Natural Fish Populations in Two Streams of the Nashwaak Experimental Watershed
J. D. Martin

Biological Station, St. Andrews, N. B., EOG 2XO

December 1980

Canadian Technical Report of Fisheries and Aquatic Sciences No. 982

Canadian Technical Report of

Fisheries and Aquatic Sciences

These reports contain scientific and technical information that represents an important contribution to existing knowledge but which for some reason may not be appropriate for primary scientific (i.e. Journal) publication. Technical Reports are directed primarily towards a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant to Canada.

Technical Reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report will be abstracted in Aquatic Sciences and Fisheries Abstracts and will be indexed annually in the Department's index to scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Details on the availability of Technical Reports in hard copy may be obtained from the issuing establishment indicated on the front cover.

Rapport technique canadien des

sciences halieutiques et aquatiques
Ces rapports contiennent des renseignements scientifiques et techniques qui constituent une contribution importante aux connaissances actuelles mais qui, pour une raison ou pour une autre, ne semblent pas appropriés pour la publication dans un journal scientifique. Il n'y a aucune restriction quant au sujet, de fait, la série reflète la vaste gamme des intérêts et des politiques du Ministère des Pêches et des Océans, notamment gestion des pêches, techniques et développement, sciences océaniques et environnements aquatiques, au Canada.

Les Rapports techniques peuvent être considérés comme des publications complètes. Le titre exact paraîtra au haut du résumé de chaque rapport, qui sera publié dans la revue Aquatic Sciences and Fisheries Abstracts et qui figurera dans l'index annuel des publications scientifiques et techniques du Ministère.

Les numéros 1-456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457-714, à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715-924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, Ministère des Pêches et de l'Environnement. Le nom de la série a été modifié à partir du numéro 925 .

La page couverture porte le nom de l'établissement auteur où l'on peut se procurer les rapports sous couverture cartonnée.

Canadian Technical Report of Fisheries and Aquatic Sciences 982

December
 1980

NATURAL FISH POPULATIONS IN TWO STREAMS OF THE NASHWAAK EXPERTMENTAL WATERSHED

by
J. D. Martin

Fisheries and Environmental Sciences
Deparment of Fisheries and Oceans
Biological Station
St. Andrews, New Brmswick Foc 2x0 the Biological Station, St. Andrews, N. B.

ABSTLACT

Martin, J. D. 1980 . Natural Fish populations in two streams of the Nashaak Experimental Waterohed. Can Tech. Rep. Fish. Aquat. Sci. 982 , isit 17 p.

Fish sampling data are sumarized from $1972-78$, inclusive, prior to clearcutting on two streams of the Nashwak Expermental Waterghed Project. Hayden Brook was chosen to serve as the control and Narrows Mountah Brook as the expermental stream. The study area on Narrows Mountain Brook includes an upper (ciearcut to the stream bank in winter 1978), and a lower site (with a 60 m wide riparian strip on either side, cut at the same time as the upper). Major spectes of fish caught include brook trout (salvelinus fontinalis), Atlantic salmon (Salmo salar), Anerican eel (Anguilla rostrata), slimy sculpin (Cottus cognatus), and blacknose dace (Rhinichthys atratulus).

Estimated annual numbers of brook erout fluctuated by over 100% (Hayden Brook 11. $9-26.5$, Naraws Mountain, lower site $7.3-19.2$ and Narrows Fountain, upper site $46.4-97.8$ per 100 m${ }^{2}$) under natural enviromental conditions. Salmon parr and fry nubers huctuated twentyfold. Upstream migrations of trout, samon, and eels occurced in the study streams between May and July from the Nashwakkiver, Subsequent downstream migrations occurred in the fall. These migrations were probably seasonally temperature related. At least the lower kilometer of each stream serves as a nursery area for juvenile Atlantic samon from the Nashwak River. Brook trout in the study streams seldon exceeded 3 yr of age or 15 cm fork length under natural environmental conditions and were closed to angling.

Key words: Population characteristics, brook trout, Atlantic salmon, Anerican eel, slimy sculpin, blacknose dace, Nashwaak

RESME

Martin, J. D. 1980. Natural fish populations in two streams of the Nashwak Experimental Watershed. Can. Tech. Rep. Fish. Aquat. Sci. 982 , $11 i+17$ p.

On presente un resume des donnés d'ëchantillonnage du polsson quif ont eté recuellies de 1972 a 1978 inchustvement, avant la coupe rase effectuee aux abords de deux cours dieau de bassin experimental de Washwak. Le russeau Hayden a servi de cours deau temoln et le rutsseau Narrows Mouncaln de cours d'eau expertmental. Le secteur a l'erude du ruisseau Narrows mountatm comprend un emplacement Eleve (coupe rase des rives du cours feat qfectuee l'hiver de 1978) et un emplacement moins bleve (fomportant de wat ft
 Les prindpabs especes captures, on note ('onble de fontaine (sajvelimus fonchalis). le samon de
 le naseux notr (Rhinjchthys atratulus).

