Santé

Canada

Rapport d'évaluation

ERC2013-02

Quinoxyfène

(also available in English)

Le 18 septembre 2013

Ce document est publié par l'Agence de réglementation de la lutte antiparasitaire de Santé Canada. Pour de plus amples renseignements, veuillez communiquer avec :

Publications Agence de réglementation de la lutte antiparasitaire 2720, promenade Riverside I.A. 6604-E2 Ottawa (Ontario) K1A 0K9

Internet: pmra_publications@hc-sc.gc.ca www.santecanada.gc.ca/arla

Télécopieur: 613-736-3758 Service de renseignements : 1-800-267-6315 ou 613-736-3799 pmra.infoserv@hc-sc.gc.ca

ISSN :1925-1238 (publication imprimée) 1911-8082 (en ligne)

Numéro de catalogue : H113-26/2013-02F (publication imprimée) H113-26/2013-02F-PDF (version PDF)

© Sa Majesté la Reine du chef du Canada, représentée par le ministre de Santé Canada, 2013

Tous droits réservés. Il est interdit de reproduire ou de transmettre l'information (ou le contenu de la publication ou du produit), sous quelque forme ou par quelque moyen que ce soit, reproduction électronique ou mécanique, photocopie, enregistrement sur support magnétique ou autre, ou de la verser dans un système de recherche documentaire, sans l'autorisation écrite préalable du ministre de Travaux publics et Services gouvernementaux Canada, Ottawa (Ontario) K1A 0S5.

Table des matières

Aperçu	1
Décision d'homologation concernant le quinoxyfène	
Fondements de la décision d'homologation de Santé Canada	1
Quinoxyfène	
Considérations relatives à la santé	2
Résidus dans l'eau et les aliments	3
Considérations relatives à l'environnement	5
Considérations relatives à la valeur	6
Mesures de réduction des risques	
Principales mesures de réduction des risques	6
Autres renseignements	
Évaluation scientifique	
1.0 Propriétés et utilisations de la matière active	
1.1 Description de la matière active	9
1.2 Propriétés physicochimiques de la matière active et de la préparation commerciale	
1.3 Mode d'emploi	
1.4 Mode d'action	
2.0 Méthodes d'analyse	
2.1 Méthodes d'analyse de la matière active	
2.2 Méthodes de dosage de la préparation	
2.3 Méthodes de dosage des résidus	
3.0 Effets sur la santé humaine et animale	
3.1 Résumé toxicologique	
3.1.1 Caractérisation des risques selon la <i>Loi sur les produits antiparasitaires</i>	
3.2 Détermination de la dose aiguë de référence	
3.3 Détermination de la dose journalière admissible	
3.4 Évaluation des risques en contextes professionnels et domestiques	
3.4.1 Critères d'effet toxicologique	
3.4.2 Exposition professionnelle et risques connexes	
3.4.3 Exposition et risques connexes en contexte domestique	
3.5 Évaluation de l'exposition aux résidus par le régime alimentaire	
3.5.1 Résidus dans les denrées d'origine végétale ou animale	
3.5.2 Concentrations dans l'eau potable	20
3.5.3 Évaluation des risques par le régime alimentaire	
3.5.4 Exposition et risques globaux	
3.5.5 Limites maximales de résidus	
4.0 Effets sur l'environnement	
4.1 Devenir et comportement dans l'environnement	
4.2 Caractérisation des risques pour l'environnement	
4.2.1 Risques pour les organismes terrestres	
4.2.2 Risques pour les organismes aquatiques	
4.2.3 Déclarations d'incidents	30

5.0 Valeur.		31
5.1 Effic	acité contre les organismes nuisibles	31
5.1.1	Allégations d'efficacité acceptables	31
	otoxicité	
5.3 Incid	ences économiques	32
5.4 Dura	bilitébilité	32
	Solutions de remplacement	
5.4.2	Compatibilité avec les pratiques de lutte actuelles, y compris la lutte intégrée	33
	Renseignements sur l'induction réelle ou possible d'une résistance	
	Contribution à la réduction des risques et à la durabilité	
	érations relatives à la politique sur les produits antiparasitaires	
	idérations relatives à la Politique de gestion des substances toxiques	33
	uits de formulation et contaminants préoccupants pour la santé ou	
	ironnement	
	<u>5</u>	
	é et sécurité humaines	
	ues pour l'environnement	
	ur	
	sations rejetées	
	on d'homologation	
	viations	
	Tableaux et figures	
	Analyse des résidus	43
Tableau 2	Toxicité aiguë du fongicide technique Quinoxyfène et de sa préparation	4.4
T-1-1 2	commerciale, le fongicide Quintec	
Tableau 3	Profil de toxicité du fongicide technique Quinoxyfène	
Tableau 4	Critères d'effet toxicologique utilisés dans l'évaluation des risques pour la san	
Tablesu 5	liés au fongicide technique Quinoxyfène.	
Tableau 5 Tableau 6	Résumé intégré de la caractérisation chimique des résidus dans les aliments	
Tableau 0	Caractérisation chimique des résidus dans et sur les aliments : aperçu des étude sur le métabolisme et de l'évaluation des risques	
Tableau 7	Identité, taux de formation maximal et temps requis pour l'obtention du maxim	
Tableau /	de produits de transformation formés dans l'environnement	
Tableau 8	Principales données d'entrée fournies aux modèles d'eaux souterraines et d'eaux	
1 aulcau o	de surface aux fins de l'évaluation de niveau 1 du quinoxyfène et du	ux
	2-oxoquinoxyfène	60
Tableau 9	Concentrations estimées dans l'environnement des résidus de quinoxyfène et d	
1 doledd 7	2-oxoquinoxyfène (combinés) qui pourraient se trouver dans l'eau potable, sel	
	1'évaluation de niveau 1	
Tableau 10	Devenir et comportement dans l'environnement	
Tableau 11	Toxicité pour les espèces non ciblées	
	Critères d'effet utilisés pour l'évaluation des risques et facteurs d'incertitude	55
1401044 12	appliqués	65
Tableau 13	Évaluation préliminaire des risques pour les espèces terrestres non ciblées autr	
514.00 15	que les oiseaux et les mammifères	

