Hydrometeorological Data from the Saqvaqjuac Project N.W.T., 1977 to 1980

J.A. Dalton

Western Region
Department of Fisheries and Oceans Winnipeg, Manitoba R3T 2N6

July 1981

Canadian Data Report of Fisheries \& Aquatic Sciences No. 273

Canadian Data Report of

Fisheries and Aquatic Sciences
These reports provide a medium for filing and archiving data compilations where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of Data Reports reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant 10 Canada.

Numbers 1-25 in this series were issued as Fisheries and Marine Service Data Records. Numbers 26-160 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Data Reports. The current series name was changed with report number 161.

Data Reports are not intended for general distribution and the contents must not be referred to in other publications without prior written clearance from the issuing establishment. The correct citation appears above the abstract of each report.

Rapport statistique canadien des

sciences halieutiques et aquatiques

Ces rapports servent de base à la compilation des données de classement et d'archives pour lesquelles il y a peu ou point d'analyse. Cette compilation aura d'ordinaire été préparée pour appuyer d'autres publications ou rapports. Les sujets des Rapports statistiques reflètent la vaste gamme des intérêts et politiques du Ministère des Pêches et des Océans, notamment gestion des pêches, techniques et développement, sciences océaniques et environnements aquatiques, au Canada.

Les numéros 1 à 25 de cette série ont été publiés à litre de Records statistiques, Service des pêches et de la mer. Les numéros 26-160 ont été publiés à titre de Rapports statistiques du Service des pêches et de la mer, Ministère des Pêches et de l'Environnement. Le nom de la série a été modifié à partir du numéro 161.

Les Rapports statistiques ne sont pas préparés pour une vaste distribution et leur contenu ne doit pas être mentionné dans une publication sans autorisation écrite préalable de l’établissement auteur. Le titre exact paraît au haut du résumé de chaque rapport.

Canadian Data Report of

Fisheries and Aquatic Sciences
 273

July 1981

HYDROMETEOROLOGICAL DATA FROM THE SAQVAQJUAC
PROJECT, N.W.T., 1977 to 1980
by

J.A. Dalton

Western Region
 Department of Fisheries and 0ceans
 Winnipeg, Manitoba R3T 2N6

This is the 37 th Data Report
from the Western Region, Winnipeg
table of contents

13 Annual hydrograph based on mean daily discharges for the Saqvaqjuac River, 1980 25
LIST OF TABLES
Table Page
1 Drainage areas, lake areas, and lake volumes for several Saqvaqjuac lakes and streams 14
2 Far Lake levels, 1977-1980 15
3 P \& N Lake levels, 1977-1980 16
4 Jade Lake levels, 1979 17
5 Mean dajly discharge in liters per second from Far Lake outflow, 1978-1980 18
6 Mean daily discharge in liters per second from P \& N Lake outflow, 1977-1980 19
7 Mean daily discharge in liters per second from the Meadow watershed, 1978-1980 20
8 Mean daily discharge in liters per second from Jade Lake outflow, 1979. 21
9 Mean daily dishcarge in cubic meters per second for the Saqvaqjuac River for 1977 22
10 Mean daily discharge in cubic meters per second for the Saqvaqjuac River for 1978 23
11 Mean daily discharge in cubic meters per second for the Saqvaqjuac River for 1979 24
12 Mean daily discharge in cubic meters per second for the Saqvaqjuac River for 1980 25
13 Far Lake surface temperatures, 1977-1980 26
14 P \& N Lake surface temperatures, 1977-1980 27
15 Jade Lake surface temperatures, 1979-1980 28
16 Methane Lake surface temperatures, 1977-1978 29
17 Spring Lake surface temperatures, 1979-1980 29
18 Saqvaqjuac River temperatures, 1977-1980 30
19 Depth to frost at various locations near Saqvaqjuac camp, 1977-1979 31
20 Depth to frost at various locations at the Meadow, 1978-1980 31
Table Page
21 Meadow snow survey results, 1978 32
22 Meadow snow survey results, 1979 32
23 Saqvaqjuac air temperature data (${ }^{\circ} \mathrm{C}$) for 1977 33
24 Saqvaqjuac air temperature data ($\left.{ }^{\circ} \mathrm{C}\right)$ for 1978 34
25 Saqvaqjuac air temperature data (${ }^{\circ} \mathrm{C}$) for 1979 35
26 Saqvaqjuac air temperature data (${ }^{\circ} \mathrm{C}$) for 1980 36
27 Precipitation (mm) at Far Lake, 1978-1980. 37
28 Precipitation (mm) at the Meadow watershed, 1978-1980 38
29 Precipitation (mm) at Saqvaqjuac camp, 1977-1980 39
30 Mean daily relative humidity (\%) at Saqvaqjuac camp, 1978-1980 40
31 Mean daily wind velocity (km / h) at the Saqvaqjuac camp, 1977-1980 41
32 Summary of evaporation pan data for 1979, Saqvaqjuac camp 42
33 Summary of evaporation pan data for 1980 , Saqvaqjuac camp 43

DALTON, J.A. 1981. Hydrometeorological data from the Saqvaqjuac Project, N.W.T., 1977 to 1980. Can. Data Rep. Fish. Aquat. Sci. 273: v + 43 p.

From 1977 to 1980, hydrometeorological data were collected at the Saqvaqjuac Ploject in support of biological and limnological studies. This report summarizes flow data for one small 15.4 ha watershed, three small lakes and one larger $607 \mathrm{~km}^{2}$ watershed. Other data include bathymetric and topographic maps, lake levels, lake surface temperature, frost depth surveys, snow surveys, air temperature, precipitation, relative humidity, wind velocity and pan evaporation.

Key words: hydrology; arctic; permafrost; climatology.

RESUME
DALTON, J.A. 1981. Hydrometeorological data from the Saqvaqjuac Project, N.W.T., 1977 to 1980. Can. Data Rep. Fish. Aquat. Sci. 273: v +43 p.

De 1977 à 1980, on a recueilli des données hydro-météorologiques afin d'étudier la biologie et la limnologie des lieux du projet Saqvaqjuac. Le présent rapport résume les données sur l'écoulement d'un petit bassin hydrologique de 15,4 hectares, de trois petits lacs et d'un bassin hydrologique plus important, soit de 607 kilomètres carrēs. Il comprend ègalement des cartes bathymétriques et topographiques, et des données portant sur des études sur la neige et la profondeur du gel, la température de la surface et les niveaux des lacs, les précipitations, la température, l'humidité relative, la vitesse du vent et l'évaporation (à l'aide d'un bassin à èvaporation).

Mots-clés: hydrologie; arctique; pergélisol; climatologie.
-
:
-

INTRODUCTION

The Saqvaqjuac Project was established in May 1977 by the Freshwater Institute to conduct research on freshwater systems in the central eastern Arctic in view of possible industrial developments in the region. Hydrometeorological data collection has been an important part of the research since the project began. Hydrologic data are used to develop specific water budgets for biological and chemical research on small lakes selected for studies in the area. In addition, the data are being used to describe the general sources and distribution of surface and subsurface water in the Precambrian Shield lying in the arctic climatic zone. Newbury et al. (1979) includes Saqvaqjuac 1978 data in a preliminary comparison with water budgets for small watersheds in other climatic regions of the Precambrian Shield.

This report summarizes the hydrometeorological data collected at the project from 1977 to 1980. The first summer, 1977, was an exploratory year and fewer data were collected than in the following three years. The data summarized in this report include: mean daily flow data for several small lake basins, a small terrestrial basin and a larger river; climatic data consisting of air temperature, lake surface temperatures, wind speed, relative humidity, precipitation and pan evaporation; and bathymetric maps of the research lakes, topographic maps of the basins and miscellaneous snow survey and frost depth data. All Saqvaqjuac area place names used in this report are unofficial.

SITE DESCRIPTION

The Saqvaqjuac field camp ($63^{\circ} 39^{\prime} \mathrm{N}, 90^{\circ} 39^{\prime} \mathrm{W}$) is located on the shore of a small protected inlet on the northwest coast of Hudson Bay (Fig. 1 and 2). The camp is about 10 km from the main body of Hudson Bay. The closest settlement is Chesterfield Inlet (population about 275), 36 km south of the camp on the south side of a large inlet called Chesterfield Inlet (Fig. 2). Although there is a $3-6 \mathrm{~m}$ semi-diurnal tide along the coast in this part of Hudson Bay, the small size of the entrance channel into the Saqvaqjuac Inlet dampens this tide to about 0.6 m at the research camp (Fig. 2).

Numerous irregularly shaped small lakes visually dominate the landscape here even more than in other parts of the Precambrian Shield because of the lack of trees. The lakes, which occupy a large portion of the area, are surrounded by exposed boulder-strewn granitic bedrock rising steeply from the water, or by more gently sloped, vegetated areas with shallow overburden of clays, gravels and boulders. Vegetation is typically shrub-heath tundra, including dwarf willow, dwarf birch, perennial vascular plants, grasses, mosses, and lichens. Exposed, lichen-covered bedrock dominates the gently sloping tops of the hills; more abundant and larger plants are found in the meadows and valleys in the sheltered lowland areas near the lakes. Soil development is minimal, attaining a maxjmum thickness of approximately 20 cm in isolated topographic saddles and depressions. In such low-lying areas where overburden exists, this thin sofl layer covers a mixture of clay, sand, gravel, and boulders. The clay occasionally is forced by frost action to the
surface forming small, circular, initially vegetationfree frost boils.

The study area is in the arctic climatic zone and is underlain by continuous permafrost. The mean annual temperature at nearby Chesterfield is $-11.6^{\circ} \mathrm{C}$.

METHODS AND RESULTS

Where possible, standard hydrometeorological methods used across Canada by the Water Survey of Canada and the Atmospheric Enviroment Service (A.E.S.) were used.

BATHYMETR IC MAPS

Bathymetric maps (Fig. 3, 4, 5 and 6) are based on depth transects sounded with a Furuno depth sounder on calm days. To improve nearshore accuracy, 0.5 , 1.0 , and 1.5 m isobaths for Fig. 3,4 and 5 were plotted from data obtained by wading out from shore with a tape at numerous stations. Lake outlines were derived from enlargements of low-level 1976 aerial photography; scale was determined by on-ground surveys and comparisons with maps of known scale. Planimetered areas within isobaths were used in Hutchinson's (1957, p. 166) formula to obtain lake volume.

TOPOGRAPHIC MAPS

Topographic maps of Far Lake, P \& N Lake and Meadow watersheds (Fig. 7, 8 and 9) were redrawn from original $1: 1,000$ scale contour maps (1:2,000 for P \& N Lake), with a contour interval of one m.* Watershed boundaries were derived from on-site surveys when contour lines were inconclusive. Table 1 lists lake areas, drainage areas and lake volumes for the Saqvaqjuac area research basins.

LAKE LEVELS

Tables 2, 3 and 4 summarize lake level data for Far Lake, P \& N Lake and Jade Lake. Prior to break-up of the ice, usually about 2 m thick by spring, instantaneous levels were obtained by rod and level surveys using water levels from holes chopped in the ice. When the ice had broken up sufficiently a Stevens Type F float-activated water level recorder was set up efther in a sheltered area between rocks or in a proper stilling well which dampens waves. The recorder pen was positioned using the water level reading from a nearby vertical staff gauge which was referenced to a permanent benchmark to check that the ice had not moved the staff gauge. Far Lake and Jade Lake levels (Tables 2 and 4) are based on arbitrary benchmark elevations which are unrelated to sea level; however, P \& N Lake levels (Table 3) are actual elevations above mean sea level.

* Original contour maps were prepared from 1976 and 1977 low level air photographs by Cartographics Limited, Winnipeg, now called Prairie Mapping Limited, with ground control measurements supplied by Department of Fisheries and Oceans.

DISCHARGES

Tables 5 through 12 contain mean daily outflow discharge data from Far Lake (Table 5), P \& N Lake (Table 6) and Jade Lake (Table 8); from a 15.4 ha terrestrial basin called the Meadow watershed (Table 7); and from the $607 \mathrm{~km}^{2}$ Saqvaqjuac River watershed (Tables 9 to 12).

The method of measuring mean daily lake outflow was developed in response to the unequal distribution of outflow throughout the year. In winter, the outflow areas froze down to permafrost and usually became drifted in with snow. In the spring the lake levels rose as snowmelt runoff flowed into the lakes from the surrounding watersheds; the lake levels continued to rise until warm weather and/or rising water levels softened and began to erode the snow and ice-choked outflow areas. Once the first trickle of flow began, channels were rapidly formed and very large volumes of flow occured for a few days until the lake levels reached equilibrium with inflows to the lakes. Spring hydrographs (discharge vs time) were plotted for each lake for most years based on the following information: frequent spring observations of the condition of the outflow areas, frequent manual flow measurements with a small ott flowmeter once the flow began, and frequent manual lake level measurements throughout the rising and subsequent falling lake level period. Mean daily outflows were then calculated from these spring hydrographs. When the snow and ice melt from the outflow channels and outflow decreased, it became possible to use lake levels (by this time recorded continuously) to predict outflow using rating curves of level vs flow. Several manual flow measurements of different magnitude plotted against lake levels at the time of the flow measurement produced smooth curves which were then used to predict outflows from lake levels. Later in the sunmer, outflow channels were modified by vegetation growth again changing the rating curve; however errors are slight because outflows by late summer were usually low or nonexistant. The 1980 lake level and outflow data is not as reliable as in previous years because the outflow was not measured to check the changing rating curves in July and August when outflow continued flowing significantly.

Mean daily discharge from the Meadow watershed (Table 7) was calculated using a $120^{\circ} \mathrm{V}$-notch weir installed in August 1977. Thick plastic, buried in an impermeable clay layer, seals the weir and cutoff walls on either side of the valley. A Stevens Type F float-activated water level recorder was used to continuously measure the water level in the small pond behind the notch. A log-log regression ($r=0.998$, n $=16$) between water level and discharge (measured volumetrically or with a small ott flowneter) was used to compute a rating table. In the spring, before ice was removed from the notch area, frequent manual head readings or actual flow meterings were used to construct a spring hydrograph from which mean daily values could be computed.