On a constate que, dans des condicions environnementales nacurelles, le nombre annuel escimacif diombles de fontane fluctue de plus de 100 pour cent (ruisseau Hayden, de 11,9 a 26,5 ; ruisseau Narrows Mountain, emplacement moins elevé, de 7,3 a 19,2 ; ruisseau Narrows Mountain, emplacement eleve, de 46,4 a 97,8 par 100 m^{2}). Le nombre d'alevins de saumon et de tacons est de vingt fois superieur. Des truites, samons et anguilles ont remonte de la riviere Nashwak jusqu'aux cours d'eau à l'etude entre thai et juillet, puis sont redescendus a l'atomne. 11 exisce probablement un lien encre ces migrations et les temperanures saisonieres. Le dernier kiomerte au moins de chaque cours d'eau consthue une zone d'alevinage pomr les jeunes saumons de l'Atlantique de la riviere Nashwak. Les onbles de fontaine des cours d'ear visés avalent rarement plus de 3 ans ou 15 cm de longueur la fourche dans les conditions environnementales naturelles, La peche a la ligne de cette espace frait d'alleurg interdite.

The Nashwakk Experinental Waterzhed project, begun in 1970, was degigned "ro determine and understand the impacts of certain forest management practices on envirommental quality, and to establish criteria for future forest management." The impact of clearcutting on numbers and growth of fish is the subject of the study on which this report is based. Other forest managenent practices, such as fertilitation and spraying with insecticides for protection of trees against spruce budworm, way also affect freshwater atreams. The impact of these treatments on the physical and on some biological aspects of che watershed are being investigated in a number of component scudies by others wirhin the Nashwak Experimental Watershed project.

The overall project includes chree small water sheds ($125-725 \mathrm{ha}$) in east central New Branswick (Fig. 1) of wich one, the control watershed (Hayden Brook), is to teceive no special treatment, the second (Narows Mountain Brook) will be clearcuc, and the thitd (Lake Brook) was Eertilized in 1976. The streama are tributariea to the Nashwaak River which joins the Saint John River below the Mactaquac Dam.

The Nabhaak River is accessible to seamrun Atlancic salmon (Salmo salar) with an average of 1,225 salmon and gribe angled yearly from 1973-78 (Dunfield 1973-76; Mitham and Bernard 1977-78). Atlantic salmon spawned in the Nashwakk River but not in the study streams from $1972-78$, with the possible exception of lower Narrows Mountain Brook in 1977.

The layr period of data collection prior to clearcurting represencs baseline daca. The clearcutcing tresment is co be followed with at
 ay ghortmerw eftecta. Results of these studies wit zefrmine che cime inceryal for assessing long tertherects. Clearcutcing of Narrows Mountsin Brook watershed occurred between May 1978 and March 1979. This report covers fish studies in hayden and Narrows Mountain Brooks during the pre-treament period of 1972-78.

Fish population studies were initiated in 1972 and continued through 1973. During this period, the study constituted midnumer population census only. Fish were not measured; but crout were classified as "fry" (m underyearlings) and "amall" ($<15 \mathrm{~cm}$) on "harget ($>15 \mathrm{ctu}$) yearlinge or older. Data from 1972 and 1973 will not be reported in detail here.

In 1974 the study was expanded co include new sampling site mithin the area to be clearcut to the stream edge in the headwaters of Narrows Mountain Brook, and by adding gpring (May) and fall (Sept.Oct.) sampliug to the single mid-sumer (July August) Eishing of 1972 and 1973. Fish were measured and weighed snd many were also marked to provide informetion for growth-age determinations. Some of chese dats were previout ly reported in Wabhwad Experimental Waterghed Project amnal reports for 1973-78, and in project review documents for the same years. The present work includes an expanded analysis of these data with correction of some errors in previous reports.

Hayden Brook watershed (725 ha) has a predominantly southera aspect, fith elevations of $200-475$ m, and is covered with mixed hardwoods. The $4-\mathrm{km}$-long stream has eastern brook trout as the rost conmon fish species, but eels and, in the lower reaches, juvenile Atlantic salmon, also occur. Fish studies were restricted to 420 of stream (1420 3^{2}, wetted stream surface) near the mouth. The Fishang site was divided into six study sections (Fig. D) of approximately 70 in length each. The lowermost section had a steep gradient of il\% (Table 1) Whth surficient falls and cascades so block upstream passage of young-of-the-year Atlantic samon (Symons 1978), but yearlings could leap these falls and at certain seasons were found in all sections upstream.

Narrows Mountain watershed (400 ha) has a predominantly southeastern aspect, with elevations of 220-420 m, and is covered montly with hardwoods in the headwaters grading to predominantly softwoods along the stream mar the mouth. The stream is about 4.5 km long. Fish studies were carried out at two sites, an "upper" site in the headwaters, and a "lower" site near the rowth. Physical details of all study sites are given in Table 1.

The upper Narrows Mountain gite, which was Eirst fished in 1974 , begins 70 m above the forks, and originally comprised two 70 -m sections on each branch. The upstream section on the east branch was abandoned when it was Found impossible to Eish it effectively with electrofishing gear. The present area fished is $407 \mathrm{~m}^{2}$. The screams are $1-2 \mathrm{~m}$ wide, and are inhabited by brook trout and slimy sculpins.

The 1 ower site on Narrows Monntain Brook was originally compribed of four bections $40-70$ m long within a 300 min length of arreat, beginaing about 50 mabove a major logging road. The aroa of these sections was $498 \mathrm{~m}^{2}$, Trout and juvenile Atlantic salmon commonly occur in these sections, and occasionally blacknose dace and creek chub are round Which have probably moved down from an abandoned beaver pond approximately 100 m upstrean from the study site. In 1975 a Efth section 71 m long (244 m^{2}) near the mouth of Narrows Mountain Brook was added to the lower site with the objective of making che lower Narrows Mountain Brook and Hayden Brook study aites more similar in area and in location relative to the mouth of the streams, and to provide additional information on movements of juvenile Atlantic almon between Narrows Mountain Brook and the Nabhwark River. This Fifth section ts loctted about 600 m below the Nackawic-Napadogan heul road. The section ia inhabited by trout, atmon, sculpine, cels, and blacknose dace. The fourth section was greatly disturbed in the fall of 1976 by construction of a hydrological weip and was eliminaced in 1977. The ares of the sections is now $645 \mathrm{~m}^{2}$.

