# STRAP: A User-Oriented Computer Analysis System for Groundfish **Research Trawl Survey Data**

S.J. Smith, and G.D. Somerton

**Research and Resource Services** Department of Fisheries and Oceans P.O. Box 5667 St. John's, Newfoundland A1C 5X1

September 1981

Canadian Technical Report of **Fisheries and Aquatic Sciences** No. 1030



Government of Canada Fisheries and Oceans Pêches et Océans

## Canadian Technical Report of

## Fisheries and Aquatic Sciences

These reports contain scientific and technical information that represents an important contribution to existing knowledge but which for some reason may not be appropriate for primary scientific (i.e. *Journal*) publication. Technical Reports are directed primarily towards a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant to Canada.

Technical Reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report will be abstracted in *Aquatic Sciences and Fisheries Abstracts* and will be indexed annually in the Department's index to scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Details on the availability of Technical Reports in hard copy may be obtained from the issuing establishment indicated on the front cover.

### Rapport technique canadien des

#### sciences halieutiques et aquatiques

Ces rapports contiennent des renseignements scientifiques et techniques qui constituent une contribution importante aux connaissances actuelles mais qui, pour une raison ou pour une autre, ne semblent pas appropriés pour la publication dans un journal scientifique. Il n'y a aucune restriction quant au sujet, de fait, la série reflète la vaste gamme des intérêts et des politiques du Ministère des Pêches et des Océans, notamment gestion des pêches, techniques et développement, sciences océaniques et environnements aquatiques, au Canada.

Les Rapports techniques peuvent être considérés comme des publications complètes. Le titre exact paraîtra au haut du résumé de chaque rapport, qui sera publié dans la revue *Aquatic Sciences and Fisheries Abstracts* et qui figurera dans l'index annuel des publications scientifiques et techniques du Ministère.

Les numéros 1-456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457-714, à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715-924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, Ministère de l'Environnement. Le nom de la série a été modifié à partir du numéro 925.

La page couverture porte le nom de l'établissement auteur où l'on peut se procurer les rapports sous couverture cartonnée.

Canadian Technical Report of Fisheries and Aquatic Sciences 1030

September 1981

# STRAP: A USER-ORIENTED COMPUTER ANALYSIS SYSTEM FOR GROUNDFISH RESEARCH TRAWL SURVEY DATA

by

S. J. Smith<sup>1</sup>, and G. D. Somerton<sup>2</sup> Research and Resource Services Department of Fisheries and Oceans P.O. Box 5667

St. John's, Newfoundland A1C 5X1

This is the sixty-sixth Technical Report from Research and Resource Services, St. John's, Newfoundland.

<sup>1</sup> Present address: Marine Fish Division, Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2 <sup>2</sup> Send enquiries and reprint requests to G. Somerton.

© Minister of Supply and Services Canada 1981 Cat. No. Fs 97-6/1030 ISSN 0706-6457

Correct citation for this publication:

Smith, S. J., and G. D. Somerton. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv + 66 p.

# CONTENTS

| Abstract/Résuméiv                                                 |  |
|-------------------------------------------------------------------|--|
| Introduction 1                                                    |  |
| Standard notation for use in groundfish research trawl surveys 2  |  |
| Program design 3                                                  |  |
| The control statements 5                                          |  |
| Some examples 12                                                  |  |
| References                                                        |  |
| Appendix 1: File specifications and sample job streams            |  |
| Appendix 2: Data formats - St. John's coding specs                |  |
| 2A: Groundfish research set details (coding specifications) 32    |  |
| 2B: Groundfish research age and growth (coding specifications) 46 |  |

2C: Groundfish research length frequencies (coding specifications) 64

### ABSTRACT

Smith, S. J., and G. D. Somerton. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv + 66 p.

A computer analysis system <u>STRAP</u>, was devloped at the Northwest Atlantic Fisheries Centre for use in analyzing observations obtained from groundfish research trawl surveys.

The system was designed to allow the user greater freedom in data manipulation and estimation by means of 'plain' english control statements. This will enable and encourage closer examination of the data. The modular nature of the programs will permit easy inclusion of new analysis techniques.

Examples given demonstrate the flexibility of STRAP.

Key words: Groundfish trawl surveys, stratified-random surveys, fisheries management

# RESUME

Smith, S. J., and G. D. Somerton. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv + 66 p.

Le Centre des pêches de l'Atlantique nord-ouest a mis au point un système <u>STRAP</u> d'analyse par ordinateur qui sert à analyser les observations provenant des levés par chalutage de poisson de fond réalisés à des fins de recherche.

Le système a été conçu pour permettre à l'utilisateur de manipuler et d'évaluer les données avec une plus grande latitude grâce à des instructions en langage courant. Cela permettra et favorisera un examen plus minutieux des données. Comme les programmes sont modulaires, on pourra facilement y inclure les nouvelles techniques d'analyse.

Les exemples cités démontrent la souplesse du système STRAP.

#### INTRODUCTION

Management decisions on Canada's east coast groundfish stocks are mainly realized from the analysis of information provided by two basic sources of data; commercial statistics and groundfish research trawl surveys. Although groundfish surveys on the east coast date back to the 1940's, stratified-random groundfish surveys were introduced to the east coast in 1970 in order to provide an alternative to the commercial sources for the determination of stock abundance as well as information on age and length structure, parasites, and other biological information. The sampling scheme that is used is a stratified random sampling design with depth as the major stratifying variable. The depth ranges used were based in part on the experiences of the Northeast Atlantic Fisheries Centre (Wood's Hole, Mass.) which had been conducting like surveys since 1963 and when such information was available, on knowledge of the distribution characteristics of the major commercial species in a specific area. (Documentation with regards to the development of these surveys are contained in the following reports: Grosslein and Pinhorn 1971; Halliday and Kohler 1971; Pinhorn 1971; and Grosslein 1971). The advantages of using trawl surveys so designed was seen as: 1) use of a standard gear type over all years would provide data which would not be affected by an ambiguity in the use of a 'standard' effort when many gear types are used such as in the commercial fishery, and 2) the stratified-random design would provide estimates of the precision of the estimates of abundance which were not available for the commercially based estimates.

The original computer programs which were used in St. John's to analyze the survey data were modified versions of programs written by D. N. Fitzgerald (St. Andrews Biological Station, St. Andrews, New Brunswick). These programs written in the early 1970's provided estimates of the stratified means as well as an estimate of the total abundance with their respective measures of precision and confidence limits. Analysis was carried out in two formats; 1) the so-called 'Strat-1' program which provided estimates of numbers caught per age-group and 2) the 'Strat-2' program which calculated estimates of the mean numbers and weights caught per tow (as well as estimates of totals per survey area).

These programs were adequate enough at the time but since then changes in data storage (tape files replacing card decks) and a need to explore and study this data source in order to refine the survey and estimation techniques required a more flexible computer analysis system. This then was the motivation for writing the programs which are being presented here. This new analysis system known simply as STRAP (<u>Stratified Analysis Programs</u>) is not a modified version of the Fitzgerald programs but instead is a freshly designed system such that the following requirements be met:

- 1) that the programs are easy to use in order to promote increased study of the data base,
- 2) that the programs are designed such that new developments or requirements can be built into the programs in a systematic fashion.

The above requirements were met by making the programs parameter driven in a way that 'plain english' commands supplied by the user would run the programs and the programs were written in self contained modules so that changes could be made easily. The actual details will be explained more fully in the body of this report. The programs as presented are the version in use at the Northwest Atlantic Fisheries Centre in St. John's, Newfoundland. Therefore the data formats (included here as Appendix 2 for illustration only) and any special programming required to deal with unusual structures in the data are specific to the Newfoundland region. The system is also designed to run on an IBM 370/158 MVS type-computer but a modified version of it is being proposed for a CDC/CYBER 171 machine used by the Marine Fish Division at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia.

It should be stressed that the STRAP system presented here is not the final form to be taken by this analysis system. The STRAP system will evolve as more developments occur from research into the groundfish surveys.

STANDARD NOTATION FOR USE IN GROUNDFISH RESEARCH TRAWL SURVEYS

= number of strata samples  $(h = 1, 2, \ldots, L)$ 

= total number of sample units in the hth stratum

= total number of units sampled in the hth stratum (i = 1, 2,  $\ldots$ , n<sub>h</sub>)

 $N = \sum_{h=1}^{L} N_h$  = total number of sample units in survey

L

Nh

n<sub>h</sub>

 $n = \sum_{h=1}^{L} n_{h}$  = total number of observations in survey

 $W_h = \frac{N_h}{N}$  = stratum weight f. = n

 $f_h = \frac{n_h}{N_h}$  = sampling fraction in the hth stratum

 $y_{hi}$  = ith observation in the hth stratum

 $\overline{Y}_{h} = \sum_{i=1}^{n} Y_{hi} / n = sample mean in the hth stratum h$ 

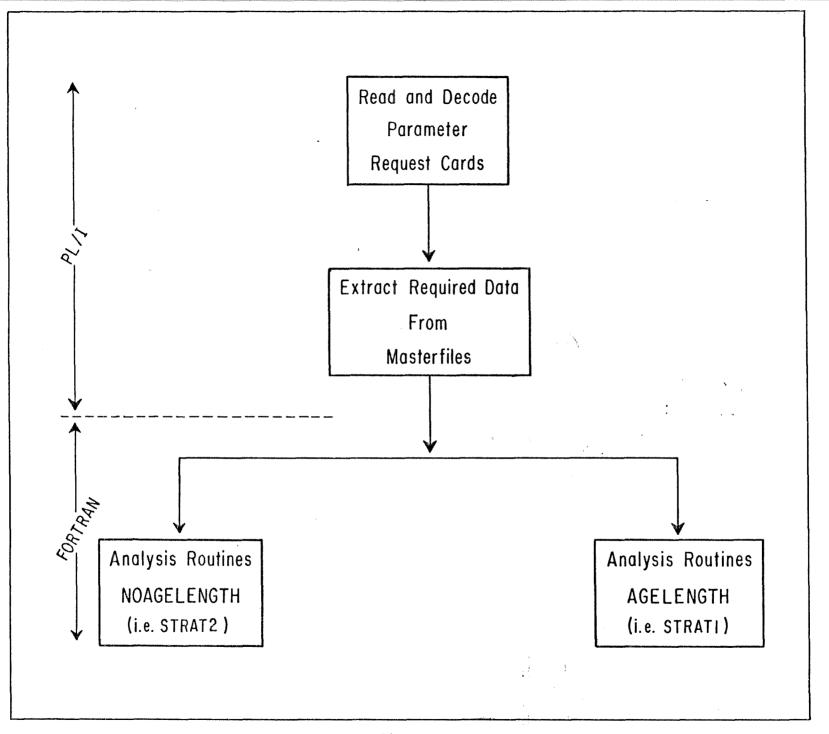
 $S_{h}^{2} = \sum_{i=1}^{n} (Y_{h_{i}} - \overline{Y}_{h})^{2}/(n_{h} - 1) = \text{sample variance in the hth stratum}$ 

 $\overline{Y}_{st} = \sum_{h=1}^{\Sigma} W_h$   $\overline{Y}_h$  = estimate of the population mean per unit (i.e. stratified mean catch per tow)

$$Var(\overline{Y}_{st})$$
 or  $s^2(\overline{Y}_{st}) = \frac{1}{N^2} \sum_{h=1}^{L} N_h (N_h - n_h) \frac{S^2_h}{n} = estimate of the variance of the h$ 

 $\hat{Y}_{st} = N\overline{Y}_{st}$  = estimate of the population total over the survey area

#### PROGRAM DESIGN


The main factor in developing the design of the STRAP program was to make it as user-oriented as possible so that requests could be developed and coded easily, possibly by non-EDP users of the program. In order to do this, it was decided that the STRAP program should be parameter driven by English-language type control cards similar to those used in BMDP (Dixon 1977) and POPAN (Arnason and Baniuk 1980). The control cards were structured into sets according to their usage and each card took the following format ....

#### KEYWORD = 'LIST OF VALUES'

An attempt was made to make both the keywords and the list of values as explanatory as possible. To make the program "user-friendly" the control cards were designed to be free-format. This allows the user freedom in preparing the parameter card request deck. Also, the STRAP program attempts to error check the control parameters to avoid wasted or meaningless jobs. When an error is detected, an appropriate message is printed beneath the control statement in error. Error checking continues to the end of the control statements but no processing is attempted if an error has been detected.

During the design of the STRAP program it became evident that the program could be separated into two components - one to read and decode the parameter control cards and extract from the existing master files of data the subfiles required for a particular request, and the other to do the necessary analysis of the extracted data. The second analysis component could further be split into two distinct sections roughly equivalent to the old 'STRAT1' and 'STRAT2' programs. This modularization of the program and the flow of program control are illustrated in Fig. 1. Also, it was decided that since IBM's FORTRAN IV was inefficient for handling character strings and input/output operations, the first component of the program would be written in IBM's PL/I programming language, while the second component would be programmed in FORTRAN. Communication between the two components of the STRAP program is accomplished by temporary data sets created in the PL/I component and read in the FORTRAN section. The major options and flow of logic in the analysis routines are controlled by a vector called IND in the program code. The vector is set in the PL/I component of the program depending on the options requested and is passed by means of a temporary data set to the FORTRAN analysis routines. The FORTRAN routines use the settings of the IND vector to control the type of analysis being done. For example, the first position of IND is set to 1 if an AGE LENGTH analysis is required and 0 otherwise.

As far as possible, the STRAP program has been modularized, so that each distinct function of the program is contained in a separate subroutine.





