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Structural setting of the Cornwallis lead-zinc 
district, Arctic Islands, Nunavut 

Keith Dewing and Elizabeth C. Turner 

Dewing, K. and Turner, E.C., 2003: Structural setting of the Cornwallis lead-zinc district, Arctic 
Islands, Nunavut; Geological Survey of Canada, Current Research 2003-B4, 9 p. 

Abstract: Zinc-lead mineralization of Devonian to Carboniferous age in the Cornwallis district is 
spatially related to faults and folds of the Boothia Uplift. The north-south elongate Boothia Uplift, formed 
during Caledonian (Late Silurian–Early Devonian) compression, is characterized by west-verging, basement-
rooted thrusts and related folds in cover strata. Southward compression during the Ellesmerian Orogeny 
(Late Devonian–Early Carboniferous), perpendicular to these older faults, reactivated them as strike-slip 
structures. One effect of this reactivation was the creation of transverse fracture zones where stress was 
transferred between basement blocks. Mineralizing fluids driven by the Ellesmerian Orogen migrated 
through these fracture zones and into permeable lower Paleozoic units. This style of mineralization is one of 
several present in the Cornwallis lead-zinc district. 

Résumé : Dans le district zincifère de Cornwallis, la minéralisation de zinc-plomb du Dévonien-
Carbonifère présente une association spatiale avec les failles et les plis du soulèvement de Boothia. Le 
soulèvement de Boothia, une structure formée au cours de la compression calédonienne (Silurien tardif– 
Dévonien précoce) et allongée suivant un axe nord-sud, est caractérisé par des chevauchements à vergence 
ouest qui s’enracinent dans le socle et par les plis associés dans les strates de la couverture. Au cours de 
l’orogenèse ellesmérienne (Dévonien tardif–Carbonifère précoce), la compression dirigée vers le sud s’est 
exercée perpendiculairement à ces failles plus anciennes et a entraîné la réactivation de celles-ci sous forme 
de structures de coulissage. Un effet de cette réactivation a été la création de zones de fracture transversales 
qui ont permis le transfert des contraintes d’un bloc de socle à l’autre. Des fluides minéralisateurs mus par 
l’orogenèse ellesmérienne ont migré le long de ces zones de fracture jusque dans des unités perméables du 
Paléozoïque inférieur. Ce style de minéralisation n’est que l’un des nombreux reconnus dans le district 
zincifère de Cornwallis. 
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INTRODUCTION 

The Cornwallis lead-zinc district contains at least 25 carbonate-
hosted Zn-Pb(±Cu) showings or clusters of showings on 
Cornwallis, Bathurst, Devon, Little Cornwallis, and Somerset 
islands in the Canadian high Arctic. The best known of these 
is the Polaris deposit and mine site (22 Mt at 14% Zn+Pb), 
which closed in August 2002. Although the mine started 
operating in 1981 and local studies have been undertaken 
(e.g. Randell, 1994; Randell and Anderson, 1996; Heroux 
et al., 2000), a coherent explanation for the formation, distri­
bution, and attributes of showings throughout the district has 
not emerged. This paper presents a new interpretation of 
structural controls on one type of mineralization in the 
Cornwallis lead-zinc district, based on previous work, exist­
ing maps, and ongoing detailed mapping. 

GEOLOGICAL SETTING 

The Canadian Arctic Islands are dominated by sedimentary 
rocks deposited on a long-lived passive margin (Fig. 1; 
Trettin, 1991). Cambrian to Upper Silurian carbonate and 
evaporite strata accumulated on a broad, curving shelf in the 
southern and eastern parts of the high Arctic, with deeper 
water shale north and west of a distinct shelf margin. 

The Caledonian Orogeny on east Greenland shed clastic 
sediment onto the Arctic Platform and created localized, 
basement-cored uplifts in the Silurian and Early Devonian. 
The most significant of these is the Boothia Uplift, a north-
south elongate basement feature (Fig. 1). Southward com­
pression during the Late Devonian to Early Carboniferous 
Ellesmerian Orogeny produced a fold-thrust belt north and 
west of the former continental margin, and ended carbonate 
sedimentation throughout the region. Ellesmerian structures 
affect mid-Fammenian (ca. 365–360 Ma) and older strata but 
not strata that yield late Visean (335–325 Ma) or younger fos­
sils (Eisbacher, 1998; dates from Okulitch, 1999). Polaris 
Zn-Pb mineralization coincided with this orogeny: Polaris 
ore yielded a Late Devonian paleomagnetic age and may have 
been tilted by the orogeny (Symons and Sangster, 1992), and 
sphalerite samples from Polaris gave Rb-Sr ages of 366 ± 
15 Ma (Christensen et al., 1995); ongoing analytical work 
from other showings has given ages of about 352 to 355 Ma 
(Brian Cousens, pers. comm., 2001). 

