

Data Report from the Canadian High Seas Salmon Cruise to the Eastern North Pacific, February 27 - March 25, 1992

J. F. T. Morris and D. W. Welch

Biological Sciences Branch Department of Fisheries and Oceans Pacific Biological Station Nanaimo, British Columbia V9R 5K6

1992

Canadian Data Report of Fisheries and Aquatic Sciences 884

Fisheries and Oceans

Pêches et Océans Canadä^{*}

Canadian Data Report of Fisheries and Aquatic Sciences

Data reports provide a medium for filing and archiving data compilations where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of data reports reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Data reports are not intended for general distribution and the contents must not be referred to in other publications without prior written authorization from the issuing establishment. The correct citation appears above the abstract of each report. Data reports are abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications

Numbers 1 25 in this series were issued as Fisheries and Marine Service Data Records. Numbers 26 160 were issued as Department of Fisheries and the Environment. Fisheries and Marine Service Data Reports. The current series name was introduced with the publication of report number 161.

Data reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport statistique canadien des sciences halieutiques et aquatiques

Les rapports statistiques servent à classer et à archiver les compilations de données pour lesquelles il y a peu ou point d'analyse. Ces compilations auront d'ordinaire été préparées à l'appui d'autres publications ou rapports. Les sujets des rapports statistiques reflétent la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports statistiques ne sont pas destinés à une vaste distribution et leur contenu ne doit pas être mentionné dans une publication sans autorisation écrite préalable de l'établissement auteur. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports statistiques sont résumés dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l'index annuel des publications scientifiques et techniques du Ministère.

Les numéros 1 à 25 de cette série ont été publiés à titre de relevés statistiques, Services des pêches et de la mer. Les numéros 26 à 160 ont été publiés à titre de rapports statistiques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série à été établi lors de la parution du numéro 161.

Les rapports statistiques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuises seront fournis contre rétribution par des agents commerciaux.

Canadian Data Report of Fisheries and Aquatic Sciences 884

1992

DATA REPORT FROM THE CANADIAN HIGH SEAS SALMON CRUISE TO THE EASTERN NORTH PACIFIC,

FEBRUARY 27 - MARCH 25, 1992

by

J. F. T. Morris and D. W. Welch

Biological Sciences Branch

Department of Fisheries and Oceans

Pacific Biological Station

Nanaimo, British Columbia V9R 5K6

(c) Minister of Supply and Services Canada 1992

Cat. No. Fs 97-13/884E

ISSN 0706-6465

Correct citation for this publication:

Morris, J. F. T. and D. W. Welch. 1992. Data report from the Canadian high seas salmon cruise to the eastern North Pacific, February 27 - March 25, 1992. Can. Data Rep. Fish. Aquat. Sci. 884: 11 p.

TABLE OF CONTENTS

r	age
ABSTRACT	iv
INTRODUCTION	. 1
1. CRUISE TRACK AND FISHING STATIONS	1
2. FISHING GEAR AND SAMPLING PROTOCOL	1
2.1. Rope trawl	. 1 . 2
3. BIOLOGICAL SAMPLING	. 3
4. DATA	. 3
ACKNOWLEDGEMENTS	. 5

ABSTRACT

Morris, J. F. T. and D. W. Welch. Data report from the Canadian high seas salmon cruise to the eastern North Pacific, February 27 - March 25, 1992. Can. Data Rep. Fish. Aquat. Sci. 884: 11 p.

Canadian fisheries scientists conducted a survey by rope trawl and surface gillnet in the eastern North Pacific from February 28 to March 25, 1992 to collect more information on the relationship between salmon distributions and physical oceanographic factors. This report presents the catch and biological data that were collected on Pacific salmon and other species, and the sea surface temperatures and salinities that were recorded at each fishing station.

RÉSUMÉ

Morris, J. F. T. and D. W. Welch. Data report from the Canadian high seas salmon cruise to the eastern North Pacific, February 27 - March 25, 1992. Can. Data Rep. Fish. Aquat. Sci. 884: 11 p.

