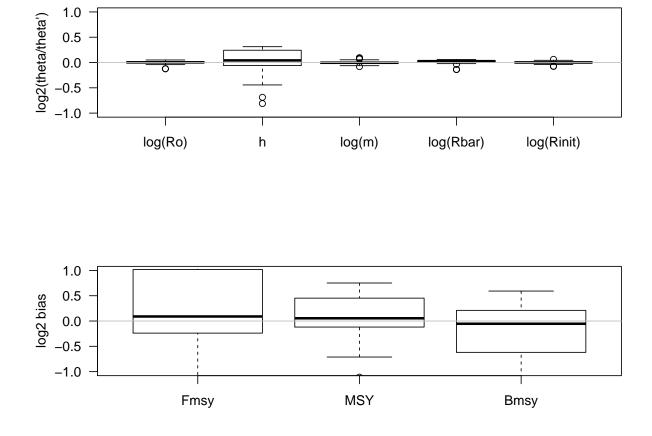


Figure 3. Estimates of precision and bias in key model parameters and MSY based reference points for 50 simulated data sets conditioned on the Strait of Georgia herring catch. The log2 ratio of estimated (numerator) versus true (denominator) value is plotted; values of 1 and -1 correspond to a twice or half the true value, respectively.

of M and h imply a very productive stock, and the spawning biomass would have to be driven to very low levels in order to generate data that would be informative about the underlying production function. Note that M and h are confounded because M is required to calculate the spawning stock biomass per recruit in unfished conditions. Furthermore, the simulated exploitation history involved a strong depletion signal between the 1950s and 1960's followed by very light exploitation from 1970 onward. On average the assumed parameter values for the simulation and the catch time series generated sufficient contrast to reliably estimate key model parameters without the use of informative priors.

The lower panel of Figure 3 shows the apparent precision and bias in the estimates of MSY based reference points. There is a very slight upward bias in the estimate of F_{MSY} associated with the slight upward bias in steepness. Estimates of B_{MSY} are also slightly biased in a downward direction, and MSY in a slight upward direction. Overall, MSY is the most precisely estimated and F_{MSY} is the least precisely estimated management variable.

It should also be noted here that this simulation is somewhat unrealistic in comparison to applying the model to the real data. The simulated conditions have a much lower total variance in comparison to the real assessments, we assume the ratio of observation error to process error is precisely known, and M and selectivity are constant. Whereas, in the real assessments the total error is estimated and partitioned into observation error and process error using an informative prior, M and selectivity in the gill net fisheries are not constant and allowed to vary over time. These assumptions should actually be simulation tested in future work to better characterize the nature of the data and model assumptions.

COMPARISON OF HCAM WITH ISCAM

Based on the description of the priors and model setup above, a comparison of the spawning stock biomass between ISCAM and HCAM were very similar (Figure 4a) for the Strait of Georgia stock. Between 1951 and 1969 the absolute difference in spawning biomass is minimal and post 1970 estimates of spawning biomass are slightly higher for the HCAM model. The only real difference between the two models during this period is a difference in the assumptions about the error structure for the age-composition data.

Estimates of spawning depletion are based on the post fishery spawning biomass relative to the estimated unfished spawning biomass (Figure 4b). The three coloured zones demarcate the critical zone, cautious zone, and healthy zones with transitions defined by $0.4B_{MSY}$ and $0.8B_{MSY}$, respectively.

Maximum likelihood estimates of key model parameters for both ISCAM and HCAM are summarized in Table 1. The ISCAM model has a lower estimate of B_o in comparison to the HCAM model and a higher value of steepness (h). These two parameters are usually negatively correlated and it is expected that if B_o was higher in one model in comparison to the other, then hwould normally be lower to compensate. Information to estimate B_o and h come from the apparent stock-recruitment data and the structural form of the stock recruitment relationship. Both models assume that stock-recruitment is in the form of Beverton-Holt, only the prior for steepness differs between the two models.

Average natural mortality rate is higher in the ISCAM model (Table 1), and the survey q for the

Table 1. A comparison of key parameters from ISCAM and the HCAM model with the ISCAM model set up like HCAM.

Parameter	ISCAM	HCAM
Unfished spawning biomass (B_o 1000 t)	108.492	190.817
Steepness (h)	0.811	0.683
Average natural mortality rate	0.563	0.334
Survey q for period 1	0.985	1.1105

pre-1988 spawn survey data is nearly identical in the two models (Figure 4f). The more contemporary survey data (1988 onwards) were forced to scale with q = 1.0. There is some pattern in the residuals for the overall fits to the survey data (Figure 4f), the model fails to predict the large increases in abundance in the late 1970s and early 2000s and the recent sharp decline in the mid 2000s. The assumed standard deviation for the survey errors was 0.35 and 0.3 for the pre and post 1988 survey data, the standard deviation of the residual errors in Figure 4f is 0.335 and 0.334, respectively.

Estimates of the components of total mortality for the comparison with the HCAM model are shown in Figure 4e. The fishing mortality rates for each gear represent the average fishing mortality rate over all age-classes, and the natural mortality rate is assumed to be age-independent. During the 1950s through to 1968, fishing mortality rates for Pacific herring in the Strait of Georgia were extremely high; this period was almost exclusively a winter purse-seine fishery where fish were taken for fishmeal (the reduction fishery). After the fishery reopened in the early 1970s fishing mortality rates were greatly reduced and targeted the spring spawning aggregations for the herring roe market.

Estimates of natural mortality are based on a random walk process, initially starting at a value of 0.401 in 1951 and declining to a very low value of 0.217 in 1959, then increasing to a maximum of 0.915 in 1969 (Figure 4e). Information to estimate natural mortality rates comes from the age-composition data, and assumptions about selectivity in the fishery. In this comparison, the ISCAM model assumes selectivity is time invariant for the purse seine gears and is a function of weight-at-age for the gillnet gear. Much of the residual variation in the age-composition is explained by variation in *M* and variation in age-2 recruits (see Figures 4c & d for and age-2 recruitment and stock recruitment relationship). The HCAM model has a very similar trend in the estimates of natural mortality but the variability is much less than that of the ISCAM assessment. This is almost certainly due to the differences in the assumptions about the error structure in the age-composition data (or relative weights associated with the age-composition).

There is good correspondence between the observed and predicted catch, however, the residual patterns do not appear to be iid (independent and identically distributed) for each of the fleets (Figure 5). Recall that the fit to the catch data is largely determined by an assumed variance for the observation errors in the reported catch ($\sigma_C^2 = 0.005$).

The fit to the spawn survey data in Strait of Georgia is nearly iid for the 1951:1987 time period. There is some pattern in the residuals post 1988 that appears to be in contradiction with other information (i.e., age-composition data and structural assumptions about selectivity) (Figure 5). The pattern in the recruitment residuals for the Strait of Georgia suggest periods of below

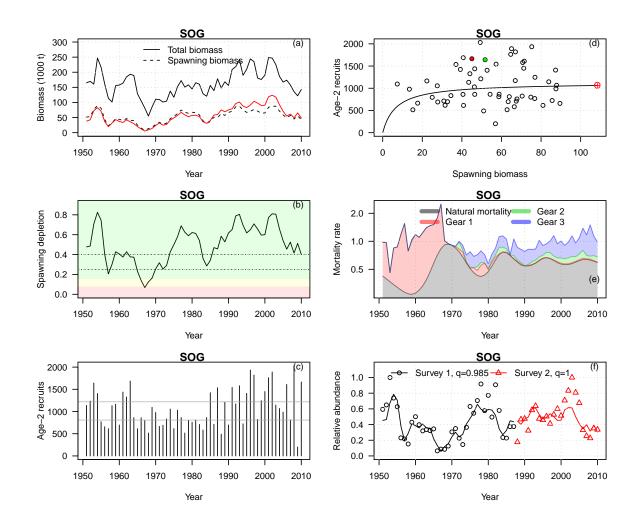


Figure 4. Results based on trying to configure the ISCAM model as similar as possible to the previous HCAM assessment. Maximum likelihood estimates of pre-fishery biomass (defined as the numbers-at-age times the mean weight-at-age at the start of the year) and post fishery spawning biomass in the Strait of Georgia (a), spawning biomass depletion (b), age-2 recruits (c), stock-recruitment relationship and unfished reference points (d), components of total mortality (log-scale, panel e), and observed (points) and predicted (lines) spawn survey data (f). The red line in panel (a) is the MLE estimate of spawning biomass from HCAM.

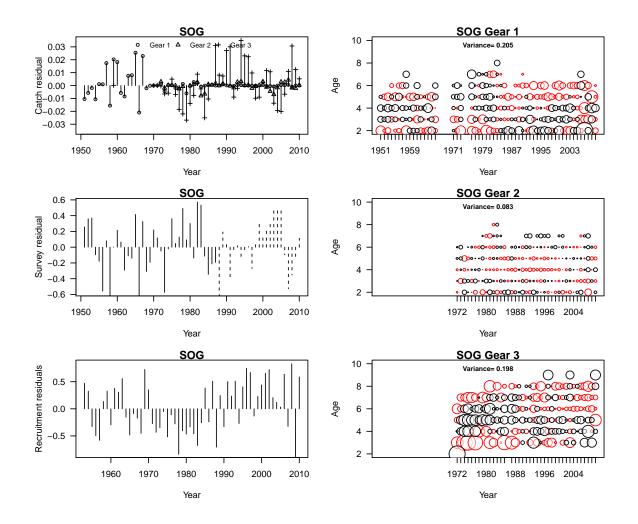


Figure 5. Residual values based on configuring ISCAM to be similar to HCAM. From top to bottom in the left column: the log residuals between observed and predicted catch for each gear, the residuals between the observed and predicted spawn survey index, and the annual deviations between age-2 recruitment and that predicted by the Beverton-Holt model and the estimated spawning stock biomass. Right column: residual patterns in the age-composition data (observed - predicted, where black is a positive residual) for each of the three commercial gears in the Strait of Georgia.

average-recruitment in the 1970s and early 1980s and above average recruitment starting in the early 1990s.

Fits to the age-composition data for the purse seine-roe fishery were best in comparison to the winter seine and gillnet fisheries. The conditional maximum likelihood estimates of the variance of the age-composition data are 0.205, 0.083, and 0.198 for the winter purse seine, seine-roe, and gillnet fisheries, respectively. The smaller the standard deviation, the better correspondence between the observed and predicted age-composition data. Also the pattern of residuals does indicate some model mis-specification (e.g., the gillnet fishery in the Strait of Georgia).

ALTERNATIVE ASSUMPTIONS ABOUT CATCHABILITY, MORTALITY & SELECTIVITY

Here we briefly explore the differences between relaxing the informative prior on catchability for the survey, reducing the number of natural mortality parameters being estimated and exploring alternative selectivity options to try and reduce the residual pattern in the gillnet fishery age-composition data. For the comparisons, we only examine the maximum likelihood fits to the data and the overall objective function value. Table 2 presents a few summary statistics for the following sub sections for easier comparison.

Table 2. Summary statistics for alternative structural assumptions about the Strait of Georgia herring assessment from 1951 to 2010. Definitions: No. is the number of estimated parameters, f the objective function value, B_o unfished spawning biomass, h steepness, \overline{M} is the average natural mortality rate, B_{MSY} the biomass at maximum sustainable yield, q survey scalers for pre and post 1988.

Model	No.	f	Bo	h	\bar{M}	B _{MSY}	q_1	q_2
Fixed q	279	-1166.62	108.49	0.812	0.56	20.962	0.985	1.0
Prior q	279	-1161.83	110.57	0.798	0.59	21.964	0.912	0.912
Fixed M	219	-1055.48	128.06	0.687	0.67	25.727	0.688	0.796
Gillnet Selectivity	279	-1196.06	121.65	0.76	0.655	25.27	0.817	0.683

Impacts of informative priors on q's

The implication of relaxing the informative prior on q for the contemporary spawn survey data was examined by using a less informative prior for the spawn survey q. The results shown in Figure 6 is a comparison of the HCAM parameterized version of the model as shown in previous sections with a version where the prior on $\ln(q)$ was assumed normal ($\mu = 0, \sigma = 0.274$) for both the contemporary and surface survey data.

The net result of relaxing this prior on q is a slight increase in the global scaling (the spawn biomass increases by roughly 12%) in comparison to the fixed q = 1 scenario. There is no appreciable difference in the overall fits to the data (see objective function value in Table 2).

Figure 6. A comparison of the estimated biomass and spawning biomass and fits to the survey data when q is either fixed at 1 for Survey 2 (panels a, b), or estimated using an informative prior with an expected mean of 0 and a log standard deviation of 0.274 (panels c and d).

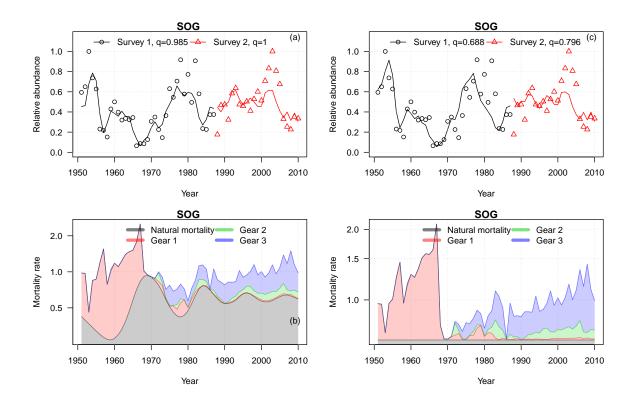


Figure 7. A comparison of fits to the survey data and estimated components of average mortality by year when *M* is allowed to vary via a random walk process or is estimated and assumed time invariant. Note that the y-axis in panels (b) and (d) are on a log scale and that the estimate of *M* is 0.67 in panel (d).

Implications of variable natural mortality rate M_t

In this next scenario we use the less informative prior for $\ln(q)$ as in the previous section but do not allow natural mortality rates to vary over time (i.e., fixed M). The natural mortality rate and qare confounded so it does not make sense to fix q and estimate M because the corresponding estimate of M would simply be conditional on the assumed value of q.

In the case where M is assumed to be time invariant, estimates of average M over the entire time series does increase slightly as well as the overall scaling of population size (Table 2). There are 60 fewer estimated parameters in this case but the overall fit to the data is slightly degraded (Figure 7, and see objective function values in Table 2).

Implications of variable selectivity in directed fisheries

Finally, we also explored the option of treating the gillnet selectivity as time invariant and estimated two parameters that describe age-specific selectivity using a logistic curve. In this case we also allowed for a random walk process in natural mortality rates so the total number of estimated parameters remains the same.

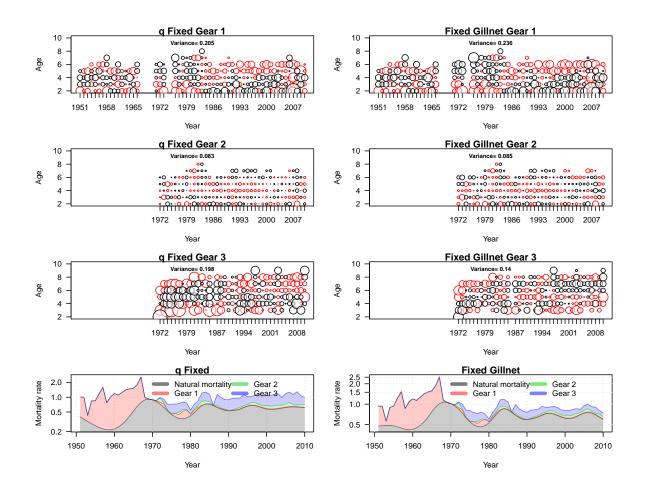


Figure 8. Residuals in the age-composition data when gillnet selectivity is a function of mean weight-at-age (left column with q Fixed in each caption) and or is a logistic function of age and time invariant (right column with Fixed Gillnet in each caption).

Better fits to the gillnet fishery age-composition data were obtained with constant selectivity, and the residual pattern also appears to improve under the assumption of constant selectivity (Figure 8). There was also a slight degradation to the age composition data in the winter purse seine fishery (Gear 1), but residual patterns were nearly identical in both the seine fisheries (Figure 8). The same number of model parameters were estimated and there was a slight improvement in the overall objective function with constant selectivity (Table 2). Trends in the estimates of natural mortality rates are similar when the gillnet selectivity is assumed constant.

PRELIMINARY ASSESSMENTS FOR ALL OTHER AREAS

For the five major stock assessment regions there was very good correspondence between the estimated spawning stock biomass between the HCAM and new ISCAM models (Figure 9). The control file used for each of the assessment regions was the same as that used for the Strait of Georgia. No additional changes were required (i.e., each SAR had the same initial starting parameter values etc.). In some areas there are minor differences in the trends and overall scaling (e.g., SOG, PRD), these were also identified as cases that had persistent negative residuals in the HCAM model.

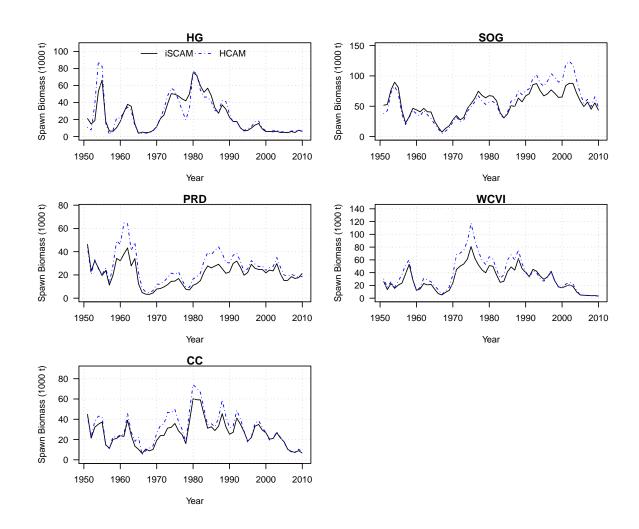


Figure 9. A comparison of estimated spawning stock biomass between HCAM and ISCAM for the five major stock assessment regions using data from 1951 to 2010 and setting up ISCAM similar to HCAM.

DISCUSSION

The simulation studies showed a minor upward bias in the estimates of F_{MSY} , MSY and a slight bias in steepness. Unfortunately, the true parameter values used in the simulation study did not provide significant contrast in the data to generate information over a wide range of spawning depletion. In general, such widely contrasting data are required to resolve parameter confounding (Hilborn and Walters, 1992). The simulated fishing mortality rates were extremely low (i.e., less than 0.3 between 1951 and 1969, and less than 0.1 post 1970.) and the stock was never depressed to a level where, on average, recruitment would be limited by spawner abundance. Future simulation studies should impose a more severe mortality schedule to see if this resolves the slight parameter bias.

There are a few significant differences between ISCAM and the previous assessment using HCAM, despite efforts to parametrize ISCAM as close as possible to HCAM. These differences include: different likelihood function for the age-composition data, using the conditional maximum likelihood estimate of q, estimation of variance, and jointly estimating parameters for the stock recruitment relationship. Here we briefly discuss how these structural differences influence model results.

In our attempts to parametrize the ISCAM model to reproduce the results of last years HCAM assessment, we fixed the variance and variance partitioning parameters such that the same weights were placed on the spawn observation errors and variation in annual recruitment. The age-composition data, however, were not given the same weight as the multinomial samples sizes that were used in the HCAM model. In this case, the ISCAM model assumes a homogenous variance in the age-composition data and the weight assigned to each observation is based on the conditional maximum likelihood estimate of the variance (i.e., this is akin to using concentrated likelihoods for the age-composition data). The main affect of this difference in likelihood formulations is that in the ISCAM model each year is given the same weight regardless of sample size (i.e., small and large sample sizes are given too much or too little weight, respectively, in comparison to the multinomial likelihood used in HCAM). That being said, there is also much debate about what the effective sample size should be when using the multinomial likelihood due to correlation structure in the samples (e.g., Francis, 2011). Another subtle difference between the two approaches is the pooling of samples that are less than 2% of the age-composition into the adjacent year class.

A second major difference between the two modelling platforms is how q for the dive survey data is treated. In the previous HCAM model, the dive survey q was fixed at 1, and was not treated as a latent variable. As a result the residuals between the observed and predicted survey data did not have a mean of 0 due to contradictions between the spawn survey data and the age-composition data in the SOG assessment. The residuals for the spawn survey data post 1988 were nearly all negative. For HCAM scenarios using ISCAM the conditional maximum likelihood estimate of qwas used to scale the spawn survey data along with a very informative prior for q to force q = 1for the post 1988 spawn survey. In the ISCAM model the sum of the residuals between the observed and predicted spawn survey data did have a mean equal to zero and there is no apparent bias in scaling parameters (q's) associated with contradictions in data sources.

In the comparison between HCAM and ISCAM models, the variance parameters in the ISCAM model were fixed such that the same observation error and process error were used in both

models. The fixed variance and fixed *q* values could also partially explain the persistent negative residual patterns observed in previous HCAM assessments (Cleary and Schweigert, 2010); these data may be weighted less relative to the age-composition data. Moreover, fixing these variance parameters (specifically the ratio of observation to process errors) is also likely to bias estimates of uncertainty in spawning biomass, and other variables. We also explored the possibility of estimating the total variance and the fraction associated with observation error for the SOG model. In this case, reasonable estimates of the variance parameters were obtained and this is only possible because there is information on relative abundance and age-composition in this fishery. We further estimate all the variance parameters in Part II of this document for all major and minor stock areas. Estimates of uncertainty are likely to be less biased now that the variance parameters are jointly estimated.

Lastly, another less subtle difference between the two modelling approaches was the estimation of the stock recruitment parameters. In the HCAM model an improper prior was used for the steepness parameter, where steepness was bound between 0.2-0.99 and a lognormal prior was used. In ISCAM, we used a Beta distribution as the prior rescaled for values in the range of 0.2-1.0 for the Beverton-Holt model. Estimating the stock-recruitment parameters is critical in establishing reference points and moving towards the Sustainable Fisheries Framework (SFF). If there are no information in the data to reliably estimate steepness, then the form of the prior distribution will influence derived reference points.

The default reference points suggested in the SFF are based on the concept of Maximum Sustainable Yield (e.g., the suggested LRP is $0.4B_{MSY}$, and the USR is $0.8B_{MSY}$). Such a default requires that we can accurately calculate B_{MSY} . In order to calculate B_{MSY} , precise estimates of population parameters (B_0 , h), life-history parameters (M, L_∞ , k, t_o , a, b, \dot{a} , $\dot{\gamma}$), and selectivity parameters (\hat{a} , $\hat{\gamma}$) are required. See parameters defined in Table 17 for a full explanation of how these are related to B_{MSY} . Estimating these parameters is one of the major goals of a fisheries stock assessment model, but calculating reference points based on the concept of MSY has a potential problem when there are multiple fleets involved that have very different selectivity curves. That problem relates to allocation of yield to each of the fleets. If each fleet has the same selectivity curve, then each fleet imposes the same age-specific mortality and there will be no impacts on the MSY estimates. If however one or more fleets harvest fish at a much younger (or older) age, then estimates of MSY (and the corresponding removal rate reference point) will shift up or down depending on the ratio of maturity to vulnerability. In general, the later the fish recruit to the fishing gear, the higher the sustainable fishing mortality rate.

Calculating reference points for the SFF requires considerable thought in determining allocation of herring to the purse seine and gillnet fleets. The gillnet gear tends to catch older herring in comparison to the winter seine and seine roe fisheries. Larger allocations to the seine fisheries come at a tradeoff of reducing potential yield for the gillnet fishery. There is a real optimization problem here that goes beyond the biology of the species, namely, profitability of each fishery. Furthermore, the calculation of reference points assumes that these data come from a unit-stock and not a collection of mixed sub-stocks that may differ in productivity.

PART II: STOCK ASSESSMENT AND MANAGEMENT ADVICE FOR THE BRITISH COLUMBIA PACIFIC HERRING STOCKS: 2011 ASSESSMENT AND 2012 FORECASTS

INTRODUCTION

The objectives of this section of the report are: (1) present the data used in the 2011 assessment, (2) provide a summary overview of the integrated statistical catch-age model (hereafter, ISCAM), (3) present the 2011 stock assessment and forecast for 2012, and (4) describe in detail the decision table used to provide advice to fisheries management.

B.C. herring are currently managed as five major stocks and 2 minor stocks (Figure 1). Annual catch advice for each of these areas is based on current estimates of stock status, and a 20% exploitation rate if the post-fishery stock is above the cutoff level for the five major stocks and a 10% exploitation rate for the two minor stocks. Cutoff levels for the five major stocks were historically based on the 1996 estimate of $0.25B_o$. A cutoff level of 25% of B_o is thought to be more conservative than the suggested default Limit Reference Point of $0.4B_{MSY}$ (DFO, 2006). For example, B_{MSY} is normally in the range of 35% of the unfished biomass for many fish stocks; therefore, 40% of B_{MSY} is roughly 14% of unfished which is significantly lower than the 25% B_o are also provided in this document.

This years assessment is based on a new catch-age model, ISCAM, where alternative assumptions about survey q, and the form of the error distribution for the age-composition data are the major differences in comparison to the 2010 assessment using HCAM. In addition to the changes in likelihoods, we also present an alternative parametrization of the gillnet selectivity to determine if the residual variation in gillnet age-composition data are better explained by systematic changes in the empirical weight-at-age data or selectivity has been relatively constant and natural mortality rates have varied over time.

In this part of the document, we first describe the five major and two minor Stock Assessment Regions (SAR) that comprise the B.C. herring stocks. We then present the input data used in this years assessment, briefly describe the analytical methods and diagnostics, describe the recruitment and catch forecasts, and the Harvest Control Rule (HCR) used for generating catch advice. We then present the maximum likelihood estimates of residual patterns and overall fits to the observations, summarize MSY based reference points and maximum likelihood estimates of B₀. Lastly, we present the results of integrating the joint posterior distribution, diagnostics for ensuring convergence, marginal parameter distributions (with prior distributions overlaid), and catch advice based on the median values of the joint posterior distribution. The last section presents the data, MLE results, marginal distributions and catch advice for the two minor areas (the HCR in the minor area differs from the major areas).

B.C. HERRING STOCKS

The geographic boundaries used to delineate the B.C. herring stock assessment regions have remained consistent since 1993. Boundaries and locations of the major stock and minor stock areas are identified in Figure 1. The Haida Gwaii (HG) or Queen Charlotte Islands (QCI2E) stock assessment region includes most of Statistical Area 2E, spanning from Cumshewa Inlet in the north to Louscoone Inlet in the south. The Prince Rupert District (PRD) stock assessment region encompasses Statistical Areas 03 to 05. The Central Coast (CC) assessment region separates the major migratory stocks from the minor spawning populations in the mainland inlets. The Central Coast assessment region includes Statistical Area 07 plus Kitasu Bay in Area 06, Kwakshua Channel in Section 085 and Fitz Hugh Sound in Section 086. The Strait of Georgia (SOG) stock assessment region includes all of Statistical Areas 14 to 19, 28, and 29 (excluding Section 293), Deepwater Bay and Okisollo Channel, both in Section 132, and Section 135. The west coast of Vancouver Island (WCVI) assessment region encompasses Statistical Areas 23 to 25. The minor stocks include all of Area 27 and Area 2W (excluding Louscoone Inlet in Section 006). Current geographic stock boundaries are outlined in Midgley (2003), although note that SOG sections 280 and 291 do not appear as they were added in 2006.

METHODS

INPUT DATA & ASSUMPTIONS

Catch data

For each of the statistical areas, the required input data for ISCAM consists of a catch time series for each of the fishing fleets. For the B.C. herring fishery, the annual total removals has been partitioned into three distinct fishing fleets (or fishing periods, see Figure 10). The first fleet is a winter seine fishery that has been in operation since the start of the assessment in 1951, the second is a seine-roe fishery that commenced in 1972 in the Strait of Georgia, and the third fleet is a gillnet fishery that targets females on the spawning grounds. The model is fit to the catch time series information and assumes measurement errors are lognormal, independent and identically distributed. The assumed standard deviation in the catch observation data must be specified in the control file and it is assumed that measurement errors in the catch is the same for all fishing periods. The units of the catch are given in 1000s of metric tonnes.

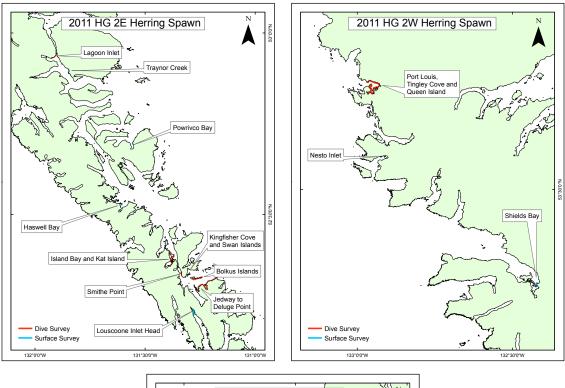
In addition to the commercial catch, removals from fisheries independent surveys must also be specified in ISCAM. Two additional fleets are specified to represent the spawn survey, where the spawn survey is broken into two distinct time periods pre-1988 and post-1988, the year when the survey switched from surface surveys to dive surveys. This partitioning of the data is done for two reasons: (1) to allow for different catchability coefficients to be specified for the early and late periods, and to allow for more weight to be placed on the contemporary data due to improved precision in the estimates of egg layers.



Figure 10. Historical catch of herring in the five major stock areas between 1951 and 2011 for the winter purse seine fishery (dark bars), seine-roe fishery (grey bars), and gillnet fishery (light grey bars). Units of catch are in thousands of metric tonnes.

Relative abundance data

Herring spawn surveys have been conducted throughout the B.C. coast beginning in the 1930s. Prior to 1988, spawn surveys were conducted from the surface either by walking the beach at low tide or using a drag from a skiff to estimate the shoreline length and width of spawn. Egg layers were sampled visually and are used to calculate egg densities following the methods of Schweigert (2001). Beginning in 1988, herring spawn surveys using SCUBA methods were introduced and were implemented coastwide within a couple of years, initially being conducted by DFO staff and eventually through contract divers hired through the test fishing program. Prior to the 2006 Larocque ruling, the test fishing program was funded through an allocation of fish by industry. In years since the 2006 Larocque ruling, the availability of resources to conduct dive surveys in all areas has been reduced. For 2011, dive surveys were conducted in all major and minor assessment regions, with the exception of Area 2W where snorkelling and surface survey methods were also used. As in earlier years, a few minor spawning beds outside the main assessment areas were surveyed by SCUBA or surface methods where resources permitted.


The locations of the spawning beds for the five major and two minor stock areas are shown in Figures 11 and 12. Egg density estimates are used to calculate a fishery-independent index of herring spawning biomass, referred to as the spawn survey index hereafter (Schweigert, 2001).

The spawn survey is conducted after the fisheries in the area have been completed; therefore, it is assumed that all the mortality for the year has occurred just prior to commencing the spawning survey. The herring spawn survey estimates egg density and total area spawned, and from this information the total female spawning biomass can be estimated assuming 200 eggs per gram of female body weight or 100 eggs per gram of mature body weight of both sexes (Hay, 1985; Hardwick, 1973). The assumed selectivity for the spawn survey is fixed to the maturity schedule for herring and the mean weight-at-age data comes from empirical observations based on biological samples.

Biological samples

Biological samples are collected from both commercial catch and from the test fishery program. Commencing in 1975, test fishery charters supplemented biological samples in areas where catch sampling that was not representative of the stock in that area (i.e., fishing solely on spawning aggregations), or in closed areas. Prior to 2006, test fishing charters were funded through an allocation of fish to the test program; the program is now fully funded by DFO Larocque Relief Funds. Through a contract with DFO, the Herring Conservation and Research Society (HCRS) sub-contracts a number of vessels to collect biological samples. Industry also conducts pre-season test sets for roe-quality testing in open areas and supplementary biological samples are provided as part of this program. The following data are collected for all biological samples: fish length, weight, sex, and maturity. Subsequently these sources of data are compiled and used as the information on mean weight-at-age and catch-at-age data that are the essential input data for the stock assessment model.

During the 2010/2011 season a total of 248 biological samples were collected, of which 151 were collected from the test fishery, 57 were collected from the roe fishery, 16 from the food & bait fishery, 4 from Spawn on Kelp (SOK) operations, and 16 from the summer trawl research survey

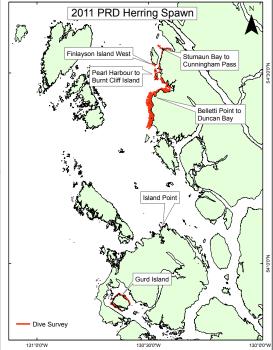


Figure 11. Spawning activity for Haida Gwaii (top panels) and Prince Rupert District (bottom) in 2011.

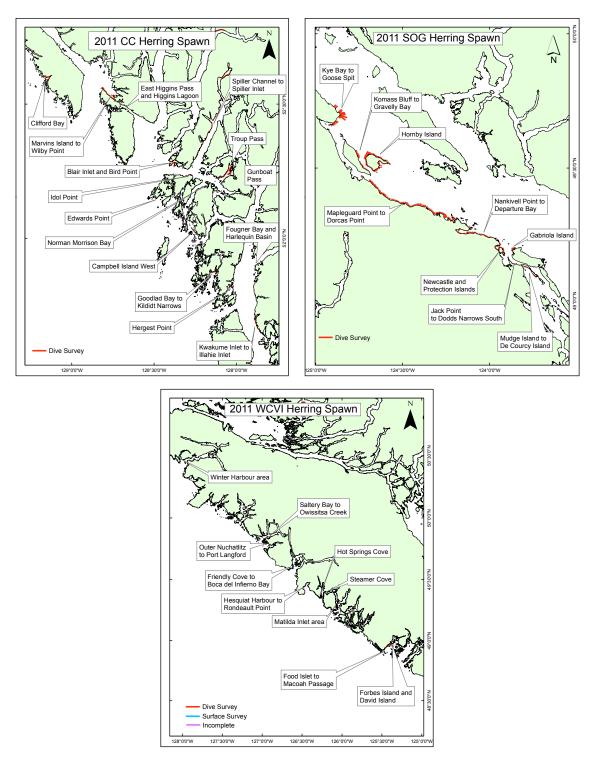


Figure 12. Spawning activity for Central Coast (top left panel), Strait of Georgia (top right) in 2011 and west coast Vancouver Island (bottom).

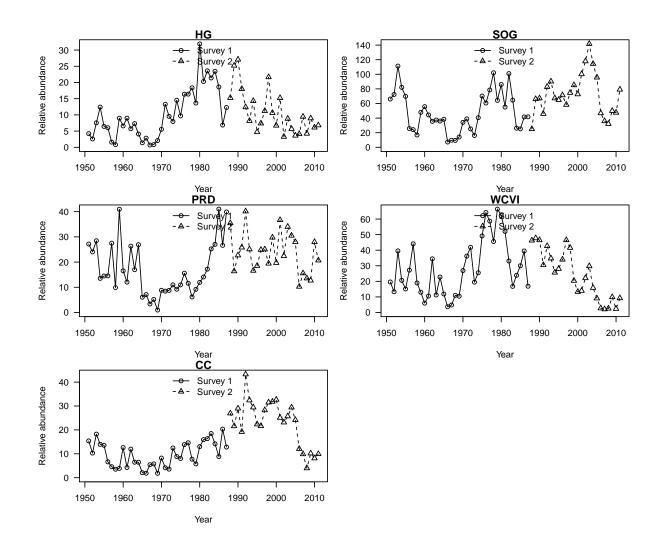


Figure 13. Spawn survey index for Strait of Georgia between 1951 and 2011. The units are actual estimates of spawning biomass (1000s tonness), but only the trend information is used in the model fitting.

Table 3. Summary of biological samples collected and processed from all sources from the 2010/11 herring season.

Commercial samples								
Stock	Roe fishery	SOK fishery	F&B	Test fishery	Research			
HG (QCI 2E)				13				
PRD	35	1		18				
CC				30				
SOG	28		20	60				
WCVI				14	14			
Area 2W				10				
Area 27		3						
Other Areas			2					
Total	63	4	20	145	16			

Table 4. Summary of biological samples collected and processed from commercial catch and test fishery charters from 2002/03-2010/11.

Fishing season	Commercial fishery samples	Charter and research samples	Total
2002/03	120	287	407
2003/04	79	222	301
2004/052	83	191	274
2005/06	46	164	210
2006/07	114	85	199
2007/08	116	103	219
2008/09	87	136	223
2009/10	78	135	213
2010/11	87	161	248

(Table 3). Note that the definition of a sample is roughly 100 individual fish. A summary of biological samples collected from commercial and pre-fishery charters from 2002/03–2010/11 is presented in Table 4 and the spatial locations of the biosamples are presented in Figure 14.

Age composition data

Ageing data, through the reading of fish scales, are collected from the biological samples taken from the commercial fisheries and test fishery charters. At present, the biological samples from the test fisheries are pooled with the corresponding commercial fishery. The majority are combined with the seine-roe samples, however in some years, gillnet-test samples were collected and thus combined with gillnet-roe samples. Future analyses may further disaggregate these data to determine if the test fishery and roe fisheries demonstrate different age-compositions. Age composition data is used to determine proportions-at-age and is an essential source of input data to the herring stock assessment model.

In all of the major SAR, catch-at-age data from the winter seine fishery (top panels of Figures

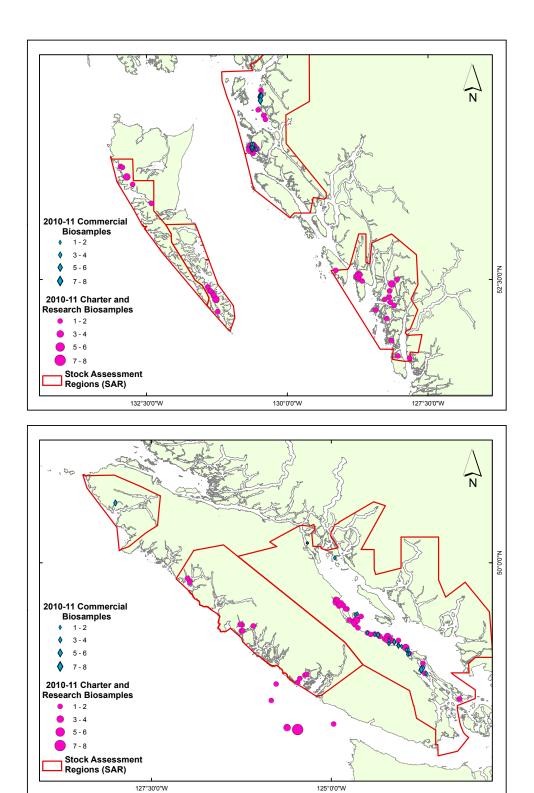


Figure 14. Spatial location and sample sizes of 2011 biosamples from commercial and research-charter programs in the north coast (top panel) and south coast (lower panel).

15-19) tend to consist of younger fish in comparison to the age composition data from the seine-roe and gillnet fleets post 1970. The shaded polygons in Figures 15-19 approximates the 95% distribution of ages in the catch. Roughly 90% of the fish landed in the winter seine fishery were younger than age-7, and younger than age-6 in recent years. In both the winter seine and seine-roe fishery age-2 fish are frequently landed; whereas, age-2 fish are rarely landed in the gillnet fishery, and fish do not appear to fully recruit to the gillnet gear until at least 4-5 years of age. The mean age of the catch appears to be increasing between 2008 and 2010 in both the gillnet and winter seine fishery, and there is no obvious trend in the seine roe fishery. There is however a declining trend in the older ages caught in the seine-roe fishery since 2006 (erosion of age-structure).

Mean weight-at-age data

From the mid-1970s until the present, there has been a measurable decline in weight-at-age for all ages in all major stock areas (Figure 20). Samples collected during the 2009/10 fishing year indicate weights-at-age that are among the lowest on record. This declining weight-at-age may be attributed to any number of factors, including: fishing effects (i.e., gear selectivity), environmental effects (changes in ocean productivity), or it may even be attributed to changes in sampling protocols (shorter time frame over which samples are collected). Declining weight-at-age has been observed in all five of the major stocks, and despite area closures over the last 10-years, has continued to occur in the HG (QCI 2E) and WCVI stocks. This trend has been observed in B.C. and U.S. waters, from California to Alaska (Schweigert et al., 2002), however the direct cause of this decline should be investigated and merits further research. The observed mean weight-at-age data appear to have a few errors that need to be investigated as well; for example, see the apparently small age-10 fish in 2001 in Figure 20.

Mean weight-at-age data are based on the biological samples taken from the commercial and test fisheries. The spatial distribution of the biological samples from 2011 are shown in Figure 14.

ANALYTICAL METHODS

For the 2011 B.C. herring assessment, a statistical catch-age model (ISCAM) was used to conduct the stock assessment for each of the five major Stock Assessment Regions (SAR) and two minor assessment areas (Area 2W and Area 27). The technical details of this model can be found in Appendix A.

RETROSPECTIVE ANALYSIS

A retrospective analysis was conducted for each of the major and minor SARs. The retrospective analysis successively removes the last 10-years of data and examines changes in estimates of terminal spawning biomass. The results are then plotted on a single panel to compare how estimates of spawning biomass change as successive years of data are omitted from the analysis.

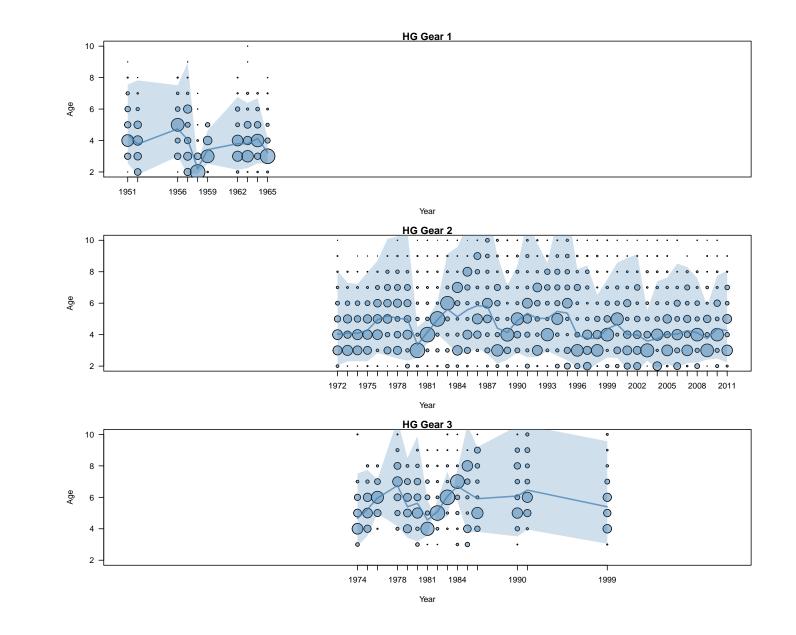


Figure 15. Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in Haida Gwaii. The area of the circle reflects the proportion-at-age, each column sums to 1, zeros are not shown, and age 10 is a plus group. Also shown is the mean age of the catch (line) and the approximate 95% distribution of ages (shaded polygon) for each year.

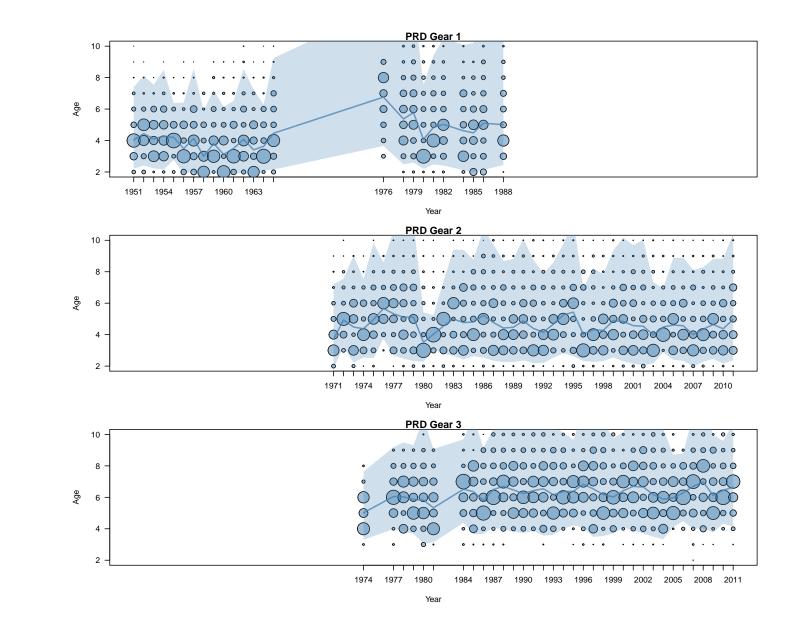


Figure 16. Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in Prince Rupert District. The area of the circle reflects the proportion-at-age, each column sums to 1, zeros are not shown, and age 10 is a plus group. Also shown is the mean age of the catch (line) and the approximate 95% distribution of ages (shaded polygon) for each year.

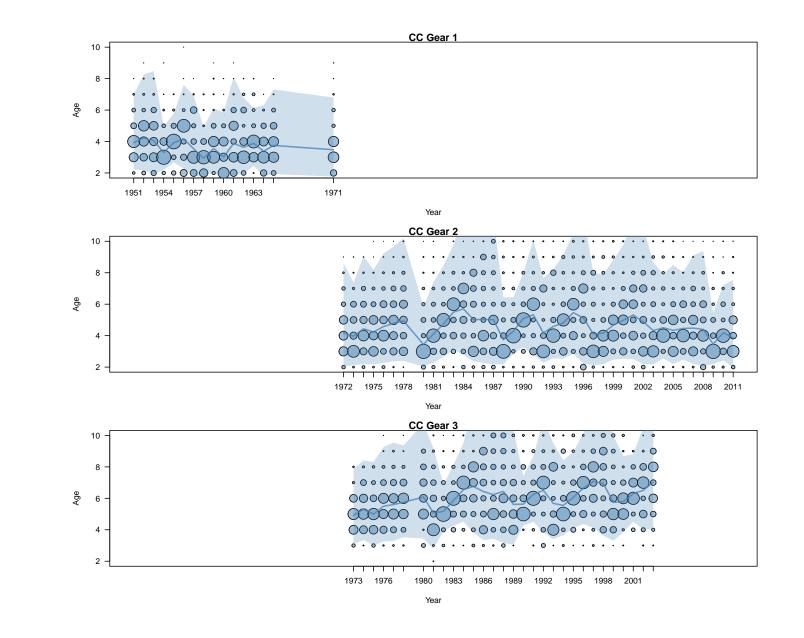


Figure 17. Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in the Central Coast region. The area of the circle reflects the proportion-at-age, each column sums to 1, zeros are not shown, and age 10 is a plus group. Also shown is the mean age of the catch (line) and the approximate 95% distribution of ages (shaded polygon) for each year.

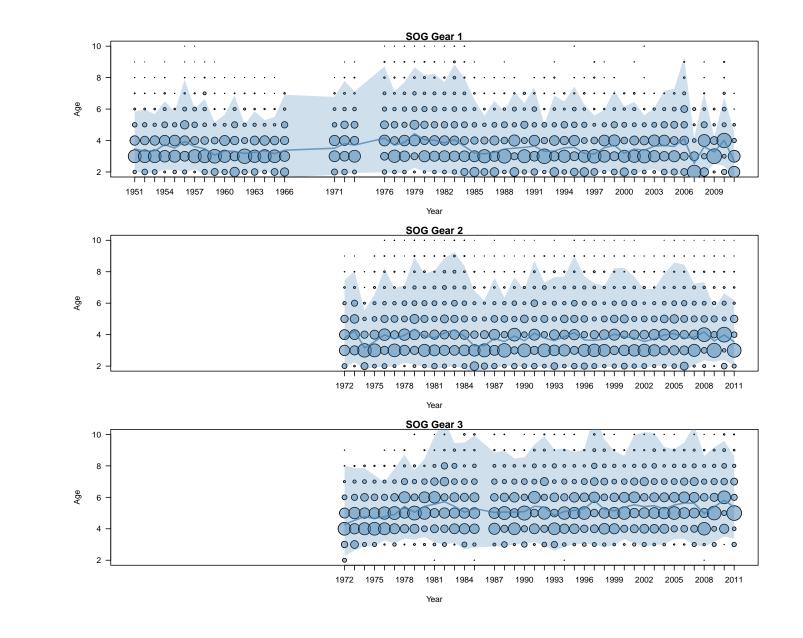


Figure 18. Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in the Strait of Georgia. The area of the circle reflects the proportion-at-age, each column sums to 1, zeros are not shown, and age 10 is a plus group. Also shown is the mean age of the catch (line) and the approximate 95% distribution of ages (shaded polygon) for each year.

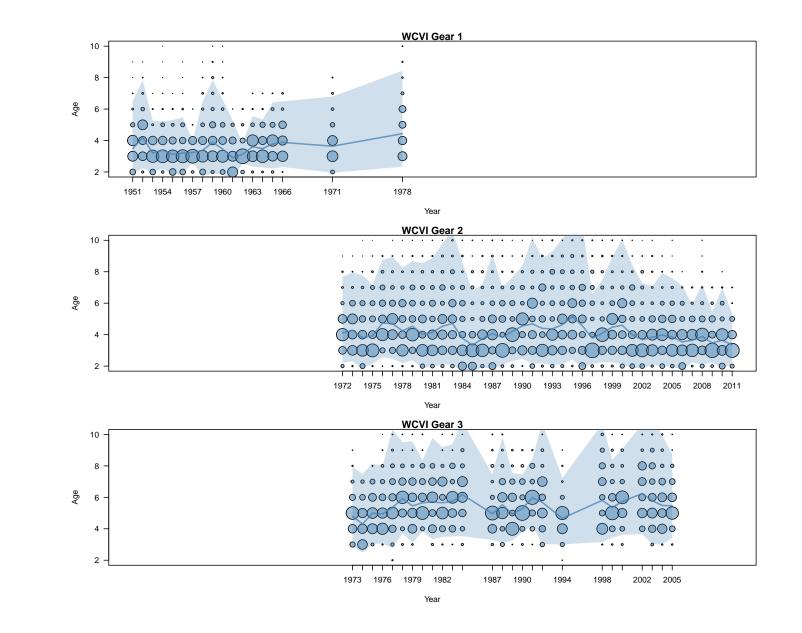


Figure 19. Proportions-at-age versus time for the winter purse seine fishery (top), seine roe fishery (middle) and the gillnet fishery (bottom) in the West Coast Vancouver Island region. The area of the circle reflects the proportion-at-age, each column sums to 1, zeros are not shown, and age 10 is a plus group. Also shown is the mean age of the catch (line) and the approximate 95% distribution of ages (shaded polygon) for each year.

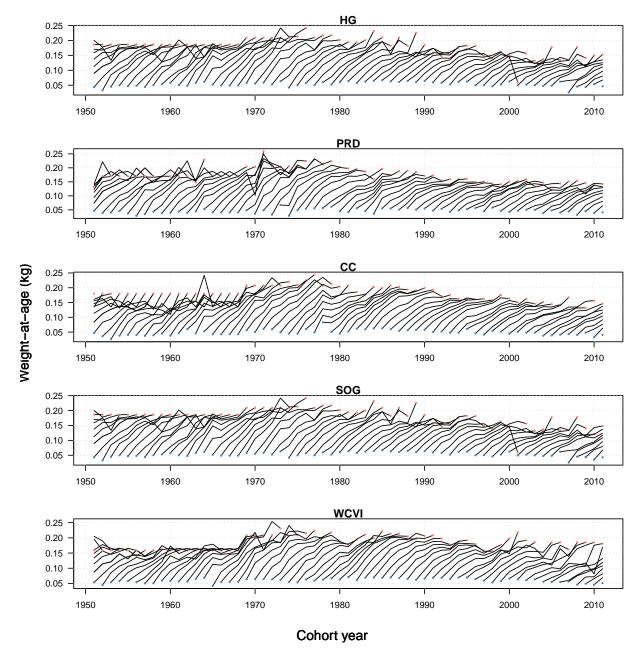


Figure 20. Empirical mean weight-at-age data by cohort from 1951 to 2011 for ages 2 to 10 in the five major Stock Assessment Regions.

