Ten Years of Data for Four Cyprinid Species in Lake 114, an Experimentally Acidified Lake in the Experimental Lakes Area, Northwestern Ontario

S.M. Chalanchuk, L.C. Mohr and D.J. Allan

Central and Arctic Region Department of Fisheries and Oceans Winnipeg, Manitoba R3T 2N6

May 1989

Canadian Data Report of Fisheries and Aquatic Sciences No. 733

Canadian Data Report of Fisheries and Aquatic Sciences

Data reports provide a medium for filing and archiving data compilations where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of data reports rellects the broad interests and policies of the Deparment of Fisheries and Oceans. namely. fisheries and aquatic sciences.

Data reports are not intended for general distribution and the contents must not be reterred to in other publications without prior written authorization from the ssuing establishment. The correct citation appears above the abstract of each report. Data reports are abstracted in fquatio Sciences and Fisheries 4 hstras is and indexed in the Depatment's anmatal index to scientific and technical publications

Vumber 125 in this series were issued as Fisheries and Marine Service Data Records Numbers 26160 were issued as Department of Fisheries and the Environment. Fisheries and Marine Service Data Reponts The current series name was introduced with the publication of report number \mid al

Data reponts are produced regionally but are numbered nationally. Requests for indiudaal reports will be filled by the issuing establishment listed on the front cover and title page Out-of-stock repors will he supplied lor a lee by commercial agents.

Rapport statistique canadien des sciences halieutiques et aquatiques

Les rappons statistigues servent à classet el à archiver les compilations de donnees pour lesquelles il y a peu ou point d'analyse. Ces compilations auront d'ordinaire ete preparées à lappui d’autres publications ou rapports. Les sujets des rapports statistiques refletent la vaste gamme des interêts et des politiques du ministère des Peches et des Oceans. Cest-a-dire les seiences halieutiques et aquatiques

Les tapports statistiques ne sont pas destands à une vaste distribution et lew womtenu ne doit pas être mentionne dans une puhlication sans autorisation écrite prealable de rétablissement anteur le tutre exact parait au-dessus du renumé de chaque rapport. Les apports statisiques sont resumés dans la revue Revamé de senences aquatiques e? hahetariques. et ibs sont classés dans l'index annuel des publications scientifiques et techniques du Ministère

Les numéros 1 à 25 de cette serrie ont èté publrés à titre de relevés statistiques, Services des pêches et de la met. Les numéros 26 à 160 ont été publiés à titre de rapports statistiques du Service des péchés el de lat mer, ministère des Pêches et de l.Environnement Le nom actuel de la séne a eté éabli lors de la parution du numéro 161.

Les rapports statistig̣tes sont produts à léchelon regional. mais numérotes à T'échelon national. Les demandes de rapports seront satisfaites par Tétablissement anteur dont le nom figure sur la couserture et la page du titre. Les rapporis épuisés seront foumis contre retribution par do ateents commerciaus

Canadian Data Report of
 Fisheries and Aquatic Sciences 733

May 1989

TEN YEARS OF DATA FOR FOUR CYPRINID SPECIES IN LAKE 114, AN EXPERIMENTALLY ACIDIFIED LAKE IN THE EXPERIMENTAL LAKES AREA, NORTHWESTERN ONTARIO

by
S.M. Chalanchuk, L.C.Mohr and D.J. Allan

Central and Arctic Region
Department of Fisheries and Oceans Winnipeg, Manitoba R3T 2N6

(c) Minister of Supply and Services Canada 1989 Cat. no. Fs 97-13(733)E ISSN 0706-6465

Correct citation for the publication is:
Chalanchuk, S.M., L.C. Mohr, and D.J. Allan. 1989. Ten years of data for four cyprinid species in Lake 114, an experimentally acidified lake in the Experimental Lakes Area, northwestern Ontario. Can. Data Rep. Fish. Aquat. Sci. 733: iv +23 p.