Les scientifiques des pêches canadiennes ont effectué un relevé au chalut et au filet maillant dans la partie est du Pacifique Nord du 28 février au 25 mars 1992 afin de recueillir des informations sur les rapports entre les distributions de saumons et des facteurs océanographiques physiques. Ce rapport présente les données biologiques et des prises qui ont été recueillies sur le saumon du Pacifique et d'autres espèces, ainsi que les données de température superficielle de la mer et de salinité qui ont été obtenues à chaque station de pêche.

INTRODUCTION

A rope trawl and surface gillnet survey was conducted from February 27 to March 25, 1992 on the R.V. <u>W.E. Ricker</u> to collect more information on salmon distributions in relation to oceanographic conditions in the eastern North Pacific. Surveys of this type may eventually lead to a better understanding of how physical oceanographic factors define the southern limit of salmon.

This report presents the catch and biological data on Pacific salmon and other species, and the sea surface temperatures and salinities recorded at each fishing station.

Detailed oceanographic data from the cruise included a series of CTD casts to 800 metres and SAIL data which provide a continuous record of sea surface temperatures and salinities. The CTD and SAIL datasets can be accessed by contacting Robin Brown, Supervisor of Oceanographic Data Management at the Institute of Ocean Sciences (IOS) in Sydney, B.C. The CTD dataset is identified by the cruise number "92-03" and the SAIL dataset by the vessel name "W.E. Ricker", year "1992", and start date "Julian day, 58".

1. CRUISE TRACK AND FISHING STATIONS

Figure 1 shows the cruise track, CTD stations, and fishing stations completed by the R.V. <u>W.E Ricker</u>. A total of 10 rope trawl tows, 9 gillnet sets, 2 longline sets, 5 bongo tows, and 67 CTD casts were completed. Eight rope trawl tows were conducted along the three tacks en route to station "P", 1 just south of ocean station "P", and 1 along the western edge of LaPerouse Bank. The 9 gillnet sets began at ocean station "P". Six were then made along or close to the 140° W longitude, 1 just off Cobb's Seamount, and 1 approximately 60 km northwest from Cobb's Seamount. The two longline sets were made at 46° 21.3'N and 43° 48.6'N on the 140°W longitude.

2. FISHING GEAR AND SAMPLING PROTOCOL

2.1. Rope trawl

We sampled salmon with a Polish type mid-water rope trawl model 368/338 that was rented from Cantrawl Pacific Fishing Services in Richmond, B.C. The rope trawl measured 112 m along the head rope and 103 m along the side rope. The tapered body of the net was made up of the following sections: 375 mm stretched mesh, 4.5 m in length from front to back; 1600 mm stretched mesh, 20.5 m in length; 800 mm stretched mesh, 16

m in length; 400 mm stretched mesh, 10.5 m in length; 200 mm stretched mesh, 28 m in length; and 100 mm stretched mesh, 10.5 m in length. Cantrawl stitched on a 30 m intermediate section constructed from 75 mm stretch mesh polypropylene web and a 25 mm stretched mesh knotted nylon codend. The rope trawl was fitted with a standard Diamond VII rig that included 45 m bridles and 5 m trawl doors.

The mouth opening of the rope trawl when towed at 5 knots was 10 m in height by 40 m in width, as measured by a Simrad model FS3300 echosounder mounted at the centre of the headrope, 9 m ahead of the web.

Normal sampling protocol was to tow the rope trawl at 5 knots for one hour at a depth of 40 m for the first 30 minutes and at 20 m for the second 30 minutes. The tow at station #8, just northeast of ocean station "P" differed from this normal procedure in that we towed for 3 hours, sampling for 20 minutes at 100 m, 90 m, 80 m, 70 m, 60 m, 50 m, 40 m, 30 m, and 20 m.