Clearcutting operations were carried out in the watershed surrounding the lower sice abowe che main haul road bewween May 1978 and February 1979 . A 60 -nn wide serip of trees was left along each bank.

Dates of tishing (number of days between fishings) and water temperatures at time of fishing are given in Table 2.

METHODS

EIEMD

To obtain data on numbers of fish, each section was fished in turn progressively upserean using barrier nets at top and bottom of the section to prevent fish from moving in or out during the operation. Electrofishing was pertormed at $400-500$ volts, wich Smith-Root back-peck electrofishers (Mark IV and Mark VIT) using uninterrupted direct current. In 1972-73 Elson (umpubl. data) made six sweeps of each section, but usually few fish (<S/zweep) were caught in the fourth and subsequent sweeps. Therefore, when the program was expanded to include new sites and sections, the number of sweeps per section was reduced and, during the mid-summer Fishing, all sections were fished at least three cimes and sometimes four. Since the initial objective of the spriag and fall fishings was only to provide information on growth, not all sections were Fished at these seasons in 1974 and 1975 . In fall. and spring 1976 all sections were fished with two sweeps. This last practice proved to be the best compromise for providing useful migration and growth data with least effort and was continued in subsequent years.

Captured fish were anaesthetized with methane tricaine sulfonate (MS 222) or tectiary amyl alcohol, measured to the nearest millimeter (fork length), and weighed to the nearest gram. Each year all salmon and 90 yearling and older trout were hot-branded with individually coded numbers. 1 Young of the year trout were branded with the last digit of the year in which they were born. Branding was done with a mall length of nichrome wire atrached to a 12-volt battery. This brand was easy to apply in the field and remaned visible for at least a year. After recovery from the anaesthetic, all fish were returned to the section frum which they were captured.

ANALYTICAL

Fish ages were estimated by construction of length-Frequency histograms of captured fish (Fig. 2-8). Scales from a number of trout were taken from the area between the lateral line and dorsal fin and read for age estimates under a dissection microscope. Otoliths from a few dead fish were also examined under a dissection microscope for age estimates. Tn 1976, 1977, and 1978 underyearling $(0+)$ trout were branded with the last digit of the year in which they were hatched. Subsequent recaptures of these f ish yielded accurate age-length information (Table 3; Fig. 9, 10).

Estimaces of fish population densicies were made by the depletion or DeLury (1951) method which utilizes the declining catch in repeated constant effort fishings. Population estimates for the years 1972 and 1973 were based on six fishings, 1974 and 1976 on four fishings and 1975, 1977 and 1978 on three fishings. All electrofishings for population estimates were conducted during the month of July each year.

Somatic growth was determined from recaptures of individually marked fish and marked, known, age-classes of fish. At least 90 yearling and older

[^0]trout were individually marked each year beginning in 1974. All young-of-the-year trout caught were easily identifiable and were marked with the last digit of the year in which they were hatched, starting in 1976. All salmon, eels and dace were branded with individual codes.

RESULTS

AGETNG

Histograms of trout and salmon lengths were usually bi- or trimodal when grouped in 1-cm length-classes. Separation between the first and second modes was quite well defined as the frequencies fell to or near to zero. Separation among second, third, and later modes was poorly defined, indicating considerable growth variability.

Ageing by scales was difficult and considered no more reliable than ageing by length-frequency histograns. Otolith readings were highly successful on the few dead fish tried but coald not be used routinely becauge killing the fish was not desirable.

The mean fork lengths of "known age" tront from recaptured branded fish were very close to mean fork lengths determined by the length-Erequency histograms for age $0{ }^{+}$. Ages of $1+$ and older trout determined by length frequency from the upper site on Narrows Mountain Brook corresponded closely with fish of known age. However, length-frequency determined ages of $1+$ and older trout from Hayden Brook were probably not accurate as much overlap occurred between lengths of age $1+$ and $2+$ tish. The mean fork lengths of recaptured fish of "known age" (Table 3) and the length-Frequency histograms of numbers of recaptured known age fish, however, enabled an estimated division point between the majority of trout of each age class in 1977 and 1978. There appeared to be few trout age $3+$ or older in these streams.

POPULATION ESTIMATES

Population density estimates fluctuated a great deal from year to year. Brook trour estimates varied two- to threefold and Atlantic salmon and eels varied up to tenfold over the $7-y r$ period. The accuracy of population estimates for the most abundant species of the Nashwak for the years 1974-76 inclusive were examined in detail by Symons (unpub). data). Inspection of the data suggests that catch efficiency did not differ significantly in the brooks in relation to size, gradtent or seasonal differences.

Symons (unpubl. data) suggests that maximum likely errors for brook trout population estimates, estimated as che difference between total catch and estimate, and expressed as a percentage of the estimate, are 13 and 7% for three and four fishing estimates, respectively. The estimates for 1972 and 1973 provided by Elson (unpubl. data), based on six fishings, should be more accurace.

