

Chemical Characteristics of Selected Cape Breton Rivers, 1985

D. K. MacPhail, D. Ashfield and G.J. Farmer

Enhancement, Culture and Anadromous Fisheries Division Biological Sciences Department of Fisheries and Oceans Halifax, Nova Scotia, B3J 2S7

June, 1987

Canadian Data Report of Fisheries and Aquatic Sciences No. 654

Canadian Data Report of Fisheries and Aquatic Sciences

Data reports provide a medium for filing and archiving data compilations where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of data reports reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Data reports are not intended for general distribution and the contents must not be referred to in other publications without prior written authorization from the issuing establishment. The correct citation appears above the abstract of each report. Data reports are abstracted in *Aquaric Sciences and Fisheries Abstracts* and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-25 in this series were issued as Fisheries and Marine Service Data Records. Numbers 26-160 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Data Reports. The current series name was introduced with the publication of report number 161.

Data reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport statistique canadien des sciences halieutiques et aquatiques

Les rapports statistiques servent à classer et à archiver les compilations de données pour lesquelles il y a peu ou point d'analyse. Ces compilations auront d'ordinaire été préparées à l'appui d'autres publications ou rapports. Les sujets des rapports statistiques reflètent la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans. c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports statistiques ne sont pas destinés à une vaste distribution et leur contenu ne doit pas être mentionné dans une publication sans autorisation écrite préalable de l'établissement auteur. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports statistiques sont résumés dans la revue Résumés des sciences aquariques et halieuriques, et ils sont classés dans l'index annuel des publications scientifiques et techniques du Ministère.

Les numéros 1 à 25 de cette série ont été publiés à titre de relevés statistiques, Services des pêches et de la mer. Les numéros 26 à 160 ont été publiés à titre de rapports statistiques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 161.

Les rapports statistiques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Data Report of Fisheries and Aquatic Sciences No.654

June, 1987

CHEMICAL CHARACTERISTICS OF SELECTED CAPE BRETON RIVERS, 1985

D.K. MacPhail, D. Ashfield and G.J. Farmer

Enhancement, Culture and Anadromous Fisheries Division
Biological Sciences
Department of Fisheries and Oceans
Halifax, Nova Scotia
B3J 2S7

CONTENTS

LIST OF TAE	BLES.	• • •			•	•		•		•		•	•	•	•	•	i ·	ii
LIST OF ILL	USTRA	TIONS	S .		•	•		•		•		•	•		•	•		٧
ABSTRACT/RÉ	SUMÉ	• • •			•	•		•		•		•			•	•	v i	ii
INTRODUCTIO)N	• • •			•	•		•		•		•	•		•	•		1
MATERIALS A	AND ME	THODS	S .		•	•		•				•		•	•	•		1
ACKNOWLEDGE	EMENTS	• • •			•	•		•				•	•		•	•		1
REFERENCES.	• • •	• • •			•	•		•		•		•			•	•		
				LI	ST	0 F	ΤA	BLE	S									
TABLE 1.	Some system																•	3
TABLE 2.	Some syste																	3
TABLE 3.	Some syste																	4
TABLE 4.	Some syste																	4
TABLE 5.	Some River																•	5
TABLE 6.	Some durin																	5
TABLE 7.	Some River	chemi syst	ical cem	ch dur	ara ing	cte Má	eri ay	sti and	cs Ju	of ly,	the	In 85.	g o r	1 i s	h •		•	5
TABLE 8.	Some River	chemi syst	ical cem	ch dur	ara ing	cte Ma	eri ay	sti and	cs Ju	of ly,	the	No 85.	rth •	1 A	s p y	· ·	•	6
TABLE 9.	Some system																	6

TABLE 1	10.	Some chemical characteristics of the Framboise River system during May and July, 1985	7
TABLE 1	11.	Some chemical characteristics of Marie Joseph Brook during May and July, 1985	7
TABLE 1		Some chemical characteristics of the Grand River system during May and July, 1985	8
TABLE 1	13.	Some chemical characteristics of the River Tillard system during May and July, 1985	8
TABLE 1	14.	Some chemical characteristics of the River Inhabitants system during May and July, 1985	9

