Primary Production Measurements in the Bay of Fundy from March 1979 to November 1980

N.J. Prouse

Marine Ecology Laboratory Ocean Science and Surveys, Atlantic Department of Fisheries and Oceans

Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia B2Y 4A2

November 1983

Canadian Technical Report of Fisheries and Aquatic Sciences No. 1167

Canadian Technical Report of Fisheries and Aquatic Sciences

These reports contain scientific and technical information that represents an important contribution to existing knowledge but which for some reason may not be appropriate for primary scientific (i.e. *Journal*) publication. Technical Reports are directed primarily towards a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant to Canada.

Technical Reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report will be abstracted in *Aquatic Sciences* and *Fisheries Abstracts* and will be indexed annually in the Department's index to

scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Details on the availability of Technical Reports in hard copy may be obtained

from the issuing establishment indicated on the front cover.

Rapport technique canadien des sciences halieutiques et aquatiques

Ces rapports contiennent des renseignements scientifiques et techniques qui constituent une contribution importante aux connaissances actuelles mais qui, pour une raison ou pour une autre, ne semblent pas appropriés pour la publication dans un journal scientifique. Il n'y a aucune restriction quant au sujet, de fait, la série reflète la vaste gamme des intérêts et des politiques du Ministère des Pêches et des Océans, notamment gestion des pêches, techniques et développement, sciences océaniques et environnements aquatiques, au Canada.

Les Rapports techniques peuvent être considérés comme des publications complètes. Le titre exact paraîtra au haut du résumé de chaque rapport, qui sera publié dans la revue Aquatic Sciences and Fisheries Abstracts et qui figurera dans l'index

annuel des publications scientifiques et techniques du Ministère.

Les numéros 1-456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457-714, à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715-924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, Ministère des Pêches et de l'Environnement. Le nom de la série a été modifié à partir du numéro 925.

La page couverture porte le nom de l'établissement auteur où l'on peut se procurer les rapports sous couverture cartonnée.

Canadian Technical Report of
Fisheries and Aquatic Sciences 1167

November 1983

PRIMARY PRODUCTION MEASUREMENTS IN THE BAY OF FUNDY FROM MARCH 1979 to NOVEMBER 1980

N.J. PROUSE

Marine Ecology Laboratory

Ocean Science and Surveys, Atlantic

Department of Fisheries and Oceans

Bedford Institute of Oceanography

P.O. Box 1006

Dartmouth, Nova Scotia B2Y 4A2

© Minister of Supply and Services Canada 1983

Cat. No. Fs 97-6/1167

ISSN 0706-6457

Correct citation for this publication:

Prouse, N.J. 1983. Primary production measurements in the Bay of Fundy from March 1979 to November 1980. Can. Tech. Rep. Fish. Aquat. Sci. 1167.

Table of Contents

Abstract	iv
Introduction	1
Methods	2
Light Saturation Experiments	2
Deck Incubations	3
Light Measurements	4
Chlorophyll <u>a</u>	4
SPM	4
Light Saturation Parameters	4
Results	5
Acknowledgements	5
References	5
Figure Captions	7
Data Tables	8

ABSTRACT

PROUSE, N.J. 1983. Primary production measurements in the Bay of Fundy from March 1979 to November 1980. Can. Tech. Rep. Fish. Aquat. Sci. No. 1167: 86 p.

Primary production was measured using the radiocarbon method on four cruises during different seasons from 1979 to 1980 in the Bay of Fundy. Both light saturation experiments and deck incubations were done with sampling concentrated in the turbid upper reaches. Additional light saturation experiments were made at Pecks Cove, New Brunswick. The raw data are presented along with integral production and the derived light saturation parameters.

RESUME

PROUSE, N.J. 1983. Primary production measurements in the Bay of Fundy from March 1979 to November 1980. Can. Tech. Rep. Fish. Aquat. Sci. No. 1167: 86 p.

La production primaire dans la Baie de Fundy a été measurée à l'aide de la méthode du carbone radioactif au cours de quatre croisières effectuées pendant des saisons différentes de 1979 à 1980. On a procédé à des expériences de saturation lumineuse et à des incubations sur le pont, l'échantillionnage ayant été concentré dans des plans d'eau turbides de la côte nord de la Baie. D'autres expériences de saturation lumineuse ont été réalisées à Pecks Cove, Nouveau-Brunswick. Les données brutes sont présentées ainsi que la production intégrale et les paramètres de saturation lumineuse dérivés de ces expériences.

INTRODUCTION

There has been continuing interest in the Bay of Fundy due to the recognition of the potential for harnassing tidal power. However, until recently, few biological observations have been made in the upper regions where tidal power would most likely be developed; these areas are typified by extremely large tidal amplitudes (averaging 10-12 m), strong tidal currents and very high turbidity which can decrease the photic zone to only 1-2 m or less.

Since 1977, our laboratory has undertaken several studies in the Bay of Fundy especially in these upper regions. A program of field and laboratory work involving cruises in the Bay and sampling at Pecks Cove, New Brunswick, was initiated to assess the role of phytoplankton and primary production. Results of <u>in situ</u> primary production measurements and related benthic production at Pecks Cove has been discussed elsewhere (Hargrave et al., 1983). This report presents the data from the cruises as well as light saturation experiments performed at Pecks Cove during 1979-80. These values have been used for estimates of annual phytoplankton production in the Bay of Fundy (Prouse et al., in prep.).

SAMPLING

Primary production was measured at Pecks Cove during 1980 and on four cruises throughout the Bay of Fundy in the spring, summer and fall of 1979 and the winter of 1980. Water was collected by 5 L NISKIN bottles from 1 m at various stations along the cruise track (Fig. 1) for onboard light saturation experiments. Deck incubations were also performed using water collected at depths representing 100, 20, 12, and 1% penetration of photosynthetically active radiation. These depths were determined by

lowering a LI-COR underwater quantum sensor (LI-1925B) and measuring photosynthetically active radiation on a LI-185B quantum meter. Water for deck incubations was taken only from 0.5 m in the upper Bay of Fundy where turbidity and turbulence are extremely high and light penetration limited to the upper 2 m. Surface water was also taken during helicopter surveys or field trips to Pecks Cove in 1980 for light saturation experiments in the laboratory.

METHODS

Light Saturation Experiments

Primary production was measured using the radioactive carbon method outlined by Strickland and Parsons (1972). Seawater (2-3L) was placed into a large flask to which was added sodium bicarbonate C14 solution prefiltered through 0.45 µm Millipore filters; 100 ml aliquots were placed into 125 ml clear glass bottles to give a final activity of approximately 5 μC/bottle. Exact activity was determined by subsampling the stock solution. Four additional covered bottles, two of which were poisoned with 0.2 mg mercuric chloride, were included for determination of total and chemical dark assimulation. The difference between the two represents biological dark uptake such as chemosynthetic production by bacteria. These are included because dark assimilation is often significant when compared to light fixation (Taguchi and Platt, 1977; Petersen, 1979) and could be even more important in water with high turbidity. Bottles were arranged along a running seawater incubator at varying distances away from a 150 watt light source (GE clear projector floodlight). Water collected at Pecks Cove was treated similarly but under much stronger illumination (THORN 2000 W haline lamp). Contents of bottles were immediately filtered after four hours

exposure onto 0.25 cm diameter 0.45 µm membrane filters and rinsed once with 5-10 ml filtered seawater collected at the sampling site. Filters were placed directly into scintillation vials containing 15 ml Aquasol-2 (New England Nuclear) and counted on a Beckman LS-3133T liquid scintillation counter.

Deck Incubations

Seawater (0.5 L) from each depth was innoculated with 25 μ C of 0.45 prefiltered sodium bicarbonate C¹⁴ solution; 100 ml aliquots were then placed into 3 light and 2 dark 125 ml glass bottles (one dark bottle poisoned with 0.2 mg mercuric chloride) to give an approximate activity of 5 μ C/bottle. These sets of bottles were placed into plexiglass deck incubators which were screened to simulate the irradiance of the appropriate depth of origin. Temperature was maintained close to in situ conditions by running seawater and incubations were carried out between 1000-1400 hours when possible. Upon completion, contents of bottles were immediately filtered and treated as in the light saturation experiments. Integral production was calculated to the depth of 1% light transmission.

Light Measurements

Photosynthetically active radiation (PAR) was measured in each compartment along the light saturation incubators with a LI-COR model LI-185B quantum meter and LI-192SB underwater quantum sensor. The same instrument was used to determine the 100, 25, 12, and 1% depth of light penetration in the water column for the deck incubators.

Total solar radiation was measured (as g-cal $cm^{-2} min^{-1}$) on a Belfort pyrheliograph placed on deck. Alternately, solar radiation values

recorded by Environment Canada, Kentville, Nova Scotia were used.

Chlorophyll a

For each experiment 0.2-0.5 L of seawater was filtered through a 0.45 μ Millipore filter and placed into 10 ml 85% acetone solution containing a few drops of Mg Co $_3$ solution. Samples were mixed in a Vortex mixer and stored at 5°C for at least 18 hours before measuring chlorophyll \underline{a} on a Turner fluorometer following the method of Yentsch and Menzel (1963) as modified by Holm Hansen et al. (1965).

SPM

Total amount of suspended particulate material was determined by filtering 0.1-0.5 L seawater onto 0.45 micron Nucleopore filters of a diameter of 47 mm. Preweighed glass fibre filters (WHATMAN 4.25 cm GF/A) were used for samples taken at Pecks Cove. Filters were dried 24-48 hours at 60° C and weighed to give total amount of suspended dry matter expressed as mg L^{-1} .