Mean daily discharge from the Saqvaqjuac River for 1977 to 1980 (Tables 9-12 and Fig. 10-13) was cont puted from water level recorded continuously with a Stevens A-71 float-activated level recorder and stilling well located at a relatively slow flow section in the middle of the 300 m long rapids which exit into the Saqvaqjuac Inlet. The \log - \log regression between eleven ice-free water level and discharge measurements (using a Price-Gurley or Ott current meter) produced a
correlation coefficient (r) of 0.998 . Spring values were computed by manual discharge measurements using a current meter suspended from a boat or on a wading rod, visual observations of degree of channel obstruction by ice, and manual staff gauge readings. In the spring of 1978 and 1980 prior to the start of flow, holes were chopped down to bedrock at the usual gauging area near the recorder location to make certain no flow was occurring beneath the ice in the channe).

lake surface temperatures

Tables 13 to 18 summarize the surface temperature data for Far Lake, P \& N Lake, Jade Lake, Methane Lake, Spring lake and the Saqvaqjuac River. Surface temperatures were obtained with field thermometers at deep areas around the shore and fram a boat at the lake center, thermister probe (Yellow Springs Instruments Incorporated) surface temperatures fran a boat at the center, and continuously recorded surface temperature fran a floating Ryan-Peabody recorder. The notes at the bottom of the tables indicate which method was used. After ice-off, differences between surface temperature measured at the lake center and near the shore in $>1.0 \mathrm{~m}$ deep water d id not exceed $1^{\circ} \mathrm{C}$. Instrument and reading accuracy is estimated to be t $1^{\circ} \mathrm{C}$. Percent ice cover, estimated visually, is also included in the surface temperature tables.

DEPTH TO FROST SURVEYS

Tables 19 and 20 summarize depth to frost surveys done near the camp and at the Meadow watershed. Survey sites near the camp were chosen to comprise the range of unconsolidated, surficial materials in the vicinity. Sites in the Meadow watershed lie in the low patterned fen region below the 10 m contour. A shallow, ($<0.2 \mathrm{~m}$) discontinuous, tussocky matte of sedge peat and moss overlies gravelly-clay and heavy, well-sorted clay with abundant cobbles and boulders. Depths were measured with a steel rod driven into the ground until frozen material was encountered. Frozen material can be distinguished from the numerous boulders in the overburden by the feel of the rod when pounded.

SNOW SURVEYS

Tables 21 and 22 summarize the results of surveys in the spring of 1978 and 1979 to determine the water available for runoff in the snowpack at the Meadow watershed. In 1977 and 1980 no snow surveys were done because the snow pack had already begun to ripen before our arrival at the field station. Areal differences in snow depth are pronounced in the Arctic due to the high wind speeds and lack of tree cover. Huge drifts accumulate on the lee side of cliffs. In 1978, numerous snow depths were measured with a meter stick in the three parts of the basin. A longer metal probe was used to sample transects along the one large snow drift in the Meadow watershed. The transect depth data was plotted on a topographic map enabling isolines of equal snow depth to be drawn and used to compute total water available for runoff in the snow cliff. Snow densities, much more uniform than depths, were measured with a Mount Rose weighing-type snow sampler. The 1978 snow. survey actually underestimates water available for runoff because at many depth stations an approximately one cm thick layer of ice
was found on the ground under the snow. Snow depth and density measurements miss this layer, which probably formed during a warmer period earlier in the spring. In 1979, a similiar snow survey was done at the Meadow watershed (Table 22) earlier in the spring and no ice layer was observed. That year only one transect was sampled across the snow drift; mean depth was found to be 15% less than at the same transect in 1978. It was assumed that the mean snow depth for the whole drift area was approximately 15% less than in 1978.

AIR TEMPERATURES

Tables 23 to 26 include daily air temperature maximums and minimums along with monthly means. Temperatures were measured with standard A.E.S. Zeal maximum and minimum thermometers housed in a Stevenson screen located about 150 m north of the camp on top of a large hill. In June 1978 a new screen was set up on Radio Tower Hill next to the camp. Two weeks of daily temperatures from both screens were almost identical; therefore the new location closer to camp was used after June 18. Maximum, minimum and observed temperatures were read to $\pm 0.5^{\circ} \mathrm{C}$ and the themometers reset each morning at about 08:20 in 1978 and 1980; in 1977 and 1979 the themometers were read and reset twice daily at about 08:20 and 23:00. Daily maximum temperature reported in the tables is the 23:00 maximum in 1977 and 1979; in 1978 and 1980 it is the maximum read at 08:20 the next morning. Daily minimum temperature in 1977 and 1979 is the lower of the two daily minimums; in 1978 and 1980 it is the minimum recorded at 08:20 that day.

PRECIPITATION

Tables 27 to 29 summarize precipitation data for three stations: Far Lake 1978-1980, Meadow watershed 1978-1980 and the Saqvaqjuac camp 1977 to 1980. Standard A.E.S. tipping bucket rain gauges manufactured by Sangamo Limited were located in the Far Lake and Meadow watersheds (Fig. 1, 7 and 9). These gauges record each 0.2 mm of rainfall (or melting snow) on a weekly chart recorder. Chart values were corrected to the weekly total precipitation measured at the time of chart change at an adjacent A.E.S. type B standard metric rain gauge. occasionally in spring when mixed snow and rain occurred the recorded total was not corrected to the standard gauge because the larger funnel of the recording gauge makes it a more accurate snow collector. In 1980 at the Meadow watershed, four standard gauges were placed at various locations in the lower part of the basin. The recorded weekly values were in this case corrected to the mean precipitation measured at these four gauges.

Precipitation at the camp in 1977 was measured with an A.E.S. standard copper gauge located in a sheltered meadow near the camp. The gauge was checked twice a day; therefore the "precipitation day" ends with the evening reading at $22: 30$. During the next three years a standard metric gauge, located in a sheltered meadow near the camp, was checked once a day at about 08:30; therefore values are "precipitation days" which end at 08:30 the following day.

Because of high wind speeds, lack of forest cover, number of trace events and low annual total precipitation, gauges tend to underestimate actual precipitation in the arctic. The problem of gauge undercatch is more serious with snow measurements but
does exist for rainfall data. Precipitation data in this report and in A.E.S. climatic sumaries is "raw" data, as no corrections have been applied. A detailed account of suitable corrections is contained in Goodison (1978) and Rodda (1971).

reLative humidity

Mean daily relative humidity at the camp meterological site (Table 30) was measured with a RichardPekly recording themohygrograph calibrated with a standard sling psychrometer. The instrument, located inside the Stevenson screen, uses a human hair element to measure relative humidity and is accurate to within 5%.

WIND VELOCITY

Table 31 summarizes mean daily wind velocity measured near the camp. In 1977 a Casella cup-type anemometer was mounted 1.8 m above the ground at the original meteorological site on a large hill approximately 150 m north of the camp. In 1978 a Belfort cup-type anemometer was mounted adjacent to the original anemometer for 24 days. The original Casella gave readings which were a mean of $3.1 \% \pm 0.32 \%$ (95% confidence interval) higher than the Belfort. On May 30,1979 the Belfort was installed 2.2 m above ground at the new meteorological site on Radio Tower Hill next to the camp. For the next 23 days the anemometers on each hill were read; a linear regression between both anemometers gave the equation:
$Y=1.050(x)+1.829$
where $Y=$ daily wind at Meteorological Site Hill Casella anemometer
x = daily wind at Radio Tower Hill Belfort anemometer (uncorrected)
and $r=0.974, n=23$
After June 21, 1979 only the Radio Tower Hill Belfort anemometer was used regularly. Values reported in Table 31 are not adjusted using the above relationships. The time of the daily reading was changed from 23:00 to 08:30 after 1977; therefore all 1978-1980 values refer to a "wind day" ending at 08:30 the following day.

PAN EVAPORATION

Tables 32 and 33 summarize the data obtained fron a Class A evaporation pan operated in 1979 and 1980. The pan is circular, 1.21 m in diameter and 25.5 on deep, mounted on a wooden open frame platform on bedrock on Radio TowerHill. The pan is filled to within 5 on of the rim; daily water loss is measured each morning at 08:30 by refilling to a fixed level indicated by a point gauge in a stilling well. Maximum and minimum thermometers in the pan are used to estimate mean water temperature. Mean air temperature Is the mean of the maximum and minimum temperature measured in the stevenson screen for the previous twenty-four hours. If precipitation occurs measured water loss or gain is corrected using camp precipitation data. At a standard Class A pan installation, wind over the pan is measured with an anemometer installed 0.65 m above the ground. However, at this installation the only anemometer is the Belfort which is 2.2 m above the ground; it was used to record the mean wind speed reported in Tables 32 and 33. In late June 1979 shortly after the pan was set up, a course wire
mesh screen (approximately 16 gauge, 2.5 cm square net) was installed over the pan to prevent dogs and children from drinking from the pan. Work done in India and Norway indicates that on average, screens lower pan evaporation by 13% and 18% respectively (World Meteorological Organization 1966).

ACKNOWLEDGMENTS

The water Survey of Canada and Atmospheric Environment Service generously loaned some of the equipment used in this study. The hydrometeorological studies at Saqvaqjuac were enthusiastically supported by Dr. H. Welch and all the people who worked with me at the project over the years. The author is indebted to Sharon Ryland, who typed the report, and to Bob Newbury, Ken Beaty and Greg McCullough who helped set up the research program and subsequently assisted me in many ways.

REFERENCES

GOODISON, B.E. 1978. Accuracy of Canadian snow gauge measurements. J.Appl.Meteorol. 17: 1542-1548.

HUTCHINSON, G.E. 1957. A treatise on limnology. John Wiley and Sons, New York.

NEWBURY, R.W., K.G. BEATY, J.A. DALTON, and G.K. McCULLOUGH. 1979. A preliminary comparison of runoff relationships and water budgets in three experimental lake basins in the continental, sub-arctic and arctic climatic regions of the Precambrian Shield. Proc. Can. Hydrology Symp. 79, Vancouver, B.C. 19 p.

RODDA, J.C. 1971. The precipitation measurement paradox: the instrument accuracy problem. World Meteorological Organization Rep. 16, WMO-No. 316: 42 p .

WORLD METEOROLOGICAL ORGANIZATION. 1966. Measurement and estimation of evaporation and evapotranspiration. Technical Note No. 83, WMO-No. 201. TP. 105: 121 p.

Fig. 1 Location map of the Saqvaqjuac area showing the field camp, gauging stations, research lakes, other larger lakes and the Saqvaqjuac River.

Fig. 2 Map of the Saqvaqjuac River watershed, the field camp and the nearby coast of Hudson Bay.

Fig. 3 Bathymetric map of Far Lake.

TOTAL VOLUME $=232,700 \mathrm{~m}^{3}$ MEAN DEPTH $=3.3 \mathrm{~m}$

EXTREME LAKE LEVELS
1977-1979
15.73 , 16.18 meters A.S.L.

Fig. 4 Bathymetric map of $P \& N$ Lake.

Fig. 5. Bathymetric map of Jade Lake.

Fig. 6 Bathymetric map of Spring Lake.

Fig. 7 Topographic map of the Far Lake watershed.

Fig. 8 Topographic map of the $P \& N$ Lake watershed.

LEGEND

WATERSHED BOUNDARY

contour line
recording rain gauge
WEIR
1978 FROST DEPTH STATION

SAQVAQJUAC MEADOW WATERSHED

CONTOUR INTERVAL: I METRE SCALE IN METRES

Fig. 9 Topographic map of the Meadow watershed.

```
Table l. Drainage areas, lake areas, and lake volumes for several
    Saqvaqjuac lakes and streams.
```

	Drainage Area ${ }^{\text {a }}$ (ha)	Lake Area (ha)	Lake Volume $\left(m^{3}\right)$
Far Lake	20.3	3.70	133,700
P \& N Lake	35.7	7.09	232,700
Methane Lake	28.0	8.65	410,000
Spring Lake	56.0	6.9	187,000
Upper Spring Lake	-	3.4	-
Jade Lake	31.5	3.63	66,210
Meadow Watershed	15.4	-	-
Saqvaqjuac River	60700	-	-

[^0]

[^1]「abie 3. Pa in Lake levels, 1977-1980 ${ }^{3}$.

Date	19772						$1978{ }^{\text {a }}$					
	JuN		JUL		AUC	SEP	Jun		JUL		aug	SEP Elevation \qquad (m)
	Flevation (m)	time	Elevat L On (aid)	Time	Elevation - (in)	Elevation \qquad	Elevarion \qquad (m)	Time	$\begin{aligned} & \text { Elevation } \\ & \quad(\mathrm{m}) \end{aligned}$	Time	$\begin{aligned} & \text { Elevation } \\ & \begin{array}{c} (\mathrm{n}) \end{array} \\ & \hline \end{aligned}$	
1	---	---	---	---	15.874	---	---	---	---	---	15.888	15.851
c	---	---	--.	---	15.874	---	15.924	14:00	15.967	10:45	15.885	15.853
3	---	---	15.920	17:00	15.874	15.880°	---	---	,	,	15.880	15.853
4	---	---	---	---	15.877	---	---	---	15.952	14:30	15.877	15.853
j	---	---	-	-	15.877	---	---	---	---	--	15.874	15.853
6	-	---	-	---	15,877	---	15.935	10:15	16.017	11:30	15.872	15.851
7	---	---	---	---	15.877		---	---	16.016	---	15.876	15.851
8	-	---	15.904	10:00	15.877	$15.862^{\text {b }}$	---	---	16.004	---	15.869	15.848
9	-	--	15.904	10:00	15.877	---	---	---	15.979	--	15.866	15.848
10	---	---	,	,	15.874	---	---	---	15.997	---	15.863	15.848
11	-	--.	15.901	17:00	15.871	--	---	---	15.958	---	15.859	15.848
12	---	---	---	---	15.868	---	---	---	15.947	---	15.853	--
13	---	---	---	---	15.865	---	---	-	15.940	---	15.848	-
\cdots	\cdots	---	---	---	15.865	---	15.950	12:30	15.935	--	15.848	---
15	---	-	15.929	14:00	15.865	---	---	---	15.930	--	15.845	---
16	-	---	---	---	1.5 .862		---	---	15.926	---	15.839	---
17	---	---	---	---	15.859	$15.844^{\text {b }}$	16.179	10:00	15.921	-	15.833	---
18	---	---	15.923	14:25	15.859	--	---	---	15.918	--	15.833	---
19	---	---	---	---	15.859	---	---	---	15.927	-	15.825	---
20	---	---		---	15.856	--	---	---	15.930	---	15.822	---
21	-	-	---	---	15.856	---	16.101	13:45	15.927	--	15.821	-
22	---	-	---	-	15.856	---	16.089	20:00	15.923	---	15.822	---
23	---	---	-	---	15.856	---	---	---	15.918	---	15.821	---
24	---	---	---	---	15.853	---	16.046	09:10	15.914	---	15.819	-
25	---	---	15.892	11:45	---	---	---	---	15.909	---	15.818	---
26	---	---	---	---	---	---	16.037	10:45	15.903	---	15.816	---
27	15.956	15:15	---	---	---	---	---	---	15.900	---	15.819	-
28	15.953	14:15	-	---	---	---	15.997	11:00	15.897	---	15.842	---
29	---	---	---	---	---	---	---	---	15.894	---	15.851	---
30	---	---	---	---	---	---	15.967	10:00	15.892	---	15.851	-..-
31			15.874	18:10	---				15.891	---	15.851	