Tableau 14	Données de toxicité pour les oiseaux et les mammifères utilisées dans l'évaluat	ion
	p1 • 11111111111 • • • • • • 115 • • • •	65
Tableau 15	Exposition journalière estimée de l'évaluation préliminaire et évaluation	
	préliminaire des risques pour les oiseaux et les mammifères après plusieurs	
	applications de quinoxyfène (cinq applications de 125 g m.a./ha à intervalle de	
	10 jours) sur des fruits à noyau	66
Tableau 16	Évaluation préliminaire des risques pour les espèces aquatiques non ciblées	67
Tableau 17	,	
	pulvérisation.	67
Tableau 18	Évaluation approfondie des risques pour les espèces non ciblées associés au	
	ruissellement du quinoxyfène dans des modèles de prédiction	69
Tableau 19	Considérations relatives à la Politique de gestion des substances toxiques :	
	évaluation en fonction des critères de la politique	69
Tableau 20	Liste des matières actives homologuées pour l'utilisation sur les vignes, les	
	melons, les citrouilles, les courges d'hiver, la laitue pommée, la laitue frisée, le	S
	fruits à noyau, les fraises et le houblon	. 71
Tableau 21	Allégations d'utilisation proposées par le demandeur (pour l'étiquette) et décisi	on
	prise à leur égard	72
annexe II	Renseignements supplémentaires relatifs aux limites maximales de résidus :	
	situation internationale et incidence commerciale	. 73
Annexe III	Groupes de cultures : numéros et définitions	. 75
éférences	•	77

Aperçu

Décision d'homologation concernant le quinoxyfène

En vertu de la *Loi sur les produits antiparasitaires* et conformément à ses règlements d'application, l'Agence de réglementation de la lutte antiparasitaire (ARLA) de Santé Canada accorde l'homologation conditionnelle, à des fins de vente et d'utilisation, du fongicide technique Quinoxyfène et du fongicide Quintec, qui contiennent comme matière active de qualité technique du quinoxyfène, pour la suppression de l'oïdium sur plusieurs fruits et légumes.

D'après l'évaluation des renseignements scientifiques à sa disposition, l'ARLA juge que, dans les conditions d'utilisation approuvées, les produits ont de la valeur et ne présentent pas de risque inacceptable pour la santé humaine ni pour l'environnement.

Bien que les risques et la valeur des produits aient été jugés acceptables pour autant que toutes les mesures de réduction des risques soient appliquées, le demandeur doit, comme condition à l'homologation, présenter des renseignements scientifiques complémentaires.

Le présent document comporte un aperçu dans lequel sont résumés les principaux volets de l'évaluation, et une partie intitulée Évaluation scientifique, qui décrit en détail les évaluations du quinoxyfène et du fongicide Quintec sur le plan de la santé humaine, de l'environnement et de la valeur.

Fondements de la décision d'homologation de Santé Canada

L'objectif premier de la *Loi sur les produits antiparasitaires* est de prévenir les risques inacceptables pour les personnes et l'environnement liés à l'utilisation des produits antiparasitaires. Les risques pour la santé ou l'environnement sont considérés comme acceptables s'il existe une certitude raisonnable que l'utilisation des produits en question et l'exposition à ceux-ci ne causeront aucun tort à la santé humaine, aux générations futures ou à l'environnement, dans les conditions d'homologation proposées. La Loi exige aussi que les produits aient de la valeur lorsqu'ils sont utilisés conformément au mode d'emploi figurant sur leur étiquette respective. Ces conditions d'homologation comprennent notamment l'ajout de mises en garde particulières sur l'étiquette d'un produit en vue de réduire davantage les risques.

_

[«] Risques acceptables » conformément au paragraphe 2(2) de la *Loi sur les produits antiparasitaires*.

[«] Valeur » telle que définie au paragraphe 2(1) de la *Loi sur les produits antiparasitaires* : « L'apport réel ou potentiel d'un produit dans la lutte antiparasitaire, compte tenu des conditions d'homologation proposées ou fixées, notamment en fonction : a) de son efficacité; b) des conséquences de son utilisation sur l'hôte du parasite sur lequel le produit est destiné à être utilisé; et c) des conséquences de son utilisation sur l'économie et la société de même que de ses avantages pour la santé, la sécurité et l'environnement. »

Pour en arriver à une décision, l'ARLA applique des méthodes et des politiques d'évaluation des risques qui sont modernes et rigoureuses. Ces méthodes tiennent compte des caractéristiques uniques des sous-populations qui sont les plus sensibles chez l'humain (par exemple, les enfants) et des organismes présents dans l'environnement (par exemple, les organismes les plus sensibles aux contaminants environnementaux). Ces méthodes et ces politiques consistent également à examiner la nature des effets observés et à évaluer les incertitudes liées aux prévisions sur les répercussions découlant de l'utilisation des pesticides. Pour de plus amples renseignements sur la façon dont l'ARLA réglemente les pesticides, sur le processus d'évaluation et sur les programmes de réduction des risques, veuillez consulter la rubrique Pesticides et lutte antiparasitaire dans le site Web de Santé Canada à santecanada.gc.ca/arla.