ABUNDANCE AND RECRUITMENT FORECASTS

The abundance forecast for the upcoming fishing season, also referred to as pre-fishery biomass, is defined as the predicted biomass of age-4 fish and older plus the number of age-3 fish recruiting in year T + 1. The abundance estimates are based on the median values from the sampled posterior distribution. Age-3 recruits are based on poor, average, and good recruitment scenarios; see next paragraph for definitions of poor, average and good.

The recruitment forecasts are based on the surviving number of age-3 fish at the start of the fishing season times the average weight-at-age 3 in the last 5 years. The definitions of poor, average, and good recruitment are as follows: **Poor** is the average recruitment from the 0-33 percentile, **Average** is the average recruitment from the 33-66 percentile, and **Good** is the average recruitment from the 66-100 percentile. Note that all cohorts from 1951 to 2011 were included in the calculation of recruitment quantiles.

HARVEST CONTROL RULE

Catch advice is based on the application of the herring HCR (harvest control rule). A formal HCR as been used to provide management advice for the major B.C. herring stocks since 1986 (Stocker, 1993). The herring HCR has three components:

- 1. Reference points
- 2. Harvest rate
- 3. Decision rules

These three components are consistent with the DFO harvest strategy that is compliant with the precautionary approach (DFO, 2006). The DFO PA policy specifies two biological reference points: 1) the limit reference point (LRP) which is a minimum stock size where fishing activity is ceased if the stock falls below the LRP into the critical zone, and (2) the upper stock reference (USR) that defines the boundary between the cautious and healthy zones.

Reference points

The harvest control rule that is currently used to provide catch advice for the five major B.C. herring stocks is a hybrid between a fixed escapement policy and a fixed exploitation rate policy. For each of the major stocks, the reference point is defined as a cutoff level (or escapement target) and is set at 25% of the unfished spawning stock biomass. The cutoff is intended to maintain a minimum spawning stock biomass of 25% of the estimated unfished biomass. Simulation studies in the past (Haist et al., 1986; Hall et al., 1988) suggest that 25% of the unfished spawning reserve to ensure long-term sustainability of the resource.

At present, there are no formal definitions for LRP and USR for the five major herring stocks. The cutoff values for each of the stocks are thought to be more conservative than the default LRP of

 $0.4B_{MSY}$. For example, surplus production in most fish stocks is usually maximized when the stock is depleted in a range of 30%-45% of its unfished state. If we assume that herring production was maximized at a depletion level of 45% or $B_{MSY}=0.45B_o$, then the default LRP for herring would be equal to 18% of the unfished biomass (i.e. 40% of B_{MSY}/B_o). This document also presents the maximum likelihood estimates of spawning biomass depletion, and these results are over-laid on coloured panels that define the default $0.4B_{MSY}$ and $0.8B_{MSY}$ LPR and USR, respectively (see Figure 30).

Critical to the HCR is the estimate of unfished spawning biomass (B_o) . The cutoff levels were last revised in 1996 (Schweigert et al., 1996), and these same values have been used to provide catch advice in subsequent years. In this assessment, we provide updated estimates of B_o and the associated cutoff values equal to $0.25B_o$.

In the case of the minor stock areas, the harvest control rule consist of a fixed exploitation rate; reference points are not included in the HCR for minor stock areas. However, for analytical purposes, we provide estimates of $0.25B_o$ for both minor stocks.

Harvest rate

The Centre for Science Advice Pacific (CSAP, previously PSARC) has reviewed the biological basis for target exploitation rate, considering both the priority of assuring conservation of the resource and allowing sustainable harvesting opportunities (Schweigert and Ware 1995). The review concluded that 20% is an appropriate exploitation rate for those major stock areas that are well above cutoff levels of 25% of the estimated unfished biomass. The recommended 20% harvest rate is based on an analysis of stock dynamics which indicates this level will stabilize both catch and spawning biomass while foregoing minimum yield over the long term (Hall et al., 1988; Zheng et al., 1993).

In the case of minor stock areas, the CSAP recommended harvest rate of 10% is applied to forecast biomass levels for these stock areas.

Decision rules

For the major stock areas, the harvest control rule combines both constant exploitation rate and constant escapement policies, allowing for smaller fisheries in areas where the 20% harvest rate would bring the escapement down to levels below the cutoff. The rule operates as follows:

- If the forecast run (B_{t+1}) is less than the cutoff: the area is closed to all commercial harvest.
- If the forecast run (B_{t+1}) is greater than the cutoff: A commercial harvest is permitted and the harvest rate is based on the following rules:

- If $0.8B_{t+1}$ > Cutoff, then harvest rate u= 20%.

- If $0.8B_{t+1}$ < Cutoff, then harvest rate $u = \frac{B_{t+1} - \text{Cutoff}}{B_{t+1}}$

In the case of the minor stock areas, the decision to allow for a commercial harvest has been at the discretion of Fisheries Management. In years where a commercial harvest is permitted, a fixed harvest rate of 10% is applied to forecast biomass levels for these stock areas.

RESULTS

The results section is broken down into three major subsections, Maximum likelihood fits to the data, marginal posterior distributions, and stock forecasts and catch advice based on samples from the joint posterior distribution.

MAXIMUM LIKELIHOOD FITS TO THE DATA

Although the maximum likelihood estimates are not explicitly used for constructing the catch advice, we do present the MLE estimates of the residual patterns and fits to the data for comparisons.

Catch residuals

Residuals between the observed and predicted catch are largely determined by the user specified standard deviation in each of the control files. In this assessment, the assumed variance for all regions (including minor regions) was set at 0.005, which corresponds to a standard deviation of approximately 0.0707. Overall the residuals for each fishery in each stock assessment region are unremarkable (Figure 21), with exception of a major outlier in the Haida Gwaii in the mid 1950s. In 1956, the reported catch in Haida Gwaii was extremely large (> 60,000 mt) and the model has a difficult time explaining this large catch. In order to explain this large catch in a single year, a large biomass in the region is required.

Fits to the spawn survey data

The residuals between the observed and predicted spawn survey index (on a log scale) are shown in Figure 22. Recall that the spawn survey data are treated as two independent time series where data between 1951–1987 were based on surface estimates of spawn deposition and data post 1987 (1988-onwards) are based on diver surveys of spawn deposition. More weight was assigned to the contemporary data. Also, you might be tempted to compare the estimated values of q in Figure 22 with those estimated in Part I of this document (e.g., Table 2 on page 17). The results in Table 2 are based on data from 1951 to 2010 (i.e., omit the 2011 data) and use a different parameterization of the selectivity function for the gillnet fishery (type 7 as opposed to type 8, see Appendix A on page 108).

For most areas, there is little pattern in the residuals between the observed and predicted survey data (Figure 22). For the HG, PRD and CC regions, there is very good correspondence between the observed and predicted survey data post 1988. In the SOG, there is a period of positive residuals between 1999 and 2005 where the predicted spawn biomass fails to increase as much

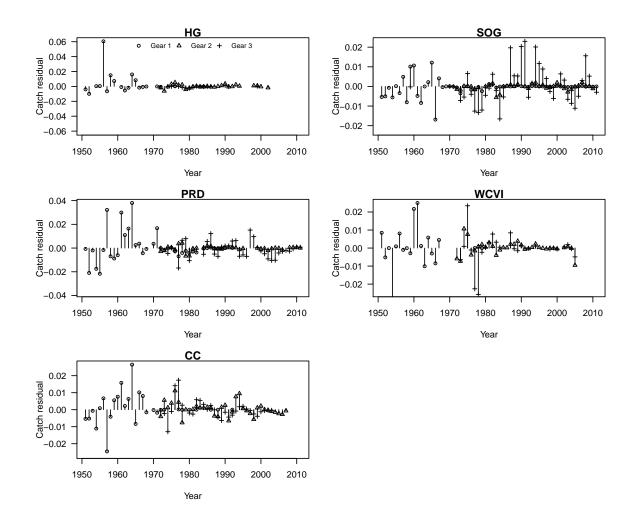


Figure 21. Residual for the log difference between observed and predicted catch for the five major SARs for each gear type (Gear 1 = winter seine fishery, Gear 2 = seine-roe fishery, Gear 3 = gillnet fishery).

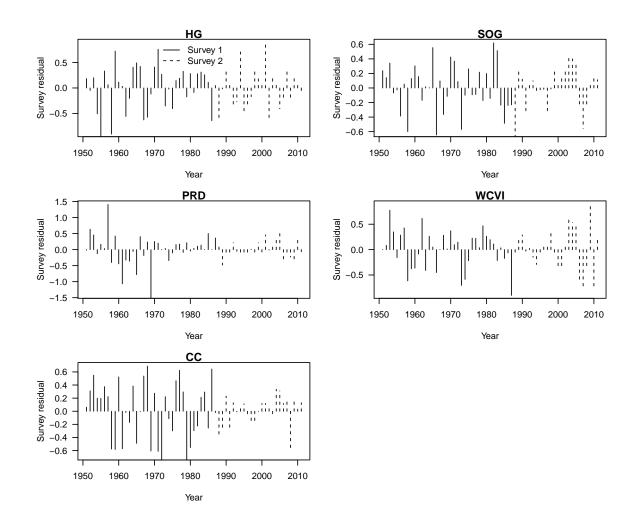


Figure 22. Residual patterns for the log difference between observed and predicted spawn survey abundance for the five major SARs. Spawn survey data based on surface estimates are show as solid lines and data based on diver surveys is shown as dashed lines.

as indicated by the survey. Similarly 3–4 year trends also exist in the WCVI spawn survey data after the year 2000.

In comparison to the previous assessment for Pacific herring using the HCAM model, estimates of the catchability coefficient are very different (HCAM assumed q=1 for post 1988 data). In each of the five major assessment regions (and the two minor regions) a less informative prior for the catchability coefficient was used (see Appendix C). Maximum Likelihood Estimates (MLE) of the catchability coefficients are presented for each region in Figure 23 along with the observed and predicted trends in the spawn index. Estimates of q in both time periods are less than 1.0 for all regions. The interpretation of q = 1 is that the spawn survey data is an absolute measure of spawn abundance, q < 1 implies that the survey under-estimates the spawn abundance and q > 1 implies an over-estimate. For example, in the HG region the MLE values for q are 0.248 and 0.434 for the pre- and post-1988 data, respectively. This could be interpreted as the spawn

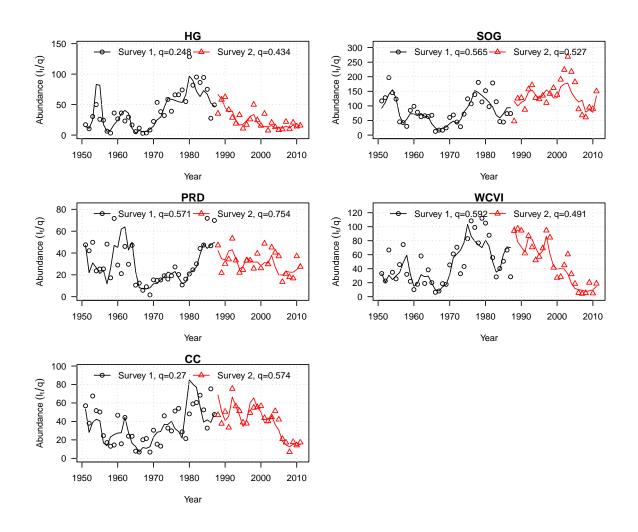


Figure 23. Observed (points) and predicted (lines) spawn survey abundance data scaled by the MLE estimate of q for each of the five major SAR. In each panel, the corresponding scaler (q) is presented for each of the surveys.

survey, on average, records 24.8% and 43.4% of the deposited spawn each year. This interpretation however is conditional on the specification of mature biomass in the stock assessment model and the methods used to extrapolate egg density to spawning biomass. Values of q < 1 could also be interpreted as the fraction of eggs remaining at the time the spawn survey was conducted (i.e., (1-q) of the eggs survived predation, storms, etc.)

Age composition residuals

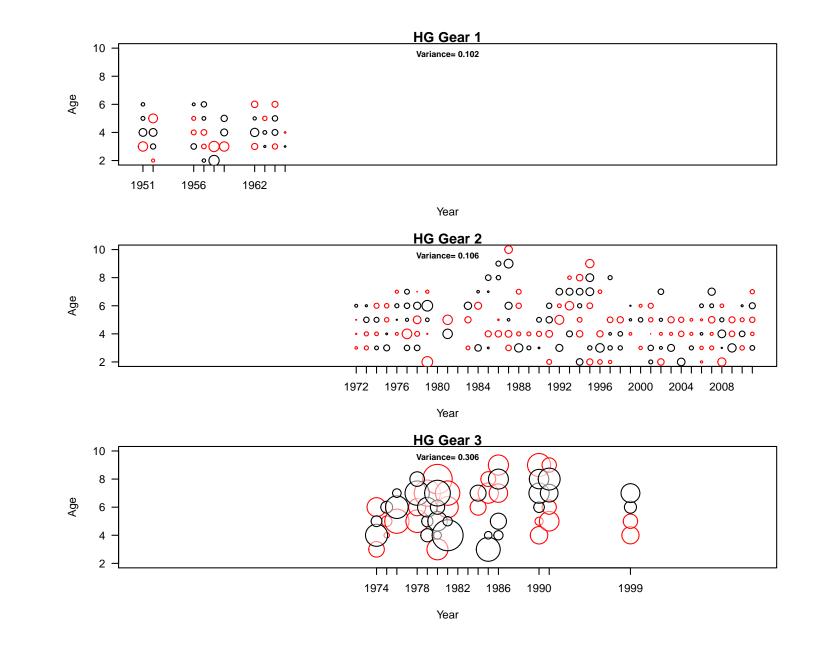
The assumed error distribution for the age-composition data has changed in this assessment from a multinomial distribution implemented in HCAM to a multivariate-logistic distribution. In the former implementation the age-composition data were weighted by the annual samples sizes in each region for each age and year. In the ISCAM implementation the age-composition data for

all years is given the same weight (i.e., we assume the observation errors is homogenous) based on the conditional maximum likelihood estimate of the variance (see Appendix A for full details). We further pool age-proportions that are less than 2% into the adjacent younger year class to reduce the influence of small outliers and weak cohorts.

In HG the MLE estimates of the variance for each gear is 0.102, 0.106 and 0.306, for the winter seine, seine-roe and gillnet fleets, respectively (Figure 24). In general there is fairly good agreement between the observed and predicted age-composition data in this region, with poorer fits to the gillnet age-composition data. There is no persistent pattern in the residuals.

For the PRD region, the fits to the age-composition data are slightly poorer, with MLE estimates of the variance ranging from 0.164 to 0.269 for the gillnet and winter seine fleets (Figure 25). There is no remarkable pattern in the winter seine fishery, the seine-roe fishery tends to have positive residuals for age-3 and age 7+ fish, and negative residuals for ages 4-6 fish. Residuals in the gillnet fishery are mostly negative for age-4 fish post 1988. The gillnet gear tends to catch older fish than both seine fisheries.

For the Central Coast (CC) region, there is also good correspondence between the observed and predicted age-composition data, with MLE estimates of the variance ranging from 0.135 to 0.201 (Figure 26). There is no striking temporal pattern in the residuals for any of the fishing fleets. There is a tendency to overestimate the proportion-at-age 4 in the seine-roe fishery.


For the Strait of Georgia, there is also very good correspondence between the observed and predicted age-composition data for all three gears (Fig 27). The MLE estimates of the variance range from 0.089 to 0.263 for the seine-roe and winter seine fleets, respectively. In the gillnet fleet there has been a tendency to under-estimate the proportions-at-age 6-7 between the 1996 to 2011. Recall that selectivity for the gillnet fishery can be influenced by the empirical weight-at-age data, which has been trending to small fish in recent years. In this case, the age-composition data do not suggest that changes in mean weight-at-age has influenced the selectivity patterns (see results for selectivities).

In the case of WCVI, there is good correspondence between the observed and predicted age composition data for the seine fisheries and less so for the gillnet fishery (Fig 28). The MLE estimates of the variance range from 0.092 to 0.237 for the seine-roe and gillnet fisheries, respectively. Residual patterns in the seine fisheries and gillnet fisheries are unremarkable. The size of the residuals are fairly homogenous over time for all gears.

BIOMASS ESTIMATES & REFERENCE POINTS

Maximum likelihood estimates of total biomass (age 2+) and the spawning stock biomass for each of the five major assessment regions in summarized in Figure 29. Estimates of spawning stock depletion (B_t/B_0) for the five major regions is summarized in Figure 30 along with estimates of reference points described in the DFO PA policy (DFO, 2006). With the exceptions of CC and WCVI, estimates of spawning stock depletion in 2011 are all currently at or above 40% of their estimated unfished state. In the CC and WCVI, spawning stock depletion is estimated to be 25% and 25% of their unfished state, respectively (Fig 30).

Maximum likelihood estimates of spawning stock biomass in 2011 were as follows: HG - 16,723

48

Figure 24. Residual difference between the observed and predicted proportions-at-age for HG for each of the three gear types (Gear 1 = winter seine, Gear 2 = seine-roe, Gear 3 = gillnet). The area of each circle is proportional to the residual, black is positive, and red is negative. The corresponding MLE estimates of the residual variance is displayed in each panel.

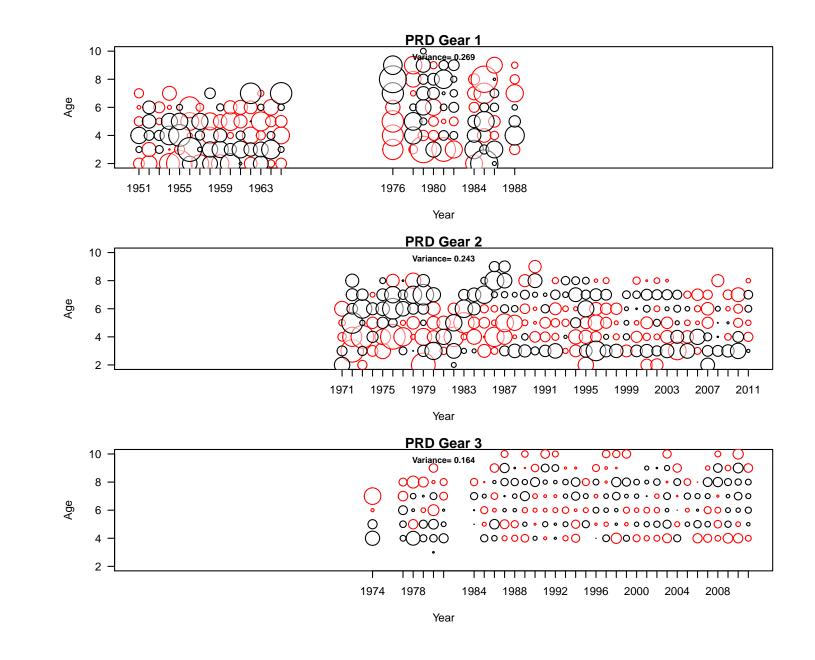


Figure 25. Residual difference between the observed and predicted proportions-at-age for PRD for each of the three gear types (Gear 1 = winter seine, Gear 2 = seine-roe, Gear 3 = gillnet). The area of each circle is proportional to the residual, black is positive, and red is negative. The corresponding MLE estimates of the residual variance is displayed in each panel.

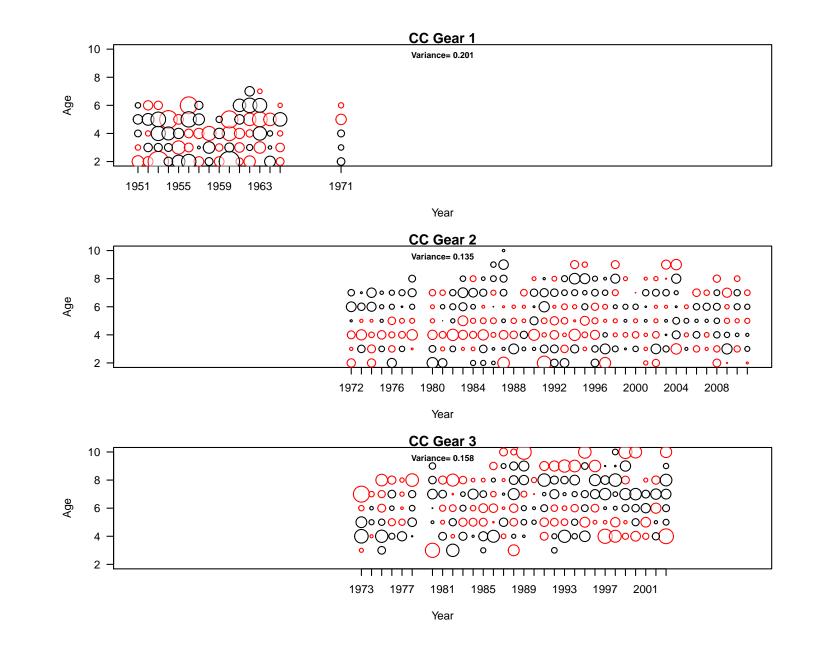
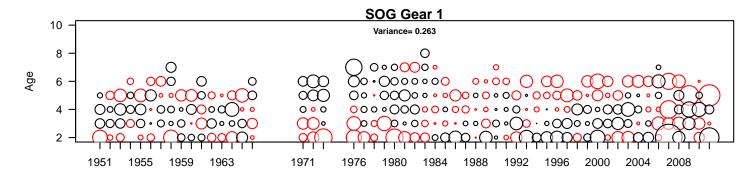
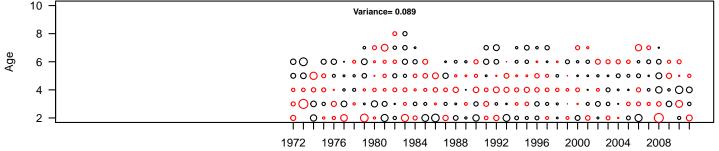




Figure 26. Residual difference between the observed and predicted proportions-at-age for CC for each of the three gear types (Gear 1 = winter seine, Gear 2 = seine-roe, Gear 3 = gillnet). The area of each circle is proportional to the residual, black is positive, and red is negative. The corresponding MLE estimates of the residual variance is displayed in each panel.

Year

Year

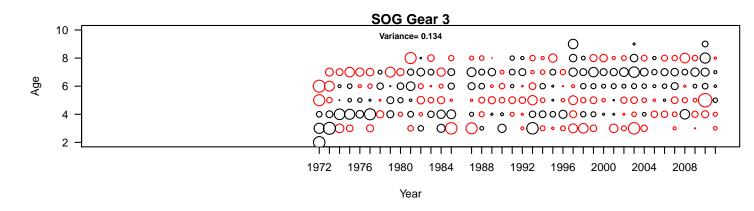
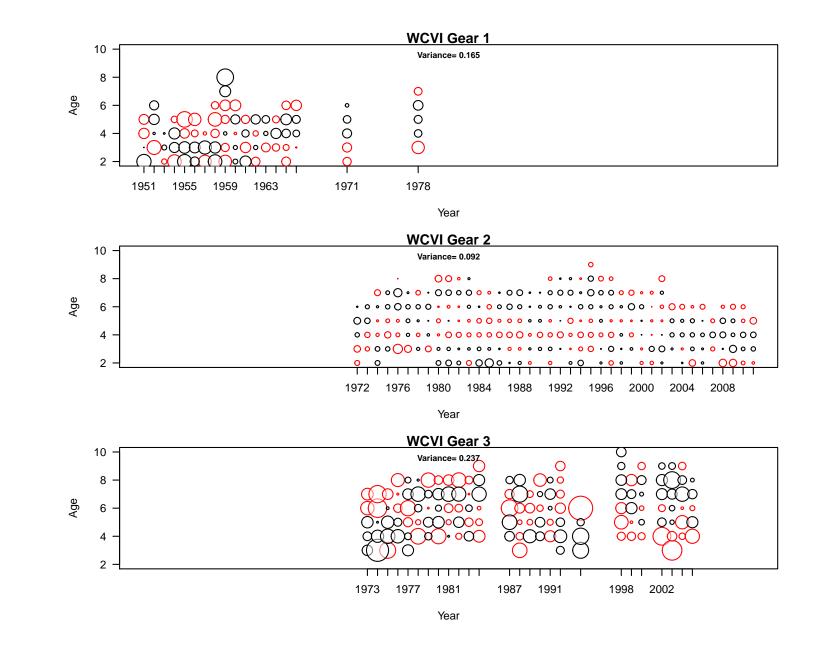



Figure 27. Residual difference between the observed and predicted proportions-at-age for SOG for each of the three gear types (Gear 1 = winter seine, Gear 2 = seine-roe, Gear 3 = gillnet). The area of each circle is proportional to the residual, black is positive, and red is negative. The corresponding MLE estimates of the residual variance is displayed in each panel.

Pacific herring

52

Figure 28. Residual difference between the observed and predicted proportions-at-age for WCVI for each of the three gear types (Gear 1 = winter seine, Gear 2 = seine-roe, Gear 3 = gillnet). The area of each circle is proportional to the residual, black is positive, and red is negative. The corresponding MLE estimates of the residual variance is displayed in each panel.

Table 5. Summary of maximum likelihood estimates for each of the five major stock areas. No. is the total number of estimated parameters, F_{MSY} the average instantaneous fishing rate to achieve the maximum sustainable yield (MSY), B_0 is the unfished spawning biomass, B_{MSY} is the spawning biomass that achieves maximum sustainable yield, B_t is the spawning biomass at the end of the 2011 fishing season, and B_t/B_0 is the spawning depletion level at the end of the 2011 fishing season.

Stock	HG	PRD	CC	SOG	WCVI
No.	159	206	190	235	174
F _{MSY}	2.36	0.54	1.31	1.4	0.98
MSY	8,761	6,669	9,104	27,442	10,260
B_0	40,684	68,761	59,365	135,523	57,462
0.25 <i>B</i> ₀	10,171	17,190	14,841	33,881	14,366
B _{MSY}	8,708	18,600	11,514	28,211	11,281
0.8B _{MSY}	6,966	14,880	9,211	22,568	9,025
$0.4B_{MSY}$	3,483	7,440	4,605	11,284	4,512
B_t	16,723	27,288	14,624	129,070	14,909
B_t/B_0	0.41	0.4	0.25	0.95	0.26

tonnes, PRD – 27,288 tonnes, CC – 14,624 tonnes, SOG – 129,070 tonnes, and WCVI – 14,909 tonnes (Table 5).

In addition to the current estimates of spawning biomass, Table 5 also summarizes estimates of reference points and the total number of estimated parameters for each of the five major stock assessment regions. Each region contained data from 1951 to 2011, and the number of estimated parameters ranges from 159 in HG to 235 in SOG. The difference in the number of estimated parameters owes to the difference in the number of years of catch data for each region.

Estimates of unfished spawning biomass for each region is as follows: HG - 40,684 tonnes, PRD - 68,761 tonnes, CC - 59,365 tonnes, SOG - 135,523 tonnes, and WCVI - 57,462 tonnes. Applying the same cutoff rule used in previous assessments (25% of B_0), results in a substantial change in the cutoff levels for PRD, CC, SOG, and WCVI. The previous cutoff level for HG was estimated at 10,700 tonnes, and in this assessment there is a minor downward revision to 10,171 tonnes. In the case of PRD, the previous cutoff was 12,100 tonnes and in this assessment is now 17,190 tonnes. For the CC, the previous cutoff was 17,600 tonnes and now 14,841 tonnes. For the SOG, the previous cutoff was 21,200 tonnes, and in this assessment it has been revised upwards to 33,881 tonnes. Lastly, for the WCVI the cutoff has decreased from 18,800 tonnes to 14,366 tonnes. Note however, that these revised B_0 's and cutoffs are maximum likelihood estimates (MLE) and not median values from the joint posterior distribution. Thus, these values do not reflect values presented at the end of the results section (page 78).

ESTIMATES OF MORTALITY

The most recent HCAM assessment model allowed for annual estimates of M_t where natural mortality was modelled as a random walk process. The same random walk model has been adopted in this ISCAM implementation; however, a reduced number of parameters (12 nodes instead of 60 annual deviations) was estimated and interpolated using a bicubic spline. The number of estimated nodes does have minor influences on the various trends in natural mortality;

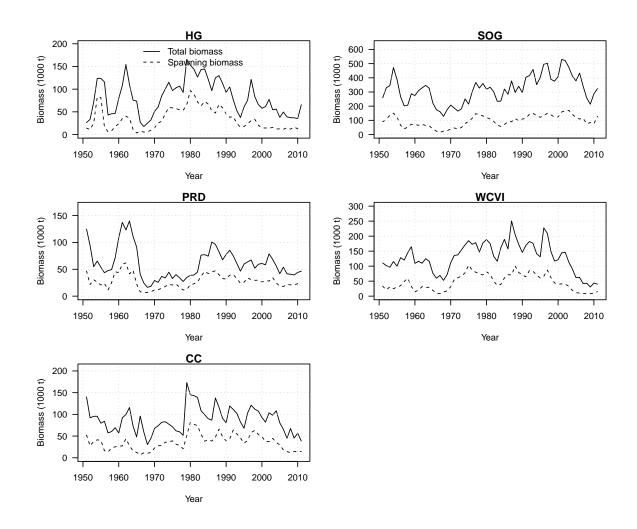


Figure 29. Estimates of total biomass at the start of the year (numbers times empirical weight-at-age) and spawning stock biomass (post fishery) for the five major stock areas.

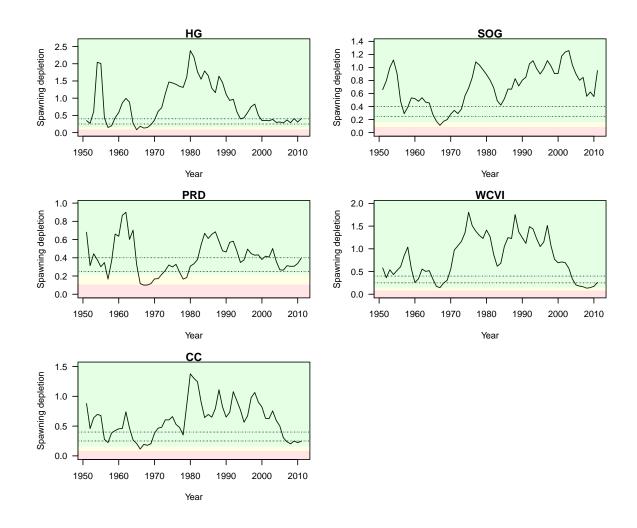


Figure 30. Estimates of spawning biomass depletion (B_t/B_0) for each of the five major stock areas. Horizontal dotted lines represent MLE of 25% and 40% depletion levels, and the shaded regions demarcate reference points based on <40% B_{MSY}/B_0 (critical zone) and 40–80% B_{MSY}/B_0 (cautious zone) and >80% B_{MSY}/B_0 (healthy zone). Note that in calculating the B_{MSY} reference points, the average catch ratios over the last 20 years was used to partition fishing mortality to each of the gears.

we came to arrive at estimating 12 nodes by ensuring the estimated trends were very similar to trends in M when estimating 60 annual natural mortality rate deviations (NB. the use of formal model selection criterion should be used to determine the optimal number of nodes).

For all of the five major stock assessment regions, estimates of natural mortality rates have trended upwards since the 1950s (Figure 31). Trends in estimates of natural mortality are also consistent with the trends in natural mortality from last years HCAM model (see Figure 18 in Cleary and Schweigert, 2010). There was no relationship between trends in natural mortality and trends in the empirical mean weight-at-age data. Information about natural mortality comes from the age-composition data; therefore, changes in natural mortality rates over time is not necessarily linked with changes in growth rates, and vice versa. In the mid to late 1970s, estimates of natural mortality rates were very low during a time when most of the stocks were recovering from the earlier reduction fishery. In the last decade, estimates of natural mortality rates may be starting to decline. Estimates of M_t in the most recent years, however, are highly suspect because there are incomplete cohorts to infer estimates of total mortality rates and M_t is also confounded with selectivity.

Estimates of fishing mortality rates in each of the regions, between 1951 and 1970 were very high due to the reduction fishery by the winter purse seine (Gear 1). After the fishery re-opened in the early 1970s fishing mortality rates have been greatly reduced and periodic since the early 1990s due to the implementation of a harvest control rule with target escapements (cutoffs). Of notable exceptions are the fishing mortality rates for the gillnet fishery in PRD and SOG have been substantially higher than other regions and consistently open each and every year (Figure 31). Note that fishing mortality rates for each gear in Figure 31 reflect the average fishing mortality over all age-classes and are not comparable among gears due to differences in gear selectivity. Fishing mortality rates for the gillnet fishery tend to be higher than the seine-roe fishery because recruitment to the gillnet gear is much older in comparison to the seine-roe gear.

SELECTIVITY

Maximum likelihood estimates of selectivity for the winter seine fishery, seine-roe fishery and the gillnet fishery for each of the five major SARs are shown in Figures 32, 33, and 34, respectively. Selectivities for the seine fisheries were assumed time-invariant, and selectivity for the gillnet fishery varies over time due to changes in the mean weight-at-age data.

For the winter seine fishery, age-specific selectivity coefficients were somewhat variable among the assessment regions (Figure 32). The age at which herring were fully recruited to the gear was roughly age 5 for CC, SOG, and WCVI. Age at full recruitment for HG and PRD was much older, 9- and 10-years, respectively.

For the seine-roe fishery, maximum likelihood estimates of selectivity were much more consistent among regions than the winter seine fishery (Figure 33). Age at full recruitment to this gear type was roughly 5-6 years, and roughly the age at 50% vulnerability was roughly 3-4 years, with a tendency to recruit to the fishery at a younger age in the southern regions.

In the case of the gillnet fishery, selectivity was allowed to vary over time according to variation in the empirical weight-at-age data (Figure 34). Recall that selectivity for the gillnet fishery was

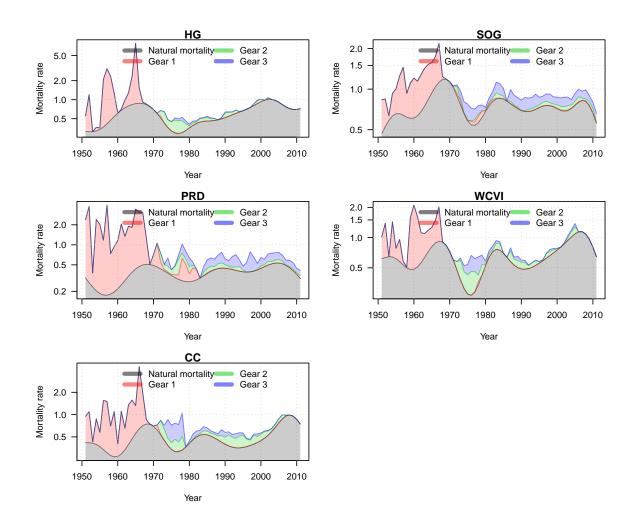


Figure 31. Maximum likelihood estimates of the components of average total mortality for each of the five major stock assessment regions. Note that the y-axis is plotted on a log scale, natural mortality (grey) is age-independent, fishing mortality is age-specific and the average fishing mortality rate over all age-classes is plotted here.

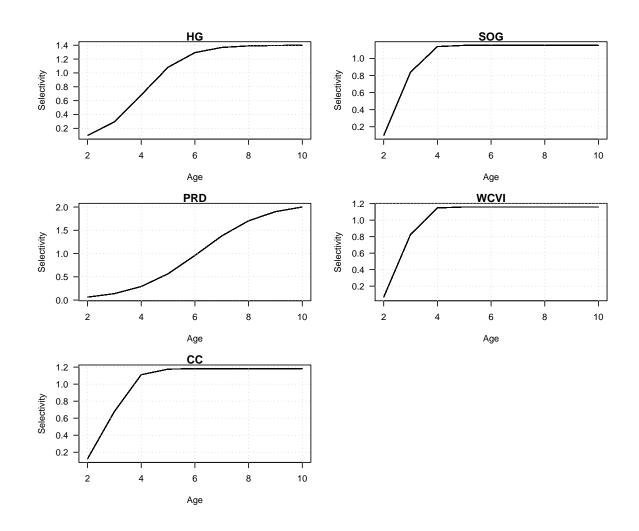


Figure 32. Maximum likelihood estimates of age-specific selectivity coefficients for the winter seine fishery for each of the major stock areas.

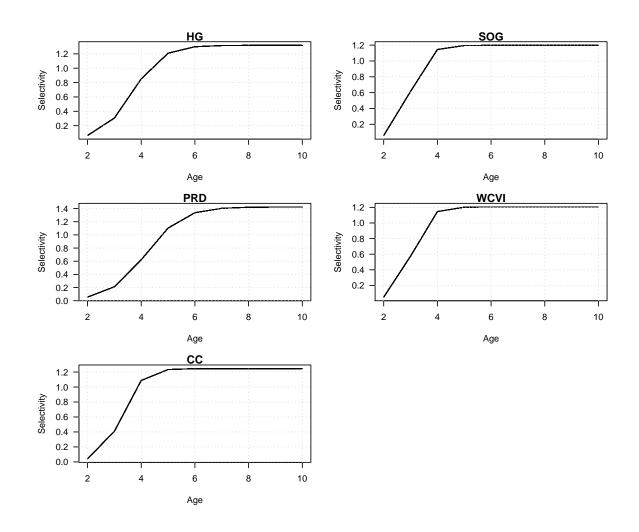


Figure 33. Maximum likelihood estimates of age-specific selectivity coefficients for the seine-roe fishery for each of the major stock areas.

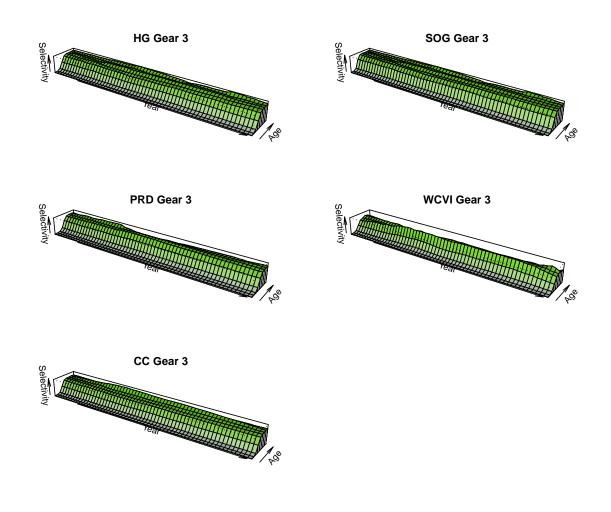


Figure 34. Estimates of selectivity for the gillnet fleet for each of the five major stock assessment regions. In this case selectivity is a logistic function of the empirical weight-at-age data; due to declining growth there is a tendency for selectivity to shift to older ages.

modelled as a logistic function of age with the addition of age-specific deviations where selectivity can increase if the weight-at-age is above average for that year. This selectivity function consists of three latent variables: two that describe the age-at-50% vulnerability and standard deviation in vulnerability-at-age, and a third parameter that describes the influence of variation in weight-at-age on departures from the logistic selectivity function ($\lambda^{(a)}$). Maximum likelihood estimates for these parameters for the gillnet fishery are presented in Table 6. With the exception of PRD and WCVI, estimates of $\lambda^{(a)}$ are negative and close to 0 implying no affect of variation in weight-at-age on selectivity or a slight negative effect (i.e., vulnerability to the gear declines for fish that are larger than the average weight). In the case of PRD and WCVI, the variation in weight-at-age explains approximately 4.1% and 8.7% of the residual variation in the age-composition data (Table 6).

Table 6. Maximum likelihood estimates of gillnet selectivity parameters, where μ_a is the age-at-50% vulnerability, σ_a is the standard deviation in selectivity, and $\lambda^{(a)}$ is the coefficient that describes the influence of growth on selectivity ($\lambda^{(a)}$ =0 implies no effect, $\lambda^{(a)} > 0$ implies a positive effect).

Stock	$\ln(\mu_a)$	$\ln(\sigma_a)$	$\lambda^{(a)}$	$\sigma_{\lambda^{(a)}}$
HG	1.598	-0.68125	-0.030581	0.045
PRD	1.727	-0.66217	0.040988	0.108
CC	1.604	-0.8050	-0.019404	0.028
SOG	1.540	-0.9797	-0.02835	0.068
WCVI	1.608	-0.6647	0.08677	0.014

RECRUITMENT AND STOCK-RECRUITMENT RELATIONSHIPS

Recruitment to each stock is defined as the number of age-2 fish entering the population at the beginning of each year (i.e., May 1). Age-2 recruitment is estimated as a free parameter within ISCAM, subject to the constraint that annual estimates vary around a Beverton-Holt stock recruitment relationship with an estimated unknown standard deviation. Maximum likelihood estimates of age-2 recruits are shown in Figure 35 along with horizontal lines that demarcate the 0.33 and 0.66 quantiles that was traditionally used to categorize recruitment as poor, average, and good in previous assessments.

Estimates of age-2 recruits for 2010 and 2011 were average and good in HG, average in PRD, good and average in CC, good in SOG, and average and poor in the WCVI region. Note however, that estimates of age-2 recruits are highly uncertain in the most recent years of a stock assessment because these age-classes are only partially recruited to the fishing gears.

The underlying stock-recruitment relationship is key for determining reference points for this stock. Maximum likelihood estimates of the age-2 recruits versus spawning biomass, along with the corresponding Beverton-Holt stock recruitment model are shown in Figure 36. The Beverton-Holt stock recruitment model was jointly fitted to these data by estimating the steepness of the stock recruitment relationship (*h*) and the unfished age-2 recruits (R_0). The unfished spawning biomass was determined by using the average fecundity and average natural mortality rates (from 1951-2011) to calculate the average spawning biomass per recruit. Alternative stock-recruitment models (e.g., Ricker model) were not explored to determine if they provided a better fit.

Between 1951 and 2011, four of the five major stock areas have fluctuated above the estimate of unfished spawning biomass; the exception is the PRD area. In HG, age-2 recruitment has been remarkably stable over a very wide range of spawner abundance. This is also the case for CC and WCVI. In PRD and SOG, variation in recruitment appears to be lower at low spawning abundance and the average recruitment rate tends to drop. Maximum likelihood estimates for steepness for these five stocks are as follows: HG - 0.81, PRD - 0.66, CC - 0.82, SOG - 0.76, WCVI - 0.77.

The log residual differences between the estimated age-2 recruits and that predicted by the estimated spawning-biomass and Beverton-Holt model for each of the major stock areas is shown in Figure 37. There is no strong autocorrelation in recruitment, except perhaps 5-8 year periods

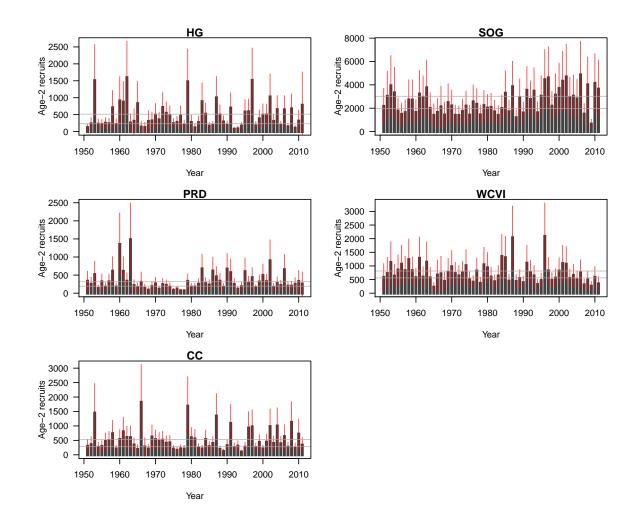


Figure 35. Maximum likelihood estimates of age-2 recruits for each of the five major stock areas and the asymptotic estimates of the 95% confidence interval. The horizontal divisions demarcate the 0.33 and 0.66 quantiles that define poor, average, and good recruitment.

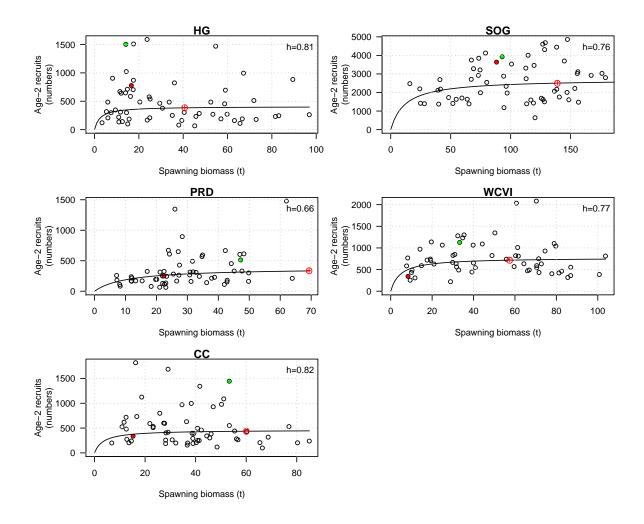


Figure 36. Maximum likelihood estimates of age-2 recruits versus estimated spawning stock biomass in each of the five major assessment regions. The green and red circles indicate the start (recruits in 1952) and end (recruits in 2011) of the series, the circle plus (red) corresponds to the maximum likelihood estimate of unfished spawning biomass (B_0) and unfished age-2 recruitment R_0 , the line is the Beverton-Holt stock recruitment model fitted to these data.

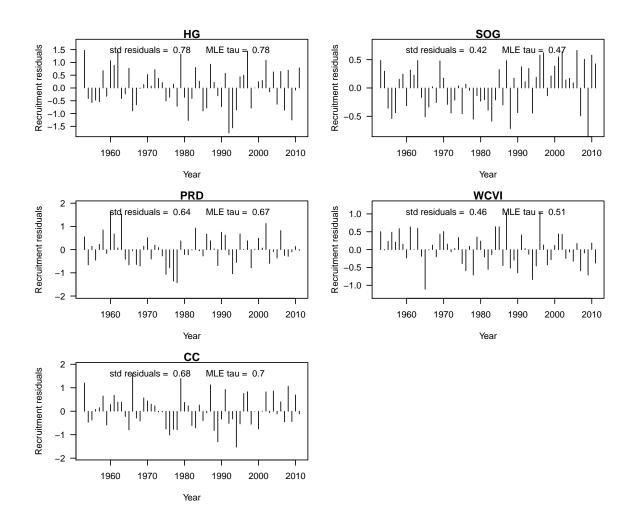


Figure 37. Log residual differences between estimated age-2 recruits and the recruitment predicted by the Beverton-Holt model and estimated spawning stock biomass. The standard deviations of the residuals along with the MLE estimate of the process error standard deviations are displayed at the top of each panel.

of poor and good recruitment in SOG. There is good correspondence between the standard deviations of the residuals and the estimated standard deviation of the process error variance (τ).

RETROSPECTIVE ANALYSIS

Four of the five major regions contained little to no retrospective bias in the estimates of spawning stock biomass when fitting the data back to 2001 (10 years, Figure 38). The PRD region does show a strong retrospective bias; as each year of data is removed estimates of the terminal spawning biomass that year increase. This pattern of declining estimates of biomass as data are added is persistent for all of the years in which the retrospective estimates were examined which implies that estimates of biomass in this region are positively biased. The direction of bias in PRD

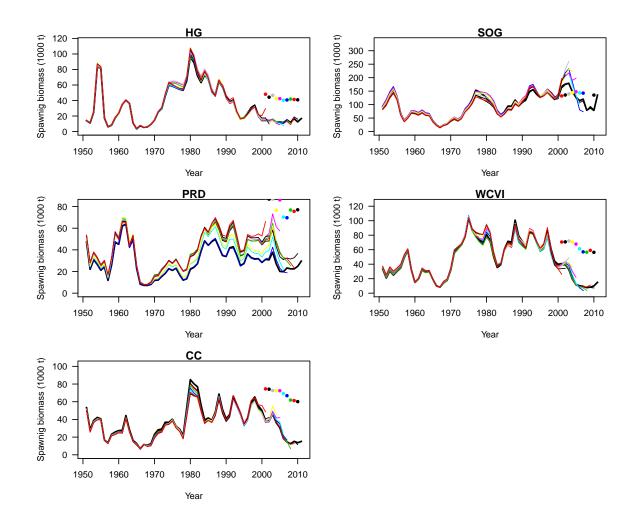
warrants extra caution as uncertainty in biomass estimates are also likely biased upwards.

In SOG, there was no retrospective bias; however, there is some retrospective error that occurs when data from 2008 and onwards are removed from the analysis. Information in the data prior to 2008 suggest large increases in spawning abundance in the early 2000s. This increase is revised downwards when the 2008 data are included in the assessment. It is not clear what components of the data suggest this downward revision.

Key to the harvest control rule is the estimate of unfished spawning biomass in each of the SARs. The points plotted in Figure 38 show how estimates of B_o change as more data accumulates over time. If estimates of B_o increase over time, then cuttoff levels would also increase, and vice versa. In all regions with the exception of PRD, retrospective estimates of B_o have been relatively consistent and trending downwards slightly as more and more data have accumulated over time. Retrospecitive estimates of B_o in PRD are much more variable in comparison to other areas. A more conservative policy would be to set cutoff levels at the upper end of the B_o estimates for this region.

MARGINAL POSTERIOR DISTRIBUTIONS

Marginal posterior distributions for estimated model parameters were constructed using AD Model Builder built in Metropolis-Hastings algorithm (Gelman et al., 2004). For each of the major and minor assessment areas, a systematic sample of 2,000 points from a chain of length 1,000,000 and is intended to represent a random sample from the joint posterior distribution. These samples were then used to construct marginal distributions for derived quantities (e.g., B_0). All areas with the exception of the SOG used the inverse Hessian matrix as the jumping distribution. In the case of SOG, the hessian matrix had to be re-scaled (using the -mcmult 2.0 option in ADMB) in order to invert the Hessian matrix.


Diagnostic trace plots

No formal statistical tests were carried out to determine if the samples from the joint posterior distribution were taken from a converged distribution. Visual inspection was used to determine overall convergence and the trace plots for each of the five major regions are shown in Figures 39–43.

PARAMETER CONFOUNDING

To examine the level of confounding among the estimated parameters, 200 randomly selected points from the joint posterior distribution for the seven leading parameters were plotted against each other in a pairs plot (e.g., Figure 44). Only 200 points were plotted to reduce the file size. Among the seven leading estimated parameters (R_0 , h, M, \bar{R} , \ddot{R} , ρ , ϑ) there was very little confounding (Figures 44 – 48).

There is, however, some strong confounding between the estimated parameters and a few of the derived reference points. In all major areas, there was a strong positive correlation between

Figure 38. Retrospective estimates of spawning stock biomass and estimates of unfished biomass (*B_o* shown as circles) for each of the five major stock assessment areas. The model was sequentially fitted to the full data set, then from 1951:2010, 1951:2009, ... 1951:2001.