In July and September fishings in 1976, Symons (unpubl, data) compared the catchability of underyearling trout ($0+$) with that of older individuals $(1+$ and $2+$) in Hayden Brook by means of two different estimates. The first estimate was made by
dividing the catch according to age group and then by making separate regular population estimates for each age group. The second set of estimates (estimates as percent of cotal estimates) was made by deriving an estimate for the total population, and then by dividing this estimate into underyearlings or older trout in direct proportion to the numbers caught. The sumarized daca are:

July	$0+$	$\begin{aligned} & 1+ \\ & \text { and } 2 \end{aligned}$	Total
Separate estimates	106	243	349
Estimates as \% of total estimates	105	243	346
Sept.			
Separate estimates	117	166	283
Estimates as \% of total estimates	114	139	283

If catchabiliry of underyearlings was lower than yearlings or older fish, then population estimates of underyearlings derived as a proportion of the catch should have been smaller than the separate estimates. Symons found this not to be the case in the particular streams of this study and the catchability of underyearlings has, therefore, been assumed to be the same as for older fish.

The numbers of fish of each species estimated from the mid-summer (July) Fishing for the 7 yr are shown in Table 4. No relationchip appeared to exist amongst species numbers changes (fig. 11). A decrease of one species did not result in an increase in another. The only apparent relationship was the corresponding simultaneous change in numbers of brook trout and slimy sculpins in the upper site of Narrows Mountain Brook, suggestive of a common influential eavironmental factor.

A comparison of the biomass of the various species from actual catches in July of each year showed that all species increased or decreased in biomass mithin the same year in the upper and lower sites on Narrows Mountain Brook. No apparent interspecific relationship existed in Hayden Brook (Fig. 12). The biomass of all species was highest in 1975 and lowest in 1977 in both aites of Narrows Mountain Brook. Hayden Brook did not exhibit this patcern, and biomass values were more uniform with the eaception of 1978 (Fig. 13). Actual numbers and weight of fish species caught from 1974-78, inclusive, in the three study sites are contained in Table 5.

Migration

While no spawning Aclantic salmon were observed in Hayden or Narrows Mountain Brooks, large numbers of underyearling salmon were caught in all sections of the lower site of Narrow Mountain Brook for the first time in 1977 and fair numbers (36) were caught in the lowermost section in 1978 (Fig. 6). No salmon were caught in the upper site of Narmows Mountain Brook.

Yearling (1* and 2+) almon encered the lower site of Narrows Mountain Brook sometime batween late May and early July each year from the Nashwak River. Many marked yearling akmon apparently remained ovewinter and emigraced the following summer and fall as 2 -yrolds, having remained in the brook for a year. Immigrating $2 m y r-o l d s$ left again
in the fall of the same year. Two-yearmolds which had spert part or all of the sumer in Narrows Mountain Brook presumably overwintered in the main river before migrating as 3myrold molts.

Underyearling ($0+$) salmon were not caught in Kayden Brook during the study period except for three fish in 1974. Symons (unpubl. data) found that young salmon grew faster and remained a ghorter time in Hayden Brook than they did in Narrows Mountain Brook: 1 - and 2 wyrold salmon entered Hayden Brook between May and July, and with the exception of a few small yearlings all of cher left again between fall and the next spring (Tig. 5). Most of the yearlings exceeded 10 cm fork length in the fall and therefore met the criterion of elson (1957) for becoming smolts the following spring at age 24.

Numbers of brook trout of all ages in all three study sites were lowest in the spring fishings conducted in late May, and these numbers probably represented fish that overwintered in che streams. Larger numbers of crout of all ages occurring in July Eishings were the result of emergence of young-of-the-year fish in late May and carly June and the immigration of yearling and older fish from possible overwintering sites in the strean of the Nashwaak River about late June. This imigration of fish from the main Nashwak is believed to be the result of trout seeking cooler, preferred water tamperatures in the shaded, smaller streams. Temperatures recorded at vime of fishing secmed to verify this. Salmon anglers reported cafching rout in the Nasliwalk in the spring and early oumer and noticed their abseace after about the firct of July. This generally coincided with seasonal, warm, low water conditions in the river. The upstreammigration of trout was also noticed by the electrofishing crew on Hayden Brook in one particular instance when 10 of 33 trout branded June 29 in the lowermost section of Hayden Brook, less than 50 mrom the Nashwaak River, were recaptured in the two uppermost sections 3 d later, a distance of about 600 m upstream. In the fall fishings of 1974, 1975, and 1976 in September and October, the numbers of rout decreased from the July fishims at all sites. However, in fall fishinge conducted in late August of 1977 and 1978 (conducted early due to manpower difficulties) the numbers of rout were quite gimilar to the July fishings. This guggeste a movement of trout sometime in September either uperream to spatning areas or downetream to the Washwak River. Sone ripe males and gravid females were caught in late fall Fishings at the upper site of Narrows Mountain Erook in 1975 . Low numbers of trout at all sites in May, and the disappearance of some marked individuals which latex reappeared, suggest that some trout of all sizes emigrated from all fishing sires. Two it trour marked in upper Narrows Mouncain Brook in 1975 were recaptured in lower Narrows Mountain Brook in May 1976 . No other Fish marked in upper or lower Narrows fountain Brook were recaptured in the opposite site in aubsequent years, probably because of the low probability of recapturing chese fish.