LIST OF ILLUSTRATIONS

FIG.	1.	Locati progra	ion of riv	vers i	nclι • •		in t	he s	amp	1 i r			•	•		10
FIG.	2.	Water	sampling	sites	o n	Rive	r De	nys		•	•	•	•	•	•	11
FIG.	3.	Water	sampling	sites	o n	Midd	le F	River	•	•	•	•	•		•	12
FIG.	4.	Water	sampling	sites	o n	Badd	eck	Rive	er.	•		•	•	•	•	1 3
FIG.	5.	Water	sampling	sites	o n	Nort	h Ri	ver		•	•	•	•	•	•	14
FIG.	6.	Water	sampling	sites	o n	Bara	choi	is Ri	ver	•	•	•	•			15
FIG.	7.	Water	sampling	site o	on]	India	n Br	ook		•	•	•			•	16
FIG.	8.	Water	sampling	site	on]	[ngon	ish	Rive	r.	•	•	•	•		•	17
FIG.	9.	Water	sampling	sites	o n	Nort	h As	sру R	ive	r.	•	•		•	•	18
FIG.	10.	Water	sampling	sites	o n	Salm	on F	≀iver	· .	•	•	•	•	•	•	19
FIG.	11.	Water	sampling	sites	o n	Framl	bois	se Ri	ver	•	•	•			•	20
FIG.	12.	Water	sampling	sites	o n	Mari	e Jo	seph	Br	ook	٠.	•	•	•	•	21
FIG.	13.	Water	sampling	sites	o n	Gran	d Ri	ver		•	•	•		•	•	22
FIG.	14.	Water	sampling	sites	o n	Rive	r Ti	llar	d.	•	•	•	•	•	•	23
FIG.	15.	Water	sampling	sites	on	Rive	r Ir	nhabi	tan	ts						24

			٠
			-
		·	

ABSTRACT

MacPhail, D.K., D. Ashfield and G.J. Farmer. 1987. Chemical characteristics of selected Cape Breton rivers, 1985. Can. Data Rep. Fish. Aquat. Sci. No. 654. vii + 24 p.

Chemical characteristics of 14 rivers located in the Cape Breton East management zone were measured on two occasions during 1985. Only limited information on the characteristics of these rivers previously existed, and the results of this study can be examined to aid in determining their sensitivity to acidic precipitation. In this regard, a number of Atlantic coast rivers in mainland Nova Scotia have become more acidic during at least the past 30 years, in response to increased acid loading by precipitation, and native salmon populations in some have become extinct. Salmon have been angled in all except one of the 14 study rivers during the 1980-85 period, and total catch per year in these rivers has represented from 6% to 14% of the annual totals recorded for Nova Scotia.

Key words: Atlantic salmon rivers, Cape Breton Island, Nova Scotia, water chemistry.

RÉSUMÉ

MacPhail, D.K., D Ashfield and G.J. Farmer. 1987. Chemical characteristics of selected Cape Breton rivers, 1985. Can. Data Rep. Fish. Aquat. Sci. No. 654. vii + 24 p.

En 1985, à deux reprises, on a mesuré les caractéristiques chimiques de 14 cours d'eau situés dans la zone est de gestion du Cap-Breton. On ne disposait jusqu'alors que d'une information limitée sur les caractères de ces rivières; on pourra examiner les résultats de cette étude, afin de déterminer la sensibilité de celles-ci aux précipitations acides. Dans le même ordre d'idées, un certain nombre de rivières du littoral atlantique de la péninsule de Nouvelle-Écosse sont devenues plus acides depuis au moins trente ans, en raison de l'accroissement de la charge acide introduite par les précipitations, et dans certaines, les espèces endémiques de saumons se sont éteintes. On a pêché du saumon dans 13 des 14 rivières étudiées, durant la période de l'étude (1980-1985), et le total annuel des prises y représentait 6% à 14% des totaux annuels enregistrés dans l'ensemble de la Nouvelle-Écosse.

·		
		•
		-
		·

INTRODUCTION

A number of mainland Nova Scotia rivers which drain to the Atlantic coast have become more acidic during at least the past 30 years in response to increased acid loading by precipitation (Watt et al. 1983). The most seriously acidified rivers are those found on bedrock composed of granite and/or greywacke, and in some rivers, the native populations of Atlantic salmon have become extinct. Rivers which lie on slate have higher pH values and the highest values are found for rivers which drain areas of carboniferous sediments. Watt et al. (1983) also demonstrated that the pH values of some rivers are inversely correlated with their rates of discharge, so that pH values are maximal during the late summer when discharge is lowest and minimal during the winter when discharge is usually greatest.