Quinoxyfène

Le quinoxyfène est la matière active de la préparation commerciale, à savoir le fongicide Quintec. Ce fongicide à action préventive est destiné au marché du Canada pour la lutte contre l'oïdium sur les fruits à noyau, les vignes, les fraises ainsi que sur les melons, les courges, les citrouilles, la laitue et le houblon.

Considérations relatives à la santé

Les utilisations approuvées du quinoxyfène peuvent-elles nuire à la santé humaine?

Il est peu probable que le quinoxyfène nuise à la santé humaine s'il est utilisé conformément au mode d'emploi qui figure sur l'étiquette.

Il est possible d'être exposé au quinoxyfène par le régime alimentaire (consommation de nourriture et d'eau) ou par la manipulation et l'application du produit. Au cours de l'évaluation des risques pour la santé, l'ARLA tient compte de deux paramètres déterminants : les doses n'ayant aucun effet sur la santé et les doses auxquelles les personnes pourraient être exposées. Les doses utilisées dans l'évaluation des risques sont établies de façon à protéger les sous- populations humaines les plus sensibles (par exemple, les enfants et les femmes qui allaitent). Seules les utilisations entraînant une exposition à des doses bien inférieures à celles n'ayant eu aucun effet dans les essais sur les animaux sont considérées comme acceptables pour l'homologation.

Les études toxicologiques effectuées sur des animaux de laboratoire permettent de décrire les effets sur la santé qui pourraient découler de divers degrés d'exposition à un produit chimique et de déterminer la dose à laquelle aucun effet n'est observé. Les effets sur la santé constatés chez les animaux se produisent à des doses plus de 100 fois supérieures (et souvent beaucoup plus) aux doses auxquelles la population humaine est normalement exposée lorsque les produits contenant du quinoxyfène sont utilisés conformément au mode d'emploi figurant sur l'étiquette.

Le fongicide technique Quinoxyfène s'est révélé faiblement toxique par les voies orale et cutanée et par inhalation chez le rat. Il a causé chez le lapin une irritation oculaire peu sévère et n'a pas été irritant pour la peau. D'après les résultats du test de maximalisation, il serait un sensibilisant cutané. Par conséquent, les mots indicateurs « ATTENTION — IRRITANT POUR

LES YEUX » et « SENSIBILISANT CUTANÉ POTENTIEL » doivent figurer sur l'étiquette du produit.

La préparation commerciale, le fongicide Quintec, a causé une toxicité faible chez le rat après une exposition par voie orale, par voie cutanée ou par inhalation, ainsi qu'une irritation oculaire minime et une légère irritation cutanée chez le lapin. Il n'a pas été un sensibilisant cutané chez le cobaye. Par conséquent, aucun mot indicateur n'est requis sur l'étiquette de ce produit.

Le quinoxyfène n'a pas causé de cancer chez les animaux, n'a pas été génotoxique et n'a pas occasionné d'anomalie congénitale chez les jeunes pendant leur développement. De plus, aucune donnée n'indique qu'il causerait des dommages au système nerveux et aucun effet nocif pour la reproduction ou pour le développement fœtal n'a été constaté. Les premiers signes de toxicité observés chez les animaux exposés à des doses de quinoxyfène administrées quotidiennement sur une longue période ont été des effets sur le poids corporel et le foie. Chez le chien, les doses élevées ont provoqué des effets sur les érythrocytes (anémie).

Administré à des femelles gravides, le quinoxyfène a causé une augmentation des avortements spontanés seulement à des doses qui étaient toxiques pour les mères, ce qui indique que les fœtus ne sont pas davantage sensibles à cette substance que les animaux adultes.

L'évaluation des risques permet de protéger la santé humaine contre ces effets en faisant en sorte que le degré d'exposition humaine soit bien inférieur à la dose la plus faible ayant produit ces effets dans les essais sur les animaux.

Résidus dans l'eau et les aliments

Les risques liés à la consommation d'eau et d'aliments ne sont pas préoccupants.

D'après les valeurs estimatives de la quantité globale de quinoxyfène ingérée par le régime alimentaire (consommation d'aliments et d'eau), la population générale et les enfants de un ou deux ans (la sous-population susceptible d'ingérer le plus de quinoxyfène par rapport au poids corporel) devraient être exposés à moins de 2,1 % de la dose journalière admissible. Compte tenu des valeurs estimatives, le risque de toxicité chronique par le régime alimentaire lié à cette substance n'est préoccupant pour aucune sous-population. Le quinoxyfène n'est pas cancérogène; l'évaluation du risque de cancer lié à une exposition chronique par le régime alimentaire n'est donc pas nécessaire.

Les études effectuées sur les animaux n'ont révélé aucun effet aigu sur la santé. Une dose unique de quinoxyfène ne devrait pas causer d'effet aigu sur la santé dans la population générale, y compris les nourrissons et les enfants. La dose aiguë de référence n'a pas été établie. Il n'est donc pas nécessaire d'estimer la quantité aiguë de quinoxyfène ingérée par le régime alimentaire.

Conformément à la *Loi sur les aliments et drogues*, il est interdit de vendre des aliments falsifiés, c'est-à-dire des aliments qui contiennent des résidus de pesticide en concentration supérieure à la limite maximale de résidus (LMR). Les LMR des pesticides sont fixées aux fins de l'application de la *Loi sur les aliments et drogues* dans le cadre de l'évaluation des données scientifiques exigée par la *Loi sur les produits antiparasitaires*. Les aliments contenant un résidu de pesticide en concentration ne dépassant pas la LMR fixée ne présentent pas de risque inacceptable pour la santé.