American eels were found in all greams but
 the length-Prequency hiscogram of eels (Fig. 7) shows eels to be scarce in May (0 mb), good mumers were present in July $(30-80)$, 营cwat in late Augunt (18-34), and most of them left che stream by September and October. Most of the eela that lett the streams were probably seaking overwintering
sites in the Mashwaak River, and these movements may have been cemperaturemialated. Eels were present in the study streams when the temperature was close to, or above, $14^{\circ} \mathrm{C}$ but few were present at lower temperatures. Smith and Saunders (1955) found the upstream movement of young eels into Crecy Lake to coincide with water temperatures above $12^{\circ} \mathrm{C}$ in chat strean between mid May and Seprember. Few eels over 30 cm were found in the Nashwakk streams,

Male eels have been found to matrare as mall as 27 cman (katz 1954 cited in Carlander 1969), and some eel movements might be attributable to spawning migration but, for the most part, they were probably the result of temperature change.

GROWTH

Trout of all ages were larger in Hayden Brook than those of corresponding age in the upper site of Narrows Mountain Brook (Table 3). Too few trout were recaptured in the lower site of Narrows Mountain Brook for an accurate comparison; however, those caught were larger than those in the upper site. This agrees with Ricker (1932) that maximum size of brook trout seems correlated with the size of the body of water in which they live. The study site on Hayden is roughiy twice the width and depth of the upper site on $\begin{aligned} & \text { arrows Mountain Brook. Larger bodies }\end{aligned}$ of water probably allow fish more mobility in foraging, enabling them to secure more food items resulting in faster growth and larger mean sizes of fish. Comperition in the higher density trout populat ion in upper Narrows Mountain Brook probably resulted in smaller trout due to competition for Food items. Graphs constructed by Symons (unpubl. data) of the 1974 year-class of trout (Fig. 14) and graphs constructed of recaptures of 1976 and 1977 year-classes of crout (Fig. 15) show growth of trout, in terms of weight, to occur mainly in June and July of each year.

Mean growth where $G=\left(\log _{e} w_{i}-\log _{e} w_{0}\right) / n$ was 0.208 Eox Upper Narrows Fountain Brook, 0.250 for Lower Narrows Mountain Brook, and 0.262 for Hayden Brook. Mean condition factors, K, where $K=$ w/i ${ }^{3}$, were $1.010,0.987$, and 1.064 respectively (Table 6).

DLSCUSSION

Logging may have several counter-balancing, conflicting consequences for fish production. Previous studies have Eound changes in stream water temperature regimes, discharge variability, nutrient input and sedmentation after clearcutting.

Tericorial behavior is one mechanism for conErolling the number of fish which can inhabit any particular area of stream. "The size of each tercitory is influenced by such factors as the species and size of tish, the velocity of the current, the irregularity of the bottom, and the cemperature" (Allen 1968). One of the most serious detrimental effects that may affect a trout populacion is habitat alteration caused by sedimentation. The elimination of large interscitial spaces among rocks by filling in of and and silt reduces the amount of cover available to fish. Reducing the irregularity of the bottom may result in larger territories and fewer fish or the conditions may not be suitable for large fish which may leave and be displaced by numbers of smaller fish. The need of
larger fish for territories with suitabie cover is the basis for much "stream improvement" which has been shown to produce desired results (Saunders and Smith 1962).
"In winter scream-living salmonids tead to become lethargic, drop into the pools, seek cover, and feed less actively" (Allen 1968). Atlancic salmon have been found to become inacrive and penetrate particularly deeply into cover in winter (Allen 1940; Lindroth 1955; Saunders and Gee 1964). Sedimentation and change in the percent substrate as gravel-rock may affect salmon parr overwinter survival.

Studies by Welch et al. (1977) showed streams in clearcut watersheds to have 17% fewer trout, over 200% more sculpins, and 26% less benchos. Danage was attributed mainly to sedimentation, and road crossings were the main point source.

The collection of seven consecutive years of pre-clearcut data should provide an adequate baseline from which to detect effects of clearcutting on fish populations. The control stream should help separate environmental and clearcutting effects. The main areas to be examined for changes will be age and species composition and growth tates. Should changes occur, attempts will be made to relate them to environmental changes that are to be examined in component studies.

ACKNOWLEDGMENTS

These studies were initiated by Dr. P. F. Elson in 1972 and continued by him through 1973. In 1974 che study was transferred to Dr. F. E. K. Symons who continued until 1976. Studies were directed in 1977 and 1978 by J. W. Saunders. Helptul criticisms were made by Drs. D. J. Wildish, R. H. Pecerson and M. J. Dadswell. Appreciation is excended co Brenda McCullough and Jeanine Hurley for cyping and Frank Cunningham for graphics. Ruth Garnett did the cechnical editing.

REFERENCES

Allen, K. R. 1940. Studies on the biology of the early stages of the salmon (Salmo salax). I. Growth in the River Eden. J. Anim. Ecol. 10: 273-295.
1968. Limitations on production in salmonid populations in streans. H.R. Mackillan Lectures in Fisheries at Institute of Fisheries, U.B.C. Vancouver.

Aclantic Salmon Sport Catch Statistics Maritimes Region, 1973-1978. Freshwater and Anadromous Division, Resource Branch, Fisheries and Marine Service, Dept. Fish. Dceans, Halitax, N.S.

Garlander, K. D. 1969. Handbook of Freshwater Fishery Blology, Vol, 1 . The Low stace Dniversity Press, 752 p .