Previously, only limited information was available on the chemical characteristics of rivers located in Cape Breton Island. Thus, some of the chemical characteristics of 14 of these rivers were measured in 1985 during a period of high discharge and during one of low discharge. Selection of the two sampling periods was made to gain insight into the existing ranges of pH and alkalinity. The major accessible tributaries of the rivers were sampled on both occasions to provide information on the characteristics of the individual drainage areas.

A number of the study rivers lie on bedrock which belongs to the Windsor, Riversdale, Canso and Horton groups, and consists of sandstone or limestone and gypsum (Bujak and Donohoe 1980). These rivers were expected to possess significant acid-neutralizing capacity. However, other study rivers lie on granitic rocks, gneiss, schist, and bedrock belonging to the George River and Fourchu groups (Bujak and Donohoe 1980) which provide lesser amounts of acid-neutralizing capacity. Atlantic salmon were reported to have been angled in all study rivers except River Denys during the 1980-85 period (Swetnam and O'Neil 1984; O'Neil et al. 1985, 1986), suggesting that salmon populations in these rivers may not have been adversely affected by acidic precipitation.

MATERIALS AND METHODS

Sites on the Denys, Middle, Baddeck, North, Barachois, Ingonish, North Aspy, Salmon, Framboise, Grand, Tillard, and Inhabitants rivers and on the Indian and Marie Joseph brooks were visited during May and July of 1985 to obtain water samples. Samples were collected at each site in 500-mL polyethylene containers which had first been washed and then rinsed with deionized water. Samples taken for metal analyses were collected in 250-mL polyethylene containers which had been washed in a 50% HNO3 solution and then rinsed with deionized water. Each sample for metal analysis was preserved by the

addition of 1 mL of 50% \mbox{HNO}_3 solution. All chemical analyses of river water were performed upon return to the laboratory. A Metrohm Herisau pH meter was used to determine pH values for all sites within 24 hours of sampling. Total hardness, total alkalinity, chloride and sulfate were measured by using techniques outlined in Environment Canada (1981): total hardness as CaCO3, by EDTA titration to Eriochrome Black T colour change; total alkalinity as CaCO3, by potentiometric titration with H₂SO₄ to pH end points of 4.5 and 4.2; chloride, by the automated thiocyanate method; and sulfate, by titration with barium chloride, after adding thorin indicator. Specific conductance was determined at 25°C by use of a Metrohm Herisau conductivity meter and apparent colour was measured with a Helige Aqua Tester. Concentrations of calcium, magnesium and aluminum were determined by emission spectrophotometer (Jarrel-Ash, AtomComp).

For most rivers, an Ott current metre (Model C-1) was used to measure water velocity at three equally spaced positions on a line delineating the width of the river. The propeller of the metre was adjusted at each position so that measurements were made at 0.6 of total depth. Flow rate was then estimated from the equation: $R = W \cdot D \cdot V$, where:

R = flow rate or volume
W = river width
D = river depth (average of 3
 measurements)
V = water velocity (average of 3
 measurements)

Flow rates of the Salmon and Inhabitants rivers on the May and July sampling dates were determined by Environment Canada (1986).

ACKNOWLEDGEMENTS

We are indebted to 0. Vaidya who conducted the metal analyses and to W. Horne who provided valuable assistance with the chloride determinations. Mrs. B. Field and Trudy Hart typed the manuscript and Mr. Ron MacNeil photographed the illustrations and prepared the cover artwork. K.E.H. Smith reviewed the manuscript and provided editorial comments.

REFERENCES

Bujak, J.P. and H.V. Donohoe Jr. 1980. Geological highway map of Nova Scotia. Atlantic Geoscience society, Special Publication Number 1.

Environment Canada. 1981. Analytical methods manual update. Inland Waters Directorate, Water Quality Branch, Ottawa, Canada. Parts 1 to 7.