Les essais sur les résidus menés dans l'ensemble du Canada et des États-Unis et dans lesquels le quinoxyfène a été appliqué sur des cerisiers, des pêchers, des pruniers, des fraisiers, des vignes, ainsi que sur des cultures de cantaloups, de houblon, de laitue et de courges d'hiver sont acceptables. Pour connaître les LMR de cette matière active, veuillez consulter l'Évaluation scientifique du présent rapport d'évaluation.

Risques professionnels liés à la manipulation du fongicide Quintec

Les risques professionnels ne sont pas préoccupants lorsque le fongicide Quintec est utilisé conformément au mode d'emploi figurant sur l'étiquette, qui comprend des mesures de réduction des risques.

Les agriculteurs et les spécialistes de la lutte antiparasitaire qui mélangent, chargent ou appliquent le fongicide Quintec, ainsi que les travailleurs agricoles qui pénètrent dans un champ fraîchement traité peuvent être exposés aux résidus de Quintec par contact direct avec la peau. Par conséquent, l'étiquette précise que toute personne qui mélange, charge ou applique le fongicide Quintec doit porter un vêtement à manches longues, un pantalon long, des chaussettes, des chaussures et des gants résistant aux produits chimiques. Comme précaution supplémentaire, on recommande aux travailleurs qui manipulent le produit concentré de se protéger avec une combinaison, des gants résistant aux produits chimiques, des lunettes à coques latérales et des bottes en caoutchouc. L'étiquette indique également que les travailleurs doivent attendre 12 heures après l'application avant d'entrer dans un champ traité. Compte tenu des énoncés d'étiquette, du nombre prévu d'applications et des prévisions relatives à la période d'exposition des travailleurs et des utilisateurs du produit, le risque pour ces personnes n'est pas préoccupant.

Pour les non-utilisateurs, l'exposition devrait être largement inférieure à celle des travailleurs; elle est donc considérée comme négligeable. Par conséquent, les risques pour les non-utilisateurs ne sont pas préoccupants.

Considérations relatives à l'environnement

Qu'arrive-t-il lorsque du quinoxyfène pénètre dans l'environnement?

Le quinoxyfène pose un risque pour les algues, les invertébrés ainsi que pour les poissons dulcicoles et estuariens. Par conséquent, des énoncés d'étiquette et des zones tampons sont requis pour protéger ces organismes et réduire au minimum l'exposition des milieux aquatiques. D'autres données seront demandées pour estimer les incertitudes à l'égard du risque de toxicité chronique pour les organismes aquatiques et du potentiel de bioaccumulation du produit de transformation principal du quinoxyfène, le 2-oxo-quinoxyfène.

Le quinoxyfène est susceptible de pénétrer dans l'environnement s'il est appliqué comme fongicide sur des plantes de grande culture. Il est faiblement soluble dans l'eau et la transformation abiotique, comme l'hydrolyse et la phototransformation, n'est pas une voie de dissipation importante du quinoxyfène dans l'environnement. Le quinoxyfène est peu volatil, ce qui indique qu'il n'est pas susceptible d'être aéroporté sur de longues distances. Le quinoxyfène est modérément persistant à persistant en milieu terrestre, et non persistant à légèrement persistant dans l'eau. Le produit de transformation principal, le 2-oxoquinoxyfène, se forme dans le sol et l'eau; sa persistance dans ces deux compartiments n'a pas été déterminée. Le produit de transformation principal, la 5,7-dichloro-4-hydroxyquinoléine (DCHQ), se forme dans le sol, surtout en milieu acide. Des données tirées d'études en laboratoires et des données de modélisation révèlent que le quinoxyfène et le 2-oxoquinoxyfène ne devraient pas être mobiles dans le sol et que leur potentiel de lessivage est faible. Dans les systèmes aquatiques, le quinoxyfène devrait se retrouver dans les sédiments. D'après une étude sur le terrain en milieu terrestre menée au Canada, le quinoxyfène est modérément persistant et demeure généralement dans la couche supérieure du sol, tout comme les principaux produits de transformation 2-oxoquinoxyfène et DCHQ. Des études de surveillance réalisées en Europe ont signalé une légère dissipation du quinoxyfène depuis le sol pendant l'hiver, ce qui indique que le composé peut être persistant en conditions naturelles.

Des études en laboratoire indiquent que le quinoxyfène peut se bioaccumuler. Les résidus ont été quantifiés en conditions naturelles dans les biotes terrestre et aquatique. De faibles bioaccumulations ont été observées dans le biote terrestre. Dans le biote aquatique, il n'a pas été possible d'évaluer la bioaccumulation faute de données sur la concentration du composé dans l'eau et sur les concentrations non détectées dans les sédiments. Des données additionnelles ont été demandées pour caractériser davantage le devenir et le potentiel de bioaccumulation du 2-oxoquinoxyfène, le principal produit de transformation formé dans l'eau.

Il existe un risque que les habitats terrestres et aquatiques non ciblés soient exposés au quinoxyfène par suite de la dérive de pulvérisation ou du ruissellement. Le quinoxyfène ne devrait pas poser de risque pour le biote terrestre. Il pourrait cependant présenter un risque pour des organismes aquatiques comme les invertébrés aquatiques, les poissons, les plantes aquatiques, les algues et les amphibiens. D'autres renseignements sont demandés pour la caractérisation approfondie des risques d'exposition au quinoxyfène pour les abeilles et les arthropodes utiles, ainsi que des risques chroniques liés au 2-oxo-quinoxyfène pour les organismes aquatiques.

