Canadian Data Report of Fisheries and Aquatic Sciences No. 874

April 1992

BIOCHEMICAL GENETIC STOCK IDENTIFICATION OF CHUM SALMON IN SOUTHERN BRITISH COLUMBIA 1991

by
L. Hop Wo, S.C. Di Novo, A.P. Gould, and W.H. Luedke

Department of Fisheries and Oceans
Fisheries Branch
South Coast Division
Nanaimo, British Columbia
V9T 1K3

(c) Minister of Supply and Service Canada 1992

```
Cat. No. FS 97-13/874E ISSN 0706-6465
```

Correct citation for this publication: β

Hop Wo, L., S.C. Di Novo, A.P. Gould and W.L. Luedke. 1992. Biochemical Genetic Stock Identification of Chum Salmon in Southern British Columbia 1991. Can. Data Rep. Fish. Aquat. Sci. No. 874: 22p.

TABLE OF CONTENTS

ABSTRACT vi
INTRODUCTION 1
METHOD

1) Collection 1
2) Analysis 3
RESULTS 4
ACKNOWLEDGEMENTS 4
LITERATURE CITED 5

List of Tables

Table 1 Allelic Frequencies of Baseline Spawning Ground Samples for Johnstone and Georgia Strait Fisheries 6
Table 2 Allelic Frequencies of Baseline Spawning Ground Samples for Nitinat Fisheries 8
Table 3 Stock Composition Results from Johnstone Strait (pooled) Test Fishing. 11
Table 4 Stock Composition Results from Johnstone Strait Commercial Seine Fishing 12
Table 5 Stock Composition Results from Mid Vancouver Island Commercial Fishing 13
Table 6 Stock Composition Results from Nanaimo Gillnet Fishing 14
Table 7 Stock Composition Results from Nitinat Commercial Fishing 15

List of Figures

Page
Fig. 1 Regions of Chum Sampling in 1991:
(A) Johnstone Strait, (B) Mid Vancouver Island,
(C) Nanaimo, and (D) Nitinat

ABSTRACT

Hop Wo, L., S.C. Di Novo, A.P. Gould and W.H. Luedke. 1992. Biochemical Genetic Stock Identification of Chum Salmon in Southern British Columbia 1991. Can. Data. Rep. Fish. Aquat. Sci. No. 874: 22p.

Genetic stock identification (GSI) is used by the Department of Fisheries and Oceans in estimating chum stock composition. In 1991 approximately 6,200 fish samples were collected from four fishing areas (Johnstone Strait, Mid Vancouver Island, Nanaimo and Nitinat). Stock composition results are presented.

Key words: chum salmon, genetic stock identification, stock composition, fishery management, Southern British Columbia.

RÉSUMÉ

Hop Wo, L., S.C. Di Novo, A.P. Gould et W.H. Luedke. 1992. Biochemical Genetic Stock Identification of Chum Salmon in Southern British Columbia 1991. Can. Data. Rep. Fish. Aquat. Sci. No. 874: 22p.

L'identification génétique des stocks (GSI) est utilisée par le ministère des Pêches et des Océans dans l'estimation de la composition des stocks de saumon kéta. En 1991, environ 6200 échantillons de poissons provenant de quatre secteurs de pêche (détroit de Johnstone, partie centrale de l'île de Vancouver, Nanaimo et Nitinat) ont été prélevés. Les résultats sur la composition des stocks sont présentés.

Mots-clés : saumon kéta, identification génétique des stocks, composition des stocks, gestion des pêches, sud de la ColombieBritannique.

INTRODUCTION

Genetic stock identification (GSI) has occurred in Canadian chum fisheries since 1981 (Beacham et al. 1985). More recently (GSI) programs have established stock composition for every major chum fishery in Southern British Columbia. GSI results provide fisheries staff with stock identification information needed to effectively manage commercial fisheries. In addition, this information provides estimates of harvest by country, which are used in implementing the terms of the Pacific Salmon Treaty.