- Environment Canada. 1986. Surface water data, Atlantic Provinces 1985. Inland Waters Directorate, Water Resource Branch, Water Survey of Canada, Ottawa, Canada, 1986. 127 p.
- O'Neil, S.F., M. Bernard and J. Singer. 1985. 1984 Atlantic salmon sport catch statistics Maritime Provinces. Can. Data Rep. Fish. Aquat. Sci. No. 530. 98 p.
- O'Neil, S.F., M. Bernard and J. Singer. 1986. 1985 Atlantic salmon sport catch statistics Maritime Provinces. Can. Data Rep. Fish. Aquat. Sci. No. 600. 71 p.
- Swetnam, D.A., and S.F. O'Neil. 1984.
 Collation of Atlantic salmon sport
 catch statistics, Maritime Provinces,
 1980-83. Can. Data Rep. Fish. Aquat.
 Sci. No. 450. 194 p.
- Watt, W.D., C.D. Scott and W.J. White.
 1983. Evidence of acidification of some Nova Scotia rivers and its impact on Atlantic salmon, Salmo salar. Can. J. Fish. Aquat. Sci. 40:462-473.

TABLE 1. Some chemical characteristics of the River Denys system during May and July, 1985^{1} .

			Total alkalinity	Total hardness	Specific conductance	Apparent colour (relative	Ca	Mg	C1	S0 ₄	Al
Site	e Site name	рH	(mg/L)	(mg/L)	(µS/cm)	units)		(ınç	g/L)		(µg/L)
May	29			-				_			_
A1 A2 A3	Above head of tide Big Brook Below River Denys	6.94 7.15	18.0 20.5	87.0 229.0	199 477	55 30	26.2	1.7	7.7	51.0	30
710	Centre	6.90	18.9	56.4	148	55					
July	29							٠			
A1 A2 A3	Above head of tide Big Brook Below River Denys	7.58 7.68	50.7 60.3	212.5 534.1	471 988	25 15	82.4	4.3	13.5	142.0	40
	Centre	7.59	55.2	156.8	375	15					

^{1.} No flow measurements or estimates for these sites.

TABLE 2. Some chemical characteristics of the Middle River system during May and July, 1985.

			Total alkalinity	Total hardness	Specific conductance	Apparent colour (relative	Ca	Mg	C1	S0 ₄	Al
Site	Site name	pН	(mg/L)	(mg/L)	(µS/cm)	units)		(mg]/L)		(rg/L)
May 2	29										
81	Above head of tide 1										
	(flow - 30.817 m ³ /s)	7.19	13.3	28.9	91	15	8.7	1.0	7.4	14.3	< 25
82	McKenzie Brook	7.08	9.8	22.1	76	15					
В3	Leonard McLeod Brook	7.16	10.8	28.6	85	15					
B4	McRae Brook	7.20	11.0	15.2	56	15					
85	Above McRae Brook										
	(flow - 12.725 m ³ /s)	7.16	9.3	15.2	55	15					
July	29										
81	Above head of tide										
_	$(flow - 7.660 m^3/s)$	7.48	26.2	57.8	166	10	21.5	1.9	10.1	29.0	25
B2	McKenzie Brook	7.30	18.0	43.1	127	10					
83	Leonard McLeod Brook	7.51	22.9	44.1	166	10					
В4	McRae Brook	7.60	16.7	21.7	80	5					
B5	Above McRae Brook										
	(flow - 3.163 m ³ /s)	7.41	16.2	23.5	80	5					

^{1.} Estimated from flow rates measured at Site B1 on July 29 and Site B5 on May 29 and July 29.

TABLE 3. Some chemical characteristics of the Baddeck River system during May and July, 1985.

			Total alkalinity	Total hardness	Specific conductance	Apparent colour (relative	Ca	Mg	C1	S0 4	Αl
Site	Site name	pН	(mg/L)	(mg/L)	(µS/cm)	units)		(៣១	/L)		(µg/L)
May	29			-							
C1	Above head of tide										
	(flow - 37.198 m3/s)1	7.15	9.5	30.7	91	20	10.1	0.9	6.7	18.1	< 25
C2	North Baddeck River	7.04	7.3	28.0	83	20					
C3	Above North Baddeck Riv	er									
	(flow - 7.175 m ³ /s)	6.90	5.7	. 11.0	41	30					
C4	Peters Brook	7.14	11.2	16.6	54	50					
July	29										
C1	Above head of tide										
	(flow - 5.765 m ³ /s)	7.49	21.9	86.2	218	15	31.8	1.8	9.0	52.0	< 25
C2	North Baddeck River	7.38	12.9	56.3	153	15					
C3	Above North Baddeck Riv	er									
	(flow - 1.112 m ³ /s)	7.48	11.7	15.2	53	20					
C4	Peters Brook	7.98	42.1	44.1	133	15				•	

^{1.} Estimated from flow rates measured at Site C1 on July 29 and Site C3 on May 29 and July 29.