LIGHT SATURATION PARAMETERS

After subtracting light from dark production, net production was then normalized to unit chlorophyll <u>a</u> and plotted against light intensity. Two parameters were calculated when possible (Platt et al., 1975; Jassby and Platt, 1976):

- (1) the initial slope, α , of the linear portion of the plot.
- (2) the assimilation number, $P_m{}^B$, by a non-linear least squares fit of the function $P^B = P_m{}^B$ tanh $(\alpha \ I/P_m{}^B) R^B$ to the entire data set for a given sample.

RESULTS

Results of the deck incubations derived from the raw data are summarized for each cruise (and season) in Fig. 2-5. In some light saturation experiments on the cruises, high amounts of suspended matter lowered the light intensity along the incubator to a point where light or production could not be measured except in bottles closest to the lamp; the limited amount of data in these experiments precludes determination of light saturation parameters. There was also settling of suspended material in the bottles during both deck incubations and light saturation experiments.

ACKNOWLEDGEMENTS

I thank the captain and crew of the CSS Dawson for the memorable and productive cruises to the Bay of Fundy and E. MacDormand, J. Walker, and D. Roberts, among many others, who kindly helped with the field work even under muddy conditions. I am also grateful to D. Rudderham for calculating the light saturation parameters and to C. Simmons for patiently typing the tables. The support, guidance and encouragement of Drs. D. Gordon and B. Hargrave made this study possible and is greatly appreciated. Finally I wish to thank Mia for the hot sauce and my parents for tolerating everything from praying mantis to flying squirrels.

REFERENCES

Hargrave, B.T., N.J. Prouse, G.A. Phillips, and P.A. Neame. 1983. Primary production and respiration in pelagic and benthic communities at two intertidal sites in the Upper Bay of Fundy. Can. J. Fish Aquat. Sci., 40 (Suppl. 1): 229-243.

- Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965.

 Fluorometric determination of chlorophyll. J. Cons. int. Explor.

 Mer., 30: 3-15.
- Jassby, A.D. and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540-547.
- Petersen, G.H. 1979. On the analysis of dark fixation in primary production computations. J. Cons. int. Explor. Mer, 38 (3): 326-330.
- Platt, T., K. Denman, and A.D. Jassby. 1975. The mathematical representation and prediction of phytoplankton productivity. Fish. Mar. Serv. Res. Dev. Tech. Rept. No. 523: v + 110 p. + 3 tables + 8 Figures.
- Prouse, N.J., D.C. Gordon, Jr., B.T. Hargrave, C.J. Bird, J. McLachlan,
 J.S.S. Lakshminarayana, J. Sita Devi, and M.L.H. Thomas. 1983.

 Primary production: Organic matter supply to ecosystems in the Bay of Fundy, in prep.
- Taguchi, S., and T. Platt. 1977. Assimilation of ¹⁴CO₂ in the dark compared to phytoplankton production in a small coastal inlet.

 Coastal Marine Sci. 5: 679-684.
- Yentsch, S.C., and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221-231.

FIGURE CAPTIONS

- Fig. 1. Location of sampling stations in the Bay of Fundy during 1979-1980.
- Fig. 2. Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 79-004 (March 29 April 4, 1979).
- Fig. 3. Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 79-023 (Aug 11-19, 1979).
- Fig. 4. Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 79-034 (Oct 25-Nov 10, 1979).
- Fig. 5. Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 80-003 (Feb 15-22, 1980).

FIG. 1 Location of sampling stations in the Bay of Fundy during 1979-1980.

FIG. 2 Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 79-004 (March 29 - April 4, 1979).

FIG. 3 Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 79-023 (Aug 11-19, 1979).

FIG. 4 Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 79-034 (Oct 25-Nov 10, 1979).

FIG. 5 Net primary production measured in deck incubators at various sampling stations in the Bay of Fundy during CSS Dawson cruise 80-003 (Feb 15-22, 1980).

DATA TABLES - DECK INCUBATIONS AND NET INTEGRAL PRODUCTION

Date: 29/03/79

Station No: BF 1

Surface Temperature, ^oC: 1-2

Incubation Temperature, ${}^{0}C: 4-6$

Incubation Hours: 1100-1500

Incident Radiation During Incubation, megajoules m⁻²: 10.417

Total Daily Incident Radiation, megajoules m^{-2} : 19.805

Suspended Dry Matter, mg 1^{-1} : 2.4

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	Net Primary f mg C m ⁻³ (standard do	h^{-1}		ixation n ⁻³ h ⁻¹ deviation)	(poisong C m	•
100	0	0.40	2.61	(0.18)	2.06	(1.05)	1.82	(0.75)
35	6	0.45	1.42	(1.04)				
12	8	0.42	0.31	(0.31)				
1	12	0.45	0.27	(0.46)				

Integral Net Primary Production, mg C m $^{-2}$ h $^{-1}$: 15.0

Integral Daily Primary Production, mg C m⁻² day⁻¹: 114.1

Date: 30/03/79

Station No: BF 16

Surface Temperature, ^oC: 1-2

Incubation Temperature, ^oC: 4-6

Incubation Hours: 0930-1330

Incident Radiation During Incubation, megajoules m^{-2} : 2.420

Total Daily Incident Radiation, megajoules m^{-2} : 4.702

Suspended Dry Matter, mg 1^{-1} : 29.7

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)		mg C	Fixation m ⁻³ h ⁻¹ deviation)	(po mg C	Fixation isoned) m ⁻³ h ⁻¹ d deviation)
100	0	0.50	2.17	(0.12)	1.08	(0.13)	0.85	(0.19)
35	1.5	0.45	2.25	(0.25)				
12	2.5	0.45	0.30	(0.22)				
1	4.0	0.56	0					

Integral Net Primary Production, mg C m $^{-2}$ h $^{-1}$: 4.8

Integral Daily Primary Production, mg C m⁻² day⁻¹: 37.3

Date: 31/03/79

Station No: 16

Surface Temperature, ⁰C: 2-3

Incubation Temperature, ^oC: 4-6

Incubation Hours: 1045-1445

Incident Radiation During Incubation, megajoules m^{-2} : 1.553

Total Daily Incident Radiation, megajoules m^{-2} : 3.333

Suspended Dry Matter, $mg 1^{-1}$: 24.7

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	Net Primary Production ${\rm mg~C~m}^{-3}~{\rm h}^{-1}$ (standard deviation)		mg C	Fixation m ⁻³ h ⁻¹ deviation)	(po mg C	Fixation isoned) m ⁻³ h ⁻¹ deviation)
100	0	0.64	2.53	(0.12)	1.10	(0.32)	1.07	(0.37)
35	1.0	0.52	3.29	(0.25)				
12	1.5	0.22	1.52	(0.16)				
1	2.5	0.37	0.57	(0.17)				

Integral Net Primary Production, $mg \ C \ m^{-2} \ h^{-1}$: 5.16

Integral Daily Primary Production, mg C m⁻² day⁻¹: 44.3

Date: 01/04/79

Station No: 17

Surface Temperature, ^oC: 1-2

Incubation Temperature, ${}^{0}C: 4-6$

Incubation Hours: 1030-1430

Incident Radiation During Incubation, megajoules m^{-2} : 2.310

Total Daily Incident Radiation, megajoules m^{-2} : 4.743

Suspended Dry Matter, mg 1^{-1} : 174.3

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C r	ry Production n ⁻³ h ⁻¹ d deviation)	mg C	Fixation m ⁻³ h ⁻¹ deviation)	(po mg C	Fixation isoned) m ⁻³ h ⁻¹ d deviation)
100	0	0.42	3.59	(2.41)	5.36	(2.95)	4.70	(4.31)
35	<]		3.31	(1.98)				
12	<1		2.78	(0.78)				
	<1		1.57	(1.32)				
Securitaria								1

Integral Net Primary Production, mg C m⁻² h⁻¹: ~ 2.71 Integral Daily Primary Production, mg C m⁻² day⁻¹: 2.22

Date: 02/04/79

Station No: 18

Surface Temperature, ^oC: 1.5

Incubation Temperature, ^oC: 4-6

Incubation Hours: 1015-1415

Incident Radiation During Incubation, megajoules m⁻²: 10.640

Total Daily Incident Radiation, megajoules m^{-2} : 20.202

Suspended Dry Matter, mg 1^{-1} : 72.5

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg 1 ⁻¹	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)	Dark Fixation mg C m ⁻³ h ⁻¹ (standard deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	1.77	6.62 (2.37)	4.37 (0.91)	4.38 (2.67)	
35	<1		5.27 (0.26)			
12	<1		2.94 (0.52)			
1	<1		0.53 (0.47)			

Integral Net Primary Production, mg C m⁻² h⁻¹: ~ 3.38 Integral Daily Primary Production, mg C m⁻² day⁻¹: 25.7

Date: 03/04/79
Station No: 19

Surface Temperature, ^oC: 2.0

Incubation Temperature, ^OC: 4-6

Incubation Hours: 1000-1400

Incident Radiation During Incubation, megajoules m⁻²: 1.833

Total Daily Incident Radiation, megajoules m^{-2} : 3.107

Suspended Dry Matter, mg 1^{-1} : 72.5

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)		Dark Fixation mg C m ⁻³ h ⁻¹ (standard deviation)		Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	2.15	3.08 (0	.82)	4.23	(1.11)	3.69	(1.51)
35	<1		1.57 (0	.84)				(1111)
12	<]		0.78 (0	.82)				
]	<1		0					

Integral Net Primary Production, mg C m⁻² h⁻¹: 1.07 Integral Daily Primary Production, mg C m⁻² day⁻¹: 7.3