TABLE OF CONTENTS

Page
PREFACE ii
ABSTRACT/RESUME iv
INTRODUCTION 1
MATERIALS AND METHODS 1
ACKNOWLEDGMENTS 1
REFERENCES 2
LIST OF TABLES
Table Page
1 Maximum fork lengths of four species of Cyprinidae in Lake 114 , ELA lakes, and other North American populations 3
LIST OF FIGURES
Figure Page
la Monthly length-frequency distribu- tions for fathead minnow in Lake 114 4
Ib Monthly length-frequency distribu-tions for fathead minnow in Lake1145
1c Monthly length-frequency distribu- tions for fathead minnow in Lake 114 6
ld Monthly length-frequency distribu-tions for fathead minnow in Lake1147
le Monthly length-frequency distribu-tions for fathead minnow in Lake1148
2a Monthly length-frequency distribu-tions for pearl dace in Lake 1149
2b Monthly length-frequency distribu-
2c Monthly length-frequency distribu-tions for pearl dace in Lake 114.11
2d Monthly length-frequency distribu- tions for pearl dace in Lake 114 12
2 etions for pearl dace in Lake 114.13
3a Monthly length-frequency distribu-tions for northern redbelly dace inLake 11414
3b Monthly length-frequency distribu- tions for northern redbelly dace in Lake 114 15
3c Monthly length-frequency distribu- tions for northern redbelly dace in Lake 114 16
3d Monthly length-frequency distribu- tions for northern redbelly dace in Lake 114. 17
3e Monthly length-frequency distribu-tions for northern redbelly dace inLake 11418
4a Monthly length-frequency distribu-tions for finescale dace in Lake11419
4b Monthly length-frequency distribu- tions for finescale dace in Lake 114 20
4c Monthly length-frequency distribu-tions for finescale dace in Lake11421
5 Annual catch composition (percent- age) of Lake 114 fish 22
6 Catch-per-unit-effort for a) pearldace and fathead minnow, and b)finescale dace and northernredbelly dace23

Chalanchuk, S.M., L.C. Mohr, and D.J. Allan. 1988. Ten years of data for four cyprinid species in Lake 114, an experimentally acidified lake in the experimental lakes area, northwestern Ontario. Can. Data Rep. Fish. Aquat. Sci. 733: iv +23 p.

Length-frequency distributions and catch data are presented for four species of Cyprinidae in Lake 114, in the Experimental Lakes Area, northwestern Ontario: fathead minnow (Pimephales promelas), pearl dace (Semotilus margarita), northern redbelly dace (Phoxinus eos), and finescale dace (Phoxinus neogaeus). Lake 114 received monthly additions of sulphuric acid ($\mathrm{H}_{2} \mathrm{SO}_{4}$) from July 1979 until October 1986. Data presented in this report are from 1978 and 1980 to 1988. Maximum fork lengths attained by each species were 133 mm by pearl dace, 89 mm by fathead minnow, 85 mm by northern redbelly dace, and 97 mm by finescale dace. These lengths are compared to those of other North American populations.

Key words: Pearl dace; fathead minnow; finescale dace; northern redbelly dace; fork length; pH; acidification.

RÉSUMÉ

Chalanchuk, S.M., L.C. Mohr, and D.J. Allan. 1988. Ten years of data for four cyprinid species in Lake 114, an experimentally acidified lake in the experimental lakes area, northwestern Ontario. Can. Data Rep. Fish. Aquat. Sci. 733: iv +23 p .

On présente les distributions de fréquence de longueurs et les données sur les prises pour quatre espèces de cyprinidés provenant du Lac 114 de la Région des Lacs Expérimentaux du nord-ouest de l'Ontario: le tête-de-boule (Pimephales promelas), le mulet perlé (Semolitus margarita), le ventre rouge du nord (Phoxinus eos) et le ventre citron (Phoxinus neogaeus). Le Lac 114 a fait l'objet d'additions mensuelles d'acide sulfurique ($\mathrm{H}_{2} \mathrm{SO}_{4}$) de juillet 1979 à octobre 1986. Dans le présent rapport on présente des données pour 1978 et pour 1980 à 1988 . Les longueurs à la fourche maximales enregistrées pour chacune des espèces ont été les suivantes 133 mm pour le mulet perlé, 89 mm pour le tête-de-boule, 85 mm pour le ventre rouge du nord et 97 mm pour le ventre citron. Ces valeurs sont comparées à celles obtenues pour d'autres populations de 1 'Amérique du Nord.

Mots-clés : mulet perlé; tête-de-boule; ventre citron; ventre rouge du nord; longueur à la fourche; pH; acidification.

INTRODUCTION

The purpose of this report is to present data on the fish populations in Lake 114, the Experimental Lakes Area (ELA), northwestern Ontario. Fish species present in Lake 114 are fathead minnow (Pimephales promelas), pearl dace (Semotilus margarita), northern redbelly dace (Phoxinus eos), and finescale dace (Phoxinus neogaeus). (Scientific names of fishes in this report are based on American Fisheries Society, 1980). These four species are the most widespread and abundant species in the ELA (Beamish et al. 1976), and are distributed throughout a large part of North America (Scott and Crossman 1973). They are a significant food source for many larger fish (Scott and Crossman 1973), such as lake trout (Salvelinus namaycush), and thus constitute an important component of many aquatic ecosystems.