When extracting the requested data from the master files the STRAP program attempts to validate the records as much as possible. Unsuccessful sets are identified, listed on the output and excluded from the analysis. If the standard stratum areas (Anon. 1979) are being used then the stratum number coded is checked for validity. Sets having zero or blanks coded for the "distance towed" are identified and listed on the output as are sets which have zeros or blanks coded for the number or weight of a species caught. Both these cases cause an error parameter to be switched on; this parameter is tested before the analysis of the extracted data is begun, and if found to be on, execution is terminated.

Since the STRAP program uses a variety of temporary data sets, the job control language for running the program at the Northwest Atlantic Fisheries Centre has been catalogued on the IBM machine at Newfoundland and Labrador Computer Services. To execute STRAP at the Northwest Atlantic Fisheries Centre, the user simply invokes the catalogued procedure with an EXECute statement and supplies the necessary master files which the program expects to use. See Appendix 1 for a description of the files required by the program and several sample job streams.

#### THE CONTROL STATEMENTS

The general format of all control statements is:

All control statements can be entered in free format. The control statements are organized into 'sets' according to their respective data specification or estimation-type functions. The sets are denoted by a ? with the set name following (e.g. ?START). A set is terminated by the next set statement. The order of the control statement sets is optional with the exception of the sets denoted by ?END and ?FINISH. Only sets ?SELECT1 ?END. ?FINISH and ?ESTIMATE are required, all others are optional and used as needed.

Following is a description of each set with its member control statements. (Note: If the default value is desired the statement does not have to appear.)

I. ?START (optional)

a)  $\underline{\text{TITLE}}$  = any alphanumeric title, maximum of 72 characters and blanks are allowed.

= blank (default)

- b) <u>PROGRAM</u> = AGELENGTH; analysis is done on the basis of age or length groupings. Output will be in estimated numbers per age or length grouping.
  - = NOAGELENGTH (default); analysis is done on the total numbers and total weight caught per species per tow

II ?SELECT1 (Required)

- a) <u>VESSEL</u> = give a list of vessel number(s) (at present as per St. John's coding specification; Appendix 2) used in the survey(s) of interest, separated by a blank or comma.
- b) <u>TRIP</u> = give a list of trip number(s) to be selected. Each trip number must be in the following format YYNNN, where YY is the year (e.g. 81) and NNN refers to the cruise number (as per coding specification; Appendix 2). The cruise number must be in a three digit field (e.g. cruise number 2 must be written as 002). Note: The correspondence between vessel and trip numbers is as follows;
  - i) if only one vessel is specified then all trips are for that vessel.
  - ii) if more than one vessel is specified then there is a one to one relationship between vessel numbers and the trip numbers.
- c) <u>ICNAF</u> = give the ICNAF/NAFO Divisions to be selected. Single areas are specified by giving the two digit code, e.g. 2J,3L, etc. If a combination of areas is desired for one analysis e.g. areas 3L, 3N, 30 (Grand Bank) are to be combined then specify 3LNO. Note: Each vessel/trip combination will be analyzed for each ICNAF/NAFO Div. specified.
- d) <u>SPECIES</u> = give a list of species to be analyzed. Currently 11 species are recognized by the species name.

They are: COD (Atlantic cod)

AMPLAICE (American plaice) YELLOWTAIL (Yellowtail flounder) TURBOT (Greenland halibut) WITCH (Witch flounder or Grey sole) MENTELLA (Redfish: Sebastes mentella) MARINUS (Redfish: Sebastes marinus) HADDOCK TSKATE (Thorny skate) SHRIMP (Pandalus borealis) GRENADIER (Roundnose grenadier)

In addition to these species, the user can specify OTHER, if the species required is not in the above list. This will require supplementary information to be provided in the control statement set ?SELECT2. Note: When PROGRAM=NOAGELENGTH is specified a maximum of six species can be analysed concurrently. If PROGRAM= AGELENGTH is specified the maximum number is two. When listing the species names, the names can be separated by commas or blanks.

- e) <u>TOW</u> = give length of tow in nautical miles. Decimal point must be entered (i.e. a tow of 1.8 N. miles is entered as TOW = 1.8).
- f)  $\underline{WING}$  = give the wing spread in feet. Decimal point must be entered as above.
- NOTE: All control commands in this set must be entered. None are optional.
- III ?SELECT2 (Optional)
  - a) <u>OTHER</u> = give species code as per coding specification in Appendix 2 if SPECIES=OTHER is specified in ?SELECT1. The rules for the SPECIES = control statement apply here.
  - b) <u>RUN</u> = SEPARATE; a separate analysis will be done for each vessel and trip combination.

= COMBINED (default); combine vessels and trips into one analysis.

- c) <u>SELSTR</u> = give a list of specific strata numbers to be analyzed if it is desired not to analyze the complete set of strata covered in the survey.
- d)  $\underline{COMSTR} = (G) H_1, H_2, \ldots, H_k$  where G denotes the group number and the H<sub>i</sub> are the strata numbers to be combined in this group. This option is used to combine a number of strata into one super strata or group. More than one group may be specified but the strata must be mutually exclusive with respect to group membership.
- e) <u>DELSTR</u> = give a list of strata which are not to be analyzed.
- f) <u>STRAT=DEPTH;</u> form superstrata based on common depth ranges. At present the strata for the Atlantic coast are defined on specific depth ranges i.e. 30-50 fath, 50-100 fath, 100-150 fath etc. (with the exception of ICNAF/NAFO Div. 2J and 3K in which the depth ranges are in increments of 100 m). Since the area covered by any one depth range is extremely large, the depth ranges were originally subdivided into the present strata system (Anon. 1979). This option ignores those subdivisions.
  - = STRATUM (default); Use strata boundaries as defined in
    (Anon. 1979).

- g) <u>DELSET</u>=(T)S<sub>1</sub>, S<sub>2</sub> ...., S<sub>k</sub>; delete from the analysis the sets denoted by their set numbers (S<sub>j</sub>) for trip 'T'. The value in the parenthesis (T) refers to a specific trip by its position in the TRIP = list in the ?SELECT1 control statement set.
- h) <u>AREAS</u>=OTHER; indicates that stratum areas other than those listed in (Anon. 1979) be used. A file containing the other areas will be supplied by the user (see Appendix C).
  - = STANDARD (default); Use areas as per (Anon. 1979).
- i) <u>PRINT</u>=NO; this option suppresses printing of the set details (see example section).
  - = YES (default); No printing is suppressed.
- j) SPECIAL; this option is required for some species (such as SHRIMP) where only weights were recorded. The analysis for numbers will be presented but all number entries will be set to 1.0 (one). This option is for PROGRAM=NOAGELENGTH only.
- IV ?SELECT3 (Optional; this control statement set is used only when PROGRAM=AGELENGTH is specified in the ?START set).
  - a) <u>SPECIES</u> =  $Sp_1$ ,  $Sp_2$ , ...,  $Sp_n$ ; this option is used when SPECIES=OTHER is specified in the ?SELECT1 set. The  $Sp_i$  specify species codes for the selection of age and growth records required for the construction of an age-length key. In St. John's the species codes on the age/growth records are different than those used for other files required by the program (see Appendix 2).
  - b) <u>VESSEL</u> = give a list of vessel number(s) as per the VESSEL = statement in the ?SELECT1 set. This option is used when the age and growth records to be used in constructing an age-length key are to be obtained from a cruise other than that specified in the ?SELECT1 set.
  - c) <u>TRIP</u> = again when the age and growth records are to be obtained from another cruise these statements are used to specify the selection.

- e) <u>TIMES</u> = YYMM; this option is specific to the age and growth records collected previous to 1978 at the St. John's facility. Before 1978 cruise numbers were not included on the records. Selection criteria is specified by YY-year (e.g. 76) and MM->month (e.g. January=01).
- f) <u>SEX</u>= MALE this option specifies what sex will be used as a selection. = FEMALE - criteria for the age and growth records. (Note: SEX=UNSEXED) =UNSEXED - refers to those species in which the animals were not sexed. (This is not a combined option.) = ALL - refers to all of the above combined.
  - =BOTH (default); both male and female age and growth records will be selected.
- V. ?AGELENGTH (Optional: This control statement set is used only when PROGRAM=AGELENGTH is specified in the ?START set).
  - a) <u>GROUP</u>=LENGTH; if the user does not want an age length key and only requries the data analyzed by length groupings this option is activated.
    - =AGE (default); an age-lenth key is constructed and applied to the observed lengths. Analysis is done by ages.
  - b) <u>UNSEXED</u>=SEPARATE; if the species being analyzed has not been sexed (or a component of the species being analyzed such as juveniles has not been sexed) then a separate analysis will be carried out using a combined age-length key. If GROUP=LENGTH is specified then the unsexed will be analyzed by lengths only.
    - = NONE (default); No unsexed animals are present.
  - c) SEXES=BOTH; male and female records are combined and analyzed.
    - =All; male, female and unsexed records are combined and analyzed.
    - =ONE(default); one or more sexes are to be analyzed separately.
  - d) <u>COMSEX</u>=SEP; more than one sex is being analyzed and the analysis is to be carried out on each sex separately.
    - =SEPALL; more than one sex is being analyzed and the analysis is to be carried out on each sex separately and then a separate analysis is carried out on all the sexes requested as a combined set.

=ONE(default); only one sex is being analyzed.

e) <u>SUMMARY</u> = SP, SEX  $(L_1, U_1) (L_2, U_2)$ ; this option provides an output (and analysis) in which ages are grouped into age groupings where; sp=the position of the species of interest in either the SPECIES=statement of the ?SELECT1 or the OTHER=statement of the ?SELECT2 set. Sex = 1 Male

- 2 Female
  - 3 Unsexed
  - 4 Combined.

At present only two age groupings are allowed. These groupings are defined by their respective upper (U) and lower (L) limits. Note: the age groups must be contiguous.

f) <u>OUTPUT</u>=WEIGHT; data received for analysis in PROGRAM=AGELENGTH option is in terms of numbers of animals observed at length. This option allows the numbers to be converted to weights by use of the following relationship:

WEIGHT= $\alpha$ (LENGTH)<sup> $\beta$ </sup>.

where  $\alpha$  and  $\beta$  are set in the following control statement.

= NUMBERS (default)

- g) <u>PARMS</u> = Sp, SEX,  $\alpha$ ,  $\beta$ ; The entries for Sp and SEX are as for the SUMMARY= statement.  $\alpha$  and  $\beta$  are the parameter values required for the length/weight relationship above.
- (h) <u>LENGTH</u> = give a list of length groupings to be used when groupings other than the standard are desired. One grouping is given for each species being analysed. Normally, this option is used only when SPECIES = OTHER is specified in the SELECT1 set.

## VI ?ESTIMATE (Required)

- a) <u>METHOD</u>=STANDARD; stratum means and variances are calculated as per (Cochran 1977). Also see the notation list which follows the introduction to this report.
  - = GEOMEAN; stratum means are calculated by means of the geometric mean, i.e.

$$\overline{Y}_{h}' = \begin{pmatrix} n_{h} \\ (\overline{\pi}) \\ i=1 \end{pmatrix} Y_{hi}^{1/n}$$

If zeros are present in the data in any one strata then the calculation is not done for that strata and an error message is printed. No variance estimates are available at present.

- = W3MIX; This option carries out calculations based on developments presented in SMITH (1981).
- b) <u>ALPHA</u> = X.XX; give the alpha value according to the size of confidence interval required.  $(1-\alpha = \text{confidence interval probability})$ .
- c) <u>TRANSFORM</u>=LOG; the data (y<sub>hi</sub> values) are transformed by the following transformation previous to the calculation of stratum means and variances;

$$Z_{hi} = LOG (Y_{hi} + 1).$$

= SQRT; The data (Y<sub>hi</sub> values) are transformed by the following transformation previous to the calculation of stratum means and variances;

$$Z_{hi} = (Y_{hi})^{\frac{1}{2}}.$$

- d) <u>CALCULATION</u>=INVARIANCE; the stratum means are calculated from transformed data (transformation specified above) and then retransformed before calculation of the overall strata estimates by the following;
  - 1)  $Y'_{b} = \exp((\overline{Z}_{b}) 1.0),$

if TRANSFORM=LOG is specified.

2)  $Y_{h}^{i} = (Z_{h})^{2}$ , if

TRANSFORM=SQRT is specified

The stratum variances are retransformed by assuming that the relationship between the mean and variance in the transformed environment is the same as in the retransformed environment.

= (default: BEFORE); all calculations with respect to the stratified mean and total estimates plus the confidence limits are calculated before retransforming. VII ?END: This statement is used as a delimiter between separate analyses. A second series of control statements if required can be inserted after this statement.

VIV ?FINISH:

Terminal statement for the analysis.

#### SOME EXAMPLES

In this section we present some examples of the use of the Control Statements and the resulting output. For brevity only, two examples will be given for the first and one example will be given for the second of the following options. PROGRAM=NOAGELENGTH and PROGRAM=AGELENGTH.

#### I. PROGRAM=NOAGELENGTH (DEFAULT STATEMENT)

Example A) A stratified analysis is requested for numbers and weights caught of cod for a survey carried out by the research vessel <u>A. T. Cameron</u> (Trip 290) in ICNAF/NAFO Div. 3L (northern Grand Bank) in the period May-June 1979. This is the most basic use of the program. The control statements required are as follows.

?START TITLE=EXAMPLE: A. T. Cameron, Trip 290/79 3L Cod ?SELECT1 VESSEL=03 TRIP=79290 ICNAF=3L SPECIES=COD TOW=1.8 WING=45.0 ?ESTIMATE METHOD=STANDARD ALPHA=0.05 ?END ?FINISH

The output that results from these statements is shown on the next three pages and is divided into four sections.