The detailed structural mapping that is fundamental to 
understanding the structural geology of the Cornwallis lead­
zinc district is hampered by poor outcrop. An intimate knowl­
edge of the lithofacies and metre-scale stratigraphy of indi­
vidual map units is critical to recognizing geological 
structures, especially because recognition of faults is gener­
ally based on the juxtaposition of subtly different carbonate 
rock units exposed only as felsenmeer. 

BOOTHIA UPLIFT 

The Boothia Uplift, measuring about 125 km by 1000 km and 
exhibiting 3 to 5 km of uplift, developed in the Late Silurian to 
Early Devonian (Kerr, 1977; Harrison et al., 1993; Harrison 
and de Freitas, 1999); surrounding areas remained below sea 
level (Okulitch et al., 1986). It coincides spatially with a 
region of north-trending structures in basement metamorphic 
rocks (Blackadar, 1967; Kerr and deVries, 1976, 1977; Frisch 
et al., 1987; Hoffman, 1989; Frisch and Sandeman, 1991), 
and is interpreted to be a product of intraplate stress transmit­
ted from the distant Caledonian Orogen, the closest part of 
which is exposed in east Greenland (Kerr, 1977; Okulitch 
et al., 1986). 

Basement uplift took place along discontinuous west­
verging reverse faults (Fig. 2; Kerr and de Vries, 1976; Stewart 
and Kerr, 1984; Okulitch et al., 1986, 1991), now locally 
exposed on the west side of the uplift on eastern Prince of 
Wales Island. Westerly vergence is interpreted to be respon­
sible for geometric asymmetry of the uplift and the composi­
tion of uplift-derived sedimentary rocks flanking the uplift. 
On the steep, western side of the uplift on Prince of Wales 
Island, reverse faults place Precambrian rocks over tightly 
folded to overturned Cambrian to Silurian strata that nar­
rowly border the exposed uplift core (Christie et al., 1971; 
Okulitch et al., 1986). The east side is characterized by gen­
tler west-verging folds and east-facing monoclines (Okulitch 
et al., 1986). The western margin of the uplift is flanked by 
coarse, uplift-derived, Silurian to Devonian, clastic coastal 
fan complexes (Miall, 1970; Miall and Gibling, 1978; 
Mortensen and Jones, 1986), whereas the eastern slope on 
Somerset Island is flanked by alluvial and tidal-flat strata 
(Stewart and Kerr, 1984; Stewart, 1987). 

Farther north (Cornwallis and Devon islands; Fig. 2), 
where basement is not exposed, lower Paleozoic cover strata 
exhibit roughly north-trending gentle folds. Fold wavelength 
is similar to fault spacing in the south. Anticlines are tight and 
commonly slightly asymmetrical (see Thorsteinsson, 1986; 
Mayr et al., 1998; Eisbacher, 1998), whereas synclines are 
generally broad. The western margin of the uplift (eastern 
Bathurst Island) is characterized by a band of closely spaced, 
complexly reactivated, north-trending thrusts. Kerr (1977) 
and Okulitch et al. (1986) proposed that structures in the base­
ment and cover parts of the uplift are geometrically and genet­
ically related: anticlines are surmised to conceal blind thrusts, 
whose propagation forced anticlines to form in overlying 
strata (Henrichsen and Kennedy, 2002). A similar interpreta­
tion was invoked to explain folding in the northern part of the 
Boothia Uplift (Grinnell Peninsula of Devon Island; de Freitas 
and Mayr, 1993; Eisbacher, 1998), where west-verging thrusts 
break through to surface. An absence of seismic information 
precludes pinpointing subsurface structures. Two Ordovician 
evaporite formations that are known to be present in the 
subsurface, however, are possible intermediate décollement 
levels. 
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Figure 1. Simplified geology of Boothia Uplift and surrounding area. Cross-sections A-A’ and B-B’ are shown in
Figure 2. (after Okulitch, 1991).
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Fiord, and Bird Fiord formations. 