Considérations relatives à la valeur

Quelle est la valeur du fongicide Quintec?

Le fongicide Quintec est homologué conformément au Programme d'homologation des usages limités à la demande des utilisateurs pour que les producteurs puissent avoir accès à un outil efficace pour combattre l'oïdium dans plusieurs cultures fruitières et légumières. Le fongicide Quintec a un mode d'action nouveau et très spécifique, et supprime les biotypes causant l'oïdium qui sont devenus résistants aux fongicides inhibiteurs de la déméthylation et contre ceux qui ont peut-être acquis une résistance aux strobilurines.

Mesures de réduction des risques

Sur les étiquettes des contenants de produits antiparasitaires homologués figure le mode d'emploi propre au produit, lequel comprend notamment des mesures de réduction des risques visant à protéger la santé humaine et l'environnement. Les utilisateurs sont tenus par la Loi de suivre le mode d'emploi.

Voici les principales mesures proposées pour l'étiquette du fongicide Quintec afin de réduire les risques possibles relevés dans le cadre de la présente évaluation.

Principales mesures de réduction des risques

Santé humaine

Comme ils pourraient être directement exposés au fongicide Quintec par contact cutané, les utilisateurs qui mélangent, chargent ou appliquent le fongicide doivent porter un vêtement à manches longues, un pantalon long, des chaussures, des chaussettes et des gants résistant aux produits chimiques. Comme précaution supplémentaire, on recommande aux travailleurs qui manipulent le produit concentré de se protéger avec une combinaison, des gants résistant aux produits chimiques, des lunettes à coques latérales et des bottes en caoutchouc. En outre, les énoncés habituels visant à protéger les travailleurs contre la dérive de pulvérisation pendant l'application ont été ajoutés à l'étiquette.

Environnement

Le quinoxyfène peut présenter un risque pour les organismes aquatiques comme les invertébrés aquatiques, les poissons, les plantes aquatiques, les algues et les amphibiens. Par conséquent, d'autres énoncés d'étiquette et des instructions relatives aux zones tampons pour les habitats aquatiques doivent figurer sur l'étiquette.

Autres renseignements scientifiques demandés

Bien que les risques et la valeur des produits aient été jugés acceptables pour autant que toutes les mesures de réduction des risques soient appliquées, le demandeur doit, comme condition à l'homologation, présenter des données scientifiques complémentaires. Pour de plus amples renseignements, veuillez consulter l'Évaluation scientifique du présent rapport d'évaluation ou l'Avis aux termes de l'article 12 concernant ces homologations conditionnelles. Le demandeur doit fournir les renseignements décrits ci-dessous.

Santé humaine

Des données sur la toxicité du 2-oxoquinoxyfène, un produit de transformation principal qui s'accumule dans l'environnement, sont requises pour la caractérisation du risque possible pour les personnes exposées au 2-oxoquinoxyfène par consommation d'eau potable.

Environnement

Le titulaire doit fournir les renseignements suivants :

Pour le composé d'origine, le quinoxyfène :

- une étude de toxicité aiguë par voie orale sur les abeilles;
- une étude de toxicité aiguë sur les acariens prédateurs (*Typhlodromus pyri*);
- une étude de toxicité aiguë sur des guêpes parasitoïdes (Aphidius rhopalosiphi).

Pour le produit de transformation 2-oxoquinoxyfène :

Niveau 1

- une étude de détermination du K_{oe} ;
- un essai de toxicité aux premiers stades de vie chez les poissons.

Selon les résultats obtenus, les renseignements ci-dessous pourraient être requis. Le cas échéant, le délai pour fournir les données suivantes sera déterminé après l'examen des études indiquées ci-dessus.

Pour le produit de transformation 2-oxoquinoxyfène et/ou le quinoxyfène : Niveau 2 (selon les résultats d'études à fournir au niveau 1)

- un essai de toxicité sur l'ensemble du cycle biologique des poissons avec le 2-oxoquinoxyfène;
- une étude en mésocosme aux fins de la détermination du potentiel de bioaccumulation et du devenir du quinoxyfène et du 2-oxoquinoxyfène.

Autres renseignements

Comme les homologations conditionnelles sont liées à une décision devant faire l'objet d'une consultation publique³, l'ARLA publiera un document de consultation lorsqu'une décision sera proposée à l'égard des demandes visant à convertir les homologations conditionnelles en homologations complètes ou à renouveler les homologations conditionnelles, selon la première éventualité.

Le public pourra consulter les données d'essai (à l'appui de la décision d'homologation) citées dans le présent rapport d'évaluation lorsque, après consultation publique, la décision aura été prise de convertir les homologations conditionnelles en homologations complètes ou de renouveler les homologations conditionnelles. Pour de plus amples renseignements, veuillez communiquer avec le Service de renseignements de l'ARLA par téléphone au 1-800-267-6315 ou par courriel à pmra.inforserv@hc-sc.gc.ca.

En vertu du paragraphe 28(1) de la *Loi sur les produits antiparasitaires*.