For Canadian commercial fisheries, GSI results have provided information on migration routes and timing as well as assisted in stock abundance estimates. This information is a vital component in the planning of expected fisheries. During the season, weekly results provide managers with an indication of chum run activity. After final analysis are complete, GSI results are used to estimate catch interceptions, which are required for stock assessment and Pacific Treaty obligations. This annual report (sixth of a series) includes a description of GSI sampling methods, analysis and results conducted in the 1991 fishing season.

METHOD

(1) Collection

In 1991, a total of 6,177 fish were sampled from four chum fishing areas in Southern British Columbia. Sampling occurred from early September to early November. The samples were collected from two commercial gear types (gillnet and seine), and sampled from either commercial fishing boats, fish processing plants, or Department of Fisheries and Oceans (DFO) chartered fishing vessels.

Briefly, samples collected consisted of heart, liver, and muscle tissues from freshly caught adult chum salmon. Muscle tissue was extracted using a coring technique described in Hop Wo et al. 1991. The individually packaged tissues were then frozen to help prevent protein degeneration. Protein analysis was provided by a consultant, using the horizontal starch gel technique described by Utter et al. (1974).

Chum salmon were sampled in 1991 from the following four fishing areas (Fig. 1): Johnstone Strait (Area 12 and 13); Mid Vancouver Island (Area 14); Nanaimo (Area 17) and Nitinat (Area 21). These samples were taken in order to determine the stock composition of commercial fisheries. In general, sample sizes of approximately 150-200 chum were obtained on a weekly or per fishing area basis. However some areas received additional sampling, such as the Johnstone Strait September 24 fishery where 899 chum were sampled.

The Johnstone Strait (Area 12) test fishery sampling program was conducted aboard two chartered seine vessels. Tissue samples
were collected each week in conjunction with stock abundance testing at predetermined sites as described in Vreeling et al. (1987). Sampling commenced early in September and continued until early November. A total of 2,547 samples were collected from both vessels over a 9 week period. Each vessel collected approximately 150 chum samples per week while on charter. Note, for the last week of October only one vessel was retained on charter, hence the total sample for that week was 150 chum.

In addition to the annual test fishery sampling program, 1991 was the second year of a funded program to compare Johnstone Strait commercial sampling with test fishery sampling. Each commercial fishery was sampled at three or more landing sites. At each landing site, approximately 200 fish were randomly sampled from selected seine vessels. Sampling was stratified by Statistical Areas, based on the proportion of total estimated catch from each area (Area 12 and 13).

During the chum fishing season, only one commercial fishery occurred in Johnstone Strait. The fishery transpired on September 23 where a total of 899 chum samples were collected from 5 different landing sites. Three sample groups of approximately 200 fish each were collected in Vancouver and contained a stratified sample mixture of Areas 12 and 13 caught fish (60% and 40% respectively). The fourth sample group of 100 was collected from Port Hardy and contained only Area 12 fish. The fifth sample of 200 was collected from Campbell River and consisted exclusively of Area 13 fish.

The Mid Vancouver Island (Area 14) sampling program occurred during or immediately after each of the four commercial fishery. Sampling for the first two gillnet fisheries was aboard packing vessels located on the fishing grounds. Three separate sub areas were sampled from both gillnet fishery. The sample target per sub area was 150 fish, however, some sampling was limited due to availability of catch. The gillnet fisheries occurred during October 15-16 and 21-22.

The remaining two fisheries were commercial seine fisheries which occurred on October 28 and November 5. Sample collection from these two fisheries totalled 299 and 199 respectively. Sub area separation for these fisheries was not possible, due to the mobility of the seine fleet.

For the Nitinat fisheries (Area 21) all samples were randomly collected from packers delivering to processing plants in Vancouver. Early commercial gillnet fisheries commenced on September 23; 30; October 7 and 19. Seine fishing commenced on October 15 and ended 11 days later. Sampling occurred in every week of the fishery except the first week where insufficient fish were caught to obtain a sample. A total of 1300 samples were obtained from these fisheries. Sample sizes ranged from 200 for
early gillnet fisheries to 300 and 600 for later seine fisheries. Note that the October 16 sample was 600, however only 150 were analyses due to a cold storage malfunction which spoiled 450 chum samples.