Delury, D. B. 1951. On the planing of experiments for the escimation of fish populacions. J. Fish. Res. Board Can. 8: 281-307.

Dunfield, R. W. 1973-76. Atlantic Salmon Sport Catch Statistics Marifimes Region. Freshwater and Amadromous Division, Resource Branch, Fisheries and Marine Service, Dept. Fish. Oceans, Malifax, N.S.

Elson, P. P. 1957. The importance of size in the change from parr to smolt in Atlantic salmon. Gan. Fish. Gult. 21: 1-6.

Lindroth, A. 1955. Distribution, terricorial behaviour and movements of sea trout fry in the River Indalsalven. Rep. Tnst. Freshwat. Res. Drotraingholm 36: 104-119.

Mitham, S. J., and M. Bernard. 1977, 1978. Atlantic Salmon Sport Catch Statistics Maririmes Region, Freghwater and Anadromous Division, Resource Branch, Fisheries and Marine Service, Dept. Fish. Oceans, Malifax, M.S.

Wicker, W. E. 1932. Studies of speckled trouk (Salvelinus fontinalis) in Ontario. Publ. Ont. Fish Res. Lab. 44: 68-110.

Saunders, J. W., and M. W. Smith. 1962. Physical alteration of stream habitat to improve brook trout production. Trans. Am. Fish. Soc. 91: 185-188.

Saunders, R. L., and J. H. Gee. 1964. Kovements of young Atlantic salmon in a small stream. J. Fish. Res. Board Can. 21: 27-36.

Smith, M. W., and J. W. Saunders. 1955. The American eel in certain fresh wacers of the Maritime Provinces of Canada. J. Fish. Res. Board Can. 12: 238-269.

Symons, P. E. K. 1978. Leaping behaviour of juvenile coho salmon (Oncorhynchus kisutch) and Atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 35: 907-909.

Welch, H. E., P. E. K. Symons, and D. W. Narver. 1977. Some effects of potato farming and torest clearcucting on New Brunswick streams. ESh. Mar. Serv. Tech. Rep. 745, 13 p.

Table i. Location and physical characteristics of study sections.

$\begin{gathered} \text { Section } \\ \text { no. } \end{gathered}$	Location and length (m)	Av. width (m)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$	Gradient	Approx. water vel. (cm / s)	Bottom characteristics

Above road along Nashwaak River			Hayden Brook			Cobble, boulders, gravel
1	69	3.33	230	0.048	45	
2	69	2.72	180	0.049	-	Cobble, gravel, fallen trees
3	69	4.09	282	0.050	50	Cobble, boulders
4	69	3.64	251	0.052	-	Cobble, boulders, gravel
5	55	4.11	226	0.072	-	Cobble, boulders, gravel
6	73	3.35	245	0.109	95	Large boulders
Narrows Mountain Brook (lower site)						

Above Napodogan Road						
	69	2.11	146	0.041	45	Cobble, boulders
1	69	2.42	167	0.076	31	Cobble, boulders
2	41	2.15	88	0.098	70	Cobble, boulders
3	46	2.11	97	0.058	32	Cobble, boulders

Below Napodogan Road

| | 71 | 3.34 | 244 | - | Boulders covered with fine |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Narrows Mountain Brook (upper site)

1 (Abandoned)	-	-	-	Sand, gravel, cobble, fallen logs		
2 (West fork)	79	1.94	153	-	-	Sand, gravel, cobble, fallen logs
3 (East fork)	71	1.94	138	-	-	Sand, gravel, cobble, fallen logs
4 (East Eork)	66	1.75	116	-	-	Sand, gravel, cobble, fallen logs

Table 2. Dates of fishing (number of days between fishings) and water temperatures at time of fishing.