The first section presents the control statements and points out errors, if any. (Note: An error in the control statements is considered to be of a terminal nature and execution will terminate after this Section.)

The second section of the output lists any sets that were denoted as unsuccessful, and the number of records which enter the analysis is then printed.

The third section lists the set details with numbers and weights standardized to a 30-minute tow. If any of the strata encountered here have less than two sets, then these strata are removed from the analysis and the strata numbers are listed. If any strata are being combined, this information would be presented in this section with the first combined group denoted by the letter "A".

The fourth section of the output presents the analysis of the data. The UNITS column is the number of 30-minute tows possible in the strata (N<sub>h</sub> from the notation section) and the 'TOTAL NO' column is simple the 'UNITS' column times the 'AV/SET' column.

#### STRATIFIED ANALYSIS PROGRAMS

# CARD DECK FUR SELECTION # 1

?START TITLE=EXAMPLE A: A.T. CANERON TRIP 290/79 3L COD

ł

?SELECT1 VESSEL=03 TRIP=75290 ICNAF=3L SPECIES=COD TDW=1.8 WING=45.0

2CSTIMATE METHUD=STANDARD ALPHA=0.05

7END

2

.

ANALYSIS FOR TRIP 290 1979 Vessel J Icnaf 31

SET # 211 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED. SET # 267 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED. SET # 286 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED. SET # 327 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED.

NUMBER OF VALID SETS FOUND 140

ANALYSIS FUR THIP 250 1979 Vessel 3 ICNAF 3L

COD

#### NURBERS AND WEIGHTS PER STANDARD 30 MINUTE TOW

| STRATUM | SET   | NUMBER  | WT (KGS) |
|---------|-------|---------|----------|
| 323.    | 348.  | 7.00    | 9.08     |
| 328.    | 349.  | 1.00    | 8.17     |
| 328.    | 350.  | 2.00    | 0.01     |
| 328.    | 351.  | 0.0     | 0.0      |
|         | 352.  | 3.00    | 5.45     |
| 328.    |       | •       | 24.97    |
| 341.    | 296.  | 8.00    |          |
| 341.    | 345.  | 14+00   | 36.77    |
| 341.    | 346.  | 10-00   | 34.96    |
| 341.    | 347.  | 2.00    | 0.91     |
| 341.    | 353.  | 7.00    | 25.88    |
| 341.    | 354.  | 1.00    | 1.82     |
| 342.    | 297.  | 1.00    | 1.36     |
| 342.    | 298.  | 5.00    | 11.35    |
| 342.    | 299.  | 4.00    | 20.43    |
| 342.    | 300.  | 2.00    | 4.09     |
| 343.    | 301-  | 35.00   | 61-74    |
| 343.    | 302-  | 9.00    | 8 • 17   |
| 343.    | 306.  | 16.00   | 24.97    |
| 343.    | 307.  | 10.00   | 25.88    |
|         |       | 119-00  | 155.27   |
| 344.    | 210.  |         |          |
| 344 -   | 212.  | 166.00  | 190-68   |
| 345.    | 213.  | 23.00   | 73.55    |
| 345.    | 214.  | 8.00    | 26.79    |
| 345.    | 215.  | 18.00   | 38.59    |
| 345.    | 216.  | 18.00   | 41.31    |
| 346.    | 217.  | 32.00   | 40.41    |
| 346.    | 213.  | 10.00   | 33.14    |
| 345.    | 219.  | 10.00   | 19.52    |
| 346.    | 220.  | 33.00   | 38.59    |
| 347.    | 225.  | 83.00   | 109.41   |
| 347.    | 226.  | 98.00   | 147.10   |
| 347.    | 227.  | 88.00   | 112.59   |
|         | 223.  | 42.00   | 48.58    |
| 347.    |       |         |          |
| 340.    | 229.  | 0.0     | 0.0      |
| 348.    | 230.  | 1.00    | 5.45     |
| 348.    | 239.  | 28.00   | 73.55    |
| 348.    | 240.  | 44.00   | 53.57    |
| 348.    | 241.  | 26.00   | 59.93    |
| 348.    | 305.  | 40.00   | 76.27    |
| 349.    | 294.  | 31.00   | 66.28    |
| 349.    | 295 • | 33.00   | 72.64    |
| 345.    | 303.  | 27.00   | 51.30    |
| 349.    | 304.  | 18.00   | 35-87    |
| 349.    | 308.  | 39.00   | 62.65    |
| 349.    | 309.  | 8.00    | 25.83    |
| 349.    | J12.  | 22.00   | 73.55    |
|         | 512.  |         |          |
| 1       |       | 1       |          |
| 1       | *     | 1       | I        |
|         | ;     | 1       |          |
|         | •     | •       | i        |
|         |       | 1       | :        |
| )       | •     | 1       |          |
|         |       | •       | . •      |
| 388.    | 264 • | 11.00   | 24.06    |
| 388.    | 266.  | 2.00    | 4.09     |
| 388.    | 273.  | 8.00    | 10.44.   |
| 389.    | 263.  | 3.00    | 3.18     |
| 385.    | 271.  | 37.00   | 24.97    |
| 389.    | 272.  | 20.00 . | 15.44    |
| 389     | 214.  | 35.00   | 27.69    |
| 350.    | 277.  | 9.00    | 5.90     |
| 390.    | 278.  | 1.00    | 0.68     |
| . 390 . | 321.  | 56.00   | 54.48    |
| 390.    | 322.  | 24.00   |          |
| 390.    | 329.  |         | 23.15    |
| 391.    |       | 10.00   | 11.35    |
|         | 276.  | 86.00   | 79.00    |
| 391.    | 324.  | 49.00   | 51.30    |
| 391.    | .326. | 53.00   | 44.49    |
| 391. •  | 328.  | 23.00   | 23.15    |
| 392.    | 323.  | 24.00   | 28.60    |
| 392.    | 325.  | 19-00   | 18.16    |
|         |       |         |          |

#### EXAMPLE A: A.T. CAMERON TRIP 290/79 3L COD

CUD

| ANALYSIS | FOR | TRIP   | 290 | 979 |
|----------|-----|--------|-----|-----|
|          |     | VESSEL | з   |     |
|          |     | ICNAF  | 3L  |     |

| N      | UMBERS      |            | •       |         |              |         |      |
|--------|-------------|------------|---------|---------|--------------|---------|------|
| STRATU | NU.SET      | TGTAL      | AV./SET | UNITS   | TOTAL NO     | VAR.    |      |
| 328    | 5           | 13-00      | 2.60    | 114023. | 296459.      | 7.30    |      |
| 341    | 6           | 42.00      | 7.00    | 118151. | 827058.      | 24.00   |      |
| 342    | 4           | 12.00      | 3.00    | 43913.  | 131738.      | 3.33    |      |
| 343    | 4           | 78.00      | 19.50   | 39409.  | 768470.      | 121.67  |      |
| 344    | 2           | 285.00     | 142.50  | 112146. | 15980790.    | 1104-50 |      |
| 345    | 4           | 67.00      | 16.75   | 107492. | 1800491.     | 39.58   |      |
| 345    | 4           | 85.00      | 21.25   | 64931.  | 1379774.     | 168.92  |      |
| 347    | 4           | 311.00     | 77.75   | 73788.  | 5737026.     | 606.92  |      |
| 348    | 6           | 139.00     | 23.17   | 159136. | 3686653.     | 355.37  |      |
| 349    | 7           | 178.00     | 25.43   | 158686. | 4035151.     | 107.62  |      |
| ;      | ;           |            |         | 1       | 4<br>1       | 8       |      |
|        | 1<br>1<br>1 |            |         |         | i i          |         |      |
| 388    | З           | 21.00      | 7.00    | 27098.  | 189687.      | 21.00   |      |
| 389    | 4           | 95.00      | 23.75   | 61628.  | 1463658.     | 248.92  | •    |
| 350    | 5           | 100.00     | 20.00   | 111170. | 2223402.     | 473.50  |      |
| 391    | 4           | 211.00     | 52.75   | 21168.  | 1116618.     | 668.25  |      |
| 392    | 2           | 43.00      | 21.50   | 10884.  | 234013.      | 12.50   |      |
|        |             | TOTAL      |         | X       | <b>∆</b> ∨ F | ERACE   |      |
|        | TUTAL       | UPPER      | LC      | WER     | MEAN         | UPPER   | LGWE |
|        | 51499280.   | 113918352. |         | 0160.   | 33.14        | 41.27   | 25.0 |

EFFECTIVE DEGREES OF FREEDOM= 21 STUDEN:S T-VALUE= 2.08 ALCHA=0.05

## EXAMPLE A: A.T. CAMERON TRIP 290/79 3L CCD

ANALYSIS FUR TRIP 290 1979 VESSEL 3 ICNAF 3L

COD

| иEЛ     | IGHTS       |            | i       |         |           |         |       |
|---------|-------------|------------|---------|---------|-----------|---------|-------|
| STRATUM | NG. SETS    | TUTAL      | AV-/SET | UNITS   | TUTAL NU  | VAR-    |       |
| 328     | 5           | 22.71      | 4.54    | 114023- | 517890.   | 18.94   |       |
| 341     | 6           | 125.31 .   | 20.88   | 118151- | 2467583.  | 250.91  |       |
| 342     | 4           | 37.23      | 9.31    | 43913.  | 408716.   | 72.76   |       |
| 343     | 4           | 120.76     | 30.19   | 39409.  | 1189748.  | 503-70  |       |
| 344     | 2           | 345.95     | 172.97  | 112146. | 19398432. | 626.93  |       |
| 145     | 4           | 180.24     | 45.06   | 107492. | 4843587.  | 400.47  |       |
| 340     | 4           | 131.66     | 32.91   | 64931.  | 2137188.  | 89.29   |       |
| 347     | 4           | 417.68     | 104.42  | 73788.  | 7704945.  | 1677.11 |       |
| 348     | 6           | 268.77     | 44.79   | 159136. | 7128497.  | 1135.64 |       |
| 349     | 7           | 388.17     | 55.45   | 158686. | 8799568.  | 344.54  |       |
| •       | ,           | 1          | 1       | •       | •         | ,       |       |
|         | 1           | )          | 1       | :       | 4         | 1       |       |
| 1       | •           | ,          | :       | i       | *         | 3       |       |
| i       | 1           | 1          |         | :       | 3         | 1       |       |
| 1       | 4           | ;          | 1       | ;       | 3         | 4<br>9  |       |
| 388     | З           | 38.59      | 12.80   | 27098-  | 348573.   | 104.10  |       |
| 369     |             |            | -       |         |           |         |       |
|         | 4           | 71.28      | 17.82   | 61628.  | 1098205.  | 122.84  |       |
| 390     | 5           | 95.56      | 19.11   | 111170. | 2124681 - | 460.44  |       |
| 351     | 4           | 197.94     | 49-48   | 21168.  | 1047504.  | 530.97  |       |
| 392     | 2           | 46.76      | 23.38   | 10884.  | 254475.   | 54-50   |       |
|         |             | TOTAL      |         |         | AVE       | ERAGE   |       |
|         | TUTAL UPPER |            |         | OWER    | MEAN      | UPPER   | LOWER |
| 129     | 9181424.    | 155749360. | 1026    | 13456+  | 46-79     | 56,42   | 37.17 |

.

# VER

25.02

Example B. This example will use the same data as Example A with the addition of the use of the COMSTR option to combine certain strata and the use of the LOG transform with the INVARIANCE option for calculations. The control statements required are as follows:

?START

TITLE=EXAMPLE B: A.T. CAMERON TRIP 290/79 3L COD COMBINING STRATA ?SELECT1 VESSEL=03 TRIP=79290 ICNAF=3L SPECIES=COD TOW = 1.8WING=45.0?SELECT2 328,341,342,343,344,345 COMSTR=(1) COMSTR=(2)346,347,348,349 ?ESTIMATE TRANSFORM=LOG CALCULATION=INVARIANCE METHOD=STANDARD ALPHA=0.05 ?END ?FINISH

The output is presented as for Example A.

STRATIFIED ANALYSIS PROGRAMS . CARD DECK FOR SELECTION # 1 2 START TITLE=EXAMPLE B: A.T. CAMERON TRIP 290/79 3L COD COMBINING STRATA 2SELECTI VESSEL=03 TR1P=79290 ICNAF=3L SPECIES=COD TOw=1.8 WING=45.0 SELECT2 CCMSTR=(1) 328.341.342.343.344.345 CGMSTR=(2) 346,347,348,349 **?ESTIMATE** TRANSFORM=LOG CALCULATION=INVARIANCE METHOD=STANDARD ALPHA=0.05 2END ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L SET # 211 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED. SET # 267 THIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED. SET # 286 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DRUPPED. SET # 327 TRIP # 290 YEAR 79 VESSEL # 03 WAS UNSUCCESSFUL AND HAS BEEN DROPPED. . NUMBER GF VALID SETS FOUND 140

.