2.2. Gillnet

The surface gillnet was made up of 20 to 26 50 m panels or "tans" of 115 mm stretched mesh monofilament for a total length of 1 to 1.3 km. The complete gillnet assembly also included, at the end that was the first to be set and hauled, a 10 m flagpole flying a fluorescent orange flag and carrying a radar reflector, one large red buoy, a radio beacon transmitting on channel 74, and a strobe light tied to a 80 m 7/8" polyethylene extension; and at the other end, a strobe light, a radio beacon transmitting on channel 72, and one small buoy tied to a 27 m 7/8" polyethylene extension.

We normally set the gillnet between 18:00 and 20:30 hours. The gillnet was soaked all night, and hauled at 8:00 hours the next morning. However, there were two daytime sets of approximately 5 and 6 hours duration at stations #17 and #19, respectively.

2.3 Longline

We set the floating longline twice in an effort to capture live salmon and steelhead trout (Oncorhynchus mykiss) for an experiment designed to assess their daily ration. The longline was made up of 14 and 20 skates or "hachi" of gear. A hachi consists of 49 hooks on 2 m monofilament leaders tied every 2.8 m along a 138 m floating nylon string. We baited the hooks with salted anchovies. The complete longline assembly also included, on the end that was first to be set and hauled, a 10 m flagpole flying a fluorescent orange flag and carrying a radar reflector, a radio beacon transmitting on channel 74, and a strobe light tied to a 27 m 7/8" polyethylene extension; and on the other end, a strobe light, a radio beacon transmitting on channel 72, and a large buoy tied to a 27 m 7/8" polyethylene extension.

We normally set the longline 30 minutes before sunrise, let it soak for 30 to 40 minutes, and then hauled it aboard. This procedure usually took a total of 3 to 4 hours depending on the catch and weather. The first set at station #12 differed from this normal procedure in that we set the longline during the afternoon and let it soak for about two hours.

3. BIOLOGICAL SAMPLING

All salmon caught were measured for fork length, body weight, gonad weight, liver weight, and stomach content weight. Scale samples were collected and the principal diet items were also recorded. Eye, muscle, heart, and liver samples for electrophoretic analysis were collected from each chum salmon (O. keta).

The appropriate lengths were measured and the sex was recorded for non-salmonids.

4. DATA

Table 1 presents the Pacific salmon catch by rope trawl at each station.

The rope trawl was intended to be our primary sampling gear on the cruise. However, no salmon were caught during the nine one-hour tows along the out-bound leg to station "P", or during the three-hour tow just south of station "P", and so we switched over to surface gillnet.

We strongly suspect that the rope trawl's lack of success in catching salmon was due to its short 10 m vertical opening. The Russians routinely sample salmonids by rope trawl in the North Pacific using a net with a mouth opening of 40 m in height by 60 m in width, making it at least six times larger than ours.

Owing to the failure to catch any salmon while on the high seas, we conducted a limited test of our rope trawl's ability to catch salmon with a one-hour tow on LaPerouse Bank. Here, we caught seven juvenile coho (O. kisutch) and one juvenile chinook salmon (O. tshawytscha) that were all under 40 cm in fork length. This demonstrated that the rope trawl is at least capable of catching small salmon in coastal waters, although its efficiency is unknown.

Table 2 presents the catches by surface gillnet of salmon, yellowtail (<u>Seriola sp.</u>), neon flying squid (<u>Ommastrephes bartrami</u>), and other species at each station.

Salmonids were caught by surface gillnet at sea surface temperatures up to 10.47°C; 11 sockeye salmon (O. nerka) at station #9, 31 chum salmon and 2 steelhead trout at station #11, 3 chum salmon at station #13, 1 steelhead trout at station #19, and 22 chum salmon and 4 steelhead trout at station #20.

Yellowtail were caught only at station #14, where the sea surface temperature was 13.54°C.

Neon flying squid were caught in relatively warm waters; 34 at station #14 and 7 at station #16, where the sea surface temperatures were 13.54°C and 11.35°C, respectively.

Table 3 presents the salmonid catches by longline for two stations. Four chum salmon, 1 chinook salmon, and 3 steelhead salmon were caught at station #12, where the sea surface temperature was 8.55°C; and none at station #18, where the sea surface temperature was 10.44°C.