	$1.979^{\text {a }}$						1980°				
	May		Jun	Jul	Aus	Sep	May	Jun	Jul	Aug	Sep
nate	Elevation _(m)	Tline	Flevation \qquad	Elevacion \qquad (ro)	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Elevation \qquad	Elevation - (m)	$\begin{aligned} & \text { Elevarion } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$	Elevation (m)	Elevation (m)	Elevation (m)
1	---	---	16.010	15.898	15.783	15.787	---	15.999	15.915	15.906	15.935
2	---	---	16.004	15,897	15.779	15.790	--	16.014	15.941	15.904	15.930
3	---	---	15.999	15.894	15.778	15.798	---	16.022	15.947	15.900	15.929
4	---	---	15.990	15.889	15.775	15.819	...	16.026	15.941	15.897	15.927
5	---	---	15.975	15.888	15.773	15.828	---	16.020	15.935	15.892	15.923
6	---	---	15.964	15.885	15.776	15.831	---	16.007	15.927	15.888	15.918
7	---	-	15.956	15.880	15.776	15.834	---	15.997	15.929	15.885	15.915
8	---	---	15.955	15.877	15.770	---	---	15.990	15.962	15.889	15.912
9	---	---	15.955	15.872	15.764	---	---	15.999	15.962	15.886	15.932
10	---	---	15.953	15.868	15.764	---	---	16.014	15.953	15.886	15.984
11	---	---	15.952	15.865	15.761	---	---	16.019	15.943	15.885	15.973
12	-	---	15.955	15.859	15.760	---	---	16.011	15.952	15.885	15.967
13	---	---	15.958	15.856	15.757	-..	---	15.997	15.964	15.883	15.958
14	---	---	15.950	15.845	15.754	---	---	15.996	15.959	15.883	15.947
15	---	---	15.946	15.836	15.751	---	15.992	15.987	15.950	15.880	15.938
16	---	---	15.946	15.828	15.749	---	15.897	15.976	15.943	15.880	15.929
17	---	---	15.941	15.821	15.746	---	15.901	15.967	15.936	15.877	15.923
18	---	---	15.938	15.815	15.746	---	15.904	15.961	15.940	15.877	15.918
19	---	---	15.933	15.810	15.741	---	15.911	15.952	15.961	15.876	--
20	---	---	15.930	15.807	15.738	---	15.917	15.946	15.955	15.882	---
21	---	---	15.927	15.802	15.735	---	15.920	15.940	15.944	15.883	---
22	---	-	15.923	15.798	15.732	---	15.921	15.935	15.941	15.926	---
23	---	---	15.921	15.798	15.732	-	15.923	15.932	15.938	15.972	---
24	---	-	15.920	15.796	15.752	---	15.926	15.929	15.935	15.959	---
25	---	---	15.918	15.796	15.747	---	15.933	15.927	15.929	15.947	---
26	,	---	15.915	15.795	15.743	---	15.943	15.924	15.926	15.938	-
27	16.168	21:00	15.912	15.792	15.740	---	15.950	15.921	15.923	15.932	---
28	16.189	14:40	15.911	15.790	15.751		15.956	15.920	15.920	15.926	_
29	16.107	09:25	15.904	15.789	15.764	---	15.965	15.918	15.917	15.924	---
30	16.048	10:05	15.903	15.786	15.770	---	15.973	15.915	15.914	15.941	
31	16.020	09:20		15.783	15.781	---	15.981		15.911	15.938	

[^2]Table 4. Jade Lake levels, $1979{ }^{\text {a }}$.

${ }^{a}$ Values shown with time are instantaneous water levels measured at the time indicated. All other values are mean daily levels measured with a continuous water level recorder. Elevations are relative to a 1.0 m staff gauge bolted to bedrock.
${ }^{\mathrm{e}}$ Estimated.

Table 5. Mean daily discharge in liters per second from Far Lake outflow, 1978-1980.

	1978				1979					1980			
Date	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep	Jun	Jul	Aug	Sep
1	0	12.8	0.1	0.2	0	14.0	1.8	0.2	0.3	0	2.5	3.0	7.0
2	0	11.0	0.1	0.2	0	13.5	1.5	0.2	0.3	0	15.5	3.0	7.0
3	0	10.0	0.09	0.2	0	13.5	1.5	0.2	0.3	1	10.0	2.5	6.5
4	0	7.8	0.09	0.2	0	13.5	1.3	0.2	0.3	35	5.5	2.0	6.0
5	0	17.0	0.08	0.2	0	11.5	1.2	0.2	0.3	27	3.0	2.0	6.0
6	0	61.0	0.07	0.2	0	10.0	1.0	0.2	0.3	7	2.0	2.0	6.0
7	0	38.0	0.07	0.1	0	7.4	0.9	0.2	0.3	6	2.0	1.5	5.5
8	0	38.0	0.06	0.1	0	5.6	0.8	0.2	0.3	5	13.0	1.5	$30{ }^{\text {e }}$
9	0	30.0	0.06	0.1	0	4.9	0.7	0.2		5	13.0	1.5	75^{e}
10	0	13.6	0.06	0.1	0	5.2	0.6	0.2		13	7.0	1.5	$45^{\text {e }}$
11	0	11.0	0.05	0.1	0	5.2	0.5	0.1		14.5	4.5	1.5	30^{e}
12	0	9.0	0.05	0.1	0	8.0	0.5	0.1		14.5	5.5	1.5	15^{e}
13	0	7.0	0.04		0	11.5	0.4	0.1		16.5	11.0	1.5	$8{ }^{\text {e }}$
14	0	4.4	0.04		0	10.5	0.3	0.1		20	10.0	1.5	6
15	0	3.5	0.04		0	9.2	0.3	0.1		18	6.0	1.5	5
16	0	2.7	0.04		0	10.0	0.3	0.1		13	3.5	1.0	5
17	0	2.3	0.03		0	8.0	0.3	0.1		11	3.0	1.0	4.5
18	0	1.8	0.03		0	6.4	0.3	0.1		8	3.5	1.0	
19	0	2.7	0.03		0	4.9	0.3	0.1		6.5	10.0	1.0	
20	0	3.0	0.03		0	4.2	0.2	0.1		5.0	10.0	2.5	
21	1	2.7	0.02		0	3.6	0.2	0.1		3.5	8.0	$2 \mathrm{e}^{5}$	
22	2	2.3	0.02		0	3.1	0.2	0.1		2.5	8.5	15^{e}	
23	$30^{\text {a }}$	1.4	0.01		0	2.9	0.2	0.1		2.0	8.5	$15^{\text {e }}$	
24	$112{ }^{\text {a }}$	1.2	0.01		0	2.9	0.2	0.2		1.5	6.5	$13^{e}{ }^{\text {e }}$	
25	$69^{\text {a }}$	0.8	0		0	2.9	0.2	0.2		1.5	5.0	$9.5{ }^{\text {e }}$	
26	$25^{\text {a }}$	0.6	0		0	2.9	0.2	0.2		1.5	4.0	7.0	
27	$12.2{ }^{\text {a }}$	0.4	0		17.5	2.7	0.2	0.2		1.0	4.0	6.0	
28	13.0	0.3	0.05		16.0	2.4	0.2	0.2		1.5	4.0	5.0	
29	14.3	0.2	0.1		14.4	2.4	0.2	0.2		1.5	4.0	9.0	
30	13.5	0.2	0.2		14.0	1.8	0.2	0.2		1.5	4.0	8.0	
31		0.2	0.2		13.5		0.2	0.2			3.5	7.5	

${ }^{\text {a }}$ Estimate based on manual discharge measurements, change in lake storage, flow at the Meadow weir, and precipitation.
estimate based on very poor data.

Table 6.
Mean daily discharge in 1 iters per second from $P \& N$ Lake outflow, 1977-1980.

	1977				1978				1979					1980				
Date	Jun	Jul	Aug	Sep	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep	May	Jun	Ju1	Aug	Sep
1	---	---	0.4	---	0	23	1.1	0.1	0	27.0	1.8	0	0	0	0	3.9	4.2	7.4
2	---		0.4	--- ${ }^{\text {a }}$	0	18	0.8	0.1	0	25.5	1.7	0	0	0	0	8.7	3.9	6.5
3	---	53	0.4	$0.6{ }^{\text {a }}$	0	12	0.5	0.1	0	24.5	1.4	0	0	0	6.9	10.4	3.7	6.2
4	---	---	0.5		0	9	0.4	0.1	0	22.0	1.2	0	0	0	18.3	8.7	3.5	6.0
5	---		0.5	---	0	17	0.3	0.1	0	18.0	1.1	0	0	0	16.0	7.4	3.3	5.1
6	---	---	0.5	---	0	82	0.2	0.1	0	14.5	0.8	0	0	0	12.4	6.0	3.1	4.4
7	---	---	0.5	---	0	73	0.3	0.1	0	13.0	0.6	0	0	0	10.2	6.2	2.9	3.9
8	---	28 a	0.5	0	0	62	0.2	0.1	0	12.5	0.4	0		0	9.0	19.7	2.9	3.4
9	---	$28{ }^{\text {a }}$	0.5	---	0	37	0.1	0.1	0	12.5	0.3	0		0	11.0	19.7	2.8	6.8
10	---	---	0.4	---	0	56	0.1	0.1	0	12.0	0.1	0		0	13.4	12.9	2.8	40.8
11	---	$22^{\text {a }}$	0.25	---	0	15	0.1	0.1	0	11.5	0	0		0	14.7	9.0	2.8	30.1
12	---	---	0.15	---	0	10	0.1		0	12.5	0	0		0	24.2	12.2	2.8	24.3
13	---	---	0	---	0	8.7	0		0	13.5	0	0		0	33.2	21.2	2.8	15.6
14	---	---	0	---	0	7.8	0		0	11.0	0	0		0	34.9	16.7	2.9	10.4
15	---	69	0	---	0	7.2	0		0	9.7	0	0		0	35.1	11.6	2.9	8.1
16	---	---	0	---	0	6.4	0		0	9.7	0	0		0	30.5	9.0	2.9	6.2
17	---		0	0	0	5.9	0		0	8.2	0	0		0	19.1	7.8	2.5	5.1
18	$140{ }^{\text {a }}$	$58{ }^{\text {a }}$	0		5	5.3	0		0	7.0	0	0		0	16.7	8.4	2.4	4.4
19	---	---	0		19	6.7	0		0	5.8	0	0		0	11.5	18.2	2.3	
20	---	---	0		90	7.2	0		0	5.2	0	0		0	9.3	16.1	2.6	
21	-	---	0		80	6.7	0		0	4.6	0	0		0	7.1	12.0	2.6	
22	$137{ }^{\text {a }}$	---	0		51	6.0	0		0	4.0	0	0		0	5.7	11.8	5.7	
23	---	---	0		43	5.3	0		0	3.7	0	0		0	5.0	11.4	28.7	
24	---		0		38	4.6	0		0	3.6	0	0		0	4.6	8.5	16.7	
25	---	$7.1{ }^{\text {a }}$	---		39	3.8	0		0	3.5	0	0		0	4.3	7.5	10.4	
26	---		---		39	3.2	0		0	3.3	0	0		$0.5{ }^{\text {b }}$	4.2	6.9	8.1	
27	115		---		33	2.4	0		1.0	2.9	0	0		$0.2{ }^{\text {b }}$	4.0	6.4	6.8	
28	$110{ }^{\text {a }}$	---	---		28	2.2	0.1		18.0	2.8	0	0		$0.2{ }^{\text {b }}$	3.9	5.9	5.7	
29	---	~--	---		28	1.7	0.1		85.0	2.3	0	0		0	3.8	5.4	5.4	
30	---	--	---		28	1.5	0.1		43.0	2.2	0	0		0	3.6	5.0	8.7	
31		0.4	---			1.4	0.1		27.0		0	0		0		4.5	8.1	

[^3]Table 7. Mean daily discharge in liters per second from the Meadow watershed, 1978-1980.