TABLE 4. Some chemical characteristics of the North River system during May and July, 1985.

			Total alkalinity	Total hardness	Specific conductance	Apparent colour (relative	Ca	Mg	C1	S0 4	A1
Site	Site name	pH	(mg/L)	(mg/L)	(µS/cm)	units)		(mg	1/L)		(µg/L)
May	29	_									
D1	Above head of tide (flow - 18.844 m ³ /s)	6.68	3.6	6.9	. 33	40	1.7	0.6	5.1	3.5	< 25
D2	Timber Brook	6.54	2.6	7.4	34	30					
July	29										
01	Above head of tide (flow - 3.639 m ³ /s)	7.36	8.4	11.3	48	20	3.3	0.9	5.8	2.8	60
02		7.00	6.5	10.4	44	15		3.5			

TABLE 5. Some chemical characteristics of the Barachois River system during May and July, 1985.

Site	s Site name	рН	Total alkalinity (mg/L)	Total hardness (mg/L)	Specific conductance (µS/cm)	Apparent colour (relative units)	Ca	Mg (mg	C1	S04	Α1 (μg/L)
May E1 E2 E3	31 Above head of tide (flow - 12.637 m ³ /s) North Brook South Brook	6.32 6.57 6.65	2.6 6.9 5.6	6.9 8.3 11.5	35 38 57	55 30 15	1.7	0.6	5.7	2.8	60
July E1 E2 E3	Above head of tide (flow - 1.231 m ³ /s) North Brook South Brook	6.99 6.98 6.76	6.4 6.0 9.5	10.4 11.2 14.2	47 46 64	20 15 10	3.1	0.9	6.5	3.2	80

TABLE 6. Some chemical characteristics of Indian Brook during May and July, 1985.

Site	Site name	рH	Total alkalinity (mg/L)	Total hardness (mg/L)	Specific conductance (.µS/cm)	Apparent colour (relative units)	Ca	Mg (mg	C1 7L1	S0 ₄	Al (μg/L)
May	30										
F1	Above head of tide (flow - 5.709 m ³ /s)	6.31	2.4	6.1	31	55	1.5	0.6	5.5	3.0	<25
July	29										
F1	Above head of tide (flow - 0.837 m ³ /s)	7.01	5.2	10.3	48	20	3.0	0.9	6.9	3.8	70

TABLE 7. Some chemical characteristics of the Ingonish River system during May and July, 1985.

Site	Site name	Нq	Total alkalinity (mg/L)	Total hardness (mg/L)	Specific conductance (uS/cm)	Apparent colour (relative units)	Ca	Mg	C1	S0 ₄	Al (jig/L)
											- · · · · · · · · · · · · · · · · · · ·
May											
G1	Above head of tide (flow - 6.371 m ³ /s)	6.33	2.6	6.4	29	55	1.4	0.6	4.7	2.0	≺2 5
July	30										
G1	Above head of tide (flow - 0.409 m ³ /s)	7.10	11.5	15.9	60	25	4.5	1.3	6.9	4.0	60

TABLE 8. Some chemical characteristics of the North Aspy River system during May and July, 1985.

	Site name pl			Total alkalinity	Total hardness	Specific conductance	Apparent colour (relative	Ca	Mg	C1	S0 ₄	Al
Site		рН	(mg/L)	(mg/L)	(µS/cm)	units)		(mg/L)			_ (µg/L)	
May 3	30								_			
Н1	Above head of tide (flow - 17.965 m ³ /s)	6.65	7.1	8.6	41	50	2.1	0.7	6.4	2.7	<25	
H2 H3	Grays Hollow Brook North Aspy River,	6.90	6.4	9.8	47	20						
	South Branch	6.30	2.6	6.8	36	50						
Н4	North Aspy River, North Branch	6.32	2.6	6.9	36	50						
July	30											
Н1	Above head of tide (flow - 1.286 m ³ /s)	7.40	19.7	26.0	96	15	8.5	1 0	11.3	4.9	40	
H2	Grays Hollow Brook	7.20	17.0	19.6	80	10	0.5	1.9	11.3	4.3	40	
Н3	North Aspy River, South Branch	6.89	11.8	17.2	73	15						
Н4	North Aspy River, North Branch	6.99	10.6	16.2	70	15						

TABLE 9. Some chemical characteristics of the Salmon River system during May and July, 1985.