Uplift was accompanied by erosional bevelling of folded 
strata. Carbonate sedimentation resumed above the uncon­
formity over the northern part of the uplift in the Early 
Devonian (Emsian; de Freitas and Mayr, 1998). Caledonian­
age folds in Cambrian-Silurian cover strata can be visualized, 
in the absence of complicating later structural events and sed­
imentation, by mapping the stratigraphic position of the sub-
Devonian unconformity (Fig. 3). Each of the major syncline­
anticline pairs depicted on this peneplaned post-Caledonian 
landscape would be linked to a thrusted basement block or a 
thrust ramp. The approximate locations of exposed (south) 
and inferred (north) blind thrusts can then be depicted on a 
map, somewhere between the axis of the anticline and the axis 
of the syncline immediately to the west (Fig. 4). 

Basement thrusts exposed on Prince of Wales and nearby 
islands are complexly segmented (Fig. 3). A similar geometry 
for buried thrust sheets in the northern domain is suggested by 
abrupt changes in orientation and location of anticline axes in 
folded Paleozoic rocks on Cornwallis and Devon islands 
(Fig. 3). 

ELLESMERIAN OROGENY AND ITS 
EFFECT ON OLDER STRUCTURES 

Ellesmerian compression (roughly southward in present-day 
co-ordinates) was active from the latest Devonian to the Early 
Carboniferous. Outside the area of the Boothia Uplift, struc­
tural shortening took the form of an arcuate, westerly-trending 

fold-thrust belt on Bathurst, Devon, and southern Ellesmere 
islands (Parry Islands and Central Ellesmere fold belts), the 
southern limit of which is part-way down the length of the 
Boothia Uplift (Fig. 4). The Boothia Uplift itself, however, 
formed a structural buttress (Kerr, 1977) around the northern 
end of which the fold belt wrapped: it does not exhibit the 
same degree of shortening as is evident elsewhere. Shorten­
ing within the Parry Islands and Central Ellesmere fold belts 
was decoupled from the rigid Boothia Uplift by north-south 
faults along the margins of the northern part of the Boothia 
Uplift: dextral displacement along the Icefield and Grinnell 
Range faults on eastern Devon Island and sinistral displace­
ment along the Southeast Bathurst fault zone on Bathurst 
Island (Temple, 1965; Kerr, 1974, 1977; Harrison et al., 
1993; Mayr et al., 1998). Although subtle, westerly-trending 
Ellesmerian folds are locally evident on the northern Boothia 
Uplift, the most important effect of the Ellesmerian Orogeny 
within the area underlain by the Boothia Uplift is brittle fault­
ing. Extensive brittle faulting in the Carboniferous (opening 
of the Sverdrup Basin) and Cenozoic (rifting of Greenland) 
also affected the central Arctic Islands, so distinguishing 
younger faulting from Devonian faulting is difficult. 

HYPOTHESIS FOR DISTRIBUTION 
OF MINERALIZATION 

Kerr (1977) and Kerr and deVries (1977) proposed that 
exposed and blind, north-south, Caledonian-age reverse and 
thrust faults were reactivated as strike-slip faults during 
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Ellesmerian compression. Because the thrust faults are dis-
continuous and their disposition is oblique to Ellesmerian
compression, strike-slip stress was transferred among the
basement-cored blocks, and, where a thrust sheet ends, from
one thrust sheet to another. Strain was accommodated by sev-
eral means. Differential translation or slight rotational motion
of basement blocks resulted from displacement-transfer
along block margins oblique to the principal stress direction,
forming transverse wrench faults or reactivating transverse
tear faults on Boothia thrust slices (de Freitas and Mayr,
1993). Cross faults at thrust termini might have formed when
strike-slip motion along a reactivated, Caledonian-age thrust
reached the end of that thrust sheet, and motion was trans-
ferred onto the adjacent thrust sheet.

Cross faults could have acted to focus fluids via vertical
fractures, at local dilational zones that form zones of low fluid
pressure (Connolly and Cosgrove, 1999), or by creating local
vertical impediments to horizontal fluid flow that would have
channelled fluids upwards (Caine et al., 1996). Increased per-
meability is also plausible along reactivated structures bor-
dering uplift blocks that were slightly rotated by oblique
transpression. Permeability produced in any of these settings
could have acted as conduits for mineralizing fluids driven
up-dip from the Ellesmerian orogen to the north and into per-
meable carbonate strata, according to the tectonically driven
Mississippi Valley–type (MVT) fluid-flow model (Garven
and Freeze, 1984a, b).

Detailed mapping of Little Cornwallis Island has revealed
subtle extensional structures of possible Ellesmerian age
(Fig. 5). These normal faults trend northeast, perpendicular to
the trend of the Boothia structures. Vertical offsets are between
50 and 85 m, creating a graben with a total down-drop of
about 175 m. These faults locally have veins of sparry dolo-
mite, pyrite, and barite, indicating a probable association with
the Polaris fluid event.