EXAMPLE 8: A.T. CAMERON TRIP 290/79 3L COD COMBINING STRATA

ANALYSIS FOR TRIP 250 1979 VESSEL J ICNAF 3L

COD

NUMBERS AND WEIGHTS PER STANDARD 30 MINUTE TOW

| STRATUM | SET  | NUMBER | NT(KGS) |
|---------|------|--------|---------|
| А       | 210. | 119.00 | 155.27  |
| A       | 212. | 166.00 | 190.68  |
| А       | 213. | 23.00  | 73.55   |
| A       | 214. | 8.00   | 26.79   |
| Α       | 215. | 18.00  | 38.59   |
| Α       | 216. | 18.00  | 41.31   |
| А       | 296. | 8.00   | 24.97   |
| Α       | 297. | 1.00   | 1.36    |
| А       | 298. | 5.00   | 11.35   |
| А       | 299. | 4.00   | 20.43   |
| A       | 300. | 2.00   | 4.09    |
| А       | 301. | 35.00  | 61.74   |
| Α       | 302. | 9.00   | 8 • 17  |
| A       | 306. | 16.00  | 24.97   |
| A       | 307. | 18.00  | 25.88   |
| A       | 345. | 14.00  | 36.77   |
| А       | 340. | 10.00  | 34.96   |
| A       | 347. | 2.00   | 0.91    |
| Α       | 348. | 7.00   | 9.08    |
| A       | 349. | 1.00   | 8.17    |
| Α       | 350. | 2.00   | 0.01    |
| A       | 351. | 0.0    | 0.0     |
| A       | 352. | 00.E   | 5.45    |
| Α       | 353. | 7.00   | 25.88   |
| A       | 354. | 1.00   | 1.82    |
| в       | 217. | 32.00  | 40.41   |
| 8       | 218. | 10.00  | 33.14   |
| в       | 219. | 10.00  | 19.52   |
| 8       | 220. | 33.00  | 38.59   |
| в       | 225. | 83.00  | 109.41  |
| 8       | 226. | 98.00  | 147.10  |
| в       | 227. | 88.00  | 112.59  |
| в       | 228. | 42.00  | 48.58   |
| θ,      | 229. | 0.0    | 0.0     |
| d       | 230. | 1.00   | 5.45    |
| В       | 239. | 28.00  | 73.55   |
| в       | 240. | 44.00  | 53.57   |
| 8       | 241. | 26.00  | 59+93   |
| 8       | 294. | 31.00  | 66.28   |
| в       | 295. | 33.00  | 72.64   |
| 8       | 303. | 27.00  | 51.30   |
| 8       | 304. | 18.00  | 35.87   |
| в       | 305. | 40.00  | 76.27   |
| B       | 308. | 39.00  | 62.65   |
| 8       | 309. | 8.00   | 25.88   |
| в       | 312. | 22.00  | 73.55   |
| 1       | i    | 1      | 1       |
| 1       | i    | 1      |         |
| 1       | •    |        | 1       |
| 1       | 1    |        | i       |
| 1       |      | 1 .    | 79.00   |
| 391.    | 276. | 86.00  | 51.30   |
| 391.    | 324. | 49.00  | 44.49   |
| 391.    | 326. | 53.00  | 23.15   |
| 391.    | 328+ | 23.00  | 23.15   |
| 392.    | 323. | 24.00  | 28.60   |
| 392.    | 325. | 19.00  | 10.10   |

STRATA COMBINED

| CODE | STRATUM | NO • |     |     |     |     |  |
|------|---------|------|-----|-----|-----|-----|--|
| A    | 345     | 344  | 343 | 342 | 341 | 328 |  |
| 8    | 349     | 348  | 347 | 346 |     |     |  |

EXAMPLE B: A.T. CAMERON TRIP 290/79 3L COD COMBINING STRATA

ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L

COD

NUMBERS

| STRATUM | NO.SETS   | TCTAL     | AV./SET | UNITS   | TUTAL NO    | VAR•  |       |
|---------|-----------|-----------|---------|---------|-------------|-------|-------|
| А       | 25        | 195.79    | 7.83    | 535133. | 4190884.    | 19.89 |       |
| 8       | 21        | 471.66    | 22.46   | 456541. | 10253866.   | 64.80 |       |
| 350     | 5         | 191.17    | 21.24   | 155458. | 3302085.    | 74.87 |       |
| 363     | 8         | 139.72    | 17.46   | 133614. | 2333498.    | 81.88 |       |
| 364     | 8         | 123.89    | 15.49   | 211456. | 3274553.    | 22.27 |       |
|         |           | 1         | 1<br>1  |         | 4<br>3<br>9 |       |       |
| ł       | ,         | i         | l<br>l  |         |             |       |       |
| 391     | 4         | 190.91    | 47.73   | 21168.  | 1010300.    | 42.67 |       |
| 392     | 2         | 42.72     | 21.36   | 10884.  | 232496•     | 1.18  |       |
|         |           | TOTAL     |         |         | AV          | ERAGE |       |
|         | TOTAL     | UPPER     | LC      | JWER    | MEAN        | UPPER | LOWER |
| 4.      | 2229856 - | 46143264. | 3831    | 16432.  | 15.30       | 16.71 | 13.88 |

EFFECTIVE DEGREES OF FREEDOM= 18 STUDENTS T-VALUE= 2.10 ALPHA=0.05

.

EXAMPLE B: A.T. CAMERON TRIP 290/79 3L COD COMBINING STRATA

COD

ANALYSIS FUR TRIP 250 1975 VESSEL 3 ICNAF 3L

WEIGHTS

| STRATUM    | NO.SETS          | TCTAL                       | AV./SET                 | UNITS            | TOTAL NO            | VAR.                    |                |
|------------|------------------|-----------------------------|-------------------------|------------------|---------------------|-------------------------|----------------|
| A          | 25               | 357.27                      | 14.29                   | 535133.          | 7647468.            | 56.81                   |                |
| в          | 21               | 872.07                      | 41.53                   | 456541.          | 18958720.           | 145.35                  |                |
| 350        | 9                | 383.62                      | 42.65                   | 155458.          | 6629701.            | 182.83                  |                |
| 363        | 8                | 290.33                      | 36.29                   | 133614.          | 4849080.            | 205.78                  |                |
| 364        | 8                | 234.65                      | 29.33                   | 211456.          | 6202374.            | 37.66                   |                |
| 391<br>392 | 4                | 181.21<br>45.63             | 45 <b>.</b> 30<br>22.81 | 21168.<br>10834. | 958972.<br>248321.  | 34.32                   | ,              |
| 672        | TCTAL<br>298240. | TOTAL<br>UPPER<br>72046912. |                         | J₩ER<br>49536•   | AV<br>MEAN<br>24.38 | ERAGE<br>UPPER<br>26.10 | LOWER<br>22.66 |

 $\dot{n}$ 

EFFECTIVE DEGREES OF FREEDOM= 35 STUDENTS T-VALUE= 2.03 ALPHA=0.05

.

II PROGRAM = AGELENGTH

EXAMPLE A. To demonstrate the AGELENGTH program we will use the SELSTR option in order to reduce the amount of output. The data used will form the same research cruise as in the first two example but the species of concern will be American Place. Only one sex, males, is to be analysed. The control statements required are shown below.

?START

TITLE=EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AM PLAICE AGELENGTH PROGRAM=AGELENGTH ?SELECT1 VESSEL=03 TRIP=79290 ICNAF=3L SPECIES=COD TOW=1.8 WING=45.0 ?SELECT2 SEX=MALE ?AGELENGTH SEXES=ONE ?ESTIMATE METHOD=STANDARD ALPHA=0.05 ?END /FINISH

The output that results from these statements can be divided into five sections. Sections one and two are identical to those produced for the NOAGELENGTH option shown previously.

The third section of the output gives the AGE-LENGTH key used for this analysis.

Section Four lists the set details for this analysis. Note that the output for each set lists the results by age.

The final section of the output presents the summary table for this run. Again, the results are presented by age group.

#### STRATIFIED ANALYSIS PROGRAMS

CARD DECK FOR SELECTION # 1

7START TITLE=EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AM PLAICE AGELENGTH PROGRAM=AGELENGTH 7SELECT1 VESSEL=03 TRIP=79290

ICNAF=3L SPECIES=AMPLAICE TOW=1.8 WING=45.0

?SELECT2 SELSTR=328,341,342,343

?SELECT3 SEX=MALE

?AGELENGTH SEXES=ONE

7ESTIMATE Method=standard Alpha=0.05

2END

2

ANALYSIS FUR TRIP 290 1979 VESSEL 3 ICNAF: 3L

NUMBER OF VALID AGE & GROWTH RECORDS FOUND 433

NUMBER OF VALID SETS FOUND 19

NUMBER OF MALE FREQUENCIES FOUND 19

EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AM PLAICE AGELENGTH

ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L

AGE/LENGTH KEY

з

SPECIES: AM PLAICE SEX: NALE

|        |   |   |   |    |    |        |    |    |    |    |    |    |    | AGE | IN | YEAL |    |    |    |    |    |    |    |    |    |    |    |    |    |     | ~~     |
|--------|---|---|---|----|----|--------|----|----|----|----|----|----|----|-----|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|--------|
| LENGTH | 1 | 2 | 3 | 4  | 5  | 6      | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15 | 16   | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 29+ | SUN    |
| 4.5    | з | 1 |   |    |    |        |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     |        |
| 6.5    |   | 5 |   |    |    |        |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 4<br>5 |
| 8.5    |   | 1 | 6 |    |    |        |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 3      |
| 10.5   |   |   | 2 | 1  |    |        |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 3      |
| 12.5   |   |   |   | 6  | 4  |        |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 10     |
| 14.5   |   |   |   | 10 | 6  | 1      |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 17     |
| 16.5   |   |   |   | 2  | 15 | 2      |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 19     |
| 18.5   |   |   |   |    | 7  | 13     |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 20     |
| 20.5   |   |   |   |    | з  | 15     | З  | 1  |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 22     |
| 22.5   |   |   |   |    | 1  | 9      | 9  | 1  |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 20     |
| 24.5   |   |   |   |    |    | 2      | 13 | 7  |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 22     |
| 26.5   |   |   |   |    |    | 2<br>2 | 6  | 7  | 2  | 1  | 1  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 19     |
| 28.5   |   |   |   |    |    | 2      | 5  | 12 | 1  | 2  |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 22     |
| 30.5   |   |   |   |    |    |        | з  | 6  | 5  | 4  | 1  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 19     |
| 32.5   |   |   |   |    |    |        | 5  | 7  | 12 | 5  | 1  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 30     |
| 34.5   |   |   |   |    |    |        | 2  | 3  | 10 | 6  | з  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 24     |
| 36.5   |   |   |   |    |    |        | 1  | 4  | 12 | 8  | з  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 28     |
| 38.5   |   |   |   |    |    |        |    | 2  | 5  | 15 | 4  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 26     |
| 40.5   |   |   |   |    |    |        |    | 1  | 6  | 14 | 6  |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 27     |
| 42.5   |   |   |   |    |    |        | 1  |    | 1  | 6  | 14 | 6  | 1  |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 29     |
| 44.5   |   |   |   |    |    |        |    |    | 1  | 4  | 7  | 7  | 2  |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 21     |
| 46.5   |   |   |   |    |    |        |    |    |    | 5  | 5  | 7  | 2  |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 19     |
| 48.5   |   |   |   |    |    |        |    |    |    |    | з  | 6  | 5  |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 14     |
| 50.5   |   |   |   |    |    |        |    |    |    |    |    | 4  | 2  |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 6      |
|        |   |   |   |    |    |        |    |    |    |    |    |    |    |     |    |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     | -      |
|        | 3 | 7 | 8 | 19 | 36 | 46     | 48 | 51 | 55 | 70 | 48 | 30 | 12 | 0   | 0  | 0    | 0  | ٥  | 0  | 0  | ٥  | 0  | 0  | 0  | 0  | ٥  | 0  | 0  | 0  | ٥   | 433    |

#### AGE COMPOSITION-NUMBERS PER STANDARD TOW

EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AM PLAICE AGELENGTH

ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L

SPECIES: AN PLAICE STRATUN:328 SEX: MALE

| AGE          |            |         |          |           | SET     | TAILS | SET S | TATISTICS | TOTAL<br>ABUNDANCE |
|--------------|------------|---------|----------|-----------|---------|-------|-------|-----------|--------------------|
| IN YEARS     | 348        | 349     | 350      | 351       | 352     |       | AVG.  | VAR 5     | (1000*5)           |
| 1 • 0        | 0.0        | 0.0     | 0.0      | 0+0       | 0.0     |       | 0.0   | 0.0       | 0-0                |
| 2•0          | 0 - 0      | 0.0     | 0 • 0    | 0.0       | 0+0     |       | 0.0   | 0 = 0     | 0 - 0              |
| 3.0          | 0+0        | 0.0     | 0.0      | 0.0       | 0.0     |       | 0.0   | 0.0       | 0 = 0              |
| <b>4 •</b> 0 | 00         | 3.01    | 2.50     | 2 • 77    | 0.0     |       | 1.66  | 2.32      | 188.90             |
| 5.0          | 0+49       | 11+10   | 8+19     | 7.15      | 0.29    |       | 5.44  | 23.40     | 620.54             |
| 6.0          | 2.60       | 18.13   | 10.37    | 9=04      | 3.60    |       | 8.76  | 38+56     | 998+88             |
| 7.0          | 8.77       | 17.38   | 10-34    | 3.48      | 8.54    |       | 9+70  | 25.11     | 1106-15            |
| 8.0          | 12.93      | 15.11   | 6.17     | 2+28      | 8.12    |       | 8.92  | 26.69     | 1017.36            |
| 9•0          | 13.31      | 8.42    | 1.19     | 0-61      | 4 - 4 1 |       | 5.59  | 28.27     | 637-23             |
| 10.0         | 10-74      | 6.54    | 0.85     | 0.48      | 3.62    |       | 4.45  | 18.33     | 507.11             |
| 11+0         | 3.67       | 2.30    | 0.39     | 0.18      | 1.43    |       | 1.60  | 2.08      | 181-89             |
| 12.0         | 0.33       | 0.0     | 0.0      | 0.0       | 0.0     |       | 0.07  | 0-02      | 760                |
| 13.0         | 0.10       | 0.0     | 0=0      | 0=0       | 0=0     |       | 0.02  | 0.00      | 2-17               |
| UNKNOWN      | 0.0        | 0.0     | 0.0      | 0.0       | 0.0     |       | 0.0   | 0.0       | 0-0                |
| TOTAL        | 53-00      | 82.00   | 40.00    | 26+00     | 30.00   |       | 46.20 | 509.20    | 526 <b>7</b> •83   |
| ESTIMATION T | YPE: STAND | ARD TR. | ANSFORMA | TION TYPE | NONE    |       |       |           |                    |