Date	1978				1979					1980					
	Jun	Jul	Aug	Sep	May	Jum	Jul	Aug	Sep	May	Jun	Ju1	Aug	Sep	$\underline{0 c t}$
1	0	4.9	0.17	1.79	0	6.2	0.12	0	5.9	0	13.0	1.1	1.0	4.2	
2	0	3.4	0.14	1. 23	0	7.6	0.11	0	3.6	0	9.4	18.4	0.90	3.0	
3	0	2.1	0.10	0.96	0	9.2	0.08	0	4.2	0	9.9	6.2	0.80	2.4	
4	0	1.7	0.07	0.81	0	5.2	0.04	0	15.8	0	11.0	2.6	0.70	2.0	
5	0	13.7	0.05	0.69	0	4.9	0.03	0	6.9	0	4.6	1.4	0.60	1.7	
6	0	63.8	0.02	0.59	0	3.4	0.02	0	3.9	0	2.2	1.0	0.55	1.5	
7	0	47.2	0.01	0.65	0	1.6	0.01	0	2.7	0	0.9	2.8	0.65	1.3 b	
8	0	14.3	0.006	0.92	0	1.5	0.006	0	2.0	0	3.9	34.4	0.75	$8.5{ }^{\text {b }}$	
9	0	7.2	0.005	0.73	0	3.1	0.003	0	1.6	0	11.4	7.5	0.80	$68.5{ }^{\text {b }}$	
10	0	5.6	0.003	0.56	0	4.6	0.002	0	1.2	0	11.9	3.6	0.65	$31.0{ }^{\text {b }}$	0.8
11	0	3.1	0.001	0.46	0	3.5	0	0	1. 1	0	9.7	1.9	0.55	8.8	
12	0	1.87	0.001	0.39	0	4.3	0	0	0.99	$0.4{ }^{\text {a }}$	7.0	14.0	0.55	13.8	
13	1^{3}	1.82	0.001	0.35	0	4.4	0	0	0.90	$1.7^{\text {a }}$	10.8	16.0	0.50	9.3	
14	$12{ }^{\text {a }}$	1. 70	0.001		0	2.7	0	0	2.0	$2.4^{\text {a }}$	11.1	6.3	0.50	5.2	
I 5	$44^{\text {a }}$	1.41	0		0	3.0	0	0		3.9	10.2	3.0	0.45	4.0	0
16	40^{2}	1.04	0		0	2.3	0	0		0.8	6.1	1.9	0.45	$3.3{ }^{\text {b }}$	
17	$38^{\text {a }}$	1.31	0		0	1.4	0	0		0.5	6.7	1.8	0.45	3.8	
18	16.5	L. 18	0		0	0.88	0	0.06		0.9	4.1	7.6	0.68		
19	20.9	4.19	0.001		0	0.72	0	0.09		2.2	2.9	19.4	0.75		
20	20.5	3.07	0		0	0.85	0	0.10		1.7	2.2	6.2	1.7		
21	14.2	1.82	0			0.62	0	0.10		1.1	1.4	$3.8{ }^{\text {b }}$	$2.0{ }^{\text {b }}$		
22	12.1	1.36	0		$4^{\text {a }}$	0.37	0	0.09		0.6	1.0	$14.6{ }^{\text {b }}$	18.15		
23.	10.1	I. 11	a		$17^{\text {a }}$	0.61	0	0.09		1.4	0.8	$5.8{ }^{\text {b }}$	24.3 b		
24	1 L .4	0.92	0		$34^{\text {a }}$	0.63	0	3.9		1.9	1.4	2.7	$11.6{ }^{\text {b }}$		
25	17.8	0.66	0		$62^{\text {a }}$	0.64	0	2.4		1.2	1.9	2.2	$6.6{ }^{\text {b }}$		
26	6.6	0.76	0		$26^{\text {a }}$	0.35	0	1.6		8.3	1.8	1.6	4.3		
27	7.7	0.55	0		$12^{\text {a }}$	0.51	0	1.4		8.8	2.1	1.4	3.1		
28	8.7	0.42	0.02		16.2	0.25	0	1.9		4.2	1.6	1.6	2.3		
29	7.7	0.26	7.2		13.0	0.27	0	12.5		2.6	0.89	I. 5	2.4		
30	7.9	0.30	6.6		6.7	0.19	0	5.5		2.2	0.53	1.2	11.9		
31		0.26	3.3		10.0		0	8.6		1. I		L. 1	7.0		

[^4]Table 8. Mean daily discharge in liters per second from Jade Lake outflow, 1979.

Date	Jun	Jul	Aug	Sep
1	---	1.7	0	0
2	---	1.4	0	$0.1{ }^{\text {a }}$
3	---	1.3	0	---
4	---	1.0	0	---
5	---	0.8	0	-
6	---	0.5	0	---
7	---	0.4	0	--
8	--	0.4	0	$3^{\text {a }}$
9	--	0.2	0	---
10	---	0.1	0	---
11	---	0.1	0	-
12	---	0.1	0	---
13	$12^{\text {a }}$	0.1	0	---
14	---	0	0	---
15	---	0	0	--
16	---	0	0	---
17	---	0	0	---
18		0	0	---
19	$5.2{ }^{\text {a }}$	0	0	--
20	---	0	0	--
21	$3.6{ }^{\text {a }}$	0	0	---
22	---	0	0	-
23	---	0	0	---
24		0	0	--
25	$2.9{ }^{\text {a }}$	0	0	--
26	---	0	0	-
27	---	0	0	-
28	2.0	0	0	---
29	1.9	0	0	-
30	1.8	0	0	---
31		0	0	

[^5]Tabir 9. Nean datiy discharge ill cubie meters per second for che Saquaqjuac River for 1977.

TYPE OF CAUGF - RECORDING	A-MANUAL
LOCATION - LAT 634202 N	E-ESTIMATED
	LONG 903712 W
DRAINAGE AREA $607 \mathrm{~km}^{2}$	

Fig. 10 Annual hydrograph based on mean daily discharges for the Saquaqjuac River, 1977. Solid line indicates discharge computed from continuous stage records. Dashed line indicates discharge estimated from occasional manual staff gauge readings and discharge measurements. Dots indicate instantaneous discharge measurements.
lable 10. Mean daily dischurge in cubic meters per second for the Saquaqjuac River Eor 1978

Fig. 11 Annual hydrograph based on mean daily discharges for the Saquaquac River, 1978 , Solid line indicatea discharge computed from continuous stage recordo. Dashed line indicates discharge estimated from occasional manual gtaff gauge readings and discharge measurements. Dots indicste instantaneous discharge measurements.

Table ll．sean dally discharge in cubic mecers per second for the Saquaqjuac River for 1979.

$\stackrel{\square}{4}$	
U	
خ	
$\stackrel{\text { ¢ }}{0}$	
$\stackrel{\text { c }}{\text { ¢ }}$	
き	
$\stackrel{1}{3}$	
$\underset{\supset}{z}$	
\％	
$\underset{\sim}{\underset{\sim}{8}}$	1
鸰	
$\underset{\sim}{\text { ®u }}$	
至	

YPE OF GAUGE－RECORDING LOCATION－LAT 634202 N LONG 903712 W
DRAINACE AREA $607 \mathrm{Km}^{2}$

Fig． 12 Annual hydrograph based on mean daily discharges for the Saquaqjuac River，l979．Solid line indicates discharge computed from continuous stage records．Dashed line indicates discharge estimated from occasional manual staff gauge readings and discharge measurements．Dots indicate instantaneous discharge meaaurements．

Table 12. Mean daily discharge in cubfc meters per second for the Saquaqjuac River for 1980.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	DAY
1	---	---	---	-	---	--	14.0	9.4	17.0	---	---	---	1
2	---	---	---	---	---	---	16.1	8.8	17.1	---	---	---	2
3	---	---	---	---	---	---	15.9	8.3	17.0	---	---	---	3
4	---	-	---	---	---	---	16.1	7.9	16.4	---	---	---	4
5	---	---	---	---	---	1.1 E	16.1	7.3	15.6	---	---	---	5
6	---	---	---	---	$\rightarrow-\cdots$	---	15.6	6.8	14.8	---	---	---	6
7	---	-	---	---	---	---	15.4	6.6	14.0	---	---	---	7
8	---	---	---	---	---	-	18.1	6.1	14.4	---	---	---	8
9	---	---	---	---	---	0.7 A	19.1	5.9	20.6	---	---	---	9
10	---	---	---	---	---	---	19.9	5.7	29.8	---	---	--	10
11	---	---	---	---	---	---	20.6	5.5	38.3	---	---	---	11
12	---	---	--	---	---	---	21.3	5.2	42.2	---	---	---	12
13	---	---	---	---	--	15.1	21.5	5.0	41.7	---	1.7 E	--	13
14	-	---	---	---	---	17.0	21.1	4.7	39.8	---	-	---	14
15	---	---	---	---	-	16.5	20.9	4.6	36.8	---	---	---	15
16	---	---	---	---	---	19.2	20.4	4.4	33.1	---	---	---	16
17	---	---	---	---	---	25.8	19.4	4.1	29.1	---	---	---	17
18	---	---	-	---	---	34.1	18.9	4.1	26.4	---	-.-	---	18
19	---	---	-	---	---	37.8	19.4	3.9	23.5	---	---	--	19
20	---	---	---	-	---	36.5	18.4	3.9	21.5	---	---	---	20
21	---	-	---	---	0	33.4	17.5	3.9	19.4	---	---	---	21
22	---	---	--	---	---	30.0	16.8	6.0	17.6	---	---	---	22
23	-	-	---	-	---	26.8	16.5	9.3	---	---	---	----	23
24	--*	---	-	---	0.1 E	24.0	15.8	10.6	---	---	---	---	24
25	---	--	--	---	---	21.8	14.9	12.6	---	---	---	--	25
26	---	---	---	---	---	19.9	13.8	14.5	---	---	---	---	26
27	---	---	---	---	---	17.9	12.8	16.1	---	---	---	---	27
28	---	--	--	---	---	16.7	11.9	16.2	---	---	---	---	28
29	---	---	---	---	-	15.8	11.2	15.9	--	---	-	---	29
30	-	---	---	---	---	14.4	10.5	17.0	---	---	---	---	30
31	---	---	---		0.2 A		10.0	16.8		-		---	31

TYPE OF CAUGE - RECORDING	A-MANUAL
LOCATION - LAT 634202 N	E-ESTIMATED
LO:AG 903712 W	
DRAINAGE AREA $607 \mathrm{Km}^{2}$	

Fig. 13 Annual hydrograph based on mean daily discharges for the Saquaqjuac River, 1980. Solid line indicates diacharge computed from continuous stage records. Dashed line indicates discharge estimated from occasional manual staff gauge readings and discharge measurements. Dots indicate instantaneous diacharge meagurements.

Table 13. Far Lake surface temperatures, 1977-1980.

1977			1978			1979			1980		
Date	Time	$\underset{\substack{\text { Temperature } \\ \left.{ }^{\circ} \mathrm{C}\right)}}{ }$	Date	Time	$\begin{gathered} \text { Temperature }{ }^{\text {a }} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Date	Time	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\substack{\text { Temperature } \\ \\ \hline \\ \hline}}$	Date	Time	$\begin{gathered} \text { Temperature }{ }^{\text {a }} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
Jun 29	11:00	4.7 (65\%) ${ }^{\text {b }}$	Jul 20	09:45	(20\%)	Jul 13	-	15.5	Jun 19	13:45	4.5 (90\%)
Jul 1	11:00	5.0 (0\%)	Jul 21	14:00	4.6	Jul 14	-	14.0	Ju1 3	-	$10.0{ }^{\text {c }}$
Jul 5	-	$9.4{ }^{\text {c }}$	Jul 27	09:15	8.3	Jul 16	11:00	12.0	Ju1 8	14:00	9.1
Jul 7	13:35	10.8	Ju1 31	09:30	10.0	Ju1 20	-	11.4	Jul 9	11:00	9.0
Ju1 8	12:30	12.2	Aug 2	09:30	11.0	Jul 24	-	11.1	Jul 15	-	$14.0{ }^{\text {c }}$
Jul 16	11:10	12.2	Aug 9	09:30	11.0	Jul 31	-	10.5	Jul 17	-	$12.5{ }^{\text {c }}$
Jul 18	10:00	13.2	Aug 15	16:00	12.7	Aug 6	10:15	11.5	Jul 23	-	$11.0{ }^{\text {d }}$
Jul 20	16:10	14.0	Aug 16	15:15	11.0	Aug 7	-	11.0	Ju1 26	-	$10.0{ }^{\text {d }}$
Ju1 21	16:00	$15.0{ }^{\text {c }}$	Aug 19	10:30	9.0	Aug 8	-	11.0	Ju1 30	-	$11.0{ }^{\text {c }}$
Ju1 22	,	$14.8{ }^{\text {c }}$	Aug 21	16:30	8.7	Aug 9	-	10.5	Jul 31	-	$11.6{ }^{\text {c }}$
Ju1 25	10:30	$15.0{ }^{\text {d }}$	Aug 23	16:00	11.6	Aug 10	-	10.0	Sep 5	-	$10.2{ }^{\text {c }}$
Jul 27	14:10	14.5	Sep 4	16:00	8.3	Aug 11	-	9.5	Sep 12	-	$5.5{ }^{\text {c }}$
Jul 28	11:00	$13.5{ }^{\text {c }}$	Sep 6	15:00	8.7	Aug 12	-	9.5	Sep 19	-	$2.8{ }^{\text {c }}$
Aug 3	14:00	$11.3{ }^{\text {c }}$	Sep 13	14:00	8.8	Aug 13	-	10.0	Sep 23	-	(100\%)
Aug 4	11:0	10.2	$1979{ }^{\text {e }}$			Aug 14	-	10.5			
Aug 11	10:00	11.8				Aug 15	-	11.0			
Aug 18	10:15	$11.4{ }^{\text {c }}$	Jun 18	15:00	(70\%)	Aug 16	-	11.0			
Aug 18		$12.0{ }^{\text {c }}$	Jun 25	15:00	5.5 (65\%)	Aug 17	-	11.0			
Aug 24	-	$11.5{ }^{\text {c }}$	Jun 29	15:00	(20\%)	Aug 18	-	10.5			
Aug 29	-	$10.8{ }^{\text {c }}$	Ju1 1	-	(0\%)	Aug 19	-	10.0			
Sep 3	-	$10.0{ }^{\text {c }}$	Jul 2	11:00	7.5	Aug 20	-	9.5			
Sep 10	-	$7.6{ }^{\text {c }}$	Jul 3	-	8.5	Aug 21	-	9.5			
Sep 30	-	$5.5{ }^{\text {c }}$	Ju1 4	-	9.0	Aug 22	-	9.5			
			Jul 5	-	11.5	Aug 23	-	9.5			
			Ju1 6	-	11.5	Aug 24	-	9.0			
			Ju1 7	-	13.0	Aug 25	-	8.0			
			Jul 8	-	15.5	Aug 26	-	7.0			
			Jul 9	-	14.0	Aug 27	-	7.0			
			Jul 10	-	13.5	Aug 28	-	7.0			
			Jul 11	-	13.5	Aug 29	-	7.0			
			Ju1 12	-	14.5	Aug 30	-	6.5			
						Aug 31	-	6.0			
						Sep 1	-	5.5			
						Sep 8	14:00	6.7			

Measured with a field thermometer, usually near shore at a deep area, unless otherwise indicated.
${ }^{\mathrm{b}}$ Percent of lake ice covered, estimated visually.
${ }^{c}$ Measured with a thermister at lake center.
$\delta_{\text {Measured with a field thermometer at lake center. }}$
e Values for July 3 to July 14 and August 7 to September 1, 1979, are mean dafly temperatures obtained from a continuous water temperature recorder.

Table 14. P\& N Lake surface temperatures, 1977-1980 ${ }^{\text {a }}$.

${ }^{\text {a Measured with }}$ wield thermometer, usually near shore at a deep area, unless otherwise indicated.
bercent of lake ice covered, estimaced visually.
${ }^{C}$ Measured with a themister at lake center.
${ }^{\mathrm{d}}$ Measured with a field thermometer at lake center.

Table 15. Jade Lake surface temperatures, 1979-1980 ${ }^{\text {a }}$.