Recently, researchers have shown that many species of Cyprinidae are very sensitive to acidification (Rahel and Magnuson 1983; Mills and Schindler 1986; Pauwels and Haines 1986). Based on these studies, the pH values below which these species do not occur are 5.8 - fathead minnow, 5.3 - pearl dace, northern redbelly dace, and finescale dace. However, deleterious effects on these populations occur at higher pH values. For example, in a whole-lake acidification experiment in Lake 223, in the ELA, fathead minnows failed to reproduce at a pH of 5.9 (Mills 1984; Schindler et al. 1985; Mills et al. 1987).

In Lake 223, varying volumes of sulphuric acid were added to the lake as required to maintain ph at a constant target value each year (Cruikshank 1984). In Lake 114, fixed volumes of sulphuric acid were added to the lake at monthly intervals (Cruikshank 1984) and pH was not maintained at a constant value each year. The initiation of the Lake 114 acidification experiment in 1979 provided an opportunity for monitoring the population dynamics of the fish populations in response to acid "pulses" rather than to relatively constant acid inputs to the lake as had occurred in Lake 223. We hypothesized that the acidification of Lake 114 would have detrimental effects, such as reproductive impairment and population decline, on the acidsensitive species of fish, especially fathead minnow, similar to those that occurred in Lake 223 (Mills et al. 1987).

In this report we present length-frequency data and catch data for the Cyprinidae in Lake 114 for 1978 and 1980 to 1988. Maximum lengths attained by each species in Lake 114 are compared to those for ELA lakes and other North American populations.

MATERIALS AND METHODS

Lake 114 is a small, shallow lake (area $=$ 12.1 ha, maximum depth $=5.0 \mathrm{~m}$, mean depth $=1.7$ m) in the Experimental Lakes Area. Information on the background chemistry and morphometry are found in Armstrong and Schindler (1971);

Brunskill and Schindler (1971); and Cleugh and Hauser (1971).

Electrolyte grade sulphuric acid (36N $\mathrm{H}_{2} \mathrm{SO}_{4}$) was added to Lake 114 at monthly intervals during the open-water seasons from July 1979 until October 1986. Each month 33.6 L of acid were added to the surface of the lake using the "Prop-tube mix" method (Cruikshank 1984; 1986). This constant volume of acid was chosen to simulate monthly precipitation events at a pH one unit lower than the natural pH of rain on the lake (Schindler and Turner 1982). Mean surface pH decreased by 0.30 to 0.60 units after each acid addition, then gradually increased between additions. The time-weighted mean epilimnetic pH of Lake 114 varied from year-toyear throughout the acidification experiment, ranging from 5.65 to 6.26 (Cruikshank 1984; 1986). However, the mean pH has not substantially changed from background values. Mean epilimnetic pH of 6.11 in 1987 (D.R. Cruikshank, Freshwater Institute, Winnipeg, Manitoba, pers, comm.), the first year without acid additions, was similar to the pre-acidification value of 6.18 in 1978.

Fish were captured intermittently from May to October 1978 and April to October 1980 to 1988. Data for 1979 were presented by Tallman et al. (1984). Fish were primarily captured with modified versions of Beamish-style trap nets (Beamish 1972). These nets were equipped with pots having mesh sizes of $0.8,1.6$, or 3.2 mm . Trap nets were usually set for overnight periods. Standard wire-mesh minnow traps (mesh size 5 mm) were used in July 1982 to supplement trap net catches, and in April 1983 and April 1984 to sample fish under the ice. Catches of less than 1500 fish were sampled completely. However, catches of several thousand fish were common and these were subsampled.

Immediately after capture, fish were transported live to the field laboratory, anaesthetized with methane tricaine sulphonate (MS222), and measured for fork lengths (mm). Length-frequency distributions were constructed for monthly intervals each year for each species. Graphs were constructed if sample sizes were greater than nine fish.

Species catch composition was presented annually by calculating total catch for each species as a percentage of the entire annual catch of fish of all species. Catch-per-uniteffort (CPUE) was determined for each species based on total annual catches. One trap net set for one overnight period constituted one unit of effort.

ACKNOWLEDGMENTS

We would like to thank Ken Mills for his guidance and help throughout the study. Constructive criticisms by John Babaluk, Drew Rodaly and Everett Fee are appreciated.