Table 4 presents the salmon biological database. This contains data on fork length, body weight, age, sex, gonad weight, liver weight, stomach content weight, and principal diet items for each salmon that was caught.

Table 5 presents the non-salmonid biological database. This contains data on length and sex for each Japanese yellowtail, rockfish species, shark species, herring (<u>Clupea harengus</u>), and neon flying squid that was caught.

Table 6 presents the numbers of sockeye and chum caught in each sequential tan of gillnet at stations #9, #11, and #20.

Table 7 presents the numbers of neon flying squid and Japanese yellowtail caught in each sequential tan of gillnet at stations #14 and #16.

ACKNOWLEDGEMENTS

We would like to thank the crew of the R.V. <u>W.E. Ricker</u> for all their help and cooperation on the cruise, Darren Tuele from Ocean Physics at IOS for collecting the oceanographic data, Kent Berger-North from Ocean Physics for writing a program that extracts and processes selected blocks of SAIL data, and Kate Myers from the University of Washington's School of Fisheries for assisting with the biological sampling.

Table 1. Catches by rope trawl on the W.E. Ricker cruise to the eastern North Pacific, February 27-March 25, 1992.

STN#	DATE	START-END TIMES	START LOCATION	COURSE TO	DIST (km)	FISHING DEPTH(m)	SST	SSS	PK	CM	СО	SOK	CN	ST	OTHER SPECIES
1	92/02/29	9:42-10:42	48 26.6N 127 26.0W	267	10.0	20,40	9.16	32.24	0	0	0	0	0	0	
2	92/02/29	14:53-15:53	48 25.6N 128 18.6W	254	10.0	20,40	9.41	32.29	0	0	0	0	0	0	
3	92/03/01	9:20-10:20	48 27.0N 131 29.9W	211	9.4	20,40	9.13	32.31	0	0	0	0	0	0	
4	92/03/01	14:48-15:48	48 37.1N 132 06.3W	210	11.3	20,40	8.97	32.29	0	0	0	0	0	0	
5	92/03/02	8:27- 9:27	49 53.8N 134 52.1W	228	10.2	20,40	7.56	32.36	0	0	0	0	0	0	
6	92/03/02	15:07-16:07	50 17.2N 135 44.8W	261	8.0	20,40	7.61	32.36	0	0	0	0	0	0	
7	92/03/03	8:28- 9:28	51 50.3N 138 31.8W	248	10.0	20,40	6.53	32.40	0	0	0	0	0	0	
8	92/03/04	8:55-11:55	50 30.8N 143 41.5W	242	27.8	20-100	5.71	32.47	0	0	0	0	0	0	
10	92/03/05	13:43-14:43	49 37.2N 145 02.8W		10.0	20.40	6.04	32.44	0	0	0	0	0	0	
21	92/03/23	13:12-14:43	48 33.3N 125 05.6W	132	8.7	20,40	9.47	31.71	0	0	8	0	1	0	6 HR

Table 2. Catches by gillnet on the W.E. Ricker cruise to the eastern North Pacific, February 27-March 25, 1992.

STN#	DATE	SET-HAUL TIMES	LOCATION	DIRECTION TO	TANS	SST	SSS	PK	СМ	СО	S0K	CN	ST	ΥT	FSQ	OTHER SPECIES
11 13	92/03/05 92/03/10 92/03/12 92/03/14 92/03/15 92/03/16 92/03/18 92/03/21	18:00- 9:25 18:14- 9:10 17:15-19:40 18:29- 9:38 19:50- 9:06 20:10- 9:30 5:10-13:00 11:00-15:48 19:15- 9:19	50 00.0N 144 59.9W 45 18.2N 140 55.6W 46 20.7N 140 05.3W 39 58.3N 139 50.7W 41 29.5N 140 00.4W 43 10.1N 140 00.7W 43 50.0N 140 00.6W 46 45.1N 130 47.8W 47 04.5N 131 26.3W	63 231 126 342 40 211 225 300 174	20 20 26 26 26 24 24 24	5.98 9.07 8.55 13.54 11.91 11.35 10.44 10.05	32.45 32.12 32.54 33.48 33.05 32.95 32.70 32.39 32.46	0 0 0 0 0 0 0 0 0	0 31 3 0 0 0 0	000000000000000000000000000000000000000	11 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 2 0 0 0 0 0	0 0 0 16 0 0 0	0 0 0 34 0 7 0	1 BRF 1 BRF,1 SDF 1 BS

σ

Table 3. Catches by longline on the W.E. Ricker cruise to the eastern North Pacific, February 27-March 25, 1992.