Date	1979		1980		
	Time	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Date	Time	Temperature (${ }^{\circ} \mathrm{C}$)
Jun 19	-	$(75 \%){ }^{\text {b }}$	Jul 3	-	10.1
Jun 25	-	(70\%)	Jul 15	-	12.9
Jun 27	-	(40\%)	Jul 17	-	13.5
Jun 28	-	(10\%)	Jul 21	-	13.0
Jun 29	-	(5\%)	Jul 22	-	12.0
Ju1 1	-	(0\%)	Jul 30	-	12.0
Jul 3	14:30	13.5	Jul 31	-	12.7
Ju1 4	14:05	13.6	Aug 27	14:30	10.5
Jul 7	-	17.0	Sep 5	-	10.8
Jul 9	09:00	17.5	Sep 12	-	6.0
Jul 9	14:00	17.8	Sep 19	-	2.0
Ju1 12	-	17.2	Sep 22	-	(100\%)
Jul 20	-	11.6			
Jul 24	-	11.5			
Aug 7	11:15	10.5			
Aug 10	11:30	8.7			
Aug 11	15:00	9.0			
Aug 16	15:00	11.5			
Aug 17	14:00	11.8			
Aug 30	10:00	5.0			
Aug 31	16:00	5.0			
Sep 7	11:30	5.5			

${ }^{\text {a }}$ Measured at lake center with a field thermometer or thermister.
b Percent of lake ice covered, estimated visually.

Table 16. Methane Lake surface temperatures, 1977-1978 ${ }^{\text {a }}$.

Date	1977		1978		
	Time	$\begin{gathered} \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Date	Time	$\begin{gathered} \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
Jun 28	11:40	$4.8(85 \%)^{\text {b }}$	Jul 17	12:00	4.0 (55\%)
Jul 2	12:00	6.0 (1\%)	Jul 20	08:30	(60\%)
Jul 4	15:00	7.2 (0\%)	Jul 21	18:00	(30\%)
Ju1 4	-	6.8	Ju1 22	08:40	(5\%)
Ju1 5	-	$7.6{ }^{\text {c }}$	Jul 23	08:30	(1\%)
Jul 8	10:30	9.7	Jul 25	11:00	5.0
Jul 9	16:45	11.0	Aug 1	16:00	9.0
Jul 11	17:30	10.5	Aug 4	09:20	8.5
Ju1 15	10:00	11.4	Aug 7	11:00	10.8
Ju1 16	19:00	12.0	Aug 7	20:00	10.0
Jul 18	14:45	15.9 c	Aug 8	09:00	10.0
Jul 18	-	$13.4{ }^{\text {c }}$	Aug 10	08:50	10.6
Jul 19	10:30	12.2 d	Aug 11	08:50	9.0
Ju1 20	12:20	$14.1{ }^{\text {c }}$	Aug 11	15:00	10.5
Ju1 22	10:50	$14.3{ }^{\text {c }}$	Aug 12	08:40	9.8
Jul 25	12:00	14.6	Aug 14	08:40	9.0
Jul 28	22:00	12.0	Aug 16	08:40	9.8
Aug 1	12:00	11.1	Aug 17	08:40	10.0
Aug 1	-	$11.9{ }^{\text {c }}$	Aug 18	08:50	9.5
Aug 2	09:15	10.5	Aug 21	08:55	8.2
Aug 3	-	$10.9{ }^{\text {c }}$	Aug 22	08:30	8.0
Aug 5	17:00	10.9	Aug 23	11:50	9.3
Aug 8	11:15	10.8	Aug 25	09:35	9.1
Aug 10	-	$12.8{ }^{\text {c }}$	Aug 28	08:40	9.2
Aug 17	09:10	11.0	Sep 4	11:00	8.0
Aug 17	-	$12.0{ }^{\text {c }}$	Sep 6	11:45	7.8
Aug 18	12:30	11.3	Sep 12	09:00	7.8
Aug 18	-	$11.5{ }^{\text {c }}$			
Aug 21	21:00	11.0			
Aug 29	-	$10.9{ }^{\text {c }}$			
Sep 10	-	$8.2{ }^{\text {c }}$			
Sep 22	-	$6.0{ }^{\text {c }}$			
Oct 8	-	$4.0{ }^{\text {c }}$			

Table 17. Spring Lake surface temperatures, 1979-1980 ${ }^{\text {a }}$.

1979			1980		
Date	Time	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Date	Time	Temperature (${ }^{\circ} \mathrm{C}$)
Jun 12	-	$(95 \%){ }^{\text {b }}$	Ju1 4	-	11.0
Jul 1	-	(0\%)	Ju1 9	-	9.0
Jul 3	14:00	10.0	Jul 15	-	14.0
Ju1 7	-	14.1	Ju1 17	-	12.0
Ju1 9	09:00	16.0	Ju1 21	-	13.0
Jul 9	11:05	16.0	Jul 24	-	9.8
Jul 12	-	18.2	Jul 25	-	9.5
Jul 18	-	11.0	Jul 31	-	12.2
Ju1 20	-	12.0	Aug 4	-	13.0
Ju1 24	-	11.5	Sep 5	-	10.6
Jul 31	-	10.5	Sep 12	-	5.5
Aug 7	-	11.0	Sep 19	-	2.0
Aug 13	-	10.0	Sep 23	-	(100\%)
Aug 20	11:30	9.2			

${ }^{a}$ Measured with a field thermometer, usually near shore at a deep area, unless otherwise indicated.
${ }^{\mathrm{b}}$ Percent of lake ice covered, estimated visually.
${ }^{C}$ Measured with a thermister at lake center.
${ }^{d}$ Measured with a field thermometer at lake center.

Table 18. Saqvaqjuac River temperatures, $1977-1980^{\circ}$.

Date	1977		1978			1979			1979		
	Time	$\begin{gathered} \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Date	Time	$\begin{aligned} & \text { Temperature } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Date	Time	$\begin{gathered} \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Date	Time	Temperature (${ }^{\circ} \mathrm{C}$)
Jul 23	11:15	14.2	Aug 21	10:00	8.0	Aug 2	10:30	11.1	Aug 30	09:00	5.6
Jul 28	12:00	13.8	Aug 21	15:00	8.0	Aug 3	10:00	11.1	Aug 30	19:00	6.0
Aug 9	16:00	12.3	Aug 22	11:00	9.0	Aug 3	21:00	10.0	Aug 31	09:00	5.5
Aug 11	11:00	11.5	Aug 22	16:00	9.0	Aug 4	09:30	10.6	Aug 31	-	6.1
Aug 30	-	10.0	Aug 23	09:00	9.5	Aug 4	21:00	11.0	Sep 1	09:00	5.0
Sep 10	-	7.5	Aug 23	14:00	9.8	Aug 5	11:30	11.5	Sep 2	-	5.5
Sep 23	-	6.0	Aug 24	10:00	9.0	Aug 5	18:30	12.0			
Oct 2	- 1978		Aug 24	12:00	9.0	Aug 6	09:00	11.0	1980		
			Aug 24	$15=30$	10.0	Aug 7	12:00	11.0			
			Aug 25	10:00	9.0	Aug 10	10:30	10.5	Jun 13	16:00	1.0
Jun 29	15:30	1.0	Aug 25	14:00	10.0	Aug 11	11:00	9.7	Jun 23	19:30	3.7
Jul 12	16:30	4.0	Aug 25	16:00	10.0	Aug 12	12:00	9.5	Jul 4	19:45	10.7
Aug 2	11:00	11.0	Aug 26	15:30	9.5	Aug 13	19:20	11.0			
Aug 3	-	11.0	Aug 27	10:30	9.6	Aug 14	10:40	11.0			
Aug 4	15:00	10.0	Aug 28	09:00	9.0	Aug 15	10:45	10.0			
Aug 7	10:30	10.0	Aug 28	14:00	9.0	Aug 16	-	11.0			
Aug 8	11:30	11.5	Aug 30	10:00	8.0	Aug 17	-	11.0			
Aug 9	11:15	11.6	Aug 30	13:30	8.0	Aug 18	-	10.0			
Aug 10	14:00	11.5	Aug 31	10:30	8.0	Aug 19	12:00	10.5			
Aug 11	10:20	10.0	Aug 31	20:30	7.7	Aug 20	10:00	9.4			
Aug 11	15:30	10.5	Sep 1	09:00	7.6	Aug 20	19:30	10.0			
Aug 12	11:30	10.5	Sep 2	10:00	7.2	Aug 21	10:30	10.0			
Aug 13	11:00	9.8	Sep 3	10:00	7.0	Aug 21	19:00	9.5			
Aug 14	10:00	9.8	Sep 4	09:00	7.0	Aug 22	09:00	10.0			
Aug 14	15:15	10.5	Sep 4	17:00	7.3	Aug 22	21:00	9.0			
Aug 14	20:00	10.0	Sep 5	08:30	8.0	Aug 24	09:00	8.6			
Aug 15	10:00	10.5	Sep 6	08:15	7.0	Aug 24	19:00	9.0			
Aug 15	16:30	11.0	Sep 6	11:40	7.0	Aug 25	09:00	7.2			
Aug 16	10:30	10.0	Sep 7	09:30	7.0	Aug 25	19:00	6.1			
Aug 16	15:30	11.0	Sep 8	19:30	7.4	Aug 26	10:40	5.8			
Aug 16	20:00	10.0	Sep 9	15:45	7.6	Aug 26	17:40	6.1			
Aug 17	09:00	10.0	Sep 11	14:00	7.8	Aug 27	09:30	6.5			
Aug 18	10:10	9.5	Sep 12	19:00	7.7	Aug 27	18:50	7.0			
Aug 18	15:00	9.5	Sep 13	18:30	7.6	Aug 28	09:30	7.0			
Aug 19	10:00	9.0	Sep 19	12:10	6.0	Aug 28	15:30	7.0			
Aug 20	14:00	9.0	Sep 20	16:50	5.0	Aug 29	09:30	7.8			

[^6]Table 19. Depth to frost at various locations near Saquaqjuac camp, 1977-1979.

		1977, dept	
Location ${ }^{\text {a }}$	Jul 2	Jul 20	Aug 12
1	49	73	82
2	21	-	-
3	21	73	94
4	46	-	94
5	54	76	-
6	-	64	76

1978, depth (cm)

Location $^{\text {b }}$	Jul 3	Jul ll	Jul 25	Aug 5	Aug 17	Sep 4
A	49	51	55	79	73	97
B	51	51	41	53	119	>152
C	31	-	57	62	74	90
D	32	-	50	60	74	88

$$
\text { 1979, depth }(\mathrm{cm})
$$

Location $^{\text {b }}$	Jun 5	Jun 30	Aug 10
A	21	-	78
B	34	57	-
C	30	45	91
D	26	50	91

$a_{\text {Locations (all within } 200 \mathrm{~m} \text { of camp) are in different types of overburden, comprising }}$ the range of unconsolidated materials in the vicinity.
bsame locations 1978, 1979:
A: clayey, sandy gravel and cobbles under shallow organic cover.
B: l.5m of clayey, sandy gravel over bedrock, shallow organic cover, watersaturated in spring.
C: silty-clay in frost-boil, no organic cover.
D: gravel and clay under moss cover.
-

Table 20. Depth to frost at various locations near Meadow, 1978-1980.

Location ${ }^{\text {a }}$	1978, depth(cm)			
	Jul 25	Aug 5	Aug 17	Sep 1
1	-	81	81	87
2	-	-	42	50
3	-	75	-	85
4	75	112	119	>130
5	36	-	-	127
6	58	90	98	> 130

	1979, depth(cm)			
Location	Jun 7	Jun 19	Jul 11	Aug 17
A	17	28	55	69
B	23	53	74	96
C	51	63	56	>100
D	40	57	91	101
E	24	-	57	-
F	27	35	73	95
G	48	67	55	>110
H	27	59	-	-
I	18	36	73	105

1980, depth(cm)

	1980, depth(cm)			
Location	Jun 7	Jun 18	Jul 2	Jul 30
A	24	34	55	>115
B	17	44	73	103
C	37	39	106	>115
D	29	58	98	-
E	27	61	-	84
F	20	40	86	-
G	37	75	106	>115
H	26	56	98	-
I	20	40	85	-

${ }^{\text {a }}$ See Figure 9 for locations. Sites in gravelly-clay or clay with cobbles under shallow ($<0.2 \mathrm{~m}$) organic cover (fen-peat and moss), comprising the range of unconsolidated materials and degrees of near-surface water saturation.

Table 2l. Meadow snow survey results, 1978.

Part of basin ${ }^{\text {c }}$	Area (ha)	Snow depth (cm)			Snow density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$			Snowpack water equivalent (m3)	Date of Survey
		Mean	$\mathrm{n}^{\text {a }}$	SD	Mean	n	SD		
Upper	5.03	21.5	145	12.7	0.40	18	0.05	4330	May 18
Sloping sides	5.03	35.8	89	21.4	0.40	35	0.09	7200	May 19
Lower	5.03	36.7	115	12.1	0.39	53	0.06	7200	May 19
Snow cliff	0.31	$206{ }^{\text {b }}$	41	-	0.48	6	0.05	3070	June 7
Total	15.4		390			112		21800	

${ }^{\text {a }}$ Number of sample points.
${ }^{b}$ Sample depth transects were plotted on a topographic map; isolines of equal snow depth were drawn and used to compute mean snow depth.

C Determined approximately from a topographic map of the basin.

Table 22. Meadow snow survey results, 1979.