REFERENCES

AMERICAN FISHERIES SOCIETY. 1980. A list of common and scientific names of fishes from the United States and Canada. 4th ed. Am. Fish. Soc. Spec. Publ. 12. Bethesda, M10.
ARMSTRONG, F.A.J., and D.W. SCHINDLER. 1971. Preliminary chemical characterization of waters in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28: 171-187.
BEAMISH, R.J. 1972. Design of a trap-net for sampling shallow-water habitats. Fish. Res. Board Can. Tech. Rep. 305: 14 p.
BEAMISH, R.J., L.M. BLOUW, and G.A. McFARLANE. 1976. A fish and chemical study of 109 lakes in the Experimental Lakes Area (ELA), northwestern Ontario, with appended reports on lake whitefish ageing errors and the northwestern Ontario baitfish industry. Can. Fish. Mar. Serv. Tech. Rep. 607: 116 p.
BRUNSKILL, G.J., and D.W. SCHINDLER. 1971. Geography and bathymetry of selected lake hasins, Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28: 139-155.
CHADWICK, E.M.P. 1976. Ecological fish production in a small Precambrian Shield lake. Env. Biol. Fish. l: 13-60.
CLEUGH, T.R., and R.W. HAUSER. 1971. Results of the initial survey of the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28: 129-137.
CRUIKSHANK, D.R. 1984. Whole lake chemical additions in the Experimental Lakes Area, 1969-1983. Can. Data Rep. Fish. Aquat. Sci. 449: iv + 23 p.
CRIIIKSHANK, D.R. 1986. Whole lake chemical additions in the Experimental Lakes Area, 1984-1985. Can. Data Rep. Fish. Aquat. Sci. 580 : iv +10 p .
HELD, J.W., and J.J. PETERKA. 1974. Age, growth, and food habits of the fathead minnow, Pimephales promelas, in North Dakota saline lakes. Trans. Am. Fish. Soc. 103: 743-756.
LALANCETTE, L.-M. 1977. Croissance, reproduction et regime alimentaire du mulet perle, Semotilus margarita, du lac Gamelin, Quebec. Naturaliste Can. 104: 493-500.
MILLS, K.H. 1984. Fish population responses to experimental acidification of a small Ontario lake, p. 117-131. In G.R. Hendrey (ed.) Early biotic responses to advancing lake acidification. Butterworth Publishers, Woburn, MA.
MILLS, K.H., S.M. CHALANCHUX, L.C. MOHR, and I.J. DAVIES. 1987. Responses of fish populations in Lake 223 to 8 years of experimental acidification. Can. J. Fish. Aquat. Sci. 44 (Suppl. 1): 114-125.
MILLS, K.H., and O.W. SCHINDLER. 1986. Biological indicators of lake acidification. Nater Air Soil Pollut. 30: 779-789.
MOHR, L.C. 1986. Experimental enhancement of the commercial bait fish industry in northwestern Ontario, Northern Ontario Rural Development Agreement (NORDA) 19841986. 216 p.

PAUUELS, S.J., and T.A. HAINES. 1986. Fish species distribution in relation to water chemistry in selected Maine lakes. Water Air Soil Pollut. 30: 477-488.
RAHEL, F.J., and J.J. MAGNUSON. 1983. Low pH and the absence of fish species in naturally acidic Wisconsin lakes: inferences for cultural acidification. Can. J. Fish. Aquat. Sci. 40: 3-9.
SCOTT, W.B., and E.J. CROSSMAN. 1973. Freshwater fishes of Canada. Bull. Fish. Res. Board Can. 184.
SCHINDLER, D.W., and M.A. TURNER. 1982. Biological, chemical and physical responses of lakes to experimental acidification. Water Air Soil Pollut. 18: 259-271.
SCHINDLER, D.W., K.H. MILLS, D.F. MALLEY, D.L. FINDLAY, J.A. SHEARER, I.J. DAVIES, M.A. TURNER, G.A. LINSEY, and O.R. CRUIKSHANK. 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science (Wash., D.C.) 228: 1395-1401.

STASIAK, R.H. 1978a. Food, age and growth of the pearl dace, Semotilus margarita, in Nebraska. Am. Midl. Nat. 100: 463-465.
STASIAK, R.H. 1978b. Reproduction, age, and growth of the finescale dace, Chrosomus neogaeus in Minnesota. Trans. Am. Fish. Soc. 107: 720-723.
tallman, r.f, K.h. Mills, and R.G. ROTTER. 1984. The comparative ecology of pearl dace (Semotilus margarita) and fathead minnow (Pimephales promelas) in Lake 114, the Experimental Lakes Area, northwestern Ontario, with an appended key to the cyprinids of the Experimental Lakes Area. Can. Manuscr. Rep. Fish. Aquat. Sci. 1756: iv +27 p.

Table 1. Maximum fork lengths of four species of Cyprinidae in Lake 114, ELA lakes; and other North American populations. Numbers in parentheses refer to number of populations.