Chum fisheries frequently occur in discreet terminal areas such as Cowichan (Area 18). This year four commercial gillnet fisheries occurred in this area during November. No sampling was scheduled for this area as the vast majority of catches were anticipated close to the inner fishing boundary. In addition recent results (Hop Wo et al. 1991) have shown a small interception (0.01\%) of non Canadian origin stocks in outside fishing areas.

Another terminal chum fishing area in Southern British Columbia which received no GSI sampling was the Fraser River. Two terminal fisheries occurred in this area, the first in late October and the second in early November.

Analysis

After collection, the frozen chum tissues were sent to a contract laboratory for protein analysis. The tissues were analyzed for protein variation. The seven loci analyzed and coded are listed using nomenclature described by Shaklee et al. 1991: IDH-1 (1.1.1.42); PGDH (1.1.1.44); ME (1.1.1.39); G3PDH (1.1.1.8); IDH-3 (1.1.1.42); MPI (5.3.1.8); and Pep (3.4.-.-,) leucyl glycyl glycine substrate. This information was coded and returned to DFO for comparison to appropriate baseline samples.

Information from each fishery is compared to a baseline grouping which includes all possible stock contributors to the fishery. For Johnstone Strait, Qualicum and Nanaimo fisheries the baseline group used includes stocks originating from Johnstone Strait, Georgia Strait and Washington (Table.1). For Nitinat fisheries the baseline used includes West Coast Vancouver Island, Georgia Strait and Washington stocks (Table 2). Stocks included in respective baseline are based upon chum migration routes and stock abundance. Information contained in the baseline are observed genotypic frequencies of each locus.

Stock compositions are derived from comparisons and analysis which employed the method described by Fournier et al. (1984). The results were estimated using the genotypic frequencies and allocation method outlined by Beacham et al. (1987). Method and procedures for analysis using a maximum likelihood computer model are outlined in McKinnell 1990. The standard deviations of the estimates were determined by boot strapping, where new samples were constructed by sampling the original mixture and baseline with replacement. Computer model parameters (convergence criteria) were set at $10 e^{-10}$ for point estimates and $10 e^{-7}$ for boot strapping. Standard deviation estimates were derived from a boot strapped learning sample.

In addition, processing checks were conducted by resubmission of a previous sample. Individual scores and results were then compared to original processed results.

RESULTS

The GSI (electrophoretic) stock composition results from four commercial fishery locations are presented in Tables 3 to 7. The results of GSI analysis are expressed as percentages by major stock areas (Fraser River; Johnstone Strait/Strait of Georgia; United States; and West Coast Vancouver Island). Included with stock composition estimates are, week and area of collection, sample date and size, gear type sampled from, and estimates of standard deviation.

Results of the processing check sample ($n=200$) revealed 1.2% of the individual scores were different from the original scores (missing scores not included). Stock composition results from reanalysis are present in Table 7.

ACRNOWLEDGEMENTS

Senior management technicians D. Brouwer and J. Mitchell coordinated sampling and test fishing. Samples were collected by; S.C. Di Novo, A. Dunlop, L. Naylor, D. Ritchie and C. McConnell. Skippers of chartered vessels include S. Beans, and "Moon" Stauffer. A. Sewid coordinated the Mid Vancouver Island sampling. Protein analysis was by provided Aqua Life Diagnostics and commercial sampling was assisted by J.O. Thomas Ltd. B. Adkins prepared the tables.

LITERATURE CITED

Beacham, T.D., R.E. Withler, and A.P. Gould. 1985. Biochemical genetic stock identification of chum salmon (Oncorhynchus keta) in southern British Columbia. Can. J. Fish. Aquat. Sci. 44: 1702-1713p.

Beacham, T.D., A.P. Gould, R.E. Withler, C.B. Murray, and L.W. Barner. 1987. Biochemical genetic survey and stock identification of chum salmon (oncorhynchus keta) in British Columbia. Can. J. Fish. Aquat. Sci. 44: 1702-1713.