Part of basin	Area (ha)	Snow depth (cm)			Snow density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$			Snowpack water equivalent (m ${ }^{3}$)	Date of Survey
		Mean	$\mathrm{n}^{\text {a }}$	SD	Mean	n	SD		
Main area	15.1	28.3	663	21.8	0.31	17	0.04	13250	April 4
Snow cliff	0.3	$175^{\text {b }}$	13	-	$0.31{ }^{\text {c }}$	-	-	1630	April 5
Total	15.4		676			17		14880	

[^7]Table 23. Saquaqjuac air temperature data (${ }^{\circ} \mathrm{C}$) for 1977.

date		APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV
1	Max	---	---	---	16.5	14.0	----	---	---
	Min	---	---	---	6.0	5.5	---	---	---
2	Max	---	---	---	15.0	11.0	---	---	---
	Min	---	---	---	7.0	5.5	---	---	---
3	Max	---	---	---	13.0	14.0	---	---	---
	Min	---	---	---	7.0	5.5	---	---	---
4	Max	---	---	---	11.0	10.5	---	---	---
	Min	---	---	---	7.0	6.0	---	---	---
5	Max	---	---	---	13.0	9.5	---	---	---
	Min	---	---	---	5.0	4.5	---	---	---
6	Max	---	---	---	10.0	9.0	---	---	---
	Min	---	---	---	6.0	4.0	---	---	---
7	Msx	---	---	---	11.0	13.0	---	---	---
	Min	---	----	---	6.5	3.0	---	---	---
8	Max	---	---	---	14.0	16.0	---	---	---
	Min	---	---	---	9.0	8.0	---	---	----
9	Max	---	---	---	16.5	20.0	---	---	---
	Min	---	---	---	8.0	9.0	---	---	---
10	Max	---	---	---	17.0	19.0	---	---	---
	Min	---	---	---	7.0	9.0	---	---	---
11	Max	---	---	---	13.0	10.5	---	---	---
	Min	---	---	---	5.5	8.0	---	---	---
12	Max	---	---	---	8.5	14.5	---	---	---
	Min	---	---	--	5.0	8.5	---	---	---
13	Max	---	---	---	11.5	14.5	---	---	---
	Min	---	---	---	6.5	8.5	---	---	---
14	Max	---	---	13.0	13.0	15.0	---	---	---
	Min	---	---	0.0	8.5	8.0	---	---	---
15	Max	---	---	18.0	15.5	10.5	---	---	---
	Min	---	---	7.0	8.0	5.5	---	---	-
16	Max	~--	---	18.0	14.0	13.5	---	---	---
	Min	---	---	5.5	9.0	5.5	---	---	--
17	Max	---	---	10.5	18.5	10.5	---	---	---
	Min	---	---	4.5	9.5	6.5	---	---	-
18	Max	---	---	10.5	16.5	12.0	---	---	---
	Min	---	---	4.0	9.5	6.0	---	---	---
19	Max	---	---	9.5	12.0	11.0	---	---	---
	Min	---	---	1.5	8.5	5.0	---	---	---
20	Max	---	---	8.5	16.0	9.5	---	---	---
	Min	---	---	1.5	8.5	6.0	---	---	---
21	Max	---	---	3.5	18.0	10.5	---	---	---
	Min	---	---	2.0	12.0	3.5	---	---	---
22	Max	---	---	11.0	16.0	11.5	---	---	---
	Min	---	---	1.5	9.0	5.0	---	---	---
23	Max	---	---	18.5	17.0	14.0	---	---	---
	Min	---	---	5.5	10.0	6.5	---	---	---
24	Max	---	---	18.0	19.0	13.5	---	---	-
	Min	---	---	6.5	9.5	6.0	---	---	---
25	Max	---	---	18.0	21.5	13.0	---	---	---
	Min	---	---	6.0	10.5	6.5	---	---	---
26	Max	---	---	9.5	22.0	---	---	---	---
	Min	---	---	2.0	11.5	---	---	---	---
27	Max	---	---	10.5	15.0	---	---	---	---
	Min	---	---	6.0	8.5	---	---	---	---
28	Max	---	---	12.0	16.0	---	---	---	---
	Min	---	---	4.0	8.5	---	---	---	---
29	Max	---	---	9.0	20.0	---	---	---	---
	Min	---	---	3.0	7.0	---	---	---	---
	Max	---	---	10.5	11.0	---	---	---	---
	Min	---	---	3.5	6.5	---	---	---	---
			---		11.0	---		---	
	Min		---		3.5	---		---	
Monthly									
Mean		---	---	---	11.4	---	---	---	---
Mean Max		---	---	---	14.9	---	---	---	---
Mean Min		---	---	---	7.9	-	---	---	---

Table 24. Saquaqjuac alr teraperatuce data (${ }^{\circ} \mathrm{C}$) for 1978.

vark		Janilary	FEGRUARY	HARCH	A181812	Hiay	June	JULY	nucust	SEPTEMber	votobek	nuvember	december
1	Nax.			-22	-23	-16	-	15.0	10.0	8.0			
	Mis.			-36	-33	-10	-7. 5	3.5	4.0	1.5			
2	Hax.			-27	-13	-6	6.5	7.0	4.0	6.0			
	Dif.			-33	-29.5	-13	-4.6	1.5	4.0	3.0			
1	Max.			-22	-9	-6. 5	-1.0	5.6	11.0	6.0			
	Btri.			-33	-29.5	-17.5	-5.5	1.0	0.0	1.5			
4	Max.			-24	-25	-6.5	0.5	5.5	12.0	8.0			
	Min.			-31	-32	-17.5	-5.0	1.0	0.5	4.0			
5	Hax.			-23	-25	-3	-2.5	4.0	10.5	9.5			
	ilin.			-31	-33	-11.5	-7.0	1.0	8.5	4.5			
0	Max.			-27	-18	-4. 5	-2.5	2.0	15.0	7.5			
	Min.			-30	-29	-8.5	-10.0	0.0	7.5	3.0			
7	max.			-28	-21.5	-1.5	0	3.5	17.5	6.0			
	Min.			-36	-31	-4.5	-9.0	0.5	0.0	4.0			
	Max.			-28	-23.5	-2.5	-1.5	3.5	11.5	5.0			
	Min.			-35	-32	-17	-8.5	2.0	5.0	2.5			
y	max.			-34	-23	-12	-2.0	11.5	12.5	8.5			
	Min.			-36	-30.5	-22	-7.5	2.5	7.5	2.0			
10	max.			-29	-9	-11	0	17.0	13.5	7.0			
	Sill.			-36	-11.5	-16	-3.5	5.5	6.5	0.5			
11	ilax.			-29	-8.5	-11	0.5	12.0	13.5	7.0			
	Min.			-36	-11.5	-23	-7.5	3.0	3.0	1.0			
12	Max.			-28	-5.5	-15	-2.0	10.0	10.0	12.0			
	Min.			-34	-10.5	-24.5	-5.5	4.5	3.5	2.5			
13	Max.			-20	-6	-12.5	1.5	10.0	9.0	10.5			
	Min.			-29	-14	-23	-2.5	5.0	2.0	4.0			
14	max.			-26	-9	-9.5	4.5	11.5	10.5	10.0			
	Min.			0	-18	-17.5	0.5	3.0	5.0	0.5			
1	Max.			-25	-15	-2.0	5.0	11.5	17.5				
	ilin.			-33	-25	-11.0	0.5	3.0	6.0				
16	2.nx.			-30	-15.5	-0.5	4.0	11.0	11.5				
	Bin.			-34	-21.5	-13.0	1.0	2.0	7.0				
17	Max.	.		-25.5	M	-10.0	3.0	15.0	12.5				
	Min.			-35.5	-21	-19.0	0.5	4.0	5.5				
18				-28		-9.0	4.0	12.0	9.0				
	Min.			-34	-25	-19.0	-2.0	3.5	4.0				
19	Max.			-27.5	-16	-8.0	4.0	10.0	8.5				
	Min.			-36.5	-24	-16.5	-1.0	4.5	4.0				
20	Max.			-30.5	-13	-5.0	3.0	10.0	10.0				
	Min.			-37	-22.5	-16.0	0.0	4.5	3.5				
21	Max.			-31.5	-13	-2.5	4.5	11.0	8.0				
	Min.			-37.5	-20	-16.0	-0.5	4.0	1.0				
22	tax.			-29	-10.5	-6.5	6.0	10.5	10.5				
	Nil.			-36.5	-27	-14.0	0.5	4.5	2.5				
23					-16	-2.5	5.0	12.5	10.0				
	Hin.			-34.5	-25	-10.5	0.5	4.0	5.0				
$2{ }^{11}$	Max.			-27	-11	-6.0	6.0	12.5	18.0				
	Mill.			-37.5	-25	-14.5	1.0	4.5	2.5				
2)	Nax.			-29	-11	-5.5	5.0	16.0	0.5				
	Min.			-36	-21	-10.5	1.0	6.0	2.5				
20				-27	-8	-2.5	8.5	11.0	10.0				
	ㄴ́r.			-33	-20	-6.0	0.5	6.6	4.5				
27	max.				-13.5	-2.0	3.0	12.1	10.0				
	Min.			-32.7	-23.5	-3.5	0.0	4.5	6.0				
28				-22.5		-2.0	5.0	14.0					
	ilia.			-30.8	-24.5	-5.0	0.0	0.5	5.5				
24	Max.			-15.4	-14	0.3	6.5	12.5	8.5				
	Min.			-27.8	-24	N	1.0	0.0	3.0				
30	Nax.			-15.4	-12	1.5	11.5	15.5	5.5				
	Min.			-27	-19.5	-10.0	2.5	7.0	1.5				
11	Nax.			-23		-3.5		13.5	4.5				
	Min.			-32.5		-8.5		4.0	0.0				
Sionchly													
Nean				-30.1	-18.8	-9.8	0.3	7.0	7.6				
				-26.3	-11.9	-5.4	3.2	10.4	10.7				
$\therefore \cdot$	Hin.			-33.9	-23.8	-14.3	-2.6	3.6	4.5				

Table 25 Saqualjuac dir cemprrature daca (${ }^{\circ}(:)$ for 1979.

WTE		AM	Way	HN	uUL.	Ang	SEM		sov
1	Hax.	--...	---	3.0	15.0	12.3	7.5	-	--
	Min.	---	---	1.0	4.5	6.0	2.0	---	-
2	max.	-	---	3.0	18.0	9.0	8.0	---	---
	Mı.	---	---	1.0	5.0	7.5	2.0	---	---
3	Max.	---	-	7.5	23.0	12.5	5.0	---	---
	Hen.	---	---	0.0	8.5	6.0	3.5	---	---
4	Max.	---	---	5.5	15.0	16.0	7.0	---	---
	Hin.	---	---	0.5	6.5	6.5	2.0	---	---
5	Hax.	---	---	4.5	28.0	17.5	7.0	---	--
	\#ir.	---	---	1.0	10.0	7.5	1.5	---	---
6	Max.	---	--	2.0	22.0	10.5	10.0	---	---
	Min.	---	---	-1.0	8.0	5.5	2.0	---	---
7	Max.	---	---	0.5	28.5	14.0	12.5	---	--
	Min.	---	---	-1.5	6.0	6.0	2.0	-	-
8	Max.	---	---	0.5	24.5	12.5	---	---	--.
	Min.	---	---	-1.5	14.5	5.5	---	---	---
9	Max.	---	---	1.5	17.0	12.5	-	---	-
	Min.	---	---	-4.0	9.5	4.5	--	---	-
10	Max.	---	---	6.0	14.5	10.5	---	---	---
	Hin.	---	---	-1.5	8.0	6.0	---	---	---
11	Max.	---	---	5.5	16.0	9.0	---	---	---
	Min.	---	---	-3.0	8.0	4.5	--	---	---
12	Max.	---	---	15.0	24.5	12.5	---	---	-
	Min.	---	---	-1.5	10.0	5.0	---	---	---
13	Max.	---	---	11.0	20.0	16.0	---	---	---
	Min.	-	----	2.0	12.0	6.5	--	---	---
14	Max.	---	---	9.0	16.5	16.5	---	---	---
	Min.	---	---	0.5	8.0	6.0	---	---	---
15	Max.	---	---	16.5	11.5	11.5	---	---	---
	Min.	---	---	1.5	6.0	7.0	---	---	---
16	Max.	---	---	9.0	14.0	10.0	---	---	$\therefore-$
	min.	---	---	3.0	5.0	6.5	---	---	---
17	Max.	---	---	8.5	15.0	15.5	---	---	---
	Min.	---	---	2.5	7.5	6.0	---	---	---
18	Max.	---	---	6.5	13.0	9.5	---	---	--
	Min.	---	---	0.0	4.5	1.0	-	---	--
19	Max.	---	---	6.5	14.0	11.0	---	---	-
	Min.	---	---	0.0	7.0	1.0	---	---	-
20	Max.	---	---	10.0	14.0	11.0	---	---	-
	Min.	---	---	1.5	7.5	6.5	---	---	---
21	Max.	---	--	8.5	14.0	10.0	---	---	-
	Min.	---	---	3.0	6.0	5.0	---	---	-
22	Max.	---	---	8.5	12.0	11.0	\cdots	---	-
	Min.	---	---	0.0	5.5	5.0	---	---	
23	Max.	---	---	6.0	11.5	13.5	---	---	---
	min.	---	---	1.5	7.0	5.5	---	---	---
24	Max.	---	---	8.0	11.5	8.5	---	---	-
	Min.	---	---	1.5	6.0	5.0	---	---	---
25	Max.	---	---	10.5	12.0	5.0	-	---	--.
	Min.	---	---	1.5	7.5	1.5	---	---	-.
26	Max.	---	---	11.0	12.5	6.0	---	---	---
	Min.	---	---	4.0	8.0	0.5	---	---	---
27	Max.	---	-	8.5	11.0	3.5	--	--	---
	min.	---	---	2.0	7.0	1.0	---	---	-
28	max.	---	1.0	13.0	12.0	5.0	---	---	-
	min.	---	0.0	3.0	6.5	1.5	---	---	-
29	Max.	---	3.0	16.5	12.5	5.0	-	---	----
	Min.	---	0.0	4.5	5.0	1.0	---	---	---
30	Max.	---	2.5	16.0	12.0	3.0	--	---	---
	Min.	---	0.5	5.5	7.5	0.0	---	---	---
31	Max.		9.5		14.0	5.5		--	
	Min.		-2.5		6.0	0.0		---	
Monthly Mean									
		---	---	4.4	11.8	7.4	---	---	---
Mean Max.		---	---	8.0	16.1	10.5	--	--	---
Mean Min.		---	---	0.9	7.4	4.4	---	---	---

Table 26. Saqvaqjuac air temperature data (${ }^{\circ} \mathrm{C}$) Eor 1980.