STN#	DATE	SET-HAUL TIMES	LOCATION	DIRECTION TO	HACHI	SST	SSS	PK	СМ	СО	SOK	CN	ST
12 18	92/03/12 92/03/18	12:56-17:35 6:30- 9:50	46 21.3N 140 05 43 48.6N 140 02	.7W 270 .9W 352	14 20		32.54 32.70						

Species abbreviations: PK, pink salmon; CM, chum salmon; CO, coho salmon; SOK, sockeye salmon; CN, chinook salmon; ST, steelhead; YT, Yellowtail sp.; FSQ, flying squid; BRF, black rockfish; SDF, spiny dogfish; BS, blue shark; SFS, soupfin shark; HR, herring.

Table 4. Salmon database collected on the W.E Ricker cruise to the eastern North Pacific, February 27-March 25, 1992.

STN#	SP	FL(mm)	FISH WT(g)	AGE	SEX	GONAD WT(g)	LIVER WT(g)	STOMACH WT(g)	PRINCIPAL DIET ITEMS / COMMENTS
9	118	364	504.5	2.1	M	0.0	8.5	5.0	THO SMALL SQUID
9 9	118 118	365 375	503.8 570.0	2.2	F F	5.5 6.0	6.0 5.5	0.0 0.0	ONE AMPHIPOD / VISCERAL ADHESION
9	118	375	3/0.0	1.2	M	0.0	11.0	0.0	/ VISCENIE ADMESTOR
9 9 9 9	118	434	874.0	2.2	M	0.0	16.0 22.5	0.0	/ NICCEDAL ADUECION
9	118 118	488 500	1437.0 1457.0	1.3	F F	29.5 28.5	22.5	0.0 0.0	/ VISCERAL ADHESION / VISCERAL ADHESION
ğ	118	504	1471.0	1.3	F	26.0	22.5	9.0	THO SMALL SQUID
9	118	513	1548.0	1.3	M	7.0	24.0	0.0	ONE COULD DEAK
9	118 118	519 564	1756.0 18 9 5.0	2.3	M M	8.0 7.5	23.0 25.5	0.0 0.0	ONE SQUID BEAK
11	112	501	1030.0	0.4	М	7.0	26.0	15.0	UN-ID GELATINOUS MATTER / HEAD MANGLED 510mm 1228g
11 11	112 112	E10	1329.5	0.3	M F	7.5 24.5	34.0 38.5	11.0 0.0	UN-ID GELATINOUS MATTER / HEAD MANGLED 520mm 1554g
11	112	510 510	1661.0	0.3	M	7.5	39.0	14.0	UN-ID MATTER
11	112	525	1629.0	0.4	F	39.5	44.0	27.0	UN-ID GELATINOUS MATTER
11 11	112 112	530 540	1569.0 15 90. 0	0.4 0.4	M M	8.0 12.5	41.5 41.0	17.5 10.0	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER
ii	112	548	1807.0	0.3	F F	63.5	48.5	21.5	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER
11	112	550	1693.0	0.3		31.5	47.0	10.0	UN-ID GELATINOUS MATTER
11 11	112 112	550 557	1716.0 1826.0	0.3	M F	12.0 24.5	42.5 35.5	31.0 19.5	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER
11	112	560	1976.0	0.3	M M	12.0	38.5	11.0 14.5	UN-ID GELATINOUS MATTER
11	112	560	1878.0	0.3		7.5	42.5	14.5	UN-ID GELATINOUS MATTER
11 11	112 112	560 565	1688.0 1878.0	0.3	M M	10.0 11.0	40.0 62.0	48.5 40.5	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER
11	112	570	1992.0	0.3	M	9.0	49.0	52.5	UN-ID GELATINOUS MATTER
11 11	112 112	580 580	1882.0 2165.0	0.4	M F	17.0 55.0	44.5 56.5	20.5 57.0	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER, POLYCHETES, KRILL REMAINS
11	112	580	2046.0	0.3	M	9.5	47.0	0.0	
11	112	580	1949.0	0.4	M	10.0	50.0	7.0	UN-ID GELATINOUS MATTER
11 11	112 112	588 590		0.4 0.4	F M	41.5 12.5	63.0	45.0 30.1	UN-ID GELATINOUS MATTER / SEAL BITE 2110g, LIVER 51.5g UN-ID GELATINOUS MATTER / SEAL BITE 2317g
11	112	595	2415.0	0.4	M	12.5	69.0	11.0	UN-ID GELATINOUS MATTER
11	112	603	2475.0	0.3	M	12.5	56.5	17.5	UN-ID GELATINOUS MATTER
11 11	112 112	605 609	2417.0 2787.0	0.4	M M	11.0 16.0	48.5 57.0	40.0 0.0	UN-ID GELATINOUS MATTER
11	112	610	2640.0	0.3	M	10.5	65.5	55.0	UN-ID GELATINOUS MATTER, ONE MYCTOPHID
11 11	112 112	615 61 5	2928.0	0.3	M M	13.5 19.0	88.0 67.5	54.0 77.5	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER,SHRIMP REMAINS,ONE SQUID
11	112	620	2661.0 2843.0	0.3 0.4	M	11.5	73.0	30.0	UN-ID GELATINOUS MATTER
11	112 112	620	2618.0	0.3	M	13.0	73.0 52.5	12.5	UN-ID GELATINOUS MATTER
11 11	128 128			$\frac{1.1}{1.2}$	F F	2.0 9.5	13.5 32.5	$0.0 \\ 11.0$	SQUID REMAINS / ADIPOSE, HEAD MISSING, 520mm 1090g SQUID 5CM / ADIPOSE, NO CWT, HEAD DETACHED, 685mm 2654g