Fournier, D.A., T.D. Beacham, B.E. Riddell, and C.A. Busack. 1984. Estimating stock composition in mixed stock fisheries using morphometric, meristic, and electrophoretic characteristics. Can. J. Fish. Aquat. Sci. 41: 400-408p.

Hop Wo, L., A.P. Gould and W.H. Luedke. 1991. Biochemical Genetic Stock Identification of Chum Salmon in Southern British Columbia 1990. Can. Data. Rep. Fish. Aquat. Sci. No. 841: 16p.

McKinnell, S. 1990. Mixture: Manual and Software for Solving Finite Mixture Problems. Can Tech. Rep. Fish. Aquat. Sci. No. (in preparation).

Shaklee, James B., F. W. Allendorf, D.C. Morizot, and G.S. Whitt. 1990. Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society 119:2-15.

Utter, F.M., H.O. Hodgins, and F.W. Allendorf. 1974. Biochemical genetic studies of fishes: potentialities and limitations, p. 213-237. In D. Malins [ed.] Biochemical and biophysical perspectives in marine biology. Vol. 1. Academic Press, San Francisco, CA.

Vreeling, M.C., L. Hop Wo, A.P. Gould, W. Luedke, S.R. Heizer, and T.D. Beacham. 1987. Biochemical Genetic Stock Identification of Chum Salmon in Southern B.C., 1986. Can. Data Rep. Fish. Aquat. Sci. No. 634: 19p.
Table 1．Allelic Frequencies of Baseline Spawning Ground Samples for Johnstone and Georgia Strait Fisheries

	¢ ¢ ¢ ¢ \％	안응	$8 \text { ®a }$	ف⿹\zh26灬心夊力	®人 －000		$\stackrel{\circ}{\text { ¢ }}$
	¢ \％\％\％	으으웅	웅ํ N	品筞	品登伝管		
	으웅ㅇㅇㅇ	으응	우웅N		0000	－${ }_{\sim}^{\infty}$	
	毋\％¢ \％	드응융		¢\％			
トNO○と－＊	유유으응	스으웅	¢ ¢ Noc	능웅	¢OOOM	人业気号	$\stackrel{\sim}{\circ} \mathrm{O}$
エ○Eのーエェo	\％\％\％	¢\％	$\stackrel{\text { \％}}{\sim}$				$\stackrel{\sim}{\circ}$
	¢ ¢ \％\％	으웅		응응			$\stackrel{\circ}{\circ}$
ロコャロ－ェ－0＋	으웅응	으운	으웅우	으웅응		으웅응응	$\bigcirc \bigcirc_{\square}^{\circ}$
		끄운		¢ \％\％			成宁：
$0 \simeq \odot a \simeq \sigma E=\varnothing$	유응	\bigcirc	の㗊궁			$\stackrel{\circ}{\circ}$	の\％
¢○のロアのー－ن		¢	N¢ำก				
¢ 0 この－－0コE	유우응	은웅	O\％	®\％			$\stackrel{\text { ® }}{+} \times$
	©	80¢	¢ ${ }_{\text {® }}^{\text {¢ }}$	¢\％			\％오ㅇㅓㅜㅇ
	¢00\％	O－8880			$\stackrel{\text { ¢ }}{\substack{0 \\ 0}}$		8\％${ }_{\sim}^{\text {NoN }}$
		\％				$\stackrel{\text { ¢ }}{\sim}$	$8 \stackrel{80}{\circ}$
	すずす。	－	\％¢ Nocy	ロすず			$8 \stackrel{\text { ® }}{\text { ¢ }}$
O○－0ヘー－－¢ E	¢\％${ }_{\sim}^{\circ} \mathrm{O}$	¢ ¢－－\％		¢ ¢ ¢			$\stackrel{\infty}{\infty}$
$z \omega=\omega-E \circ$		융훙	\％¢ ¢ N		\％		
	E	<0		$<$	$\text { Z} \ll \infty 00$	$<\infty$	<m

Table 1. (cont'd) Allelic Frequencies of Baseline Spawning Ground Samples for Johnstone and Georgia Strait Fisheries