Date: 11/08/79

Station No: BF 1

Surface Temperature, ^oC: 11.0

Incubation Temperature, ^oC: 15.0

Incubation Hours: 1430-1830

Incident Radiation During Incubation, megajoules m^{-2} : 3.272

Total Daily Incident Radiation, megajoules m^{-2} : 10.324

Suspended Dry Matter, $mg 1^{-1}$: 1.7

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C m	Production and a half		Fixation : m ⁻³ h ⁻¹ deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)
100	0	3.68	11.90	(0.29)	1.44	(0.62)	
25	4		9.17	(0.59)			
10	7		3.19	(0.67)			
1	14		1.11	(0.67)			

Integral Net Primary Production, mg C m⁻² h^{-1} : 75.7

Integral Daily Primary Production, $mg \ C \ m^{-2} \ day^{-1}$: 955.4

Date: 12/08/79

Station No: BF 8

Surface Temperature, ^oC: 11.3

Incubation Temperature, ^oC: 15.0

Incubation Hours: 0915-1315

Incident Radiation During Incubation, megajoules m^{-2} : 1.927

Total Daily Incident Radiation, megajoules m⁻²: 4.019

Suspended Dry Matter, mg 1^{-1} : 1.0

Percent Light Transmission			mg C	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)		Fixation m ⁻³ h ⁻¹ deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)
100	0	1.04	4.55	(0.63)	1.17	(0.13)	
25	4		2.08	(0.07)			
10	8		0.68	(0.13)			
1	14		0.16	(0.14)			

Integral Net Primary Production, mg C m⁻² h⁻¹: 21.3 Integral Daily Primary Production, mg C m⁻² day⁻¹: 177.7

Date: 13/08/79

Station No: 21

Surface Temperature, ^oC: 14.2

Incubation Temperature, ^oC: 17.0

Incubation Hours: 0930-1330

Incident Radiation During Incubation, megajoules m⁻²: 3.715

Total Daily Incident Radiation, megajoules m⁻²: 8.371

Suspended Dry Matter, mg 1⁻¹: 9.0

	mg C m ⁻³ h ⁻¹ (standard deviation)
100 0 1.11 6.24 (0.26) 1.40 (0.30)	
25 2 2.36 (0.21)	
10 4 0.80 (0.06)	
1 7 0.12 (0.21)	

Integral Net Primary Production, mg C $m^{-2} h^{-1}$: 13.1

Integral Daily Primary Production, mg C m⁻² day⁻¹: 118.1

Date: 14/08/79

Station No: 20

Surface Temperature, ^oC: 17.0

Incubation Temperature, ^oC: 18.0

Incubation Hours: 1000-1400

Incident Radiation During Incubation, megajoules m^{-2} : 8.281

Total Daily Incident Radiation, megajoules m^{-2} : 12.940

Suspended Dry Matter, mg 1^{-1} : 16.4

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C i	ry Production m ⁻³ h ⁻¹ d deviation)	mg C m		Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)
100	0	1.46	9.76	(1.11)	1.60	(0.44)	
25	1		. 6.17	(0.88)			
10	2		3.23	(0.85)			
1	4		0.56	(0.66)			

Integral Net Primary Production, mg C m⁻² h⁻¹: 16.5 Integral Daily Primary Production, mg C m⁻² day⁻¹: 103.1

Date: 15/08/79
Station No: 21

Surface Temperature, ^oC: 16

Incubation Temperature, ^oC: 18

Incubation Hours: 0930-1330

Incident Radiation During Incubation, megajoules m⁻²: 8.090

Total Daily Incident Radiation, megajoules m^{-2} : 20.281

Suspended Dry Matter, mg 1^{-1} : 3.8

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ⁻¹	lorophyll a Net Primary Production $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		mq (Fixation C m ⁻³ h ⁻¹ d deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)
100	0	0.82	5.19	(0.33)	1.15	(0.40)	
25	2		2.90	(0.14)			
10	4		1.39	(0.21)			
1	7		0.43	(0.24)			
							:

Integral Net Primary Production, mg C m⁻² h⁻¹: 17.11 Integral Daily Primary Production, mg C m⁻² day⁻¹: 171.6

Date: 16/08/79

Station No: 22

Surface Temperature, ^oC: 14.5

Incubation Temperature, ^oC: 16.0

Incubation Hours: 0930-1330

Incident Radiation During Incubation, megajoules m^{-2} : 11.539

Total Daily Incident Radiation, megajoules m⁻²: 19.898

Suspended Dry Matter, $mg 1^{-1}$: 3.8

Percent Light Transmission	€orresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C n	ry Production n ⁻³ h ⁻¹ 1 deviation)	mg (Fixation cm ⁻³ h ⁻¹ deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	1.00	6.82	(0.4)	1.06	(0.22)		
25	2		4.06	(0.18)		,	i	
10	4		1.56	(0.06)			1	
1	7		0.19	(0.23)				
							•	

Integral Net Primary Production, mg C m⁻² h⁻¹: 19.1 Integral Daily Primary Production, mg C m⁻² day⁻¹: 131.8

Date: 25/10/79
Station No: PL 1

Surface Temperature, ${}^{0}\text{C}$: $11.2{}^{0}\text{C}$ Incubation Temperature, ${}^{0}\text{C}$: $15.0{}^{0}\text{C}$

Incubation Hours: 1015-1415

Incident Radiation During Incubation, megajoules m⁻²: 2.923

Total Daily Incident Radiation, megajoules m⁻²: 4.679

Suspended Dry Matter, $mg 1^{-1}$:

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)		mg (Fixation C m ⁻³ h ⁻¹ d deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	0.93	Q.25	(0.23)	0.71	(0.05)	0.68	0.17
25	3		0.29	(0.15)				
12	4.5	1.35	0.60	(0.13)				:
1	10		0.14	(0.13)				

Integral Net Primary Production, mg C m⁻² h⁻¹: 3.51 Integral Daily Primary Production, mg C m⁻² day⁻¹: 2.56

Date: 26/10/79

Station No: PL 2

Surface Temperature, ^oC: 11.2 Incubation Temperature, ^oC: 15.0

Incubation Hours: 0900-1300

Incident Radiation During Incubation, megajoules m⁻²: 2.585

Total Daily Incident Radiation, megajoules m^{-2} : 5.550

Suspended Dry Matter, $mg 1^{-1}$:

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg 1 ⁻¹	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)		mg (Fixation cm ⁻³ h ⁻¹ deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	0.30	0.82 (0.	19)	0.78	(0.11)	1.00	(0.60)
25	3		0.32 (0.	11)				
12	4.5	0.80	0.30 (0.	41)				
1	10		0					

Integral Net Primary Production, mg C m⁻² h⁻¹: 3.00 Integral Daily Primary Production, mg C m⁻² day⁻¹: 25.8

Date: 27/10/79

Station No: PL 3

Surface Temperature, ^oC: 11.2 ^oC

Incubation Temperature, ^oC: 15.0 ^oC

Incubation Hours: 0900-1300

Incident Radiation During Incubation, megajoules m^{-2} : 2.882

lotal Daily Incident Radiation, megajoules m^{-2} : 5.915

Suspended Dry Matter, $mg 1^{-1}$: -

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ⁻¹	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)	Dark Fixation mg C m ⁻³ h ⁻¹ (standard deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	0.50	2.04 (0.82)	0.61 (0.32)	0.70 (0.06)	
25	3		0.56 (0.14)			
12	4.5	0.48	0.43 (0.14)			
1	10		0.11 (0.19)			

Integral Net Primary Production, mg C m⁻² h⁻¹: 6.1 Integral Daily Primary Production, mg C m⁻² day⁻¹: 50.1

Date: 29/10/79

Station No: BF 8

Surface Temperature, ^oC: 11.3

Incubation Temperature, ^oC: 15.0

Incubation Hours: 0900-1300

Incident Radiation During Incubation, megajoules m⁻²: 0.407

Total Daily Incident Radiation, megajoules m^{-2} : 0.910

Suspended Dry Matter, mg 1^{-1} : 0.5

Percent Light Transmission	Corresponding Depth m	Depth $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$		-3 _h -1	mg (Fixation m ⁻³ h ⁻¹ deviation)	(po mg C	Fixation isoned) m ⁻³ h ⁻¹ d deviation)
100	0	0.66	0.22	(0.05)	0.78	(0.32)	1.05	(0.81)
25	3		0.11	(0.15)				
12	4.5	0.65	0.23	(0.40)				
1	10		0.06	(0.09)				

Integral Net Primary Production, mg C m⁻² h⁻¹: 1.55 Integral Daily Primary Production, mg C m⁻² day⁻¹: 13.9

Date: 30/10/79

Station No: 23

Surface Temperature, ^oC: 11.5

Incubation Temperature, ^oC: 15.0

Incubation Hours: 0900-1300

Incident Radiation During Incubation, megajoules m^{-2} : 1.386

Total Daily Incident Radiation, megajoules m^{-2} : 3.159

Suspended Dry Matter, $mg 1^{-1}$:

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	Net Primary Production mg C m ⁻³ h ⁻¹ (standard deviation)		mg (Fixation m ⁻³ h ⁻¹ deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)	
100	0	0.72	1.08	(0.20)	0.76	(0.13)	0.69	(0.18)
25	<1		0.27	(0.05)				
12	<1		0.04	(0.05)				
. 1	<1		0.03	(0.05)				