Lake	Location	Pearl dace	Fathead minnow	Northern redbelly dace	```Finescale dace```	Reference
114	ELA	133	89	85	97	-
111	ELA	96	65	-	76	-
222	ELA	100	-	-	-	-
223	ELA	166	88	-	76	-
224	ELA	116	68	-	83	-
226	ELA	134	89	-	-	-
227	ELA	-	65	59	-	-
260	ELA	148	75	78	-	-
302 N	ELA	125	91	93	104	, -
302S	ELA	127	101	88	90	-
303	ELA	82	65	75	59	-
373	ELA	93	-	68	87	-
375	ELA	116	62	-	68	-
382	ELA	120	75	-	65	-
NB (1)	Nebraska	$89^{\text {a }}$	-	-	-	Stasiak 1978a
ND(9)	N. Dakota	-	$79^{\text {b }}$	-	-	Held and Peterka 1974
MN(1)	Minnesota	1	-	-	$85^{\text {a }}$	Stasiak 1978b
QU(1)	Quebec	$120{ }^{\text {b }}$		\square	-	Lalancette 1977
NA(3)	N. America	$158{ }^{\text {b }}$	$94^{\text {b }}$	$61^{\text {a }}$	-	Scott and Crossman 1973
ON(11)	Ontario	160	83	91	98	Mohr 1986
ON(1)	Ontario	$106^{\text {a }}$	$73^{\text {a }}$	-	-	Chadwick 1976

[^0]

Figure la. Monthly length-frequency distributions for fathead minnow in Lake 114. All fish were caught by trap net. Note change in scale of y-axis for May 1978 (7805).

Figure 1b. Monthly length-frequency distributions for fathead minnow in Lake 114. All fish were caught by trap net.

Figure lc. Monthly length-frequency distributions for fathead minnow in Lake 114. Fish captured during April 1983 (8304) and April 1984 (8404) were caught by minnow trap. All other fish were caught by trap net. Note change in scale of y-axis for July 1983 (8307), June 1984 (8406), and September 1984 (8409).

Figure 1d. Monthly length-frequency distributions for fathead minnow in Lake 114. All fish were caught by trap net. Note change in scale of y-axis for May 1985 (8505) and May 1986 (8605).

Figure le. Monthly length-frequency distributions for fathead minnow in Lake 114. All fish were caught by trap net. Note change in scale of y-axis for May 1987 (8705) and September 1988 (8809).

Figure 2a. Monthly length-frequency distributions for pearl dace in Lake 114. All fish were captured by trap net.

Figure 2b. Monthly length-frequency distributions for pearl dace in Lake 114. Fish captured during July 1982 (8207) were caught by minnow trap. All other fish were caught by trap net.

Figure 2c. Monthly length-frequency distributions for pearl dace in Lake 114. Fish captured during April 1983 (8304) and April 1984 (8404) were caught by minnow trap. All other fish were caught by trap net.

Figure 2d. Monthly length-frequency distributions for pearl dace in Lake 114. All fish were captured by trap net.

Figure 2e. Monthly length-frequency distributions for pearl dace in Lake 114. All fish were captured by trap net.

Figure 3a. Monthly length-frequency distributions for northern redbelly dace in Lake 114. All fish were captured by trap net.

Figure 3b. Monthly length-frequency distributions for northern redbelly dace in Lake 114. All fish were captured by trap net.

Figure 3c. Monthly length-frequency distributions for northern redbelly dace in Lake 114. Fish captured during April 1984 (8404) were caught by minnow trap. All other fish were caught by trap net.

Figure 3d. Monthly length-frequency distributions for northern redbelly dace in Lake 114. All fish were caught by trap net.

Figure 3e. Monthly length-frequency distributions for northern redbelly dace in Lake 114. All fish were caught by trap net.

Figure 4a. Monthly length-frequency distributions for finescale dace in Lake 114. All fish were caught by trap net.

Figure 4b. Monthly length-frequency distributions for finescale dace in Lake 114. Fish captured during April 1984 (8404) were caught by minnow trap. All other fish were caught by trap net. Note change in scale of y-axis for July 1982 (8207).

Figure 4c. Monthly length-frequency distributions for finescale dace in Lake 114. All fish were caught by trap net.

Figure 5. Annual catch composition (percentage) of Lake 114 fish. Note that data from 1979 are not on the graph.

Figure 6. Catch-per-unit-effort for a) pearl dace and fathead minnow, and b) finescale dace and northern redbelly dace. Note that data for 1979 are not on the graph.

[^0]: a Standard length
 b Total length