Évaluation scientifique

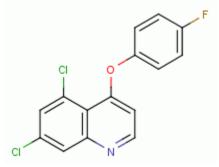
Quinoxyfène

1.0 Propriétés et utilisations de la matière active

1.1 Description de la matière active

Matière active quinoxyfène
Utilité fongicide

Nom chimique 5,7-dichloro-4-(4-fluorophénoxy)quinoléine


1. Union internationale oxyde de 5,7-dichloro-4-quinoléyle et de 4-fluorophényle de chimie pure et appliquée

2. Chemical Abstracts 5,7-dichloro-4-(4-fluorophénoxy)quinoléine Service (CAS)

Numéro CAS124495-18-7Formule moléculaire $C_{15}H_8Cl_2FNO$

Masse moléculaire 308,1

Formule développée

Pureté de la matière 92,10 %

active

1.2 Propriétés physicochimiques de la matière active et de la préparation commerciale

Produit technique : fongicide technique Quinoxyfène

Propriété	Résultat					
Couleur et état physique	Blanc cassé à beige, solide poudreux					
Odeur	Inodore					
Point de fusion (intervalle)	106,0 à 107,5	106,0 à 107,5 °C				
Point d'ébullition	Sans objet (sol	lide)				
Masse volumique	1,49 g/ml à 20	°C				
Pression de vapeur à 20 °C	$1.2 \times 10^{-5} \text{ Pa}$					
Spectre ultraviolet-visible	<u>Solution</u> Méthanol Méthanol	λ max (297,3 236,8		$\frac{\varepsilon (M^{-1}cm^{-1})}{9,49 \times 10^{3}}$ $6,49 \times 10^{4}$		
	Acide	317,4		$9,57 \times 10^3$		
		242,8		$5,05 \times 10^4$		
		210,6		$2,73 \times 10^4$		
	-	297,7		$8,62 \times 10^3$		
		236,9		$6,30 \times 10^4$		
Solubilité dans l'eau à 20 °C	0,116 mg/L (eau distillée)					
Solubilité dans les solvants			<u>Solubil</u>	<u>lité (g/100 ml)</u>		
organiques à 20 °C	Hexane			0,964		
	Dichlorométha	ane		58,9		
	Méthanol			2,15		
	Acétone			11,6		
	Éthanoate d'ét	thyle		17,9		
	Toluène			27,2		
	<i>n</i> -Octanol			3,79		
	Xylène			20,0		
Coefficient de partage <i>n</i> -	<u>pH</u>	•	$\log K_{\text{oe}}$	2		
octanol:eau (K_{oe})	6,66		4,66			
Constante de dissociation (pK _a)	3,56					
Stabilité (température, métaux)	Stable aux températures élevées ainsi qu'en présence de métal					
	et d'ions métalliques.					

Préparation commerciale : fongicide Quintec

Propriété	Résultat
Couleur	Blanc cassé
Odeur	Légère odeur de terre
État physique	Liquide
Type de préparation	Solution
Garantie	Quinoxyfène : 250 g/L
Description du contenant	Flacon, bidon ou fût en plastique, capacité de 0,1 L à récipient
	pour vrac
Masse volumique	1,097 g/ml à 20 °C
pH en dispersion aqueuse à 1 %	7,97
Pouvoir oxydant ou réducteur	Aucun pouvoir oxydant ou réducteur significatif
Stabilité à l'entreposage	Stable pendant deux ans à la température ambiante et pendant
	six mois à 40 °C dans des contenants en PEHD ou en PTPE.
Caractéristiques de corrosion	Non corrosif pour les matériaux de conditionnements.
Explosibilité	Non explosif par impact.
	Explosibilité thermique : une réaction exothermique se produit à
	290 °C.

1.3 Mode d'emploi

Quintec est un fongicide à action préventive à utiliser sur les vignes, les fruits à noyau, les fraises, le houblon, la laitue, les courges, les citrouilles et les melons. Il s'applique à une dose de 240 à 500 ml de produit/ha (60 à 125 g m.a./ha), pour un maximum de cinq applications sur les vignes, la laitue et les fruits à noyau, de quatre applications sur les melons, les courges, les citrouilles et les fraises et de deux applications sur le houblon.

Le fongicide Quintec supprime ou réprime les agents pathogènes qui causent l'oïdium : *Uncinula necator* (sur les vignes), *Sphaerotheca fuliginea* (sur les melons, les courges et les citrouilles), *Erysiphe cichoracearum* (sur la laitue), *Podosphaera clandestina* et *Sphaerotheca pannosa* (sur les fruits à noyau) et *Sphaerotheca macularis* (sur les fraises et le houblon).

1.4 Mode d'action

Le quinoxyfène appartient à une nouvelle classe de fongicides, les quinoléines. Le quinoxyfène perturbe l'émission des signaux cellulaires propres aux champignons, ce qui nuit au bon déroulement des premiers stades du cycle biologique de l'agent pathogène responsable de l'oïdium (par exemple, germination, début de la formation du tube germinatif ou formation de l'appressorium). Ce mode d'action diffère de celui des deux principales classes de fongicides synthétiques agissant sur un seul site (par exemple, les inhibiteurs de la déméthylation et les strobilurines) employés pour combattre l'oïdium.

Après l'application foliaire, le quinoxyfène pénètre dans la feuille, se liant de préférence aux surfaces lipophiles comme la cire de la cuticule des feuilles. Le quinoxyfène est mobile dans la cuticule des végétaux, se distribuant du point d'application aux tissus des feuilles, des tiges et des fruits adjacents par diffusion locale.

2.0 Méthodes d'analyse

2.1 Méthodes d'analyse de la matière active

Les méthodes fournies pour le dosage de la matière active et des impuretés dans le fongicide technique Quinoxyfène ont été validées et jugées acceptables.

2.2 Méthodes de dosage de la préparation

La méthode présentée pour le dosage de la matière active dans la préparation a été validée et jugée acceptable comme méthode de dosage réglementaire.