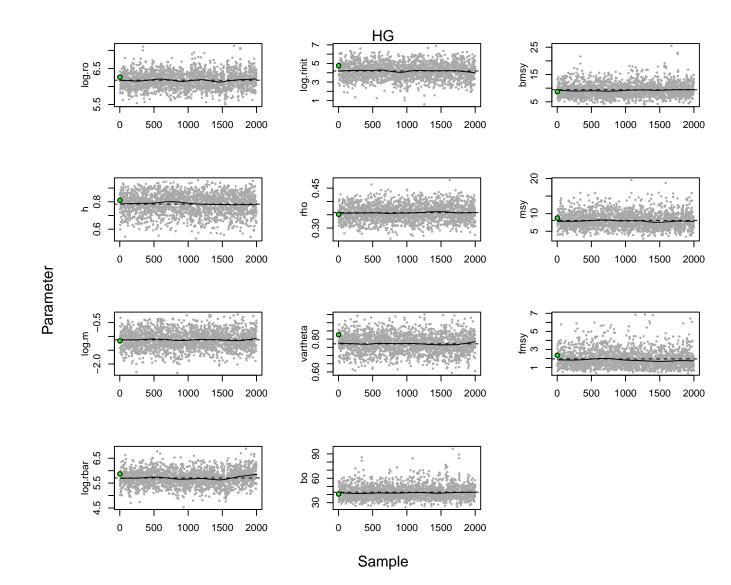
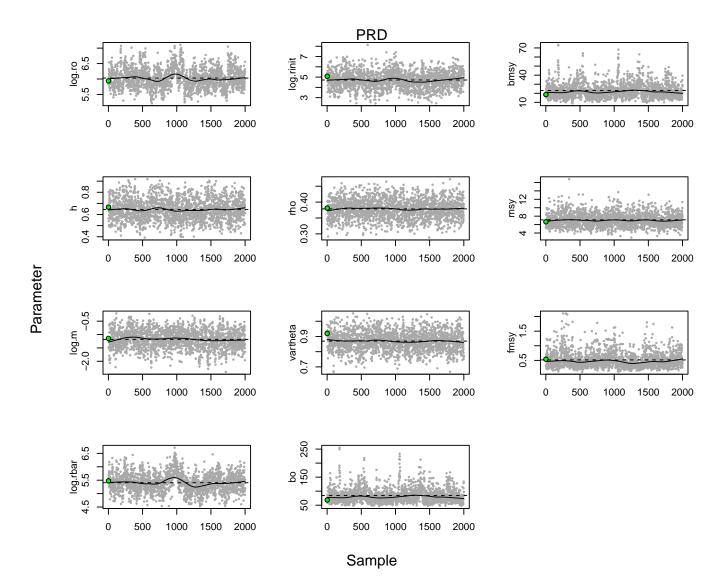
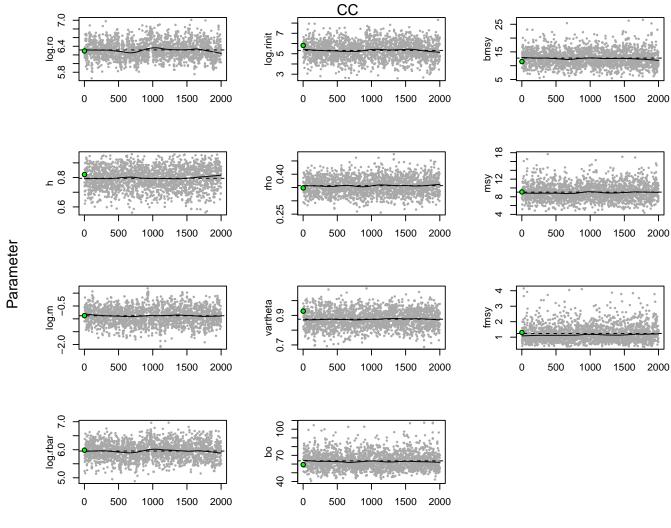



Figure 39. A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of leading parameters and derived variables used in reference point calculations for HG. Green circle corresponds to the MLE estimates and the solid line is a lowess smooth fit to the data (f=1/4), and the dashed line is the mean of the distribution.



2011/136

Figure 40. A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of leading parameters and derived variables used in reference point calculations for PRD. Green circle corresponds to the MLE estimates and the solid line is a lowess smooth fit to the data (f=1/4), and the dashed line is the mean of the distribution.

89

Sample

2011/136

Figure 41. A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of leading parameters and derived variables used in reference point calculations for CC. Green circle corresponds to the MLE estimates and the solid line is a lowess smooth fit to the data (f=1/4), and the dashed line is the mean of the distribution.

70

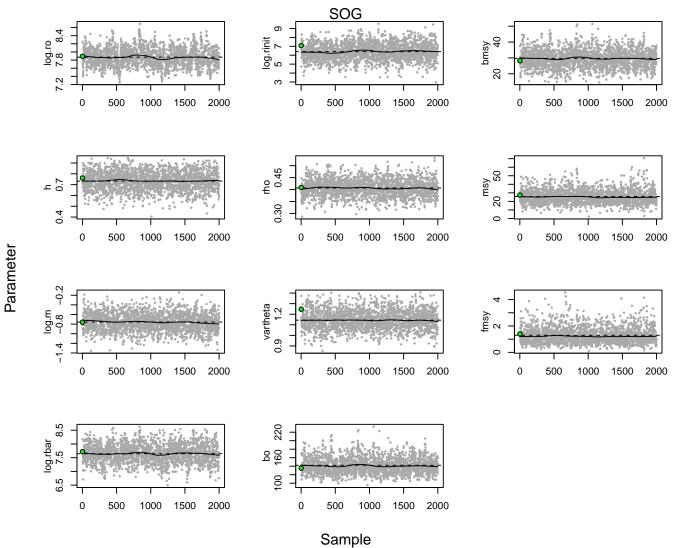


Figure 42. A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of leading parameters and derived variables used in reference point calculations for SOG. Green circle corresponds to the MLE estimates and the solid line is a lowess smooth fit to the data (f=1/4), and the dashed line is the mean of the distribution.

7

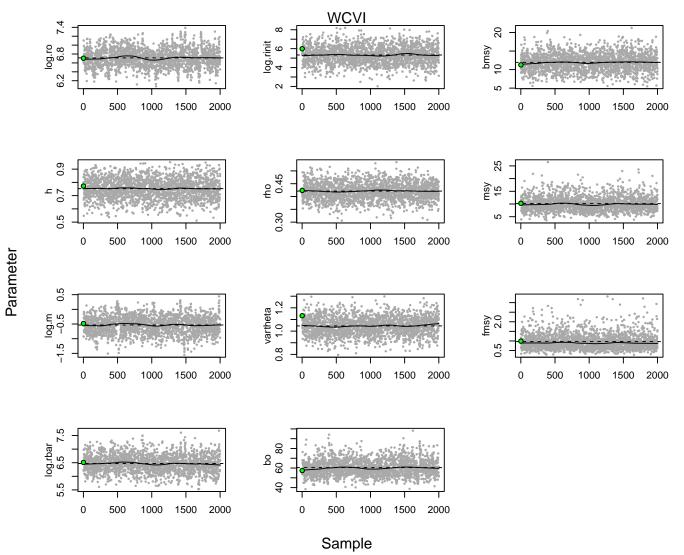


Figure 43. A systematic sample of 2,000 from an MCMC chain of length 1,000,000 of leading parameters and derived variables used in reference point calculations for WCVI. Green circle corresponds to the MLE estimates and the solid line is a lowess smooth fit to the data (f=1/4), and the dashed line is the mean of the distribution.

	0.6 0.8	4	.5 5.5 6.5		0.30 0.40	HG	30 60 90		5 10 2	0	-1.8 -1.2	
log.ro		()		*		i șe	¢.	e nter a constante a constant	\$			5.5 6.5
0.6		Â,	\$	\$.	*	1 sere		
	9 9 9	log.m	\$	1				\$				-2.0 -0.5
4.5 6.0	-		log.rbar	*	in e i		۶	۲	*	\$	R .	
	- 100		*			40	*	*	1	بر ا		4 1 1 1 1
0.30 0.45	199			۲	rho		*			Å	•	
			\$	*		kappa	Ś					
30 70	- 20 -	Â.	\$, I ho	A	<i>.</i>		- (•
							* **	bmsy	.			5 15
5 15			4	*					msy			
			•			NO.			J.	fmsy		
-1.8 -1.0		400	\$	*			*	.	10	%		
	- A	ġ.	ġ			.		٠.	*	×		
5.5 6.5	I	-2.0 -1.0		1 3 5 7		.60 0.80		5 15 25	5	1 3 5	7 –	1.4 –0.8

Figure 44. Pairs plot and marginal distributions for leading parameters in HG region (200 random samples). The dotted lines correspond to the means of the distributions, circle is the mean, and the red square is the mode of the distribution.

steepness (*h*) and F_{MSY} ; similarly there is a strong positive correlation between B_0 and R_0 . Among the reference points alone, there is a negative correlation between B_{MSY} and F_{MSY} , and a positive correlation between F_{MSY} and MSY. This level of confounding among the derived variables is not cause for concern from a parameter estimation standpoint; it does, however, highlight the tradeoffs that must be made from a decision makers perspective.

MARGINAL POSTERIOR DISTRIBUTIONS

Marginal posterior distributions and along with the prior densities for the seven leading parameters are shown in Figure 49. In all cases, the steepness parameter, followed by the instantaneous natural mortality rate appears to be the most influenced by the prior density. Uniform prior distributions were assumed for the scaling parameters (R_0 , \bar{R} , and \ddot{R}). There were good posterior updates for the total variance and variance portioning parameters (ϑ , ρ).

Median estimates of the 2011 spawning stock biomass and the 95% credible interval for each of the five major assessment regions are summarized in Table 7. Current estimates of depletion and the corresponding uncertainty is based on the ratio of the 2011 spawning biomass divided by the

	0.4 0.6 0.8	3 4.5 5.5 6	0.30 0.40	PRD 50	150 250	4 8 12	-0.9 -0.6 -0.3
		11 11	***	- WE 🖋		<i>ø</i>	5.5 7.0
0.4 0.7					.	*	
0	* *		*		š	X	
4.5 6.0	1			*		*	
	AND NOR				÷	•	3 5 7
0.30 0.45	1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 -	*	rho		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
0	996) - SØ					*	
50 200					bo		
2					bmsy		
4 10	ن معنی زرانی	- 1		· 🐝 🌶		msy	
	تعصر يتقلقه					fmsy	0.5 2.0
0.9 -0.4					e	0	
) T					÷		
	5.5 6.5	-2.0 -1.0	3 5 7	0.7 0.9	10 30 50 70	0.5 1.5	-1.0 -0.4 0.2

Figure 45. Pairs plot and marginal distributions for leading parameters in PRD region (200 random samples). The dotted lines correspond to the means of the distributions, circle is the mean, and the red square is the mode of the distribution.

		0.6 0.8	:	5.0 6.0 7.	0 0.	25 0.35 0.45	CC	40 70 100		4 8 12 1		1.7 –1.3	
	log.ro	- 100						<u>ب</u> هم	Š		\$ }:		5.8 6.6
0.6 0.9			*	×.					ý.	X	1	Ś	
			log.m					.			*		-2.0 0.0
5.0 6.5		.		log.rbar				XX			.		*
				19					*	. 19 1	\$.	3 5 7
0.25 0.40				÷.		rho			X		٠.	.	
0		- 695		<u>.</u>		* *	kappa			3			0.7 1.0
40 80		3 56	-			160	ġ.		and the set	1	.		
18			4	-			ų.	* ****	bmsy		.		5 15 25
4 10 1							*	M est	Â.	msy	ø		- Age
	Kato		8 10						.		fmsy		
-1.7 -1.2													
ì	1	1940	*	*		.	**				Š .		
	5.8 6.4 7		-2.0 -1.0 0.0		3 5 7	(0.7 0.9		5 15 25		1 2 3 4	-	-1.0 -0.4

Figure 46. Pairs plot and marginal distributions for leading parameters in CC region (200 random samples). The dotted lines correspond to the means of the distributions, circle is the mean, and the red square is the mode of the distribution.

	0.4 0.6 0.8	6.5	7.5 8.5	0.30	_{0.45} SOC	3 100 160 220	C	20 50		-1.0 –0.4	
	log.ro							*			7.2 8.0
0.4 0.7					\$	*		1		N	
	*				8 - 3				*		-1.4 -0.4
6.5 8.0	* *	*	log.rbar	1	()			*			
			-		Ø - 49			*	*		0 0 0 0 0
0.30 0.50	1				rho		99 0		.	- 2065	. M
	*				kappa	ь.					0.9 1.2
100 200								.	.	9 0 (2	
70 1	× *				\$. X		bmsy	•	1		20 40
0 30 7	مر کھر	i dan i						msy	<i>,</i>	1966	
		1						and the second	fmsy		0 2 4
-1.0 -0.2				M 1				.	*		
			16		¢ 4						
	2 7.8 8.4	-1.4 -0.8 -0.2		5 7 9	0.9 1.1 1	.3	20 40	() 1 2 3 4	-	-1.0 -0.4

Figure 47. Pairs plot and marginal distributions for leading parameters in SOG region (200 random samples). The dotted lines correspond to the means of the distributions, circle is the mean, and the red square is the mode of the distribution.

	0	.5 0.7 0.9	5	.5 6.5 7.5	0.	30 0.40 0.50	WCVI	40 60 80		5 15 25	i -	1.0 -0.4	
	log.ro	N.		(SP)	\$						*		6.2 7.0
0.5 0.8				*						¢.	1		
0		- 199 5	log.m				\$	*		*	٠.		-1.5 0.0
5.5 7.0			-							*			1944 - C
	۶¢.						*	*				A	2 5 8
0:30 0.50	- 100		×	*	\$	rho	\$	\$		×		۴	4
ö				Å	Ŷ	*	kappa	.		Ŵ	6	*	0.8 1.1
40 70			Å			-			. 3 100 100 100				
				*			¢	Í.	bmsy	۲			15
5 15						X		\$		msy	Jose		
N			S								fmsy		0.5 2.5
-1.0 -0.2		100		ġ.	ŝ.	ŝ.		.		*			
ï		-									*		Inq2 + 0
•	6.2 6.8 7.		1.5 –0.5 0.		2 4 6 8).8 1.0 1.2		5 10 15 20		0.5 2.0	-	-1.4 -0.8 -0.2

Figure 48. Pairs plot and marginal distributions for leading parameters in WCVI region (200 random samples). The dotted lines correspond to the means of the distributions, circle is the mean, and the red square is the mode of the distribution.

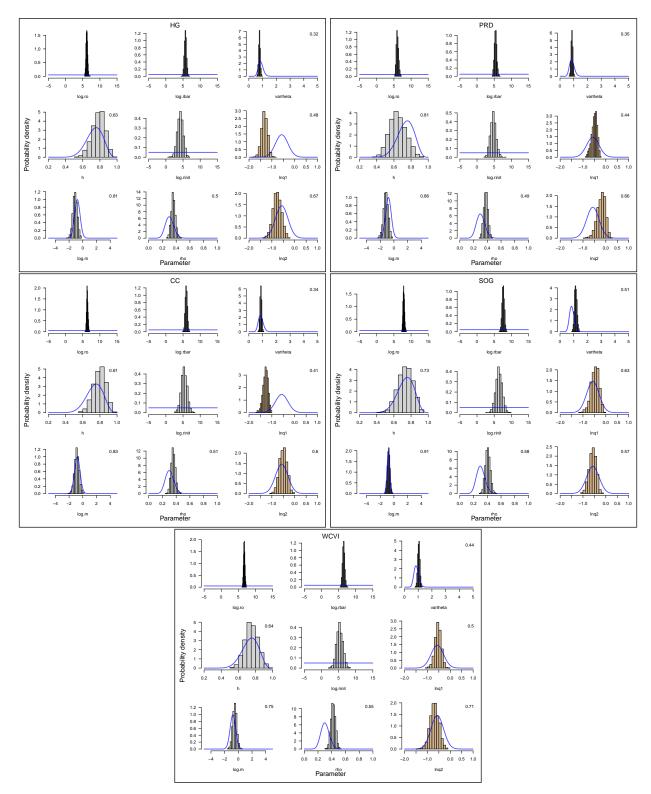


Figure 49. Marginal posterior densities (histograms) and prior densities (lines) for the seven leading parameters and spawn survey scaler $(\ln(q), \tan colour)$ for each of the five major assessment regions. Note the x-axis range corresponds to the lower and upper bounds of each model parameter, and the number in the top right corner is the ratio of posterior standard deviation to prior standard deviation (a ratio close to one implies no information in the data to estimate the parameter).

Table 7. Estimates of 2011 spawning biomass, B_0 , and depletion based on 2000 systematic samples from the joint posterior distribution drawn from a chain of length 1,000,000.

	SB_{2011}				B_0		SB_{2011}/B_0		
Stock	Median	2.5%	97.5%	Median	2.5%	97.5%	Median	2.5%	97.5%
HG	16.58	7.70	33.63	41.74	30.05	61.51	0.39	0.19	0.75
PRD	27.05	14.45	50.59	78.56	54.15	150.18	0.34	0.15	0.68
CC	14.67	7.28	27.28	62.40	48.47	85.06	0.23	0.12	0.41
SOG	125.14	70.43	217.95	140.05	110.47	184.24	0.89	0.53	1.45
WCVI	14.68	6.99	27.63	59.58	46.84	78.53	0.24	0.12	0.43

corresponding estimate of B_0 . Depletion levels less that 0.25 would be considered to be below the cutoff level.

FORECAST AND CATCH ADVICE BASED ON THE JOINT POSTERIOR DISTRIBUTION

Catch advice has historically been provided in the form of a decision table based on median values of the joint posterior distribution. The decision table contains columns specifying the 2011 SSB the age 4+ total biomass, estimates of age-3 recruit biomass for poor, average, and good recruitment, cutoff levels, and the available harvest under poor, average, and good recruitment scenarios. Moving towards DFO's sustainable fisheries framework (SFF) is a necessary next step. The SFF calls for the establishment of three reference levels: (1) the limit reference point (LRP) that defines the transition between the critical zone and the cautious zone, (2) and Upper Stock Reference (USR) that defines the transition between the cautious zone and the healthy zone, and (3) the Removal Reference (RR) which is the maximum removal rate when the stock is in the healthy zone (Shelton and Sinclair, 2008). Suggested default levels for these reference levels are $0.4B_{MSY}$ and $0.8B_{MSY}$ for the LRP and USR, respectively and F_{MSY} for the RR. At present these suggested reference points have not undergone simulation testing. Moreover, the definition of MSY based reference points for this fishery require an *a priori* allocation of the total catch to each of the different gears that harvest herring. Finally, there is also a great deal of uncertainty associated with estimates of B_{MSY} for each of the SARs; probabilities of exceeding these reference points must also be established a priori before we can move this fishery towards the sustainable fisheries framework.

Cutoff levels for the B.C. herring stocks is defined as $0.25B_0$. The historical cutoff levels have not been updated for over 10 years now (1996/1997). Recent stock assessments (since 2001) for B.C. herring have assumed q = 1 for the spawn survey data. In this assessment we have relaxed this assumption and as a consequence estimates of herring biomass have increased substantially. Due to significant changes in population scaling it would not make sense to continue to use the previous cutoff levels as this may lead to policies that would result in overfishing or under utilization of the resource. We therefore present catch advice based on both the old cutoffs and the new cutoffs in Tables 8-9 for comparison. Under the new model using median estimates of unfished biomass, cutoff levels decreased in HG, CC and the WCVI, and increased in PRD and the SOG. In the case of SOG, cutoff values increased from 21,200 t to 35,013 t. In PRD, cutoff values increased from 12,100 t to 19,641 t. In both cases the catch advice based on the current HCR does not differ for the average and good recruitment scenarios

Table 8. Estimated spawning stock biomass, age-4+ biomass and pre-fishery biomass for poor average
and good recruitment, old cutoffs, and available harvest based on median values from the joint
posterior distribution.

			Pre-fish	ery foreca	st biomass		Available harvest			
Stock	SSB	4+ Biomass	Poor	Average	Good	Cutoff	Poor	Average	Good	
HG	16,579	7,089	9,618	12,892	21,478	10,700	0	2,192	4,296	
PRD	27,046	20,593	24,150	27,492	37,286	12,100	4,830	5,498	7,457	
CC	14,666	7,809	11,357	14,709	22,883	17,600	0	0	4,577	
SOG	125,261	72,937	94,703	112,856	138,448	21,200	18,941	22,571	27,690	
WCVI	14,679	8,267	15,321	20,906	31,130	18,800	0	2,106	6,226	

Table 9. Estimated spawning stock biomass, age-4+ biomass and pre-fishery biomass for poor average and good recruitment, new cutoffs (based on median value of 0.25B₀ estimated within the ISCAM model), and available harvest based on the median values from the joint posterior distribution.

				Available harvest					
Stock	SSB	4+ Biomass	Poor	Average	Good	Cutoff	Poor	Average	Good
HG	16,579	7,089	9,618	12,892	21,478	10,436	0	2,456	4,296
PRD	27,046	20,593	24,150	27,492	37,286	19,641	4,510	5,498	7,457
CC	14,666	7,809	11,357	14,709	22,883	15,600	0	0	4,577
SOG	125,261	72,937	94,703	112,856	138,448	35,013	18,941	22,571	27,690
WCVI	14,679	8,267	15,321	20,906	31,130	14,894	427	4,181	6,226

as the projected 3+ biomass is well above these cutoff values.

In addition to Tables 8 and 9 we also provide an additional risk-based decision table that attempts to integrate over all of the uncertainty in the model (Tables 12-14). This decision table is also represented graphically in Figure 50. Figure 50 should be interpreted as follows: the probability of the spawning stock biomass falling below the cutoff level is determined by drawing a vertical line that intersect the cumulative probability curve and reading off the corresponding probability level. The reverse of this process was used to construct Tables 12-14.

Table 10. Decision table for HG where the risk level represents the probability of exceeding the quantities specified in the headers of each column. Three performance measures are considered: the probability of the spawning stock biomass in 2013 falling below the cutoff level, the probability of the spawning stock biomass in 2013 declining from 2012, and the probability of 2012 exploitation rate exceeding the 20% level that is used in the harvest control rule. To use this table, first determine the appropriate level of risk (e.g. 0.25 or 25% chance), then choose the appropriate management quantity (e.g. spawning biomass falling below the cutoff), and then read off the recommended catch (e.g., 3,060 tonnes).

Risk level	$P(SB_{2013}) < Cutoff$	$P(SB_{2013} < SB_{2012})$	$P(U_{2012} > 0.2)$
0.05	0	0	2,228
0.1	0	0	3,552
0.15	583	0	4,372
0.2	1,940	0	4,989
0.25	3,060	0	5,498
0.3	4,039	0	5,944
0.35	4,928	0	6,348
0.4	5,760	0	6,727
0.45	6,558	0	7,090
0.5	7,340	0	7,445
0.55	8,121	0	7,801
0.6	8,919	907	8,164
0.65	9,751	2,547	8,542
0.7	10,640	4,299	8,947
0.75	11,619	6,229	9,392
0.8	12,740	8,439	9,902
0.85	14,096	11,113	10,519
0.9	15,898	14,666	11,338
0.95	18,809	20,404	12,662

Table 11. Decision table for PRD where the risk level represents the probability of exceeding the quantities specified in the headers of each column. Three performance measures are considered: the probability of the spawning stock biomass in 2013 falling below the cutoff level, the probability of the spawning stock biomass in 2013 declining from 2012, and the probability of 2012 exploitation rate exceeding the 20% level that is used in the harvest control rule. To use this table, first determine the appropriate level of risk (e.g. 0.25 or 25% chance), then choose the appropriate management quantity (e.g. spawning biomass falling below the cutoff), and then read off the recommended catch (e.g., 1,788 tonnes).

Risk level	$P(SB_{2013}) < Cutoff$	$P(SB_{2013} < SB_{2012})$	$P(U_{2012} > 0.2)$
0.05	0	0	3,743
0.1	0	0	4,914
0.15	0	0	5,639
0.2	655	182	6,185
0.25	1,788	787	6,636
0.3	2,777	1,315	7,030
0.35	3,675	1,795	7,388
0.4	4,516	2,244	7,722
0.45	5,322	2,675	8,043
0.5	6,112	3,097	8,358
0.55	6,902	3,518	8,673
0.6	7,708	3,949	8,994
0.65	8,549	4,398	9,328
0.7	9,447	4,878	9,686
0.75	10,437	5,406	10,080
0.8	11,569	6,011	10,531
0.85	12,940	6,743	11,077
0.9	14,761	7,716	11,802
0.95	17,702	9,287	12,973

Table 12. Decision table for CC where the risk level represents the probability of exceeding the quantities specified in the headers of each column. Three performance measures are considered: the probability of the spawning stock biomass in 2013 falling below the cutoff level, the probability of the spawning stock biomass in 2013 declining from 2012, and the probability of 2012 exploitation rate exceeding the 20% level that is used in the harvest control rule. To use this table, first determine the appropriate level of risk (e.g. 0.25 or 25% chance), then choose the appropriate management quantity (e.g. spawning biomass falling below the cutoff), and then read off the recommended catch (e.g., 402 tonnes).

Risk level	$P(SB_{2013}) < Cutoff$	$P(SB_{2013} < SB_{2012})$	$P(U_{2012} > 0.2)$
0.05	0	0	2,450
0.1	0	1,521	3,195
0.15	0	4,063	3,657
0.2	0	5,977	4,005
0.25	402	7,557	4,292
0.3	994	8,938	4,543
0.35	1,530	10,192	4,770
0.4	2,033	11,366	4,984
0.45	2,515	12,491	5,188
0.5	2,987	13,593	5,388
0.55	3,459	14,696	5,589
0.6	3,940	15,821	5,793
0.65	4,443	16,995	6,006
0.7	4,980	18,249	6,234
0.75	5,571	19,629	6,485
0.8	6,247	21,210	6,772
0.85	7,067	23,124	7,119
0.9	8,155	25,665	7,581
0.95	9,913	29,771	8,327

Table 13. Decision table for SOG where the risk level represents the probability of exceeding the quantities specified in the headers of each column. Three performance measures are considered: the probability of the spawning stock biomass in 2013 falling below the cutoff level, the probability of the spawning stock biomass in 2013 declining from 2012, and the probability of 2012 exploitation rate exceeding the 20% level that is used in the harvest control rule. To use this table, first determine the appropriate level of risk (e.g. 0.25 or 25% chance), then choose the appropriate management quantity (e.g. spawning biomass falling below the cutoff), and then read off the recommended catch (e.g., 51,565 tonnes).

Risk level	$P(SB_{2013}) < Cutoff$	$P(SB_{2013} < SB_{2012})$	$P(U_{2012} > 0.2)$
0.05	32,082	0	32,080
0.1	39,969	0	37,840
0.15	44,852	0	41,406
0.2	48,528	0	44,091
0.25	51,565	0	46,308
0.3	54,218	0	48,246
0.35	56,627	0	50,005
0.4	58,882	0	51,651
0.45	61,043	0	53,230
0.5	63,161	0	54,777
0.55	65,280	0	56,324
0.6	67,441	0	57,902
0.65	69,696	0	59,549
0.7	72,105	0	61,308
0.75	74,758	0	63,245
0.8	77,794	0	65,463
0.85	81,471	0	68,148
0.9	86,354	0	71,714
0.95	94,241	8,031	77,474

Table 14. Decision table for WCVI where the risk level represents the probability of exceeding the quantities specified in the headers of each column. Three performance measures are considered: the probability of the spawning stock biomass in 2013 falling below the cutoff level, the probability of the spawning stock biomass in 2013 declining from 2012, and the probability of 2012 exploitation rate exceeding the 20% level that is used in the harvest control rule. To use this table, first determine the appropriate level of risk (e.g. 0.25 or 25% chance), then choose the appropriate management quantity (e.g. spawning biomass falling below the cutoff), and then read off the recommended catch (e.g., 184 tonnes).

Diak laval	D(QD) < Cutoff	D(CD < CD)	D(U > 0.0)
Risk level	$P(SB_{2013}) < Cutoff$	$\frac{P(SB_{2013} < SB_{2012})}{227}$	$P(U_{2012} > 0.2)$
0.05	0	907	2,269
0.1	0	6,355	3,125
0.15	0	9,728	3,655
0.2	0	12,267	4,054
0.25	184	14,365	4,384
0.3	969	16,197	4,671
0.35	1,682	17,861	4,933
0.4	2,349	19,418	5,178
0.45	2,989	20,912	5,412
0.5	3,616	22,375	5,642
0.55	4,243	23,838	5,872
0.6	4,882	25,331	6,106
0.65	5,549	26,888	6,351
0.7	6,262	28,552	6,613
0.75	7,047	30,385	6,900
0.8	7,946	32,482	7,230
0.85	9,034	35,022	7,629
0.9	10,478	38,395	8,159
0.95	12,812	43,842	9,015

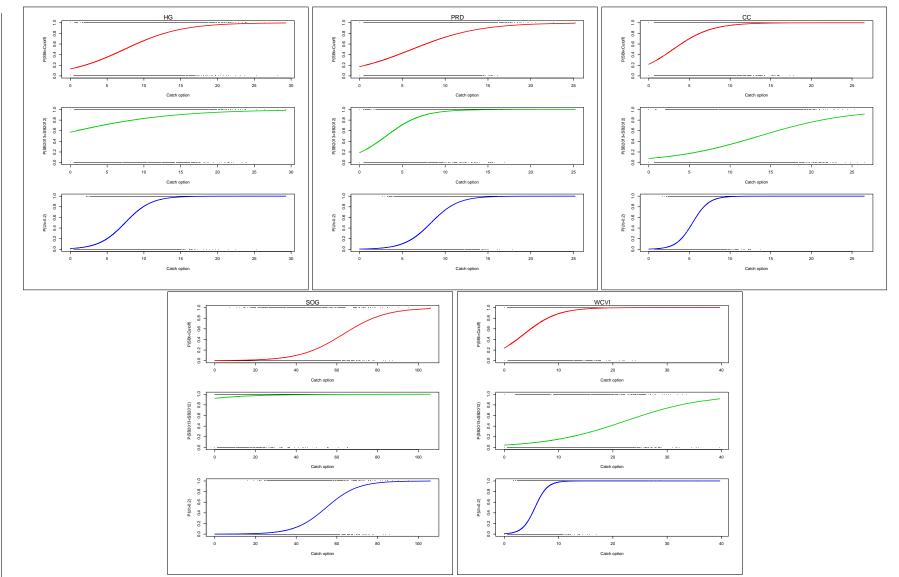


Figure 50. Top Panels: probability of the spawning stock biomass in 2013 falling below the cutoff level versus the 2012 catch option. Middle Panels: probability of the spawning stock in 2013 being less than the spawning stock biomass in 2012 versus the 2012 catch option. Bottom Panels: probability of the 2012 harvest rate (catch/3+ biomass) being greater than the target harvest rate of 0.2.

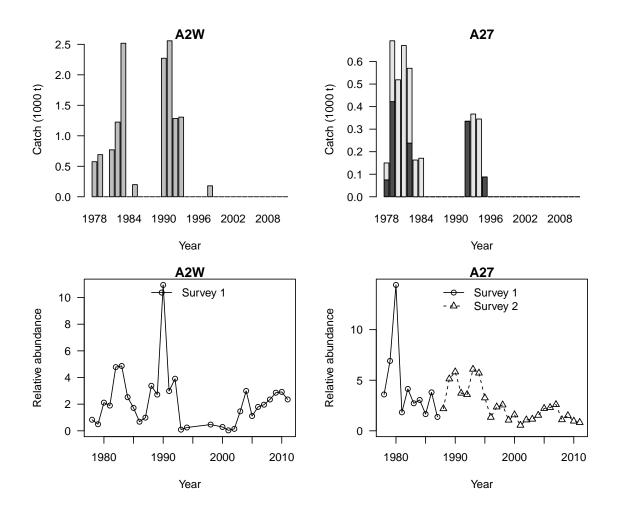


Figure 51. Catch and survey data for minor stock Areas 2W and Area 27.

STOCK ASSESSMENTS FOR MINOR STOCK AREAS

Abundance estimates for the minor stock areas, Area 2W and Area 27 were also obtained using the ISCAM model. For these minor areas, there were some minor differences in the treatment of the data and model assumptions. Also, the gillnet selectivity in area 27 was not allowed to vary over time due to the sparse amount of information (and presumably biological samples) available to reliably estimate minor changes in selectivity for this fishery. Selectivity for area 27 gillnet fishery was assumed to be a logistic function of age and invariant over time.

The input data (Catch and relative abundance) for the minor areas is shown in Figure 51. As in the previous assessments of Area 2W, the spawn survey data is treated as a single continuous series from 1978 to 2011. Area 27 however, the time series is split into two series between 1978-1987 and 1988-2011. The age-composition data used in fitting the model is shown in Figure 52.

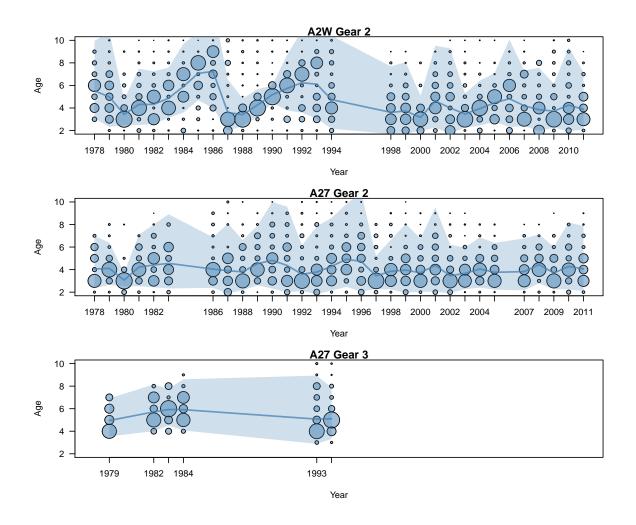


Figure 52. Age composition data for Area 2W and Area 27 for the seine-roe fishery (Gear 2) and the gillnet fishery (Gear 3).

Table 15. Summary of maximum likelihood estimates for the two minor stock areas. No. is the total number of estimated parameters, F_{MSY} the average instantaneous fishing rate to achieve the maximum sustainable yield (MSY), B_0 is the unfished spawning biomass, B_{MSY} is the spawning biomass that achieves maximum sustainable yield, B_t is the spawning biomass at the end of the 2011 fishing season, and B_t/B_0 is the spawning depletion level at the end of the 2011 fishing season.

Stock	A2W	A27
No.	74	79
F _{MSY}	0.34	1.9
MSY	265	304
B_0	2,915	2,084
0.25 <i>B</i> ₀	729	521
B _{MSY}	705	447
0.8B _{MSY}	564	358
$0.4B_{MSY}$	282	179
B_t	4,671	924
B_t/B_0	1.6	0.44

MAXIMUM LIKELIHOOD ESTIMATES OF BIOMASS

Spawning biomass in 2011 for Area 2W and Area 27 was estimated at 4,671 tonnes and 928 tonnes, respectively (Table 15). The time series of total biomass and spawning biomass for these two areas is presented in Figure 53

ESTIMATES OF RECRUITMENT AND REFERENCE POINTS

Maximum likelihood estimates of age-2 recruitment, stock-recruitment relationships and residuals in the stock-recruitment model is shown in Figure 54. Estimates of age-2 recruits in area 2W have been poor-to average for much of the time-series. There have been 4 periods of above average recruitment for area 2W (late 1970s, mid 1980s, 2002, and 2008-2010. Recruitment in area 27 has been much more consistent by comparison. Estimates of unfished spawning biomass for ares 2W and 27 are 2,915 tonnes and 2,112 tonnes.

RETROSPECTIVE ANALYSIS

There is almost no retrospective bias for the estimates of spawning stock biomass in area 27 using data between 1951:2001 and 1951:2011 (Figure 55). In Area 2W, there is a slight retrospective bias in the estimates of spawning stock biomass. As the more recent data are fit in the model estimates of spawning biomass in the mid 2000s are revised downwards. In other words, there is a positive bias in estimates of spawning biomass in area 2W.

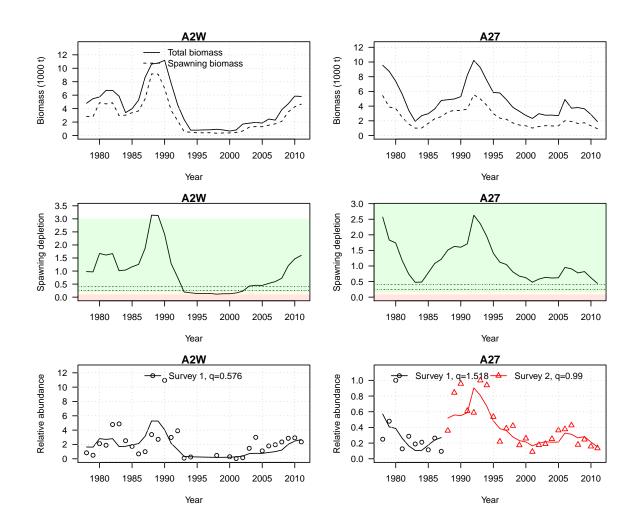


Figure 53. Maximum likelihood estimates of total biomass, spawning biomass, spawning depletion and fits to the spawn survey data for the two minor stock areas.

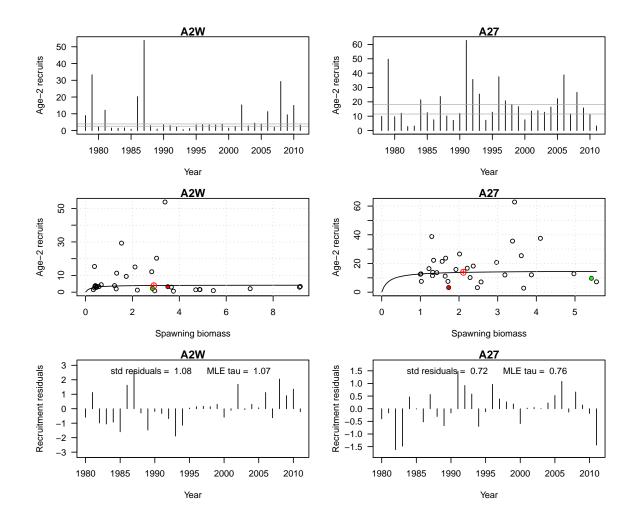


Figure 54. Maximum likelihood estimates of age-2 recruits, spawner-recruit relationships with the fitted Beverton Holt model and unfished reference points (*B*_o, *R*_o), and the residuals between the estimated age-2 recruits and that predicted by the Beverton-Holt model.

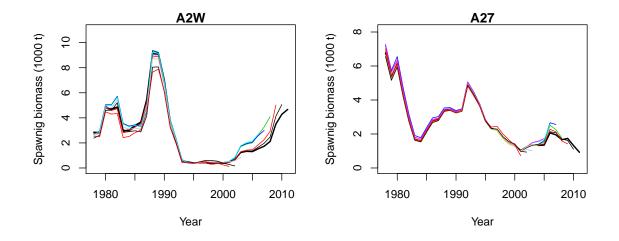


Figure 55. Retrospective estimates of spawning stock biomass for each of the minor stock assessment areas. The model was sequentially fitted to the full data set, then from 1951:2010, 1951:2009, ... 1951:2001.

MARGINAL POSTERIOR DISTRIBUTIONS AND TRACE PLOTS

Information for the catch advice for the two minor areas is based on the median values of the joint posterior distribution. Therefore, it is important to show posterior samples to ensure proper convergence and the marginal posterior distributions for the leading parameter estimates and derived variables that are of management interest.

The trace plots for the two minor areas are summarized in Figure 56, and the marginal distributions for the leading parameters is shown in Figure 57. Again, no formal convergence statistics were examined to determine if MCMC chain converged to a stable distribution. Visual inspection of the trace plots appear to have a homogenous distribution over the course of the 2000 samples. In both of the statistical areas, the posterior updates did occur (Figure 57). The marginal posterior for steepness in area 27 does appear to be influenced considerably by the assumed prior distribution.

CATCH ADVICE

Catch advice for the minor areas differs from that of the major areas in that there are no cutoffs for these two areas and the reference exploitation rate is reduced from 20% to 10%. The same decision table format is provided with catch advice based on poor, average, and good recruitment. Catch advice for the two minor areas is summarized in Table 16.

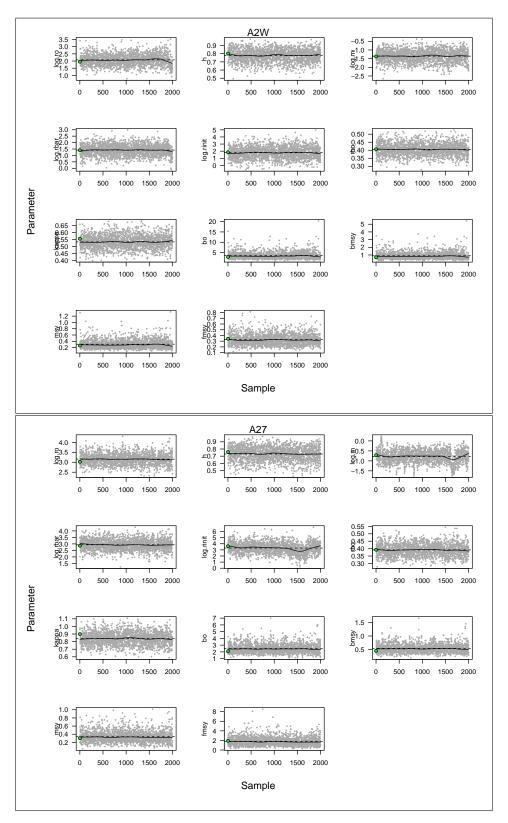


Figure 56. A systematic sample of 2000 points from a chain of length 1,000,000 from the joint posterior distribution for areas 2W and area 27.

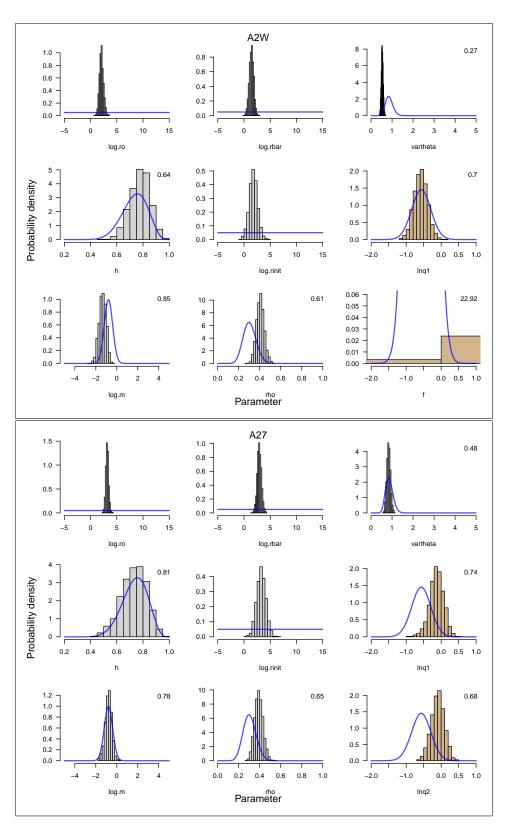


Figure 57. Marginal distributions (bars) and priors (lines) for the leading parameters based on a systematic sample of 2000 points from a chain of length 1,000,000 from the joint posterior distribution for areas 2W and area 27. Note the x-axis range corresponds to the lower and upper bounds of each model parameter, and the number in the top right corner is the ratio of posterior standard deviation to prior standard deviation (a ratio close to one implies no information in the data to estimate the parameter).

Table 16. Estimated spawning stock biomass, age-4+ biomass and pre-fishery biomass for poor average and good recruitment, cutoffs, and available harvest.

			Pre-fishery forecast biomass				Available harvest		
Stock	SSB	4+ Biomass	Poor	Average	Good	Cutoff	Poor	Average	Good
A2W	5,448	5,204	5,294	5,398	6,141	809	529	540	614
A27	1,077	692	909	1,123	1,736	602	91	112	174

OUTSTANDING ISSUES

The catch advice provided this year is based on the old $0.25B_0$ rule for establishing Cutoffs for each SAR. Also, in moving towards a Sustainable Fisheries Framework and perhaps adopting the suggested MSY-based reference points, presents technical issue with regard to setting these reference points when population parameters are changing over time. In this assessment, we have used the average weight-at-age to calculate B_0 . Then in an inconsistent manner, we subsequently use the average weight-at-age age (and fecundity-at-age) over the last 5 years to determine B_{MSY} and F_{MSY} reference points. This outstanding issue should be examined more carefully before moving towards the SFF.

There was a strong retrospective bias for the PRD region. At this time, the sources of this bias are unknown, but likely due to two or more sources of data that contradict each-other or model misspecification. The current bias problem suggest that biomass has typically been over-estimated in recent years. The source of this bias should be investigated more closely.

There are a number of changes implemented in this ISCAM modelling framework that have not been formally evaluated using statistical criterion. Model selection criterion such as Analysis of Deviance (DIC) should be used when adopting new formulations. A number of alternative hypotheses (e.g., changes in selectivity, natural mortality rates) should be formally evaluated using model selection criterion.

An informative prior for the spawn survey has been used in this assessment. The marginal posterior distributions for q along with the prior distribution have been plotted and indicate that there is some information in the data to inform estimates of q. However, there are interesting geographic patterns in the estimates of q: areas to the north (HG, PRD, CC) the dive survey q is higher than the surface survey q, whereas in the south the dive survey q is less than the surface survey q. Also, in Part I of this document there was an indication that the change from selectivity based on weight-at-age to fixed, or using weight-at-age as a covariate, had a significant impact on the estimates of q in the SOG. Further work should also examine the other SARs to determine if a change in selectivity for the gillnet fishery also implies large changes in q.

ACKNOWLEDGEMENTS

The authors would like to thank Charles Fort and Kristen Daniel for their continued efforts in error checking, reviewing and updating the catch, spawn survey and biological sampling databases. We would also like to acknowledge Howard Stiff for providing programming support for the MS Access database used to summarize the assessment data time series.

Funding for the test fishing and spawn survey programs was provided by DFO through Larocque relief funds through a contract to the HCRS. The herring industry provided additional biological samples for the SOG and PRD stock areas through a modified roe testing program.

We also extend our thanks to Jim Ianelli for ideas and help with the cubic splines for selectivity and time varying natural mortality rates. Also, our huge appreciation to the members of the ADMB Foundation for continued development and support of AD Model Builder.

REFERENCES

- ADMB Project. 2009. 2009 AD Model Builder: Automatic Differentiation Model Builder. Developed by David Fournier and freely available from admb-project.org. URL http://admb-project.org/.
- Bishop, M. and Green, S. 2001. Predation on Pacific herring (*Clupea pallasi*) spawn by birds in Prince William Sound, Alaska. *Fisheries Oceanography* 10: 149–158.
- Cleary, J. and Schweigert, J. 2010. Stock Assessment and Management Advice for the British Columbia Herring Stocks: 2010 Assessment and 2011 Forecasts. *DFO Canadian Science Advisory Secretariat Research Document* 2010/115: viii + 93.
- Conn, P., Williams, E. and Shertzer, K. 2010. When can we reliably estimate the productivity of fish stocks? *Canadian Journal of Fisheries and Aquatic Sciences* 67(3): 511–523.
- DFO. 2006. A harvest strategy compliant with the precautionary approach. *Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Science Advisory Report* 2006/023.
- DFO. 2009. A fishery decision-making framework incorporating the Precautionary Approach. URL http://www.dfo-mpo.gc.ca/fm-gp/peches-fisheries/fish-ren-peche/sff-cpd/ precaution-eng.htm.
- Fournier, D. and Archibald, C. 1982. A general theory for analyzing catch at age data. *Canadian Journal of Fisheries and Aquatic Sciences* 39(8): 1195–1207.
- Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. *Canadian Journal of Fisheries and Aquatic Sciences* 68(6): 1124–1138.
- Gavaris, S. and Ianelli, J. 2002. Statistical Issues in Fisheries' Stock Assessments. *Scandinavian Journal of Statistics* 29(2): 245–267.
- Gelman, A., Carlin, J., Stern, H. and Rubin, D. 2004. Bayesian data analysis. CRC press/ Chapman and Hall, London, 2nd ed.

- Haegele, C. and Schweigert, J. 1989. Egg loss from Pacific herring spawns in Barkley Sound in 1988. *Canadian Manuscript Report Fisheries and Aquatic Sciences* (2037).
- Haegele, C. and Schweigert, J. 1991. Egg loss in herring spawns in Georgia Strait, British Columbia. In Proceedings of the international herring symposium. University of Alaska, Alaska Sea Grant Report, 91–01.
- Haist, V., Schweigert, J. and Stocker, M. 1986. Stock assessments for British Columbia herring in 1985 and forecasts of the potential catch in 1986. *Canadian Manuscript Report Fish. Aquat. Sci.* (1889): 48.
- Hall, D., Hilborn, R., Stocker, M. and Walters, C. 1988. Alternative harvest strategies for Pacific herring (*Clupea harengus pallasi*). *Canadian Journal of Fisheries and Aquatic Sciences* 45(5): 888–897.
- Hardwick, J. 1973. Biomass estimates of spawning herring, *Clupea harengus pallasi*, herring eggs, and associated vegetation in Tomales Bay. *California Fish and Game* 59(1): 36–61.
- Hay, D. 1985. Reproductive biology of Pacific herring (*Clupea harengus pallasi*). Canadian Journal of Fisheries and Aquatic Sciences 42(S1): s111–s126.
- Hay, D., Fort, C., Schweigert, J. F., Hamer, L. and McCarter, P. B. 2011. Investigating changes in Pacific herring spawn intensity (layers). *Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Research Document* 2011/064.
- Hilborn, R. and Walters, C. J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York.
- McAllister, M. K. and Ianelli, J. 1997. Bayesian stock assessment using catch-age data and the sampling importance resampling algorithm. *Canadian Journal of Fisheries and Aquatic Sciences* 54: 284–300.
- Midgley, P. 2003. Definitions and codings of localities, herring sections, stock assessment regions for British Columbia herring data. *Canadian Manuscript Report of Fisheries and Aquatic Science* 2634: 113.
- Outram, D. 1958. The magnitude of herring spawn losses due to bird predation on the west coast of Vancouver Island. *Fisheries Research Board of Canada, Pacific Biological Station Progress Report* 111: 9–13.
- Palsson, W. 1984. Egg mortality upon natural and artificial substrata within Washington state spawning grounds of Pacific herring (*Clupea harengus pallasi*). Ph.D. thesis, University of Washington.
- Richards, L., Schnute, J. and Olsen, N. 1997. Visualizing catch-age analysis: a case study. *Canadian Journal of Fisheries and Aquatic Sciences* 54(7): 1646–1658.
- Rooper, C., Haldorson, L. and Quinn, T. 1999. Habitat factors controlling Pacific herring (*Clupea pallasi*) egg loss in Prince William Sound, Alaska. *Canadian Journal of Fisheries and Aquatic Sciences* 56(6): 1133–1142.
- Schnute, J. and Richards, L. 1995. The influence of error on population estimates from catch-age models. *Canadian Journal of Fisheries and Aquatic Sciences* 52(10): 2063–2077.