ý 7

EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AM PLAICE AGELENGTH

ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L

SPECIES: AM PLAICE STRATUM:343 SEX: MALE

.

| AGE          |               |        |          |           | SET DETAILS | SET ST | ATISTICS | TOTAL<br>ABUNDANCE |
|--------------|---------------|--------|----------|-----------|-------------|--------|----------|--------------------|
| IN YEARS     | 301           | 302    | 306      | 307       |             | AVG.   | VAR.     | (1000*S)           |
| 1.0          | 0.0           | 0.0    | 0.0      | 0.0       |             | 0.0    | 0.0      | 0-0                |
| 2.0          | 0.0           | 0.0    | 0.0      | 0.0       |             | 0.0    | 0.0      | 0+0                |
| 3+0          | 0.0           | 0.0    | 0.0      | 0.0       |             | 0.0    | 0.0      | 0.0                |
| 4+0          | 0.0           | 0.0    | 0-11     | 0 - 0     |             | 0.03   | 0.00     | 1-04               |
| 5•0          | 1.66          | 1.75   | 1.96     | 1.46      |             | 1+71   | 0.04     | 67.25              |
| 6.0          | 19.08         | 21.42  | 8.88     | 17.35     |             | 16.68  | 29,86    | 657.36             |
| 7.0          | 58.31         | 72.85  | 24.65    | 50+84     |             | 51+66  | 407.86   | 2036+01            |
| 8.0          | 75.27         | 100.42 | 32.64    | 57.39     |             | 66.43  | 818.91   | 2617+89            |
| 9-0          | <b>49.</b> 56 | 76.20  | 23-96    | 36.69     |             | 46.60  | 498~68   | 1836+56            |
| 10-0         | 37.21         | 59.26  | 19+01    | 27.81     |             | 35.82  | 299.43   | 1411.76            |
| 11-0         | 13.80         | 19.86  | 6+56     | 11.31     |             | 12.88  | 30.67    | 507+69             |
| 12.0         | 1-69          | 0.21   | 0-21     | 1.77      |             | 0+97   | 0.78     | 38-19              |
| 13.0         | 0.41          | 0.03   | 0.03     | 0.38      |             | 0.22   | 0.04     | 8.48               |
| UNKNOWN      | 0.0           | 0.0    | 0-0      | 0 = 0     |             | 0.0    | 00       | 0+0                |
| TOTAL        | 257.00        | 352.00 | 118.00   | 205-00    |             | 233.00 | 9581.95  | 9182.21            |
| ESTIMATION T | YPE: STAND    | ARD TH | ANSFORMA | TION TYPE | NONE        |        |          |                    |

#### AGE COMPOSITION-NUMBERS PER STANDARD TOW

EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AM PLAICE AGELENGTH

ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L

SPECIES: AM PLAICE STRATUM:342 SEX: MALE

|      | AGE   |       |        |       |       | SET DETAILS SET STATISTIC | S TOTAL<br>ABUNDANCE |
|------|-------|-------|--------|-------|-------|---------------------------|----------------------|
| IN   | YEARS | 297   | 298    | 299   | 300   | AVG. VAR.                 |                      |
|      | 1.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0                       | 0.0                  |
|      | 2.0   | 0.0   | 0.0    | 0-0   | 0•0   | 0.0 0.0                   | 0-0                  |
|      | 3.0   | 0.0   | 0.0    | 0.0   | 0.0   |                           | 0.0                  |
|      | 4.0   | 1.29  | 2.41   | 0.0   | 0.0   | 0.93 1.2                  | 5 40.64              |
|      | 5+0   | 3.25  | 13.05  | 1-52  | 0.434 | 4.54 33.0                 | 3 199-39             |
|      | 6 • 0 | 9.22  | 37+00  | 9-01  | 5.80  | 15.26 212.4               | 9 670-00             |
|      | 7.0   | 16.77 | 65.98  | 23.19 | 16-87 | 30.70 562.0               | 4 1348-33            |
|      | 8.0   | 16+90 | 78.21  | 23.90 | 23.17 | 35.55 819.0               | 5 1560+89            |
|      | 9=0   | 10-59 | 46.77  | 12.84 | 13.57 | . 20.94 297.1             | 919.71               |
| 1    | 0.0   | 9.77  | 36-12  | 9.20  | 10.95 | 16.51 171.4               | 7 725.05             |
| 1    | 1.0   | 3.20  | 12.03  | 3.66  | 3.82  | 5.68 18.1                 | 1 249-32             |
| 1    | 2•0   | 0.0   | 0.33   | 0.54  | 0.37  | 0.31 0.                   | 5 13+63              |
| 1    | 3.0   | 0.0   | 0.10   | 0.13  | 0.11  | 0.08 0.                   | 3.63                 |
| UN K | NÜWN  | 0.0   | 0.0    | 0.0   | 0.0   | 0.0 0.                    | 00                   |
| то   | TAL   | 71.00 | 292.00 | 84.00 | 75:00 | 130-50 11621-             | 52 <b>5730-57</b>    |
|      |       |       |        |       |       |                           |                      |

ý é

ESTIMATION TYPE:STANDARD TRANSFORMATION TYPE:NONE

¥ 4

#### AGE COMPOSITION-NUMBERS PER STANDARD TOW

EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AN PLAICE AGELENGTH

ANALYSIS FOR TRIP 290 1979 Vessel 3 Icnaf 3L

.

SPECIES: AM PLAICE STRATUM:341 SEX: MALE

|                                                   | AGE   |       |        |        |              | SET    | DETAILS | SET    | STATISTICS | TOTAL                 |
|---------------------------------------------------|-------|-------|--------|--------|--------------|--------|---------|--------|------------|-----------------------|
| IN                                                | YEARS | 296   | 345    | 346    | 347          | 353    | 354     | A VG • | VAR.       | ABUNDANCE<br>(1000*S) |
| 1                                                 | 1-0   | 0.0   | 0.0    | 0 - 0  | 0.0          | 0+0    | 0 • 0   | 0•0    | 0.0        | 0.0                   |
| i                                                 | 2•0   | 0.0   | 0.0    | 0-0    | <b>0 • 0</b> | 0.0    | 0.0     | 0.0    | 0.40       | 0.0                   |
|                                                   | 3.0   | 0.0   | 0.0    | 0-0    | 0.0          | 0.0    | 0.0     | 0.0    | QD         | 0-0                   |
|                                                   | 4.0   | 1.18  | 3.26   | 1.98   | 0=0          | 0.11   | 1.93    | 1.41   | 1.55       | 166+18                |
| :                                                 | 5.0   | 2.07  | 8.92   | 5+11   | 3+23         | 6.35   | 14.04   | ö•62   | 2 18.99    | 782.30                |
|                                                   | 6•0   | 10.65 | 29.30  | 15.00  | 20.56        | 23-35  | 35-66   | 22+42  | 2 84.10    | 2648.90               |
|                                                   | 7.0   | 21.40 | 56.05  | 33.82  | 29-29        | 35.97  | 31.12   | 34 •61 | 135.42     | 4088.92               |
| ,                                                 | 8 • 0 | 27-30 | 66.84  | 48.05  | 24+98        | 43-07  | 27.05   | 39.55  | 5 269.60   | 4672.75               |
|                                                   | 9.0   | 16.67 | 40.76  | 39.14  | 13.,36       | 25.05  | 12.57   | 24.59  | 9 161-31   | 2905+46               |
| 1                                                 | 0.0   | 14.72 | 34.14  | 35.00  | 10-87        | 22.00  | 11.88   | 21=44  | 4 118.73   | 2532.59               |
| L                                                 | 1.0   | 5.34  | 14-02  | 12-96  | 3.70         | 6.86   | 4.81    | 7.99   | 5 19-58    | 939-03                |
| 1                                                 | 2.0   | 0.54  | 3-34   | 2.31   | 00           | 0.21   | 0.78    | 1.20   | 0 1.77     | 141-44                |
| 1                                                 | 3.0   | 0.13  | 1.37   | 0.64   | 0.0          | E0.0   | 0.17    | 0+35   | 9 0+28     | 46-26                 |
| UNK                                               | NOWN  | 0.0   | 0.0    | 0+0    | 0.0          | 0.0    | 0.0     | 0⇒0    | 0.0        | 0-0                   |
| τo                                                | TAL   | 00.00 | 258.00 | 194-00 | 106-00       | 163.00 | 140-00  | 160-1  | 7 3536.94  | 18923-80              |
| ESTIMATION TYPE:STANDARD TRANSFORMATION TYPE:NUNE |       |       |        |        |              |        |         |        |            |                       |

.

EXAMPLE A: A.T. CAMERON TRIP 290/79 3L AN PLAICE AGELENGTH ANALYSIS FOR TRIP 290 1979 VESSEL 3 ICNAF 3L

.

#### AGE COMPOSITION-NUMBERS PER STANDARD TOW

SUMMARY TABLE SPECIES: AN PLAICE SEX: MALE

AGE

5

| IN YEARS | TOTAL NUMBERS | UPPER LINIT | LOWER LIMIT | MEAN PER TOW | UPPER LIMIT | LOWER LIMIT | D.F. |
|----------|---------------|-------------|-------------|--------------|-------------|-------------|------|
| 1-0      | 0.            | 0.          | 0.          | 0.0          | 0.0         | 0.0         | 0    |
| 2.0      | 0             | 0.          | 0.          | 0.0          | 0.0         | 0.0         | 0    |
| 3.0      | 0.            | 0.          | 0.          | 0.0          | 0-0         | C-0         | 0    |
| 4.0      | 396755.       | 630607.     | 162903.     | 1.26         | 2.00        | 0.52        | ម    |
| 5.0      | 1669478.      | 2445332.    | 893624.     | 5.29         | 7.75        | 2.83        | 10   |
| 6.0      | 4975141.      | 6370190.    | 3580088.    | 15.77        | 20-19       | 11-35       | 12   |
| 7.0      | 8579405.      | 10539873.   | 6618933.    | 27.19        | 33-41       | 20.98       | 12   |
| 8.0      | 9868883.      | 12481855.   | 7255906 .   | 31.28        | 39-56       | 23.00       | 11   |
| 9+0      | 6298951.      | 8230664.    | 4367236.    | 19.97        | 26-09       | 13-84       | 12   |
| 10.0     | 5176502.      | 6751893.    | 3601109.    | 16.41        | 21.40       | 11.41       | 12   |
| 11-0     | 1877922.      | 2473936.    | 1281908.    | 5.95         | 7.84        | 4.06        | 10   |
| 12.0     | 200862 .      | 373378.     | 28345.      | 0.64         | 1.18        | 0-09        | 5    |
| 13.0     | 60540.        | 127831.     | -6751.      | 0.19         | 0•41        | -0-02       | 5    |
| UNKNOWN  | 0.            | 0.          | 0-          | 0.0          | 0.0         | 0.0         | 0    |
| TOTAL    | 39104416.     | 48570432.   | 29638400.   | 123.95       | 153+95      | 93.94       | 12   |

10

ESTIMATION TYPE:STANDARD TRANSFORMATION TYPE:NONE

CONFIDENCE LEVEL: 0.95%

\*\*\*\*-ONE OR MORE OF THE LOWER LIMITS IN THE ABOVE TABLE IS LESS THAN OR EQUAL TO ZERO. VARIANCE IS TOO LARGE FOR VALID CONFIDENCE LIMITS \*\*\*\*

ě.

i.

#### REFERENCES

- Anon. 1979. Codification of survey stratification schemes for the Northwest Atlantic. Annual Meeting June 1979, ICNAF Summ. Doc. 79/VI/24, Ser. No. 5443, 16 p.
- Arnason, A. N., and L. Baniuk. 1980. A computer system for mark-recapture analysis of open populations. J. Wildl. Manage. 44: 325-332.
- Cochran, W. G. 1977. Sampling techniques. John Wiley & Sons, New York, N.Y. Third Edition, 428 p.
- Dixon, W. J. 1977. BMDP-77. Biomedical Computer Programs. P-Series. Univ. of Calif. Press, Berkeley, Calif. 880 p.
- Grosslein, M. D. 1971. Report of the ICNAF Working Group on Coordinated Groundfish Surveys. ICNAF Res. Doc. 71/32, Ser. No. 2502, 24 p.
- Grosslein, M. D., and A. T. Pinhorn. 1971. Progress in development of a coordinated groundfish survey in the ICNAF area. ICNAF Res. Doc. 71/128, Ser. No. 2634, 28 p.
- Halliday, R. G., and A. C. Kohler. 1971. Groundfish survey programmes of the St. Andrews Biological Station, Fish. Res. Board Can. - Objectives and characteristics. ICNAF Res. Doc. 71/35, Ser. No. 2520, 11 p.
- Pinhorn, A. T. 1971. Objectives and characteristics of existing and proposed groundfish surveys by the Fisheries Research Board of Canada, Biological Station, St. John's, Newfoundland. ICNAF Res. Doc. 71/36, Ser. No. 2527, 12 p.
- Smith, S. J. 1981. A comparison of estimator of location for skewed populationswith application to groundfish trawl surveys. <u>In</u> W. G. Doubleday and D. Rivard [ed.] Proceedings of the Groundfish Trawl Survey Workshop. Can. Spec. Pub. Fish. Aquat. Sci. (In press).