Season and year	Hayden Brook		Lower Narrows Mountain Brook		Upper Marrows Mountain Brook	
	Date (days between)	$\begin{gathered} \text { Water remp. } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Date (days between)	```Hater temp. ('C)```	Date (days between)	$\begin{gathered} \text { Water temp. } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
Spring 1974	$\begin{aligned} & \text { June } 20 \\ & (34) \end{aligned}$		$\begin{aligned} & \text { June } 19 \\ & (27) \end{aligned}$		$\begin{aligned} & \text { June } 18 \\ & (29) \end{aligned}$	
Summer	$\begin{aligned} & \text { July } 23-25 \\ & (90) \end{aligned}$		$\begin{aligned} & \text { July } 16 \\ & (99) \end{aligned}$		$\begin{aligned} & \text { July } 17-18 \\ & (98) \end{aligned}$	
Fall	$\operatorname{occ.}_{(217)^{22}}$		$\begin{aligned} & \text { Oct. } 23)^{23} \end{aligned}$		$\begin{aligned} & \text { Oct. } 24 \\ & (209)^{24} \end{aligned}$	
Spring 1975	$\text { May } 27$ (49)	6-9	$\begin{aligned} & \text { May } 20,28 \\ & (44) \end{aligned}$	7-12	$\begin{aligned} & \text { May } 21 \\ & (62) \end{aligned}$	10-13
Summer	$\begin{aligned} & \text { July } \\ & (85) \end{aligned} 11,15,17,18$	15-18	$\begin{aligned} & \text { July } 7-10 \\ & (90) \end{aligned}$	15-18	$\begin{aligned} & 3 \text { uly } 22-23 \\ & (74) \end{aligned}$	$9-11$
Fall	$\begin{aligned} & \text { Oct. } 8 \\ & (223) \end{aligned}$	6	$\begin{aligned} & \text { Oct. } 6,7 \\ & (224) \end{aligned}$	7-8	$\begin{aligned} & \text { Oct. }{ }^{4} \\ & (228) \end{aligned}$	5
Spring 1976	$\begin{aligned} & \text { May } 18,21 \\ & (62) \end{aligned}$	6-9	$\begin{aligned} & \text { May } 17,19 \\ & (65) \end{aligned}$	$9-10$	$\text { May } 20$ (67)	7-9
Summer	$\begin{aligned} & \text { July } 18,20,21 \\ & (64) \end{aligned}$	15-19	$\begin{aligned} & \text { July } 22-23 \\ & (61) \end{aligned}$	$14-17$	$\begin{aligned} & \text { July } 26 \\ & (59) \end{aligned}$	13
Fall	$\begin{aligned} & \text { Sept, } \\ & (287) \end{aligned}$	11-12	$\begin{aligned} & \text { Sept. } 21 \\ & (280) \end{aligned}$	14	$\begin{aligned} & \text { Sept. } 23 \\ & (294) \end{aligned}$	$9-10$
Summer 1977	$\begin{aligned} & \text { July } \\ & (54) \end{aligned}$	12.1-15	$\operatorname{July}_{(42)} 12,19$	13-17.5	$\begin{aligned} & \text { July } 14-15 \\ & (42) \end{aligned}$	13-13.5
Fall	$\begin{aligned} & \text { Aug. } \\ & (311)^{29,30} \end{aligned}$	17.8-18	$\begin{aligned} & \text { Aug. } 23 \\ & (298) \end{aligned}$	12.3	$\underset{(309)}{\text { Aug, }} 25$	11. 5-12
Summer 1978	$\begin{aligned} & \text { July } 5,6,7,11 \\ & (47) \end{aligned}$	12-16	$\begin{aligned} & \text { June } 29, \text { July } 11 \\ & (56) \end{aligned}$	13-16	$\begin{aligned} & \text { July } 12 \\ & (48) \end{aligned}$	12-14
Fall	Aug. 22,23	13-16	Aug. 24, 30	12-14	Aug. 29,30	13

-8-
Table 3. Mean fork length (cm) of trout branded at age $0+$ and recaptured. Brackets indicate number of fish recaptured.

Location	Date of recapture	Age $0+$ \bar{x} fork length \pm SD	Age 1+ $\overline{\mathrm{x}}$ fork length \pm SD	Age 2+ \bar{x} fork length \pm SD
Hayden	Sept. 1976	$7.02 \pm 0.85(40)$		
	July 1977		$9.36 \pm 1.09(27)$	
	Aug. 1.777	$6.15 \pm 0.17(4)$	$10.30 \pm 1.15(25)$	
	July 1978		$9.78 \pm 0.59(18)$	$12.75 \pm 1.12(20)$
	Aug. 1978	$6.13 \pm 0.54(15)$	10.42 ± 1.42 (20)	$13.80 \pm 1.41(4)$
UNM	Sept. 1976	$5.27 \pm 0.50(22)$		
	July 1977		$8.30 \pm 0.98(7)$	
	Aug. 1977	$5.67 \pm 0.38(22)$		
	July 1978		$8.05 \pm 0.76(24)$	$8.75 \pm 1.06(2)$
	Aug. 1978	$4.94 \pm 0.35(17)$	9.00 ± 0.62 (3)	
LNM	Sept. 1976	$7.00 \pm 0.00(1)$		
	July 1977	7.00 ± 0.71 (2)		
	Aug. 1977			
	July 1978			
	Aug. 1978			

Table 4. Fish species and comparisons of midsummer (July) population densities at three locations in Hayden and Narrows Mountain Brooks.

Stretch	Fish species	Estimated number/100 m ${ }^{2}$						
		1972	1973	1974	1975	1976	1977	1978
Hayden$\left(1422 \mathrm{~m}^{2}\right)$	Brook tront (Salvelinus fontinalis)	25.7	19.0	11.9	22.2	26.5	15.1	23.0
	Arlantic salmon (Salmo salar)	0.5	2.3	3.7	5.9	2.2	1.3	1.8
	Eels (Anguilla rostrata)	2.7	4.1	3.2	4.7	3.9	2.4	6.0
Narrows	Brook trout	19.2	16.2	12.8	11.9	12.1	8.4	9.0
mountain								
Lower site $\left(498 \mathrm{~m}^{2}\right. \text { to 1974) }$	Atlantic salmon	0.8	8.2	2.0	18.9	14.7	18.4	13.5
$\begin{aligned} & \left(742 \mathrm{~m}^{2} 1975 \&\right. \\ & 1976) \end{aligned}$	Eels	6.6	9.1	0.8	5.1	3.3	1.6	1.2
$\begin{aligned} & \left(645 \mathrm{~m}^{2} 1977\right. \text { and } \\ & \text { after }) \end{aligned}$	Blacknose dace (Rhynichthys acratulus)	5.9	4.6	0.7	0.7	7.1	6.4	0.9
	Creek chub (Semotilus atromaculatus)	0	0.6	0.2	0.1	0	0	0
	Slimy sculpin (Cottus cognatus)	0	0	0.2	0.4	1.2	0.2	0.8
Narrows	Brook trowt	-	-	68.3	97.8	67.3	46.4	55.5
Mountain								
Upper site$\left(407 \mathrm{~m}^{2}\right)$	Slimy sculpin	-	-	28.7	41.3	28.3	13.7	26.4
	Eels	-	-	0.2	0	0.5	0	0.5

athe section added in 1975 was particularly rich in salmon. Separate salmon population estimates without this section are:

1975	$\frac{1976}{17.7}$	9.2	877
8.2	1978		
	8.2		

Table 5. Number of fish caught in the three brooks from 1974-78.