- Schweigert, J. F. 2001. Stock assessment for British Columbia herring in 2001 and forecasts of the potential catch in 2002. *Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Research Document* 2001/140: 83.
- Schweigert, J., Christensen, L. and Haist, V. 2009. Stock Assessment for British Columbia Herring in 2008 and Forecasts of the Potential Catch in 2009. *Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Research Document* 2009/019: 66.
- Schweigert, J., Fort, C. and Hamer, L. 1996. Stock Assessment for British Columbia Herring in 1996 and Forecasts of the Potential Catch in 1997. *Canadian Technical Report of Fisheries and Aquatic Science* (2173): 73.
- Schweigert, J., Funk, F., Oda, K. and Moore, T. 2002. Herring size-at-age variation in the North Pacific. In W. Peterson and D. Hay, eds., REX workshop on temporal variations in size-at-age for fish species in coastal areas around the Pacific Rim, 20, 47–57. PICES Science Report.
- Shelton, P. and Sinclair, A. 2008. It's time to sharpen our definition of sustainable fisheries management. *Canadian Journal of Fisheries and Aquatic Sciences* 65(10): 2305–2314.
- Stocker, M. 1993. Recent management of the British Columbia herring fishery. In L. Parsons and W. Lear, eds., Perspectives on Canadian Marine Fisheries Management, Canadian Bulletin of Fisheries and Aquatic Science, 267–293.
- Walters, C. and Ludwig, D. 1994. Calculation of Bayes posterior probability distributions for key population parameters. *Canadian Journal of Fisheries and Aquatic Sciences* 51(3): 713–722.
- Zheng, J., Funk, F., Kruse, G. and Fagen, R. 1993. Evaluation of threshold management strategies for Pacific herring in Alaska. In Proceedings of the International Symposium on Management Strategies for Exploited Fish Populations. Alaska Sea Grant College Program Report, 141–165.

APPENDICES

APPENDIX A: TECHNICAL DESCRIPTION OF ISCAM

ANALYTIC METHODS

The section contains the documentation in mathematical form of the underlying age structured model, and its steady state version that is used to calculate MSY-based reference points, the observation models used in predicting observations, and the components of the objective function that formulate the statistical criterion that is used to estimate model parameters. All of the model equations are laid out in tables and are intended to represent the order of operations, or pseudocode, in which to implement the model. ISCAM was implemented in AD Model Builder version 10.1 (ADMB Project, 2009). This appendix also describes some of the optional features in ISCAM for estimating nonparametric selectivities.

It should be noted here that MSY-based reference points assume steady-state conditions, and the model structure that is implemented for the BC herring stocks is non-stationary due to time-varying changes in natural mortality rates (M_t) and selectivity. Estimates of MSY are conditional on the estimates of M, selectivity and mean weight-at-age; all of which change over time in the herring assessments. In the calculations of reference points, we use the average natural mortality between 1951-2010 and estimated selectivities and the empirical weight-at-age data in 2011.

EQUILIBRIUM CONSIDERATIONS

Steady-state conditions are presented in Table 17, in here we assume the parameter vector Θ in (T17.1) is unknown (with the exception of F_e) and would eventually be estimated by fitting ISCAM to time series data. The definition of F_e is the steady-state fishing mortality rate, and the value of F_e that maximizes equilibrium yield corresponds to F_{MSY} (see section). For a given set of growth parameters (or if available empirical weight-at-age data) and maturity-at-age parameters defined by (T17.2), growth is assumed to follow the von Bertalanffy model (T17.3), mean weight-at-age is given by the allometric relationship in (T17.4), and the age-specific vulnerability is given by a logistic function (T17.5). Note, however, there are alternative selectivity functions implemented in ISCAM, the logistic function used here is simply for demonstration purposes. Mean fecundity-at-age is assumed to be proportional to the mean weight-at-age of mature fish, where maturity at age is specified by the parameters \dot{a} and $\dot{\gamma}$ for the logistic function.

Survivorship for unfished and fished populations is defined by (T17.7) and (T17.8), respectively. It is assumed that all individuals ages A and older (i.e., the plus group) have the same total mortality rate. The incidence functions refer to the life-time or per-recruit quantities such as spawning biomass per recruit (ϕ_E) or vulnerable biomass per recruit (ϕ_b). Note that upper and lower case subscripts denote unfished and fished conditions, respectively. Spawning biomass per recruit is given by (T17.9), the vulnerable biomass per recruit is given by (T17.10) and the per recruit yield to the fishery is given by (T17.11). Unfished recruitment is given by (T17.12) and the steady-state equilibrium recruitment for a given fishing mortality rate F_e is given by (T17.13).

Table 17. Steady-state age-structured model assuming unequal vulnerability-at-age, age-specific natural
mortality, age-specific fecundity and Beverton-Holt type recruitment. Note that M is the average natural
mortality rate between 1951-2011.

Parameters	
$\Theta = (B_o, \kappa, M, \hat{a}, \hat{\gamma}, F_e)$	(T17.1)

$$B_o > 0; \kappa > 1; M > 0; F_e \ge 0$$

$$\Phi = (l_{\infty}, k, t_o, a, b, \dot{a}, \dot{\gamma}) \tag{T17.2}$$

Age-schedule information

$$l_a = l_{\infty}(1 - \exp(-k(a - t_o)))$$
(T17.3)

$$w_a = a(l_a)^b \tag{T17.4}$$

$$v_a = (1 + \exp(-(\hat{a} - a)/\gamma))^{-1}$$
 (T17.5)

$$f_a = w_a (1 + \exp(-(\dot{a} - a)/\dot{\gamma}))^{-1}$$
 (T17.6)

Survivorship

/

$$\iota_{a} = \begin{cases} 1, & a = 1 \\ \iota_{a-1}e^{-M}, & a > 1 \\ \iota_{a-1}/(1 - e^{-M}), & a = A \end{cases}$$
(T17.7)

$$\hat{\iota}_{a} = \begin{cases} 1, & a = 1\\ \hat{\iota}_{a-1}e^{-M-F_{e}v_{a-1}}, & a > 1\\ \hat{\iota}_{a-1}e^{-M-F_{e}v_{a-1}}/(1 - e^{-M-F_{e}v_{a}}), & a = A \end{cases}$$
(T17.8)

Incidence functions

$$\phi_E = \sum_{a=1}^{\infty} \iota_a f_a, \quad \phi_e = \sum_{a=1}^{\infty} \hat{\iota}_a f_a$$
(T17.9)

$$\phi_B = \sum_{a=1}^{\infty} \iota_a w_a v_a, \quad \phi_b = \sum_{a=1}^{\infty} \hat{\iota}_a w_a v_a \tag{T17.10}$$

$$\phi_q = \sum_{a=1}^{\infty} \frac{\hat{\iota}_a w_a v_a}{M + F_e v_a} \left(1 - e^{(-M - F_e v_a)} \right)$$
(T17.11)

Steady-state conditions

$$R_o = B_o/\phi_B \tag{T17.12}$$

$$R_e = R_o \frac{\kappa - \phi_E / \phi_e}{\kappa - 1} \tag{T17.13}$$

$$C_e = F_e R_e \phi_q \tag{T17.14}$$

Note that in (T17.13) we assume that recruitment follows a Beverton-Holt model of the form:

where

$$R_e = \frac{s_o R_e \phi_e}{1 + \beta R_e \phi_e}$$

$$s_o = \kappa/\phi_E,$$

$$\beta = \frac{(\kappa - 1)}{R_o \phi_E},$$

which simplifies to (T17.13). The equilibrium yield for a given fishing mortality rate is (T17.14). These steady-state conditions are critical for determining various reference points such as F_{MSY} and B_{MSY} . The description of calculating steady-state yield for a given value of F_e in Table 17 is written assuming that only one fishing fleet exists. The actual calculations are slightly more complicated for the BC herring fishery, as there are three distinct fishing fleets that each have different selectivities. The actual selectivities and calculations of survivorship involve a matrix of age-specific fishing mortalities, where each row of this matrix corresponds to one fishing fleet. In this case F_e is the total fishing mortality rate for fully selected fish summed over all fleets. In order to calculate the fleet specific fishing mortality rate, a fixed allocation of the total yield must be specified *a priori*.

MSY BASED REFERENCE POINTS

ISCAM calculates MSY-based reference points by finding the value of F_e that results in the zero derivative of the steady-state catch equation (T17.14). This is accomplished numerically using a Newton-Raphson method where an initial guess for F_{MSY} is set equal to 1.5*M*, then use (1) to iteratively find F_{MSY} . Note that the partial derivatives in (1) can be found in Table 18.

$$F_{e+1} = F_e - \frac{\frac{\partial C_e}{\partial F_e}}{\frac{\partial^2 C_e}{\partial F_e}}$$
(1)

where

$$\begin{split} \frac{\partial C_e}{\partial F_e} &= R_e \phi_q + F_e \phi_q \frac{\partial R_e}{\partial F_e} + F_e R_e \frac{\partial \phi_q}{\partial F_e} \\ \frac{\partial^2 C_e}{\partial F_e} &= \phi_q \frac{\partial R_e}{\partial F_e} + R_e \frac{\partial \phi_q}{\partial F_e} \end{split}$$

The algorithm usually converges in less than 10 iterations depending on how close the initial guess of F_{MSY} is to the true value. A maximum of 20 iterations are allowed in ISCAM, however, if $\frac{\partial C_e}{\partial F_e} < 10^{-5}$ the algorithm stops. Note also, that this is only performed on data type variables and not differentiable variables within AD Model Builder.

Given an estimate of F_{MSY} , other reference points such as MSY are calculated use the equations in Table 17 where each of the expressions is evaluated at F_{MSY} . A graphical representation of MSY based reference points for two alternative values of the recruitment compensation parameter κ is show in Figure 58.

Figure 58. Equilibrium yield (a), recruits (b), biomass (c) and spawner per recruit (ϕ_e/ϕ_E) (d) versus instantaneous fishing mortality F_e for two different values of the recruitment compensation ratio ($\kappa = 12$ solid lines, $\kappa = 4$ dashed lines). Vertical lines in each panel correspond to F_{MSY} and horizontal lines correspond to various reference points that would achieve MSY.

There are some additional technical details about calculating MSY based reference points when considering multiple fishing gears with different selectivities. The maximum sustainable yield summed over all fishing gears is a function of the selectivities of each gear type and what fraction of the total catch is allocated to each gear. In the Pacific herring fishery, there are three distinct fleets that all have different selectivities; the purse-seine gears tend to catch smaller younger fish, while the gill net fishery tends to target larger mature females. The optimum fishing mortality rate for each gear that would maximize the yield depends on what the other gears are removing; this in itself is another optimization problem that fisheries management must contend with. For the purposes of this assessment, ISCAM requires an allocation of the total catch (summed across gear type) to each gear before it proceeds with calculating reference points.

For this herring assessment, the average catch over the past 20 years used to determine the allocation scheme for each of the stock assessment regions. For the Strait of Georgia this corresponds to 6.9% for the winter seine fishery, 41.4% for the seine roe fishery, and 51.8% for the gill net fishery. We further assume that 100% of the total mortality takes place prior to spawning, and the start of each biological year is the month of April.

DYNAMIC AGE-STRUCTURED MODEL

The estimated parameter vector in ISCAM is defined in (T19.1), where R_0 , κ and M are the leading unknown population parameters that define the overall population scale in the form of unfished recruitment and productivity in the form of recruitment compensation and natural mortality. The total variance ϑ^2 and the proportion of the total variance that is associated with observation errors ρ are also estimated, then the variance is partitioned into observation errors

Table 18. Partial derivatives, based on components in Table 17, required for the numerical calculation of F_{MSY} using (1).

$$Z_a = M + F_e v_a \tag{T18.1}$$

$$S_a = 1 - e^{-Z_a}$$
(T18.2)

Partial for survivorship

$$\frac{\partial \hat{\iota}_{a}}{\partial F_{e}} = \begin{cases} 0, & a = 1\\ e^{-Z_{a-1}} \left(\frac{\partial \hat{\iota}_{a-1}}{\partial F_{e}} - \hat{\iota}_{a-1} v_{a-1} \right), & 1 < a < A\\ \frac{\partial \hat{\iota}_{a-1}}{\partial F_{e}} - \frac{\partial \hat{\iota}_{a-1} e^{-Z_{a-1}} v_{a} e^{-Z_{a}}}{(1 - e^{-Z_{a}})^{2}}, & a = A \end{cases}$$
(T18.3)

Partials for incidence functions

$$\frac{\partial \phi_e}{\partial F_e} = \sum_{a=1}^{\infty} f_a \frac{\partial \hat{\iota}_a}{\partial F_e}$$
(T18.4)

$$\frac{\partial \phi_q}{\partial F_e} = \sum_{a=1}^{\infty} \frac{w_a v_a S_a}{Z_a} \frac{\partial \hat{\iota}_a}{\partial F_e} + \frac{\hat{\iota}_a w_a v_a^2}{Z_a} \left(e^{-Z_a} - \frac{S_a}{Z_a} \right)$$
(T18.5)

Partial for recruitment

$$\frac{\partial R_e}{\partial F_e} = \frac{R_o}{\kappa - 1} \frac{\phi_E}{\phi_e^2} \frac{\partial \phi_e}{\partial F_e}$$
(T18.6)

 (σ^2) and process errors (τ^2) using (T19.2).

The unobserved state variables (T19.3) include the numbers-at-age year year t ($N_{t,a}$), the spawning stock biomass (B_t) and the total age-specific total mortality rate ($Z_{t,a}$).

The initial numbers-at-age in the first year (T19.4) and the annual recruits (T19.5) are treated as estimated parameters and used to initialize the numbers-at-age matrix. Age-specific selectivity for gear type k is a function of the selectivity parameters γ_k (T19.6), and the annual fishing mortality for each gear k in year t ($F_{k,t}$). The vector of log fishing mortality rate parameters $F_{k,t}$ is a bounded vector with a minimum value of -30 and an upper bound of 3.0. In arithmetic space this corresponds to a minimum value of 9.36e-14 and a maximum value of 20.01 for annual fishing mortality rates. In years where there are 0 reported catches for a given fleet, no corresponding fishing mortality rate parameter is estimated and the implicit assumption is there was no fishery in that year.

There is an option to treat natural mortality as a random walk process (T19.7), where the natural mortality rate in the first year is the estimated leading parameter (T19.1) and in subsequent years the mortality rate deviates from the previous year based on the estimated deviation parameter φ_t . If the mortality deviation parameters are not estimated, then *M* is assumed to be time invariant.

State variables in each year are updated using equations T19.9–T19.12, where the spawning biomass is the product of the numbers-at-age and the mature biomass-at-age (T19.9). The total mortality rate is given by (T19.10), and the total catch (in weight) for each gear is given by (T19.11) assuming that both natural and fishing mortality occur simultaneously throughout the year. The numbers-at-age are propagated over time using (T19.12), where members of the plus group (age A) are all assumed to have the same total mortality rate.

Recruitment to age k can follow either a Beverton-Holt model (T19.13) or a Ricker model (T19.14) where the maximum juvenile survival rate (s_o) in either case is defined by $s_o = \kappa/\phi_E$. For the Beverton-Holt model, β is derived by solving (T19.13) for β conditional on estimates of κ and R_o :

$$\beta = \frac{\kappa - 1}{R_o \phi_E},$$

and for the Ricker model this is given by:

$$\beta = \frac{\ln(\kappa)}{R_o \phi_E}$$

OPTIONS FOR SELECTIVITY

At present, there are eight alternative age-specific selectivity options in ISCAM. The simplest of the selectivity options is a simple logistic function with two parameters where it is assumed that selectivity is time-invariant. The more complex selectivity options assume that selectivity may vary over time a may have as many as (A-1). T parameters. For time-varying selectivity, cubic and bicubic splines are used to reduce the number of estimated parameters. The last two options consider how selectivity may vary over time based on changes in mean weight-at-age. Prior to parameter estimation, ISCAM will determine the exact number of selectivity parameters that need to be estimated based on which selectivity option was chosen for each gear type. It is not

Table 19. Statistical catch-age model using the Baranov catch equation, where R_0 and κ are the leading parameters that define population scale and productivity, respectively.

Estimated parameters

$$\Theta = \left(R_0, \kappa, M, \bar{R}, \ddot{R}, \rho, \vartheta, \vec{\gamma}_k, F_{k,t}, \{ \ddot{\omega}_a \}_{a=\dot{a}+1}^{a=A}, \{ \omega_t \}_{t=1}^{t=T}, \{ \varphi_t \}_{t=2}^T \right)$$
(T19.1)

$$\sigma = \rho/\vartheta, \quad \tau = (1-\rho)/\vartheta$$
 (T19.2)

Unobserved states

$$N_{t,a}, B_t, Z_{t,a}$$
 (T19.3)
Initial states ($t = t$)

$$N_{t,a} = \ddot{R}e^{\ddot{\omega}_a} \exp(-M_t)^{(a-\dot{a})}; \quad t = \acute{t}; \acute{a} \le a \le A$$
 (T19.4)

$$N_{t,a} = Re^{\omega_t}; \quad t \le t \le T; a = a \tag{T19.5}$$

$$v_{k,a} = f(\vec{\gamma}_k) \tag{T19.6}$$

$$M_t = M_{t-1} \exp(\varphi_t), \quad t > 1, \varphi_t \sim N(0, \sigma_M)$$
(T19.7)

$$F_{k,t} = \exp(F_{k,t}) \tag{T19.8}$$

State dynamics (t > t)

$$B_t = \sum_a N_{t,a} f_a \tag{T19.9}$$

$$Z_{t,a} = M_t + \sum_k F_{k,t} v_{k,t,a}$$
(T19.10)

$$\hat{C}_{k,t} = \sum_{a} \frac{N_{t,a} w_a F_{k,t} v_{k,t,a} \left(1 - e^{-Z_{t,a}}\right)}{Z_{t,a}} e^{\eta_t}$$
(T19.11)

$$N_{t,a} = \begin{cases} N_{t-1,a-1} \exp(-Z_{t-1,a-1}) & a > a \\ N_{t-1,a} \exp(-Z_{t-1,a}) & a = A \end{cases}$$
(T19.12)

Recruitment models

$$R_t = \frac{s_o B_{t-k}}{1 + \beta B_{t-k}} e^{\delta_t - 0.5\tau^2} \quad \text{Beverton-Holt}$$
(T19.13)

$$R_{t} = s_{o}B_{t-k}e^{-\beta B_{t-k} + \delta_{t} - 0.5\tau^{2}}$$
 Ricker (T19.14)

Table 20. An incomplete list of symbols, constants and description for variables used in ISCAM.

Symbol Cor	nstant value	Description
Indexes		· · ·
а		index for age
t		index for year
k		index for gear
Model dimens	sions	
\dot{a}, A	2, 10	youngest and oldest age class (A is a plus group)
t,T 19	951, 2010	first and last year of catch data
K	5	Number of gears including survey gears
Observations	(data)	
$C_{k,t}$		catch in weight by gear k in year t
$I_{k,t}$		relative abundance index for gear k in year t
$p_{k,t,a}$		observed proportion-at-age a in year t for gear k
Estimated par	rameters	
$\overline{R_o}$		Age-á recruits in unfished conditions
κ		recruitment compensation
M		instantaneous natural mortality rate
\bar{R}		average age- $cuta$ recruitment from year \acute{t} to T
\ddot{R}		average age- $cuta$ recruitment in year $\acute{t}-1$
ρ		fraction of the total variance associated with observation error
θ		total precision (inverse of variance) of the total error
$ec{\gamma}_k$		vector of selectivity parameters for gear k
$F_{k,t}$		logarithm of the instantaneous fishing mortality for gear k in year t
$\ddot{\omega}_a$		age- $cuta$ deviates from \ddot{R} for year \acute{t}
ω_t		age- $cuta$ deviates from $ar{R}$ for years t to T
$arphi_t$		logarithm of annual change in natural mortality rate
Standard devi	iations	
σ_M	0.1	standard deviation in random walk for natural mortality
σ		standard deviation for observation errors in survey index
au		standard deviation in process errors (recruitment deviations)
σ_C	0.0707	standard deviation in observed catch by gear
<u>Residuals</u>		
δ_t		annual recruitment residual
η_t		residual error in predicted catch

necessary for all gear types to have the same selectivity option. For example it is possible to have a simple two parameter selectivity curve for say a survey gear, and a much more complicated selectivity option for a commercial fishery.

Logistic selectivity

The logistic selectivity option is a two parameter model of the form

$$v_a = \frac{1}{1 + \exp\left(-(a - \mu_a)/\sigma_a\right)}$$

where μ_a and σ_a are the two estimated parameters representing the age-at-50% vulnerability and the standard deviation, respectively.

Age-specific selectivity coefficients

The second option also assumes that selectivity is time-invariant and estimates at total of A-1 selectivity coefficients, where the plus group age-class is assumed to have the same selectivity as the previous age-class. For example, if the ages in the model range from 1 to 15 years, then a total of 14 selectivity parameters are estimated, and age-15+ animals will have the same selectivity as age-14 animals.

When estimating age-specific selectivity coefficients, there are two additional penalties that are added to the objective function that control how much curvature there is and limit how much dome-shaped can occur. To penalize the curvature, the square of the second differences of the vulnerabilities-at-age are added to the objective function:

$$\lambda_k^{(1)} \sum_{a=2}^{A-1} (v_{k,a} - 2v_{k,a-1} + v_{k,a-2})^2$$
⁽²⁾

The dome-shaped term penalty as:

$$\begin{cases} \lambda_k^{(2)} \sum_{a=1}^{A-1} (v_{k,a} - v_{k,a+1})^2 & (if) v_{k,a+1} < v_{k,a} \\ 0 & (if) v_{k,a+1} \ge v_{k,a} \end{cases}$$
(3)

For this selectivity option the user must specify the relative weights $(\lambda_k^{(1)}, \lambda_k^{(2)})$ to add to these two penalties.

Cubic spline interpolation

The third option also assumes time-invariant selectivity and estimates a selectivity coefficients for a series age-nodes (or spline points) and uses a natural cubic spline to interpolate between these nodes (Figure 59). Given n + 1 distinct knots x_i , selectivity can be interpolated in the intervals defined by

$$S(x) = \begin{cases} S_0(x) & x \in [x_0, x_1] \\ S_1(x) & x \in [x_1, x_2] \\ \dots \\ S_{n-1}(x) & x \in [x_{n-1}, x_n] \end{cases}$$

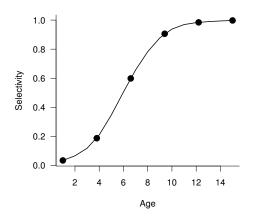


Figure 59. Example of a natural cubic spline interpolation for 15-selectivity coefficients based on estimating 6 nodes (true selectivity was based on a logistic function). In ISCAM the user specifies the number of nodes (e.g., 6 circles) to estimate; then the 15 age-specific selectivity coefficients are interpolated using a natural cubic spline.

where $S''(x_0) = S''(x_n) = 0$ is the condition that defines a natural cubic spline.

The same penalty functions for curvature and dome-shaped selectivity are also invoked for the cubic spline interpolation of selectivity.

Time-varying selectivity with cubic spline interpolation

A fourth option allows for cubic spline interpolation for age-specific selectivity in each year. This option adds a considerable number of estimated parameters but the most extreme flexibility. For example, given 40 years of data and estimated 5 age nodes, this amounts 200 (40 years times 5 ages) estimated selectivity parameters. Note that the only constraints at this time are the dome-shaped penalty and the curvature penalty; there is no constraint implemented for say a random walk (first difference) in age-specific selectivity). As such this option should only be used in cases where age-composition data is available for every year of the assessment.

Bicubic spline to interpolate over time and ages

The fifth option allows for a two-dimensional interpolation using a bicubic spline (Figure 60). In this case the user must specify the number of age and year nodes. Again the same curvature and dome shaped constraints are implemented. It is not necessary to have age-composition data each and every year as in the previous case, as the bicubic spline will interpolate between years. However, it is not advisable to extrapolate selectivity back in time or forward in time where there are no age-composition data unless some additional constraint, such as a random-walk in age-specific selectivity coefficients is implemented (as of June 4, 2012, this has not been implemented).

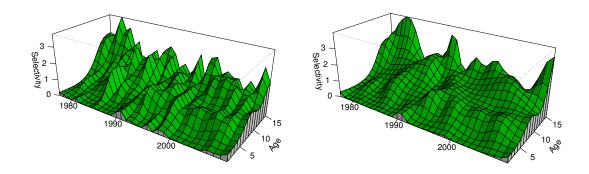


Figure 60. Example of a time-varying cubic spline (left) and bicubic spline (right) interpolation for selectivity based on data from the Pacific hake. The panel on the left contains 165 estimated selectivity parameters and the bicubic interpolation estimates 85 selectivity parameters, or 5 age nodes and 17 year nodes. There are 495 actual nodes (selectivity parameters) being interpolated.

Selectivity as a logistic function of weight-at-age

The seventh option for selectivity is to parameterize a logistic function in terms of the weight-at-age in year $t(w_{a,t})$. In this case changes in weight-at-age over time allow for changes in selectivity. Such a weight-based function may be appropriate for size selective gears such as gill nets.

$$v_{a,t} = \frac{1}{1 + \exp(-(w_{a,t} - \mu_a)/\sigma_a)}$$

Using weight as a covariate

The eighth option for selectivity is to use a logistic function based on age, but allow selectivity to vary based on deviations in the mean weight-at-age over time. In this case:

$$v_{a,t} = \frac{1}{1 + \exp\left(-(a - \mu_a)/\sigma_a\right)} \exp(\lambda^{(a)}\delta_{a,t})$$

where $\lambda^{(a)}$ is a latent variable that describes the residual variation in the age-composition data that is due to changes in selectivity, and $\delta_{a,t}$ is a standardized ($\mu = 0, \sigma = 1$) annual age-specific deviation in mean weight-at-age. In this case, estimates of $\lambda^{(a)} = 0$ imply that variation in the empirical weight-at-age data explain none of the residual variation in the age-composition data. Values of $\lambda^{(a)} \neq 0$ imply a positive or negative affect of variation in growth on selectivity.

OPTIONS FOR NATURAL MORTALITY

There is an option in ISCAM to estimate a time series of annual changes in natural mortality rates (φ_t). If not estimated, natural mortality M is assumed to be invariant over time and age. If, however, M is thought to vary over time, then ISCAM models natural mortality as a random walk process (T19.7). In such cases where M is allowed to freely vary over time, the user must specify two additional components in the control file. First, the phase in which the vector of deviations φ_t is estimated must be specified (use a -ve phase to turn off the estimation), and the user must also specify a standard deviation in the rate of change σ_M . If estimated, then an additional component is added to the objective function to constrain the first differences in the deviation parameters. This first difference constraint only limits how quickly M may increase or decrease over time and does not penalize deviations from an underlying mean. Thus it is possible for M to drift (increase or decrease) away from some central tendency. This drifting can have profound effects on reference point calculations as it also allows for non-stationarity in the underlying production function.

RESIDUALS, LIKELIHOODS & OBJECTIVE FUNCTION VALUE COMPONENTS

There are 3 major components to the overall objective function that are minimized. These components consist of the likelihood of the data, prior distributions and penalty functions that are invoked to regularize the solution during intermediate phases of the non-linear parameter estimation. This section discusses each of these in turn, starting first with the residuals between observed and predicted states followed by the negative loglikelihood that is minimized for the catch data, relative abundance data, age-composition, and stock-recruitment relationships.

CATCH DATA

It is assumed that the measurement errors in the non-zero catch observations are log-normally distributed, and the residuals is given by:

$$\eta_{k,t} = \ln(C_{k,t}) - \ln(\hat{C}_{k,t}),$$
(4)

The residuals are assumed to be normally distributed with a user specified standard deviation σ_C . At present, it is assumed that observed catches for each gear k is assumed to have the same standard deviation. To aid in parameter estimation, two separate standard deviations are specified in the control file: the first is the assumed standard deviation used in the first, second, to N-1 phases, and the second is the assumed standard deviation in the last phase. The negative loglikelihood (ignoring the scaling constant) for the catch data is given by:

$$\ell_C = \sum_k \left[T_k \ln(\sigma_C) + \frac{\sum_{t \in \hat{C}_{k,t} \neq 0} (\eta_{k,t})^2}{2\sigma_C^2} \right],\tag{5}$$

where T_k is the total number of non-zero catch observations for gear type k.

RELATIVE ABUNDANCE DATA

The relative abundance data are assumed to be proportional to biomass that is vulnerable to the sampling gear:

$$V_{k,t} = \sum_{a} N_{t,a} e^{-\lambda_{k,t} Z_{t,a}} v_{k,a} w_{a,t},$$
(6)

where $v_{k,a}$ is the age-specific selectivity of gear k, and w_a is the mean-weight-at-age. A user specified fraction of the total mortality $\lambda_{k,t}$ adjusts the numbers-at-age to correct for survey timing. In the case of Pacific herring spawn surveys, the vulnerability is fixed to the assumed maturity ogive and the empirical weight-at-age data are used to construct the predicted relative abundance. Also, it was assumed that all the mortality (post-fishing) had occurred during the time the survey took place (i.e., $\lambda_{k,t} = 1$). The residuals between the observed and predicted relative abundance index is given by:

$$\epsilon_{k,t} = \ln(I_{k,t}) - \ln(q_k) - \ln(V_{k,t}), \tag{7}$$

where $I_{k,t}$ is the observed relative abundance index, q_k is the catchability coefficient for index k, and $V_{k,t}$ is the predicted vulnerable biomass at the time of sampling. The catchability coefficient q_k is evaluated at its conditional maximum likelihood estimate:

$$q_k = \frac{1}{N_k} \sum_{t \in I_{k,t}} \ln(I_{k,t}) - \ln(V_{k,t}),$$

where N_k is the number of relative abundance observations for index k (see Walters and Ludwig, 1994, for more information). The negative loglikelihood for relative abundance data is given by:

$$\ell_{I} = \sum_{k} \sum_{t \in I_{k,t}} \ln(\sigma_{k,t}) + \frac{\epsilon_{k,t}^{2}}{2\sigma_{k,t}^{2}}$$
where
$$\sigma_{k,t} = \frac{\rho\vartheta}{\omega_{k,t}},$$
(8)

where $\rho \vartheta$ is the proportion of the total error that is associated with observation errors, and $\omega_{k,t}$ is a user specified relative weight for observation t from gear k. The $\omega_{k,t}$ terms allow each observation to be weighted relative to the total error $\rho \vartheta$; for example, to omit a particular observation, set $\omega_{k,t} = 0$, or to give 2 times the weight, then set $\omega_{k,t} = 2.0$. To assume all observations have the same variance then simply set $\omega_{k,t} = 1$. Note that if $\omega_{k,t} = 0$ then equation (8) is undefined; therefore, ISCAM adds a small constant to $\omega_{k,t}$ (1.e-10, which is equivalent to assuming an extremely large variance) to ensure the likelihood can be evaluated.

In the case of the Pacific herring assessment, the spawn survey data post-1988 were assumed to be twice as precise as the pre-dive survey data (1951-1987). To implement this, weights for the 1951-1987 data were set equal to $\omega_{k,t} = 1.0$ and the contemporary data was assigned $\omega_{k,t} = 2.0$. The standard deviation in the observation errors is conditional on estimated values of ρ and φ^2 .

AGE COMPOSITION DATA

Sampling theory suggest that age composition data are derived from a multinomial distribution (Fournier and Archibald, 1982); however, ISCAM assumes that age-proportions are obtained

from a multivariate logistic distribution (Schnute and Richards, 1995; Richards et al., 1997). The main reason ISCAM departs from the traditional multinomial model has to do with how the age-composition data are weighted in the objective function. First, the multinomial distribution requires the specification of an effective sample size; this may be done arbitrarily or through iterative re-weighting (McAllister and Ianelli, 1997; Gavaris and Ianelli, 2002), and in the case of multiple and potentially conflicting age-proportions this procedure may fail to converge properly. The assumed effective sample size can have a large impact on the overall model results.

A nice feature of the multivariate logistic distribution is that the age-proportion data can be weighted based on the conditional maximum likelihood estimate of the variance in the age-proportions. Therefore, the contribution of the age-composition data to the overall objective function is "self-weighting" and is conditional on other components in the model.

Ignoring the subscript for gear type for clarity, the observed and predicted proportions-at-age must satisfy the constraint

$$\sum_{a=1}^{A} p_{t,a} = 1$$

for each year. The multivariate logistic residuals between the observed $(p_{t,a})$ and predicted proportions $(\widehat{p_{t,a}})$ is given by:

$$\eta_{t,a} = \ln(p_{t,a}) - \ln(\widehat{p_{t,a}}) - \frac{1}{A} \sum_{a=1}^{A} \left[\ln(p_{t,a}) - \ln(\widehat{p_{t,a}}) \right].$$
(9)

The conditional maximum likelihood estimate of the variance is given by

$$\widehat{\tau}^2 = \frac{1}{(A-1)T} \sum_{t=1}^T \sum_{a=1}^A \eta_{t,a}^2,$$

and the negative loglikelihood evaluated at the conditional maximum likelihood estimate of the variance is given by:

$$\ell_A = (A-1)T\ln(\hat{\tau}^2).$$
 (10)

In short, the multivariate logistic likelihood for age-composition data is just the log of the residual variance weighted by the number observations over years and ages.

There is also a technical detail in (9), where observed and predicted proportions-at-age must be greater than 0. It is not uncommon in catch-age data sets to observe 0 proportions for older, or young, age classes or weak year classes. In ISCAM the same approach described by Richards et al. (1997) is adopted where the definition of age-classes is altered to require that $p_{t,a} \ge \dot{p}$ for every age in each year, where \dot{p} is the minimum percentage specified by the user (e.g., $\dot{p} = 0.02$ corresponds to 2%). This is accomplished by grouping consecutive ages, where $p_{t,a} < \dot{p}$, into a single age-class and reducing the effective number of age-classes in the variance calculation ($\hat{\tau}^2$) by the number of groups created. The minimum proportion (including 0) is set by the user and can influence the results, especially in cases where there is sparse aging information. In the case of $\dot{p} = 0$, the pooling of the adjacent age-class still occurs, this ensures that (9) is defined.

In the Strait of Georgia herring example, we set the minimum proportion to 2% to reduce the influence of the large numbers of 0 proportions in the purse-seine fleets, especially prior to 1970 during the reduction fishery.

STOCK-RECRUITMENT

There are two alternative stock-recruitment models available in ISCAM : the Beverton-Holt model and the Ricker model. Annual recruitment and the initial age-composition are treated as latent variables in ISCAM, and residuals between estimated recruits and the deterministic stock-recruitment models are used to estimate unfished spawning stock biomass and recruitment compensation. The residuals between the estimated and predicted recruits is given by

$$\delta_t = \ln(\bar{R}e^{w_t}) - \ln(f(B_{t-\dot{a}})) \tag{11}$$

where $f(B_{t-k})$ is given by either (T19.13) or (T19.14), and \dot{a} is the age at recruitment. Note that a bias correction term for the lognormal process errors is included in (T19.13) and (T19.14).

The negative log likelihood for the recruitment deviations is given by the normal density (ignoring the scaling constant):

$$\ell_{\delta} = n \ln(\tau) + \frac{\sum_{t=1+k}^{T} \delta_t^2}{2\tau^2}$$
(12)

Equations (11) and (12) are key for estimating unfished spawning stock biomass and recruitment compensation via the recruitment models. The relationship between (s_o, β) and (B_o, κ) is defined as:

$$s_o = \kappa / \phi_E \tag{13}$$

$$\beta = \begin{cases} \frac{\kappa - 1}{B_o} & \text{Beverton-Holt} \\ \frac{\ln(\kappa)}{B_o} & \text{Ricker} \end{cases}$$
(14)

where s_o is the maximum juvenile survival rate, β is the density effect on recruitment, and B_o is the unfished spawning stock biomass. Unfished steady-state spawning stock biomass per recruit is given by ϕ_E , which is the sum of products between age-specific survivorship and relative fecundity. In cases where the natural mortality rate is allowed to vary over time, the calculation of ϕ_E , and the corresponding unfished spawning stock biomass (B_o) is based on the average natural mortality rate over the entire time period. This subtle calculation has implications for reference point calculations in cases where there are increasing or decreasing trends in natural mortality rates over time; as estimates of natural mortality rates trend upwards, estimates of B_o decrease.

For the Strait of Georgia Pacific herring example, only the Beverton-Holt recruitment model was considered. The description of the Ricker model is included here for the sake of completely documenting the features in the ISCAM platform.

PARAMETER ESTIMATION AND UNCERTAINTY

Parameter estimation and quantifying uncertainty was carried out using the tools available in AD Model Builder (ADMB Project, 2009). AD Model Builder (ADMB) is a software for creating computer programs to estimate the parameters and associated probability distributions for nonlinear statistical models. The software is freely available from http://admb-project.org/. This software was used to develop ISCAM, and the source code and documentation for ISCAM is

freely available from https://sites.google.com/site/iscamproject/, or from a subversion repository at http://code.google.com/p/iscam-project/.

Suffice it to say that there is a lot more going on in the ISCAM software than just minimizing the sum of the four negative loglikelihood functions defined in the previous section. There are actually five distinct components that make up the objective function that ADMB is minimizing:

f =negative loglikelihoods+constraints+priors for parameters+survey priors+convergence penalties.

The purpose of this section is to completely document all of the components that make up the objective function. Such transparency is absolutely necessary to better understand estimation performance, as well as, to ensure the results are repeatable.

NEGATIVE LOGLIKELIHOODS

The negative loglikelihoods pertain specifically elements that deal with the data and variance partitioning and have already been described in detail in section . There are four specific elements that make up the vector of negative loglikelihoods:

$$\vec{\ell} = \ell_C, \ell_I, \ell_A, \ell_\delta. \tag{15}$$

To reiterate, these are the likelihood of the catch data ℓ_C , likelihood of the survey data ℓ_I , the likelihood of the age-composition data ℓ_A and the likelihood of the stock-recruitment residuals ℓ_δ . Each of these elements are expressed in negative log-space, and ADMB attempts to estimate model parameters by minimizing the sum of these elements.

CONSTRAINTS

There are two specific constraints that are described here: 1) parameter bounds, and 2) constraints to ensure that a parameter vector sums to 0. In ISCAM the user must specify the lower and upper bounds for the leading parameters defined in the control file $(\ln(R_o), h, \ln(M), \ln(\bar{R}), \rho, \vartheta)$. All estimated selectivity parameters $\bar{\gamma}_k$ are estimated in log space and have a minimum and maximum values of -5.0 and 5.0, respectively. These values are hard-wired into the code, but should be sufficiently large/small enough to capture a wide range of selectivities. Estimated fishing mortality rates are also constrained (in log space) to have a minimum value of -30, and a maximum value of 3.0. Log annual recruitment deviations are also constrained to have minimum and maximum values of -15.0 and 15.0 and there is an additional constraint to ensure the vector of deviations sums to 0. This is necessary in order to be able to estimate the average recruitment \bar{R} . Finally, the annual log deviations in natural mortality rates are constrained to lie between -2.0 and 2.0.

An array of selectivity parameters (i.e., init_bounded_matrix_vector) is estimated within ISCAM where each matrix corresponds to a specific gear type, and the number of rows and columns of each depends on the type of selectivity function assumed for the gear and if that selectivity changes over time. In cases where the nodes of a spline are estimated these nodes also have an additional constraint to sum to 0. This is effectively implemented by adding to the

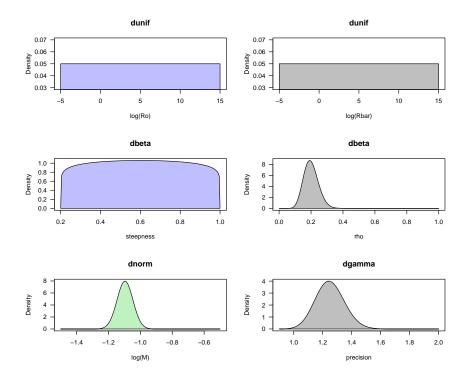


Figure 61. Prior distributions used for $\ln(R_o)$, h, $\ln(M)$, $\ln(\bar{R})$, ρ , ϑ in the herring assessment models.

objective function:

$$1000 \left(\frac{1}{N_{\vec{\lambda}k}} \sum \vec{\lambda}_k\right)^2.$$

This additional constraint is necessary to ensure the model remains separable and the annual fishing mortality rates are less confounded with selectivity parameters.

PRIORS FOR PARAMETERS

Each of the six leading parameters specified in the control file $(\ln(R_o), h, \ln(M), \ln(\bar{R}), \rho, \vartheta)$ are declared as bounded parameters and in addition the user can also specify an informative prior distribution for each of these parameters. Five distinct prior distributions can be implemented: uniform, normal, lognormal, beta and a gamma distribution. For the Strait of Georgia herring, a bounded uniform prior was specified for the log of unfished recruitment U(-5.0,15), a vague beta prior was assumed for steepness Beta(1.01,1.01), a normal prior was specified for the log of natural mortality rate N(-1.0966, 0.05), a bounded uniform prior for the log of average recruitment U(-5.0,15.0), a beta prior for the variance partitioning parameter ρ Beta(15,60), and a gamma prior for the precision parameter ϑ , Gamma(156.25,125.0). These prior distributions based on the parameter specified above are shown in Figure 61.

In addition to the priors specified for the six leading parameter, there are several other informative distributions that are invoked for the non-parametric selectivity parameters. In cases were age-specific selectivity coefficients are estimated, or nodes of a spline function are estimated,

two additional penalties are added to the objective function to control how smooth the selectivity changes (2) and how much dome-shape is allowed in the nonparametric selectivities (3).

SURVEY PRIORS

The scaling parameter q for each of the surveys is not treated as an unknown parameter within the code; rather, the maximum likelihood estimate for q conditional on all other parameters is used to scale the predicted spawning biomass to the observed spawn survey index. In the case of Pacific herring, the relationship between fecundity and mature female biomass is relatively invariant at about 200 eggs per gram (Hay, 1985; Hardwick, 1973). This relationship has been used to convert total egg deposition from the spawn survey to total female spawning biomass, and assuming all spawning was accounted for, then a reasonable estimate for q should be 1.0.

In the Strait of Georgia herring assessment, we specified an informative normal prior on $\ln(q)$ with a mean of 0, and a a standard deviation of 0.05 for the contemporary data. For the pre-1988 spawn survey data, we explored three alternative priors including a non-informative prior, and a normal prior with a mean 0 and standard deviations of 0.05, or 0.1. The informative prior for the contemporary data implies a 95% confidence interval of 0.82 to 1.22 for q.

CONVERGENCE PENALTIES

For the Strait of Georgia herring assessment, there are well over 200 estimated parameters, the exact number depends on the model configuration. Needless to say, non-linear parameter estimation is often very sensitive to the initial starting conditions, and the end results may differ depending on the initial values of the model parameters or even the phase at which parameters are included into the estimation problem. There is no guarantee that the algorithm will converge to the global minimum every time. AD Model Builder is unique in that the estimation process can be conducted in a series of phases where more and more parameters are 'freed up' as the model progress through each phase. Furthermore, the actual objective function can change between phases such that during the initial phases large penalties can be used to, as Dave Fournier would say, "regularize the solution". For example, in the initial phases of parameter estimation ISCAM uses fairly steep quadratic penalties for the annual recruitment deviations and average fishing mortality rates to initially aid in finding reasonable values of the average recruitment, natural mortality and selectivity parameters. In the final phase, these quadratic penalties are relaxed.

In the case of the annual recruitment deviations, the quadratic penalty term is:

$$100\sum_{t=1-A}^{T}\omega_t^2,$$

which is approximately a normal density with a standard deviation equal to 0.07. In the last phase this constraint is relaxed with a large standard deviation of 5.0.

A similar penalty (a normal distribution for the log mean fishing rate) is also invoked for the mean fishing mortality rate, but in this case the user specifies the mean fishing mortality rate and the standard deviations in the initial phases and the last phase. Normally, a rather small standard

deviation is used in the initial phases (e.g., 0.01) and this is then relaxed to a much larger value (e.g., 5.0) in the last phase. These standard deviations are specified by the user in the control file.

APPENDIX B: DATA AND CONTROL FILES

HAIDA GWAII

#NB The mean-wt data herein were corrected on June 3, 2012.	1987 0.000
##	1988 0.000 (
##Model Dimensions	1989 0.000
1951 #first year of data	1990 0.000 9
2011 #last year of data	1991 0.000
2 #age of youngest age class	1992 0.000
10 #age of plus group	1993 0.000
5 #number of gears (ngear)	1994 0.000 (
<pre>## flags for fishery (1) or survey (0) in ngears</pre>	1995 0.000 (
#1 1 1 0 0	1996 0.000
0 0.97727164 0.02272836 0 0	1997 0.000 (
##	1998 0.000
##	1999 0.000
#Age-schedule and population parameters	2000 0.000
<pre>#natural mortality rate (m) 0.004</pre>	2001 0.000 0
	2002 0.000 0
<pre>#growth parameters (linf,k,to) (from fishbase) 27.0.0.49.0</pre>	2003 0.000 0
27.0, 0.48, 0	2004 0.000 0
<pre>#length-weight allometry (a,b)</pre>	2005 0.000 0
4.5e-6, 3.1270	2006 0.000 (2007 0.000 (
<pre>#maturity at age (am=log(3)/k) & gm=std for logistic p.org p.org</pre>	
2.055, 0.05	2008 0.000
## #Time series data	2009 0.000 0
	2010 0.000 (2011 0.000 (
#Observed catch (1951-2011, 1000s metric t) #Year P1 P2 P3 S1 S2	#Relative Abu
1951 2.847 0.000 0.000 0 0	#nit
1952 10.147 0.000 0.000 0 0	#61
1953 0.000 0.000 0.000 0 0	2
1954 1.786 0.000 0.000 0 0	z #nit_nobs
1955 1.234 0.000 0.000 0 0	37 24
1956 77.681 0.000 0.000 0 0	#survey type
1957 23.711 0.000 0.000 0 0	## 1 = survey
1958 11.166 0.000 0.000 0 0	## 2 = survey
1959 7.027 0.000 0.000 0 0	## 3 = survey
1960 0.000 0.000 0.000 0 0	3 3
1961 0.653 0.000 0.000 0 0	#iyr it g
1962 7.632 0.000 0.000 0 0	1951 4.213
1963 14.980 0.000 0.000 0 0	1952 2.578
1964 28.777 0.000 0.000 0 0	1953 7.555
1965 35.448 0.000 0.000 0 0	
	1954 12.408
	1954 12.408 1955 6.437
1966 2.746 0.000 0.000 0 0	1955 6.437
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0	1955 6.437 1956 6.042
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0	1955 6.437 1956 6.042 1957 1.592
1966 2.746 0.000 0.00 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815
1966 2.746 0.000 0.00 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 1970 0.000 0.000 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981 1960 6.599
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.800 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0 0 1971 0.124 0.000 0 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981
1966 2.746 0.000 0.00 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0.000 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981 1960 6.599 1961 8.981
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0.000 0 1972 0.849 3.124 0.000 0 1973 0.000 7.520 0.000 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981 1960 6.599 1961 8.981 1962 5.730
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.800 0.000 0 0 1968 0.800 0.000 0 0 1969 0.000 0.000 0 0 1970 0.100 0.000 0 0 1971 0.102 0.000 0 0 1972 0.849 3.124 0.000 0 1973 0.000 7.520 0.000 0 1974 0.000 7.619 0.127 0	$\begin{array}{rrrr} 1955 & 6.437 \\ 1956 & 6.042 \\ 1957 & 1.592 \\ 1958 & 0.815 \\ 1959 & 8.981 \\ 1960 & 6.599 \\ 1961 & 8.981 \\ 1962 & 5.730 \\ 1963 & 7.297 \\ 1964 & 4.104 \end{array}$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0 0 1972 0.849 3.124 0.000 0 1973 0.000 7.520 0.000 0 1974 0.000 6.191 0.127 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981 1960 6.599 1961 8.981 1962 5.730 1963 7.297
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0.000 0 1970 0.000 0.000 0.000 0 1971 0.102 0.000 0.000 0 1972 0.849 3.124 0.000 0 1973 0.000 7.520 0.000 0 1974 0.000 6.191 0.127 0 1975 0.000 7.619 0.105 0 1976 0.374 11.939 1.802 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0 1970 0.100 0.000 0 0 1971 0.102 0.000 0 0 1972 0.849 3.124 0.000 0 1973 0.000 7.520 0.000 0 1974 0.000 7.619 0.127 0 1975 0.000 7.619 0.105 0 1977 0.000 11.146 1.489 0 1978 0.000 9.172 2.553 0	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981 1960 6.599 1961 8.981 1962 5.730 1964 4.104 1965 1.378 1966 2.824 1967 0.710
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0.000 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 7.619 0.105 0 1975 0.000 7.619 1.0127 0 1976 0.374 11.939 1.802 0 1977 0.000 9.1146 1.489 0 1978 0.000 5.867 2.086 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0.000 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 7.519 0.105 0 1975 0.000 7.619 0.155 0 1976 0.374 11.939 1.802 0 1977 0.000 1.146 1.489 0 1979 0.000 5.867 2.086 0 1980 0.000 2.106 1.210 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0.000 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 6.191 0.127 0 1975 0.000 7.619 0.125 0 1976 0.374 11.393 1.802 0 1977 0.000 9.172 2.553 0 1978 0.000 9.172 2.553 0 1980 0.000 3.926 0 1 1981 0.000 3.926 0 1	1955 6.437 1956 6.042 1957 1.592 1958 0.815 1959 8.981 1960 6.599 1961 8.981 1962 5.730 1964 4.104 1965 1.378 1966 2.824 1967 0.710 1968 2.075 1970 5.552
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 7.619 0.105 0 1975 0.000 7.619 0.105 0 1976 0.374 11.939 1.802 0 1977 0.000 1.146 1.489 0 1978 0.000 5.867 2.086 0 1980 0.000 2.106 1.210 0 1981 0.000 2.371 1.407 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0 0 1968 0.080 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 7.520 0.000 0 1975 0.000 7.519 0.105 0 1976 0.374 11.939 1.802 0 1977 0.000 9.172 2.553 0 1978 0.000 5.867 2.086 0 1981 0.000 2.106 1.210 0 <tr< td=""><td>$\begin{array}{ccccc} 1955 & 6.437 \\ 1956 & 6.042 \\ 1957 & 1.592 \\ 1958 & 0.815 \\ 1959 & 8.981 \\ 1960 & 6.599 \\ 1961 & 8.981 \\ 1962 & 5.730 \\ 1963 & 7.297 \\ 1964 & 4.104 \\ 1965 & 1.378 \\ 1966 & 2.824 \\ 1967 & 0.710 \\ 1968 & 0.833 \\ 1969 & 2.075 \\ 1970 & 5.552 \\ 1971 & 13.291 \\ 1972 & 9.542 \end{array}$</td></tr<>	$\begin{array}{ccccc} 1955 & 6.437 \\ 1956 & 6.042 \\ 1957 & 1.592 \\ 1958 & 0.815 \\ 1959 & 8.981 \\ 1960 & 6.599 \\ 1961 & 8.981 \\ 1962 & 5.730 \\ 1963 & 7.297 \\ 1964 & 4.104 \\ 1965 & 1.378 \\ 1966 & 2.824 \\ 1967 & 0.710 \\ 1968 & 0.833 \\ 1969 & 2.075 \\ 1970 & 5.552 \\ 1971 & 13.291 \\ 1972 & 9.542 \end{array}$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.102 0.000 0.000 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 6.191 0.127 0 1975 0.000 7.619 0.127 0 1976 0.374 1.1393 1.802 0 1977 0.000 1.146 1.489 0 1978 0.000 9.172 2.553 0 1979 0.000 5.867 2.086 0 1980 0.000 2.371 0 0 1981 0.000 3.926 1.705 0 1983 0.667 4.611 0.929 0 1984 <td>$\begin{array}{ccccccc} 1955 & 6.437 \\ 1956 & 6.042 \\ 1957 & 1.592 \\ 1958 & 0.815 \\ 1958 & 8.981 \\ 1960 & 6.599 \\ 1961 & 8.981 \\ 1962 & 5.730 \\ 1963 & 7.297 \\ 1964 & 4.104 \\ 1965 & 1.378 \\ 1966 & 2.824 \\ 1967 & 0.710 \\ 1968 & 0.833 \\ 1969 & 2.075 \\ 1970 & 5.552 \\ 1971 & 13.291 \\ 1972 & 9.542 \\ 1973 & 7.660 \end{array}$</td>	$\begin{array}{ccccccc} 1955 & 6.437 \\ 1956 & 6.042 \\ 1957 & 1.592 \\ 1958 & 0.815 \\ 1958 & 8.981 \\ 1960 & 6.599 \\ 1961 & 8.981 \\ 1962 & 5.730 \\ 1963 & 7.297 \\ 1964 & 4.104 \\ 1965 & 1.378 \\ 1966 & 2.824 \\ 1967 & 0.710 \\ 1968 & 0.833 \\ 1969 & 2.075 \\ 1970 & 5.552 \\ 1971 & 13.291 \\ 1972 & 9.542 \\ 1973 & 7.660 \end{array}$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.080 0.000 0.000 0 1969 0.000 0.000 0 0 1979 0.000 0.000 0 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1971 0.102 0.000 0 0 1973 0.000 7.520 0.000 0 1974 0.000 7.619 0.127 0 1975 0.000 7.619 0.155 0 1976 0.374 1.439 1.802 0 1977 0.000 11.146 1.489 0 1978 0.000 9.722 2.553 0 1980 0.000 2.106 1.210 0 1981 0.000 3.926 1.705 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1966 2.746 0.000 0.000 0 1967 0.213 0.000 0.000 0 1968 0.880 0.000 0.000 0 1969 0.000 0.000 0 0 1969 0.000 0.000 0 0 1970 0.000 0.000 0 0 1971 0.100 0.000 0 0 1972 0.849 3.124 0.000 0 1973 0.000 7.520 0.000 0 1974 0.000 6.191 0.127 0 1975 0.000 7.619 0.127 0 1976 0.374 1.4939 1.802 0 1977 0.000 11.464 1.489 0 1978 0.000 9.172 2.553 0 1978 0.000 3.926 1.705 0 1980 0.000 2.371 1.407 0 1982 0.096 4.616 0.335 0 1984 </td <td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