DAT		APR	MAY	JuN	JUL	aUg,	SEP	OCT	NOV
1	Max	---	---	7.0	12.0	16.0	14.5	-б.6	-16.5
	Min	---	---	-4.0	3.5	8.0	6.5	-12.0	-23.0
2	Max	---	---	2.0	14.5	12.5	12.5	-3.0	-14.5
	Min	---	---	-1.0	3.0	8.0	6.0	-9.5	-24.0
3	Max	---	---	5.0	18.0	15.0	10.5	-2.0	-7.5
	Min	---	---	-4.0	5.0	8.5	6.0	-7.5	-24.5
4	Max	---	---	2.5	10.0	15.0	11.5	0.0	-17.0
	Min	---	---	-1.0	6.5	9.5	9.0	-6.0	-20.0
5	Max	---	---	0	14.0	13.5	15.0	1.0	-8.0
	Min	---	---	-4.5	6.5	8.5	2.0	-3.5	-24.0
6	Max	---	---	-1.0	10.0	16.0	11.0	0.5	-7.5
	Min			-5.5	5.0	8.0	4.5	-1.0	-23.0
7	Max	---	---	1.5	7.5	11.0	8.0	-1.5	-14.0
	Min	---	---	-4.0	4.0	9.0	4.0	-2.5	-18.0
8	Max	---	---	3.0	5.5	10.0	8.0	-4.0	-19.5
	Min	---	---	-3.5	3.5	6.0	6.5	-9.0	-19.0
9	Max	---	---	7.0	10.0	14.0	3.0	-3.0	-17.0
	Min	---	---	0	2.5	7.0	2.5	-12.0	-25.0
10	Max	---	---	5.0	14.5	12.5	4.5	-3.0	-8.0
	Min	---	---	1.0	4.0	8.5	0.5	-11.5	-21.5
11	Max	---	---	7.5	10.5	17.5	5.0	-3.5	-8.5
	Min	---	---	-1.5	5.0	10.5	0.5	-9.0	-18.5
12	Max	---	---	6.0	5.0	17.5	4.5	-4.0	-3.0
	Min	---	---	0.5	3.0	9.5	0.5	-11.0	-11.0
13	Max	---	---	11.0	9.0	18.5	3.0	-9.5	-3.0
	Min	---	---	1.5	3.0	8.0	-1.5	-16.0	-8.0
14	Max	---	---	14.5	8.0	19.0	2.0	-4.5	-3.5
	Min	---	---	2.0	4.5	9.0	-2.5	-17.0	-12.0
15	Max	---	---	12.5	11.5	23.5	2.0	-3.5	-8.0
	Min	---	---	4.0	7.5	10.5	-2.5	-16.5	-11.0
16	Max	---	-4.0	9.0	13.5	23.0	-0.5	-2.0	-18.0
	Min	---	-12.0	2.5	9.5	8.0	-2.0	-8.0	-20.0
17	Max	---	2.5	17.0	16.5	16.0	2.0	-2.0	-3.0
	Min	---	-10.5	2.0	8.0	9.0	-5.5	-4.5	-32.0
18	Max	---	1.0	13.0	$13.0{ }^{\text {E }}$	19.5	3.0	-7.0	-9.5
	Min	---	-5.5	3.5	9.5	11.0	-4.0	-6.5	-23.0
19	Max	---	-1.0	12.0	$14.0{ }^{\mathrm{E}}$	10.0	5.0	-2.0	-23.0
	Min	---	-4.5	1.5	9.0	9.0	-3.0	-1.0	-25.5
20	Max	---	-1.5	7.0	$15.0{ }^{\text {E }}$	9.5	4.0	-1.0	-26.5
	Min	---	-4.0	1.5	9.0	7.5	0.0	-5.0	-30,5
21	Max	---	0	6.0	$15.0{ }^{\text {E }}$	$10.5{ }^{\text {E }}$	-1.0	-2.0	-31.0
	Min	---	-3.5	-0.5	8.0	7.0	-3.5	-4.0	-32.5
22		---	1.5	3.5	11.5	$10.5{ }^{\text {E }}$	-3.0	-9.5	-33.0
	Min	---	-2.5	0	5.5	7.0	-6.5	-11.5	-38.0
23	Max	---	2.5	6.5	11.0	$8.0{ }^{\text {E }}$	-3.5	-8.0	-33.0
	Min	---	-5.0	-1.0	4.0	7.0	-5.5	-15.0	-37.0
24	Max	---	0.5	9.5	11.5	$11.0{ }^{\text {E }}$	-2.0	-9.5	-32.5
	Min	---	-7.0	2.0	4.0	7.0	-7.0	-14.0	-37.0
	Max	---	2.0	13.0	13.0	$9.0{ }^{\text {E }}$	-2.0	-10.0	-33.0
	Min	---	-5.0	4.0	5.5	8.0	-8.0	-17.0	-37.0
	Max	---	3.5	17.5	14.0	$13.5{ }^{\text {E }}$	0.0	-6.0	-30.0
	Min	---	-1.0	4.0	4.5	6.0	-9.0	-16.5	-37.0
	Max	---	1.5	15.5	12.5	11.5	-2.0	-9.0	-6.0
	Min	---	-3.5	6.0	5.5	5.5	-3.0	-11.0	-35.5
	Max	---	-0.5	13.5	14.5	16.0	-1.5	-9.0	-5.0
	Min	---	-3.0	4.0	5.0	5.0	-6.5	-17.0	-34.0
	Max	---	0.5	13.5	12.5	10.0	-7.0	-3.0	---
	Min	---	-3.0	4.5	7.0	8.0	-12.5	-18.5	---
30	Max	---	-2.0	11.5	10.0	10.0	-6.5	-7.0	---
	Min	---	-5.0	4.0	8.0	6.5	-15.0	-15.0	---
31	Max		0.5		14.0	11.5		-17.0	
	Min		-8.5		7.0	6.5		-19.5	
Monthly									
		---	---	4.5	8.8	10.9	3.3	-4.8	---
	an Max	---	---	8.4	12.0	13.9	-1.6	-10.6	---
	an Min	---	-	0.6	5.7	8.0	1.7	-7.7	---

[^8]Table 27. Precipitation (mm) at Far Lake, 1978-1980.

	1978			1979					1980			
Date ${ }^{\text {a }}$	Ju1	Aug	Sep	May	Jun	Ju1	Aug	Sep	May	Jun	Ju1	Aug
1	b	-	-		0.2	-	-	-		-	10.4	-
2	-	-	-		4.2	-	1.4	-		-	18.4	-
3	-	-	-		0.2	-	1.0	12.8		-	-	-
4	-	-	-		-	-	-	3.8		-	-	-
5		-	-		-	-	1.4	0.2		-	-	-
	\downarrow_{*}											
6	$24.4{ }^{*}$	-	0.6		-	-	5.2	-		s	1.0	-
7	16.8	-	2.4		-	-	-	-		2.25	12.8	4.8
8	1.2	-	-		5.6	-	-	1.4		-	15.0	0.8
9	-	-	-		$0.6{ }^{\text {s }}$	-	2.0	-		-	-	0.2
10	-	-	0.2		0.2	-	0.6			-	-	-
11	-	0.2	-		-	-	-			-	0.6	-
12	-	0.4	c		-	-	-			-	13.2	0.6
13	-	-			-	-	-			-	4.6	-
14	-	0.8			-	-	0.2			-	-	-
15	-	-			-	-	2.2			-	-	-
16	-	-			0.6	-	-			-	0.4	-
17	-	1.2			-	~	0.2			-	-	1.0
18	1.6	0.6			$0.8{ }^{5}$	0.2	3.4			-	18.0	1.4
19	8.2	2.8			-	-	-			-	2.6	2.2
20	-	-			-	-	-		-	-	-	5.6
21	-	-			-	-	-		-	-	-	-
22	0.6	1.0			0.4	0.4	-		-	-	7.8	35.2
23	-	0.6			-	0.8	4.2		-	-	-	5.0
24	-	-			-	0.4	14.2		-	-	0.6	
25	-	-			-	-	-		-	-	0.2	
26	-	-			0.2	-	-		-	-	0.2	
27	-	0.8		5	-	0.4	$1.6{ }^{\text {s }}$			-	3.0	
28	-	7.4		$4.4{ }^{\text {s }}$	-	1.0	7.4		$\downarrow{ }_{\text {* }}$	1.8	3.2	
29	-	14.0		-	-	0.4	4.05		$6.8{ }^{\star}$	0.2	-	
30	3.0	0.8		-	-	-	$4.6{ }^{\text {S }}$		-	0.2	-	
31	-	-		-		0.2	3.6		-		-	
Total	55.8	30.6			13.0	3.8	57.2			4.4	112.0	

[^9]Table 28. Precipitation (mm) at the Meadow watershed, 1978-1980.

	1978				1979					1980				
Date ${ }^{\text {a }}$	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep
1		-	-	-		,	-	1.0	-		-	6.8	-	-
2		-	-	-		\downarrow	-	1.2	-		-	16.8	-	
3		-	-	-		5.6*	-	0.2	9.6		-	-	-	
4		-	0.4	-		-	-	-	3.0		-	-	-	
5		19.0^{5}	-	-		-	-	1.8	0.2		-	-	-	
6		13.8	-	0.2		-	-	7.0	-		-	1.4	-	
7		18.4	-	4.4		-	-	-			$2.3{ }^{\text {s }}$	13.2	3.4	
8		0.8	-	-		$6.6{ }^{\text {s }}$	-	-			-	12.4	0.2	
9		-	0.2	-		$0.8{ }^{\text {s }}$	-	1.6			-	-	0.2	\checkmark
10		-	-	0.2		-	-	-			-	-	-	63.0*
11		-	-	-		-	-	-			-	0.2	-	
12		-	-	-c		-	-	0.2			-	16.6	0.6	
13		-	-			-	-	-			-	5.4	-	
14		-	0.4			-	-	-			-	-	-	
15		-	-			-	-	0.6		$0.8{ }^{\text {s }}$	-	-	-	
16		-	-			0.4	-	-		-	-	1.0	-	
17		-	1.4			-	-	0.2		-	-	0.2	0.2	
18		2.6	0.6			$2.0{ }^{\text {s }}$	0.2	3.8		-	-	17.0	2.6	
19	-b	8.4	3.2			-	-	-		-	-	2.2	1.8	
20	-	-	-			-	-	-		-	-	-	5.0	
21	-	-	-			-	-	-		-	-	-	-	
22	2.6	-	1.2			-	0.2	-		-	-	8.8	33.6	
23	-	0.4	1.0			-	1.2	5.4		-	-	-		
24	3.0	-	-			-	1.6	11.8		-	-	0.2		
25	0.4	0.2	-			0.6	2.2	-		-	-	-		
													\checkmark	
26	3.0	-	-			0.4	-	-		-	-	-	7.2*	
27	3.2	-	2.8			-	0.2	$2.2{ }^{\text {S }}$		-	-	3.0	-	
28	-	-	8.0			-	0.6	10.2		\downarrow s	1.4	2.6	-	
29	-	-	13.4		\downarrow	-	-	4.2 s		12.4* ${ }^{\text {s }}$	-	-	7.8	
30	-	2.4	0.8		$12.8 *^{5}$	-	0.8	$4.4{ }^{\text {S }}$		-	1.4	-	7.4	
31		-	-		-		-	4.2		-		-	-	
Total		66.0	33.4			16.4	7.0	60.0			5.1	107.8	70.0	

${ }^{\text {a }}$ Days are calendar days which end at midnight.
bate gauge set up.
${ }^{\text {c }}$ Date gauge taken down.
*Total for number of days indicated by arrow.
$s_{\text {Water }}$ equivalent of snow or mixed rain and snow.

Table 29. Precipitation (mm) at Saquaqjuac camp, 1977-1980.

	1977			1978				1979					1980				
Date ${ }^{\text {a }}$	Jun	Jul	Aug	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep
1		-	7.6		-	-	-		0.8	-	-			-	21.5	-	-
2		-	1.8		-	T	0.2		7.6	-	1.0			0.2^{5}	1.2	-	-
3		-	1.8		-	-	T		T	-	0.3			-	T	-	-
4		T	2.5		2.2	0.4	-		T	-	-			-	-	-	-
5		T	1.0		27.1	-	T		-	-	1.4	\downarrow		-	-	-	-
6		T	-		13.6	-	0.2		-	-	6.8	15.4*		Ts	5.2	2.2	-
7		0.2	1.5		13.3	-	2.8		5.3 es	-	-	1.4		1.85	23.4	2.8	7.4
8					T	T	.		T	-	-				1.4		$30.0{ }^{\text {e }}$
9		-	-		-	0.2	-		$0.8{ }^{\text {e }}$	-	2.3			-	-	-	27.3 es
10		1.0	-		T	0.3	-		-	-	0.2			T	-	-	T
11		5.3	0.5		-	T	-		-	-	-			-	6.2	-	9.2
12		5.3	-	,	T	0.2	-		-	-	-			-	14.4	1.6	$2.0{ }^{\text {e }}$
13	-_c	11.9	-	0.9	T	0.4			-	T	-			-	-	-	-
14	-	0.5	-	2.1	T	.			-	-	0.7		-	-	-	-	-
15	-	6.1	-	T	I	-			0.5	-	.		$0.8{ }^{\text {e }}$	-	-	-	-
16	-	0.2	T	7.3	T	-			-	-	-		-	-	2.0	T	-
17	0.8	-	T	1.8	-	1.4			1.8^{5}	T	4.0		-	-	-	2.8	
18	-	-	1.3	-	6.2	4.0			-	-	-		-	-	-	-	-
19	-	-	-	-	6.0	-			-	-	-		T ${ }^{\text {S }}$	-	-	8.0	$0.8{ }^{\text {s }}$
20	1.5	-	0.5	T	1.0	0.2			-	-	-		T	-	20.6	-	
21	11.4	-	-	T	-	T			-	-	-		-	-	4.2	-	
22	-	-	0.2	2.7	0.7	2.0			-	0.8	-		T ${ }^{\text {s }}$	-	4.0		
23	-	0.5	-d	0.4	-	-			-	0.4	15.2		-	-	T		
24	-	-		2.6	-	-			-	$1.0{ }^{\text {e }}$	0.2		-	-	T	\downarrow *	
25	$\mathrm{T}^{\text {f }}$	-			1.0	-			0.6	0.3	-		-	-		45.4*	
26	17.8	-		4.6	-	T			T	T	Ts		-	-	-	1.4	
27	-	2.5		0.1	0.2	2.6		-	-	0.6	3.8		-	-	T	-	
28	0.2	-		-	-	18.2		2.3	-	1.4	9.8			1.6	6.6	-	
29	0.8	3.8			0.3	6.5		T	-	-	1.35		4.8*	T	6.6	16.3	
30	0.2	3.3		-	2.2	0.2		-	-	0.5	$8.0{ }^{\text {s }}$		-	5.1	-	1.8	
31		-			-			-		T	0.4		-		-	.-	
Tota ${ }^{\text {b }}$	(32.8)	40.9	(18.9)	(22.8)	74.4	37.1	(3.4)	(2.4)	17.8	5.4	55.5	(16.8)	(5.9)	9.0	111.1	82.4	(76.8)

${ }^{\text {a }}$ In 1977, precipitation day ends at 22:30; in 1978,'79 and'80 precipitation days ends at 08:30 the following day.
${ }^{\mathrm{b}}$ Trace amount assumed to be 0.1 mm ; value in brackets is for partial month.
${ }^{c}$ Date gauge set up.
${ }^{\text {d }}$ Date gauge taken down.
${ }^{\text {Estimated from other nearby gauges. }}$
${ }^{\mathrm{f}}$ Trace amount, $<0.2 \mathrm{~mm}$.
*Total for number of days indicated by arrow.
$\mathrm{s}_{\text {Measured }}$ water equivalent of snow or mixed rain and snow.