# APPENDIX 1: FILE SPECIFICATIONS AND SAMPLE JOB STREAMS

Depending on the application being run (AGELENGTH or NOAGELENGTH) the STRAP program may read data from a variety of master files. The table given below summarizes the file usage by the program.

| File name | Contents                                                                                                                             | When required                     |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| FT17F001  | Contains stratum areas records. Each record has the following format:                                                                | Both AGELENGTH<br>and NOAGELENGTH |  |  |  |  |
|           | Cols 1-3 - Identifying stratum number. Must<br>be numeric and unique within the file.                                                |                                   |  |  |  |  |
|           | Cols 4-7 - Area of the stratum in square nautical miles.                                                                             |                                   |  |  |  |  |
|           | Cols 8-11 - Upper limit of depth range for the stratum.                                                                              |                                   |  |  |  |  |
|           | Note: The STRAP program assumes that this file is sorted by ascending order of stratum number.                                       |                                   |  |  |  |  |
| FT19F001  | Contains the set details records. Layouts of the records in this file are given in Appendix 2                                        | Both AGELENGTH<br>and NOAGELENGTH |  |  |  |  |
|           | Note: The STRAP program assumes that this file is sorted such that the "catch" records follow directly the set to which they belong. |                                   |  |  |  |  |
| SPECIN    | Contains the program control statements required<br>for the run. Format of these statements is<br>described in this report.          | Both AGELENGTH<br>and NOAGELENGTH |  |  |  |  |
| FT18F001  |                                                                                                                                      | Only for an<br>AGELENGTH run      |  |  |  |  |
| FT16F001  |                                                                                                                                      | Only for an<br>AGELENGTH run      |  |  |  |  |

B. Sample job stream for a NOAGELENGTH run. This particular set of job control statements was used to produce the Example B output in this report.

// EXEC STRAP //FT17F001 DD DSN=G70141R.STRATUM.AREAS,DISP=SHR,DCB=BUFNC=1 //FT19F001 DD DSN=F7014100.TRIPS,UNIT=(TAPE,,DEFER),VOL=SER=000461, // DISP=CLD //SPECIN DD DSN=G70141R.EXAMPLEB.DATA,DISP=SHR

C. Sample job stream for an AGELENGTH run. This particular set of job control statements was used to produce the Example A AGELENGTH output in this report.

| // EXEC    | ST | RAP                                              |
|------------|----|--------------------------------------------------|
| //FT17F001 | DD | DSN=G70141R.STRATUM.AREAS,DISP=SHR,DCB=BUFNO=1   |
| //FT18F001 | DD | DSN=F7010500.PLA.AANDG,UNIT=TAPE,VOL=SER=004842, |
| 11         |    | DISP=OLD,LABEL=(9,SL)                            |
| //FT19F001 | DD | DSN=F7014100.TRIPS,UNIT=TAPE,VOL=SER=000461;     |
| 11         |    | DISP=OLO                                         |
| //FT16F001 | DD | DSN=F7010500.PLA.FREG,UNIT=TAPE,VGL=SER=002241,  |
| 11         |    | DISP=OLD                                         |
| 11         | DD | DSN=F7010500.PLA.FREQ,UNIT=TAPE,VOL=SER=002241,  |
| 11         |    | DISP=OLD,LABEL=(2,SL)                            |
| //SPECIN   | DD | DSN=G70141R.EXAMPLEC.DATA,DISP=SHR               |

## APPENDIX 2: DATA FORMATS - ST. JOHN'S CODING SPECS A: GROUNDFISH RESEARCH SET DETAILS (CODING SPECIFICATIONS)

SET RECORD CARD FORMAT

| No. | Field                       | <u>Card Columns</u> |
|-----|-----------------------------|---------------------|
| 1   | Card type                   | 1                   |
| 2   | Vessel                      | 2-3                 |
| 3   | Trip No.                    | 4-6                 |
| 4   | Set No.                     | 7-9                 |
| 5   | Year                        | 10-11               |
| 6   | Month                       | 12-13               |
| 7   | Day                         | 14-15               |
| 8   | Set type                    | 16-17               |
| 9   | Stratum or Line             | 18-20               |
| 10  | ICNAF Division              | 21-22               |
| 11  | Unit Area                   | 23-25               |
| 12  | Light Condition             | 26-28               |
| 13  | Wind Direction              | 29                  |
| 14  | Wind Force                  | 30                  |
| 15  | Sea                         | 31                  |
| 16  | Type Bottom                 | 32                  |
| 17  | Time (Midpoint)             | 33-36               |
| 18  | Duration of Set             | 37-39               |
| 19  | Distance Towed              | 40-42               |
| 20  | Operation of Gear           | 43 >                |
| 21  | Depth (Mean)                | 44-47               |
| 22  | Depth (Minimum)             | 48-51               |
| 23  | Depth (Maximum)             | 52-55               |
| 24  | Depth (Bottom if MWT)       | <b>5</b> 6-59       |
| 25  | Temperature (Surface)       | 60-62               |
| 26  | Temperature (Fishing Depth) | 63-65               |
| 27  | Position (Latitude)         | 66-70               |
| 28  | Position (Longtitude)       | 71-75               |
| 29  | Position Method             | 76                  |
| 30  | Gear                        | 77-80               |

#### CATCH RECORD CARD FORMAT

| No   | Field        | Card Columns |                    |
|------|--------------|--------------|--------------------|
| 1    | Card Type    | 1            |                    |
| 2-20 |              | 2-43         | Same as Set Record |
| 21   | Species      | 47-50        |                    |
| 22   | Catch Number | 55-60        |                    |
| 23   | Catch Weight | 64-70        |                    |

Note: When the set and catch records are transferred to magnetic tape storage the records are expanded to 97 columns as follows:

- (1) For a set record columns 1-80 are identical to the card format and column 81-97 are blank.
- (2) For a catch record columns 1-80 are identical to the set record to which the catch record belongs and

Columns 81-84 = species code Columns 85-90 = catch number for the species Columns 91-97 = catch weight for the species (in kilograms to 2 decimal places) Set Record

Card Type

1 (1)

Card Type

5 = set record 6 = catch record

<sup>1</sup>,1 ---

|        |     |              | New | <u>01d</u> |
|--------|-----|--------------|-----|------------|
| Vesse1 | 2-3 | Inv II       | 1   | 1          |
|        | (2) | MARINUS      | 2   | 2          |
|        |     | A.T. CAMERON | 3   | 3          |
|        |     | PARR         | 4   | 4          |
|        |     | MATTHEW      | 5   | 5          |
|        |     | E.E. PRINCE  | 6   | 6          |
|        |     | SHAMOOK      | 7   | 7          |
|        |     | ANTON DOHRN  | 8   | 8          |

35

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25 9

В

H F

G

Α

Κ

С

Ζ

D

S

χ

Ε

Charter Boat

BEOTHIC VENTURE

WALTHER HERWIG

CAPE FAREWELL

HILLSBOROUGH

CAPE HUNTER

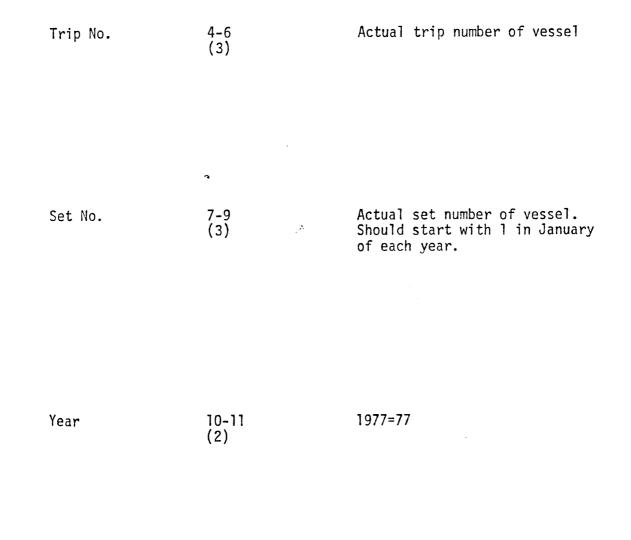
SPANISH PAIRS

NFLD. HAWK

CANSO CONDOR LRNST HAECKEL

KRISTINA LOGOS

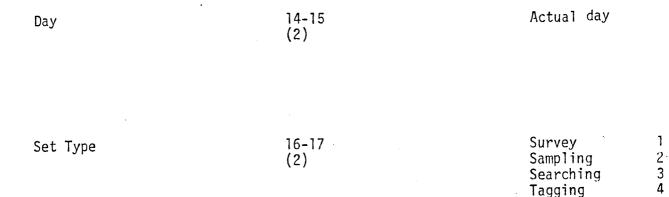
ZAGREB


GADIS ATLANTICA

GULF GUNN

KESTREL

ZERMATT


CRYOS



Month

12-13 (2) Jan=01

Dec=12



| Stratum |  |
|---------|--|
| or Line |  |

18-20 (3)

Actual stratum fished " line fished

Searching Tagging 4 Savings Gear 5 Experimental 6 Diurnal Studies 8 Othor 7

Other 7 Food & Feeding 9

| Division | 21-22<br>(2) | Subarea<br>1A-1F<br>2G-2J | a 0 = 0-               |        |
|----------|--------------|---------------------------|------------------------|--------|
|          |              | 3K<br>3L<br>3M            | 3N<br>3Ø<br>3P=3Ps     | 3Q=3PN |
|          |              | 4R<br>4S<br>4T            | 4U=4VN<br>4V=4VS<br>4W | ,      |

Unit Area

23-25 (3)

### Nfld. area grid map - square eg. L30, K29, P16, etc

Light Meter Light readings in foot candles 0-975

Prorating of light intensity 976-993

General use:

| Dark            | 994         |
|-----------------|-------------|
| Moon light      | 995         |
| Dusk & Dawn     | 996         |
| Dull (overcast, | <b>9</b> 97 |
| fog, rain)      |             |
| Bright but hazy | 998         |
| Bright Sunlight | 999         |

ί

Wind Direction 29 (1)

Calm = 0S = 5N = 1SW = 6NE = 2W = 7E = 3NW = 8SE = 4

code to the nearest direction

Wind force

30 (1) Beaufort Scale (0-9)

Sea 31 (1)

-\$

Standard Sea Code (0-9)

Type of Bottom

| Mud                           | 1 |
|-------------------------------|---|
| Sandy Mud                     | 2 |
| Sand (Sand & Shells)          | 3 |
| Fine Gravel (Sand & Gravel)   | 4 |
| Coarse Gravel (Rock & Gravel) | 5 |
| Boulders                      | 6 |
|                               | - |

Time (Midpoint)

33-36 (4)

32 (1)

> 24 hour clock in NST 3.15 PM = 1515

Duration of Set

37-39 (3) Length of set in minutes

Distance

40-42 (3) Distance towed in nautical miles to 1 decimal 2.5 miles = 025

£1.~~

- 2- Normal, some damage to net, but catch not affected.
- 3- Unsuccessful, net badly damaged and catch affected. Usually repeated in same position.
- 4- Unsuccessful, depth range covered was too large.
- S- Unsuccessful, not due to damage. e.g.: Net not on bottom. Doors locked. Codend untied, etc.

T:1 -+

| Depth (Mean)                             | 44-47<br>(4) | Actual mean depth fished in meters.<br>Usually derived by reading sounder<br>paper for the set. If MWT is used<br>this depth is mean depth of net from the<br>surface. |
|------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (Minimum)                          | 48-51<br>(4) | Actual minimum depth recorded on<br>sounder during set in Meters. If<br>MWT is used this is the minimum depth<br>of the net from surface during the set.               |
| Depth (Maҳimum)                          | 52-55<br>(4) | Actual maximum depth recorded on<br>sounder during set in Meters. If<br>MWT is used this is the maximum depth<br>of the net from the surface.                          |
| Depth (Bottom if<br>Midwater Gear)       | 56-59<br>(4) | Mean depth of bottom in Meters<br>over which MWT gear was fished.                                                                                                      |
| Temperature (Surface)                    |              | Surface temperature in degrees Celcius.<br>9 in first position designates Minus.<br>e.g. 1.2 = 012, 0.0 = 900, -1.2 = 912.                                             |
| Temperature (Fishing<br>Depth or Bottom) | 63-65<br>(3) | Bottom or fishing depth (if MWT)<br>temperature in degrees Celcius.<br>9 in first position designates minus.<br>e.g. 1.2 = 012, 0.0 = 900, -1.2 = 912.                 |

\$

| Position (Latitude)   | 66-70<br>(5) | Latitude at start of set in degr<br>and minutes (to 1 decimal)<br>47°30'30" = 47305 | ees                        |
|-----------------------|--------------|-------------------------------------------------------------------------------------|----------------------------|
| Position (Longtitude) | 71-75        | Longtitude at start of set in de                                                    | arrees                     |
| (Longeroude)          | (5)          | and minutes (to 1 decimal)<br>57°45'30" = 57455                                     | gr ees                     |
| Position Method       | 76<br>(1)    | Dead Reckoning                                                                      | 0<br>1<br>2<br>3<br>4<br>5 |
| 6020                  | 77 00        | See Annendiu A                                                                      |                            |

Gear

77-80 (4) See Appendix A

1. a ...