The dearth of evidence for cross faults on existing maps is
probably because 1) the 1:250 000 scale of existing maps is
insufficient to depict complex structures of limited lateral
extent; 2) such faults commonly run through areas where the
thick Cape Phillips shale is at surface, making it difficult to
recognize lithological changes; 3) some such faults have min-
imal vertical displacement, making them difficult to recog-
nize using stratigraphic markers, particularly in a terrain of
little outcrop; and 4) Cenozoic brittle faulting related to the
separation of Greenland and Canada has created a host of
brittle faults that are difficult to distinguish from older,
Ellesmerian faults.

DISTRIBUTION OF ZN-PB MINERALIZATION

The spatial abundance of known showings is high in the
northern part of the district, low on northern Somerset Island,
and decreases southward to zero at the centre of Somerset
Island (Fig. 4). This concurs with southward attenuation of
Ellesmerian deformation and increasing distance from the
orogen. Superimposing the distribution of known Zn-Pb
showings on the map of known and interpreted faults reveals
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three structural settings for mineralization in the Cornwallis Showings that parallel Boothia structures (type a) are gen­
lead-zinc district (Fig. 4): 1) along linear trends that mimic erally not precisely located over the main interpreted north-
the independently interpreted, buried, north-south Boothia south subsurface structures, but are some distance from them 
faults; 2) along the strike-slip faults that decouple the Boothia along west-east cross structures and local extensional struc-
Uplift from adjacent fold belts (Bathurst and Devon islands); tures that are not visible at the scale of Figures 3 and 4 but are 
and 3) in fracture zones where strike-slip motion steps from mappable at a local scale (e.g. Turner, 2001; Turner and 
one basement block to another. Dewing, 2002). Showings along the margins of the Boothia 
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Uplift on Bathurst and Devon islands (type b) are closely 
associated with the major north-south faults that separate 
Ellesmerian fold belts from the Boothia Uplift (Harrison and 
de Freitas, 1996). The largest and most important showing 
(type c, Polaris; Fig. 4) appears to have developed along a sig­
nificant fracture zone between two major basement blocks. 
The large fracture zones of type c appear to have been most 
conducive to high fluid flux that could bring large volumes of 
metal to the site of deposition. Types a and b locally contain 
significant metal content (e.g. Eclipse, Truro), but are order(s) 
of magnitude smaller than the Polaris deposit. 

Undiscovered mineralization could be present along hitherto 
unknown or unexplored cross structures within the Boothia 
Uplift area. The most obvious analogous structure to the 
Polaris cross faults is on Grinnell Peninsula, where the 
Icefield Thrust that decouples the Boothia Uplift from 
Ellesmerian folding terminates (Fig. 4). The termination of 
the Icefield Thrust on the east side of the Boothia Uplift forms 
roughly the mirror image of the Polaris graben. North-south 
displacement caused by Ellesmerian compression to the east 
of the Icefield Thrust appears to have transferred between 
Boothia basement blocks using a pre-existing Boothia tear 
fault (de Freitas and Mayr, 1993). This zone of fracturing per­
pendicular to the Boothia trend may be suitable for type c 
deposits.. Outside the Cornwallis lead-zinc district are other 
possibly prospective areas, such as the Bache Uplift on 
Ellesmere Island (Trettin, 1978; Smith and Okulitch, 1987), 
which have similar structural histories to the Boothia Uplift 
and in which zinc exploration has been minimal or 
nonexistent. 

SUMMARY 

The geological events most important to Zn-Pb mineraliza­
tion in the Cornwallis district are as follows. 

1.	 Development of a carbonate-dominated passive margin 
(Cambrian through Devonian) 

2.	 Development of Boothia Uplift during the Caledonian 
Orogeny, which caused faulting in metamorphic base­
ment, faulting and folding in cover strata, and erosion of 
the uplifted area (Late Silurian–Early Devonian), and was 
followed by deposition of additional marine strata (Mid­
dle Devonian) 

3.	 Southward compression from the Ellesmerian Orogeny 
(Late Devonian to Early Carboniferous), which caused 
development of a fold-thrust belt outside the Boothia area 
and both strike-slip reactivation of Caledonian-age 
thrusts and creation of cross faults within the Boothia area 

4.	 Mineralizing fluids migrated southward from the orogen 
into transverse structures and adjacent permeable strata in 
three structural settings: a) along local dilational zones 
caused by rotation or translation of Caledonian-age thrust 
blocks due to oblique compression; b) along strike-slip 
faults that decouple the Boothia Uplift from adjacent fold 
belts; and c) along fracture zones where strike-slip motion 
was transferred between basement blocks 
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