Brook	Month	No. of fishings	Number of fish and (wet weight (g))					$\begin{aligned} & \text { Total } \\ & \text { weight (g) } \end{aligned}$
			Trout	Salmon	Dace	Sculpin	Eel	
1974								
Hayden	July	4	176(3778)	$50(1084)$			37(458)	5320
Upper Narrows Men.	July	4	315(1723)			$118(200)$	$1(19)$	1942
Lower Nartows Mra.	July	4	60(924)	$9(198)$	3(12)		$5(79)$	1213
1975								
Hayden	July	3	278(3369)	$78(1293)$			$59(624)$	5286
Upper Narrows Mta.	July	3	349(1795)			140(530)		2325
Lower Narrows Mrn.	July	3	104(1654)	166(1948)	2 (10)	3(10)	41 (521)	4143
1976								
Hayden	May	2	$110(504)$	6(120)			1(42)	666
	nuly	4	357 (3490)	$20(438)$			54 (555)	4.483
	Sept.	2	237(2511)	18(271)			0	2782
Upper Narrows Men.	May	2	$77(425)$			20(89)		514
	July	4	254(1447)			106(242)		1689
	Sept.	2	143(693)			$22(63)$		756
Lower Narrows Men.	May	2	40(354)	44 (403)	$5(5)$	1(3)	0	765
	july	4	$73(784)$	144(1533)	$54(290)$	0	24 (189)	2796
	Sept.	2	25(212)	70 (924)	35(116)	4(10)	1(4)	1266
1977								
Hayden	July	3	$207(3690)$	$16(418)$			$23(268)$	4376
	Aug.	2	269(4254)	28(530)			19(376)	5160
Upper Narrows Men.	July	3	188(1153)			$46(143)$	0	1296
	Aug.	2	169(1038)			$69(171)$	1(3)	1212
Lower Narrows Mrn.	July	3	$46(548)$	112(661)	$9(24)$	2 (9)	5 (53)	1295
	Aug.	2	41 (507)	145 (665)	$2(9)$	0	6 (41)	1222
1978								
Hayden	July	3	$317(5720)$	25(412)			140(665)	6797
	Aug.	2	404(5230)	33 (516)			38(347)	6093
Upper Nartows Mra.	July	3	222(1711)				2 (193)	1904
	Aug.	2	195(1509)				1(4)	1513
Lower Narrows Mrn.	July	3	$45(749)$	$86(617)$	4(17)	$7(31)$	8(109)	1523
	Aug.	2	66(904)	116(943)	22(116)	$5(20)$	$10(166)$	2149

Table 6. Mean growth rates and condition factors of recaptured trout.

Location (no. of fish)	$\begin{aligned} & \text { Time } \\ & \text { at large } \end{aligned}$		eight range at branding (g)	Length range at branding (cm)	Weight range at recapture (g)	Length range at recapture (cm)	\bar{x} specific growth rate	SD	\tilde{x} condition Eactor (k)	SD
Upper Narrows Men. (32)	$\begin{aligned} & \text { July } 77-\mathrm{July} 7 \\ & 363-369 \mathrm{~d} \end{aligned}$		3-17	$6.9-12.8$	8-22	9.2-13.1	0.208	. 248	1. 010	. 205
Lower Narrows Mtn. (7)	$\begin{aligned} & \text { July } 77-\text { - une } 7 \\ & 345-352 \mathrm{~d} \end{aligned}$		5-16	$8.4-11.9$	$14-32$	11.3-14.4	0.250	. 149	0.987	. 119
Hayden (21)	$\begin{aligned} & \text { July } 77-\text { July } 7 \\ & 362-364 \mathrm{~d} \end{aligned}$		5-31	8.0-14.1	18-93	11.9-15.4	0.262	. 080	1.064	. 097

-11-

Fig. 1. Study sites.

Fig. 2. Length frequency histogram of Hayden Brook trout.

Fig. 3. Length frequency histogram of Upper Narrows Mountain Brook trout.

Fig. 4. Length frequency histogram of Lower Narrows Mountain Brook trout.

Fig. 5. Length frequency histogram of Hayden Brook salmon.

Fig. 6. Length frequency histogram of Lower Narrows Mountain Brook salmon.

Fig. 7. Length frequency histogram of Hayden Brook eels.

Fig. 8. Length frequency histogram of Upper Narrows Mountain Brook sculpin.

Fig. 9. Length frequency histogram of Hayden Brook recaptured trout marked at age 0+.

Fig. 10. Length frequency histogram of Upper Narrows Mountain Brook recaptured trout marked at age $0+$.

Uppor N Mt Brook

Fig. 11. Relative yearly numbers of fish of each species.

Fig. 12. Relative yearly biomass of fish of each species.

Fig. 13. Yearly total fish biomass.

Fig. 14. Growth of 1974 year-class of trout.

Fig. 15. Growth of 1976 and 1977 year-classes of trout (Table 3 data).

[^0]: ${ }^{1}$ In 1975 croat were branded according to lengehclass; this proved unsatistactory.