			Total alkalinity	Total hardness	Specific conductance	Apparent colour (relative	Ca	Mg	C1	S0 4	Al
Site	Site name	рH	(mg/L)	(mg/L)	(µS/cm)	units)		(mç	3/L)		(µg/L)
May	30							_			
J1 J2 J3	Above head of tide (flow - 9.440 m ³ /s) ¹ Gaspereau River Above Gaspereau River	6.26 5.82 6.25	3.3 1.1 4.1	9.8 4.7 11.8	42 29 48	40 45 40	2.6	0.7	5.5	5.7	60
July	30										
J1 J2 J3	Above head of tide (flow - 1.400 m ³ /s) ¹ Gaspereau River Above Gaspereau River	6.52 6.00 6.58	5.0 2.2 5.7	11.3 5.9 12.7	45 33 47	60 40 65	3.3	0.8	5.9	4.3	110

^{1.} Gauging station 01FJ001 (Environment Canada 1986).

TABLE 10. Some chemical characteristics of the Framboise River system during May and July, 1985. $^{
m 1}$

Si te	Site name	рН	Total alkalinity (mg/L)	Total hardness (mg/L)	Specific conductance (µS/cm)	Apparent colour (relative units)	Ca Mg C1 S	.04 — A1 (μg/L)
May	30							
K1 K2 K3	Bagnells River Middle River Framboise Northeast Framboise	6.53 6.23	2.6 1.5	6.9 5.2	35 28	25 50	No data	
ν,	River	6.18	1.6	5.9	33	50		
July	30							
K1	Bagnells River	6.75	5.0	9.1	39	40		
K2 K3	Middle River Framboise Northeast Framboise	6.56	2.7	6.1	31	55		
NJ	River	6.50	2.3	6.7	35	60		

^{1.} No flow measurements or estimates for these sites.

TABLE 11. Some chemical characteristics of Marie Joseph Brook during May and July, 1985.1

Site	Sito namo	Apparent Total Total Specific colour alkalinity hardness conductance (relative pH (mg/L) (mg/L) (\u03b4S/cm) units)	Ca	Mg	¢1	S0 ₄	A1				
316	Site name		(mg/L)	(IIIg/L)	(да/сш/	uni (5)		(III	g/L}		(μg/L)
May	30										
Ll											
	Joseph Brook	6.52	3.6	7.8	37	55		No da	ta		
L2 L3	MacCormicks Brook Marie Joseph Brook	6.40 6.55	2.5 3.0	5.9 7.2	31 35	45 25					
July	<u>, 30</u>										
Ll	West Branch, Marie										
1.2	Joseph Brook	6.93	8.8	12.1	49	55 50					
L2 L3	MacCormicks Brook Marie Joseph Brook	6.82 6.86	6.4 6.4	8.8 9.3	40 41	50 40					

^{1.} No flow measurements or estimates for these sites.

TABLE 12. Some chemical characteristics of the Grand River system during May and July, 1985.

ite name	рН 	(mg/L)	(mg/L)	(μS/cm)	units)		(mg	/Ľ)		(µg/L)
head of tide					units)					5
head of tide					_					
	. 70			5.0	22					
	6.79	4.9	14.0	52	20	4.2	0.8	5.6	8.1	< 25
	0.0/	7.0	12.0	49	25					
e	6.28	2.3	5.9	32	40					
ow from Loch	• • • • • • • • • • • • • • • • • • • •				, ,					
ond	6.76	4.7	15.2	52	15					
River	6.78	7.5	12.3	49	30					
head of tide										
	7.00	5.1	14.7	54	20	5.1	1.0	5.4	8.4	80
ison Brook	6.93	12.0	16.7	61	20					
e form I set	6.52	3.6	6.9	34	25					
	6 80	7.5	15.3	53	15					
	ow from Loch ond River head of tide ow - 2.713 m ³ /s) ison Brook ow from Barren	tow from Barren 6.28 tow from Loch and 6.76 River 6.78 head of tide above - 2.713 m ³ /s) above from Barren 6.52 tow from Loch and 6.89	bw from Barren 6.28 2.3 bw from Loch bond 6.76 4.7 River 6.78 7.5 head of tide bw - 2.713 m ³ /s) 7.00 5.1 bison Brook 6.93 12.0 bw from Barren e 6.52 3.6 bw from Loch bond 6.89 7.5	the ded of tide tion brown from Barren brown from Loch on the condition from Loch on the condition from Loch on the condition from Brown from Barren from Loch on the condition from Lo	by from Barren e 6.28 2.3 5.9 32 by from Loch ond 6.76 4.7 15.2 52 River 6.78 7.5 12.3 49 head of tide by - 2.713 m ³ /s) 7.00 5.1 14.7 54 bison Brook 6.93 12.0 16.7 61 by from Barren e 6.52 3.6 6.9 34 by from Loch ond 6.89 7.5 15.3 53	the from Barren 10.	Dow from Barren 6	Dow from Barren 6	Description of the second of tide of the second of tide of tid	Description Barren e 6.28 2.3 5.9 32 40 Description Loch ond 6.76 4.7 15.2 52 15 River 6.78 7.5 12.3 49 30 The ad of tide o