2.061 0.000 0 0 0.032 0.000 0 0 1.461 0.000 0 0 5.542 1.170 0 0 3.899 0.543 0 0 2.524 0.000 0 0 2.699 0.000 0 0 0.299 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 1.372 0.000 0 0 2.500 0.473 0 0 1.764 0.000 0 0 0.000 0.000 0 0 0.706 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 0.000 0.000 0 0 oundance index from fisheries independent survey (it) 1970-2008 ey is proportional to vulnerable numbers ey is proportional to vulnerable biomass ey is proportional to spawning biomass (e.g., herring spawn survey) gear wt survey timing $\begin{array}{cccc} 4 & 1 & 1 \\ 4 & 1 & 1 \end{array}$ $\begin{array}{ccc}4&1&1\\4&1&1\end{array}$ 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1

 $\begin{array}{ccc} 4 & 1 & 1 \\ 4 & 1 & 1 \end{array}$

1976 16.374 4 1 1

1981 2 34 234 5380 322 177 111 45 18 11

	1982	2	30	165	158	2973	87	54	35	19	1		
	1983	2	96	103	69	135	1434	77	31	18	4		
	1984	2	94	1268	158	100	352	1455	39	12	6		
	1985	2	47	531	1132	144	160	404	1119	16	1		
	1986	2	10	134	1041	1902	191	155	380	905	15		
	1987	2	57	342	192	799	1239	126	142	190	190		
	1988	2	61	855	126	80	197	249	23	28	32		
	1989	2	81	622	2364	143	56	139	99	22	15		
	1990	2	11	487	918	3033	199	93	193	86	14		
	1991	2	227	140	361	972	1303	125	61	135	51		
	1992	2	23	1243	159	270	402	992	77	19	27		
	1993	2	12	128	2240	165	225	448	436	43	9		
	1994	2	75	52	61	590	129	133	132	39	5		
	1995	2	68	75	11	21	178	46	38	25	11		
	1996	2	103	515	89	31	32	149	23	11	2		
	1997	2	372	430	549	86	25	73	88	14	3		
	1998	2	10	1470	758	315	73	18	33	30	7		
	1999	2	108	58	1610	433	204	64	16	10	9		
:	2000	2	107	398	84	1270	171	97	9	10	3		
:	2001	2	175	363	256	58	240	35	16	3	1		
:	2002	2	602	750	706	369	86	371	42	13	3		
:	2003	2	2	1685	453	159	80	28	52	10	3		
:	2004	2	248	20	428	74	34	22	12	5	2		
:	2005	2	17	606	205	374	51	31	16	6	3		
:	2006	2	136	72	305	67	108	20	3	0	2		
:	2007	2	6	247	78	114	32	56	12	1	0		
:	2008	2	86	68	583	70	79	17	15	0	2		
:	2009	2	1	645	76	222	20	29	4	5	1		
:	2010	2	39	70	644	62	170	18	13	3	2		
:	2011	2	21	522	90	371	65	100	9	4	0		
	1974	3	0	9	76	40	26	5	0	0	1		
	1975	3	0	0	9	16	12	2	1	0	0		
	1976	3	0	0	1	29	81	19	3	0	0		
	1978	3	0	0	6	17	29	56	29	6	1		
	1979	3	0	0	48	44	46	26	6	0	0		
	1980	3	0	29	27	229	104	93	27	9	0		
	1981	3	0	2	583	61	77	44	19	4	0		
	1982	3	0	1	16	425	16	11	5	2	0		
	1983	3	0	0	7	14	532	16	14	3	3		
	1984	3	0	11	5	18	35	313	7	1	1		
	1985	3	0	20	59	7	11	30	113	1	0		
	1986	3	0	0	41	172	13	17	29	49	1		
	1990	3	0	2	32	174	39	33	68	33	2		
	1991	3	0	0	8	79	153	34	25	36	16		
	1999	3	0	4	185	137	175	60	16	8	11		
;	#n_wt	_ob	s										
	61												
												HCAM.rep	
	#A\$yr					VЗ					6 V.		
												0.0960	
												0.1513	
												0.1513	
												0.1513	
												0.1513	
												0.1513	
	1957	0.0	413 (0.0863	0.1	L91 O.	1347	0.143	3 0.3	1649	0.1661	0.1850	0.1840
	1958	0.0	461 (0.0751	0.09	995 0.	1218	0.147	5 0.3	1613	0.1736	0.1513	0.1840
												0.1513	
	1960	0.0	517 (0.0851	0.10	077 0.	1277	0.150	0.1	1632	0.1736	0.1513	0.1840
	1961	0.0	517 (0.0851	0.10	077 0.	1277	0.150	0.1	1632	0.1736	0.1513	0.1840
												0.1513	
												0.1730	
	1964	0.0	570 (0.0917	0.10	0.096	1347	0.160	5 0.3	1827	0.1736	0.1513	0.1840
	1965	0.0	565 (0.0969	0.1	128 0.	1475	0.182	2 0.3	1830	0.2565	0.1513	0.1840
												0.1513	
												0.1513	

2011/136

1968 0.0517	0.0851	0.1077	0.1277	0.1501	0.1632	0.1736	0.1513	0.1840
1969 0.0517	0.0851	0.1077	0.1277	0.1501	0.1632	0.1736	0.1513	0.1840
1970 0.0668	0.0986	0.1273	0.1513	0.1734	0.1897	0.2035	0.2158	0.2135
1971 0.0668	0.0986	0.1273	0.1513	0.1734	0.1897	0.2035	0.2158	0.2135
1972 0.0590	0.1067	0.1505	0.1709	0.2125	0.2310	0.2425	0.2496	0.2500
1973 0.0733	0.0990	0.1450	0.1799	0.2128	0.2357	0.2395	0.2158	0.2135
1974 0.1095	0.0885	0.1266	0.1553	0.1913	0.2129	0.2438	0.2540	0.2135
1975 0.0589	0.0869	0.1197	0.1558	0.1885	0.2062	0.2086	0.2295	0.2135
1976 0.0628	0.0995	0.1237	0.1523	0.1846	0.2073	0.2369	0.2397	0.2135
1977 0.0540	0.1055	0.1335	0.1503	0.1770	0.2023	0.2176	0.2428	0.2135
1978 0.0695	0.0964	0.1305	0.1551	0.1697	0.1887	0.2072	0.2370	0.2655
1979 0.0593	0.1044	0.1300	0.1604	0.1730	0.1891	0.2105	0.2028	0.2135
1980 0.0616	0.0840	0.1054	0.1478	0.1742	0.1881	0.1983	0.2257	0.2263
1981 0.0636	0.0976	0.1135	0.1321	0.1604	0.1773	0.1838	0.1952	0.1953
1982 0.0639	0.1025	0.1198	0.1283	0.1416	0.1655	0.1743	0.1927	0.2030
1983 0.0688	0.0981	0.1249	0.1409	0.1546	0.1666	0.1788	0.2003	0.2020
1984 0.0642	0.0936	0.1155	0.1355	0.1411	0.1519	0.1720	0.1842	0.1953
1985 0.0622	0.1012	0.1276	0.1468	0.1611	0.1657	0.1858	0.2057	0.1930
1986 0.0773	0.1168	0.1409	0.1589	0.1712	0.1804	0.1882	0.2023	0.2258
1987 0.0667	0.1066	0.1318	0.1511	0.1676	0.1742	0.1798	0.1882	0.1991
1988 0.0610	0.0890	0.1249	0.1500	0.1658	0.1817	0.1916	0.2032	0.1937
1989 0.0620	0.0928	0.1190	0.1451	0.1589	0.1781	0.1923	0.1932	0.2033
1990 0.0661	0.0977	0.1159	0.1390	0.1537	0.1668	0.1838	0.1926	0.1804
1991 0.0607								
1992 0.0586	0.0949	0.1200	0.1431	0.1477	0.1745	0.1789	0.1742	0.1910
1993 0.0771	0.1009	0.1155	0.1281	0.1476	0.1534	0.1610	0.1828	0.1810
1994 0.0692	0.0943	0.1191	0.1250	0.1380	0.1482	0.1469	0.1550	0.1846
1995 0.0626	0.0972	0.1349	0.1398	0.1519	0.1595	0.1823	0.1758	0.1860
1996 0.0552	0.0896	0.1103	0.1308	0.1390	0.1512	0.1530	0.1603	0.1325
1997 0.0591	0.0877	0.1053	0.1217	0.1510	0.1520	0.1605	0.1632	0.1710
1998 0.0621	0.0803	0.0841	0.1091	0.1204	0.1360	0.1397	0.1478	0.1504
1999 0.0573	0.0888	0.1032	0.1106	0.1275	0.1370	0.1483	0.1413	0.1701
2000 0.0589								
2001 0.0575								
2002 0.0556	0.0799	0.0998	0.1172	0.1281	0.1392	0.1501	0.1638	0.1590
2003 0.0485								
2004 0.0529								
2005 0.0548								
2006 0.0506								
2007 0.0610								
2008 0.0484								
2009 0.0390								
2010 0.0538								
2010 0.0536								
#eof	0.0001	0.0000	0.0000	0.1110	0.1200	0.1201	0.1200	0.1000
999								

##									_
#				SOG HER	RING CONTR	OLS			
# _			CONTROL	S FOR ES	TIMATED PA	RAMETERS			#
#	Prior descr	iptions	:						
#		-	-0 un	iform (O	,0)				
#			-1 no:	rmal (p1	=mu,p2=sig	()			
##			-2 10	gnormal	(p1=log(mu	ι),p2=sig)		
##					lpha,p2=be				
##					lpha,p2=be				
##			0						#
	## npar								
#	ival	lb	ub	phz	prior	p1	p2	parameter name	
##				•		•	•	•	#
	7.60	-5.0	15	4	0	-5.0	15	#log_ro	
	0.67	0.2	1.0	4	3	10.0	4.925373	#steepness	
	-0.7985077	-5.0	5.0	3	1	-0.798	5077 0.4	#log.m	
				1	0				

	7.20	-5.0	15	1	0	-5.0	15	#16	og_recinit	
	7.20 0.3043478 0.8695652	0.001	0.999	3	3	17.08696	3	39.0559	#rho	
	0.8695652	0.01	5.0	3	4				#rho (precision	
F										##
	OPTIONS FOR			ECTIVI	TY PARAME	rers				##
			/iii. Lectivity	param	eters					
			coeffici							
					th age-no					
					e with ag			_		
						age & year 1 estimatio			1)	
			nction of				r-			
	sig=0.0	5 0.10 (0.15 0.20	0.30	0.40 0.50					
					3.12 2.00					
	Gear 1:3 fis isel_type	hery: (Jear 4-5	survey						
	1 1		8	6	6					
ŧ.	Age at 50% s	electivi	ity (logi	stic)						
	3.0 3.				2.055					
	STD at 50% s 0.25 0				0.05					
	No. of age n).				
	5 5									
	No. of year					e).				
	12 3	h	10	0	0					
	Estimation p 2 2		2	-1	-1					
1	Penalty weig					ig^2)				
	125. 12					-				
ŧ :	Penalty weig					1=1/(2*sig	`2)			
ŧ	50.0 50									##
				Decision	f C					## ##
F				Priors	for Surv	ey q				
			rveys							
	nits #numbe 2	r of su	rveys							
	nits #numbe 2 priors 0=uni	r of su	rveys	1=nor	mal densi	ty				
	nits #numbe 2 priors 0=uni 1 1	r of sun form der	rveys	1=nor	mal densi	ty				
	nits #numbe 2 priors 0=uni	r of sun form den an)	rveys	1=nor	mal densi	ty				
	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd	r of sun form den an) 569	rveys	1=nor	mal densi	ty				
	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0.	r of sur form der an) 569 274	rveys nsity							
	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd	r of sur form der an) 569 274	rveys nsity							##
	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0.	r of sur form der an) 569 274	rveys hsity		LLANEOUS	CONTROLS				
	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0.	r of sur form der an) 569 274	rveys hsity		LLANEOUS	CONTROLS				
	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0.	r of sur form der an) 569 274	rveys hsity		LLANEOUS	CONTROLS				
1	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0.	r of sur form der an) 569 274	rveys hsity		LLANEOUS	CONTROLS				
1 0	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0.	r of sur form der an) 569 274 	rveys hsity OTHER ose ADMB litment m in observ in observ	MISCE output nodel (red cat	LLANEOUS (0=off, 1=beverto: ches in f ches in 1	CONTROLS 1=on) n-holt, 2=n irst phase. ast phase.	ricke	er)		
10	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. ## 00 ## 707 ##	r of sur form der an) 569 274 	rveys nsity OTHER ose ADMB nitment m in observ in observ in observ	MISCE output nodel (red cat red cat	LLANEOUS ((0=off, 1=beverto: ches in 1 ches in 1 first yea	CONTROLS 1=on) n-holt, 2=n irst phase. ast phase. (0=FALSE.	ricke . 1=1	er) TRUE)		##
102	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. ## 00 ## 707 ##	r of sur form der an) 569 274 	rveys nsity OTHER ose ADMB nitment m in observ in observ in observ	MISCE output nodel (red cat red cat	LLANEOUS ((0=off, 1=beverto: ches in 1 ches in 1 first yea	CONTROLS 1=on) n-holt, 2=n irst phase. ast phase. (0=FALSE.	ricke . 1=1	er) TRUE)		##
10020	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. ## ## 00 ## 707 ## 5 ## 0 ## 1 ##	r of sur form der an) 569 274 2 recru 3 std : 5 Assur 6 Minir 7 Mean 8 std :	rveys sity OTHER >se ADMB sitment m in observ in observ ne unfish num propc fishing in mean f	MISCE output nodel (red cat red cat nortion mortal ishing	LLANEOUS (0=off, 1=beverto: ches in 1 first yea to consid ity for r mortalit;	CONTROLS	ricke , 1=1 propo g the phas	er) TRUE) prtions fo e estimate		##
1 0 0 0 0	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. ## 0.274 0. ## 0	r of sur form der an) 569 274 274 2 recru 3 std : 5 Assur 6 Minir 7 Mean 8 std : 9 std : 9 std :	cveys sity OTHER Dose ADMB ditment m in observ n observ n observ fishing in mean f in mean f	MISCE output nodel (red cat red cat nortion Trition Tishing Sishing	LLANEOUS ((0=off, 1=beverto: ches in 1 first yea to consid ity for r mortalit; mortalit;	CONTROLS	ricke , 1=1 propo g the phase	rRUE) ortions fo sestimate	or dmvlogis os of Ft	##
1 0 0 0 0	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. 	r of su form der an) 569 274 		MISCE output nodel (red cat red in ortion mortal ishing timatin	LLANEOUS (0=off, 1=beverto: ches in 1 first yea to consid ity for r mortalit g m_devia	CONTROLS	ricke , 1=1 propo g the phase -1 t	rRUE) ortions fo sestimate	or dmvlogis os of Ft	##
10 2 0 0 1	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. 	r of su form der an) 569 274 		MISCE output hodel (red cat red in prtion mortal Sishing Sishing tishing tishing	LLANEOUS ((0=off, 1=beverto: ches in f ches in 1 first yea to consid ity for r mortalit g m_devia or natura	CONTROLS	ricke , 1=1 propo g the phase -1 t	TRUE) prtions fo estimate se so turn of	or dmvlogis as of Ft ff mdevs)	##
# # # 10 02 00 1	nits #numbe 2 priors 0=uni 1 1 prior log(me -0.569 -0. prior sd 0.274 0. 	r of su form der an) 569 274 		MISCE output odel (red cat red cat red cat fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing fishing	LLANEOUS (0=off, 1=beverto ches in f ches in 1 first yea to consid ity for r mortalit g m_devia g m_devia or natura r deviati ortality	CONTROLS	ricke , 1=1 propo phase phase -1 t v ural place	er) PrUE) prtions for sestimate se to turn of mortality se prior 1	or dmvlogis ss of Ft ff mdevs) 7	##

_

N

eofc

PRINCE RUPERT DISTRICT

#NB The data herein were taken from qci2010_final.dat for the HCAM model. ## _____ ## ____Model Dimensions____ 1951 #first year of data 2011 #last year of data 2 #age of youngest age class 10 #age of plus group 5 #number of gears (ngear) ## flags for fishery (1) or survey (0) in ngears #1 1 1 0 0 0.00137145 0.2850014 0.71362715 0 0 ## _____ ## _____ #Age-schedule and population parameters #natural mortality rate (m) 0.334 #growth parameters (linf,k,to) (from fishbase) 27.0, 0.48, 0 #length-weight allometry (a,b) 4.5e-6, 3.1270 #maturity at age (am=log(3)/k) & gm=std for logistic 2.055, 0.05 ## _____ #Time series data #Observed catch (1951-2010, 1000s metric t) #Year P1 P2 P3 S1 S2 1951 45.865 0.000 0.000 0 0 1952 52.379 0.000 0.000 0 0 1953 1.865 0.000 0.000 0 0 1954 27.277 0.000 0.000 0 0 1955 17.806 0.000 0.000 0 0 1956 10.182 0.000 0.000 0 0 1957 28.035 0.000 0.000 0 0 1958 4.523 0.000 0.000 0 0 1959 10.224 0.000 0.000 0 0 1960 18.476 0.000 0.000 0 0 1961 42.746 0.000 0.000 0 0 1962 27.660 0.000 0.000 0 0 1963 40.228 0.000 0.000 0 0 1964 29.930 0.000 0.000 0 0 1965 44 211 0 000 0 000 0 0 1966 17.295 0.000 0.000 0 0 1967 7.998 0.000 0.000 0 0 1968 2.068 0.000 0.000 0 0 1969 0.000 0.000 0.000 0 0 1970 1.330 0.000 0.000 0 0 1971 3,500 0,000 0,000 0 0 1972 0.877 3.613 0.004 0 0 1973 0.218 1.388 0.000 0 0 1974 0.182 2.122 1.515 0 0 1975 0.155 1.536 0.011 0 0 1976 0.564 3.466 0.276 0 0 1977 0 792 5 856 1 494 0 0 1978 3.582 1.974 3.031 0 0 1960 16.545 4 1 1 1979 1.810 1.271 1.236 0 0 1961 12.059 4 1 1

1980 0.738 1.641 1.046 0 0 1981 1.682 1.051 0.356 0 0 1982 1.815 0.170 0.000 0 0 1983 0.000 0.000 0.000 0 0 1984 0.173 1.653 1.880 0 0 1985 0.253 3.018 3.476 0 0 1986 0.375 3.732 4.573 0 0 1987 0.122 2.077 4.071 0 0 1988 0.079 3.550 4.340 0 0 1989 0.071 3.657 4.745 0 0 1990 0.043 2.285 2.361 0 0 1991 0.000 1.366 2.143 0 0 1992 0.142 1.238 3.797 0 0 1993 0.000 2.208 4.112 0 0 1994 0.000 2.363 2.324 0 0 1995 0.000 0.706 1.355 0 0 1996 0.000 0.000 3.086 0.0 1997 0.000 0.000 5.541 0 0 1998 0.000 0.000 3.217 0 0 1999 0.000 0.256 1.859 0 0 2000 0.000 1.239 3.076 0 0 2001 0.000 1.012 1.906 0 0 2002 0.000 2.061 2.432 0 0 2003 0 000 1 451 2 562 0 0 2004 0.000 1.919 2.192 0 0 2005 0.000 1.750 2.050 0 0 2006 0.000 0.957 1.661 0 0 2007 0.000 0.000 0.969 0 0 2008 0.000 0.513 1.148 0 0 2009 0.000 0.713 1.286 0 0 2010 0.000 0.475 1.010 0 0 2011 0.000 0.883 1.264 0 0 #Relative Abundance index from fisheries independent survey (it) 1970-2008 #nit #61 2 #nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable numbers ## 2 = survey is proportional to vulnerable biomass ## 3 = survey is proportional to spawning biomass (e.g., herring spawn survey) 3 3 #iyr it gear wt survey timing 1951 27.149 4 1 1 1952 24.047 4 1 1 1953 28.468 4 1 1 1954 13.535 4 1 1 1955 14.482 4 1 1 1956 14.533 4 1 1 1957 27.518 4 1 1 1958 9.882 4 1 1 1959 40 961 4 1 1

-	-
ſ	S
Î	Ū

1962 26.329 4 1 1	
1963 16.981 4 1 1	
1964 26.919 4 1 1	
1965 6.055 4 1 1	
1966 7.105 4 1 1	
1967 3.386 4 1 1	
1968 5.197 4 1 1	
1969 0.965 4 1 1	
1970 8.814 4 1 1	
1971 8.480 4 1 1	
1972 8.774 4 1 1	
1973 10.959 4 1 1	
1974 9.244 4 1 1	
1975 10.949 4 1 1	
1976 15.587 4 1 1	
1977 11.589 4 1 1	
1978 6.164 4 1 1 1979 9.195 4 1 1	
1980 11.937 4 1 1	
1981 14.087 4 1 1	
1982 17.186 4 1 1	
1983 25.247 4 1 1	
1984 27.041 4 1 1	
1985 41.028 4 1 1	
1986 26.638 4 1 1	
1987 39.905 4 1 1	
1988 35.444 5 1.1666 1	
1989 16.379 5 1.1666 1	
1990 22.679 5 1.1666 1	
1991 25.811 5 1.1666 1	
1992 40.145 5 1.1666 1	
1993 25.071 5 1.1666 1	
1994 16.589 5 1.1666 1	
1995 18.516 5 1.1666 1 1996 24 854 5 1 1666 1	
1996 24.854 5 1.1666 1 1997 25.037 5 1.1666 1	
1998 19.420 5 1.1666 1	
1999 29.745 5 1.1666 1	
2000 19.694 5 1.1666 1	
2001 36.684 5 1.1666 1	
2002 22.449 5 1.1666 1	
2003 34.007 5 1.1666 1	
2004 30.493 5 1.1666 1	
2005 27.956 5 1.1666 1	
2006 10.251 5 1.1666 1	
2007 15.562 5 1.1666 1	
2008 13.553 5 1.1666 1	
2009 12.684 5 1.1666 1	
2010 27.979 5 1.1666 1	
2011 20.673 5 1.1666 1	
#Age composition data by year, gear (ages 2-15+)	
#na_gears 3	
#na_nobs	
25 41 34	
#a_sage	
2 2 2 2	
#a_page	
10 10 10	
#yr gear V2 V3 V4 V5 V6 V7 V8 V9 V10	#Number aged.
1951 1 203 852 2739 486 263 124 12 2 1	-
1952 1 282 522 1994 2679 364 61 18 2 0	
1953 1 17 541 327 361 158 14 1 0 0	
1954 1 56 753 772 638 351 69 16 1 0	
1955 1 31 55 795 177 59 12 2 0 0	
1956 1 169 978 160 319 43 9 3 2 0	

1957	1	401	610	1482	597	558	45	12	1	0
1958	1	339	256	64	82	13	17	0	0	0
1959	1	54	973	539	144	157	34	35	3	0
1960	1	1903	252	972	286	119	71	16	7	0
1961	1	400	2348	276	649	155	54	16	5	0
1962	1	30	153	190	38	58	17	3	5	1
1963	1	1326	434	550	673	100	89	13	2	0
1964	1	109	2174	339	371	300	23	20	4	1
1965	1	184	412	1603	336	350	312	58	14	4
1976	1	0	8	11	16	27	29	57	14	0
1978	1	11	80	265	188	191	145	64	22	12
1979	1	22	125	140	348	234	216	113	75	31
1980	1	13	708	76	90	90	62	48	23	9
1981	1	69	459	3366	586	604	562	266		68
1982	1	37	288	485	1005	246	161	124		16
	1		200			64	101		52 7	5
1984	-	18		103	91			18		
1985	1	92	48	110	165	69	24	23	5	0
1986	1	198	182	155	451	266	152	95	82	20
1988	1	1	53	159	46	43	46	17	16	4
1971	2	39	309	211	64	34	11	4	1	0
1972	2	0	38	128	460	42	27	17	1	1
1973	2	37	336	47	262	219	31	12	6	0
1974	2	1	113	336	47	104	28	2	1	õ
1975	2	41	298	695	1362	355	306	78	20	4
1976	2	0	6	49	226	357	52	17	6	0
1977	2	3	327	125	406	564	240	72	20	6
1978	2	10	100	269	79	163	158	23	7	2
1979	2	27	181	113	290	104	166	53	14	3
1980	2	57	2507	239	164	129	104	45	17	5
1981	2	36	494	3840	170	79	68	20	10	6
1982	2	42	290	114	1024	44	21	6	3	0
1983	2	62	954	813	241	2253	171	52	27	9
1983	2	17	1138	436	314	448	721	31	- 21	4
	-									-
1985	2	18	330	2288	528	268	439	329	8	4
1986	2	99	778	534	2616	611	298	401	313	3
1987	2	42	1904	490	327	1423	281	165	136	59
1988	2	19	1303	1638	251	351	485	82	61	10
1989	2	22	784	1307	1001	178	162	129	23	8
1990	2	33	920	1143	1431	1040	203	168	109	13
1991	2	39	1979	391	519	649	391	68		39
1992	2	15	1699	1587	251	228	287	146		17
1993	2	5	432	1783	1216	162	177	175	63	4
1994	2	44	325	885	3246	1487	276	248		31
1995	2	140	673	297	495	1898	692	107		25
1996	2	29	1763	241	76	115	316	140	10	5
1997	2	35	615	1447	216	68	133	128	50	5
1998	2	4	702	465	768	94	30	23	27	2
1999	2	17	95	706	350	425	76	18	15	13
2000	2	77	1111	381	1132	498	646	89		10
2001	2	79	1430	875	235	702	315	260	39	4
2001	2	240	867	1553	871	187	442	167		10
2003	2	16	2387	538	605	313	92	131		20
2004	2	23	50	1700	273	238	98	19	28	2
2005	2	21	856	268	1297	279	166	59	13	10
2006	2	29	327	887	176	460	78	32	9	2
2007	2	27	355	161	78	22	72	9	7	1
2008	~	69	578	2062	448	310	65	135	29	9
	2				1723	286	197	45	59	2
2009	2	11	847	703	1/20					
	2									
2010	2 2	41	1095	888	377	676	108	54	10	12
2010 2011	2 2 2	41 15	1095 1082	888 1055	377 680	676 494	108 893	54 160	10 62	12 27
2010 2011 1974	2 2 2 3	41 15 0	1095 1082 1	888 1055 41	377 680 22	676 494 36	108 893 3	54 160 1	10 62 0	12 27 0
2010 2011 1974 1977	2 2 3 3	41 15 0 0	1095 1082 1 3	888 1055 41 6	377 680 22 56	676 494 36 152	108 893 3 41	54 160 1 19	10 62 0 4	12 27 0 0
2010 2011 1974 1977 1978	2 2 3 3 3	41 15 0 0	1095 1082 1 3 0	888 1055 41 6 31	377 680 22 56 9	676 494 36 152 49	108 893 3 41 50	54 160 1 19 10	10 62 0 4 2	12 27 0 0 0
2010 2011 1974 1977	2 2 3 3 3 3	41 15 0 0 0	1095 1082 1 3 0 0	888 1055 41 6	377 680 22 56 9 120	676 494 36 152	108 893 3 41	54 160 1 19	10 62 0 4	12 27 0 0 0 0
2010 2011 1974 1977 1978	2 2 3 3 3	41 15 0 0	1095 1082 1 3 0	888 1055 41 6 31	377 680 22 56 9	676 494 36 152 49	108 893 3 41 50	54 160 1 19 10	10 62 0 4 2	12 27 0 0 0
2010 2011 1974 1977 1978 1979	2 2 3 3 3 3	41 15 0 0 0	1095 1082 1 3 0 0	888 1055 41 6 31 24	377 680 22 56 9 120	676 494 36 152 49 54	108 893 3 41 50 66	54 160 1 19 10 22	10 62 0 4 2 5	12 27 0 0 0 0

1984	3	0	5	10	65	108	290	17	6	4			
1985	3	0	2	90	82	87	120	164	2	3			
1986	3	0	5		713		115		80	1			
1987	3	0	10			1041							
1988	3	0	3	46	51		318	83	36				
1989	3	0	0		145		112		16				
1990	3	0	0		116	231	56	63	33	8			
1991 1992	3 3	0	3	39 : 123	171 85	288	236	102	40 37				
1992	3	0	0		302		138	99		7			
1994	3	ŏ	0		160		110		54				
1995	3	ŏ	1		144	295		35	16				
1996	3	0	4	21	29		167		16	6			
1997	3	0	1	123	73	88	128	130	70	15			
1998	3	0	7	33 4	466	222	107	122	76	40			
1999	3	0	0	78 :	119	357	97	33	14	21			
2000	3	0	1		187		342	76		10			
2001	3	0	3	58	97		215		55	9			
2002	3	0	1		243				145				
2003	3	0	3		323	226		107	46				
2004	3 3	0	1		151	412		55	53				
2005 2006	3 3	0	0	6 3 17	350 58	136 332	195	44 72	10 8	7 0			
2000	3	1	11		208		630						
2008	3	0	1		102		108						
2009	3	ŏ	1		406	187		53		9			
2010	3	0	0	19	72	492	145	78	31	26			
#2011	13	49	138	282 (601	108	45	7	11	1			
2011	3	0	2	49	138	282	601	108	45	20			
#n_wt	t_ob:	s											
61 #Moar		ight-	at=20	o in k	1100	rrame	(int	orn	012+0		from	HCAM.rep	-)
#A\$yı		V1	V:		V3	V4		V5		V6	V		
												0.1380	
1952	0.0	467 C	.0838	0.1158	30.	.1308	0.14	196	0.165	57 (0.1672	0.2215	0.1700
						.1307	0 1	133	0.157	2 (0.1871	0.1700
	0.04	105 0											
1955						.1308	0.14	153	0.161			0.1930	0.1700
		458 C	.0808	0.1013	30.	.1308 .1215	0.14 0.14	153 129	0.161 0.159	93 (0.1540	0.1930 0.1871	0.1700 0.1700
	0.0	458 C 373 C	0.0808	0.1013	30. 40.	.1308 .1215 .1136	0.14 0.14 0.14	153 129 105	0.161 0.159 0.151	93 (18 ().1540).1700	0.1930 0.1871 0.1990	0.1700 0.1700 0.1700
1957	0.0	458 C 373 C 287 C	0.0808 0.0764 0.0752	0.1013 0.0944 0.1043	30. 40. 10.	1308 1215 1136 1225	0.14 0.14 0.14 0.13	153 129 105 368	0.161 0.159 0.151 0.165	93 (18 (54 ().1540).1700).1887	0.1930 0.1871 0.1990 0.2000	0.1700 0.1700 0.1700 0.1700
1957 1958	0.0	458 0 373 0 287 0 348 0	0.0808 0.0764 0.0752 0.0758	0.1013 0.094 0.104 0.1210	30. 40. 10. 60.	.1308 .1215 .1136 .1225 .1414	0.14 0.14 0.14 0.13 0.13	153 129 105 368 393	0.161 0.159 0.151 0.169 0.169	93 (18 (54 (79 ().1540).1700).1887).1690	0.1930 0.1871 0.1990 0.2000 0.1871	0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959	0.03	458 0 373 0 287 0 348 0 436 0	0.0808 0.0764 0.0752 0.0758 0.0857	0.1013 0.0944 0.1043 0.1216 0.1225	30. 40. 10. 60.	.1308 .1215 .1136 .1225 .1414 .1205	0.14 0.14 0.13 0.13 0.13	453 429 405 368 393 494	0.161 0.159 0.151 0.169 0.169 0.167	93 (18 (54 (79 (17 ().1540).1700).1887).1690).1659	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960	0.03	458 0 373 0 287 0 348 0 436 0 380 0	0.0808 0.0764 0.0752 0.0758 0.0857 0.0674	0.1013 0.0944 0.1043 0.1216 0.1023 0.1038	3 0. 4 0. 1 0. 6 0. 2 0. 8 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211	0.14 0.14 0.13 0.13 0.14 0.13	153 129 105 368 393 194 396	0.161 0.159 0.151 0.169 0.167 0.164 0.154	93 (18 (54 (79 (17 (15 ().1540).1700).1887).1690).1659).1689	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961	0.03	458 0 373 0 287 0 348 0 436 0 380 0 395 0	0.0808 0.0764 0.0752 0.0758 0.0857 0.0674 0.0740	0.1013 0.0944 0.1043 0.1216 0.1022 0.1038 0.1074	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 4 0.	1308 1215 1136 1225 1414 1205 1211 1306	0.14 0.14 0.13 0.13 0.13 0.14 0.13 0.14	153 129 105 368 393 194 396 143	0.161 0.159 0.151 0.165 0.167 0.154 0.154	93 (18 (54 (79 (17 (15 (94 ().1540).1700).1887).1690).1659).1689).1554	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.1930	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961 1962	0.03	458 0 373 0 287 0 348 0 436 0 380 0 380 0 395 0 439 0	0.0808 0.0764 0.0752 0.0758 0.0857 0.0674 0.0740 0.0791	0.1013 0.094 0.104 0.1210 0.1022 0.1038 0.1074 0.1086	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 4 0. 6 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388	0.14 0.14 0.13 0.13 0.13 0.14 0.13 0.14 0.13	153 129 105 368 393 194 396 143 541	0.161 0.153 0.151 0.165 0.167 0.154 0.154 0.159 0.159	93 (18 (54 (79 (17 (15 (94 (97 ().1540).1700).1887).1690).1659).1689).1689).1554).1807	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961 1962 1963	0.03 0.03 0.04 0.03 0.03 0.03	458 0 373 0 287 0 348 0 436 0 380 0 380 0 395 0 439 0 393 0	0.0808 0.0764 0.0752 0.0758 0.0857 0.0674 0.0740 0.0791 0.0662	0.1013 0.0944 0.1043 0.1216 0.1022 0.1038 0.1074 0.1086 0.1042	3 0. 4 0. 1 0. 5 0. 2 0. 8 0. 4 0. 5 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388 .1281	0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14	153 129 105 368 393 194 396 143 541 545	0.161 0.153 0.151 0.165 0.167 0.154 0.154 0.159 0.179 0.166	93 (18 (54 (79 (17 (15 (94 (97 (64 (64 ().1540).1700).1887).1690).1659).1659).1689).1554).1554).1807).1902	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.1930 0.2020	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961 1962 1963 1964	0.03 0.03 0.04 0.03 0.04 0.03 0.04	458 0 373 0 287 0 348 0 436 0 380 0 380 0 395 0 439 0 393 0 442 0).0808).0764).0752).0758).0857).0674).0674).0791).0662).0724	0.1013 0.0944 0.1043 0.1216 0.1022 0.1038 0.1074 0.1086 0.1042 0.0932	3 0. 4 0. 1 0. 5 0. 2 0. 8 0. 4 0. 2 0. 2 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388 .1281 .1224	0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.15 0.14 0.15 0.15	153 129 105 368 393 194 396 143 541 545 333	0.161 0.159 0.151 0.165 0.167 0.154 0.154 0.159 0.159 0.166 0.159	93 (18 (54 (79 (17 (17 (17 (17 (17)).1540).1700).1887).1690).1659).1659).1689).1554).1554).1807).1902).1520	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.1930 0.2020 0.2250	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961 1962 1963 1964 1965	0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.04	458 0 373 0 287 0 348 0 436 0 380 0 395 0 439 0 393 0 442 0 527 0).0808).0764).0752).0758).0857).0674).0740).0791).0662).0724).0724	0.1013 0.0944 0.1045 0.1216 0.1022 0.1036 0.1074 0.1086 0.1042 0.0932 0.1143	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 4 0. 2 0. 3 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388 .1281 .1224 .1400	0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.16 0.15 0.15	153 129 105 368 393 194 396 143 541 545 333 566	0.161 0.159 0.151 0.165 0.167 0.154 0.159 0.166 0.159 0.166	93 (18 (54 (79 (17 (15 (94 ().1540).1700).1887).1690).1659).1659).1689).1554).1807).1902).1902).1520).1797	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.1930 0.2020 0.2250 0.1560	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1480 0.2300
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967	0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.04	458 0 373 0 287 0 348 0 436 0 380 0 380 0 395 0 439 0 393 0 442 0 527 0 408 0).0808).0764).0752).0758).0857).0674).0740).0791).0662).0724).0983).0774	$\begin{array}{c} 0.1013\\ 0.094\\ 0.104\\ 0.121\\ 0.102\\ 0.103\\ 0.107\\ 0.108\\ 0.104\\ 0.093\\ 0.114\\ 0.105\\ 0.105\\ 0.105\\ \end{array}$	3 0. 4 0. 1 0. 2 0. 3 0. 2 0. 2 0. 3 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 5 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388 .1281 .1224 .1400 .1270 .1270	0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.16 0.19 0.13 0.14 0.14 0.14	153 129 105 368 393 194 396 143 541 545 333 566 142 142	0.161 0.159 0.151 0.169 0.167 0.154 0.159 0.169 0.169 0.169 0.169 0.159 0.159	93 (18 (54 (54 (79 (17 (17 (17 (17 (17 (17 (17 (17 (17 (17 ().1540).1700).1887).1690).1659).1659).1554).1807).1902).1520).1520).1797).1690).1690	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.2020 0.2250 0.1560 0.2001 0.1871 0.1871	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1480 0.1480 0.2300 0.1700 0.1700
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04	458 0 373 0 287 0 348 0 436 0 380 0 395 0 439 0 393 0 442 0 527 0 408 0 408 0).0808).0764).0752).0758).0857).0674).0740).0791).0662).0791).0662).0724).0983).0774).0774	0.101; 0.0944 0.104; 0.1210 0.1022 0.1032 0.1042 0.1042 0.1044 0.0932 0.114; 0.1054 0.1054	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 6 0. 2 0. 3 0. 4 0. 4 0. 4 0.	.1308 .1215 .1215 .1225 .1414 .1205 .1211 .1306 .1281 .1281 .1224 .1400 .1270 .1270 .1270	0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.15 0.15 0.14 0.14 0.14 0.14	 453 429 405 368 393 494 396 443 541 545 333 566 442 442 442 	0.161 0.159 0.151 0.165 0.167 0.154 0.159 0.166 0.159 0.163 0.159 0.159 0.159	93 (18 (54 (54 (54 (17 (17 (15 (145).1540).1700).1887).1690).1659).1659).1554).1554).1807).1902).1520).1520).1797).1690).1690).1690	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.2020 0.2250 0.2250 0.2250 0.2201 0.2001 0.871 0.1871	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1480 0.2300 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04	458 0 373 0 287 0 348 0 436 0 380 0 395 0 439 0 393 0 442 0 527 0 408 0 408 0 408 0 408 0).0808).0764).0752).0758).0857).0674).0740).0791).0662).0724).0793).0774).0774).0774	0.101; 0.0944 0.104; 0.1210 0.1022 0.1032 0.1042 0.1042 0.1044 0.0933 0.114; 0.1054 0.1054 0.1054	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 4 0. 2 0. 2 0. 2 0. 3 0. 4 0. 4 0. 4 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1281 .1281 .1224 .1400 .1270 .1270 .1270 .1270	0.14 0.14 0.15 0.13 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.14 0.14	153 129 105 368 393 194 396 143 541 545 3333 566 142 142 142	0.161 0.153 0.151 0.165 0.154 0.154 0.159 0.168 0.169 0.169 0.169 0.169 0.159 0	93 (18 (54 (79 (17 (15 (15 (15 (15 (15 (15 (16 (17 (16 (16 (16 (16 (16 (17 (16 (1).1540).1700).1887).1690).1659).1659).1554).1554).1807).1902).1520).1797).1690).1690).1690).1690	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.2020 0.2250 0.2250 0.2250 0.2001 0.1871 0.1871 0.1871	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1480 0.2300 0.1700 0.1700 0.1700 0.1700
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.04	458 0 373 0 287 0 348 0 436 0 380 0 395 0 439 0 393 0 442 0 527 0 408 0 408 0 408 0 408 0 408 0 408 0).0808).0764).0752).0758).0857).0674).0740).0791).0662).0724).0724).0724).0774).0774).0774).0774).0774	$\begin{array}{c} 0.101;\\ 0.094;\\ 0.104;\\ 0.102;\\ 0.102;\\ 0.103;\\ 0.107;\\ 0.108;\\ 0.104;\\ 0.093;\\ 0.114;\\ 0.093;\\ 0.114;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.113;\\ \end{array}$	3 0. 4 0. 1 0. 6 0. 2 0. 2 0. 3 0. 4 0. 3 0. 4 0. 4 0. 4 0. 4 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388 .1281 .1224 .1400 .1270 .1270 .1270 .1270 .1270 .1382	0.14 0.14 0.13 0.13 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.14 0.14	153 129 105 368 393 194 396 143 541 545 333 566 142 142 142 142 571	0.161 0.159 0.151 0.165 0.154 0.154 0.159 0.168 0.159 0.163 0.159 0	93 (18 (18 (19 (17 (17 (10 (17 (1)))))))))))))))))))))))))))))))))))).1540).1700).1887).1690).1659).1659).1554).1554).1807).1902).1520).1520).1797).1690).1690).1690).1690).1836	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.1930 0.2250 0.1560 0.2001 0.1871 0.1871 0.1871 0.1871 0.1871	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1480 0.1700 0.1700 0.1700 0.1700 0.1700 0.2042
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	458 0 373 0 287 0 348 0 436 0 395 0 439 0 393 0 442 0 527 0 408 0 408 0 408 0 408 0 408 0 408 0 408 0 408 0 408 0	0.0808 0.0764 0.0752 0.0758 0.0857 0.0674 0.0740 0.0791 0.0662 0.0774 0.0983 0.0774 0.0774 0.0774 0.0774	$\begin{array}{c} 0.101;\\ 0.094;\\ 0.104;\\ 0.102;\\ 0.102;\\ 0.103;\\ 0.107;\\ 0.108;\\ 0.104;\\ 0.093;\\ 0.114;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.113;\\ 0.110;\\$	3 0. 4 0. 1 0. 6 0. 2 0. 2 0. 3 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1388 .1281 .1224 .1400 .1270 .1270 .1270 .1270 .1270 .1382 .1317	0.14 0.14 0.13 0.13 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	 453 429 405 368 393 494 396 443 545 333 566 442 442 571 445 	0.161 0.153 0.151 0.165 0.167 0.154 0.154 0.159 0.160 0.159 0.163 0.159 0.163 0.159	93 (18 (18 (19 (19 (19 (10 ().1540).1700).1887).1690).1659).1659).1689).1554).1807).1902).1520).1520).1797).1690).1690).1690).1690).1836).1720	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.2250 0.2250 0.1560 0.2001 0.1871 0.1871 0.1871 0.1871 0.1913 0.1020	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1480 0.2300 0.1700 0.1700 0.1700 0.1700 0.1700 0.2042 0.2042
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	458 0 373 0 287 0 348 0 436 0 380 0 395 0 439 0 393 0 442 0 527 0 408 0 448 0 448 0 362 0 448 0).0808).0764).0752).0758).0857).0674).0740).0791).0662).0774).0774).0774).0774).0774).0774).0774	$\begin{array}{c} 0.101;\\ 0.094;\\ 0.104;\\ 0.102;\\ 0.102;\\ 0.103;\\ 0.107;\\ 0.108;\\ 0.104;\\ 0.093;\\ 0.114;\\ 0.093;\\ 0.114;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.113;\\ 0.110;\\ 0.137;\\ \end{array}$	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 0 0. 1 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1211 .1306 .1281 .1281 .1281 .1224 .1400 .1270 .1270 .1270 .1270 .1270 .1277 .1628	0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	 453 429 405 368 393 494 396 443 541 545 333 566 442 442 442 571 445 5991 	0.161 0.155 0.151 0.165 0.167 0.154 0.154 0.155 0.155 0.155 0.155 0.155 0.155 0.176 0.176 0.155 0.155 0.155 0.176 0.176 0.176 0.155	93 () 18 () 94 () 97 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 ()).1540).1700).1887).1690).1659).1659).1554).1554).1520).1520).1520).1520).1797).1690).1690).1690).1690).1836).1720).2331	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.2020 0.2250 0.2250 0.2250 0.2250 0.2250 0.2201 0.1871 0.1871 0.1871 0.1871 0.1871 0.1913 0.1020 0.22490	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.2042 0.2042 0.20590
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973	$\begin{array}{c} 0 & 0 \\$	458 C 373 C 287 C 348 C 436 C 380 C 3895 C 439 C 393 C 439 C 393 C 439 C 393 C 442 C 527 C 408 C 40 C 408 C 408 C).0808).0764).0752).0758).0857).06740).0740).0740).0740).0724).0724).0774).0774).0774).0774).0774).0774).0831).0888).1004	$\begin{array}{c} 0.1013\\ 0.0944\\ 0.1044\\ 0.1024\\ 0.1024\\ 0.1030\\ 0.1030\\ 0.1042\\ 0.0933\\ 0.1044\\ 0.1056\\ 0.1056\\ 0.1056\\ 0.1056\\ 0.1056\\ 0.1056\\ 0.1056\\ 0.1136\\ 0.1056\\ 0.1137\\ 0.1172\\ 0.1177\\$	3 0. 4 0. 1 0. 6 0. 2 0. 8 0. 4 0. 6 0. 2 0. 3 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 2 0. 2 0. 3 0. 4 0. 2 0. 3 0. 4 0. 5 0. 6 0. 9 0.	.1308 .1215 .1136 .1225 .1414 .1205 .1201 .1306 .1388 .1281 .1224 .1400 .1270 .1270 .1270 .1270 .1270 .1382 .1317 .1628 .1641	0.14 0.12 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	453 429 405 368 393 494 433 641 545 545 545 545 542 442 442 442 442 571 445 991 791	0.161 0.159 0.151 0.165 0.167 0.166 0.155 0.155 0.155 0.163 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.173 0.176 0.155	33 () 18 () 54 () 79 () 17 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 ()).1540).1700).1887).1690).1659).1659).1554).1554).1520).1520).1520).1520).1690).1690).1690).1690).1690).1690).1690).1690).1836).1720	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.2020 0.2250 0.1560 0.2001 0.1871 0.1871 0.1871 0.1871 0.1871 0.1871 0.1913 0.1020 0.2490 0.2490	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.2300 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.2042 0.2042 0.2042
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974	$\begin{array}{c} 0 & 0 \\$	4458 C 373 C 287 C 348 C 343 C 393 C 442 C 527 C 527 C 527 C 6408 C 4428 C 527 C 527 C 6408 C 6408 C 6408 C 6425 C 6425 C 6425 C 6425 C 6426 C 6427 C	0.0808 0.0764 0.0752 0.0857 0.0857 0.0674 0.0740 0.0791 0.0662 0.0724 0.0983 0.0774 0.0774 0.0774 0.0774 0.0774 0.0774 0.0831 0.0883 0.0868 0.00863	$\begin{array}{c} 0.101;\\ 0.094\\ 0.104;\\ 0.102;\\ 0.103;\\ 0.103;\\ 0.104;\\ 0.108;\\ 0.104;\\ 0.093;\\ 0.114;\\ 0.005;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.105;\\ 0.110;\\ 0.110;\\ 0.117;\\ 0.117;\\ 0.121;\\ \end{array}$	3 0. 4 0. 6 0. 2 0. 8 0. 2 0. 8 0. 4 0. 2 0. 3 0. 4 0. 4 0. 4 0. 4 0. 4 0. 0 0. 2 0. 2 0. 2 0. 2 0. 2 0.	1308 1215 1136 1225 1414 1205 1211 1306 1388 1281 1224 1400 1270 1270 1270 1270 1382 1317 1388 1641 1655	$\begin{array}{c} 0.14\\ 0.14\\ 0.14\\ 0.13\\ 0.13\\ 0.14\\ 0.13\\ 0.14\\ 0.16\\ 0.14\\$	453 429 405 368 393 494 396 443 3641 545 545 566 442 442 442 442 442 571 445 991 791 345	0.161 0.159 0.151 0.165 0.167 0.156 0.155 0.155 0.166 0.155 0.166 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.177 0.155 0.155 0.155	33 () 18 () 18 () 18 () 19 () 17 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 () 117 ()), 1540), 1700), 1887), 1690), 1659), 1659), 1554), 1807), 1902), 1520), 1520), 1797), 1690), 1690), 1690), 1690), 1690), 1693), 1690), 1693), 1690), 1720), 2311), 2311), 2312), 22040	0.1930 0.1871 0.1990 0.2000 0.1871 0.1480 0.1700 0.2020 0.2250 0.2250 0.2250 0.2250 0.2250 0.2201 0.1871 0.1871 0.1871 0.1871 0.1871 0.1913 0.1020 0.22490	0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.2042 0.2042 0.2042

1976 0.0485 0.0887 0.1325 0.1583 0.1734 0.2029 0.2106 0.2270 0.2042

1977 0.0540 0.0862 0.1178 0.1510 0.1688 0.1838 0.1955 0.1956 0.2242

1978 0.0554 0.0984 0.1249 0.1491 0.1701 0.1856 0.2022 0.2323 0.2304

1979 0.0566 0.0966 0.1289 0.1483 0.1661 0.1844 0.1911 0.2136 0.2129

1980 0.0609 0.0807 0.1165 0.1471 0.1697 0.1792 0.1879 0.2094 0.2241

1981 0.0452 0.0811 0.0999 0.1306 0.1551 0.1692 0.1827 0.2014 0.2028

1982 0.0421 0.0775 0.1083 0.1162 0.1483 0.1703 0.1778 0.1833 0.1978

٧9

1900	0.0000	0.0135	0.1042	0.1222	0.1040	0.1000	0.1037	0.1314	0.1301
1984	0.0457	0.0752	0.0897	0.1112	0.1237	0.1351	0.1568	0.1769	0.1870
1985	0.0356	0.0787	0.0975	0.1095	0.1219	0.1336	0.1490	0.1766	0.1590
1986	0.0555	0.0919	0.1185	0.1369	0.1472	0.1578	0.1685	0.1795	0.1963
1987	0.0549	0.0835	0.1070	0.1283	0.1418	0.1526	0.1596	0.1719	0.1746
1988	0.0507	0.0742	0.0967	0.1165	0.1351	0.1514	0.1519	0.1642	0.1887
1989	0.0565	0.0751	0.0964	0.1156	0.1361	0.1471	0.1659	0.1596	0.1906
1990	0.0504	0.0890	0.1078	0.1222	0.1379	0.1524	0.1655	0.1763	0.1850
1991	0.0548	0.0763	0.1056	0.1205	0.1290	0.1413	0.1483	0.1601	0.1711
1992	0.0470	0.0764	0.0935	0.1201	0.1334	0.1405	0.1486	0.1671	0.1732
1993	0.0538	0.0767	0.0964	0.1093	0.1264	0.1367	0.1417	0.1514	0.1543
1994	0.0425	0.0717	0.0935	0.1061	0.1160	0.1340	0.1375	0.1413	0.1594
1995	0.0480	0.0741	0.0920	0.1123	0.1207	0.1309	0.1487	0.1577	0.1589
1996	0.0524	0.0723	0.0947	0.1111	0.1290	0.1343	0.1429	0.1485	0.1608
1997	0.0565	0.0677	0.0839	0.1039	0.1190	0.1308	0.1377	0.1454	0.1496
1998	0.0448	0.0670	0.0799	0.0924	0.1018	0.1204	0.1303	0.1462	0.1505
1999	0.0579	0.0791	0.0956	0.1040	0.1155	0.1189	0.1363	0.1390	0.1443
2000	0.0465	0.0695	0.0852	0.1042	0.1099	0.1185	0.1303	0.1308	0.1416
2001	0.0424	0.0674	0.0917	0.1051	0.1245	0.1264	0.1368	0.1376	0.1513
2002	0.0466	0.0660	0.0847	0.1047	0.1176	0.1287	0.1334	0.1476	0.1532
2003	0.0505	0.0701	0.0853	0.1096	0.1262	0.1400	0.1457	0.1521	0.1588
2004	0.0500	0.0649	0.0865	0.1003	0.1148	0.1312	0.1432	0.1524	0.1340
2005	0.0382	0.0644	0.0709	0.1000	0.1059	0.1194	0.1376	0.1392	0.1470
2006	0.0479	0.0631	0.0796	0.0908	0.1097	0.1213	0.1309	0.1434	0.1205
2007	0.0399	0.0581	0.0702	0.0902	0.1069	0.1104	0.1196	0.1274	0.1440
2008	0.0442	0.0580	0.0816	0.0947	0.1078	0.1175	0.1316	0.1323	0.1516
						0.1198			
						0.1180			
2011	0.0388	0.0687	0.0819	0.1020	0.1113	0.1256	0.1379	0.1447	0.1383

 $1983 \hspace{0.1in} 0.0556 \hspace{0.1in} 0.0795 \hspace{0.1in} 0.1042 \hspace{0.1in} 0.1222 \hspace{0.1in} 0.1349 \hspace{0.1in} 0.1536 \hspace{0.1in} 0.1697 \hspace{0.1in} 0.1914 \hspace{0.1in} 0.1961$

#eof 999

				RING CONTR			
			FUR ES	TIMATED PA	RAMETERS		
Prior descr	riptions						
			form (O				
				=mu,p2=sig			
		-2 log	normal	(p1=log(mu	ι),p2=sig)	
				lpha,p2=be			
		-4 gam	ma(p1=a)	lpha,p2=be	eta)		
## npar							
ival	lb	ub	phz	prior	p1	p2	parameter name
			-	-	-		
	-5.0		4	0		15	
0.67	0.2	1.0	4	3	10.0	4.925373	#steepness
0 7005077	-5.0	5.0	3	1	-0.798	5077 0.4	#log.m
-0.7985077	-5.0	15	1	0	-5.0	15	#log_avgrec
	-5.0			0	-5.0	15	#log_recinit
7.40	-5.0	15	1	0			
7.40 7.20			1 3	3	17.086		559 #rho

OPTIONS FOR SELECTIVITY:

1) logistic selectivity parameters ##

##

2) selectivity coefficients ## 3) a constant cubic spline with age-nodes

4) a time varying cubic spline with age-nodes ##

5) a time varying bicubic spline with age & year nodes.