Table 30. Mean daily relative humidity (\%) at Saquaqjuac camp, 1978-1980.

Date	1978				1979					1980				
	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep
1		66	80	73	-	81	78	84	75	-	75	80	77	74
2	75	77	80	86	-	89	55	89	81	-	85	76	77	75
3	86	76	72	79	-	84	62	84	90	-	70	66	72	78
4	75	78	78	75	-	84	77	71	86	-	76	80	69	89
5	78	93	61	88	-	79	75	84	84	-	75	73	81	69
6	78	91	67	88	-	90	76	93	77	-	68	86	76	72
7	77	90	78	93	-	91	73	72	79	-	79	91	88	81
8	75	83	75	81	-	90	64	71	-	-	86	93	91	90
9	77	60	73	83	-	80	88	75	-	-	71	85	76	89
10	75	70	65	85	-	75	87	82	-	-	72	76	76	87
11	79	73	68	66	-	67	71	76	-	-	67	85	72	86
12	82	68	68	76	-	68	57	77	-	-	65	92	76	89
13	86	72	70	78	-	73	64	63	-	-	66	84	69	67
14	88	75	66	-	-	82	71	70	-	-	62	72	71	71
15	87	81	84	-	-	67	61	89	-	-	72	64	67	71
16	91	64	75	-	-	72	65	94	-	-	74	80	68	71
17	86	74	86	-	-	72	74	70	-	-	65	72	82	77
18	82	83	84	-	-	82	73	69	-	-	73	87	82	72
19	80	79	70	-	-	71	72	66	-	-	74	81	92	76
20	79	75	75	-	-	60	69	85	-	89	82	65	94	76
21	75	74	72	-	-	61	71	73	-	72	84	65	89	69
22	81	72	78	-	-	76	75	69	-	72	87	86	91	58
23	68	68	83	-	-	86	83	86	-	78	80	64	92	-
24	85	66	96	-	-	82	89	94	-	73	68	78	88	-
25	73	78	89	-	-	87	86	69	-	74	58	67	88	-
26	84	80	85	-	-	77	88	61	-	82	54	66	78	-
27	87	65	94	-	-	70	79	93	-	88	62	71	71	-
28	73	68	96	-	-	72	82	95	-	93	83	76	71	-
29	58	70	93	-	-	58	74	80	-	90	66	84	84	-
30	62	80	80	-	-	59	80	94	-	80	75	80	93	-
31		77	67		74		78	85		76		73	71	
Mean	78.7	75.0	77.7	-	-	76.2	74.1	79.5	-	-	72.5	77.4	79.7	

Table 31. Mean daily wind velocity (km / h) at the Saquaqjuac camp, 1977-1980a.

	1977			1978								1979					1980				
Date ${ }^{\text {b }}$	Jun	Jul	Aug	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep	May	Jun	Jul	Aug	Sep
1		23.5	33.9		24.1	9.3	11.7	24.7	15.3	16.0	9.4		23.1	14.0*	10.8	-		9.3	23.9	26.8	9.8
2		28.7	42.9		15.7	24.7	6.4	13.4	-	35.4	10.7		33.8	12.3	12.3	-		25.8	27.6	16.1	6.1
3		27.4	38.5		5.1	20.3	7.5	28.2	15.2*	36.3	12.9		19.0	15.7	20.9	-		25.3	11.4	18.5	13.1
4		24.6	28.2		10.3	13.4	11.7	32.0	25.4	35.6	11.2		7.9	13.6	22.0	-		11.2	11.9	27.1	8.0
5		15.7	13.2		4.0	29.9	7.7	37.7	41.7	19.3	11.4		13.0	16.3	16.5	-		15.5	16.9	24.9	13.3
6		17.9	12.6		3.3	15.2	14.7	31.0	24.9	16.5	23.9		28.6	12.8	27.6	23.3*		18.4	30.2	26.1	14.4
7		17.6	14.6		29.8	14.8	23.4	35.4	34.5	16.3	24.5		20.3	12.7	27.3	12.5		18.2	30.7	34.0	30.9
8		15.0	-		46.5	10.7	16.1	24.7	16.6	15.0	12.2		37.4	15.2	31.5			12.3	23.3	19.0	34.3
9		14.0	20.1*	18.4	36.0	26.5	6.7	16.0	22.2	14.9	10.0		15.2	14.2	33.1			16.8	22.9	14.4	39.3
10		13.0	19.6	16.8	21.4	27.6	18.4	15.3	30.9	21.9	10.6		27.9	8.6	20.8			21.1	10.5	9.3	20.1
11		21.5	36.7	22.0	26.2	45.4	20.7	18.5	26.3	26.8	13.9		24.5	14.1	-			18.4	21.6	11.0	17.4
12		22.2	39.8	17.1	45.6	39.5	17.0	20.2	22.8	33.6	25.9		16.0	16.2	11.0*			18.5	11.8	8.5	21.2
13		9.8	18.3	16.4	22.8	39.1	13.2	13.6	26.7	26.1			10.9	21.4	13.5			15.4	8.0	12.7	13.2
14		13.8	10.3	14.6	27.4	21.4	20.1	12.6	22.6	26.7			7.6	24.0	14.1			14.5	9.9	21.3	13.6
15		15.7	-	7.8	21.1	12.0	15.3	16.6	10.4	12.8			18.1	24.4	17.8			18.1	10.8	17.4	21.8
16	13.1	22.6	15.6*	10.0	18.4	11.5	12.1	14.0	11.3	29.3			20.8	31.8	18.9			19.6	22.5	34.7	31.2
17	21.1	28.2	23.7	8.0	24.0	21.6	22.1	18.6	11.3	16.6			20.1	40.4	26.8		20.4	24.9	14.4	35.4	19.3
18	10.5	12.1	22.5	4.2	42.8	23.6	14.1	22.6	28.3	27.2			10.6	29.4	21.4		8.5	12.5	-	12.6	14.8
19	11.6	14.8	22.2	12.9	35.9	12.2	14.7	31.2	29.3	31.5			11.1	17.4	27.3		20.1	12.1	-	24.0	23.1
20	14.1	14.0	10.9	14.3	16.1	22.0	25.3	29.1	31.4	26.7			13.3	19.7	21.5		24.0	12.7	14.5*	20.5	12.8
21	24.8	18.1	13.1	34.8	4.5	26.0	12.1	21.3	28.7	17.5			12.5	22.5	16.9		7.9	13.5	36.4	-	19.7
22	22.7	13.2	20.8	27.6	22.7	24.9	12.5	17.6	32.1	12.7			11.2	14.7	15.6		8.2	10.0	34.9	-	
23	12.2	25.2	19.9	23.2	33.8	29.9	31.3	19.0	28.9	14.3			13.4	10.6	33.7		21.6	10.3	32.0	-	
24	18.9	23.1	10.3	16.8	38.5	14.2	10.7	31.5	6.3	17.6			24.0	15.1	26.1		9.4	12.3	29.5	-	
25	12.2	16.2	18.0	28.0	34.5	29.9	20.0	23.2	25.7	18.0			10.6	12.0	13.4		12.3	12.1	23.9	30.7*	
26	13.5	26.4		24.6	19.5	16.9	30.0	26.7	20.3	16.3			33.1	14.4	17.1		14.7	17.1	19.6	24.8	
27	27.8	28.8		20.1	9.3	12.9	42.5	30.3	16.0	13.9			33.2	17.6	27.2		18.2	25.9	18.1	24.8	
28	15.6	37.8		21.1	15.3	8.4	19.5	31.0	15.4	-			14.4	15.7	24.8		25.2	13.9	15.2	25.4	
29	22.3	30.6			27.6	9.3	26.2	20.6	10.4	24.4*			11.3	16.0	10.9		35.8	12.2	15.8	36.9	
30	19.7	- ${ }^{\text {- }}$			26.5	30.5	29.4	11.4	18.1	21.8		33.1		23.7	23.7		38.9	11.7	22.6	28.5	
31		15.4*			20.1		20.7		12.1	14.5		18.0		15.4	33.4		19.4		25.2	14.7	
Mean		20.1			23.5	21.5	17.9	22.9	21.8	21.9			18.6	17.8	20.9			16.0	20.2	23.3	

 smaller hill next to camp called "radio tower hill".
 Except for July 9 to August 18, 1980, all data is calculated using exact time between readings.
*Mean for this day and previous day (s).

Table 32. Sumary of evaporation pan data for 1979, Saqvaqjuac camp.

Nores: 1.$\} \quad\{$ multiple brackers indicare total for more chan one day.
2. * ice on pan.
3. Mmissing data.
4. P-days with more than trace prectpication.
5. When compured net water loss results in a "negattve", zero is used.

Table 33. Summary of evaporation pan data for 1980, Saquaqjuac camp.

Date	MAY						JUNE			JULY			
	Net Water Loss (mon)	Mean Wind Speed (km/h)	Mean Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Mean Air Temp. (${ }^{\circ} \mathrm{C}$)	Net Water Loss (mm)		Mean Wind Speed (km / h)	Mean Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Mean Air Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Net Water Loss (mm)	Mean Wind Speed (km / h)	Mean Water Temp. (${ }^{\circ} \mathrm{C}$)	Mean Alr Temp. (${ }^{\circ} \mathrm{C}$)
1										6.4 P	23.9	10.0	7.5
2										3.9 P	27.6	8.8	9.8
3										5.3	11.4	15.5	12.2
4										4.1	11.9	13.2	8.2
5										5.8	16.9	13.0	9.5
6										3.3 P	30.2	9.0	7.0
7										3.5 P	30.7	6.5	5.5
8										0.3 P	23.3	4.8	4.0
9					3.6		16.8	6.2	4.0	0.8	22.9	6.2	7.0
10					3.8		21.1	4.8	1.8	4.1	10.5	13.2	9.8
11					5.1		18.4	6.8	4.0	2.5 P	21.6	8.8	6.8
12					4.3		18.5	6.0	3.8	0 P	11.8	5.5	4.0
13					5.1		15.4	9.5	6.5	2.5	8.0	8.5	6.8
14					5.8		14.5	12.2	9.2	3.8	9.9	12.0	7.8
15					4.6		18.1	9.5	7.5	5.8	10.8	16.5	10.5
16	Pan set	up June	, 1980		3.8		19.6	8.0	5.5	4.6 P	22.5	13.3	10.8
17					7.9		24.9	10.5	10.2	3.8	14.4	13.8	12.5
18					4.3		12.5	10.5	7.2	\} $\}$	\} 3	\} $\}$	
19					4.8		12.1	10.8	6.8	()	()	()	
20					3.0		12.7	7.2	3.2	10.4 P	14.5	12.8	10.8
21					3.0		13.5	7.2	3.0	6.6 P	36.4	10.5	10.2
22					1.8		10.0	7.5	1.2	0 P	34.9	7.0	7.8
23					2.5		10.3	8.2	4.2	8.6	32.0	7.2	7.5
24					4.6		12.3	11.5	6.8	2.0	29.5	7.0	8.5
25					4.6		12.1	11.8	8.5	6.4	23.9	8.8	8.8
26					6.9		17.1	13.0	11.8	5.6	19.6	11.0	9.8
27					6.9		25.9	12.0	9.8	0	18.1	9.3	8.8
28					2.0	P	13.9	8.5	9.0	4.1 P	15.2	10.5	10.8
29					5.1		12.2	11.8	8.8	3.6	15.8	13.8	10.2
30					3.3	P	11.7	12.0	7.5	5.3	22.6	9.8	8.5
31										3.3	25.2	12.5	11.0

Notes: 1. () multiple brackets indlcate total for more than one day.
2. P days with more than trace precipitation.
3. When computed net water loss results in a "negative", zero is used.

[^0]: ${ }^{\text {a }}$ Drainage area includes lake areas.

[^1]: Qalues shown with idme are instantaneous water levels measured at the time indicated. All other values are rean dally levels measured with a cunt lnuous water level recorder
 blevation eat mated from a manual measurement on this day.
 $C_{\text {May }} 17$ to June 6 values are estimated mean dally water levels based on frequent manual measurements.
 ${ }^{d}$ All elevationa are relative to benchark nesr the lake with an arbitrary elevation of 30.48 m (100.00 ft). Nctual e. evat ton of far f.ake above mean gea level is $18 \mathrm{~m}: 1 \mathrm{~m}$.

 Water fevel recorder not operating properly therefore value ia eatimated.

[^2]: " V alues shown with time are ingtantaneous water levels measured at the time indicated. All other values are mean dally levels measured with a continuous water level recorder. Elevations are in meters above gea level.
 $\mathrm{b}_{\text {Instantaneous measurement; time of observation unknown. }}$
 May 15 to June 15 values are mean dally eatimated water levela based on frequent manual measurements. June 16 to Septenber 18 values are mean dally levels measured with cont tnuous watex level recorder. Elevationa are in meterr above aea level.

[^3]: a Manual discharge measurement sometime on this day.
 ${ }^{\mathrm{b}}$ Visual estimate of seepage through snow plugged ontflow area.

[^4]: astimate based on Erequent manal measurements, supplemented by some recorded data.
 ${ }^{\mathrm{b}}$ No recorded or mamal data available; estimate based on a recongtructed hydrograph using precipitarion data.

[^5]: ${ }^{a}$ Manual discharge measurement.

[^6]: ${ }^{a}$ All temperatures taken with a small field themometer

[^7]: ${ }^{\text {a }}$ Number of sample points.
 the mean for the whole snow cliff was assumed to be 15% less than the 1978 mean of 206 cm .
 ${ }^{c}$ Mean snow cliff density was assumed to be equal to the mean for the rest of the basin.

[^8]: $\mathrm{E}_{\text {Estimated }}$ from recording thermograph.

[^9]: ${ }^{\text {a }}$ Days are calendar days which end at midnighe.
 bate gauge set up.
 ${ }^{C}$ Date gauge taken down.
 *Total for number of days indicated by arrow.
 $S_{\text {Water equivalent of }}$ snow or mixed rain and snow.