- 7 -

Table 4 (continued).

STN#	SP	FL(mm)	FISH WT(g)	AGE	SEX	GONAD WT(g)	LIVER WT(g)	STOMACH WT(g)	PRINCIPAL DIET ITEMS / COMMENTS
12 12 12 12 12 12 12 12 13 13 13 19 20 20 20 20 20 20 20 20 20	112 112 112 124 128 128 128 112 112 112 112 112 112 112	370 555 5615 563 425 600 693 520 500 500 510 520 530 540	469.0 1592.0 1753.0 2361.0 2200.0 722.0 2230.0 3094.0 1867.0 2292.0 1948.0 1791.0 1467.0 1319.0 1407.0 1408.0 1533.0	0.2 0.4 0.3 0.3 1.2 1.1 1.2 0.3 0.3 0.3 0.3 0.3 0.3	W-W-WuW	7.0 24.0 9.0 29.0 7.0 22.5 23.5 36.5 35.0 13.5 10.0 24.0 25.5 16.5 11.0	13.5 25.5 43.5 42.0 28.5 15.5 26.0 42.5 46.0 33.0 37.5 23.0 36.5 28.0 32.5 36.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	9.0 9.5 9.5 9.5 10.5 9.5 13.5 57.5 12.5 0.0 0.0 0.0 0.0	UN-ID DIGESTED MATTER UN-ID GELATINOUS MATTER SMALL "VELLELA" 2 CM ACROSS UN-ID GELATINOUS MATTER SQUID 3 CM, EUPHAUSIIDS SQUID REMAINS / ADIPOSE, NO CWT 4 SQUID 5 CM, EU, AMPHI / ADIPOSE, NO CWT, NET MARK ADIPOSE, NO CWT, MYCT 4CM, EU, PTER, AMP SMALL "VELLELA" 2 CM UN-ID GELATINOUS MATTER EUPHAUSIIDS, UN-ID GELATINOUS MATTER SQUID REMAINS, ONE AMPHIPOD / SPAWNED OUT ONE DIGESTED POLYCHETE, UN-ID GELATINOUS MATTER
20 20 20 20 20 20 20 20 20	112 112 112 112 112 112 112 112 112	540 550 560 560 570 570 575 580	1537.0 1653.0 1801.0 1926.0 1890.0 2018.0 1815.0 1996.0 2154.0 1928.0	0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3	M F F F M	14.0 0.0 23.0 19.5 21.0 18.0 0.0 2.0 25.5	20.5 30.0 50.5 48.0 23.0 33.5 37.5 32.0 41.0	2.5 0.0 0.0 0.0 0.0 0.0 0.0	UN-ID GELATINOUS MATTER
20 20 20 20 20	112 112 112 112	590 594 605 610	1928.0 2211.0 2358.0 2384.0	0.3 0.3 0.3	M F F F M	22.5 31.5 25.5 0.0	39.0 57.5 36.0 34.5	2.0 0.0 0.0 10.5	UN-ID GELATINOUS MATTER UN-ID GELATINOUS MATTER, FOUR VELLELA STRUCTURES 2 CM