Ö
N
N
N
N

NN

א్ભ잉웅
웅웅웅
NOO O
$\stackrel{\otimes}{\infty} \stackrel{1}{\infty}$
N No mi

$\stackrel{\text { ®. }}{\sim}$
$\stackrel{\infty}{\infty}$
N్
웅 $\stackrel{0}{0}{ }_{0}^{\circ}{ }_{0}^{\circ}$
$\bar{\sim}$
N N ©

Table 2. Allelic Frequencies of Baseline Spawning Ground Samples for Nitinat Fisheries

Table 2．（cont＇d）Allelic Frequencies of Baseline Spawning Ground Samples for Nitinat Fisheries

												Z	
	N					T	N					e	
	i		S	C	M	a	a	T	C	S	B	b	
	t	A	a	－	a	h	h	a	a	u	u	a	M
	i	t	r	n	r	s	m	h	n	c	r	1	e
	n	1	i	u	b	i	i	s	t	－	m	1	g
	a	－	t	m	1	s	n	i	－	w	a	－	i
Locus	t	－	a	a	－	h	t	s	n	a	，	s	n

	우웅	இo m	©io oi	응NNNN웅	응ㅇㅇㅇ웅	ORO
응 B O	888	으웅	Nুぶ Oo	O웅	O잉	으웅웅
OOO O O	으응웅	으웅	ウずロ	8寸Nダロ －0000	O응	
	으웅	은Nㅜㅇ	இO O O	오ํํํㅇํ웅 －0000	으엉응	으웅에
タ8응	88뭉	இー	毋ơo oio	－0000		
Oio		$\stackrel{\infty}{\infty} \underset{\infty}{\infty} \frac{o}{0}$		ONN NO O 00000	O으웅 No	응NN
ロロㅇํㅇ	응응	$\text { 毋 } \stackrel{\infty}{\infty}$		00000	으	ロ둥
OB ©	88	오 ©		0000	$\begin{array}{r} 8.80 \\ \hline 0.0 \\ 0.0 \end{array}$	৪Nへָ
〇o oio	No	$\stackrel{\sim}{\infty} \underset{O}{\circ}$		00000		® N N N N
－${ }_{\sim}^{\circ} \mathrm{O}$	응응	OO OM	OOLO		OM M O B O	
－${ }_{\text {Non }}^{\text {On }}$	¢	$\stackrel{-}{\sim} \stackrel{\infty}{\sim}$	@ OO O	$\bar{\sim} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty} 0_{0}^{\circ} 8$ Noioco	웅응웅	O－N
	OOO	ONN	OO	Nocoo		¢
OOO O O O O	¢880		응	 	O O O O	\％${ }_{\circ}^{\text {¢ }}$
$\underline{z}<\infty$					＜${ }^{\text {c }}$	$\widehat{<}<\infty$

Table 2．（cont＇d）Allelic Frequencies of Baseline Spawning Ground Samples for Nitinat Fisheries

«－○コロ＋－	으웅으응	우웅응	우웅	¢ \％\％\％		O－N	8®\％
之	¢ \％\％Oio	ুsoo so	厄im on	む			N000
3ヵーかの๐」か	응ㅇㅇㅇ응	우웅		¢ ¢－\％\％		O－	으우우잉
Oェのェロー－		8\％	8－${ }_{\sim}^{\circ} \mathrm{O}$	「ら号号	®o		
$\omega+\infty>0$ ć	¢80．00			かっơo			$\stackrel{8}{\circ} \mathrm{O}$
ローツと0入		으ㅇㅡㅜ응	$\bigcirc \square_{0}^{\circ} \mathrm{O}$		응응응웅응	¢000 ¢ ¢ ¢	の边す。
ᄃ 0	$\stackrel{\text { ¢ }}{\sim}$	¢\％		为号号		O	¢ ¢ ¢ N
∞ のコロェコを	¢	¢	$\stackrel{\text { Now }}{\sim}$	¢\％¢00			
エ®ーローか○	人哭亏		¢			®0．	
＞0000－		유ㅇㅡㅜ응	内人 ¢ ¢			$\stackrel{\text { ¢ }}{\substack{\circ \\ 0}}$	の ¢ $_{\text {¢ }}^{0}$
$30 \omega>0-$	웅ㅇㅇㅇ응	\bigcirc		¢合皆			ゅ．8응
$\stackrel{\rightharpoonup}{\circ}$	$\varangle \infty$		$<\infty$	$\widehat{\xi}$	モ	∞	$<\infty$

Table 3. Weekly chum stock composition in Johnstone Strait (Areas 12 \& 13) seine test fishery, 1991 (1).