6) fixed logistic (set isel_type=6, and estimation phase to -1)

7) logistic function of body weight.

2011/136

##	sig=0.05 0.10 0.15 0.20 0.30 0.40 0.50	
	wt =200. 50.0 22.2 12.5 5.56 3.12 2.00	
	Gear 1:3 fishery: Gear 4-5 survey	
	5	
##	isel_type	
##	Age at 50% selectivity (logistic)	
	2.5 3.0 0.6 2.055 2.055	
##	STD at 50% selectivity (logistic)	
	0.25 0.25 0.15 0.05 0.05	
##	No. of age nodes for each gear (0 to ignore).	
	5 5 5 0 0	
##	No. of year nodes for each gear (0 to ignore).	
	12 3 10 0 0	
##	Estimation phase	
	2 2 2 -1 -1	
##	Penalty weight for 2nd differences w=1/(2*sig^2)	
	125. 125. 12.5 12.5 12.5	
##	Penalty weight for dome-shaped selectivity 1=1/(2*sig^2)	
	50.0 50.0 200.0 200.0 200.0	
##		##
		**
		##
##		## ##
##		##
##	nits #number of surveys 2	
##	priors 0=uniform density 1=normal density	
	1 1	

	0.274
	0.274
##	
##	OTHER MISCELLANEOUS CONTROLS ##
0	## 1 verbose ADMB output (0=off, 1=on)
1	<pre>## 2 recruitment model (1=beverton-holt, 2=ricker)</pre>
0.100	## 3 std in observed catches in first phase.
0.0707	## 4 std in observed catches in last phase.
0	## 5 Assume unfished in first year (0=FALSE, 1=TRUE)
0.02	## 6 Minimum proportion to consider in age-proportions for dmvlogisti
0.20	## 7 Mean fishing mortality for regularizing the estimates of Ft
0.01	## 8 std in mean fishing mortality in first phase
2.00	## 9 std in mean fishing mortality in last phase
3	<pre>## 10 phase for estimating m_deviations (use -1 to turn off mdevs)</pre>
0.1	## 11 std in deviations for natural mortality
12 ## 12	number of estimated nodes for deviations in natural mortality
1.00	## 13 fraction of total mortality that takes place prior to spawning

CENTRAL COAST

	1954 24,616 0,000 0,000 0 0
#NB The data herein were taken from qci2010_final.dat for the HCAM model.	1954 24.818 0.000 0.000 0 0
##	
##Model Dimensions	1956 43.627 0.000 0.000 0 0
1951 #first year of data	1957 23.261 0.000 0.000 0 0
2011 #last year of data	1958 9.849 0.000 0.000 0 0
2 #age of youngest age class	1959 27.870 0.000 0.000 0 0
10 #age of plus group	1960 4.037 0.000 0.000 0 0
5 #number of gears (ngear)	1961 31.704 0.000 0.000 0 0
## flags for fishery (1) or survey (0) in ngears	1962 15.709 0.000 0.000 0 0
#1 1 1 0 0	1963 44.054 0.000 0.000 0 0
0.00065774 0.90120814 0.09813412 0 0	1964 31.895 0.000 0.000 0 0
##	1965 15.670 0.000 0.000 0 0
##	1966 37.482 0.000 0.000 0 0
#Age-schedule and population parameters	1967 21.890 0.000 0.000 0 0
#natural mortality rate (m)	1968 1.528 0.000 0.000 0 0
0.334	1969 0.000 0.000 0.000 0 0
<pre>#growth parameters (linf,k,to) (from fishbase)</pre>	1970 0.209 0.000 0.000 0 0
27.0, 0.48, 0	1971 3.614 0.000 0.000 0 0
#length-weight allometry (a,b)	1972 0.388 8.367 0.137 0 0
4.5e-6, 3.1270	1973 0.035 6.653 1.112 0 0
<pre>#maturity at age (am=log(3)/k) & gm=std for logistic</pre>	1974 0.000 3.621 5.267 0 0
2.055, 0.05	1975 0.000 3.343 5.395 0 0
##	1976 0.000 6.198 6.213 0 0
#Time series data	1977 0.320 3.881 6.904 0 0
#lime series data #Dbserved catch (1951-2010, 1000s metric t)	1978 0.046 4.723 9.277 0 0
Wear PI P2 P3 S1 S2	1979 0.000 0.005 0.000 0 0
1951 42.458 0.000 0.000 0 0	1980 0.010 0.000 0.528 0 0
1952 33.195 0.000 0.000 0 0	1981 0.000 0.269 2.304 0 0
1953 0.768 0.000 0.000 0 0	1982 0.041 2.258 4.071 0 0

1	
1983 0.000 2.061 3.579 0 0	
1984 0.000 3.588 3.582 0 0	
1985 0.000 2.915 2.294 0 0	
1986 0.038 2.173 1.176 0 0	
1987 0.000 2.695 0.920 0 0	
1988 0.028 3.529 0.970 0 0	
1989 0.000 6.531 2.911 0 0	
1990 0.000 5.305 3.046 0 0	
1991 0.000 7.097 1.806 0 0	
1992 0.088 7.163 1.111 0 0	
1993 0.000 8.478 2.038 0 0	
1994 0.000 9.757 2.122 0 0	
1995 0.000 8.131 1.451 0 0	
1996 0.000 3.897 0.402 0 0	
1997 0.000 3.276 0.344 0 0	
1998 0.000 7.976 0.646 0 0	
1999 0.000 6.013 1.511 0 0	
2000 0.000 6.394 0.972 0 0	
2001 0.000 5.613 0.517 0 0	
2002 0.000 2.894 0.399 0 0	
2003 0.000 2.299 0.289 0 0	
2004 0.000 2.988 0.000 0 0	
2005 0.000 3.778 0.000 0 0	
2006 0.000 3.072 0.000 0 0	
2007 0.000 0.398 0.000 0 0	
2008 0.000 0.000 0.000 0 0	
2009 0.000 0.000 0.000 0 0	
2010 0.000 0.000 0.000 0 0	
2011 0.000 0.000 0.000 0 0	
	(++) 1070 0000
<pre>#Relative Abundance index from fisheries indepe #nit</pre>	ndent Survey (11) 1970-2008
#61	
#81 2	
_	
#nit_nobs	
#nit_nobs 37 24	
#nit_nobs 37 24 #survey type	
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num</pre>	
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioma </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning biome 3 3</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bid 3 3 #iyr it gear wt survey timing</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioma 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1952 10.295 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bid a 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1952 10.295 4 1 1 1953 18.237 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning biome 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1952 10.295 4 1 1 1953 18.237 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 11 1952 10.295 4 1 1 1954 13.967 4 1 1 1955 13.564 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1955 15.390 4 1 1 1955 18.237 4 1 1 1955 13.564 4 1 1 1955 13.564 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bid 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1956 13.564 4 1 1 1956 6.626 4 1 1 1956 7 4.607 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 11 1952 10.295 4 1 1 1955 13.564 4 1 1 1956 6.626 4 1 1 1957 4.607 4 1 1 1958 3.549 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1956 6.626 4 1 1 1956 6.626 4 1 1 1958 3.549 4 1 1 1958 3.549 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 11 1952 10.295 4 1 1 1955 13.564 4 1 1 1956 6.626 4 1 1 1957 4.607 4 1 1 1958 3.549 4 1 1</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1952 10.295 4 1 1 1955 13.564 4 1 1 1955 13.564 4 1 1 1956 6.626 4 1 1 1957 3.604 4 1 1 1958 3.549 4 1 1 1956 3.504 4 1 1 1960 12.615 4 1 1 1961 4.265 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bid 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1955 13.564 4 1 1 1957 4.607 4 1 1 1958 3.504 9 4 1 1958 3.504 9 4 1 1960 12.615 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1952 10.295 4 1 1 1955 13.564 4 1 1 1955 13.564 4 1 1 1956 6.626 4 1 1 1957 3.604 4 1 1 1958 3.549 4 1 1 1956 3.504 4 1 1 1960 12.615 4 1 1 1961 4.265 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1955 18.237 4 1 1 1956 13.564 4 1 1 1956 6.626 4 1 1 1956 3.649 4 1 1 1956 3.649 4 1 1 1959 3.904 4 1 1 1960 12.615 4 1 1 1961 4.265 4 1 1 1962 11.948 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bid a 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1955 13.564 4 1 1 1956 6.626 4 1 1 1957 4.607 4 1 1 1958 3.549 4 1 1 1961 12.615 4 1 1 1961 12.615 4 1 1 1963 6.485 4 1 1 1963 6.485 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1952 10.295 4 1 1 1954 13.667 4 1 1 1956 3.564 4 1 1 1957 4.607 4 1 1958 3.549 4 1 1 1956 3.549 4 1 1 1960 12.615 4 1 1 1962 11.948 4 1 1 1963 6.485 4 1 1 1964 6.464 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1952 10.295 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1956 6.626 4 1 1 1956 6.626 4 1 1 1956 3.549 4 1 1 1959 3.904 4 1 1 1960 12.615 4 1 1 1961 2.615 4 1 1 1963 6.485 4 1 1 1965 2.097 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bid 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1955 13.564 4 1 1 1956 6.626 4 1 1 1957 4.607 4 1 1 1958 3.549 4 1 1 1966 12.615 4 1 1 1961 4.265 4 1 1 1963 6.485 4 1 1 1964 6.464 4 1 1 1966 1.863 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1952 10.295 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1956 6.626 4 1 1 1957 3.504 4 1 1 1960 12.615 4 1 1 1960 12.615 4 1 1 1962 11.948 4 1 1 1966 6.484 4 1 1 1965 2.097 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1967 5.434 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1952 10.295 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1956 6.626 4 1 1 1956 6.626 4 1 1 1956 3.549 4 1 1 1956 3.549 4 1 1 1956 3.549 4 1 1 1966 12.615 4 1 1 1963 6.485 4 1 1 1965 2.097 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1966 5.790 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1955 13.564 4 1 1 1955 13.564 4 1 1 1958 3.549 4 1 1 1958 3.549 4 1 1 1966 12.615 4 1 1 1962 11.948 4 1 1 1963 6.485 4 1 1 1964 6.464 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1966 1.837 4 1 1 1969 1.837 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1952 10.295 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1955 3.564 4 1 1 1956 3.564 4 1 1 1958 3.549 4 1 1 1968 3.549 4 1 1 1960 12.615 4 1 1 1962 11.948 4 1 1 1965 2.097 4 1 1965 2.097 4 1 1966 5.790 4 1 1 1968 5.790 4 1 1 1969 1.837 4 1 1000 1.858 4 1 1000 1.858 4 1 1000 1.858 4 1 1000 1.858 4 1 1000 1.858 4 1 1000 1.858 4 1000 1.858 4 1000 1.858 4 1000 1.858 4 1000 1.858 4 1000 1.858 4 1000 1.858 4 1000 1.858 4 1000 1.8</pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bid ## 3 = survey is proportional to spawning bions 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1953 18.237 4 1 1 1953 18.237 4 1 1 1955 13.564 4 1 1 1956 3.569 4 1 1 1958 3.549 4 1 1 1958 3.549 4 1 1 1965 2.615 4 1 1 1962 11.948 4 1 1 1963 6.485 4 1 1 1964 1.4265 4 1 1 1965 2.097 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1970 8.230 4 1 1 1971 4.156 4 1 1 1971 4.156 4 1 1 1972 3.572 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1 1952 10.295 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1 1956 6.626 4 1 1 1956 6.626 4 1 1 1956 3.549 4 1 1 1956 3.549 4 1 1 1966 12.615 4 1 1 1963 1.265 4 1 1 1963 6.485 4 1 1 1965 2.097 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1966 1.863 4 1 1 1968 5.790 4 1 1 1969 1.837 4 1 1 1968 5.790 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1969 1.837 4 1 1 1961 1.863 4 1 1 1965 1.900 4 1 1 1967 4.604 4 1 1 1968 5.790 4 1 1 1969 1.837 4 1 1 1967 1.837 4 1 1 1970 8.230 4 1 1 1971 4.156 4 1 1 </pre>	mass
<pre>#nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable num ## 2 = survey is proportional to vulnerable bic ## 3 = survey is proportional to spawning bioms 3 3 #iyr it gear wt survey timing 1951 15.390 4 1 1952 10.295 4 1 1 1953 18.237 4 1 1 1954 13.967 4 1 1955 3.564 4 1 1 1956 3.549 4 1 1 1958 3.549 4 1 1 1966 12.615 4 1 1 1963 1.4265 4 1 1 1963 6.485 4 1 1 1964 6.464 4 1 1 1965 2.097 4 1 1966 5.790 4 1 1 1966 1.863 4 1 1970 8.230 4 1 1 1970 8.230 4 1 1 1971 4.156 4 1 1971 4.156 4 1 1973 12.434 4 1 1</pre>	mass

1976	2	163	637	2234	1132	912	246	80	13	1
1977	2	18	492	587	818	408	221	51	10	1
1978	2	3	356	212	278	322	151	49	15	5
1980	2	186	2305	214	266	121	76	21	13	1
1981	2	197	759	3325	408	314	146	35	19	6
1982	2	59	548	376	2112	182	160	51	17	0
1983	2	29	381	840	589	3109	274	169	40	11
1984	2	274	460	637	1143	1016	2563	142	52	6
1985	2	149	2052	410	457	698	638		24	7
1986	2	240	972	2378	516	384	404	367	697	25
1987	2	256	1169	744	1626	289	230	294	235	275
1988	2	59	3528	606	326	370	87	76	78	44
1989	2	72	260	4300	517	202	158	42	45	36
1990	2	66	383	346	4973	511		202	51	28
1991	2	144	1337	480	440	3947	453	166	105	23
1992	2	146	4241	828	199	250	1362	155	44	34
1993	2	252	586	5608	848	177	225	916	98	28
1994	2	85	1538	620	3888	549	148	199	257	22
1995	2	74	581	2250	894	4604	609	192	220	155
1996	2	667	1114	323	926	388	1698	325	83	43
1997	2	146	3892	1161	249	422	274	583	106	27
1998	2	34	2393	2793	553	155	202	198	192	41
1999	2	39	440	2141	1709	326	81	106	97	55
2000	2	16	865	490	1572	1186	263	53	41	26
2001	2	112	340	1194	517	1173	831	181	38	15
2001	2	269	1851	579	971	338		475	78	13
2002	2	200	2144	1138	365	400	183	317	120	24
2003	2	37	2144		542	112	147	75	70	17
2005	2	42	2311	1037	2101	566	125	112	60	30
2006	2	53	702		585	967	199	44	31	3
2007	2	32	700	444	739	190	185	37	10	1
2008	2	144	146	659	184	246	44	43	8	1
2009	2	60	2059	308	238	67	63	8	10	2
2010	2	41	387	1597	133	189	51	52	2	6
2011	2	125	1359	426	671	86	64	17	17	3
1973	3	0	4	28	43	21	2	1	0	0
1974	3	0	2	106	184	116	58	8	0	0
1975	3	0	16	99	171	59	21	9	0	0
1976	3	0	10	230	364	431	144	37	5	1
1977	3	0	5	59	161	143	61	18	6	0
1978	3	0	7	74	277	345	149	30	3	1
1980	3	0	6	1	39	24	21	13	7	0
1981	3	4	22	722	194	213	153	74	27	7
1982	3	0	31	75	944	84	71	28	8	1
1983	3	ŏ	9	124	224	1177	87	67	11	4
1984	3	ŏ	3	34	141	190	655	51	12	6
1985	3	0	43	84	137	303		558	18	13
1985	3 3	0	43 18	04 248	126	101	349 166	134	219	6
1987	3	0	8	76	440	115	77	97	80	84
1988	3	0	23	56	80	144	72	37	51	46
1989	3	0	2	180	159	107	91	33	23	16
1990	3	0	0	8	529	133	50	62	9	12
1991	3	0	3	13	34	377	51	38	19	5
1992	3	0	66	87	61	101	659	98	35	10
1993	3	0	2	342	112	44	45	211	17	8
1994	3	0	30	94	1287	237	69	83	135	12
1995	3	0	3	112	101	823	135	23	29	37
1996	3	0	2	8	102	65	306	59	12	7
1997	3	0	7	15	32	117	99	197	37	7
1998	3	ŏ	5	149	142	90	183	164	217	62
1999	3	0	1	123	382	151	51	44	46	35
2000	3	0	3	123	277	285	71	11	-10	14
2000	3	0	0	39	46	422	225	57	9	0
2001	3 3	0	3	39	105	422	225	57 83	9	1
2002	3 3	0	3 4	33	105	238	104	03 306	114	20
			4	33	103	230	104	300	114	20
#n_wt	_01	15								

61								
#Mean weight								
#A\$yr V			3 V4					
1951 0.0480 1952 0.0466								
1953 0.0358								
1954 0.0260								
1955 0.0380								
1956 0.0406								
1957 0.0400								
1958 0.0374								
1959 0.0391 1960 0.0447								
1960 0.0447								
1961 0.0379								
1963 0.0598								
1964 0.0457	0.0858	0.1080	0.1271	0.1282	0.1540	0.1545	0.1352	0.1800
1965 0.0525	0.1037	0.1271	0.1474	0.1675	0.1757	0.2420	0.1352	0.1800
1966 0.0426								
1967 0.0426								
1968 0.0426								
1969 0.0426								
1970 0.0559 1971 0.0502								
1971 0.0502								
1972 0.0003								
1974 0.0492								
1975 0.0448								
1976 0.0445								
1977 0.0598								
1978 0.0490								
1979 0.0832								
1980 0.0504								
1981 0.0452 1982 0.0521								
1982 0.0521								
1984 0.0590								
1985 0.0620								
1986 0.0623	0.0989	0.1268	0.1422	0.1551	0.1667	0.1734	0.1802	0.1992
1987 0.0594								
1988 0.0541								
1989 0.0563								
1990 0.0572								
1991 0.0577 1992 0.0500								
1992 0.0500								
1994 0.0476								
1995 0.0478								
1996 0.0607								
1997 0.0456	0.0761	0.0888	0.1054	0.1320	0.1432	0.1493	0.1596	0.1607
1998 0.0415								
1999 0.0538								
2000 0.0514								
2001 0.0445 2002 0.0512								
2002 0.0512 2003 0.0478								
2003 0.0478								
2004 0.0481 2005 0.0378								
2006 0.0388								
2007 0.0410								
2008 0.0430	0.0606	0.0757	0.0873	0.1034	0.1153	0.1260	0.1344	0.1670
2009 0.0405								
2010 0.0481								
2011 0.0325	0.0601	0.0724	0.0912	0.1000	0.1177	0.1185	0.1342	0.1563
#eof 999								
333								

			SOG HERI	RING CONTR													
	(CONTROLS	FOR EST	TIMATED PA	RAMETERS												
Prior descriptions:																	
-0 uniform (0,0) -1 normal (p1=mu,p2=sig)																	
				(p1=log(mu)											
				lpha,p2=be													
		0		lpha,p2=be													
## npar																	
	lb	ub	nhz	prior	n1	n2	parameter name										
7.60	-5.0	15	4	0			#log_ro										
0.67 -0.7985077 7.40	0.2	1.0	4	3 1 0	10.0	4.925373	3 #steepness										
-0.7985077	-5.0	5.0	3	1		5077 0.4											
			1	0		15											
7.20			1	0		15	#log_recini										
0.3043478)559 #rho										
0.8695652	0.01	5.0	3	4	25.0	28.75 #1	appa (precisio										
			LECIIVI	IY PARAMEI	ERS												
DTTONG FOD			u naram	otore													
OPTIONS FOR	etic co			erers													
1) logi	 logistic selectivity parameters selectivity coefficients 																
1) logi 2) sele	ectivity	coeffic		th age-nod	es		 a constant cubic spline with age-nodes 										
 1) logi 2) sele 3) a co 	ectivity	coeffic cubic sp	line wit														
1) logi 2) sele 3) a cc 4) a ti	onstant o me vary:	coeffic cubic sp ing cubi	line wit c spline	th age-nod e with age ine with a	-nodes	r nodes.											
 1) logi 2) sele 3) a co 4) a ti 5) a ti 	ectivity onstant o ime vary: ime vary:	coeffic cubic sp ing cubi ing bicu	line wit c spline bic spl:	e with age	-nodes ge & yea		to -1)										
1) logi 2) sele 3) a cc 4) a ti 5) a ti 6) fixe	ectivity onstant of ime vary: ime vary: ed logist	coeffic cubic sp ing cubi ing bicu	line wit c spline bic spl: isel_t	e with age ine with a ype=6, and	-nodes ge & yea		to -1)										
 logi sele a co a ti a ti fixe fixe logi 	ectivity onstant of ime vary: ime vary: ed logist istic fu	coeffic cubic sp ing cubi ing bicu tic (set nction o	line wit c spline bic spl: isel_t f body w	e with age ine with a ype=6, and	-nodes ge & yea		to -1)										
1) logi 2) sele 3) a cc 4) a ti 5) a ti 6) fixe 7) logi sig=0.0	ectivity onstant of ime vary: ime vary: ed logist istic fun 05 0.10 (coeffic cubic sp ing cubi ing bicu tic (set nction o 0.15 0.2	line with c spling bic spling isel_ty f body to 0 0.30 (e with age ine with a ype=6, and weight.	-nodes ge & yea		to -1)										
1) logi 2) sele 3) a cc 4) a ti 5) a ti 6) fixe 7) logi sig=0.0	ectivity onstant (ime vary) ime vary) ed logist lstic fun 05 0.10 (). 50.0 2	coeffic cubic sp ing cubi ing bicu tic (set nction o 0.15 0.2 22.2 12.	line wit c spling bic spl: isel_t f body t 0 0.30 (5 5.56 (e with age ine with a ype=6, and weight. 0.40 0.50	-nodes ge & yea		to -1)										
1) logi 2) sele 3) a cc 4) a ti 5) a ti 6) fixe 7) logi sig=0.0 wt =200	ectivity onstant (ime vary) ime vary) ed logist lstic fun 05 0.10 (). 50.0 2	coeffic cubic sp ing cubi ing bicu tic (set nction o 0.15 0.2 22.2 12.	line wit c spling bic spl: isel_t f body t 0 0.30 (5 5.56 (e with age ine with a ype=6, and weight. 0.40 0.50	-nodes ge & yea		to -1)										
 logi sele a co a ti a ti fixe fixe logi sig=0.0 wt =200 Gear 1:3 fis 	ectivity onstant of ime vary: ad logist istic fur 05 0.10 (0. 50.0 2 shery: (coeffic cubic sp ing cubi ing bicu tic (set nction o 0.15 0.2 22.2 12. Gear 4-5 8	line wit c spline bic spl: isel_t f body t 0 0.30 (5 5.56 3 survey 6	e with age ine with a ype=6, and weight. 0.40 0.50	-nodes ge & yea		to -1)										

#	STD	\mathtt{at}	50%	select	tivity	(10	gistic)	
	0.2	25		0.25	0.	15	0.05	0.05

No. of age nodes for each gear (0 to ignore).

5 5 5 0 0 ## No. of year nodes for each gear (0 to ignore). 12 3 10 0 0 ## Estimation phase 2 2 2 -1 -1 ## Penalty weight for 2nd differences w=1/(2*sig^2) 125. 125. 12.5 12.5 12.5 ## Penalty weight for dome-shaped selectivity 1=1/(2*sig^2) 50.0 50.0 200.0 200.0 200.0 ## ______ ## ## _____ Priors for Survey q ## ## ## ______ ## ## nits #number of surveys 2 ## priors O=uniform density 1=normal density 1 1 ## prior log(mean) -0.569 -0.569 ## prior sd 0.274 0.274 ## _____ ## ## _____OTHER MISCELLANEOUS CONTROLS______ ## 0 ## 1 verbose ADMB output (0=off, 1=on) 1 ## 2 recruitment model (1=beverton-holt, 2=ricker) 0.100 ## 3 std in observed catches in first phase. 0.0707 ## 4 std in observed catches in last phase. 0 ## 5 Assume unfished in first year (0=FALSE, 1=TRUE) 0.02 ## 6 Minimum proportion to consider in age-proportions for dmvlogistic 0.20 ## 7 Mean fishing mortality for regularizing the estimates of Ft 0.01 ## 8 std in mean fishing mortality in first phase 2.00 ## 9 std in mean fishing mortality in last phase 3 ## 10 phase for estimating m_deviations (use -1 to turn off mdevs) ## 11 std in deviations for natural mortality 0.1 12 ## 12 number of estimated nodes for deviations in natural mortality ## 13 fraction of total mortality that takes place prior to spawning 1.00 ## 14 switch for age-composition likelihood (1=dmvlogistic,2=dmultinom) 1 ## ______

eofc 999

STRAIT OF GEORGIA

#NB The mean-wt data herein were corrected on June 3, 2012.
##
##Model Dimensions
1951 #first year of data
2011 #last year of data
2 #age of youngest age class
10 #age of plus group
5 #number of gears (ngear)
flags for fishery (1) or survey (0) in ngears
#1 1 1 0 0
0.07449536 0.42846497 0.49703967 0 0
##0.0686819 0.4137555 0.5175626 0.0000000 0.0000000

______ ## ______ #Age-schedule and population parameters #natural mortality rate (m) 0.334 #growth parameters (linf,k,to) (from fishbase) 27.0, 0.48, 0 #length-weight allometry (a,b) 4.5e-6, 3.1270 #maturity at age (am=log(3)/k) & gm=std for logistic 2.055, 0.05

#Time	e series	s data					
#Obs	erved ca	atch (19	951-2010	, 1	000s	metr	ic
	p1 p2 p3						
	43.798	0.000	0.000	0	0		
	45.846	0.000	0.000	0	0		
1953	8.412	0.000	0.000	0	0		
	65.767	0.000	0.000	0	0 0		
1955 1956	68.641 72.062	0.000	0.000	0	0		
1957	59.608	0.000	0.000	0	0		
1958	20.628	0.000	0.000	õ	õ		
	49.644	0.000	0.381	0	0		
	68.037	0.000	0.000	0	0		
1961	46.215	0.000	0.000	0	0		
1962	65.303	0.000	0.000	0	0		
1963	68.847	0.000	0.000	0	0		
1964	76.881	0.000	0.000	0	0		
1965	47.819	0.000	0.000	0	0		
1966	33.333	0.000	0.000	0	0		
1967	31.043	0.000	0.000	0	0		
1968 1969	1.891 0.194	0.000	0.000	0 0	0 0		
1909	0.194	0.000	0.000	0	0		
1971	1.610	0.000	0.022	ō	õ		
1972	2.434	5.921	0.456	õ	õ		
1973	3.980	1.604	2.064	0	0		
1974	0.479	0.425	3.095	0	0		
1975	0.378	0.469	5.331	0	0		
1976	5.061	0.202	6.975	0	0		
1977	5.676	4.098	7.736	0	0		
1978	12.963	3.723	7.316	0	0		
1979	13.513	0.000	6.825	0	0		
1980	2.470	0.169	3.180	0	0		
1981	4.904	2.081	5.067	0	0		
1982 1983	3.937 0.824	3.312	5.583 8.613	0 0	0 0		
1984	0.824	7.780 4.126	6.039	0	0		
1985	0.772	2.726	3.495	0	0		
1986	0.432	0.162	0.000	õ	õ		
1987	0.244	3.111	5.998	0	0		
1988	0.756	1.471	5.988	0	0		
1989	1.033	1.417	5.919	0	0		
1990	0.233	0.000	7.886	0	0		
1991	0.562	1.131	9.410	0	0		
1992	0.939	3.610	8.870	0	0		
1993	0.617	4.391	8.733	0	0		
1994	0.942	5.134	11.572	0	0		
1995	0.641	4.359	8.190	0	0		
1996	0.541	7.338	6.233	0	0		
1997 1998	0.402 0.954	9.274 5.755	6.148 6.895	0	0 0		
1999	1.471	4.976	6.837	0	0		
2000	1.156	6.455	7.593	ō	õ		
2001	1.424	7.274	7.682	õ	õ		
2002	1.328	9.299	7.986	0	0		
2003	1.696	10.670	8.010	õ	õ		
2004	1.356	7.019	5.226	0	0		
2005	1.332	7.928	8.954	0	0		
2006	1.371	9.308	7.277	0	0		
2007	0.672	3.865	5.285	0	0		
2008		7863 6.0			75221	0	0
2009	0.709	5.685	3.937	0	0		
2010	0.595	4.540	3.244	0	0		
2011	0.713	0.000	4.415	0	0		

#nit											
#61 2											
∠ #nit_n	obs										
37 24	.005										
	y type										
						vulnera					
						vulnera					
## 3 =	survey	is	propor	tional	to	spawnin	g biomas	s (e.	g., he	erring	spawn survey
33						_					
#iyr 1951	66.143			vey ti	miné	5					
	72.376										
	111.307										
	82.141										
	69.854										
	25.667										
	24.126										
	16.911 47.864										
	55.709										
	44.326										
1962	35.574	4	1 1								
	37.381										
	35.954										
	38.390										
	7.211 9.647										
1967	9.647	4	1 1								
	14.039	4	1 1								
	34.163										
	38.921										
	25.139										
	16.191										
	40.571										
	70.211 60.642										
	78.562										
	102.115										
	64.266										
	85.991										
	55.121										
1982	100.987 64.575	4	1 1								
	26.227										
	25.247										
1986	41.575	4	1 1								
1987	41.737 24.976	4	1 1								
	66.052										
	67.152										
	45.830 82.714										
1993	90.198	5	1.166	6 1							
	67.144										
1995	64.899	5	1.166	6 1							
1996	71.326	5	1.166	66 1							
	58.232										
	74.616										
	85.095 72.688										
	100.248										
2002	117.864	5	1.166	56 1 56 1							
2003	141.651	5	1.166	6 1							
	114.352										

1 57 156 203 71 18 2 0 0 0

2005	1	22	72	36	28	9	2	0	0	0	
2006	1	29	39	47	26	29	6	2	1	0	
2007	1	39	17	3	1	2	0	0	0	0	
2008	1	231	94	458	118	24	5	1	1	0	
2009	1	4	172	49	5	3	0	0	0	0	
2010	1	34	19	249	20	18	7	1	2	0	
2011 1972	1 2	335 564	371 2514	50 2354	19	1	1 77	0 10	0	0	
	2		1306		1282 1157	260					
1973 1974	2	51 144	533	1510 155	37	588 13	77	11	1	0	
1974	2	288	3117	1506	417	180	85	25	10	0	
1976	2	183	505	1002	395	97	41	23	6	2	
1977	2	100	1717	675	506	133	37	19	6	5	
1978	2	30	1253	1545	423	277	53	11	1	2	
1979	2	92	765	1121	898	270	126	38	15	5	
1980	2	350	3800	1344	1341	694	174	93	22	7	
1981	2	1230	4902	3605	1200	1002	398	87	31	6	
1982	2	337	1852	1334	1124	254	273	125	29	2	
1983	2	434	4122	3745	2285	1428	411	385	161	28	
1984	2		2784	2099	936	522	244	82	35	10	
1985	2	2024	3592	1519	628	268	104	46	5	1	
1986	2	889	3799	1477	409	128	53	9	5	0	
1987	2	781	2623	2945	1201	276	86	29	10	4	
1988	2		3848	924	935	250	63	13	4	0	
1989	2	651	1177	3491	610		104	20	2	1	
1990	2		3337	652	1159	182	105	23	4	1	
1991 1992	2 2	542 257	1173 2762	2123 691	476 843	775 176	116 260	75 30	10 16	1	
1992	2		2096	1737	379	326	200	30 84	8	2	
1994	2	279	2518	1594	1120	238	168	42	9	0	
1995	2	580	1251	2048	1005	627	155	62	20	6	
1996	2	1059		1160	1192	481	280	57	19	6	
1997	2	618		1671	433	464	184	107	9	3	
1998	2	383	4176	2784	1049	228	171	64	17	2	
1999	2	268	1054	1716	792	274	75	28	7	2	
2000	2	859	2759	1385	1591	627	149	21	15	1	
2001	2	458	2981	1939	603	559	181	45	7	2	
2002	2	490	3042	1535	673	140	116	22	4	0	
2003	2	330	3994	3368	1099	322	81	35	9	0	
2004	2	251	1353	1982	972	237	74	14	9	1	
2005	2	353	1420	1468	1183	387	98	32	11	4	
2006	2	968	1257	1134	754	448	103	33	8	1	
2007	2	107	2951	1666	749	346	188	42	10	1	
2008 2009	2 2	160	582 3164	3191	717	259	105	41 25	8	1	
2009	2	20 583		665 3843	606 297	180 311	60 73	25 26	10 8	1 4	
#2011			5 3193								
2011	2	337	3808		1126	115	61	21	3	1	
1972	3	46	118	468	286	68	15	2	1	0	
1973	3	0	39	68	84	25	7	1	0	0	
1974	3	0	45	390	283	158	39	9	0	0	
1975	3	0	8	76	53	21	5	1	0	0	
1976	3	0	5	322	342	89	22	5	1	0	
1977	3	0	56	480	779	270	62	9	2	0	
1978	3	0	2	110	165	195	59	8	2	0	
1979	3	0	6	121	286	72	29	8	0	1	
1980	3	0	4	26	117	90	23	2	1	0	
1981	3	1	25	207	262	426	183	32	3	1	
1982	3	0	27	94	180	89	123	69	5	2	
1983	3	0	2	113	120	96	38	30	7	0	
1984	3	0	54	229	234	144	71	12	5	7	
1985	3	1	34	286	356	259	101 163	41	9	9	
1987 1988	3 3	0	48 82	684 132	642 426	317 179	47	50 20	11 3	5 2	
1988	3	0	82 13	331	426 181	213	47 64	18	3	2	
1989	3	0	115	160	771	167	133	20	4	1	
1000	0	0	110	100		101	100	20	-1	-	

129

2011/136

1991 3 0 14 306 187 436 79 51 13 1 1992 3 0 74 174 510 137 221 31 17 5 1993 3 0 104 363 154 196 37 49 2 2 1994 3 1 45 300 537 183 95 30 8 2 1995 3 0 21 243 341 242 52 22 4 2 0 21 86 247 119 56 10 4 0 1996 3 0 30 113 104 202 108 54 16 6 1997 3 1998 3 0 45 450 438 185 191 57 26 5 1999 3 0 18 245 307 176 56 28 5 1 2000 3 0 13 170 530 330 107 25 4 0 2001 3 0 31 190 263 345 154 34 7 2 0 45 206 285 149 178 45 5 2 2002 3 2003 3 0 30 283 439 305 137 83 28 3 2004 3 0 25 278 451 276 116 25 13 1 2005 3 0 5 91 352 207 80 28 9 1 2006 3 0 6 108 265 268 124 30 8 0 2007 3 0 140 384 760 744 512 134 36 6 3 1 32 841 458 309 153 54 17 1 2008 2009 3 0 42 63 466 166 99 29 11 1 3 0 1 222 67 428 114 60 23 7 2010 2011 3 0 103 77 1170 205 260 60 18 8 #n_wt_obs 61 #Mean weight-at-age in kilograms (interpolated: from HCAM.rep) V1 V2 V3 V4 V5 V6 V7 #A\$vr V8 1951 0.0417 0.0897 0.1126 0.1376 0.1586 0.1706 0.2001 0.1865 0.1865 1952 0.0432 0.0896 0.1133 0.1385 0.1599 0.1756 0.1677 0.1780 0.1865 1953 0.0329 0.0763 0.0958 0.1255 0.1498 0.1599 0.1335 0.1784 0.1865 1954 0.0447 0.0847 0.1036 0.1278 0.1571 0.1721 0.1751 0.1860 0.1865 1955 0.0499 0.0893 0.1043 0.1262 0.1448 0.1738 0.1720 0.1784 0.1865 1956 0.0471 0.0845 0.1060 0.1205 0.1410 0.1587 0.1785 0.1733 0.1865 1957 0.0481 0.0828 0.1089 0.1371 0.1506 0.1640 0.2100 0.1784 0.1865 1958 0.0438 0.0763 0.1081 0.1421 0.1535 0.1647 0.1762 0.1885 0.1865 1959 0.0502 0.0836 0.0993 0.1314 0.1596 0.1677 0.1523 0.1580 0.1865 1960 0.0530 0.0902 0.1125 0.1279 0.1597 0.1290 0.1770 0.1784 0.1865 1961 0.0576 0.0786 0.1111 0.1170 0.1372 0.1650 0.1720 0.1784 0.1865 1962 0.0501 0.0880 0.0993 0.1366 0.1449 0.1530 0.2020 0.1784 0.1865 1963 0.0477 0.0832 0.1049 0.1116 0.1494 0.1778 0.1790 0.1784 0.1865 1964 0.0576 0.0993 0.1159 0.1378 0.1586 0.1850 0.1400 0.1784 0.1865 1965 0.0611 0.1051 0.1224 0.1451 0.1452 0.1770 0.1440 0.1784 0.1865 1966 0.0520 0.1067 0.1487 0.1681 0.1783 0.1888 0.1720 0.1784 0.1865 1967 0.0488 0.0880 0.1104 0.1332 0.1530 0.1677 0.1720 0.1784 0.1865 1968 0.0488 0.0880 0.1104 0.1332 0.1530 0.1677 0.1720 0.1784 0.1865 1969 0.0488 0.0880 0.1104 0.1332 0.1530 0.1677 0.1720 0.1784 0.1865 1970 0.0578 0.0888 0.1175 0.1399 0.1608 0.1733 0.1871 0.1927 0.2096 1971 0.0553 0.1056 0.1319 0.1537 0.1742 0.1895 0.1690 0.1927 0.2096 1972 0.0586 0.0897 0.1290 0.1478 0.1671 0.1778 0.1973 0.1850 0.2096 1973 0.0525 0.0993 0.1274 0.1588 0.1749 0.1928 0.1977 0.2010 0.2096 1974 0.0630 0.0877 0.1392 0.1653 0.2093 0.1733 0.2420 0.1927 0.2096 1975 0.0421 0.0828 0.1115 0.1423 0.1694 0.1934 0.1995 0.2122 0.2096 1976 0.0498 0.0849 0.1234 0.1455 0.1743 0.1914 0.2033 0.2248 0.2133 1977 0.0571 0.0888 0.1173 0.1389 0.1616 0.1910 0.2010 0.2027 0.2418 1978 0.0501 0.0853 0.1099 0.1321 0.1513 0.1672 0.1683 0.1999 0.2095 $1979 \hspace{0.1in} 0.0597 \hspace{0.1in} 0.0848 \hspace{0.1in} 0.1178 \hspace{0.1in} 0.1405 \hspace{0.1in} 0.1604 \hspace{0.1in} 0.1754 \hspace{0.1in} 0.1990 \hspace{0.1in} 0.2051 \hspace{0.1in} 0.2174$ 1980 0.0522 0.0780 0.1083 0.1352 0.1584 0.1718 0.1831 0.1984 0.2172 1981 0.0602 0.0857 0.1085 0.1348 0.1561 0.1706 0.1873 0.1802 0.2022 1982 0.0635 0.0945 0.1153 0.1292 0.1531 0.1618 0.1696 0.1688 0.1950 1983 0.0576 0.0898 0.1174 0.1349 0.1431 0.1580 0.1707 0.1851 0.1941 1984 0.0624 0.0881 0.1146 0.1388 0.1569 0.1590 0.1666 0.1762 0.2010 1985 0.0647 0.0867 0.1141 0.1345 0.1564 0.1703 0.1869 0.1926 0.2320 1986 0.0670 0.0895 0.1108 0.1324 0.1495 0.1700 0.1971 0.1954 0.2096 1987 0 0628 0 0874 0 1056 0 1226 0 1366 0 1522 0 1660 0 1550 0 1823 1988 0.0609 0.0900 0.1138 0.1302 0.1423 0.1547 0.1642 0.2006 0.2096 1989 0.0644 0.0841 0.1068 0.1273 0.1390 0.1474 0.1561 0.1580 0.1820 1990 0.0604 0.0851 0.1060 0.1283 0.1468 0.1572 0.1609 0.1453 0.2260

1991 0.0642 0.0894 0.1101 0.1280 0.1426 0.1553 0.1634 0.1508 0.1850

V9

#1	ŧ								#1
##				SOG HER	RING CONTR				
##		(CONTROLS	FOR ES	FIMATED PA	RAMETERS	3		_ ##
##	Prior descr	iptions:	:						
#				form (O					
#					=mu,p2=sig				
#					(p1=log(mu		g)		
#					lpha,p2=be				
# #					lpha,p2=be				##
	## npar								
	ival	1b	ub	phz	prior	p1		parameter nam	
#	7.20								- ##
		-5.0						#log_ro 73 #steepnes	_
	-0.7985077						4.9253 35077 0.2		s
		-5.0			0	-5.0		#10g_avgrec	
					0	-5.0		#log_recinit	
	5.80 0.3043478	0.001	0.999	3	3			.0559 #rho	
	0.8695652	0.01	5.0	3	4			#kappa (precisi	on)
#									
									-
#									_ ##
#			SE	LECTIVI	TY PARAMET	ERS			_ ##
#	OPTIONS FOR	SELECTIV	/ITY:						
#		stic sel			eters				
#		ctivity							
#					th age-nod				
#					e with age				
#					ine with a				
#					ype=6, and	estima	tion phas	e to -1)	
		stic fur			0.40 0.50				
#		50 0 1							
# #	wt =200								
# # #	wt =200 Gear 1:3 fis								
	wt =200				6				
####	wt =200 Gear 1:3 fis isel_type	hery: (Gear 4-5 8	survey 6	6				

1992 0.0598 0.0905 0.1118 0.1319 0.1494 0.1592 0.1738 0.1739 0.1563

1993 0.0579 0.0922 0.1118 0.1286 0.1411 0.1529 0.1565 0.1600 0.1475

1994 0.0522 0.0809 0.1047 0.1207 0.1350 0.1405 0.1512 0.1609 0.1563

1995 0.0612 0.0856 0.1106 0.1314 0.1446 0.1617 0.1631 0.1791 0.1753

1996 0.0619 0.0829 0.1061 0.1264 0.1457 0.1557 0.1719 0.1694 0.1830

1997 0.0497 0.0826 0.1017 0.1197 0.1368 0.1463 0.1541 0.1670 0.1817

1998 0.0504 0.0725 0.0939 0.1086 0.1194 0.1331 0.1438 0.1559 0.1485

 $1999 \hspace{0.1cm} 0.0460 \hspace{0.1cm} 0.0795 \hspace{0.1cm} 0.0991 \hspace{0.1cm} 0.1134 \hspace{0.1cm} 0.1255 \hspace{0.1cm} 0.1341 \hspace{0.1cm} 0.1434 \hspace{0.1cm} 0.1508 \hspace{0.1cm} 0.1390$

2000 0.0523 0.0724 0.0948 0.1110 0.1291 0.1387 0.1530 0.1599 0.1630

2001 0.0622 0.0853 0.0990 0.1197 0.1332 0.1483 0.1552 0.1454 0.1440

2002 0.0494 0.0793 0.0959 0.1076 0.1254 0.1324 0.1413 0.1640 0.0590

2003 0 0518 0 0772 0 0930 0 1050 0 1113 0 1282 0 1401 0 1280 0 1563

2004 0.0498 0.0729 0.0888 0.0993 0.1091 0.1125 0.1241 0.1219 0.1320

2005 0.0476 0.0741 0.0910 0.1064 0.1175 0.1257 0.1305 0.1215 0.1373

2006 0.0483 0.0714 0.0882 0.1023 0.1113 0.1208 0.1279 0.1394 0.1780

2007 0.0620 0.0753 0.0831 0.0994 0.1154 0.1230 0.1301 0.1432 0.1340

2008 0.0257 0.0658 0.0858 0.0936 0.1030 0.1105 0.1155 0.1331 0.1350

2009 0.0453 0.0644 0.0688 0.1033 0.1156 0.1251 0.1347 0.1542 0.1780

2010 0.0435 0.0580 0.0790 0.0850 0.1118 0.1189 0.1158 0.1119 0.1413

2011 0.0362 0.0686 0.0725 0.0906 0.0948 0.1083 0.1194 0.1430 0.1220

#eof

999

STD at 50% selectivity (logistic)

	0.25	0.25	0.15	0.05	0.05	
##	No. of age	nodes for	each gea	ar (O to	ignore).	
	5	5	5	0	0	
##	No. of yea	r nodes fo	r each ge	ear (O to	o ignore).	
	12	3	10	0	0	
##	Estimation	phase				
	2	2	2	-1	-1	
##	Penalty we	ight for 2	nd differ	cences w	=1/(2*sig^2)	
	125.	125.	12.5	12.5	12.5	
##	Penalty we	ight for d	ome-shape	ed select	tivity 1=1/(2*sig^2)	
	50.0	50.0	200.0 2	200.0	200.0	
##					#	#
##					#	#
##					or Survey q #	
##					#	#
##	nits #num	ber of sur	veys			
	2					
##	priors 0=u	niform den	sity	1=normal	l density	
	1 1					
##	prior log(
	-0.569 -	0.569				
##	prior sd					
	0.274 0	.274				