20 20 20	112 128 128	660 640 670	3220.0 2676.0 3374.0	0.4 1.3 1.2		4.0 63.5 440.5	39.5 24.5 46.5	37.0 6.5 0.0	UN-ID GELATINOUS MATTER 12 SHRIMP CARAPACES / MATURE MALE,ADIPOSE,NO CWT / MATURE
20 21 21 21 21 21 21 21 21 21	128 128 115 115 115 115 115 115 115 115 124	690 730 326 332 337 341 343 355 355 360 275	3468.0 3238.0 405.0 425.5 394.0 458.5 481.5 564.0 533.0 228.0	2.2 1.3 2.1 2.1 1.1 1.1 1.1 2.1 0.1	M	337.5 24.5 5.0 0.0 0.0 4.5 0.0 5.5 0.0 0.0	52.5 42.5 9.5 0.0 8.5 8.5 5.0 6.0 9.0 8.0	25.0 9.5 12.0 14.0 0.0 6.5 5.5 17.5 18.0 9.0	SQUID 5 CM, MYCTOPHID 4 CM,5 HYPERIID AMPHIPODS / MATURE POLYCHETES / SPAWNED OUT, TAIL WORN DOWN EUPHAUSIIDS, PTEROPODS PTEROPODS, EUPHAUSIIDS 12-20 PTEROPODS DIGESTED EUPHAUSIIDS PTEROPODS EUPHAUSIIDS PTEROPODS EUPHAUSIIDS PTEROPODS, EUPHAUSIIDS PTEROPODS, EUPHAUSIIDS EUPHAUSIIDS, SOME PTEROPODS / CWT# 021557, CDF0, SPIUS CK HATCHERY, RELEASED 24/04/91

ω

.

Table 5. Biological database for non-salmonid species collected on the W.E. Ricker cruise to the eastern North Pacific, February 27-March 25, 1992.

STN#	SPECIES	LENGTH MEASURE	LENGTH (mm)	SE)	LENGTH (mm)	SEX	LENGTH (mm)	SEX	LENGTH (mm) SEX	LENGTH (mm)	SEX
14	NEON FLYING SQUID	ML	315 350 355 370 382 395 422	M F F F F F	335 350 355 372 382 400 440	F F F F F	340 350 360 376 385 400 470	F F F F F	340 F 350 F 370 F 380 F 390 F 410 F 470 F	350 355 370 380 392 420	F F F F
17	NEON FLYING SQUID	ML	240 354	F	302 390	F	310	F	345 F	345	F
14	YELLOWTAIL sp.	FL	450 515 472 539	F M M	465 515 494	F F M	47 0 515 508	F F M	484 F 525 F 510 M	490 558 512	F M
9	BLACK ROCKFISH	FL	520	F	(spawner, embr	yos	present)				
11	BLACK ROCKFISH	FL	514	F	(spawner, embr	yos	present, ripe	and	running)		
11	SPINY DOGFISH	TL	703	F							
20	SPINY DOGFISH	TL	1070	F	760	M	930	F			
14	BLUE SHARK	TL	782	F							
20	SOUPFIN SHARK	TL	1610	M	1690	M	1760	M			
21	HERRING	FL	172 208		200		206		208	210	