Integral Net Primary Production, mg C m $^{-2}$ h $^{-1}$: 0.4

Integral Daily Primary Production, $mg \ C \ m^{-2} \ day^{-1}$: 3.65

Date: 31/10/79

Station No: 24

Surface Temperature, ^oC: 10.8

Incubation Temperature, ^OC: 15.0

Incubation Hours: 0900-1300

Incident Radiation During Incubation, megajoules m⁻²: 2.470

Total Daily Incident Radiation, megajoules m^{-2} : 4.317

Suspended Dry Matter, mg 1^{-1} : 38.4

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C	ry Production m ⁻³ h ⁻¹ rd deviation)	mg (Fixation m ⁻³ h ⁻¹ deviation)	mg C	Fixation isoned) m ⁻³ h ⁻¹ I deviation)
100	0	1.33	1.63	(0.22)	0.69	(0.11)	0.80	(0.43)
25	<]		0.85	(0.41)				
12	<1		0.36	(0.29)				
1	<1		0.39	(0.14)				

Integral Net Primary Production, mg C m $^{-2}$ h $^{-1}$: 0.9 Integral Daily Primary Production, mg C m $^{-2}$ day $^{-1}$: 6.3

Date: 01/11/79

Station No: 24

Surface Temperature, ^oC: 10.4

Incubation Temperature, ^oC: 15.0

Incubation Hours: 0950-1350

Incident Radiation During Incubation, megajoules m⁻²: 6.482

Total Daily Incident Radiation, megajoules m⁻²: 10.971

Suspended Dry Matter, mg 1^{-1} : 28.3

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C i	ry Production n ⁻³ h ⁻¹ d deviation)	mg (Fixation Cm ⁻³ h ⁻¹ I deviation)	Dark Fixation (poisoned) mg C m ⁻³ h ⁻¹ (standard deviation)
100	0	1.28	1.86	(1.35)	1.43	(0.07)	0.69
25	<1		1.36	(0.61)			
12	<1		0.40	(0.13)			
1	<1		0.22	(0.14)			

Integral Net Primary Production, mg C m⁻² h⁻¹: 1.1 Integral Daily Primary Production, mg C m⁻² day⁻¹: 7.5

Date: 02/11/79

Station No: 25

Surface Temperature, ^oC: 10.8

Incubation Temperature, ^oC: 15.0

Incubation Hours: 0925-1325

Incident Radiation During Incubation, megajoules m⁻²: 5.172

Total Daily Incident Radiation, megajoules m⁻²: 8.979

Suspended Dry Matter, mg 1^{-1} :

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C	ry Production m ⁻³ h ⁻¹ d deviation)	mg (Fixation m ⁻³ h ⁻¹ I deviation)	mg C	Fixation isoned) m ⁻³ h ⁻¹ I deviation)
100	0	1.21	2.09	(0.31)	1.44	(0.10)	0.60	(0.13)
25	<1		0.88	(0.32)				
12	<1		0.59	(0.38)				
1	<1		0.29	(0.22)				

Integral Net Primary Production, mg C m⁻² h⁻¹: 1.0 Integral Daily Primary Production, mg C m⁻² day⁻¹: 6.9

Date: 16/02/80

Station No: BF 1

Surface Temperature, ^oC: 4.4

Incubation Temperature, ^oC: 7.0

Incubation Hours: 1040-1420

Incident Radiation During Incubation, megajoules m^{-2} : 2.470

Total Daily Incident Radiation, megajoules m⁻²: 4.395

Suspended Dry Matter, $mg 1^{-1}$: 6.8

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C i	ry Production n ⁻³ h ⁻¹ d deviation)	mg C	Fixation m ⁻³ h ⁻¹ deviation)	(poi mg C	Fixation (soned) m ⁻³ h ⁻¹ (deviation)
100	0	0.50	1.94	(0.71)	1.15	(0.13)	3.83	(1.14)
25	4		0.67	(0.18)				
12	7		. 0.56	(0.53)	•			
1	10		0.77	(0.69)				

Integral Net Primary Production, mg C m⁻² h^{-1} : 9.1

Integral Daily Primary Production, mg C m⁻² day⁻¹: 64.8

Date: 17/02/80

Station No: BF 15

Surface Temperature, ^OC: 1.2

Incubation Temperature, ^oC: 5.0

Incubation Hours: 1030-1430

Incident Radiation During Incubation, megajoules m^{-2} : 3.349

Total Daily Incident Radiation, megajoules m⁻²: 4.772

Suspended Dry Matter, mg 1^{-1} : 7.3

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C	ry Production m ⁻³ h ⁻¹ d deviation)	mg (Fixation Cm ⁻³ h ⁻¹ ddeviation)	(po mg C	Fixation isoned) m ⁻³ h ⁻¹ d deviation)
100	0	0.41	1.01	(0.16)	1.04	(0.29)	1.38	(0.11)
25	3		0.67	(0.21)				
12	4		0.54	(0.15)				
1	5		0.09	(80.0)				

Integral Net Primary Production, mg C m⁻² h⁻¹: 3.4 Integral Daily Primary Production, mg C m⁻² day⁻¹: 19.4

Date: 18/02/80

Station No: 26

Surface Temperature, ⁰C: -1.0

Incubation Temperature, ^OC: 6.0

Incubation Hours: 0930-1330

Incident Radiation During Incubation, megajoules m⁻²: 4.186

Total Daily Incident Radiation, megajoules m^{-2} : 9.083

Suspended Dry Matter, mg 1⁻¹: 56.0

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	, mg C	ry Production m ⁻³ h ⁻¹ d deviation)	mg (Fixation m ⁻³ h ⁻¹ deviation)	(poi mg C	Fixation soned) m ⁻³ h ⁻¹ deviation)
100	0	0.98	1.27	(0.63)	1.71	(0.22)	2.18	(0.18)
25	<1		1.57	(0.44)				
12	<1		1.04	(0.24)				i
1	<1		0.76	(0.42)				

Integral Net Primary Production, mg C m⁻² h⁻¹: 1.3 Integral Daily Primary Production, mg C m⁻² day⁻¹: 11.3

Date: 19/02/80

Station No: 27

Surface Temperature, ^oC: 1.0

Incubation Temperature, ^oC: 6.0

Incubation Hours: 0940-1340

Incident Radiation During Incubation, megajoules m^{-2} : 5.609

Total Daily Incident Radiation, megajoules m^{-2} : 9.209

Suspended Dry Matter, $mg 1^{-1}$: 505.4

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> $\mu g l^{-1}$.	mg C r	ry Production n ⁻³ h ⁻¹ d deviation)	mg (Fixation m-3 h-1 deviation)	(po [±] mg C	Fixation isoned) m ⁻³ h ⁻¹ d deviation)
100	0	1.96	2.00	(1.61)	2.81	(0.28)	3.03	(0.25)
25	<1		0.80	(0.75)	2.01	(0.20)	3.03	(0.23)
12	<1		0.42	(0.73)) }
1	<1		0.51	(0.88)				:
								i

Integral Net Primary Production, mg C m⁻² h⁻¹: 1.0 Integral Daily Primary Production, mg C m⁻² day⁻¹: 6.6

Date: 20/02/80 Station No: 28

Surface Temperature, ^OC: -1.0

Incubation Temperature, ^oC: 6.0

Incubation Hours: 0905-1305

Incident Radiation During Incubation, megajoules m^{-2} : 2.386

Total Daily Incident Radiation, megajoules m^{-2} : 4.144

Suspended Dry Matter, mg 1⁻¹: 328.7

Percent Light Transmission	Corresponding Depth m	Chlorophyll <u>a</u> µg l ^{-l}	mg C	ry Production m ⁻³ h ⁻¹ rd deviation)	mg	Fixation C m ⁻³ h ⁻¹ d deviation)	(po ⁻ mg C	Fixation isoned) m ⁻³ h ⁻¹ d deviation)
100	0	2.38	1.47	(1.60)	4.85	(1.07)	2.78	(0.34)
25	<1		0.30	(0.52)				
12	<1		0.10	(0.17)				
1	<1		0					

Integral Net Primary Production, mg C m⁻² h⁻¹: 0.5 Integral Daily Primary Production, mg C m⁻² day⁻¹: 3.5

DATA TABLES - LIGHT SATURATION EXPERIMENTS AND DERIVED PARAMETERS

Date: 29/03/79

Station: BF 2

Surface Temperature, ^oC: 1-2

Incubation Temperature, ^oC: 6-8

Incubation Hours: 1100-1500

Chlorophyll <u>a</u>, mg m⁻³: 0.45

Suspended Dry Matter, mg ℓ^{-1} : 1.1

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.84

	Specific Production mg $C(mg \ Chl \underline{a})^{-1} h^{-1}$		Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h^{-1}
189.4	3.88			
13.7	1.99			
0.6	0.13			
0.2	0.09			
198.6	6.94			
53.5 15.3	5.02			
4.6	2.00 1.20			
1.8	0.49			
0.9	0.44			
0.5	0.12			
0.1	0.24			
		90% Conf Lower	idence Interval Upper	
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²)	-1 : 0.17	0.15	0.19	
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 3.89	3.73	4.05	

Date: 29/03/79

Station: BF 6

Surface Temperature, ^oC: 1-2

Incubation Temperature, ^oC: 6-8

Incubation Hours: 2000-2400 Chlorophyll <u>a</u>, mg m⁻³: 0.21

Suspended Dry Matter, mg ℓ^{-1} : 5.0 Dark Uptake, mg C m⁻³ h⁻¹: 1.04

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹
189.4 53.5 13.7 4.0 1.5 198.6	3.86 1.54 0.95 0.93 0.02 4.65		
15.3	1.20		

And the part of the contract o		The supplement of the second section of the second second second second section is a second s		
		90% Confider Lower	nce Interval Upper	
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	: 0.04	0.02	0.06	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 3.99	3.39	4.19	