TABLE 13. Some chemical characteristics of the River Tillard system during May and July, 1985.

Site	Site name	рН	Total alkalinity (mg/L)	Total hardness (mg/L)	Specific conductance (µS/cm)	Apparent colour (relative units)	Ca	Mg (mg	C1 1/L)	S0 ₄	- (μg/L)
May N1 N2 N3	Above head of tide (flow - 1.627 m ³ /s) East River Tillard Below Hill Lake	6.40 6.53 6.10	3.4 4.4 1.3	10.6 14.9 5.4	66 98 31	55 55 50	2.8	0.7	11.6	5 6.9	70
July N1 N2 N3		6.66 6.92 6.30	6.7 9.2 2.8	15.2 26.0 6.5	102 166 35	50 50 50	4.7	1.2	17.3	3 9.9	100

TABLE 14. Some chemical characteristics of the River Inhabitants system during May and July, 1985.

Site	Site name	рН	Total alkalinity (mg/L)	Total hardness (mg/L)	Specific conductance (µS/cm)	Apparent colour (relative units)	Ca	Mg (mg	C1 J/L)	S04 	Al (µg/L)
May	31							-		-	
P1	Above head of tide	6.96	16.8	48.0	270	55	15.0	1.5	48.6	31.5	5 <25
P2	Above MacDonalds Brook (flow - 4.360 m ³ /s) ¹	7.04	18.5	37.4	230	55	11.1	1.6	40.5	17.5	5 <25
P3	Northwest Arm at Askilton	7.27	20.6	170.3	710	30			72.9	123.0)
Р4	Northwest Arm below Brown Brook	6.84	7.5	13.4	51	60					
P5	Lamey Brook at Queensville	7.42	21.6	26.3	88	30					
July	31										
P1	Above head of tide	7.35	32.5	100.0	593	25	39.2	3.2	113.4	52.0	100
P2	Above MacDonalds Brook (flow - 1.020 m ³ /s) ¹	7.44	34.2	86.2	562	20	33.9	2.8	113.4	52.5	90
Р3	Northwest Arm at Askilton	7.46	40.2	289.1	1,414	15	117.0	3.6	283.5	198.0	> <25
Р4	Northwest Arm below Brown Brook	7.75	27.7	31.2	93	15					
P5	Lamey Brook at Queensville	7.69	39.8	40.2	135	20					

^{1.} Gauging Station O1FAOO1 (Environment Canada 1986).

FIG. 1. Location of rivers included in the sampling program.

FIG. 2. Water sampling sites on River Denys.

FIG. 3. Water sampling sites on Middle River.

FIG. 4. Water sampling sites on Baddeck River.

FIG. 5. Water sampling sites on North River.

FIG. 6. Water sampling sites on Barachois River.

FIG. 7. Water sampling site on Indian Brook.

FIG. 8. Water sampling site on Ingonish River.

FIG. 9. Water sampling sites on North Aspy River.

FIG. 10. Water sampling sites on Salmom River.

FIG. 11. Water sampling sites on Framboise River.

FIG. 12. Water sampling sites on Marie Joseph Brook.

FIG. 13. Water sampling sites on Grand River.

FIG. 14. Water sampling sites on River Tillard.

FIG. 15. Water sampling sites on River Inhabitants.