2.3 Méthodes de dosage des résidus

Pour les compartiments environnementaux, des méthodes de chromatographie liquide à haute performance couplée à la détection en ultraviolet (CPLHP-UV) et de chromatographie en phase gazeuse couplée à la discrimination de masse (CPG-DDM) ou à la spectrométrie de masse en tandem (CPG-SM/SM) ont été mises au point et proposées aux fins de production de données et d'application de la loi. Ces méthodes satisfont aux exigences en matière de sélectivité, d'exactitude et de précision, à la limite de quantification de chacune des méthodes. Les taux de récupération obtenus dans les compartiments environnementaux se sont révélés acceptables (70 à 120 %). Pour une brève description des méthodes de dosage des résidus, voir le tableau 1 de l'annexe I.

Pour les denrées d'origine végétale, une méthode de chromatographie en phase gazeuse avec discrimination de masse (CPG-DDM) a été élaborée et proposée aux fins de production de données et d'application de la loi. Cette méthode satisfait aux exigences en matière de spécificité, d'exactitude et de précision, à la limite de quantification de la méthode. Les taux de récupération obtenus dans les matrices végétales se sont révélés acceptables (70 à 120 %). La méthode proposée aux fins d'application de la loi a été validée par un laboratoire indépendant à l'aide d'échantillons de houblon, soit la matrice posant le plus de difficultés pour l'extraction. Le rendement satisfaisant de la méthode d'extraction a été établi par une analyse d'échantillons radiomarqués de concombre et de raisin réalisée à l'aide de la méthode réglementaire.

3.0 Effets sur la santé humaine et animale

3.1 Résumé toxicologique

L'ARLA a procédé à l'examen approfondi de la base de données toxicologiques élaborée pour le quinoxyfène. Elle estime que la base de données, formée par l'ensemble des études de toxicité requises pour l'évaluation du danger, est complète. Les études ont été réalisées conformément à des protocoles d'essai reconnus à l'échelle internationale et à des bonnes pratiques de laboratoire. Les données sont de grande qualité sur le plan scientifique, et la base de données est jugée adéquate pour établir la plupart des effets toxiques pouvant découler de l'exposition à ce produit chimique utilisé pour la lutte antiparasitaire.

Le fongicide technique Quinoxyfène s'est révélé faiblement toxique par les voies orale et cutanée et par inhalation chez le rat. Il a causé une irritation oculaire peu sévère, mais aucune irritation cutanée chez le lapin. Il serait un sensibilisant cutané d'après les résultats du test de maximalisation.

Le fongicide Quintec s'est révélé faiblement toxique par les voies orale et cutanée chez le rat. La demande d'exemption relative à la présentation d'une étude de toxicité aiguë par inhalation a été acceptée, et la toxicité aiguë du fongicide Quintec par inhalation a été jugée faible. Le fongicide Quintec a causé une irritation oculaire minime et une irritation cutanée légère chez le lapin. D'après les résultats au test de Buehler, il n'est pas un sensibilisant cutané.

Chez le rat, le quinoxyfène a été rapidement absorbé, largement métabolisé et principalement éliminé dans les excréments. Bien que la distribution du quinoxyfène soit assez uniforme, les concentrations ont été les plus élevées dans les matières grasses, les ovaires, le foie, les reins, le tube digestif et la carcasse. Le quinoxyfène a été largement métabolisé et la principale voie métabolique faisait intervenir, en grande partie, une rupture de la liaison diaryl-éther du composé d'origine, donnant lieu à la formation de conjugués, labiles en milieu acide, du 4-fluorophénol (4-FP) et de la 5,7-dichloro-4-hydroxyquinoléine (DCHQ), et, dans une moindre mesure, de DCHQ et de 4-FP sous forme libre. Les principaux métabolites trouvés dans la bile étaient des conjugués glucuronidés et/ou sulfatés de deux isomères de l'hydroxyquinoxyfène dont l'hydroxyle était situé sur le noyau fluorophényle. Le composé d'origine n'a pas été décelé dans l'urine, mais une quantité infime a été mesurée dans la bile. Le composé d'origine était présent dans les excréments; les formes non conjuguées des deux mêmes isomères de l'hydroxyquinoxyfène dont l'hydroxyle était situé sur le noyau fluorophényle ont été détectées dans la bile. Aucune différence apparente n'a été constatée dans le métabolisme et l'élimination du quinoxyfène entre les deux sexes ou entre une exposition unique et répétée.

Le 5,7-dichloro-4-(4-fluorophénoxy)-2(1H)-quinolone, aussi appelé « 2-oxoquinoxyfène », est l'un des principaux produits de transformation s'accumulant dans l'environnement qui a été décelé dans les études sur le devenir dans l'environnement et les études prospectives de surveillance des eaux souterraines. D'après les résultats de ces études, ce produit de transformation devrait atteindre les eaux souterraines lorsqu'il est employé conformément au mode d'emploi figurant sur l'étiquette. Comme le 2-oxoquinoxyfène n'a été décelé qu'en concentrations très faibles (0,012 % de la dose administrée) dans les excréments de rats dans une

étude de pharmacocinétique, il a été impossible de caractériser son profil toxicologique à l'aide de la base de données du composé d'origine. Par conséquent, d'autres données sont requises.

Aucune toxicité générale ou cutanée liée au traitement n'a été observée chez le rat après 28 jours d'exposition par la voie cutanée jusqu'à la dose limite.