Card Type 1 (1) -6 Card Type Duplicate card columns 2-43 from the set record card. 2-43 Species code 47-50 Species (4) 55-60 (6) Catch number of the above species. Number Catch weight of the above species in kilograms to 2 decimals. Weight 64-70

T. ---

CATCH RECORD

APPENDIX 2: DATA FORMATS \_ ST. JOHN'S CODING SPECS B: GROUNDFISH RESEARCH AGE AND GROWTH (CODING SPECIFICATIONS)

### AGE AND GROWTH

### RESEARCH

| <u>No.</u> | Field            | Card Columns |
|------------|------------------|--------------|
| 1          | Card Type        | 1            |
| 2          | Species          | 2-4          |
| 3          | Vessel           | 5-6          |
| 4          | Trip             | 7-9          |
| 5          | Set No.          | 10-12        |
| 6          | · Year           | 13-14        |
| 7          | Month            | 15-16        |
| 8          | Day              | 17-18        |
| 9          | Gear             | 19-22        |
| 10         | ICNAF Division   | 23-24        |
| 11         | Ųnit Area        | 25-27        |
| 12         | Depth Fished     | 28-31        |
| 13         | Depth Bottom     | 32-35        |
| 14         | Temperature      | 36-38        |
| 15         | Sample Type      | 39           |
| 16         | Specimen No.     | 40-44        |
| 17         | Length           | 45-47        |
| 18         | Sex              | 48           |
| 19         | Maturity         | 49-51        |
| 20         | Age              | 52-53        |
| 21         | Edge             | 54           |
| 22         | Reliability      | 55           |
| 23         | Spawning Age     | 56-57        |
| 24         | Round Weight     | 58-61        |
| 25         | Gutted Weight    | 62-65        |
| 26         | Gonad Weight     | 66-69        |
| 27         | Stomach          | 70-74        |
| 28         | Girth            | 75-77        |
| 29         | Parasite Type    | 78           |
| 30         | No. of Parasites | 79-80        |

47

# Standard ageing sheet

Species

2-4 (3)

Cod Haddock Redfish Ment. Redfish Marinus Halibut × Am. Plaice Yellowtail Witch Turbot Rock cod Blue hake

Vessel

5-6 (2)

Inv. II Marinus A.T. Cameron Parr Matthew E.E. Prince Shamook Anton Dohrn Charter Boat Beothic Venture Walter Herwig Cape Farewell Gulf Gunn Hillsborough Nfld. Kestrel Cape Hunter Zermatt Cryos Spanish Pairs Gadus Atlantica Nfld. Hawk Canso Condor Ernst Heckel Kristina Logos

24

103

203

303

313

403

503

513

523 533

7-9 (3) Set No. 10-12 Actual set number of vessel. Consecutive numbers starting in January of each year with 1. (3) Year 13-14 1977 = 77 Month 15-16 Jan = 01, Dec = 12(2) Day 17-18 Actual day (2) Gear 19-22 (4) Ot

\* Left justify in Col 19-20

Trip

| ter    | traw] |       |     |        | •   | 10   |  |
|--------|-------|-------|-----|--------|-----|------|--|
| 11     | 11    | (line | ed) | )      |     | 11   |  |
|        |       | (cove | ere | ed) -  |     | 12   |  |
| 11<br> |       | (ATC) | В   | (5-3)) |     | 13   |  |
| 11     | "     | ( 11  | С   | (5-4)) |     | 14   |  |
| **     | ." (  | / II  | D   | (5-4.5 | ))  | 15   |  |
| 11     | " (   | ( 11  | Ε   | (53/8- | -5) | ) 16 |  |

Actual trip number of vessel

Gillnet by size: 3 1/2" mesh - 8350 5" mesh - 8500 6" mesh - 8600 7" mesh - 8700 8" mesh - 8800

Midwater trawl Danish seine Purse seine Trap (cod) Trap (herring) Pair trawl Shrimp trawl Gillnet Longline Linetrawl Handline Jigger Spinner Beach seine

30

40

50

60 61

70 71

80

90

91

92

93

94

45

Division

23-24 (2) Area Zero = 0-

| Unit Area      | 25-27<br>(3) | Squared map grid<br>eg: K29, L30, etc.                                                                               |
|----------------|--------------|----------------------------------------------------------------------------------------------------------------------|
| Depth Fished   | 28-31<br>(4) | Actual depth fished in meters                                                                                        |
| Depth (Bottom) | 32-35<br>(4) | Actual bottom depth in meters.<br>Use where depth fished is not<br>bottom depth such as midwater<br>trawl.           |
| Temperature    | 36-38<br>(3) | Degrees celcius to 1 decimal.<br>9 in leftmost position designates<br>minus. eg: 1.2 = 012, 0.0 = 900,<br>-1.2 = 912 |
| Sample type    | 39<br>(1)    | Sea RandomISea Category2Lab Random5Lab Category6Sea Stratified8Lab Stratified9Tagging rejects3                       |

Specimen No.

40-44 (5) Consecutive Numbers 1 - 99999

Length 45-47 Actual length in centimeters (3) 48 (1) Sex Male 1 Female 5 Unknown Blank Maturity 49-51 See Appendix A.2 Age 52-53 (2) Actual age in years Edge 54 (1) NT 1 Т 2 3 4 5 6 NØ Ø-CØ, WØ, Ø Ø + NT Ø Tip Ø+NT used only when T edge is considered to be that of the next year zone. . ( , Reliability 55 (1) Poor 1 2 3 Fair Good Excellent 4

Spawning age 56-67 Age at first spawning in years (2) Round weight 58-61 KGS to 2 decimals (4) 2.55 KGS = 0255Gutted weight 62-65 KGS to 2 decimals (4) 1.99 KGS = 0199Gonad weight 66-69 Grams (4) 650 grams = 0650Stomach 70-74 Col 70 = degree of fullness in 10ths (5) 10/10 = 9 Col 71-72 = main stomach content Col 73-74 = secondary stomach content See Appendix A.3 for stomach content codes. Girth 75-77 Millimeters (3) Parasite type 78 Lernaeocera 1 (1)Sphyrion 2 3 01d Heads No. of parasites 79-80 Actual number of above parasite. (2)

APPENDIX A.2.

### COD AND HADDOCK MATURITY CODES

Col. 42-44

.

MALE

FEMALE

| Immature               | 100 | Immature                   | 500 |
|------------------------|-----|----------------------------|-----|
| Spent L                | 110 | Spent L                    |     |
| Mat P                  | 140 | No observation on old eggs | 510 |
| - Mat A-P              | 141 | 01d eggs present           | 511 |
| - Mat B-P              | 142 | No old eggs present        | 512 |
| Partly spent           | 150 | Mat A-P                    | 520 |
| Spent P                | 160 | Mat B-P                    | 530 |
| Spent P Mat N          | ·   | Mat C-P                    | 540 |
| Milt in testes & VD    | 170 | Spent P                    |     |
| Milt in testes         | 171 | No observation on old eggs | 560 |
| Milt in VD             | 172 | 01d eggs present           | 561 |
| No milt                | 173 | No old eggs present        | 562 |
| No observation on milt | 174 | Spent P Mat AN             |     |
| Mat N                  | 180 | No observation on old eggs | 570 |
| Mat N (IMM)            | 190 | Old eggs present           | 571 |
| Mat                    | 200 | No old eggs present        | 572 |
| Imm condition          | 210 | Mat A-N                    | 580 |
| Doubtful               | 220 | Mat A-N (IMM)              | 590 |
| Spent L Mat P          |     | Mat                        | 600 |
| No observation on milt | 250 | IMM condition              | 610 |
| Milt in testes & VD    | 251 | Doubtful                   | 620 |
| Milt in testes         | 252 | Spent L Mat AP             |     |
| Milt in VD             | 253 | No observation on old eggs | 650 |
| No milt                | 254 | 01d eggs present           | 651 |
| Other                  | 300 | No old eggs present        | 652 |
| No maturity            | 310 | Other                      | 700 |
|                        | 2   | No maturity                | 710 |

Maturity Unknown = blank

## APPENDIX A.2

## FLOUNDER MATURITY CODES

Col. 42-44

## MALE

### FEMALE

.

| Immature       | 10 | Immature        | 50 |
|----------------|----|-----------------|----|
| Spent L        | 11 | Spent L         | 51 |
|                | 12 | Mat A-P         | 52 |
|                | 13 | Mat B-P         | 53 |
| Mat P          | 14 | Mat C-P         | 54 |
| Partly spent   | 15 | Partly spent    | 55 |
| Spent P        | 16 | Spent P         | 56 |
| Spent P Mat N  | 17 | Spent P Mat A-N | 57 |
| Mat N          | 18 | Mat A-N         | 58 |
| Mat N (IMM)    | 19 | Mat A-N (IMM)   | 59 |
| Mat            | 20 | Mat             | 60 |
| IMM condition  | 21 | IMM condition   | 61 |
| Doubtful       | 22 | Doubtful        | 62 |
| No maturity    | 23 | No maturity     | 63 |
| Spent L Mat P  | 25 | Spent L Mat A-P | 65 |
| Other abnormal | 30 | Other abnormal  | 70 |

### GEAR CODES

#### Research Vessels

Col 77-80

\$

|             | Manilla | Nylon | Courlene |
|-------------|---------|-------|----------|
| Lined O/T   | 0001    | 0041  | 0051     |
| Covered O/T | 0100    | 0140  | 0150     |

|                                     |      | Codend St | ize  |      |      |
|-------------------------------------|------|-----------|------|------|------|
| Standard Net<br>(No liner or cover, | 3"   | 4"        | 4.5" | 5"   | 6"   |
| by Codend size)                     | 0002 | 0003      | 0004 | 0005 | 0006 |

|                       |      | Roller Type |       |
|-----------------------|------|-------------|-------|
| Standard lined net    | Disc | Rubber      | Steel |
| variations in rollers | 0010 | 0011        | 0012  |

| 35A | Marinus | Net, | Unlined, | 3.5" | codend, | used | on | Inv | 0200 |
|-----|---------|------|----------|------|---------|------|----|-----|------|
|     |         |      | Lined,   |      |         |      | 11 | 11  | 0201 |
|     |         |      | Covered, |      | NT      |      | 11 | 11  | 0202 |

| 3/4 35 Net, lined, used on one warp  | 0203 |
|--------------------------------------|------|
| """" used on two warps               | 0204 |
| 36 Net, standard, unlined            | 0209 |
| Redfish Net, Unlined, rubber rollers | 0210 |
| """ wooden rollers                   | 0213 |
| """ rollers not specified            | 0212 |

APPENDIX A.1

| Floatless Net, unlined<br>Pacific Coast Net, Unlined<br>Balloon Net<br>Westerbeke       | 0215<br>0216<br>0217<br>0218         |
|-----------------------------------------------------------------------------------------|--------------------------------------|
| Danish Seine<br>Purse Seine<br>Trap                                                     | 3 <b>900</b><br>4000<br>5000<br>6000 |
| Midwater Trawl                                                                          | 7250                                 |
| Standard Net - 35, 36, 41.5, etc. used midwater                                         | 7251                                 |
| Beam Trawl                                                                              | 7300                                 |
| Gill Net<br>(No. of nets may be designated by using:<br>8 nets = 8008)                  | 8000                                 |
| Longline, Type not specified<br>"Japanese<br>"Midwater<br>"Deep water<br>"Overnight set | 9000<br>9002<br>9003<br>9004<br>9005 |
| Linetraw1                                                                               | 9100                                 |
| Shrimp Net                                                                              | 9400                                 |

### APPENDIX A.1

## Mesh Experiments on INV II

Nets unlined and without cover, coded by codend size.

| 3          | mesh           | codend               | 0030                         |
|------------|----------------|----------------------|------------------------------|
| 3.5        | 11             | н                    | 0035                         |
| 4          | 11             | 11                   | 0040                         |
| 4.5        | н              | 11                   | 0045                         |
| 5          | 11             | 11                   | 0050                         |
| 5.5        | 11             | 11                   | 0055                         |
| 6          | H              | 11                   | 0060                         |
| 4.5<br>5.5 | 11<br>11<br>11 | 11<br>11<br>11<br>11 | 0040<br>0045<br>0050<br>0055 |