Week	Sample Date	Sample Size	Gear (3)	Stock Composition (2)					
				FR		JS,GS		U.S.	
				\%	(1SD)	\%	(1SD)	\%	(1SD)
9/1	No Sample								
$9 / 2$	Sep 11-13	300	TS	36.6	(12.7)	57.6	(11.1)	5.8	(4.8)
9/3	Sep 16-20	300	TS	35.5	(10.4)	60.8	(9.2)	3.7	(4.8)
9/4	Sep 25-28	297	TS	56.5	(13.9)	43.0	(13.8)	0.6	(3.8)
10/1	Sep 30-Oct 4	300	TS	37.4	(13.8)	55.5	(12.5)	7.2	(5.7)
10/2	Oct 7-11	300	TS	23.7	(13.7)	64.7	(13.9)	11.6	(7.1)
10/3	Oct 14-20	300	TS	28.1	(13.5)	57.4	(13.8)	14.5	(9.7)
10/4	Oct 21-25	300	TS	12.1	(7.7)	77.8	(8.3)	10.1	(6.6)
10/5	Oct 29-Nov 1	300	TS	41.3	(14.8)	51.8	(11.7)	6.9	(7.0)
11/1	Nov 4-5	150	TS	17.1	(14.1)	75.1	(14.7)	7.9	(6.0)

(1) Stock composition from electrophoretic samples taken in test fisheries. Point estimate (\%) for week and standard deviation (1SD) from bootstrap simulation.
(2) Area: FR - Fraser River; JS,GS - Johnstone Strait, Strait of Georgia; US - Washington State.
(3) Gear: TS = test seine.

Table 4. Weekly chum stock composition in Johnstone Strait (Areas 12 \& 13) commercial seine fisheries, 1991 (1).

Week	Sample Date	Sample Size	Area	Gear (3)	Stock Composition (2)					
					FR		JS,GS		U.S.	
					\%	(1SD)	\%	(1SD)	\%	(1SD)
9/4	Sep 23-24	200	A12/13	SN	39.6	(13.7)	54.0	(13.0)	6.5	(4.6)
9/4	Sep 23-24	200	A12/13	SN	35.6	(13.4)	64.5	(13.4)	0.0	(0.5)
9/4	Sep 23-24	200	A12/13	SN	31.1	(15.1)	65.3	(15.2)	3.6	(5.2)
9/4	Sep 23-24	100	A12	SN	37.2	(18.6)	62.8	(17.9)	0.0	(3.6)
9/4	Sep 23-24	199	A13	SN	4.3	(12.8)	90.0	(12.5)	5.7	(4.7)

(1) Stock composition from electrophoretic samples taken in commercial fisheries. Point estimate (\%) for week and standard deviation (1SD) from bootstrap simulation.
(2) Area: FR - Fraser River; JS,GS - Johnstone Strait, Strait of Georgia; US - Washington State.
(3) Gear: $\mathrm{SN}=$ seine.

Table 5. Weekly chum stock composition in Mid Vancouver Island (Area 14) commercial fisheries, 1991 (1).