##	OTHER MISCELLANEOUS CONTROLS ##
0	## 1 verbose ADMB output (0=off, 1=on)
1	## 2 recruitment model (1=beverton-holt, 2=ricker)
0.100	## 3 std in observed catches in first phase.
0.0707	## 4 std in observed catches in last phase.
0	<pre>## 5 Assume unfished in first year (0=FALSE, 1=TRUE)</pre>
0.02	## 6 Minimum proportion to consider in age-proportions for dmvlogistic
0.20	## 7 Mean fishing mortality for regularizing the estimates of Ft
0.05	## 8 std in mean fishing mortality in first phase
2.00	## 9 std in mean fishing mortality in last phase
3	<pre>## 10 phase for estimating m_deviations (use -1 to turn off mdevs)</pre>
0.1	## 11 std in deviations for natural mortality
12 ## 12	number of estimated nodes for deviations in natural mortality
0.99	## 13 dfraction of total mortality that takes place prior to spawning
1 ##	<pre>## 14 switch for age-composition likelihood (1=dmvlogistic,2=dmultinom ##</pre>

eofc 999

WEST COAST OF VANCOUVER ISLAND

131

#NB The data herein were taken from sog2010_final.dat for the HCAM model.	1957 2.612 0.000 0.000 0 0
##	1958 0.556 0.000 0.000 0 0
##Model Dimensions	1959 69.223 0.000 0.000 0 0
1951 #first year of data	1960 53.911 0.000 0.000 0 0
2011 #last year of data	1961 26.435 0.000 0.000 0 0
2 #age of youngest age class	1962 23.684 0.000 0.000 0 0
10 #age of plus group	1963 18.206 0.000 0.000 0 0
5 #number of gears (ngear)	1964 21.266 0.000 0.000 0 0
<pre>## flags for fishery (1) or survey (0) in ngears</pre>	1965 16.046 0.000 0.000 0 0
0 0.828 0.172 0 0	1966 10.843 0.000 0.000 0 0
##	1967 15.145 0.000 0.000 0 0
##	1968 0.000 0.000 0.000 0 0
##	1969 0.000 0.000 0.000 0 0
#Age-schedule and population parameters	1970 0.000 0.000 0.000 0 0
<pre>#natural mortality rate (m)</pre>	1971 0.000 0.000 0.000 0 0
0.334	1972 0.000 6.894 0.000 0 0
<pre>#growth parameters (linf,k,to) (from fishbase)</pre>	1973 0.000 16.766 1.537 0 0
27.0, 0.48, 0	1974 0.000 12.394 3.940 0 0
#length-weight allometry (a,b)	1975 0.000 17.799 8.309 0 0
4.5e-6, 3.1270	1976 0.000 22.820 16.005 0 0
<pre>#maturity at age (am=log(3)/k) & gm=std for logistic</pre>	1977 0.029 17.458 12.556 0 0
2.055, 0.05	1978 2.839 5.151 14.755 0 0
##	1979 0.084 10.472 8.138 0 0
##	1980 0.000 1.682 2.300 0 0
#Time series data	1981 0.000 5.008 3.079 0 0
#Observed catch (1951-2010, metric t)	1982 0.000 2.370 3.115 0 0
#yr p1 p2 p3 survey	1983 0.000 6.141 2.434 0 0
1951 21.821 0.000 0.000 0 0	1984 0.000 5.718 0.858 0 0
1952 27.008 0.000 0.000 0 0	1985 0.000 0.177 0.000 0 0
1953 0.020 0.000 0.000 0 0	1986 0.000 0.203 0.000 0 0
1954 33.209 0.000 0.000 0 0	1987 0.000 13.463 2.471 0 0
1955 6.123 0.000 0.000 0 0	1988 0.000 8.276 1.448 0 0
1956 17.098 0.000 0.000 0 0	1989 0.000 9.774 3.515 0 0

Pacific herring

2011/136

1990 0.000 7.890 1.959 0 0 1991 0.000 6.299 2.336 0 0 1992 0.000 3.086 0.627 0 0 1993 0.000 5.612 0.000 0 0 1994 0.000 5.332 0.706 0 0 1995 0.000 1.947 0.000 0 0 1996 0.000 0.790 0.000 0 0 1997 0.000 6.656 0.000 0 0 1998 0.000 5.450 1.534 0 0 1999 0.000 3.405 0.968 0 0 2000 0.000 0.926 0.700 0 0 2001 0.000 0.000 0.000 0 0 2002 0.000 0.433 0.388 0 0 2003 0.000 2.571 0.945 0 0 2004 0.000 3.861 0.593 0 0 2005 0.000 3.373 0.896 0 0 2006 0.000 0.000 0.000 0 0 2007 0.000 0.000 0.000 0 0 2008 0.000 0.000 0.000 0 0 2009 0.000 0.000 0.000 0 0 2010 0.000 0.000 0.000 0 0 2011 0.000 0.000 0.000 0 0 # #Relative Abundance index from fisheries independent survey (it) 1970-2008 #nit 2 #nit_nobs 37 24 #survey type ## 1 = survey is proportional to vulnerable numbers ## 2 = survey is proportional to vulnerable biomass ## 3 = survey is proportional to spawning biomass (e.g., herring spawn survey) 132 33 #iyr it gear wt survey timing 1951 19.597 4 1 1 1952 13.310 4 1 1 1953 39.571 4 1 1 1954 20.648 4 1 1 1955 15.112 4 1 1 1956 27.183 4 1 1 1957 44.114 4 1 1 1958 18.986 4 1 1 1959 12.979 4 1 1 1960 6.015 4 1 1 1961 10.556 4 1 1 1962 34.470 4 1 1 1963 11.245 4 1 1 1964 22.761 4 1 1 1965 11.891 4 1 1 1966 3.722 4 1 1 1967 4.813 4 1 1 1968 11.029 4 1 1 1969 10.465 4 1 1 1970 26.912 4 1 1 1971 36.206 4 1 1 1972 41.857 4 1 1 1973 19.481 4 1 1 1974 25.540 4 1 1 1975 49.149 4 1 1 1976 64.222 4 1 1 1977 58.679 4 1 1 1978 45,607 4 1 1 1979 66.397 4 1 1 1980 62.308 4 1 1 1981 52.063 4 1 1 1982 33.047 4 1 1

		070		4 1		1							
1984													
1985				4 1		1							
1986				4 1		1							
1987	16.	858	;	4 1		1							
1988	46.	242	2	51		1							
1989	47.	718	;	5 1		1							
1990	46.	464		5 1		1							
1991	30.	456	;	5 1		1							
1992				5 1		1							
1993				5 1		1							
1994				5 1		1							
1995				5 1		1							
1996				5 1		1							
1997				51		1							
1998	41.	556	;	51		1							
1999	20.	390)	5 1		1							
2000	13.	267		5 1		1							
2001	13.	955		5 1		1							
2002				5 1		1							
2003				5 1		1							
				5 1		1							
2004													
	9.			5 1		1							
2006		705		51		1							
2007				51		1							
2008	2.	548	;	5 1		1							
2009	9.	876	;	5 1		1							
2010	2.	373		5 1		1							
2011	9.	196		5 1		1							
#													
" #Age	com	mos	itic	on dat	ta hv	vear	gear	r (aga	ae 2-	15+)			
			1010	on au	u by	your ,	geu	(ug		10.)			
#na_g 3	ear	ъ											
#na_n													
#na_n	26												
#na_n 18 40	26 .ge												
#na_n 18 40 #a_sa	26 ge												
#na_n 18 40 #a_sa 2 2 2 #a_pa	26 ge												
#na_n 18 40 #a_sa 2 2 2	26 ge												
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 #</pre>	26 .ge 10	1	ν2	V3	V4	V5	٧6	V7 V	18 119	¥10	#	Number	ared
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g</pre>	ge ge 10 ear		V2			V5 272						Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g 1951</pre>	ge ge 10 ge	1	508	1519	1666	272	58	12	1	1	0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g 1951 1952</pre>	ge ge 10 rear	1	508 97	1519 1431	1666 1224	272 1809	58 241	12 72	1 16	1 2	0 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953</pre>	ge ge 10 ear	1 1 1	508 97 465	1519 1431 2220	1666 1224 1086	272 1809 65	58 241 19	12 72 2	1 16 0	1 2 0	0 0 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954</pre>	ge ge 10 ear	1 1 1 1	508 97 465 163	1519 1431 2220 3852	1666 1224 1086 1681	272 1809 65 338	58 241 19 42	12 72 2 9	1 16 0 5	1 2 0 1	0 0 0 1	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954 1955</pre>	ge ge 10	111111	508 97 465 163 418	1519 1431 2220 3852 1471	1666 1224 1086 1681 484	272 1809 65 338 86	58 241 19 42 16	12 72 9 1	1 16 0 5 0	1 2 0 1 0	0 0 1 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954</pre>	ge ge 10	111111	508 97 465 163 418	1519 1431 2220 3852	1666 1224 1086 1681 484	272 1809 65 338	58 241 19 42 16	12 72 9 1	1 16 0 5	1 2 0 1	0 0 0 1	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954 1955</pre>	ge ge 10 gear	111111	508 97 465 163 418	1519 1431 2220 3852 1471 2990	1666 1224 1086 1681 484 743	272 1809 65 338 86 282	58 241 19 42 16 52	12 72 9 1 7	1 16 0 5 0	1 2 0 1 0	0 0 1 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954 1955 1956 1957</pre>	ge ge 10 ear	. 1 1 1 1 1 1 1 1	508 97 465 163 418 575	1519 1431 2220 3852 1471 2990 423	1666 1224 1086 1681 484 743 146	272 1809 65 338 86 282 2	58 241 19 42 16 52	12 72 9 1 7 0	1 16 0 5 0 2	1 2 0 1 0 2	0 0 1 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # yyr g 1951 1952 1953 1954 1955 1956 1957 1958</pre>	ge ge 10 gear	. 111111111111111	508 97 465 163 418 575 16 193	1519 1431 2220 3852 1471 2990 423 770	1666 1224 1086 1681 484 743 146 376	272 1809 65 338 86 282 2 81	58 241 19 42 16 52 1 34	12 72 9 1 7 0 20	1 16 0 5 0 2 0 5	1 2 0 1 0 2 0 1	0 0 1 0 0 0 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # yr g 1951 1952 1953 1954 1955 1956 1957 1958 1959</pre>	ge 26 ge 10 gear	111111111111111111111111111111111111111	508 97 465 163 418 575 16 193 148	1519 1431 2220 3852 1471 2990 423 770 1607	1666 1224 1086 1681 484 743 146 376 993	272 1809 65 338 86 282 2 81 519	58 241 19 42 16 52 1 34 140	12 72 9 1 7 0 20 88	1 16 0 5 0 2 0 5 74	1 2 0 1 2 0 1 21	0 0 1 0 0 0 3	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 #a_pa 10 10 # yr g 1951 1952 1955 1956 1955 1956 1957 1958 1959 1960</pre>	26 ge 10 gear	. 1111111111111111111111111111111111111	508 97 465 163 418 575 16 193 148 254	1519 1431 2220 3852 1471 2990 423 770 1607 1561	1666 1224 1086 1681 484 743 146 376 993 662	272 1809 65 338 86 282 2 81 519 246	58 241 19 42 16 52 1 34 140 80	12 72 9 1 7 0 20 88 27	1 16 0 5 0 2 0 5 74 10	1 2 0 1 2 0 1 21 4	0 0 1 0 0 0 3 2	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 10 # #yr g 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961</pre>	26 ge 10 gear		508 97 465 163 418 575 16 193 148 254 226	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224	1666 1224 1086 1681 484 743 146 376 993 662 113	272 1809 65 338 86 282 2 81 519 246 26	58 241 19 42 16 52 1 34 140 80 1	12 72 9 1 7 0 20 88 27 0	1 16 0 5 0 2 0 5 74 10 0	1 2 0 1 2 0 1 21 4 0	0 0 1 0 0 0 3 2 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962</pre>	ge ge 10 gear	. 1111111111111111111111111111111111111	508 97 465 163 418 575 16 193 148 254 226 56	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957	1666 1224 1086 1681 484 743 146 376 993 662 113 112	272 1809 65 338 86 282 2 81 519 246 26 28	58 241 19 42 16 52 1 34 140 80 1 10	12 72 9 1 7 0 20 88 27 0 0	1 16 0 5 0 2 0 5 74 10 0 0	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 1 0 0 0 3 2 0 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963</pre>	ge ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 37	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907	272 1809 65 338 86 282 2 81 519 246 26 28 96	58 241 19 42 16 52 1 34 140 80 1 10 14	12 72 9 1 7 0 20 88 27 0 0 4	1 16 0 5 0 2 0 5 74 10 0 0 0	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 4 \\ 0 \\ $	0 0 1 0 0 0 3 2 0 0 0 0	Number	aged.
<pre>#na_n</pre>	ge ge 10 ear		508 97 465 163 418 575 16 193 148 254 226 56 37 16	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804 677	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284	272 1809 65 338 86 282 2 81 519 246 26 28 96 118	58 241 19 42 16 52 1 34 140 80 1 10 14 9	12 72 9 1 7 0 20 88 27 0 0 4 3	1 16 0 5 0 2 0 5 74 10 0 0 0 0	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ $	0 0 1 0 0 0 3 2 0 0 0 0 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 #a_pa 10 10 # #yr g 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963</pre>	ge ge 10 ear		508 97 465 163 418 575 16 193 148 254 226 56 37	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907	272 1809 65 338 86 282 2 81 519 246 26 28 96 118	58 241 19 42 16 52 1 34 140 80 1 10 14	12 72 9 1 7 0 20 88 27 0 0 4	1 16 0 5 0 2 0 5 74 10 0 0 0	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 4 \\ 0 \\ $	0 0 1 0 0 0 3 2 0 0 0 0	Number	aged.
<pre>#na_n</pre>	ge 26 ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804 677	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75	58 241 19 42 16 52 1 34 140 80 1 10 14 9	12 72 9 1 7 0 20 88 27 0 4 3 3	1 16 0 5 0 2 0 5 74 10 0 0 0 0	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ $	0 0 1 0 0 0 3 2 0 0 0 0 0	Number	aged.
<pre>#na_n</pre>	ge 26 ge 10		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804 677 269	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284 372 78	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75	58 241 19 42 16 52 1 34 140 80 1 10 14 9 27	12 72 9 1 7 0 20 88 27 0 4 3 3 3 3	$ \begin{array}{c} 1\\ 16\\ 0\\ 5\\ 0\\ 2\\ 0\\ 5\\ 74\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 4 \\ 0 \\ $	0 0 1 0 0 0 3 2 0 0 0 0 0 0 0	Number	aged.
<pre>#na_n 18 40 #a_sa 2 2 2 2 10 10 10 # #yr g 1953 1954 1955 1956 1957 1958 1959 1960 1961 1960 1961 1962 1963 1965 1966</pre>	ge 26 ge 10		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 18 1	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804 677 269 101	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284 372 78	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75 53	58 241 19 42 16 52 1 34 140 80 1 10 14 9 27 6	12 72 9 1 7 0 20 88 27 0 4 3 3 3	$ \begin{array}{c} 1\\ 16\\ 0\\ 5\\ 0\\ 2\\ 0\\ 5\\ 74\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 1 0 0 0 0 3 2 0 0 0 0 0 0 0 0	Number	aged.
<pre>#na_n 18 40 #a_sas 10 10 10 # #1951 1952 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1971 1978</pre>	26 26 ge ge 10 cear		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 1 25 0	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804 677 269 101 193 180	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284 372 78 160 156	272 1809 65 338 86 282 2 81 519 246 26 26 96 118 75 53 34 105	58 241 19 42 16 52 1 34 140 80 1 10 14 9 27 6 12 106	12 72 9 1 7 0 20 88 27 0 0 4 3 3 7 20	$ \begin{array}{c} 1\\ 16\\ 0\\ 5\\ 0\\ 2\\ 0\\ 5\\ 74\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2\\ 6\end{array} $	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2	Number	aged.
<pre>#na_n</pre>	26 ge ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 56 37 16 18 1 25 0 50	$1519 \\ 1431 \\ 2220 \\ 3852 \\ 1471 \\ 2990 \\ 423 \\ 770 \\ 1561 \\ 224 \\ 957 \\ 804 \\ 677 \\ 269 \\ 101 \\ 193 \\ 180 \\ 279 \\ 101 \\ 193 \\ 180 \\ 279 \\ 101 \\ 193 \\ 180 \\ 279 \\ 101$	$\begin{array}{c} 1666\\ 1224\\ 1086\\ 1681\\ 484\\ 743\\ 146\\ 376\\ 993\\ 662\\ 113\\ 112\\ 907\\ 284\\ 372\\ 78\\ 160\\ 156\\ 716 \end{array}$	272 1809 65 338 86 282 2 81 519 246 26 26 96 118 75 53 34 105 356	$58 \\ 241 \\ 19 \\ 42 \\ 16 \\ 52 \\ 1 \\ 34 \\ 140 \\ 80 \\ 1 \\ 100 \\ 14 \\ 9 \\ 27 \\ 6 \\ 12 \\ 106 \\ 51 \\ 101 \\ 100 \\ 51 \\ 100 \\ $	12 72 9 1 7 0 20 88 27 0 4 3 3 3 7 20 18	$ \begin{array}{c} 1\\ 16\\ 0\\ 5\\ 0\\ 2\\ 0\\ 5\\ 74\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2\\ 6\\ 11\\ \end{array} $	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Number	aged.
<pre>#na_n</pre>	26 ge ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 1 25 0 50 18	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 957 804 677 269 101 193 180 279 776	$\begin{array}{c} 1666\\ 1224\\ 1086\\ 1681\\ 484\\ 743\\ 146\\ 376\\ 993\\ 662\\ 113\\ 112\\ 907\\ 284\\ 372\\ 78\\ 160\\ 156\\ 716\\ 620\\ \end{array}$	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75 534 105 356 817	58 241 19 42 16 52 1 34 140 80 1 100 14 9 9 277 6 12 106 51 276	12 72 9 1 7 0 20 88 27 0 4 3 3 3 7 20 18 40	$\begin{array}{c} 1 \\ 16 \\ 0 \\ 5 \\ 0 \\ 2 \\ 0 \\ 5 \\ 74 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Number	aged.
<pre>#na_n</pre>	26 ge ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 1 25 0 50 18 433	1519 1431 2220 3852 1471 2290 423 770 1607 1561 224 957 804 677 269 101 193 802 279 776 2324	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284 372 78 160 156 716 620 1290	272 1809 65 338 86 282 2 2 8 519 246 26 28 96 118 75 53 34 105 55 817 731	58 241 19 42 16 52 1 34 34 34 140 80 1 10 14 9 277 6 122 106 51 276 476	1227229911770000000000000000000000000000	$\begin{array}{c} 1 \\ 16 \\ 0 \\ 5 \\ 0 \\ 2 \\ 0 \\ 5 \\ 74 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Number	aged.
<pre>#na_n</pre>	26 ge ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 1 25 0 50 18 433 60	1519 1431 2220 3852 1471 2990 423 770 1607 1561 224 804 677 269 101 193 180 279 776 2324 5405	1666 1224 1086 1681 484 743 146 376 993 662 113 112 997 284 372 78 160 1566 716 620 1290 12983	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75 53 34 105 53 34 105 156 177 1140	58 241 19 42 16 52 1 14 34 34 34 34 140 80 1 10 14 9 277 6 12 276 51 276 476 804	12 72 9 1 7 7 0 0 20 88 88 27 0 0 0 4 4 3 3 3 7 7 20 1 40 88 84 0 0 0 0 44 3 3 3 7 7 20 9 9 9 1 7 7 2 9 9 9 9 1 7 7 2 0 2 9 9 9 9 9 9 1 7 7 0 0 20 20 20 9 9 9 9 1 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1\\ 16\\ 0\\ 5\\ 0\\ 2\\ 0\\ 5\\ 74\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 11\\ 7\\ 12\\ 128 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Number	aged.
<pre>#na_n 18 40 #a_saa 2 2 2 #a_paa 10 10 # #yr g 1951 1952 1953 1954 1955 1956 1957 1958 1960 1961 1963 1964 1965 1971 1976 1972 1973 1974</pre>	26 ge 10 gear	;	508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 1 25 0 50 18 433 60 19	1519 1431 2220 38522 1471 2990 423 770 1607 1561 224 957 804 677 269 101 193 180 279 776 2324 5405 818	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284 372 78 160 156 716 6200 1290 1293 4332	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75 334 105 356 817 71 1140 1828	58 241 19 42 16 52 1 34 40 80 1 100 14 9 9 277 6 12 106 51 276 476 804 1196	12 72 9 1 1 7 7 0 20 88 8 27 0 0 0 4 4 3 3 7 7 20 18 8 40 120 0 8 8 746	$\begin{array}{c} 1 \\ 16 \\ 0 \\ 5 \\ 0 \\ 2 \\ 0 \\ 5 \\ 74 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Number	aged.
<pre>#na_n</pre>	26 ge 10 gear		508 97 465 163 418 575 16 193 148 254 226 56 37 16 18 1 25 0 50 18 433 60 19	1519 1431 2220 3852 1471 2990 423 770 1607 1561 957 804 677 269 957 804 677 269 9101 193 180 279 776 2324 5405 818 830	1666 1224 1086 1681 484 743 146 376 993 662 113 112 907 284 372 78 160 156 716 6200 1290 1293 4332	272 1809 65 338 86 282 2 81 519 246 26 28 96 118 75 53 34 105 53 34 105 156 177 1140	$\begin{array}{c} 58\\ 241\\ 19\\ 42\\ 16\\ 52\\ 1\\ 34\\ 140\\ 80\\ 1\\ 1\\ 10\\ 14\\ 9\\ 27\\ 6\\ 6\\ 12\\ 106\\ 51\\ 276\\ 804\\ 1196\\ 828 \end{array}$	12 72 9 1 1 7 7 0 20 88 8 27 0 0 0 0 4 4 3 3 7 7 20 18 8 40 120 0 8 8 746	$\begin{array}{c} 1\\ 16\\ 0\\ 5\\ 0\\ 2\\ 0\\ 5\\ 74\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 11\\ 7\\ 12\\ 128 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 1 \\ 21 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Number	aged.

1978 2 63 3164 1407 1177 1294 287 87 14 5

1983 16.771 4 1 1

2011/136

1979	2	30	513	1848	525	398	293	59	19	4
1980	2	232	1640	582	747	238	198	82	13	2
1981	2	232	1868	1423	499	603	261	103	29	7
1982	2	156	1144	1309	1244	260	454	130	65	5
1983	2	135	719	696	699	562	142	172	34	26
1984	2	669	1146	418	282	309	182	33	33	5
1985	2	613	1606	426	111	82	95	51	4	6
1986	2	157	2094	1233	344	130	93	73	24	3
1987	2	783	863	1709		351	123	71	52	13
1988	2		4587	584	1110	738	209	55	33	15
1989	2	155	960	3693	450	534	271	44	10	3
1990	2	33	1856	849		307	406	125	16	4 2
1991 1992	2		1565 2960	1543 662	827	2420 362	220 1029	251 129	48 75	2 12
1992	2		1528	2255	380	416	226		75 51	12 27
1993	2		1526	2255 1485		416		423 330	98	27 15
1995	2	44	667	1304	1075	1335	348		166	31
1996	2	1079		909		945	968		85	42
1997	2		4109	487	266	402		198		20
1998	2	123		3239	347	155	176	104	60	11
1999	2	65	960	1044	1641	325	112	63	31	14
2000	2		1170	984	894	1374	196	67	35	9
2001	2	165	1074	475	197	178	222	31	5	3
2002	2	348	2658	1136	371	140	157	131	15	1
2003	2	96	2191	2042	705	135	62	42	33	4
2004	2	390	1295	2431	1002	283	64	21	11	0
2005	2	157	1655	939	680	237	71	12	2	3
2006	2	174	430	387	91	62	9	1	0	0
2007	2	7	303	211	66	11	4	0	0	0
2008	2	54	255	559	119	32	8	6	1	1
2009	2	44	1202	283	230	41	10	0	0	0
2010	2	211	577	839	105	88	14	2	0	0
2011	2	43	523	189	64	3	3	0	0	0
1973	3	0	49	131	286	68	17	4	1	0
1974	3	0	46	43	43	16	6	0	0	0
1975 1976	3 3	0	7 8	78 495	88 408	48 179	19 73	1 31	0 4	0 1
1976	3	2	12	495	408 144	56	37	17	4 5	1
1978	3	0	6	23	90	207	74	20	1	1
1979	3	ő	5	118	136	113	86	15	2	1
1980	3	ő	0	19	188	80	43	26	1	1
1981	3	0	5	59	42	102	53	20	0	0
1982	3	0	4	69	254	67	158	19	2	1
1983	3	0	2	81	136	256	37	56	2	1
1984	3	0	10	40	107	194	190	32	20	1
1987	3	0	10	135	340	30	12	16	5	2
1988	3	0	25	33	192	133	60	14	6	2
1989	3	0	1	208	42	85	36	6	4	0
1990	3	0	6	35	307	37	46	11	3	0
1991	3	0	1	21	39	198	21	25	2	0
1992	3	0	35	75	171	77	166	16	14	2
1994	3	1	35	199	340	33	7	4	1	0
1998	3	0	5	344	99	87	181	111	51	19
1999	3	0	9	113	612	193	58	38	18	2
2000	3	0	8	47	169	330	39	16	14	1
2002	3	0	0	55	154	82		120	12	2
2003 2004	3 3	0	13 5	87 179	159 154	99	49 92	64 24	25 14	3 5
2004	3	0	5	179 54	154 249	158 119	92 53	24 19	14	5 1
2005 #n_wt.		0	4	54	249	119	53	19	1	Ŧ
#n_wt. 61										
#Mean	wei	ght-ai	t-age	in k	ilogra	ams (inter	polat	ed:	from
#A\$yr		V1	V2		/3	V4	V		V6	

#Mean weigh	t-at-age in k	ilograms (ir	nterpolated: f	from HCAM.rep)
#A\$yr V	1 V2	V3 V4	V5 V6	V7 V8	V9
1951 0.0503	0.0873 0.114	4 0.1339 0.1	L489 0.1600 0.	2050 0.1960	0.1586
1952 0.0536	0.0896 0.114	4 0.1386 0.1	L569 0.1699 0.	1781 0.1900	0.1586
1953 0.0446	0.0799 0.100	1 0.1210 0.1	L473 0.1455 0.	1594 0.1656	0.1586

		2 0.0854							
		9 0.0827							
		7 0.0860							
		3 0.0775							
		3 0.0693							
		8 0.0808							
		4 0.0897							
		3 0.0908							
		7 0.0922							
		2 0.0883							
		0 0.0931							
		3 0.1040							
		0 0.1128							
		9 0.0880							
		9 0.0880							
		9 0.0880							
		9 0.0949							
		0 0.1174							
		2 0.1036							
		3 0.1037							
		7 0.0854							
		7 0.0918							
		6 0.0873							
		8 0.0885							
		1 0.0797 1 0.0831							
		9 0.0831							
		0.0825							
		8 0.0892							
		1 0.0938							
		2 0.1013							
		4 0.1015							
		3 0.1028							
		5 0.1026							
		9 0.1020							
		9 0.1033							
		0 0.1008							
		2 0.0942							
		7 0.1006							
		5 0.0973							
		8 0.0949							
		3 0.0979							
		5 0.0855							
1997	0.064	1 0.0914	0.1055	0.1316	0.1492	0.1610	0.1756	0.1729	0.1794
1998	0.058	9 0.0796	0.1037	0.1133	0.1321	0.1424	0.1494	0.1557	0.1575
		6 0.0832							
		8 0.0868							
		9 0.0885							
2002	2 0.063	4 0.0840	0.1032	0.1249	0.1440	0.1566	0.1704	0.1868	0.2180
		9 0.0934							
		5 0.0814							
		9 0.0755							
		8 0.0693							
2007	0.054	6 0.0727	0.0805	0.0924	0.0981	0.1313	0.1642	0.1754	0.1852
2008	0.056	5 0.0603	0.0877	0.1034	0.1156	0.1315	0.1450	0.1390	0.1620
		1 0.0753							
2010	0.049	0 0.0714	0.0855	0.0923	0.1069	0.1170	0.1095	0.1754	0.1852
2011	0.045	7 0.0658	0.0721	0.0963	0.0987	0.1123	0.0818	0.1754	0.1852
#									
#eo1									

#eo1 999

##

				FOR ES	FIMATED PA	RAMETERS	3	
	rior descr	riptions			- 1			
;				form (0		、 、		
					=mu,p2=sig		`	
					(p1=log(mu		g)	
					lpha,p2=be lpha,p2=be			
			0					
	 # npar							
		1b	ub	nhz	prior	n1	n2 1	parameter nam
7	.60	-5.0	15	4	0	-5.0	15	#log_ro
0	.67	0.2	1.0	4	3	10.0	4.925373	#steepness
-	0.7985077	-5.0	5.0	3	1	-0.798	35077 0.4	#log.m
	.40	-5.0	15	1	0	-5.0	15	#log_avgrec
7	.20 .3043478	-5.0	15	1	0 3	-5.0	15	<pre>#log_recini</pre>
0	.3043478	0.001	0.999					559 #rho
0								
0								appa (precisi
0			SEI					
0	TIONS FOR	SELECTIV	SEI	LECTIVI	TY PARAMET			
0 0P'	TIONS FOR 1) logi 2) sele	SELECTIV stic selectivity	SEI SEI VITY: lectivity coeffic:	LECTIVI y param ients	TY PARAMET	'ERS		
0 0P	TIONS FOR 1) logi 2) sele 3) a co	SELECTI Stic selectivity	SEI VITY: lectivity coeffic: cubic spi	LECTIVI y param ients line wi	TY PARAMET eters th age-nod	ERS		
0 0P'	TIONS FOR 1) logi 2) sele 3) a co 4) a ti	SELECTIV stic se ectivity onstant of me vary:	SEI VITY: lectivity coeffic cubic sp ing cubic	LECTIVI y param ients line wi c spline	TY PARAMET eters th age-nod e with age	ERS les e-nodes		
0 0P	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti	SELECTIV stic se ectivity onstant of me vary: me vary:	VITY: lectivit coeffic cubic spi ing cubid ing bicul	LECTIVI y param ients line wi c splin bic spli	TY PARAMET eters th age-nod e with age ine with age	ERS les nodes uge & yea	ar nodes.	
0 0P	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe	SELECTIV stic selectivity onstant of me vary: me vary: ad logist	VITY: lectivit coeffic cubic spi ing cubid ing bicul tic (set	LECTIVI y param ients line wi c splin bic spli isel_t	TY PARAMET eters th age-nod e with age ine with a ype=6, and	ERS les nodes uge & yea		
0 0P	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi	SELECTIV stic selectivity onstant of me vary: me vary: ad logistic fun	VITY: lectivity coeffic: cubic spi ing cubid ing bicub tic (set nction of	LECTIVI y parame ients line wi c spline bic spline isel_t f body	TY PARAMET eters th age-nod e with age ine with a ype=6, and weight.	ERS les nodes uge & yea	ar nodes.	
0 0P	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi sig=0.0	SELECTIV stic se ctivity onstant o me vary: me vary: d logist stic fun 05 0.10 (VITY: lectivity coeffic: cubic spl ing cubic ing bicul tic (set nction of 0.15 0.20	LECTIVI y param ients line wi c splin bic spli isel_t f body 0 0.30	TY PARAMET eters th age-nod e with age ine with ag ype=6, and weight. 0.40 0.50	ERS les nodes uge & yea	ar nodes.	
0 0P'	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi sig=0.0 wt =200	SELECTI stic se ctivity onstant o me vary: me vary: d logis stic fu 05 0.10 (0. 50.0 2	SEI VITY: lectivity coeffic cubic spi ing cubic ing bicub tic (set nction of 0.15 0.20 22.2 12.5	LECTIVI y param ients line wi c splin bic spl: isel_t f body 5 0 0.30 0 5 5.56	TY PARAMET eters th age-nod e with age ine with a ype=6, and weight.	ERS les nodes uge & yea	ar nodes.	
0 0P	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi sig=0.0 wt =200 ar 1:3 fis	SELECTI stic se ectivity onstant o me vary: me vary: d logis stic fu 05 0.10 (0. 50.0 2	SEI VITY: lectivity coeffic cubic spi ing cubic ing bicub tic (set nction of 0.15 0.20 22.2 12.5	LECTIVI y param ients line wi c splin bic spl: isel_t f body 5 0 0.30 0 5 5.56	TY PARAMET eters th age-nod e with age ine with ag ype=6, and weight. 0.40 0.50	ERS les nodes uge & yea	ar nodes.	
0 0P	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi sig=0.0 wt = 200 ar 1:3 fis el_type	SELECTI stic se ectivity onstant o me vary: me vary: d logis stic fu 05 0.10 (0. 50.0 2	SEI VITY: lectivity coeffic cubic spi ing cubic ing bicub tic (set nction of 0.15 0.20 22.2 12.5	LECTIVI y param ients line wi c splin bic spl: isel_t f body 5 0 0.30 0 5 5.56	TY PARAMET eters th age-nod e with age ine with ag ype=6, and weight. 0.40 0.50	ERS les nodes uge & yea	ar nodes.	
O OP Gea iso	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi sig=0.0 wt = 200 ar 1:3 fis el_type	SELECTI' stic se ectivity onstant of me vary: me vary: d logis; stic fun 5 0.10 (0. 50.0 2 chery: (8 1 1	VITY: lectivity coeffic: cubic spi ing cubid ing bicul tic (set nction oj 0.15 0.20 22.2 12.5 Gear 4-5	LECTIVI y paramu ients line wi c splin bic spli isel_t f body 0 0.30 0 5 5.56 3 survey	TY PARAMET eters th age-nod e with age ine with ag ype=6, and weight. 0.40 0.50	ERS les nodes uge & yea	ar nodes.	
O OP Ges is 1 Ag	TIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 7) logi sige0.0 wt = 200 ar 1:3 fis el_type 1 e at 50% s	SELECTI stic sei ctivity me vary: me vary: stic fun 5 0.10 (). 50.0 (chery: (8 1 1 selectiv:	VITY: lectivity coeffic: cubic spi ing cubid ing bicul tic (set nction oj 0.15 0.20 22.2 12.5 Gear 4-5	LECTIVI y paramu ients line wi c splin bic spli isel_t f body 0 0.30 0 5 5.56 3 survey	TY PARAMET eters th age-nod e with age ine with ag ype=6, and weight. 0.40 0.50	ERS les nodes uge & yea	ar nodes.	

12 3 10 0 0 ## Estimation phase	
2 2 2 -2 -2 ## Penalty weight for 2nd differences w=1/(2*sig^2) 125.0 12.5 12.5 12.5 12.5	
## Penalty weight for dome-shaped selectivity 1=1/(2*sig^2) 3.125 200.0 200.0 200.0 200.0	
##	##
##	##
## Priors for Survey q	##
##	##
<pre>## priors 0=uniform density 1=normal density 1 1</pre>	
## prior log(mean) -0.569 -0.569	
## prior sd 0.274 0.274	
0.2/4 0.2/4 ##	##
<pre>##OTHER MISCELLANEOUS CONTROLS 0 ## verbose ADMB output (0=off, 1=on)</pre>	##
1 ## recruitment model (1=beverton-holt, 2=ricker)	
0.100 ## std in observed catches in first phase.	
0.0707 ## std in observed catches in last phase.	
0 ## Assume unfished in first year (0=FALSE, 1=TRUE)	
0.02 ## Minimum proportion to consider in age-proportions for dmvlogistic	
0.20 ## Mean fishing mortality for regularizing the estimates of Ft	
0.01 ## std in mean fishing mortality in first phase	
5.00 ## std in mean fishing mortality in last phase	

fraction of total mortality that takes place prior to spawning

14 switch for age-composition likelihood (1=dmvlogistic,2=dmultinom)

134

Pacific herring

2011/136

AREA 2W

5500

No. of year nodes for each gear (0 to ignore).

5

#NB The data herein were taken from a2w2010_final.dat for the HCAM model.
##

##Mode	l Dimensions
1978	#first year of data
2011	#last year of data
2	#age of youngest age class
10	#age of plus group
4	#number of gears (ngear)
## flags fo:	r fishery (1) or survey (0) in ngears
#1 1 1	0
0.100 0.405	0.495 0.0
##	
##	

#Age-schedule and population parameters

#natural mortality rate (m)
0.334
#growth parameters (linf,k,to) (from fishbase)
27.0, 0.48, 0
#length-weight allometry (a,b)
4.5e-6, 3.1270
#maturity at age (am=log(3)/k) & gm=std for logistic
2.055, 0.05
##______
#Time series data
#Observed catch (1951-2010, 1000s metric t)
#Year P1 P2 P3 S1
1978 0 0.575 0 0
1979 0 0.691 0 0

3 ## phase for estimating m_deviations (use -1 to turn off mdevs)

12 ## number of estimated nodes for deviations in natural mortality

0.1 ## std in deviations for natural mortality

0.99

eofc

999

1

1980 0 0.000 0 0 2004 2,996 4 1 1 1981 0 0.770 0 0 2005 1.111 4 1 1 1982 0 1 225 0 0 2006 1 791 4 1 1 1983 0 2.518 0 0 2007 1.960 4 1 1 1984 0 0 000 0 0 2008 2.349 4 1 1 1985 0 0.199 0 0 2009 2.860 4 1 1 1986 0 0.000 0 0 2010 2.921 4 1 1 1987 0 0.000 0 0 2011 2.353 4 1 1 1988 0 0.000 0 0 #Age composition data by year, gear (ages 2-15+) 1989 0 0.000 0 0 #na_gears 1990 0 2.272 0 0 1 1991 0 2.558 0 0 #na nobs 1992 0 1.284 0 0 31 #a_sage 1993 0 1.306 0 0 1994 0 0 000 0 0 2 1995 0 0.000 0 0 #a_page 1996 0 0.000 0 0 10 1997 0 0.000 0 0 V2 V3 V4 V5 V6 V7 V8 V9 V10 #Number aged. #yr gear 1998 0 0.180 0 0 1978 2 0 11 43 16 80 12 10 6 0 1999 0 0.000 0 0 1979 2 8 101 123 87 123 74 10 6 3 2000 0 0.000 0 0 1980 2 1 203 35 12 9 5 0 2 0 2001 0 0.000 0 0 1981 2 67 56 1011 177 85 58 21 10 2 2002 0 0.000 0 0 1982 2 31 648 25 887 71 37 20 6 1 2003 0 0.000 0 0 1983 2 23 45 1893 101 1111 98 42 25 14 2004 0 0.000 0 0 1984 2 32 8 3 175 12 253 9 3 1 2005 0 0.000 0 0 1985 2 5 29 52 28 218 28 631 7 1 2006 0 0.000 0 0 1986 2 3 1 42 43 20 76 27 152 2 2007 0 0.000 0 0 1987 2 87 241 1 5 5 5 32 4 13 1988 2 27 1119 292 4 8 10 12 25 9 2008 0 0 000 0 0 2009 0 0.000 0 0 1989 2 6 42 934 195 6 6 12 10 9 2010 0 0.000 0 0 1990 2 5 36 42 1901 412 11 5 14 10 2011 0 0.000 0 0 1991 2 17 415 54 80 2163 501 26 15 8 #Relative Abundance index from fisheries independent survey (it) 1970-2008 1992 2 31 184 268 31 55 1181 243 11 6 1993 2 27 367 449 386 55 125 1097 140 9 #nit 4 11 10 2 #61 1994 2 10 23 82 28 18 1998 2 205 385 256 207 29 7 17 2 0 1 #nit_nobs 1999 2 120 249 216 110 56 12 4 2 0 30 2000 2 13 56 16 0 2 0 1 0 0 #survey type 2001 2 17 33 158 95 47 27 8 2 0 ## 1 = survey is proportional to vulnerable numbers 2002 2 301 250 50 227 102 72 28 16 2 2003 2 17 1214 253 56 61 19 22 6 3 ## 2 = survey is proportional to vulnerable biomass ## 3 = survey is proportional to spawning biomass (e.g., herring spawn survey) 2004 2 55 74 545 57 13 12 2 0 2 2005 2 4 297 96 654 45 6 9 0 2 3 2006 2 50 65 82 32 209 16 8 3 0 #iyr it gear wt survey timing 1978 0.832 4 1 1 2007 2 2 374 73 42 21 120 10 3 1 1979 0.494 4 1 1 2008 2 61 3 75 15 5 4 15 0 0 1980 2.114 4 1 1 2009 2 21 590 20 99 18 20 18 24 4 1981 1.894 4 1 1 2010 2 55 210 240 18 63 14 36 17 12 1982 4.781 4 1 1 2011 2 20 455 167 212 15 32 10 1 0 1983 4.869 4 1 1 #n wt obs 1984 2.522 4 1 1 34 1985 1.719 4 1 1 #Mean weight-at-age in kilograms (interpolated: from HCAM.rep) #A\$yr V1 V2 V3 V4 V5 V6 V7 V8 1986 0.684 4 1 1 V9 1987 0.989 4 1 1 1978 0.0693 0.0966 0.1424 0.1688 0.1813 0.1960 0.2207 0.2303 0.2174 1988 3.380 4 1 1 1979 0.0528 0.1004 0.1373 0.1557 0.1809 0.1903 0.2110 0.2030 0.1870 1989 2.719 4 1 1 1980 0.0600 0.0955 0.1197 0.1686 0.1987 0.2200 0.2124 0.2465 0.2174 1990 10.946 4 1 1 1981 0.0680 0.0934 0.1256 0.1572 0.1822 0.1901 0.2018 0.1900 0.2255 1991 2.985 4 1 1 1982 0.0657 0.1132 0.1233 0.1559 0.1814 0.1889 0.2145 0.2100 0.2220 1992 3.909 4 1 1 1983 0.0751 0.1076 0.1415 0.1579 0.1783 0.1951 0.2025 0.1962 0.2136 1993 0.089 4 1 1 1984 0.0729 0.1073 0.1307 0.1563 0.1886 0.1851 0.1841 0.1867 0.2140 1994 0.248 4 1 1 1985 0.0850 0.1178 0.1531 0.1791 0.2042 0.2102 0.2188 0.2191 0.2260 1998 0.469 4 1 1 1986 0.0800 0.1160 0.1490 0.1623 0.1843 0.2116 0.2270 0.2315 0.2070 2000 0.288 4 1 1 1987 0.0628 0.1030 0.1270 0.1702 0.2018 0.1864 0.2227 0.1958 0.2245 2001 0.035 4 1 1 1988 0.0707 0.1005 0.1429 0.1583 0.1818 0.2066 0.2209 0.2391 0.2370 2002 0.149 4 1 1 1989 0.0620 0.1011 0.1317 0.1579 0.1808 0.1912 0.2033 0.2161 0.2163 2003 1.462 4 1 1 1990 0.0584 0.0942 0.1414 0.1638 0.1868 0.1917 0.2304 0.2070 0.2344

Pacific herring

135

2011/136

136

1991						0.1892			
1992	0.0695	0.1073	0.1342	0.1460	0.1777	0.1965	0.2098	0.2066	0.2168
1993	0.0685	0.1045	0.1283	0.1460	0.1691	0.1771	0.1892	0.1979	0.1922
1994	0.0748	0.1147	0.1393	0.1514	0.1738	0.1530	0.1999	0.1985	0.1960
1995	0.0655	0.0959	0.1209	0.1482	0.1725	0.1767	0.1877	0.1996	0.2081
1996	0.0655	0.0959	0.1209	0.1482	0.1725	0.1767	0.1877	0.1996	0.2081
1997	0.0655	0.0959	0.1209	0.1482	0.1725	0.1767	0.1877	0.1996	0.2081
1998	0.0703	0.1053	0.1334	0.1677	0.1759	0.1714	0.1973	0.1940	0.2081
1999	0.0713	0.1069	0.1209	0.1476	0.1682	0.1658	0.1340	0.1870	0.2081
2000	0.0693	0.0830	0.0881	0.1482	0.2045	0.1767	0.1110	0.1996	0.2081
2001	0.0698	0.1038	0.1478	0.1717	0.1769	0.1769	0.1784	0.2155	0.2081
2002	0.0655	0.1075	0.1254	0.1747	0.1969	0.2039	0.2041	0.2041	0.2405
2003	0.0742	0.1030	0.1144	0.1337	0.1828	0.1994	0.1965	0.1922	0.1917
2004	0.0621	0.0952	0.1294	0.1437	0.1622	0.1992	0.2460	0.1996	0.2235
2005	0.0590	0.0842	0.1093	0.1392	0.1554	0.1477	0.1738	0.1996	0.1900
2006	0.0594	0.0773	0.1037	0.1374	0.1693	0.1844	0.2096	0.2113	0.2081
2007	0.0800	0.0822	0.0879	0.1174	0.1406	0.1585	0.1550	0.1753	0.2000
2008	0.0555	0.0753	0.1102	0.1286	0.1558	0.1448	0.1643	0.1996	0.2081
2009	0.0560	0.0877	0.1015	0.1393	0.1563	0.1613	0.1922	0.1903	0.1923
2010	0.0559	0.0923	0.1227	0.1347	0.1684	0.1691	0.1722	0.1852	0.2062
2011	0.0564	0.0941	0.1172	0.1411	0.1277	0.1554	0.1608	0.1570	0.2000
#eof									
999									

				HERRING CO					
	(CONTROLS	FOR EST	TIMATED PA	RAMETER	s			
Prior descr	iptions	:							
		-0 uni:	form (O	,0)					
		-1 norm	nal (p1:	=mu,p2=sig	;)				
		-2 log	normal	(p1=log(mu	ı),p2=si	g)			
				lpha,p2=be					
		-4 gam	na(p1=a)	lpha,p2=be	eta)				
									-
## npar									
ival									
									-
2.60			-				#1	0-	
		1.0	-	-				teepness	
-0.7985077		5.0		-				og.m	
2.40		15		-				og_avgrec	
2.20		15	1	0				og_recinit	;
0.3043478				-			39.0559		
0.8695652			3					(precisio	
									-
			LECTIVI	TY PARAMET	ERS				-
OPTIONS FOR									
 1) logi 	stic se	lectivity	v parame	eters					

##

2) selectivity coefficients
 3) a constant cubic spline with age-nodes
 4) a time varying cubic spline with age-nodes
 5) a time varying bicubic spline with age & year nodes.
 6) fixed logistic (set isel_type=6, and estimation phase to -1)

##	7) logistic function of body weight.
##	sig=0.05 0.10 0.15 0.20 0.30 0.40 0.50
##	wt =200. 50.0 22.2 12.5 5.56 3.12 2.00 Gear 1:3 fishery: Gear 4 survey
	isel_type
	1 1 8 6
##	Age at 50% selectivity (logistic)
	2.0 3.0 0.6 2.055
##	STD at 50% selectivity (logistic)
	0.25 0.25 0.15 0.05
##	No. of age nodes for each gear (0 to ignore).
##	5 5 5 0 No. of year nodes for each gear (0 to ignore).
##	12 3 10 0
##	Estimation phase
	-2 2 -2 -1
##	Penalty weight for 2nd differences w=1/(2*sig^2)
	125. 125. 12.5 12.5
##	Penalty weight for dome-shaped selectivity 1=1/(2*sig^2)
	50.0 50.0 200.0 200.0
##	##
##	
##	Priors for Survey q ##
##	##
	nits #number of surveys
	1
##	priors O=uniform density 1=normal density
##	1 prior log(mean)
##	-0.569
##	prior sd
	0.274
##	##
## 0	OTHER MISCELLANEOUS CONTROLS ## ## 1 verbose ADMB output (0=off, 1=on)
1	## 2 recruitment model (1=beverton-holt, 2=ricker)
	100 ## 3 std in observed catches in first phase.
0.0)707 ## 4 std in observed catches in last phase.
0	<pre>## 5 Assume unfished in first year (0=FALSE, 1=TRUE)</pre>
	01 ## 6 Minimum proportion to consider in age-proportions for dmvlogistic
	20 ## 7 Mean fishing mortality for regularizing the estimates of Ft
	1 ## 8 std in mean fishing mortality in first phase
2.0	00 ## 9 std in mean fishing mortality in last phase ## 10 phase for estimating m deviations (use -1 to turm off mdeva)
0.:	<pre>## 10 phase for estimating m_deviations (use -1 to turn off mdevs) ## 11 std in deviations for natural mortality</pre>
	## 12 number of estimated nodes for deviations in natural mortality
1.0	•
1	## 14 switch for age-composition likelihood (1=dmvlogistic,2=dmultinom)
##	##

eofc 999

<pre>#NB The data herein were taken from a2w2010_final.dat for the HCAM model. ##</pre>	<pre>#survey type ## 1 = survey is proportional to vulnerable numbers</pre>
##Model Dimensions	<pre>## 1 Survey is proportional to vulnerable biomass</pre>
1978 #first year of data	<pre>## 3 = survey is proportional to spawning biomass (e.g., herring spawn survey)</pre>
2011 #last year of data	3 3
2 #age of youngest age class	#iyr it gear wt survey timing
10 #age of plus group	1978 3.595 4 1 1
5 #number of gears (ngear)	1979 6.909 4 1 1
## flags for fishery (1) or survey (0) in ngears	1980 14.419 4 1 1
#1 1 1 0 0	1981 1.828 4 1 1
0.100 0.405 0.495 0.0 0.0	1982 4.137 4 1 1
##	1983 2.720 4 1 1
##	1984 3.051 4 1 1
#Age-schedule and population parameters	1985 1.648 4 1 1
#natural mortality rate (m)	1986 3.803 4 1 1
0.334	1987 1.372 4 1 1
<pre>#growth parameters (linf,k,to) (from fishbase)</pre>	1988 2.184 5 1.1666 1
27.0, 0.48, 0	1989 5.128 5 1.1666 1
#length-weight allometry (a,b)	1990 5.821 5 1.1666 1
4.5e-6, 3.1270	1991 3.717 5 1.1666 1
<pre>#maturity at age (am=log(3)/k) & gm=std for logistic</pre>	1992 3.581 5 1.1666 1
2.055, 0.05	1993 6.084 5 1.1666 1
##	1994 5.707 5 1.1666 1
#Time series data	1995 3.254 5 1.1666 1
#Observed catch (1951-2010, 1000s metric t)	1996 1.333 5 1.1666 1
#Year P1 P2 P3 S1 S2	1997 2.354 5 1.1666 1
1978 0 0.075 0.075 0 0	1998 2.553 5 1.1666 1
1979 0 0.422 0.270 0 0	1999 1.054 5 1.1666 1
1980 0 0.000 0.519 0 0	2000 1.576 5 1.1666 1
1981 0 0.000 0.671 0 0	2001 0.544 5 1.1666 1
1982 0 0.238 0.332 0 0	2002 1.075 5 1.1666 1
1983 0 0.000 0.163 0 0	2003 1.147 5 1.1666 1
1984 0 0.000 0.171 0 0	2004 1.532 5 1.1666 1
1985 0 0.000 0.000 0 0	2005 2.209 5 1.1666 1
1986 0 0.000 0.000 0 0	2006 2.295 5 1.1666 1
1987 0 0.000 0.000 0 0	2007 2.592 5 1.1666 1
1988 0 0.000 0.000 0 0	2008 1.093 5 1.1666 1
1989 0 0.000 0.000 0 0	2009 1.498 5 1.1666 1
1990 0 0.000 0.000 0 0	2010 0.957 5 1.1666 1
1991 0 0.000 0.000 0 0	2011 0.818 5 1.1666 1
1992 0 0.335 0.000 0 0	#Age composition data by year, gear (ages 2-15+)
1993 0 0.000 0.367 0 0	#na_gears
1994 0 0.000 0.345 0 0	2
1995 0 0.088 0.000 0 0	#na_nobs
1996 0 0.000 0.000 0 0	31 6
1997 0 0.000 0.000 0 0	#a_sage
1998 0 0.000 0.000 0 0	2 2
1999 0 0.000 0.000 0 0	#a_page
2000 0 0.000 0.000 0 0	10 10
2001 0 0.000 0.000 0 0	#yr gear V2 V3 V4 V5 V6 V7 V8 V9 V10 #Number aged.
2002 0 0.000 0.000 0 0	1978 2 1 38 4 14 12 2 0 0 0
2003 0 0.000 0.000 0 0	1979 2 1 10 55 10 2 1 1 0 0
2004 0 0.000 0.000 0 0	1980 2 20 229 25 4 0 0 1 0 0
2005 0 0.000 0.000 0 0	1981 2 15 99 435 63 98 11 0 0 0
2006 0 0.000 0.000 0 0	1982 2 7 370 105 439 43 84 8 1 0
2007 0 0.000 0.000 0 0	1983 2 4 21 32 11 29 0 4 0 0
2008 0 0.000 0.000 0 0	1986 2 6 64 172 7 4 5 7 6 0
2009 0 0.000 0.000 0 0	1987 2 48 78 45 100 3 0 3 1 4
2010 0 0.000 0.000 0 0	1988 2 8 232 41 23 57 6 3 0 1
2011 0 0.000 0.000 0 0	1989 2 1 59 268 38 39 53 6 2 0
#Relative Abundance index from fisheries independent survey (it) 1970-2008	1990 2 17 210 132 367 54 66 72 6 2
#nit	1991 2 33 145 33 38 83 10 18 8 0
#61	1992 2 49 1004 158 48 41 71 14 18 6
2	1993 2 72 228 248 32 10 9 32 2 3
2	
#nit_nobs	1994 2 14 300 232 292 52 20 27 5 2 1995 2 24 91 504 348 352 59 19 23 6