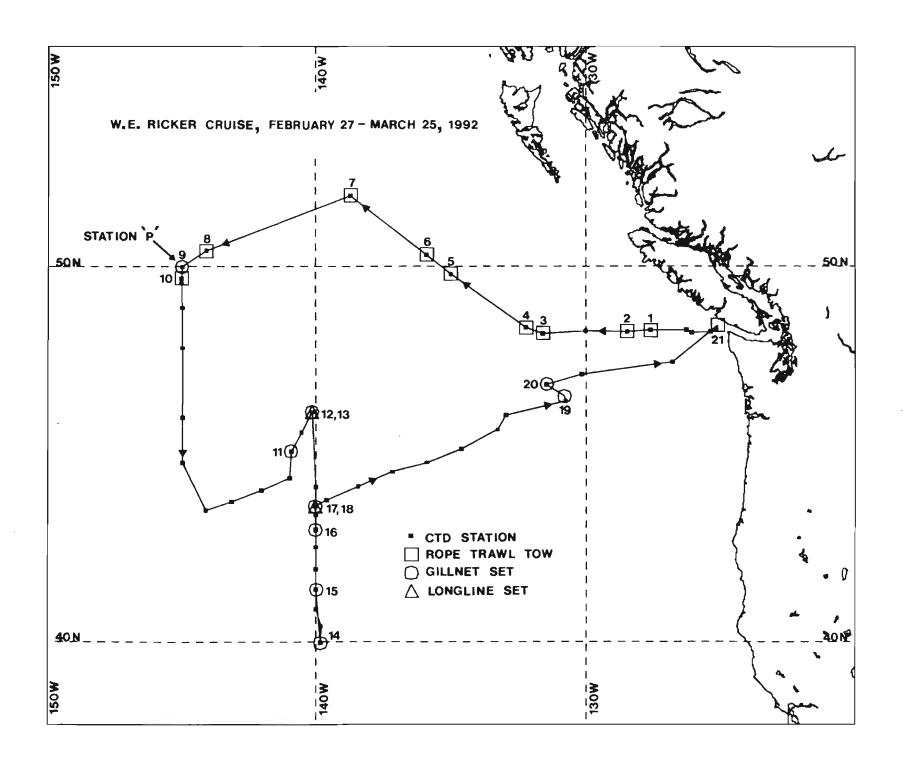

9

Table 6. Numbers of sockeye and chum salmon caught in each sequential tan of gillnet at these stations.

		SET				N#				AN#			TA					N#				N#				N#		
STN#	SPECIES	TOTAL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
																												
9	SOCKEYE	11	1	1	1	2	1	1	1	0	1	0	0	1	0	0	0	0	1	0	0	0						
11 20	CHUM CHUM	31 22											4 0											0	3	0		

Table 7. Numbers of neon flying squid and Japanese yellowtail caught in each sequential tan of gillnet at these stations.

STN#	SPECIES	SET TOTAL	1	2		AN# 4	5	6		#NA 8	9	10		N# 12	13	14		N# 16	17	18		N# 20	21	22		N# 24	25	26
14 16	FLYING SQUID FLYING SQUID	34 7	0	1 0	1 0	9	2	0	0	1 0	3	0 2	0	0	0	3	11 0	1 2	0	2	0	0	0	0	0	0 2	0	0
14	YELLOWTAIL sp.	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	1	0	0	0	0	0	0	0	0	0

				* 15 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
·				
·				1
	·			
			,	9.
				4.7