Date: 30/03/79
Station: BF 14

Surface Temperature, ^oC: 1-2

Incubation Temperature, ^OC: 6-8

Incubation Hours: 0800-1200

Chlorophyll a, mg m $^{-3}$: 0.41

Suspended Dry Matter, mg ℓ^{-1} : 9.1

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.73

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$: 0.74

ight Intensity Wun ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
183.3	3.94	0.3	0.17
51.9	2.79	0.2	0.34
12.2	1.52	0.2	0.62
3.7	1.34		
0.6	0.03		
0.3	1.26		
0.2	0.18		
189.4	4.16		
15.3	2.36		
4.9	1.28		
1.5	0.72		
0.9	0.26		

Date: 30/03/79

Station: BF 16

Surface Temperature, ⁰C: 2-3

Incubation Temperature, ^oC: 6-8
Incubation Hours: 1315-1715

Chlorophyll <u>a</u>, mg m⁻³: 0.50

Suspended Dry Matter, mg l⁻¹: 1.7

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.09

Light Intensity Wm -2	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
152.8 38.2	4.06		
13.7	2.97 1.74		
3.1 168.0	0.60 4.38		
44.3	4.30		·
15.3 3.7	1.00		
3./	0.26		

Secretarille Secretarille Control of the Control of				
		90% Confidenc Lower	ce Interval Upper	
$\alpha \text{ mg C (mg Chl } \underline{a})^{-1} \text{ h}^{-1} \text{ (Wm}^{-2})^{-1}$: Q.11	0.08	0.14	
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 4.17	3.74	4.60	

Date: 31/03/79

Station: 16

Surface Temperature, ⁰C: 2-3

Incubation Temperature, ^oC: 6-8

Incubation Hours: 0820-1220 Chlorophyll <u>a</u>, mg m⁻³: 0.30

Suspended Dry Matter, mg ℓ^{-1} : 24.7

Dark Uptake, mg C m^{-3} h^{-1} : 0.74

	pecific Production g C(mg Chl <u>a</u>) ^{-l} h ^{-l}	Light	Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}
152.8 39.7 12.2 3.4 1.2 0.9 0.5 0.2 0.1 152.8 42.8 13.7	4.97 5.44 4.41 2.42 1.25 3.07 1.67 0.12 0.25 11.60 8.82 3.52		4.3 1.5 0.9 0.5 0.2	2.79 0.60 0.84 0.73 0.05
		90% Conf Lower	idence Interval Upper	
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻	1 : 0.92	0.63	1.21	
$P_{\rm m}^{\rm B}$ mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹	: 4.64	4.18	5.10	

Date: 1/04/79

Station: 17

Surface Temperature, ^oC: 1-2

Incubation Temperature, ${}^{0}\text{C: }6\text{--}8$

Incubation Hours: 0900-1300

Chlorophyll \underline{a} , mg m⁻³: 1.03

Suspended Dry Matter, mg_{ℓ}^{-1} : 174.3

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 3.29

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
137.5 48.9 152.8	0.93 0.56 0.12		

		90% Confidence l Lower	nterval Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	: -	-	~
P_{m}^{B} mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹	: -	-	-

Date: 2/04/79

Station: 18

Surface Temperature, ^oC: 1.5

Incubation Temperature, ^oC: 6-8

Incubation Hours: 0930-1330

Chlorophyll \underline{a} , $mg m^{-3}$: 1.88

Suspended Dry Matter, mg & -1: 99.3

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.41

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$	Light Intensity $_{\mathrm{Wm}}^{-2}$	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
106.9 45.8 152.8 45.8	0.90 0.73 1.13 0.42		

	The state of the s	90% Confiden	ce Interval
		Lower	Upper
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	: -	-	-
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	<u>-</u>		-

Date: 3/04/79

Station: 19

Surface Temperature, ⁰C: 2.0

Incubation Temperature, ^oC: 6-8

Incubation Hours: 0900-1300

Chlorophyll \underline{a} , mg m⁻³: 1.93

Suspended Dry Matter, mg & 1: 72.5

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.92

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹
152.8 152.8 45.8	0.34 0.79 0.21		

The state of the s				
			90% Confidence Lower	Interval Upper
α mg C (mg Chl \underline{a}) ⁻¹ h^{-1} (Wm ⁻²) ⁻¹	: •	_	-	-
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: -	_	-	-

Date: 11/08/79
Station: BF 1

Surface Temperature, ^oC: 11.0

Incubation Temperature, ^oC: 13.5

Incubation Hours: 1500-1900 Chlorophyll <u>a</u>, mg m⁻³: 3.68

Suspended Dry Matter, mg ℓ^{-1} : 1.7

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.5

	ecific Production $C(mg \ Chl \underline{a})^{-1} h^{-1}$	Light	Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
259.7	0.69			
152.8 91.7	0.61			
45.8	0.48 0.26			
33.6	0.21			
24.4	0.09			
18.3	0.07			
13.7	0.21			
290.2	0.80			
6.1	0.09			
4.7	0.04			
2.1	0.04			
		90% Conf Lower	idence Interval Upper	
α mg C (mg Chl a) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹				
α mg C (mg CH \underline{a}) H (with)	: 0.06	0.05	0.07	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹				
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 0.70	0.66	0.74	

Date: 12/08/79

Station: BF 7

Surface Temperature, ^oC: 10.7

Incubation Temperature, ^oC: 12.0

Incubation Hours: 1130-1530 Chlorophyll \underline{a} , mg m⁻³: 0.61

Suspended Dry Matter, mg ℓ^{-1} : 1.2 Dark Uptake, mg C m⁻³ h⁻¹: 0.64

Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
244.4	5.18	6.1	0.66
91.7	3.58	4.6	0.68
36.7	2.99	2.1	0.89
6.1	1.11	1.4	0.27
2.0	0.67	0.9	1.01
1.4	0.69		
1.1	0.40		
0.6	1.01		
290.2	5.50		
61.1	3.62		
30.6	2.16		
13.7	1.62		
		90% Confidence Interval	

		90% Confidence I Lower	Interval Upper
$\alpha \text{ mg C (mg Chl } \underline{a})^{-1} \text{ h}^{-1} \text{ (Wm}^{-2})^{-1}$: 0.09	0.08	0.10
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 4.83	4.42	5.24

Date: 12/08/79 Station: BF 10

Surface Temperature, ⁰C: 11.4 Incubation Temperature, ^oC: 12.0

Incubation Hours: 1615-2015 Chlorophyll <u>a</u>, mg m⁻³: 0.89

 P_{m}^{B} mg C (mg Ch1 \underline{a})⁻¹ h⁻¹

Suspended Dry Matter, $mg_{\ell} \ell^{-1}$: 1.2 Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.96

Dark Uptake (poisoned), mg C m^{-3} h^{-1} :

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg Chl \underline{a})^{-1} h^{-1}$
259.7	3.67	3.7	0.83
76.4	3.02	2.9	0.07
48.9	1.85	1.8	0.47
10.7	0.70	1.4	0.20
8.6	0.80	0.8	0.20
7.6	0.39		3.20
5.2 1.5	0.37		
1.5	0.29		
0.8	0.27		
76.4	4.20		
29.0	2.66		
10.4	1.11		
		90% Confidence Interval	
		Lower Upper	
α mg C (mg Chl a) ⁻¹ h ⁻	$1 \frac{1}{(1+1)^{m}} - 2 \cdot 1 = \frac{1}{1 \cdot 1} \cdot $	0.06	
α mg $(mg (n) \underline{a})$ h	(Wm =) : 0.08	0.06 0.10	

3.16

3.76

: 3.46

Date: 13/08/79

Station: 21

Surface Temperature, ^oC: 14.2 Incubation Temperature, ^OC: 14.0

Incubation Hours: 1100-1500

Chlorophyll \underline{a} , mg m⁻³: 1.11

Suspended Dry Matter, mg ℓ^{-1} : 9.0 Dark Uptake, mg C m⁻³ h⁻¹: 0.95

ght Intensity Wni ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
259.7	5.76	10.4	1.71
76.4	5.04	3.7	0.65
48.9	2.97	2.9	0.42
10.7	0.65	1.8	0.26
8.6	0.30	0.8	0.51
7.6	0.14		
5.2	0.23		
1.5	0.14		
0.8	0.09		
259.7	6.72		
76.4	5.70		
29.0	2.97		

			90% Confidence Lower	Interval Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.09	0.08	0.10
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	5.89	5.54	6.23

Date: 13/08/79

Station: 20

Surface Temperature, ^oC: 18.4

Incubation Temperature, ^oC: 18.0

Incubation Hours: 1600-2000

Chlorophyll \underline{a} , mg m⁻³: 1.07

Suspended Dry Matter, mg l⁻¹: _

Dark Uptake, mg $C \text{ m}^{-3} \text{ h}^{-1}$: 0.90

Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$
259.7	3.50		
76.4	3.01		
48.9	1.77		
10.7	0.77		
8.6	0.48		
257.7	4.89		
76.4	4.23		
29.Q	4.02		
10.4	1.12		
3.7	0.36		

			90% Confidence Lower	Interval Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	•	0.16	0.05	0.27
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	3.71	2.82	4.60

Date: 14/08/79 Station: 20

Surface Temperature, ^oC: 17.0

Incubation Temperature, ^oC: 18.0

Incubation Hours: 1120-1520 Chlorophyll <u>a</u>, mg m⁻³: 1.46

Suspended Dry Matter, $mg \ell^{-1}$: 16.0

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.18

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$:

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
259.7	5.38	2.9	0.12
76.4	3.96	1.8	0.16
10.7	0.26	1.4	0.07
8.6	0.75	0.8	0.80
7.6	0.25		
1.5	0.27		
0.8	0.19		
259.7	6.49		
76.4	5.09		
29.0	3.16		
10.4	0.81		
3.7	0.42		
		90% Confidence Interval Lower Upper	
		Lower Opper	
α mg C (mg Chl \underline{a}) ⁻¹ h	$(Wm^{-2})^{-1} : 0.09$	0.08)