Week	Sub-areas Sampled (3)	Sample Dates	Sample Size	Gear (4)	Stock Composition (2)					
					FR		JS,GS		U.S.	
					\%	(1SD)	\%	(1SD)	\%	(1SD)
10/3	14-4,5 (i)	Oct 15	150	GN	2.1	(7.6)	97.8	(9.2)	0.1	(5.4)
10/3	14-4,5 (0)	Oct 14-15	136	GN	19.0	(14.0)	59.9	(14.3)	21.2	(8.0)
10/3	14-9, 10(u)	Oct 14-15	120	GN	15.6	(12.2)	80.3	(13.3)	4.2	(4.5)
10/4	14-4,5 (i)	Oct 21-22	150	GN	10.9	(10.6)	89.0	(11.0)	0.1	(4.2)
10/4	14-4,5 (0)	Oct 22	148	GN	69.3	(21.2)	28.3	(20.1)	2.4	(5.2)
10/4	14-9, 10(u)	Oct 21-22	150	GN	1.8	(6.1)	97.5	(6.4)	0.7	(3.3)
10/5	14-4,5,9,10	Oct 28	299	SN	28.0	(9.9)	71.9	(9.7)	0.1	(2.3)
11/1	14-4,7,9,10	Nov 05	199	SN	11.1	(11.1)	88.8	(10.9)	0.0	(2.8)

(1) Stock composition from electrophoretic analysis of samples taken from the commercial gillnet and seine catch. Gillnet samples collected on fishing grounds, seine samples collected at landing site. Point estimate (\%) for week and standard deviation (1SD) from bootstrap simulation.
(2) Area : FR - Fraser River; JS,GS - Johnstone Strait, Strait of Georgia; U.S. - Washington State.
(3) Sub areas: 14-4,5(0) = outside, eastern boundary (most fishing occurs in 14-5); 14-4,5(i) $=$ inside, western boundary; $14-9,10(u)=$ upper northern boundary.
(4) Gear : GN - gillnet; SN - seine.

Table 6. Weekly chum stock composition in the Nanaimo (Strait of Georgia, Area 17) commercial gillnet fishery, 1991 (1).

Stock Composition (2)

Week	Area Sampled	Sample Date	Sample Size	FR		JS,GS		U.S.	
				\%	(1SD)	\%	(1SD)	\%	(1SD)
10/5	A 17	Oct 31-Nov 1	79	31.2	(18.4)	68.1	(16.1)	0.7	(6.9)

(1) Stock composition from electrophoretic analysis of samples taken in the gillnet commercial fishery. Point estimate (\%) for week and standard deviation (1SD) from bootstrap simulation.
(2) Area : FR - Fraser River; JS,GS - Johnstone Strait, Strait of Georgia; U.S. - Washington State.

Table 7. Weekly chum stock composition in Nitinat (Area 21) commercial fisheries, 1991 (1).

Week	SampleDateSize		Gear (3)	Stock Composition (2)								
			FR	JS,GS		U.S.		WCVI				
			\%	(1SD)	\%	(1SD)	\%	(1SD)	\%	(1SD)		
10/1	Oct 03	200		GN	11.6	(7.1)	9.9	(8.7)	2.5	(3.6)	76.0	(10.0)
10/2	Oct 10	200		GN	18.8	(8.8)	12.8	(9.5)	2.1	(3.0)	66.4	(10.8)
10/3	Oct 16	150	SN	0.0	(0.5)	0.0	(5.2)	0.0	(0.1)	99.9	(5.3)	
10/4	Oct 22	300	SN	0.0	(1.3)	0.1	(5.3)	0.0	(1.6)	99.8	(5.9)	
10/2	Oct 10(4)	200	control	17.3	(8.7)	11.9	(9.4)	0.1	(2.1)	70.8	(11.0)	

(1) Stock composition from electrophoretic analysis of samples taken from commercial fisheries in Area 21 and a portion of Area 121. Samples collected at landing site. Point estimate (\%) for week and standard deviation (1SD) from bootstrap simulation.
(2) Area: FR - Fraser River; JS,GS - Johnstone Strait, Georgia Strait; U.S. - Washington State; WCVI - West Coast Vancouver Island.
(3) Gear: GN - gillnet; SN - seine.
(4) Control duplicated from wk 10/2 sample (samples with insufficent muscle tissue for re-processing retained original scores).

Figure 1. Regions of Chum Sampling in 1991.
$\begin{array}{llll}\text { (A) Johnstone Strait } & \text { (B) Mid Vancouver Island } & \text { (C) Nanaimo } & \text { (D) Nitinat }\end{array}$