#### Mesh Experiments on MARINUS

| 35 + | 35A | net | <br>no | line | r or | cover |   |      |
|------|-----|-----|--------|------|------|-------|---|------|
|      |     |     |        | 3    | mesh | coden | d | 3003 |
|      |     |     |        | 4    | 11   | 11    |   | 3004 |
|      |     |     |        | 5    | н    | 11    |   | 3005 |

| Net        | Mesh                | Floats | Rollers          | Code |
|------------|---------------------|--------|------------------|------|
| В          | $\frac{6-4}{6-4}$   | 19     | 18' 6"<br>36' 6" | 3011 |
| С          | $\frac{4-4}{4-4}$   | 19     | н                | 3012 |
| D          | $\frac{8-4}{8-4}$   | 19     | 0                | 3013 |
| E          | $\frac{12-4}{12-4}$ | 19     | II               | 3014 |
| E          | 11                  | 24     | н<br>-           | 3015 |
| Ε          | $\frac{12-4}{12-4}$ | 39     | 18' 6"<br>36' 6" | 3016 |
| с,         | <u>6-3</u>          | 19     | 11               | 3017 |
| F          | н                   | 5      | 11               | 3018 |
| F          | 11                  | 10     | 11               | 3019 |
| <b>1.9</b> |                     | ζ.•    |                  |      |

| Net | Mesh                                               | Floats | Rollers          | Code |
|-----|----------------------------------------------------|--------|------------------|------|
| F   | $\frac{6-3}{6-3}$                                  | 19     | 46'              | 3021 |
| F   | 11                                                 | 29     | 18' 6"<br>36' 6" | 3022 |
| F   | " (½ wir                                           | ng) 10 | н                | 3023 |
| F   | 11 12                                              | 19     | 11               | 3024 |
| G   | <u>8-3</u><br>8-3                                  | 19     | п                | 3025 |
| G   | "                                                  | 10     | 11               | 3026 |
| Н   | <u>8-3</u><br>6-3                                  | 19     | "                | 3027 |
| Н   | U=5<br>II                                          | 10     | н                | 3028 |
| I   | $\frac{12-3}{6-3}$                                 | 19     | ".               | 3029 |
| I   | "                                                  | 5      | II               | 3030 |
| I   | <u>12-3</u><br>6-3                                 | 10     | 18' 6"<br>36' 6" | 3031 |
| J   | $\frac{6-3}{4^{1}2-3}$                             | 19     | 11               | 3032 |
| J   | 11                                                 | 10     | 15               | 3039 |
| К   | $\frac{8-3}{4}$                                    | 19     | 11               | 3033 |
| L   | $\frac{8-3}{4^{1}_{2}-3}$<br>12-3<br>$4^{1}_{2}-3$ | 19     | 11               | 3034 |
| L   | 11                                                 | 10     | 11               | 3035 |
| L   | 11                                                 | 29     | 11               | 3036 |
| М   | $\frac{4^{1}2-3}{4^{1}2-3}$                        | 19     | 11               | 3037 |
| Μ   | 11                                                 | 10     | **               | 3038 |
|     |                                                    |        |                  |      |

### Mesh Experiments on ATC

Gear has not been coded. Gear field is left blank.

| Strami | n Net | Size not specified | 7000 |
|--------|-------|--------------------|------|
| 11     | н     | 2 meter            | 7002 |
| 11     | 11    | 3 meter            | 7003 |

APPENDIX A.1

| Handline<br>Jigger - Type not specified<br>" - Norwegian<br>- Squid<br>- Nfld. | 9500<br>9550<br>9551<br>9552<br>9553 |
|--------------------------------------------------------------------------------|--------------------------------------|
| Spinner                                                                        | 9600                                 |
| Sneller Reel                                                                   | 9601                                 |
| Lures                                                                          | 9602                                 |
| Fish Pot, used with longline                                                   | 9700                                 |
| Dutch Herring Trawl                                                            | 9750                                 |
| Sand Eel trawl (used ATC 148)                                                  | 9760                                 |
| Standard 36 net lined throughout with 1 1/8" netting                           | 9762                                 |
| Norwegian Shrimp Trawl                                                         | 9763                                 |
| Commercial Otter Trawl (Portugese type used on ZERMATT)                        | 9764                                 |
| 16 foot shrimp tryout                                                          | 9765                                 |
| Sputnik 1600 shrimp trawl                                                      | <b>9</b> 766                         |

### APPENDIX A.2

#### REDFISH MATURITY CODING

|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Column          | 40                          | 41                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|-------------------------------------------------------------------------|
| Sex and maturity not known                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • • • • | 0                           | 1                                                                       |
| Abnormal (not specified) <u>Male</u><br>IMM Condition <u>Male</u>                                                                                                                                                                                                                                                                                                                                                                                        | • • • • • • • • | 9<br>9                      | 0<br>1                                                                  |
| Abnormal (not specified) Female<br>IMM Condition Female<br>Large number eags not developing                                                                                                                                                                                                                                                                                                                                                              | • • • • • • • • | 9<br>9<br>9                 | 5<br>6<br>7                                                             |
| 10% or more eggs degenerating <u>Female</u>                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • • •     | 9                           | 8                                                                       |
| MALES                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                             |                                                                         |
| Immature<br>Mat N (imm) or IMM, Mat N.<br>Mature<br>Mat P<br>Mat P, milt in VD<br>Partly spent<br>Spent, old milt in VD<br>Spent P (Spent)<br>Spent P, Mat N<br>Mat N<br>Spent L<br>Maturity not known or doubtful                                                                                                                                                                                                                                       |                 | 1 1 2 2 2 2 2 2 2 2 2 2 3 3 | 0501234567<br>901                                                       |
| FEMALES                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                             |                                                                         |
| Maturity not known or doubtful<br>Immature<br>Mature<br>Mat AN (imm)<br>Mat AN<br>Mat AN Spent P) with or without OEP<br>Mat AP Spent L)<br>Mat AP<br>Mat B-C, clearing<br>Eggs clear no sign of development<br>Mature, eggs developing, stage not specified<br>Pre larval stage. Early cell division to cell cap stage<br>Pre larval stage. Neural fold to larvae completely round<br>Pre larval stage. No details<br>Larvae developing. No eye pigment |                 | 45666666777777              | 0<br>0<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>0<br>1<br>2<br>3<br>4 |

`

à

### FEMALES - Continued

| Larvae well developed. 1-20% hatched<br>Larvae well developed. 21-70% hatched |   | 7<br>8 |
|-------------------------------------------------------------------------------|---|--------|
| Larvae well developed. 71-95% hatched                                         | 7 | 9      |
| Larvae well developed. 96-100% hatched. Larvae with well developed            | 1 |        |
| yolk sac                                                                      | 8 | 0      |
| Larvae well developed. 96-100% hatched. Yolk sac used up larvae               |   |        |
| ready for extrusion                                                           | 8 | 1      |
| Partly spent, 1000 or more larvae remain                                      | 8 | 2      |
| Spent P old larvae remain                                                     | 8 | 3      |
| Spent P OEP                                                                   | 8 | - 4    |
| Spent P                                                                       | 8 | 5      |
| Spent L old larvae remain                                                     | 8 | 6      |
| Spent L OEP                                                                   | 8 | 7      |
| Spent L                                                                       | 8 | ້ຍ     |

### APPENDIX A.3

### CODING SHEET FOR COD STOMACH CONTENTS

| 01         | Rock and wood       | 35 | Sea mouse                            | 69 | Sculpin                             |
|------------|---------------------|----|--------------------------------------|----|-------------------------------------|
| 02         | Seaweed             | 36 | Sea cucumber                         | 70 | Turbot                              |
| 03         | Seal                | 37 | Sea squirt                           | 71 | Lumpfish                            |
| 04         | Whelk egg case      | 38 | Starfish                             | 72 | 4-Bearded rockling                  |
| 05         | Spawn               | 39 | Mussel                               | 73 | Shanny                              |
| 06         | Skate egg case      | 40 | Everted                              | 74 | Sea snail                           |
| 07         | Fish larvae         | 41 | Scallop                              | 75 | Launce                              |
| <b>0</b> 8 | Mackerel            | 42 | Snipe eel                            | 76 | Rock eel                            |
| 09         | Cunner              | 43 | Sand dollar                          | 77 | Smelt                               |
| 10         | Fish                | 44 | Road crab                            | 78 | Wolf-eel                            |
| 11         | Cod                 | 45 | Tube worm                            | 79 | Witch                               |
| 12         | Herring             | 46 | Sponge                               | 80 | Alligator fish                      |
| 13         | Redfish             | 47 | Hake                                 | 81 | Lumpenus maculatus                  |
| 14         | Capelin             | 48 |                                      | 82 | Grenadier                           |
| 15         | Haddock             | 49 | Dogfish                              | 83 | Stickleback                         |
| 16         | Deep sea fish       | 50 | Arrow worms                          | 84 | Hagfish                             |
| 17         | Lantern fish        | 51 | Sea gooseberry<br>(ctenophore)       | 85 | Gephyrean worm                      |
| 18         | American plaice     | 52 | Whelk                                | 86 | Cumaceans                           |
| 19         | Offal and bait      | 53 | Shrimp (other than<br>Pandalus)      | 87 | Sea Potato                          |
| 20         | Invertebrates       | 54 | Sea anemones                         | 88 | Rock Gunnel (tansy)                 |
| 21         | Euphasiids          | 55 | Pteropods (Blackberry)               | 89 | Tape worm                           |
| 22         | Shrimp              | 56 | Pteropods (Clione)                   | 90 | Thorny skate                        |
| 23         | Amphipods           | 57 | Basket stars                         | 91 | Arctic cod                          |
| 24         | Crab                | 58 | Lea louse (fish<br>doctor)           | 92 | Long nose eel                       |
| 25         | Brittlestars        | 59 | Copepods                             | 93 | Isopods                             |
| 26         | Polychaete worms    | 60 | Serrivomer                           | 94 | Blenny                              |
| 27         | Sea urchins         | 61 | Stomias                              | 95 | Caprillids                          |
| 28         | Squid & Octopii     | 62 | R.H. Grenadiers                      | 96 | Rock cod                            |
| 29         | Shellfish           | 63 | Eelpout                              | 97 | Yellowtail                          |
| 30         | Digested            | 64 | Lancet fish                          | 98 | · ·                                 |
| 31         | Fluid               | 65 | Viper fish                           | 99 |                                     |
|            | Jellyfish           |    | Wolffish                             |    | 03000 = Empty                       |
|            | Clams<br>Sipunculid |    | Mailed sculpin<br>Hook-eared sculpin |    | 9 = Full or 9/10<br>-4000 = Everted |
|            |                     |    |                                      |    |                                     |

:

~

,

APPENDIX 2: DATA FORMATS - ST. JOHN'S CODING SPECS C: GROUNDFISH RESEARCH LENGTH FREQUENCIES (CODING SPECIFICATIONS)

The following coding specs can be used for <u>all</u> species of groundfish research frequencies.

| Cols. 1-2 - Vessel                                                                                                                                                                   | <u>01d</u>                                           | New                                                                  |                                                            |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|----------------------|
| Inv. II<br>Marinus<br>A.T. Cameron<br>Parr<br>Mathew<br>E.E. Prince<br>Shamook<br>Anton Dohrn<br>Charter Boat                                                                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9            | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                            | Canso Condour<br>Ernst Haeckel<br>Kirstina Logos<br>Zagreb | 22<br>23<br>24<br>25 |
| Beothic Venture<br>Walter Herwig<br>Cape Farewell<br>Gulf Gun<br>Hillsborough<br>Kestrel<br>Cape Hunter<br>Zermatt<br>Cryos<br>Spanish Pairs<br>Gadus Atlantica<br>Newfoundland Hawk | .B<br>H<br>G<br>A<br>K<br>C<br>Z<br>D<br>S<br>X<br>E | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | ·                                                          |                      |

Cols. 3-5 - Cruise No.

Vessel trip number.

Cols. 6-8 - Stratum

Cols. 9-11 - Set

Cols. 12-13 - Day

Cols. 14-15 - Month

Cols. 16-17 - Year

Cols. 18-19 - ICNAF Division

Enter number and letter except:

3PN - 3Q 3Ps - 3P 4VN - 4U 4Vs - 4V 0 - 0-

| Col. 20 - Type Experiment                                                                                                    |                  |             |
|------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Survey – – 1 Savings Gear – 5<br>Sampling – 2 Experimental – 6<br>Searching – 3 Other – 7<br>Tagging – 4 Diurnal Studies – 8 | food and feeding | - 9         |
| Cols. 21-24 - Species                                                                                                        | <u>New</u>       | <u>01d</u>  |
| Cud                                                                                                                          | 103              | 223         |
| Haddock                                                                                                                      | 203              | <b>2</b> 27 |
| Redfish (Mentella)                                                                                                           | 303              | <b>3</b> 33 |
| Redfish (Marinus)                                                                                                            | 3]3              | <b>3</b> 34 |
| Redfish.(doubtful)                                                                                                           | 323              | 512         |
| Greenland Halibut                                                                                                            | 533              | 513         |
| Am. Plaice                                                                                                                   | 503              | 515         |
| Yellowtail<br>Witch                                                                                                          | 513              | 516         |
| Atlantic Halibut                                                                                                             | 200              |             |

For all other species, including the oddfish, use the groundfish distribution codes.

Cols. 25-28 - Number in Sample

Number of males and number of females.

Cols. 29-30 - Ratio

Ratio equals percentage of catch measured. If total catch is measured, code 00.

<u>Col. 31 - Sex</u>

For sexed frequencies use  $\frac{1}{5}$  to denote <u>males</u> - 1 females - 5

For unsexed frequencies, leave blank.

Col. 32 - Gear

| Otter trawl - Blank<br>Midwater trawl - 1<br>Shrimp trawl - 2           | Shrimp trawl plus tickler chain<br>#41 semi-balloon trawl<br>#16 shrimp tryout net | 6<br>7<br>8 |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|
| Longline – 3<br>Handline – 4                                            |                                                                                    | 9           |
| Otter trawl plus tickler_ 5<br>chain<br><u>Col. 33 - Day and Nigh</u> t | Use a letter in col. 32 for gears<br>exceding code 9                               | •           |

Used for Redfish - Day - 0600-1800 1 - Night - 1800-0600 2

Col. 34 - Blank

Col. 35 - Grouping

Oddfish - 1 cm grouping - code as 1 Redfish - 1 cm grouping - code as 1 Flatfish - 2 cm grouping - code as 2 Cod - 3 cm grouping - code as 3

Cols. 36-38 - Starting Length Group

Starting length in 14 cm group being punched.

Cols. 39-80 - (For Keypunch Operator)

14-3 digit fields representing numbers in the 14 length groups starting with the length in the previous field.

When transfered to magnetic tape each length frequency has the following format:

Cols. 1-38 - as described above

Cols. 39-338 - 100 three digit fields representing the numbers for each length group (e.g. the numbers for length group 15 would be in the 15th field i.e. cols. 81-83).

100