 P_{m}^{B} mg C (mg Chl <u>a</u>)⁻¹ h⁻¹ : 5.35

5.04

5.66

Date: 14/08/79

Station: 20

Surface Temperature, ^oC: 17.0

Incubation Temperature, ^oC: 18.0

Incubation Hours: 1630-2030

Chlorophyll a, mg m $^{-3}$: 1.96

Suspended Dry Matter, $mg l^{-1}$: 28.9

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.33

	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$	Light Inten: Wm ⁻²	sity	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
259.7 76.4 10.7 8.6 5.2 1.5 0.8 259.7 76.4 29.0 10.4 2.9	2.30 1.89 0.02 0.09 0.02 0.07 0.31 2.41 2.27 1.44 0.15 0.01	1.8		0.05
		90% Confidence Lower	Interval Upper	
$\alpha \text{ mg C (mg Chl } \underline{a})^{-1} \text{ h}^{-1} \text{ (Wm}^{-2})$	-1 : 0.05	0.04	0.06	
P_{m}^{B} mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹	: 2.43	2.26	2.60	

Date: 15/08/79

Station: 21

Surface Temperature, ^OC: 14.4

Incubation Temperature, ^oC: 17.5

Incubation Hours: 1115-1515Chlorophyll <u>a</u>, mg m⁻³: 1.09

Suspended Dry Matter, $mg \ell^{-1}$: 4.1

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.40

ight Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
305.5	4.38	16.8	1.67
91.7	4.81	7.6	0.84
42.8	3.22	4.6	0.60
21.4	0.95	0.5	0.97
12.2	0.66	0.0	0.37
5.5	1.58	P	
3.7	1.57		
2.4	0.49		
1.8	0.10		
274.9	4.61		
91.7	4.14		
52.0	1.77		
27.5	1.07		

			90% Confidence Lower	Interval Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.07	0.05	0.09
P_{m}^{B} mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹	:	4.48	3.98	5.00

Date: 15/08/79

Station: 21

Surface Temperature, ^oC: 15.6

Incubation Temperature, ^oC: 17.5

Incubation Hours: 1615-2015

Chlorophyll a, mg m $^{-3}$: 0.79

Suspended Dry Matter, mg ℓ^{-1} : 5.0

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.27

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
305.5 91.7 42.2 21.4 12.2 5.5 3.7 2.4 279.4 91.7 58.0 27.5	8.99 6.24 3.63 1.74 1.07 1.73 1.40 0.62 8.72 6.31 3.26 1.80	16.8 7.6 4.6 3.1 0.5	1.57 0.15 2.08 0.14 0.54
		90% Confidence Interval Lower Upper	
α mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹ (Wm	$(0.08)^{-2}$: 0.08	0.07 0.09	
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 8.97	8.36 9.58	

Date: 16/08/79

Station: 22

Surface Temperature, ^oC: 13.1

Incubation Temperature, ⁰C: 15.0

Incubation Hours: 1120-1520

Chlorophyll \underline{a} , mg m⁻³: 1.00

Suspended Dry Matter, $mg \, l^{-1}$: 2.3

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.28

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$:

 $P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>)⁻¹ h⁻¹

: 4.15

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$
244.4 18.3 10.7 6.7 3.7 3.1 137.5 45.8 18.3 7.3 4.3 2.3	4.05 0.36 0.07 0.69 1.61 2.57 5.64 4.40 1.72 0.89 2.18 0.32	1.7	0.37 2.81
α mg C (mg Chl <u>a</u>) ⁻¹ h	¹ (Wm ⁻²) ⁻¹ : 0.10	90% Confidence Interval Lower Upper 0.03 0.17	

3.07

5.23

Date: 16/08/79
Station: 22

Surface Temperature, ^oC: 14.2

Incubation Temperature, ^oC: 16.0

Incubation Hours: 1730-2130 Chlorophyll <u>a</u>, mg m⁻³: 1.07

Suspended Dry Matter, mg ℓ^{-1} : 3.9

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.20

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$:

	pecific Production $(\log C(\log Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} h^{-1}$
244.4 18.3 6.7 3.7 3.1 1.8 137.5 45.8 18.3 7.3 4.3 2.33	4.03 0.78 0.02 0.81 1.55 0.36 5.20 3.55 2.21 0.92 1.22 0.47	1.8	0.34 1.06
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹ P_{m}^{B} mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹	1 : 0.11	90% Confidence Interval Lower Upper 0.07 0.15	

ŀ

Date: 25/10/79
Station: PL 1

Surface Temperature, ⁰C: 11.2

Incubation Temperature, ^oC: 12.5

Incubation Hours: 1100-1500 Chlorophyll <u>a</u>, mg m⁻³: 1.14 Suspended Dry Matter, mg ℓ^{-1} : -

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.95

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 0.85

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$
73.3 12.2 171.1 22.3 10.1 3.7	0.93 0.65 0.50 0.59 0.10 0.19		

			90% Confidence In Lower	nterval Upper
α mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	-	-	
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	-	-	_

Date: 26/10/79
Station: PL 1

Surface Temperature, ⁰C:11.3

Incubation Temperature, ⁰C: 12.5

Incubation Hours: 0925-1325 Chlorophyll <u>a</u>, mg m⁻³: 0.55 Suspended Dry Matter, mg ℓ^{-1} : -

Dark Uptake, mg C m⁻³ h⁻¹: 0.83

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$: 0.63

Light Intensity Wm ⁻²	Specific Production mg $C(mg Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-\frac{1}{2}} \ h^{-1}$
73.3	3.02	1.4	0.69
26.0	1.87	0.8	0.38
12.2	1.44		
5.2	1.67		
3.1	0.88		
1.5	0.70		
0.8	0.69		
171.1	2.03		
58.0	1.91		
22.3	1.23		
10.1	1.09		
3.7	1.21		
2.9	0.22		

Date: 27/10/79
Station: PL 2

Surface Temperature, ^oC: 11.2 Incubation Temperature, ^oC: 12.5

Incubation Hours: 0900-1300Chlorophyll <u>a</u>, mg m⁻³: 0.49Suspended Dry Matter, mg l⁻¹: __ Dark Uptake, mg C m⁻³ h⁻¹: 0.83

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$: Q.71

ight Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
134.4	3.69	4.6	0.73
45.8	2.27	3.1	0.15
21.4	1.81		
10.4	0.49		
6.1	0.68		
3.7	0.62		
1.8	0.67		
1.4	0.46		
158.9	3.33		
55.0	3.47		
22.0	1.35		
9.2	0.20		
		90% Confidence Interval	

Date: 27/10/79
Station: PL 3

Surface Temperature, ^oC: 11.2

Incubation Temperature, ^oC: 12.5

Incubation Hours: 1430-1830

Chlorophyll <u>a</u>, mg m⁻³: 0.43

Suspended Dry Matter, mg & -1: -

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.76

	Specific Production mg $C(mg \ Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}
134.4 45.8	1.73 1.47		
21.4 10.1	1.07 0.29		
6.1	0.60		
158.9	2.17		
55.0 22.0	1.60 0.89		
9.2	0.14		
4.6	0.04		
#PROPERTY CONTROL CONT			
		90% Confidence Interval	
		Lower Upper	
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²)	: 0.05	0.04 0.06	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 1.83	1.64 2.02	

Date: 28/10/79

Station: BF 5

Surface Temperature, ^oC: 10.9

Incubation Temperature, ^oC: 12.5

Incubation Hours: 1700-2100

Chlorophyll \underline{a} , mg m⁻³: 0.90

 P_{m}^{B} mg C (mg Ch1 \underline{a})⁻¹ h⁻¹

Suspended Dry Matter, $mg \ell^{-1}$: 3.0

Dark Uptake, mg C m^{-3} h^{-1} : 0.61

Dark Uptake (poisoned), mg C m $^{-3}$ h $^{-1}$: 0.59

ight Intensity Wm ⁻²	Specific Production mg $C(mg Chl \underline{a})^{-1} h^{-1}$	Light Inte _{Wm} -2		Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
134.4	2.05	3.1		0.16
45.8	2.03	2.0		0.14
21.4	0.94	1.2		0.04
10.4	0.84			
6.1	0.31			
1.8	0.20			
1.4	0.23			
158.9	1.58			
55.0	1.74			
22.0	0.88			
9.2	0.45			
4.6	0.40			
		90% Confidenc Lower	e Interval Upper	
_		LOWEI	opper	
κ mg C (mg Ch1 a) $^{-1}$ h $^{-1}$	$(40^{-2})^{-1}$: 0.06	0.05	0.07	

1.74

2.02

: 1.88

Date: 29/02/79 Station: BF 11

Surface Temperature, ^oC: 11.7 Incubation Temperature, ^oC: 12.5

Incubation Hours: 1730-2130 Chlorophyll <u>a</u>, mg m⁻³: 0.76

Suspended Dry Matter, $\operatorname{mg} \ell^{-1}$: 2.1

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.84

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
191.6	1.41		
58.9	1.30		•
11.8	0.14		
4.4	0.29		
200.4	0.11		
58.9	1.61		
21.4	0.53		
10.7	0.18		
5.5	0.33		
2.2	0.12		

			90% Confidence l Lower	Interval Upper
α mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.03	-	0.07
P_{m}^{B} ing C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	1.04	0.64	1.44

Date: 30/10/79

Station: 23

Surface Temperature, ^oC: 11.8

Incubation Temperature, ^oC: 12.5

Incubation Hours: 0930-1330

Chlorophyll \underline{a} , mg m⁻³: 0.73

Suspended Dry Matter, mg x^{-1} : -

Dark Uptake, mg $C m^{-3} h^{-1}$: 0.98

Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
162.1	1.15		
23.6	0.59		
12.1	0.18		
171.1	0.62		
19.9	0.63		
3.4	0.08		
1.9	0.04		
1.2	0.08		