Pacific herring

137

2011/136

1996 2 1997 2																
1997 2 1998 2	23 4	110	42	14	23	27	9	0	0							
1999 2	59 2	213	257	189	31	4	4	2	1							
2000 2																
2000 2																
2002 2																
2003 2									0							
2004 2	5	83	209	76	4	6	3	0	0							
2005 2	1	97	43	23	13	1	1	0	0							
2007 2																
2008 2																
2009 2																
2010 2																
2011 2	6 1	L05	64	74	8	10	2	1	0							
1979 3																
1982 3				30												
1983 3																
1984 3 1993 3	0	0	18	182	(2	144	11	5								
1993 3 1994 3	0	11	276	13	41	39	60 1 0	5	6							
1994 3 #n_wt_o		0	91	201	40	10	10	2	3							
#11_wt_0 34	05															
#Mean w	eight	-at	-age	in	kild	gram	s (inte	erp	olated	: from	mН	CAM.rem)		
#A\$yr															V9	
1978 0.																
1979 0.	0350	0.0	827	0.10	28 0	.125	40	. 136	60	0.1510	0.17	80	0.2015	0.2	2289	
1980 0.	0679	0.0	833	0.09	77 0).121	8 0	. 15	59	0.1657	0.16	10	0.2015	0.2	2289	
1981 0.	0643	0.0	928	0.11	15 0).128	8 0	.13	79	0.1498	0.17	68	0.2015	0.2	2289	
1982 0.																
1983 0.																
1984 0.																
1985 0.																
1986 0.																
1987 O. 1988 O.																
1989 0.																
1990 0.																
1991 0.																
1992 0.																
1993 0.																
1994 0.																
1995 0.																
1996 0.	0526	0.0	907	0.11	26 0).134	4 0	. 14:	25	0.1643	0.16	88	0.1910	0.1	1835	
1997 0.																
1998 0.																
1999 0.																
2000 0.																
2001 0.																
2002 0.																
2003 0.																
2004 0. 2005 0.																
2005 0.																
2008 0.																
2008 0.																
2009 0.																
2010 0.																
2011 0.																
#eof																
999																

	riptions								
			form (0,						
				mu,p2=sig					
				p1=log(mu		<u>;</u>)			
				pha,p2=be					
				pha,p2=be					#
## npar									"
ival	1b	ub	phz	prior				arameter	
3.60 0.67 -0.7985077	-5.0	15	4	0	-5.0 10.0	15		#log_ro	
0.67	0.2	1.0	4	3	10.0	4.925	373	#steepn	ess
-0.7985077	-5.0	5.0	4 3 1	1	-0.798			-	
2.40 2.20	-5.0	15	1	3 1 0 0 3	-5.0	15		#log_av #log_re	grec
2.20	-5.0	15	1	0	-5.0			#log_re	Cinit
0.3043478 0.8695652	0.001	0.999 5 0	3	4			9.050	59 #ri opa (pre	10
0.0033032			5						
			LECTIVIT	Y PARAMET					
OPTIONS FOR									
		lectivity		ters					
		coeffici		h age-nod					
				with age					
				ne with age		r nodes			
				pe=6, and				-1)	
		nction of				F		-/	
		0.15 0.20							
wt =200	E0 0			.40 0.50					
	. 30.0	22.2 12.5							
			5 5.56 3						
Gear 1:3 fis			5 5.56 3						
Gear 1:3 fis isel_type 1 1	hery:	Gear 4-5 1	5 5.56 3 survey 6						
Gear 1:3 fis isel_type 1 1 Age at 50% s	hery: electiv	Gear 4-5 1 ity (logi	5 5.56 3 survey 6 istic)	.12 2.00					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3.	hery: electiv 0	Gear 4-5 1 ity (logi 3.6	5 5.56 3 survey 6 istic) 2.055	.12 2.00					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s	hery: electiv 0 electiv	Gear 4-5 1 ity (log: 3.6 ity (log:	5 5.56 3 survey 6 istic) 2.055 istic)	.12 2.00 6 2.055					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0	hery: electiv 0 electiv 0.25	Gear 4-5 1 ity (logi 3.6 ity (logi 0.25	5 5.56 3 survey 6 istic) 2.055 istic) 0.05	.12 2.00 6 2.055 0.05					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age m	hery: electiv 0 .25 odes fo	Gear 4-5 1 ity (logi 3.6 ity (logi 0.25 r each ge	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t	.12 2.00 6 2.055 0.05 o ignore)					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year	electiv 0 electiv 0.25 nodes fo	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each g	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 gear (0 -	.12 2.00 6 2.055 0.05 o ignore) 0 to ignore					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3	hery: 0 electiv 0.25 nodes fo	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each g	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 gear (0 -	.12 2.00 6 2.055 0.05 o ignore) 0					
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p	hery: 0 electiv 0.25 nodes fo nodes f	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each ge 10	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 gear (0 7 0	.12 2.00 6 2.055 0.05 0 ignore) 0 to ignore 0					
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2	electiv 0 electiv 0.25 nodes fo nodes f	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each ge 10 2	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 gear (0 t 0 -1	.12 2.00 6 2.055 0.05 o ignore) 0 to ignore 0 -1).				
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig	hery: electiv 0 electiv 0.25 modes fo nodes f hase	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each ge 10 2 2nd diffe	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 gear (0 t 0 -1 erences	.12 2.00 6 2.055 0.05 o ignore) 0 to ignore 0 -1 w=1/(2*si).				
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 125. 50	hery: electiv electiv .25 nodes fo nodes f hhase ht for	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each g 10 2 2nd diffe 12.5	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 -1 erences 12.5	.12 2.00 6 2.055 0.05 o ignore) 0 to ignore 0 -1 w=1/(2*si, 12.5). g^2)	g^2)			
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 125. 50 Penalty weig	hery: electiv 0 electiv .25 nodes fo nodes f hase ht for ht for	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each ge 10 2 2nd diffe 12.5 dome-shap	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 -1 erences 12.5 ped sele	.12 2.00 6 2.055 0.05 0 ignore) 0 to ignore 0 -1 w=1/(2*si 12.5 ctivity 1). g^2)	g^2)			
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig	hery: 0 electiv 25 odes fo nodes f hase ht for	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each ge 5 2 2nd diffe 12.5 2nd diffe 12.5 20.00	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 gear (0 t 0 -1 erences 12.5 ped sele 200.0	.12 2.00 6 2.055 0.05 0 0 0 -1 w=1/(2*si, 12.5 ctivity 1 20.0). g^2)	-			#
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 50.0 50	whery: electiv 0 electiv 0.25 nodes fo nodes f whase the for 0.0	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each ge 10 2 2 2 2 2 2 d diffe 12.5 dome-shap 200.0	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 -1 erences 12.5 ped sele 200.0	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si 12.5 ctivity 1 200.0). g^2) =1/(2*si				
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 125. 500 Penalty weig 50.0 50	whery: electiv 0 electiv 0.25 nodes fo nodes f whase the for 0.0	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 10 2 2nd diffe 12.5 dome-shap 200.0 	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 -1 erences 1 12.5 ped sele 200.0	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0). g^2) =1/(2*si				
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 50.0 50	whery: electiv 0.25 nodes fo nodes f whase ht for 0.0 	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 10 2 2nd diffe 12.5 dome-shap 200.0 	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 -1 erences 12.5 ped sele 200.0 	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0 for Surve). g^2) =1/(2*si y q				#
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 50.0 50	whery: electiv 0 electiv .25 .00des fo nodes f .ht for .0 	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 or each ge 5 or each ge 22nd diffe 12.5 dome-shag 200.0	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t 0 -1 erences 12.5 ped sele 200.0 	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0 for Surve). g^2) =1/(2*si y q				#
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 2.0 3. STD at 50% s 5 0.25 0 No. of gear n 5 5 No. of gear n 5 5 Sol. of gear n 2 2 Penalty weig 125. 50 Penalty weig 50.0 50 	whery: welectiv 0.25 wodes fo nodes f whase tht for 0.0 r of su form de	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each g 10 2 2nd diffe 12.5 dome-shag 200.0 	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t. 0 gear (0 t. 0 -1 erences 1 2.05 ed sele 200.0 Priors	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0). g^2) =1/(2*si y q				#
Gear 1:3 fis isel_type 1 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 50.0 50 Penalty weig 50.0 50 	whery: welectiv 0 welectiv .25 wodes fo nodes f whase wht for .0 r of su form de man)	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each g 10 2 2nd diffe 12.5 dome-shag 200.0 	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t. 0 gear (0 t. 0 -1 erences 1 2.05 ed sele 200.0 Priors	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0). g^2) =1/(2*si y q				#
Gear 1:3 fis isel_type 1 Age at 50% s 2.0 3. STD at 50% s 2.0 3. STD at 50% s 0.25 0 No. of age n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 125. 500 Penalty weig 125. 500 Penalty weig 125. 500 Penalty weig 125. 500 Penalty weig 125. 500 Penalty weig 125. 500 Penalty weig 125. 100 Penalty Penalty	whery: welectiv 0.25 where for here for here for here for here for here for for for for for for for for	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 5 or each g 10 2 2nd diffe 12.5 dome-shag 200.0 	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t. 0 gear (0 t. 0 -1 erences 1 2.05 ed sele 200.0 Priors	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0). g^2) =1/(2*si y q				#
Gear 1:3 fis isel_type 1 1 Age at 50% s 2.0 3. STD at 50% s 0.25 0 No. of gen n 5 5 No. of year 12 3 Estimation p -2 2 Penalty weig 50.0 50 Penalty weig 50.0 50 Penalty weig 50.0 50 Penalty weig 50.0 50 Penalty sel 2 penalty sel 2 50.0 50 Penalty sel 3 50 Penalty sel 2 50 Penalty sel 50 Penalty sel 50 Sel 50 Penalty sel 50 Sel 5	whery: welectiv 0 1.25 1.2	Gear 4-5 1 ity (log: 3.6 ity (log: 0.25 r each ge 10 2 2nd diffe 12.5 dome-shar 200.0 	5 5.56 3 survey 6 istic) 2.055 istic) 0.05 ear (0 t. 0 gear (0 t. 0 -1 prences 1 12.5 ped sele 200.0 Priors 1=norm	.12 2.00 6 2.055 0.05 0 ignore) 0 -1 w=1/(2*si, 12.5 ctivity 1 200.0 for Surve). g^2) =1/(2*si y q y y				# # #

- Pacific herring
- ## 2 recruitment model (1=beverton-holt, 2=ricker) 1
- 0.100 ## 3 std in observed catches in first phase.
- 0.0707 ## 4 std in observed catches in last phase.
- 0 ## 5 Assume unfished in first year (0=FALSE, 1=TRUE)
- ## 6 Minimum proportion to consider in age-proportions for dmvlogistic
 ## 7 Mean fishing mortality for regularizing the estimates of Ft 0.02
- 0.20
- ## 8 std in mean fishing mortality in first phase ## 9 std in mean fishing mortality in last phase 0.01
- 2.00
- ## 10 phase for estimating m_deviations (use -1 to turn off mdevs)
 ## 11 std in deviations for natural mortality 3
- 0.1

12 ## 12 number of estimated nodes for deviations in natural mortality ## 13 fraction of total mortality that takes place prior to spawning ## 14 switch for age-composition likelihood (1=dmvlogistic,2=dmultinom) 1.00 1 ## ______ ##

eofc 999

CONTROL FILE FOR THE SIMULATION STUDIES

The following control file was used in the simulation study where the data were generated with absolutely no error based on catch data from the Strait of Georgia. The purpose of this simulation study was to demonstrate that ISCAM is capable of estimating the true parameter values given perfect information.

				RING CONTR			
			FOR EST	CIMATED PA	RAMETERS_		
Prior descr	iptions		form (0.	0)			
				.0) =mu,p2=sig	.)		
				(p1=log(mu			
				lpha,p2=be			
				Lpha,p2=be			
## npar							
ival	lb	ub	phz	prior	p1	p2	parameter name
H 00				0	-5.0		#log_ro/msy
0.80	0.2	1.0	4	0	1.1	1.1	#steepness/fmsy
-0.7985077	-5.0	0.0	-3	0	-0.7985		#log.m
7.60	-5.0	15	3	0	-5.0	15	#log_avgrec
7.60 0.80 -0.7985077 7.60 7.60	-5.0	15	3	0		15	#log_recinit
0.05		0.999		3	1.01	1.01	#rho
4999	0.01	5000	-3	4	1.01	1.01	#vartheta
DPTIONS FOR 1) logi 2) sele 3) a co	SELECTI stic se ctivity nstant	SEL VITY: lectivity coeffic: cubic spl	LECTIVII y parame ients line wit	TY PARAMET eters th age-nod	ERS		
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti	SELECTI stic se ctivity nstant me vary me vary d logis	SED VITY: lectivity coeffic cubic sp ing cubic ing bicul tic (set	y parame ients line wit c spline bic spli isel_ty	TY PARAMET eters th age-nod with age ine with a	ERS	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe	SELECTI stic se ctivity nstant me vary me vary d logis	SED VITY: lectivity coeffic cubic sp ing cubic ing bicul tic (set	y parame ients line wit c spline bic spli isel_ty	TY PARAMET eters th age-nod with age ine with a	ERS les e-nodes age & year	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1	SELECTI stic se ctivity nstant me vary me vary d logis hery: 0	VITY: lectivity coeffic cubic sp ing cubid ing bicul tic (set Gear 4-5 1	LECTIVIT y parame ients line wit c spline bic spli isel_ty survey 1	TY PARAMET eters th age-nod with age ine with a	ERS les e-nodes age & year	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 1 Age at 50% s	SELECTI stic se ctivity nstant of me vary d logis hery: of electiv	VITY: lectivity coeffic; cubic sp ing cubid ing bicul tic (set Gear 4-5 1 ity (log	LECTIVIT y parame ients line wit c spline bic spli isel_ty survey 1 istic)	TY PARAMET aters th age-nod e with age ine with a ype=1, and 1	ERS les e-nodes age & year	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 Age at 50% s 1.5 2.	SELECTI stic se ctivity nstant me vary me vary d logis hery: electiv	VITY: lectivity coeffic cubic sp ing cubid ing bicul tic (set Gear 4-5 1 ity (log 3.5	LECTIVI y parame ients line wit c spline bic spline isel_ty survey 1 istic) 2.05	TY PARAMET eters th age-nod e with age ine with a 7pe=1, and	ERS les e-nodes uge & year	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 Age at 50% s 1.5 2. STD at 50% s	SELECTI stic set ctivity nstant of me vary me vary d logis hery: of electiv 5 electiv	VITY: lectivit; coeffic: cubic spb ing cubi ing bicul tic (set Gear 4-5 1 ity (log: 3.5 ity (log:	LECTIVIT y parame ients line wit c spline bic spline isel_ty survey 1 istic) 2.05 istic)	TY PARAMET eters th age-nod a with age ine with a agpe=1, and 1 2.05	ERS les e-nodes uge & year	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe fixel 1:3 fisi isel_type 1 1 Age at 50% s 1.5 2. STD at 50% s 0.5 0.	SELECTI' stic sei ctivity nstant o me vary me vary d logis hery: 0 electiv 5 electiv 5	SEL VITY: lectivit; coeffic: cubic spi ing cubic ing bicul tic (set Gear 4-5 1 ity (log: 3.5 ity (log: 0.5	LECTIVIT y parame ients line wit c spline bic spli isel_ty survey 1 istic) 2.05 istic) 0.05	TY PARAMET eters th age-nod e with age ine with a rpe=1, and 1 2.05 0.05	ERS p-nodes ge & year l estimati	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 Age at 50% s 1.5 2. STD at 50% s	SELECTI stic sei ctivity nstant o me vary: me vary: d logis hery: electiv: 5 electiv: 5 odes fo:	SEL VITY: lectivit; coeffic: cubic spi ing cubic ing bicul tic (set Gear 4-5 1 ity (log: 3.5 ity (log: 0.5	LECTIVIT y parame ients line wit c spline bic spli issel_ty survey 1 2.05 istic) 2.05 istic) 0.05 ear (0 1	YY PARAMET eters ch age-nod e with age ine with a rpe=1, and 1 2.05 0.05 co ignore)	ERS p-nodes ge & year l estimati	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 1 4ge at 50% s 1.5 2. STD at 50% s 0.5 0. No. of age n	SELECTI stic sei ctivity nstant o me vary: me vary: d logis hery: electiv: 5 electiv: 5 odes fo:	SEL VITY: lectivity coeffic: cubic spi ing cubi- ing bicul- tic (set Gear 4-5 1 ity (log: 3.5 ity (log: 0.5 r each gr 5	LECTIVIT y parame ients line wit c spline bic spline bic spline bic spline isel_ty survey 1 2.05 istic) 2.05 istic) 0.05 ear (0 t 0	YY PARAMET sters ch age-nod a with age ine with a rpe=1, and 1 2.05 0.05 co ignore) 0	ERS e-nodes ge & year l estimatio	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 Age at 50% s 1.5 2. STD at 50% s 0.5 0. No. of age n 5 5 No. of year 12 3	SELECTI stic sec ctivity nstant of me vary: d logis hery: 0 electiv: 5 electiv: 5 odes fo: nodes fo	SEI VITY: lectivit: coeffic: cubic spi ing bicultic sear 4-5 1 1 (log: 3.5 ity (log: 3.5 ity (log: 5 r each go 5 or each go	LECTIVIT y parame ients line wit c spline bic spline bic spline bic spline isel_ty survey 1 2.05 istic) 2.05 istic) 0.05 ear (0 t 0	YY PARAMET sters ch age-nod a with age ine with a rpe=1, and 1 2.05 0.05 co ignore) 0	ERS e-nodes ge & year l estimatio	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe 1 a ti 13 fissel_type 1 1 14ge at 50% s 0.5 0. No. of age n 5 5 No. of year 12 3 2stimation p	SELECTI stic se ctivity nstant of me vary: d logis hery: 0 electiv: 5 odes fo: nodes fo: hase	SEL VITY: lectivity coeffic: cubic spi ing bicultic (set Gear 4-5 1 ity (log: 3.5 0.5 r each g 5 or each g 10	LECTIVIT y parame ients line wit c spline bic splin isel_ty survey 1 istic) 2.05 istic) 0.05 ear (0 t 0 gear (0 0	YY PARAMET aters the age-node with age inter with age inter with age inter with age and age 1 2.05 0.05 0 to ignore 0 to ignore	ERS e-nodes ge & year l estimatio	nodes	
$\begin{array}{c} \text{DPTIONS FOR} \\ 1) \log i \\ 2) \operatorname{sele} \\ 3) a \operatorname{co} \\ 4) a \operatorname{ti} \\ 5) a \operatorname{ti} \\ 6) \operatorname{fixe} \\ 6) \operatorname{fixe} \\ 6) \operatorname{fixe} \\ 1 & 1 \\ \text{Age at 50% s} \\ 1.5 & 2. \\ \text{STD at 50% s} \\ 0.5 & 0. \\ \text{No. of age n} \\ 5 & 5 \\ \text{No. of year} \\ 12 & 3 \\ \text{Estimation p} \\ -2 & -2 \\ -2 \\ \end{array}$	SELECTI stic se ctivity nstant - me vary: me vary: d logis hery: - electiv: 5 electiv: 5 odes fo: nodes fo: hase	JUTTY: lectivity: coeffic: cubic spi ing cubic ing biculu tic (set Gear 4-5 1 ity (log: 3.5 ity (log: 0.5 r each g 5 or each g 10 -2	LECTIVIT y parame ients line wit c spline bic spli isel_ty survey 1 istic) 2.05 istic) 0.05 ear (0 t 0 gear (0 0 -2	YY PARAMET aters thage-nod with age ine with a ppe=1, and 1 2.05 0.05 to ignore) 0 -2	ERS nodes uge & year (estimation	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fisisel-type 1 1 Age at 50% s 1.5 2. STD at 50% s 0.5 0. No. of age n 5 5 No. of year 12 3 Setimation p -2 -2 Penalty weig	SELECTI stic se ctivity me vary: me vary: d logis hery: (electiv: 5 electiv: 5 odes fo: nodes fo: hase ht for :	SEI VITY: lectivity coeffic: cubic spi ing cubic ing bicul tic (set Gear 4-5 1 1 3.5 ity (log: 0.5 r each g 5 por each g 10 -2 2nd diffe	LECTIVIT y parame ients line win c spline bic spline bic spline istel_ty survey 1 istic) 2.05 istic) 0.05 ear (0 t 0 0 -2 erences	YY PARAMET sters th age-node ine with age-node ine with a rpe=1, and 1 2.05 0.05 to ignore) 0 -2 w=1/(2*si	ERS nodes uge & year (estimation	nodes	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 1.5 2. STD at 50% s 0.5 0. No. of age n 5 5 No. of year 12 3 Estimation p -2 -2 Penalty weig 12.5 12	SELECTI stic se ctivity me vary me vary d logis hery: electiv 5 electiv 5 odes fo nodes fo hase ht for 1	Junty: lectivity coeffic cubic spi ing cubi ing bicul tic (set Gear 4-5 1 ity (log: 3.5 ity (log: 0.5 r each g 5 or each g 10 -2 2nd diffe 12.5	LECTIVIT y parame ients line wit c spline bic spli isel_t; survey 1 istic) 2.05 istic) 0.05 ear (0 t 0 gear (0 t 0 gear (0 t 0 gear (0 t 2 gear (0 t 0 0 gear (0 t 0 0 0 t 2 gear (0 t 0 0 0 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2	YY PARAMET atters the age-nod a with age ine with a ge ine with a ge ine with a ge ine with a ge 1 2.05 0.05 0.05 0 ignore 0 to ignore 0 -2 w=1/(2*si	ERS Hondes ge & year l estimation	nodes on pha	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 Age at 50% s 1.5 2. STD at 50% s 0.5 0. No. of age n 5 5 No. of year 12 3 Estimation p -2 -2 Penalty weig 12.5 12	SELECTI'stic sei ctivity nstant me vary me vary d logis; hery: (electiv: 5 odes fo: nodes fo: nodes fo: hase ht for : .5	<pre>SEI VITY: lectivity: coeffic; cubic sp; ing cubic ing bicul tic (set Gear 4-5 1 ity (log: 3.5 ity (log: 0.5 r each g 5 or each g 10 -2 2nd diff. 12.5 dome-shall</pre>	LECTIVIT y parame ients line wit c spline bic spline bic spline issel_ty survey 1 istic) 2.05 istic) 0.05 ear (0 t 0 gear (0 t 0 -2 erences 12.5 ped sele	<pre>YY PARAMET sters th age-nod with age ine with a ppe=1, and 1 2.05 0.05 to ignore) 0 -2 w=1/(2*si 12.55 cotivity 1</pre>	ERS Hondes ge & year l estimation	nodes on pha	
DPTIONS FOR 1) logi 2) sele 3) a co 4) a ti 5) a ti 6) fixe Gear 1:3 fis isel_type 1 1 Age at 50% s 1.5 2. STD at 50% s 1.5 2. STD at 50% s 0.5 0. No. of gear 12 3 Estimation p -2 -2 Penalty weig 2.5 125 20	SELECTI'stic sei ctivity nstant ' me vary: d logis' hery: () electiv: 5 odes fo: nodes fo: hase ht for 1 .5 ht for 0	SEI VITY: lectivit; coeffic: cubic spi ing cubic ing bicultic (set Gear 4-5 1 1 3.5 rity (log: 0.5 r each g 5 por each g 10 -2 2nd diffe 12.5 dome-shaj 200.0	LECTIVIT y parame ients line wit c spline bic spli isel_ty survey 1 2.05 istic) 0.05 ear (0 t 0 0 -2 erences 12.5 ped sele 200.00	YY PARAMET sters thage-node with age- ine with a rpe=1, and 1 2.05 0.05 to ignore) 0 -2 w=1/(2*si 12.5 sectivity 1 200.0	<pre>ERS lesnodes uge & year l estimatio</pre>	nodes pha pha 2)	

Priors for Survey q ## ## _____ ## ## nits #number of surveys 2 ## priors 0=uniform density 1=normal density 0 0 ## prior log(mean) 0 0 ## prior sd 1 1 ## _____ ## _____OTHER MISCELLANEOUS CONTROLS______ 0 ## 1 verbose ADMB output (0=off, 1=on) 1 ## 2 recruitment model (1=beverton-holt, 2=ricker) ## 3 std in observed catches in first phase. 0.05 ## 4 std in observed catches in last phase. 0.01 ## 5 Assume unfished in first year (0=FALSE, 1=TRUE) 0 ## 6 Minimum proportion to consider in age-proportions for dmvlogistic 0.01 ## 7 Mean fishing mortality for regularizing the estimates of Ft 0.05 ## 8 std in mean fishing mortality in first phase 0.01 5.00 ## 9 std in mean fishing mortality in last phase ## 10 phase for estimating m_deviations (use -1 to turn off mdevs) -3 0.01 ## 11 std in deviations for natural mortality 12 ## 12 number of estimated nodes for deviations in natural mortality 0.99 ## 13 fraction of total mortality that takes place prior to spawning ## 14 switch for age-composition likelihood (1=dmvlogistic,2=dmultinom) 1 ## _____

eofc 999

- Collection and all Classics and in the structure of

The following control file was used in the simulation study where data were generated with observation error and process errors.

##									##	
##		SOG HEF	RING CO	NTROLS :	for Monte	Carlo tria	als			
## _		C	ONTROLS	FOR ES	TIMATED PA	RAMETERS_			##	
##	Prior des	scriptions:								
##			-0 uni	form (O	,0)					
##			-1 nor	nal (p1	=mu,p2=sig)				
##										
##			-3 bet	a (p1=a	lpha,p2=be	ta)				
##			-4 gam	na(p1=a	lpha,p2=be	ta)				
## _			-	-					##	
7	## npar									
##	ival	1b	ub	phz	prior	p1	p2	parameter name		
## _				-	-		-	-	##	
	7.60	-5.0	15	4	0	-5.0	15	<pre>#log_ro/msy</pre>		
	0.80	0.2	1.0	4	3	1.1	1.1	#steepness/fmsy		
	-0.7985	-5.0	0.0	3	1	-0.7985	0.2	#log.m		
	7.40	-5.0	15	1	0	-5.0	15	#log_avgrec		
	7.40	-5.0	15	1	0	-5.0	15	#log_initrec		
	0.25	0.001	0.999	-3	3	1.01	1.01	#rho		
	2.50	0.01	15	-3	4	1.01	1.01	#vartheta		

##		##
##		##
##	SELECTIVITY PARAMETERS	##
##	OPTIONS FOR SELECTIVITY:	
##	1) logistic selectivity parameters	
##	selectivity coefficients	
##	a constant cubic spline with age-nodes	
##	a time varying cubic spline with age-nodes	
##	5) a time varying bicubic spline with age & year nodes.	
##	fixed logistic (set isel_type=1, and estimation phase to -1)	
##	Gear 1:3 fishery: Gear 4-5 survey	
##	isel_type	
	1 1 1 1 1	
##	Age at 50% selectivity (logistic)	
	1.5 2.5 3.5 2.05 2.05	
##	STD at 50% selectivity (logistic)	
	0.5 0.5 0.5 0.05 0.05	
##	No. of age nodes for each gear (0 to ignore).	
	5 5 5 0 0	
##	No. of year nodes for each gear (0 to ignore).	
	12 3 10 0 0	
##	Estimation phase	
	2 2 2 -2 -2	
##	Penalty weight for 2nd differences w=1/(2*sig^2)	
	12.5 12.5 12.5 12.5 12.5	
##	Penalty weight for dome-shaped selectivity 1=1/(2*sig^2)	
	3.125 200.0 200.0 200.0 200.0	
##		##
##		##
##	Priors for Survey q	##
##		##
·· ···		

## nits 2	#number of surveys
## priors 0	0=uniform density 1=normal density 0
## prior	log(mean)
Î O	0
## prior	sd
1	1
##	#
##	OTHER MISCELLANEOUS CONTROLS #
0	## 1 verbose ADMB output (0=off, 1=on)
1	## 2 recruitment model (1=beverton-holt, 2=ricker)
0.05	## 3 std in observed catches in first phase.
0.01	## 4 std in observed catches in last phase.
0	## 5 Assume unfished in first year (0=FALSE, 1=TRUE)
0.01	## 6 Minimum proportion to consider in age-proportions for dmvlogist
0.05	## 7 Mean fishing mortality for regularizing the estimates of Ft
0.01	## 8 std in mean fishing mortality in first phase
5.00	## 9 std in mean fishing mortality in last phase
-3	<pre>## 10 phase for estimating m_deviations (use -1 to turn off mdevs)</pre>
0.01	## 11 std in deviations for natural mortality
12	## 12 number of estimated nodes for deviations in natural mortality
1.00	## 13 fraction of total mortality that takes place prior to spawning
1	## 14 switch for age-composition likelihood (1=dmvlogistic,2=dmultino
##	#

eofc 999

APPENDIX C: BAYESIAN PRIOR FOR THE SURVEY SPAWN INDEX PROPORTIONALITY CONSTANT ${\it Q}$

THE PROCESS

A Bayesian prior for the herring dive survey spawn index proportionality constant (*q*) is developed using a process that combines expert knowledge (in some cases best guesses) and data associated with factors influencing the prior. The process, used to develop acoustic and trawl survey priors for New Zealand fisheries stock assessments (as per) Cordue, P. (2006, pers. comm.), is comprised of the following steps:

- 1. List all factors affecting q.
- 2. For each factor, determine the statistical distribution that best describes the uncertainty associated with that factor. Where available, the distribution is based on data (not data that will be used in the assessment); otherwise it is based on expert knowledge.
- 3. The prior distribution for q is estimated by integrating across the distributions for each factor. This can be approximated by generating joint random samples from the distributions.
- 4. Finally, a parametric model is fit to the resulting distribution of replicate random samples to approximate the q prior.

FACTORS AFFECTING \boldsymbol{Q} AND THEIR DISTRIBUTIONS

The factors that contribute to the spawn index q prior include: the proportion of the total spawn that is surveyed; the amount of egg loss that occurs prior to the spawn survey; bias in the estimate of mean egg density; and drift in spawn survey observations over time. The distributions for each of these factors should reflect uncertainty in their average affect over years, not capture inter-annual variation in them.

Proportion of total spawn surveyed

The proportion of the total spawn that is surveyed has a natural upper bound of 1, though its central tendency is not known. Reasons for not surveying herring spawns include non-detection (early or late in season or very deep and not observed) or lack of resources to conduct the survey. For the latter case the spawns will be reported, and this occurrence is rare. The proportion of the total spawn that is not-detected is likely higher in more remote locations and when spawning abundance is low. With limited information, we assume a uniform distribution on 0.9–1.0 for the average proportion of total spawn surveyed.

Egg loss prior to survey

This factor accounts for egg loss due to predation (seabirds, invertebrates, marine mammals) and translocation between the time of egg deposition and the spawn surveys. The amount of egg loss

prior to spawn surveys is determined by the daily egg loss rate and the number of days between a spawn and the subsequent survey.

The herring egg loss literature, recently summarized by (Hay et al., 2011, their Appendix 7), is used to estimate a distribution for daily egg loss rates. All studies conducted on the west coast of North America that estimated total egg loss over the incubation period (or daily egg loss rates) were considered for inclusion in the egg loss rate distribution (Table 21). Egg loss estimates from the selected studies were standardized to instantaneous (daily) rates (Table 22). A normal distribution for the daily egg loss rate, based on the mean and standard deviation of the selected estimates, is assumed.

The second component of the egg loss distribution is the average number of days between the spawn event and the surveys. Information to inform the distribution of this factor was available in the B.C. herring spawn survey database. Only dive survey records were selected, and numerous error checks imposed to remove erroneous data (Table 23). For each spawn record, the number of days between the spawn event and subsequent survey was estimated as the difference between the mid-spawn date and the mid-survey date. The mean time between a spawn deposition event and the subsequent survey ranges from 6.4 to 9.2 days across the stock assessment regions (Table 24). A normal distribution for the average time between egg deposition and surveys is assumed, based on the mean and standard deviation of the mean values for the stock assessment regions (mean=7.7; standard deviation =1.13).

Bias in mean egg density

The equation predicting egg density from dive survey observations was calculated from field studies conducted through much of the B.C. coast in the mid 1980s. These studies included diver observations of egg layers and percent cover by vegetation classes and subsequent laboratory egg counts of the observed quadrats. While the egg density prediction equation is unbiased, the unexplained residual error is large and the error in the mean egg densities predicted at the stock assessment region/year level were often greater than expected based on the assumption of unbiased iid observations. To allow for potential bias in predicted mean egg density at the stock assessment region level, we assume a normal distribution for this factor with mean 1 and standard deviation 0.2.

Drift in dive survey observations

The studies to calibrate field observations of herring spawns to egg density estimates were primarily conducted during the mid 1980s by research divers. Since then, Fisheries Officers and subsequently research divers have conducted the coast wide herring spawn surveys. While there is considerable effort to ensure standardization of the surveys, it is possible that there has been drift in how observations are made. There is no direct information on how survey observations may have changed over time, however Hay et al. (2011) suggests that if drift has occurred its direction is to observations that result in lower density estimates (i.e. there has been an increase in trace observations.) For now, we do not include this factor in calculating a prior distribution for the spawn survey q.

Table 25 summarizes the factors affecting the q prior and their assumed distributions.

Study and summary of pertinent egg loss estimates:	Rationale for inclusion/exclu-
	sion from prior estimation:
Bishop and Green (2001) Estimated 31% of herring egg deposition was consumed by 5 species of birds (1994, Prince William Sound), based on a bioenergetics model.	Not included because study esti- mated only bird predation effect.
Haegele and Schweigert (1991) Estimated 58% herring egg loss over 14 day incubation period (Lambert Channel 1989). Bird and invertebrate predation ac- counted for 7.1% egg loss; the remainder from physical removal and translocation could not be directly estimated.	Included because comprehensive B.C. study.
Haegele and Schweigert (1989) Estimated 19.5% egg loss from predation based on predator counts and consumption rates (birds and invertebrates). From egg counts, total egg loss estimated at 68.8% over a 14 day incubation period (their Table 3 egg loss equations). Modelled changes in observations of egg layers over the incubation pe- riod: egg layers on sea grasses= 2.17 0.07 (day); egg layers on filamentous algae= 3.47 0.13 (day). Equations result in 45% and 52% decrease in egg layers over 14 days incubation period, respectively.	Included because comprehensive B.C. study.
Outram (1958) Seabird predator exclusion study, West coast Vancouver Island (1951 1953). Overall, estimated 39% egg loss due to seabirds over the incubation period. Total egg loss over incubation period ranged from 56% to 99% (based on change in egg biomass for the control plots). Study was restricted to eelgrass beds.	Not included because study re- stricted to eel grass beds
Palsson (1984) Estimated daily egg loss rates from 16.9% to 51.8% (positively correlated with egg density just after spawning). Large preda- tors account for 20% to 50% of daily egg loss. Initial egg densi- ties were very low, ranging from 400 to 80,000 eggs/m2 across 9 study sites. Paulsons thesis cites additional egg loss literature that is not included here because the studies generally focussed on a limited range of habitat types.	Not included because study egg densities were much lower than densities generally seen in B.C. spawns.
Rooper et al. (1999) Surveys conducted 1991, 1992, 1994 and 1995. Depth is factor that best accounts for egg loss rates (higher egg loss in shal- lower waters). Mean daily egg loss rates from their Table 2:	Comprehensive study in Prince William Sound. Estimates for 1990 and 1991 only are included
• 1990 0.076	because population had crashed by 1994 and abundance was low.
• 1991 0.042	
• 1994 0.096	
• 1995 0.096	
Note that population was much lower in 1994 and 1995.	

Table 22. Estimates of the instantaneous daily egg loss rate (*Z*) from herring egg loss studies conducted in the Pacific Northwest. The *Z* estimates for the Haegele and Schweigert (1989, 1991) studies were calculated from their reported egg loss rates over the study period.

Publication	Study Location	Year	Z
Haegele & Schweigert (1991)	SoG	1989	0.056
Haegele & Schweigert (1989)	WCVI	1988	0.083
Rooper et al. (1999)	PWS	1990	0.076
Rooper et al. (1999)	PWS	1991	0.042
		Mean	0.0642
		Std	0.0187

Table 23. Criteria for selecting herring spawn survey data records for estimating days between spawning and surveys. The "number of records" is the records retained after each successive selection criterion.

Selection criterion	Number of Records
Total dive survey records (1985-2010)	3457
Spawn and survey start/end dates completed	3188
End spawn date \leq start spawn date	
End spawn date start spawn date $<$ 20	
Survey days \leq 14 3130	3130
End spawn date-end survey date \leq 2	
End survey date- end spawn date $<$ 20	3074

Year	A2W	HG	PRD	CC	SoG	WCVI	A27
1985					5.2	6.6	8.8
1986			6.0	5.5	5.8	9.2	2.2
1987					10.6		
1988		7.4	11.2	8.3	11.0	8.2	
1989		8.2	10.8	5.8	14.5	8.6	10.7
1990	8.9	12.2	8.3	7.9	12.8	7.6	7.8
1991	10.5	5.9	7.5	11.0	12.4	9.2	2.3
1992	3.6	0.1	6.6	10.0	8.1	9.4	5.7
1993	12.2	9.3	4.9	9.1	13.1	7.6	16.8
1994	4.8	12.2	10.8	8.7	12.8	6.2	
1995		10.3	6.1	7.9	9.3	6.4	11.1
1996		7.9	5.7		10.2	4.5	7.9
1997		8.6	10.3	6.1	9.4	7.5	2.8
1998	10.5	13.3	5.5	12.4	10.4	6.4	4.2
1999		10.0	8.1	6.4	8.0	4.9	
2000	6.5	10.8	10.8	7.4	8.8	6.1	6.9
2001	9.0	7.4	8.3	6.8	8.0	6.9	3.8
2002	6.5	9.0	5.7	5.6	9.9	5.5	2.3
2003		7.5	6.2	5.0	9.5	7.0	7.3
2004	8.6	14.0	8.2	4.1	9.5	7.1	8.2
2005	6.3	9.4	8.8	9.2	5.8	5.1	3.3
2006			7.6	6.5	11.7	3.1	5.8
2007		6.0	10.8	0.7	9.3	3.4	
2008		7.4	7.2	4.3	9.5	3.8	2.0
2009	5.3	6.0	9.6	5.3	4.2	5.5	5.6
2010					7.1	5.2	
Mean	7.8	8.7	8.3	6.8	9.2	6.6	6.4

Table 24. Average number of days between spawn deposition and spawn survey by stock assessment region and year.

Table 25. Factors affecting the q prior and their assumed distributions.

Factor affecting the q prior	Distribution	Parameters of distribution
Proportion of total spawn surveyed (p_i)	Uniform	0.9-1.0
Egg loss prior to survey:		
Instantaneous daily egg loss rate (Z_i)	Normal	Mean 0.0642 Std. dev 0.0187
Days between spawn deposition and survey (d_i)	Normal	Mean 7.7 Std. dev. 1.13
Bias in mean egg density (b_i)	Normal	Mean 1 Std. dev. 0.2

Table 26. Estimated means and standard deviations for the simulated q prior and natural log of the q prior.

	$ ilde{q}_i$	$\ln(\tilde{q}_i)$
Mean	0.587	-0.569
Std	0.155	0.274

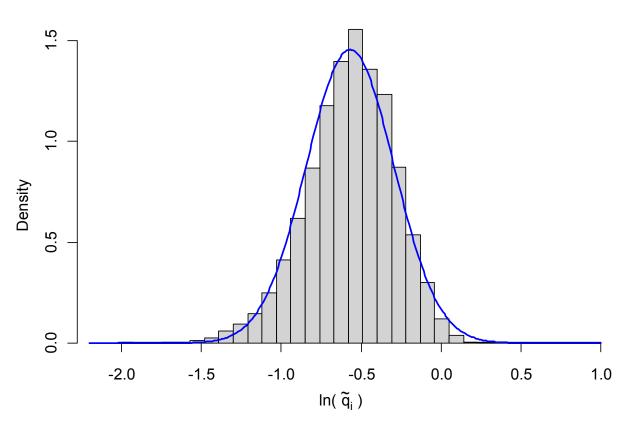


Figure 62. Distribution of the log of the simulated spawn index q estimates, overlaid with a normal distribution based on the mean and standard deviation of the simulated values.

SIMULATING THE DIVE SURVEY SPAWN INDEX \boldsymbol{Q}

Monte-Carlo simulations were conducted, randomly sampling from each factors distribution. The factors will operate independently so covariance structure does not need to be considered. For each of 10,000 replicates (i), a random draw was made for each factor to generate a point in the joint distribution for the q prior (\tilde{q}_i):

$$\tilde{q}_i = p_i b_i \exp(-d_i Z_i)$$

For the ISCAM herring stock assessments, a lognormal prior for the spawn index q is assumed (i.e., $\ln(q)$ is assumed normally distributed). The distribution of the simulated \tilde{q}_i is reasonably approximated by a lognormal distribution (Figure 62). Means and standard deviations for the simulated and the natural log of the \tilde{q}_i are presented in Table 26.

APPENDIX D: LANDINGS AND SURVEY DATA

The following tables present the herring catch by gear and year for each Stock Assessment Region and the spawn survey data. Note that the units are in 1000's of tonnes.

Stock	H	G			PRD			CC				SOG		WCVI			
Year	Gear 1	Gear 2	G	ear 1	Gear 2	Gear 3	Gear 1	Gear 2	Gear 3		Gear 1	Gear 2	Gear 3	Gear 1	Gear 2	Gear 3	
1951	2.860			6.000			42.700				44.200			21.600			
1952	10.200			3.200			33.300				46.100			27.200			
1953				1.870			0.769				8.420			0.020			
1954	1.780		27	7.400			25.000				66.300			34.300			
1955	1.230		18	8.000			11.600				68.600			6.110			
1956	72.600			0.100			43.000				72.100			16.900			
1957	23.700		26	6.600			23.800				58.900			2.620			
1958	10.900		4	4.550			9.870				20.900			0.556			
1959	6.970		1	0.300			27.500				48.900		0.381	69.200			
1960			18	8.500			4.000				67.000			52.100			
1961	0.654		41	1.200			31.000				46.500			25.500			
1962	7.680		27	7.300			15.700				65.900			23.700			
1963	15.000		- 39	9.400			43.500				68.500			18.400			
1964	28.200		28	8.900			30.800				76.400			21.100			
1965	34.900		44	4.100			15.800				46.800			16.100			
1966	2.750		17	7.100			37.000				34.000			10.900			
1967	0.213		8	8.030			21.700				30.600			15.000			
1968	0.080			2.080			1.530				1.890						
1969											0.194						
1970				1.330			0.209				0.221		0.022				
1971	0.102			3.450			3.620				1.610		0.084				
1972	0.849			0.878	3.620	0.004	0.388	8.360	0.137		2.430	5.900	0.456		6.940		
1973			(0.218	1.390		0.035	6.610	1.110		4.000	1.610	2.080		16.900	1.540	
1974		0.127		0.182	2.120	1.530		3.610	5.320		0.479	0.425	3.110		12.200	3.930	
1975		0.105		0.155	1.540	0.011		3.330	5.410		0.378	0.469	5.310		17.600	8.180	
1976	0.374	1.800		0.566	3.470	0.277		6.100	6.130		5.070	0.202	7.020		22.800	16.100	
1977		1.490		0.797	5.820	1.520	0.320	3.850	6.790		5.690	4.110	7.860	0.029	17.400	12.800	
1978		2.560		3.600	1.960	3.090	0.046	4.760	9.280		13.000	3.730	7.450	2.830	5.140	15.200	
1979		2.090		1.810	1.270	1.240		0.005			13.600		6.970	0.084	10.400	8.220	
1980		1.210		0.740	1.640	1.060	0.010		0.529		2.470	0.169	3.210		1.680	2.300	
1981		1.710		1.690	1.050	0.357		0.269	2.300		4.890	2.080	5.100		4.980	3.070	
1982		1.410		1.820	0.170		0.041	2.250	4.050		3.930	3.300	5.530		2.370	3.090	
1983	0.067	0.929						2.060	3.560		0.825	7.840	8.630		6.180	2.430	
1984	0.096	0.535		0.173	1.650	1.890		3.580	3.590		0.087	4.150	6.180		5.730	0.858	
1985		1.490		0.253	3.010	3.470		2.910	2.290		0.772	2.730	3.530		0.177		
1986		0.890		0.375	3.730	4.540	0.038	2.170	1.170		0.432	0.162			0.203		
1987				0.122	2.080	4.090	0.000	2.710	0.924		0.244	3.110	5.870		13.400	2.450	
1988				0.079	3.560	4.430	0.028	3.550	0.978		0.756	1.470	5.960		8.250	1.450	

Table 27. Observed catch by gear type and year for each stock.

Year	Gear 1	Gear 2	Gear 1	Gear 2	Gear 3	Gear 1	Gear 2	Gear 3	Gear 1	Gear 2	Gear 3	Gear 1	Gear 2	Gear 3
1989			0.071	3.660	4.820		6.510	2.950	1.030	1.410	5.880		9.710	3.520
1990		1.170	0.043	2.280	2.370		5.270	3.050	0.233		7.690		7.860	1.960
1991		0.543		1.360	2.140		7.130	1.820	0.562	1.130	9.130		6.300	2.340
1992			0.142	1.240	3.780	0.088	7.120	1.120	0.939	3.610	8.920		3.090	0.627
1993				2.210	4.100		8.340	2.030	0.617	4.380	8.730		5.610	
1994				2.360	2.350		9.610	2.110	0.942	5.120	11.200		5.310	0.706
1995				0.706	1.370		8.150	1.450	0.641	4.360	8.030		1.950	
1996					3.100		3.910	0.403	0.541	7.340	6.120		0.790	
1997					5.420		3.290	0.345	0.402	9.300	6.110		6.670	
1998					3.170		8.060	0.650	0.954	5.760	6.970		5.450	1.550
1999		0.473		0.256	1.850		6.000	1.530	1.470	4.970	6.900		3.410	0.972
2000				1.240	3.100		6.360	0.977	1.160	6.430	7.580		0.927	0.702
2001				1.010	1.920		5.620	0.519	1.420	7.280	7.590			
2002				2.060	2.470		2.900	0.400	1.330	9.330	7.900		0.433	0.389
2003				1.450	2.590		2.300	0.289	1.700	10.700	8.100		2.570	0.950
2004				1.920	2.210		3.000		1.360	7.030	5.320		3.850	0.594
2005				1.750	2.070		3.790		1.330	7.910	9.150		3.420	0.901
2006				0.958	1.670		3.080		1.370	9.290	7.350			
2007					0.968		0.398		0.672	3.850	5.240			
2008				0.512	1.150				1.140	2.760	5.850			
2009				0.713	1.280				0.709	5.700	3.860			
2010				0.475	1.000				0.595	4.570	3.260			
2011				0.884	1.260				0.713		4.530			

Table 27. (continued)

Τ
മ
<u>Ω</u> .
Ξ÷
C
-
Ē
Ť
⊒.
Э.
С С

HG PRD CC SOG WCVI Year Survey 1 Year Year Survey 1 Year Survey 2 Year Survey 1 Year Survey 2 Survey 2 Year Survey 1 Year Survey 2 Year Survey 1 Year Survey 2 15.390 19514.2131988 15.2451951 27.1491988 35.44419511988 26.916195166.1431988 24.9761951 19.5971988 46.2421952 198925.2011952 24.0471989 16.3791952 10.295198921.5611952 72.3761989 66.052195213.3101989 47.7182.5781953 7.5551990 27.058 1953 28.4681990 22.6791953 18.2371990 28.9801953 111.307 1990 67.152195339.5711990 46.46412.4081991 13.53513.96720.6481954 17.99819541991 25.81119541991 19.183195482.1411991 45.83019541991 30.45619556.437199212.376195514.482199240.145195513.564199243.274195569.854199282.714195515.112199242.6871956 1993 8.152195614.5331993 19566.6261993 32.392 195625.6671993 195627.1831993 34.7286.04225.07190.198 1957 1.5921994 14.293195727.5181994 16.5891957 4.6071994 29.432195724.1261994 67.144195744.1141994 25.6259.8821995 22.348 1958 18.98619580.81519954.701195818.51619583.549199516.911199564.8991958199528.0571959 8.9811996 1959 40.9611996 1959 3.9041996 21.6461959 47.8641996 71.326195912.9791996 33.986 7.37724.8541960 6.5991997 11.2151960 16.5451997 25.0371960 12.6151997 28.2551960 55.7091997 58.2321960 6.0151997 46.49012.05910.5561961 8 981 1998 21 649 1961 1998 19.4201961 4.2651998 31.5031961 44.3261998 74.6161961 1998 41.55611.94819625.730199910.610196226.3291999 29.74519621999 31.813196235.5741999 85.095196234.4701999 20.3901963 7.2972000 6.6981963 16.9812000 19.6941963 6.4852000 32.6521963 37.3812000 72.6881963 11.2452000 13.26719642001 15.195196426.9192001 36.68419646.4642001 196435.9542001 100.248196422.76113.9554.10425.1092001 19651.3782002 3.25719656.0552002 22.44919652.0972002 23.147196538.390 2002117.864196511.8912002 22.086 1966 2003 1966 2003 1966 2003 1966 7.2112003 1966 29.7502.8248.801 7.10534.0071.86325.679141.6513.7222003 1967 0.71020045.6681967 3.386200430.493 1967 5.434200429.4071967 9.6472004114.3521967 4.813200415.8441968 0.83320053 614 1968 5.197200527.9561968 5.790200524 158 1968 9.442200595.6431968 11.0292005 9.0751969 2.0752006 2006 12.051196920061969 2.7052006 4.09719690.96510.25119691.83714.03946.75210.4652006 1970 2007 2007 1970 2007 9.8571970 2007 1970 26.9122.0895.5529.4361970 8.814 15.5628.230 34.16335.8652007 2.548197113.2912008 19712008 13.5531971 2008 3.971197138.921200832.103197136.2062008 4.2138.4804.1561972 9.5422009 8.935 19728.7742009 12.68419723.572200910.183197225.1392009 49.909197241.8572009 9.8761973 2010 1973 2010 2010 197347.4802010 2.3737.9606.09110.95926.988197312.4348.07516.1912010 197319.481197414.51019749.24419748.852197440.571197425.54019759.686197510.94919758.037 197570.211197549.14960.642197664.222197616.374197615.587197613.84919761977 16.4081977 11.5891977 14.6131977 78.5621977 58.6791978 18.37119786.16419787.7471978102.115197845.6071979 13.64919799.19519795.779197964.266197966.3971980 31.9041980 11.9371980 13.0121980 85.991 1980 62.3081981 20.294198114.087198115.919198155.121198152.06323.593 100.987 1982198217.186198216.3331982198233.0471983 21.3911983 25.2471983 18.482198364.5751983 16.771198423.439198427.041198414.185198426.2271984 23.872198541.02819851985198530.010 1985 18.6258.85025.2471986 6.847198626.638198620.342198641.575198639.5141987 12.2891987 39.905 198712.827198741.7371987 16.858

Table 28. Abundance for each survey by year for each stock.