			·	
		90% Confidenc Lower	ce Interval Upper	
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	: 0.03	0.02	0.04	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 0.91	0.73	1.09	

Date: 30/10/79

Station: 23

Surface Temperature, ^oC: 11.5

Incubation Temperature, ⁰C: 12.5

Incubation Hours: 1500-1900

Chlorophyll \underline{a} , mg m⁻³: 0.76

Suspended Dry Matter, mg l⁻¹: -

Dark Uptake, mg C m⁻³ h⁻¹: 0.72

	pecific Production $(g \ C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$		ntensity _n -2	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
112.0 52.2 22.7 11.2 5.7 3.5 2.1 1.3 153.3 19.9 9.8 4.6	3.44 3.38 1.92 1.34 0.96 0.63 0.38 0.05 2.33 1.68 1.13 0.64	1	.0 .7 .9	0.69 0.39 0.29
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²)	1 : 0.12	90% Confid Lower 0.10	ence Interval Upper 0.14	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: 3.01	2.76	0.29	

Date: 31/10/79 Station: 24

Surface Temperature, ⁰C: 10.7

Incubation Temperature, ^oC: 12.0

Incubation Hours: 0900-1300 Chlorophyll \underline{a} , mg m⁻³: 1.32

Suspended Dry Matter, $mg \ell^{-1}$: 33.7

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 0.78

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$: 0.87

	Decific Production $g \in C(mg \ Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm -2	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
120.9 32.4 10.3 3.5 1.3 0.5 97.3 31.7 9.9 3.5 1.4 0.5	3.39 1.90 1.14 0.46 0.51 0.38 2.87 1.91 1.37 0.87 0.34 0.32	0.1	0.32
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻²	l : 0.09	90% Confidence Interval Lower Upper 0.07 0.11	
P_{m}^{B} mg C (mg Chl <u>a</u>) $^{-1}$ h $^{-1}$: 3.03	2.72 3.35	

Date: 31/10/79

Station: 24

Surface Temperature, ^oC: 10.2

Incubation Temperature, ^oC: 12.0

Incubation Hours: 1445-1845

Chlorophyll <u>a</u>, mg m⁻³: 3.79

Suspended Dry Matter, mg ℓ^{-1} : 250.2

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 2.12

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 2.40

Light Intensity Win-2	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$
120.9 32.4 97.3 31.7	0.34 0.09 0.52 0.40		

90% Confidence Interval Lower Upper

 $\alpha \text{ mg C (mg Chl } \underline{a})^{-1} \text{ h}^{-1} \text{ (Wm}^{-2})^{-1}$:

 P_{m}^{B} mg C (mg Ch1 \underline{a})⁻¹ h⁻¹

•

Date: 1/11/79

Station: 24

Surface Temperature, ^oC: 10.4

Incubation Temperature, ^oC: 12.0

Incubation Hours: 0850-1250

Chlorophyll <u>a</u>, mg m⁻³: 1.45

Suspended Dry Matter, mg ℓ^{-1} : 39.1

Dark Uptake, mg C m^{-3} h^{-1} : 1.51

Dark Uptake (poisoned), mg C m^{-3} h^{-1} : 1.18

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
120.9 32.4 97.3 31.7	2.02 0.15 0.86 0.16		

			90% Confidence		
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	-	Lower -	Upper -	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:		-		

Date: 1/11/79 Station: 24

Surface Temperature, ⁰C: 9.9

Incubation Temperature, ^oC: 12.0

Incubation Hours: 1350-1750

Chlorophyll a, mg m $^{-3}$: 3.19

Suspended Dry Matter, mg ℓ^{-1} : 171.9

Dark Uptake, mg C m^{-3} h^{-1} : 2.03

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 2.28

Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
91.7 45.8 97.8 25.9	0.34 0.07 0.50 0.10		

APPENDED TO BE A PROCESSE FROM FOR THE COMMISSION OF THE COMMISSIO			
		90% Confidence I	nterval
		Lower	Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	; -	-	-
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	: -	-	-

Date: 2/11/79

Station: 25

Surface Temperature, ^oC: 10.8

Incubation Temperature, ^oC: 12.5

Incubation Hours: 0850-1250

Chlorophyll \underline{a} , mg m⁻³: 1.20

Suspended Dry Matter, mg ℓ^{-1} : -

Dark Uptake, mg C m⁻³ h⁻¹: 1.86

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$: 1.69

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹
91.7 45.8 97.8	0.67 0.02 0.38		

90% Confidence Interval Lower Upper a mg C (mg Chl a) $^{-1}$ h $^{-1}$ (Wm $^{-2}$) $^{-1}$: $_{-}$ $_{-}$ $_{-}$ $_{-}$ $_{-}$ $_{-}$ $_{-}$

Date: 2/11/79
Station: 25

Surface Temperature, ⁰C: 9.3

Incubation Temperature, ^oC: 12.0

Incubation Hours: 1410-1810

Chlorophyll \underline{a} , mg m⁻³: 1.28

Suspended Dry Matter, mg ℓ^{-1} : _

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 2.08

Dark Uptake (poisoned), mg C m $^{-3}$ h $^{-1}$: 1.53

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
64.2 78.5	0.91 0.48		

3

Date: 16/02/80 Station: BF 1

Surface Temperature, ⁰C: 4.4

Incubation Temperature, ^oC: 10.0

Incubation Hours: 110-1510 Chlorophyll <u>a</u>, mg m⁻³: 0.47

Suspended Dry Matter, $mg l^{-1}$: -

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.00

Dark Uptake (poisoned), mg $C m^{-3} h^{-1}$: 1.01

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
59.0	0.19		
8.8	0.12		
6.2	2.91		
4.7	2.68		
4.4	2.40		
206.4	1.52	· n	
66.3	2.12		
10.3	1.23		
7.4	0.18		

			90% Confidence Interval Lower Upper
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	_	
$P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:		- -

Date: 17/02/80

Station: 26

Surface Temperature, ^oC: -1.0

Incubation Temperature, ^oC: 7.5

Incubation Hours: 1820-2220

Chlorophyll a, mg m $^{-3}$: Q.77

Suspended Dry Matter, mg 1 : 85.4

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 2.30

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 1.79

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity $_{\mathrm{Wm}}^{-2}$	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
16.8	2.42		
4.3	1.00		
191.6	2.56		
47.2	3.48		
13.6	0.67		
0.9	0.64		

Date: 17/02/80

Station: BF 14

Surface Temperature, ^oC: 1.6

Incubation Temperature, ^oC: 9.0

Incubation Hours: 1330-1730

Chlorophyll a, mg m $^{-3}$: 0.61

Suspended Dry Matter, mg ℓ^{-1} : 12.1

Dark Uptake, mg C m^{-3} h^{-1} : 1.26

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 0.93

Light Intensity Wm ⁻²	Specific Production mg $C(mg Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
103.2 38.3 14.7 0.7 250.6 67.8 32.4 10.0 4.1	2.55 2.14 0.46 0.21 1.76 2.47 1.41 0.15 0.26		

			90% Confidence Lower	Interval Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.06	0.04	0.08
$P_{\rm m}^{\rm B}$ mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹	:	2.43	2.07	2.79

Date: 18/02/80

Station: 26

Surface Temperature, ^oC: -1.1

Incubation Temperature, ^oC: 5.5

Incubation Hours: 0830-1230

Chlorophyll \underline{a} , mg m⁻³: 0.98

Suspended Dry Matter, mg & -1: 71.1

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 2.12

Dark Uptake (poisoned), mg C m⁻³ h⁻¹: 1.57

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
67.8	1.74		
18.6	1.24		
4.7	1.06		
0.3	0.43		
162.1	0.85		
33.9	1.40		
7.4	0.77		
2.7	0.13		
1.6	0.22	,	
0.1	0.03		

	angunerridaris, banapa sali karar		90% Confide Lower	nce Interval Upper	
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.16	0.07	0.25	
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	1.31	1.03	1.59	

Date: 18/02/80

Station: 27

Surface Temperature, ^oC: -1.1

Incubation Temperature, ^oC: 5.5

Incubation Hours: 1750-2150

Chlorophyll <u>a</u>, mg m⁻³: 1.54

Suspended Dry Matter, mg ℓ^{-1} : -

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 3.28

Dark Uptake (poisoned), mg C m⁻³ h⁻¹: 2.83

Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$
61.9	2.15		
18.3	1.37		
6.8	0.49		
3.2	0.52		
1.3	0.14		
0.4	0.56		
176.9	2.09		
45.7	1,27		
4.0	0.74		
1.4	0.40		

			90% Confidence Lower	Interval Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.11	0.05	0.17
P_{m}^{B} mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹	:	1.84	1.54	2.14

Date: 19/02/80

Station: 27

Surface Temperature, ⁰C: -1.0 Incubation Temperature, ^oC: 5.5

Incubation Hours: 0900-1300 Chlorophyll a, mg m $^{-3}$: 1.96

Suspended Dry Matter, mg_{ℓ}^{-1} : 505.4

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 3.00

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 2.75

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹	Light In Wm		Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
53.1	1.85			
14.4 3.8	1.28			
0.8	1.38 1.03			
0.1	0.40			
117.9	1.82			
29.3 6.5	1.76 0.50			
0.1	0.16			
0.1	0.15			
		90% Confido	nce Interval	
		Lower	Upper	
0 / 012 1-1	12,-1		f A = .	
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹	'(Wm²)': 0.20	0.08	0.32	
P_{m}^{B} mg C (mg Chl \underline{a}) ⁻¹	h ⁻¹ : 1 72			
W2 2 (3 2 a)	h ' : 1.71	1.33	2.09	

Date: 10/04/80

Station: PECKS COVE

Surface Temperature, ^oC: 2.0 Incubation Temperature, ^oC: 2.2

Incubation Hours: 1400-1800 Chlorophyll <u>a</u>, mg m⁻³: 0.77

Suspended Dry Matter, mg_{λ}^{-1} : 270.0

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 2.53

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 5.92

_	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	Light	Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹
501.2 294.8 176.9 79.6 44.2	1.11 2.18 1.06 2.44 3.36			
24.5 17.7 11.8 8.3 6.2 4.1	4.16 2.79 1.29 0.54 0.75 0.67			
		90% Conf Lower	idence Interval Upper	
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²)	-1 : 0.13	0.03	0.23	
P_{m}^{B} mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹	: 1.11	0.65	1.57	

Date: 7/05/80

Station: PECKS COVE

Surface Temperature, ⁰C: 6.0

Incubation Temperature, ^oC: 4.0

Incubation Hours: 1400-1800

Chlorophyll <u>a</u>, mg m⁻³: 2.06

Suspended Dry Matter, mg ℓ^{-1} : 150.0

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 1.92

Dark Uptake (poisoned), mg C m $^{-3}$ h $^{-1}$: 1.92

ght Intensity Wm ⁻²	Specific Production mg $C(mg Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
501.2	2.53	17.7	1.33
294.8	4.30	17.7	1.53
147.4	3.61	11.2	0.92
100.2	4.38	7.1	0.38
100.2	4.60	7.1	0.91
76.6	3.53	4.7	0.26
45.7	3.75	3.4	0.54
45.7	3.77	1.9	0.30
35.4	3.13	2.7	0.02
35.4	3.78	0.8	0.53
27.4	2.38	3.3	0.00
27.4	2.68		

			90% Confidence Interval Lower Upper
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.11	0.09 0.13
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	2.62	2.48 2.76

et.

Date: 19/06/80

Station: PECKS COVE

Surface Temperature, ⁰C: 11.0 Incubation Temperature, ⁰C: 6.0

Incubation Hours: 1400-1800 Chlorophyll <u>a</u>, mg m⁻³: 3.36

Suspended Dry Matter, mg ℓ^{-1} : 170 Dark Uptake, mg C m⁻³ h⁻¹: 2.80

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 3.51

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h^{-1}	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
663.3	3.58	26.5	2.84
663.3	3.85	16.2	1.84
324.3	6.33	16.2	1.99
324.3	6.16	10.6	1.45
224.0	6.69	6.8	1.06
224.0	7.37	3.5	0.39
118.0	7.20	2.1	0.64
118.0	6.64	1.2	0.17
107.6	6.58	0.9	0.27
107.6	5.38	0.6	1.48
44.2	5.55	0.4	0.39
44.2	4.50	0.2	0.22
26.5	2.39	0.2	U.LL

			90% Confidence Lower	Interval Upper
α mg C (mg Chl \underline{a}) ⁻¹ h ⁻¹ (Wm ⁻²) ⁻¹	:	0.14	0.12	0.16
$P_{\rm m}^{\rm B}$ mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹	:	3.60	3.43	3.77

Date: 14/07/80

Station: PECKS COVE

Surface Temperature, ⁰C: 15.0

Incubation Temperature, ^oC: 9.0

Incubation Hours: 1400-1800

Chlorophyll \underline{a} , mg m⁻³: 6.72

Suspended Dry Matter, $mg \ell^{-1}$: 140

Dark Uptake, mg C m⁻³ h⁻¹: 2.50

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 1.83

Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ a)^{-1} \ h^{-1}$	Light Int Wm ⁻		Specific Production mg $C(mg\ Chl\ a)^{-1}h^{-1}$
(WIII	$mg \ C(mg \ CHT \ \underline{a})$	WIII		ing c(ing chi <u>a)</u> * h
550.0	1.80	6.0)	0.75
294.0	2.67	6.0		0.58
44.0	3.02	4.(0.64
44.0	2.09	3.0		0.38
24.0	2.58	2.4		0.45
24.0	2.56	1.8		0.10
17.0	2.84	1.5	5	0.16
17.0	2.56	1.3		0.24
11.0	1.85	0.6	j.	0.16
11.0	1.60			
8.0 8.0	1.00			
O.U	0.93			
		90% Confider	ice Interval	
		l.ower	Upper	
x mg C (mg Chl a) $^{-1}$ h $^{-1}$	$(Wm^{-2})^{-1} = 0.18$	0.16	0.20	
- · - · · · · · · · · · · · · · · · · ·		0.10	0.20	
$c_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>) ⁻¹ h	-1			
m my c (my $cni\underline{a}$) h	: 1.95	1.85	2.05	

Date: 1/08/80

Station: PECKS COVE

Surface Temperature, ^oC: 18.5 Incubation Temperature, ^OC: 10.2

Incubation Hours: 1400-1800 Chlorophyll <u>a</u>, mg m⁻³: 50.7

 $P_{\rm m}^{\rm B}$ mg C (mg Chl <u>a</u>)⁻¹ h⁻¹

Suspended Dry Matter, mg ℓ^{-1} : 2000

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 3.35

Dark Uptake (poisoned), mg C $m^{-3} h^{-1}$: 3.76

Light Intensity Wm ⁻²	Specific Production mg $C(mg Chl \underline{a})^{-1} h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$
641.6 143.6 82.5 30.6 21.4 21.4 20.4 20.4 16.2 7.0	0.28 0.15 0.21 0.12 0.11 0.17 0.16 0.05 0.06 0.01	4.1 4.1 0.9 0.2	0.03 0.03 0.05 0.04
	-	90% Confidence Interval Lower Upper	
$x \text{ mg C (mg Chl } \underline{a})^{-1} \text{ h}^{-1}$	(Wm ⁻²) ⁻¹ : 0.06	0.04 0.08	

0.17

0.25

0.21

Date: 12/09/80

Station: PECKS COVE

Surface Temperature, ^oC: 20.0

Incubation Temperature, ^oC: 12.0

Incubation Hours: 1400-1800

Chlorophyll \underline{a} , mg m⁻³: 1.28

Suspended Dry Matter, mg ℓ^{-1} : 130

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 3.34

Dark Uptake (poisoned), mg C m^{-3} h^{-1} : 4.17

Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$	Light Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$	
707.5	7.53	13.0	1.94	
280.0	9.78	13.0	2.41	
191.6	9.72	10.0	1.53	
85.5	10.62	10.0	2.27	
48.6	11.49	8.0	2.82	
38.3	7.85	8.0	1.38	
38.3	8.94	5.9	4.28	
28.6	11.06	5.9	1.37	
28.6	8.81	5.0	1.73	
24.2	4.20	4.0	1.70	
24.2	7.80	3,2	1.88	
14.7	2.77	3.0	1.69	
14.7	5.58			

Date: 9/10/80

Station: PECKS COVE

Surface Temperature, ^oC: 17.1 Incubation Temperature, ^oC: 12.8

Incubation Hours: 1400-1800 Chlorophyll <u>a</u>, mg m⁻³: 1.08

Suspended Dry Matter, mg_{λ}^{-1} : 110

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 2.76

Dark Uptake (poisoned), mg C m $^{-3}$ h $^{-1}$: 2.31

ight Intensity Wm ⁻²	Specific Production mg $C(mg\ Chl\ \underline{a})^{-1}\ h^{-1}$.	Light Intensity Wm ⁻²	Specific Production mg $C(mg \ Chl \ \underline{a})^{-1} \ h^{-1}$
707.5	2.37	13.0	0.76
280.0	5.21	10.0	3.07
191.6	4.21	10.0	1.85
85.5	3.85	8.0	1.45
48.6	4.70	8.0	0.51
38.3	4.02	5.9	0.65
38.3	4.65	5.9	0.11
28.6	2,74	5.0	1.31
28.6	3.56	4.0	2.71
24.2	2.60	3.2	1.77
14.7	3.26		
14.7	2.92		
13.0	1.76		

			90% Confidence Lower	Interval Upper
$\alpha \text{ mg C (mg Chl } \underline{a})^{-1} \text{ h}^{-1} \text{ (Wm}^{-2})^{-1}$:	0.21	0.06	0.36
P_{m}^{B} mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹	:	2.36	1.56	3.16

Date: 13/11/80

Station: PECKS COVE

Surface Temperature, ⁰C: 5.5

Incubation Temperature, ^oC: 6.0

Incubation Hours: 1400-1800

Chlorophyll <u>a</u>, mg m⁻³: 3.63

Suspended Dry Matter, $mg \ell^{-1}$: 410

Dark Uptake, mg C m $^{-3}$ h $^{-1}$: 4.56

Dark Uptake (poisoned), mg C m^{-3} h^{-1} : 5.83

Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) ⁻¹ h ⁻¹	Light Intensity Wm ⁻²	Specific Production mg C(mg Chl \underline{a}) $^{-1}$ h $^{-1}$
586.9	1.17		
326.2	0.98		
163.3	1.29		
89.4	1.06		
63.0	1.49		
35.0	0.40		
35.0	0.81		
22.8 13.3	0.24		
2.6	0.66		
0.6	0.08 0.28		
	0.20		
		90% Confidence Interval	
		Lower Upper	r
α mg C (mg Chl <u>a</u>) ⁻¹ h ⁻¹ (Wm	$^{-2})^{-1}$: 0.02	0.01 0.03	3
P_{m}^{B} mg C (mg Ch1 <u>a</u>) ⁻¹ h ⁻¹	: 1.13	0.94 1.33	2