Après des administrations répétées de quinoxyfène par le régime alimentaire, on a observé les principaux effets liés au traitement suivants : diminution du poids corporel et de la prise pondérale chez toutes les espèces soumises à l'essai, effets sur le foie chez la souris et le rat et anémie régénérative (hémolytique) chez le chien aux doses élevées. Dans le foie, les principaux effets chez les rongeurs ont consisté en une augmentation du poids de l'organe associée à une vacuolisation, à une nécrose et/ou à une hypertrophie hépatocellulaires. Dans une étude de 90 jours réalisée chez le rat, la fréquence et l'ampleur de l'augmentation du poids du foie et de l'hypertrophie hépatocellulaire sont demeurées semblables après une période de récupération de quatre semaines. Chez le rat et le chien, des cas de testicules petits/atrophiques et/ou de diminution de la spermatogenèse liés au traitement ont été recensés aux doses auxquelles une hépatotoxicité a été observée. Aucun effet à long terme n'a été décelé après le traitement par le quinoxyfène. Les rats ont été plus sensibles que les souris et les chiens à la toxicité induite par le quinoxyfène.

Dans une étude de cancérogénicité de 80 semaines menée chez la souris, aucun effet lié au traitement n'a été constaté outre une diminution de la prise pondérale chez les deux sexes et une réduction de l'efficacité alimentaire chez les femelles. Aucun signe de cancérogénicité n'a été décelé. Dans une étude combinée de toxicité chronique et de cancérogénicité chez le rat échelonnée sur deux ans, une diminution de la prise pondérale et de la consommation d'aliments a été observée chez les deux sexes et une néphropathie chronique progressive, chez les mâles. Les principaux effets rénaux liés au traitement ont consisté en une glomérulopathie chronique progressive modérée, une augmentation de l'azote uréique du sang et une surface rénale rugueuse. Rien n'indique que cette substance ait un potentiel cancérogène.

Dans une étude de toxicité pour la reproduction sur deux générations, aucun effet nocif n'a été observé chez les animaux de la génération parentale. Une diminution du poids corporel des petits (mâles et femelles) et de la prise pondérale globale, liée au traitement, a été constatée à la dose élevée dans les portées des générations F1a, F1b et F2 pendant la lactation. Dans le groupe soumis au traitement, le poids corporel des petits après le sevrage était comparable à celui des petits des groupes témoins. Les ratons commencent souvent à manger de la nourriture autour du jour postnatal 17 et deviennent ainsi exposés au composé à la fois par le lait maternel et par les aliments consommés, ce qui peut entraîner une plus grande absorption du composé par unité de poids corporel par rapport aux adultes. Le résultat est une augmentation probable de la toxicité attribuable à une dose plus élevée dans la circulation générale plutôt qu'à une sensibilité liée à l'âge. Bien que cela puisse expliquer la diminution du poids corporel constatée à la fin de la période de lactation, l'effet sur le poids corporel observé plus tôt, avant le sevrage (jours 1 à 14 de la période de lactation), est probablement apparu avant que les petits ne consomment des aliments traités. Même s'ils étaient liés au traitement, ces effets étaient rares et leur intensité semblable à celle des effets sur le poids corporel des adultes signalés dans d'autres études de toxicité réalisées à des doses comparables. Par conséquent, les effets sur le poids corporel chez

les petits, constatés à des doses non toxiques pour les mères, ont été jugés peu préoccupants sur le plan toxicologique.

Dans une étude de la toxicité pour le développement chez le rat, aucune toxicité pour les mères ou pour le développement n'a été observée jusqu'à la dose limite. Dans une étude de toxicité pour le développement réalisée chez le lapin, la toxicité maternelle s'est manifestée par une diminution de la prise pondérale et de la consommation d'aliments, des signes cliniques (diminution d'excréments produits, matières fécales molles, souillure de la région périnéale, présence de sang ou de sang dans l'urine dans le plateau de la cage) et une augmentation des cas d'avortements spontanés en fin de gestation aux doses élevées. Aucun signe de tératogénicité n'a été observé chez le lapin.

Aucun signe de mutagénicité associée au quinoxyfène n'a été relevé dans la série de tests de génotoxicité effectués in vitro et in vivo évaluant si la substance peut induire des mutations géniques et des aberrations chromosomiques.

Le quinoxyfène ne s'est pas révélé neurotoxique dans les études de toxicité aiguë et de neurotoxicité d'un an réalisées chez le rat. Le seul effet lié au traitement signalé dans l'étude de neurotoxicité d'un an consistait en une légère diminution de la prise pondérale chez les femelles. Rien dans la base de données toxicologiques ne justifie la réalisation d'une étude de neurotoxicité pour le développement.

Les résultats des tests de toxicité aiguë et de toxicité chronique réalisés sur des animaux de laboratoire avec le fongicide technique Quinoxyfène et sa préparation commerciale, ainsi que les critères d'effet toxicologique destinés à l'évaluation des risques pour la santé humaine, sont présentés dans les tableaux 2, 3 et 4 de l'annexe I.

Dans l'évaluation des risques associés à une exposition professionnelle et à une exposition par le régime alimentaire aux produits contenant du quinoxyfène, le facteur d'incertitude standard de 100 a été appliqué pour tenir compte des extrapolations interspécifiques et de la variabilité intraspécifique.

3.1.1 Caractérisation des risques selon la Loi sur les produits antiparasitaires

Dans le cas de l'évaluation des risques liés aux résidus pouvant être présents dans les aliments ou être issus de l'utilisation de produits à l'intérieur ou à l'extérieur des habitations ou des écoles, la Loi sur les produits antiparasitaires prescrit l'application d'un facteur additionnel de dix afin de tenir compte du caractère exhaustif des données relatives à l'exposition et à la toxicité chez les nourrissons et les enfants, ainsi que de la toxicité possible en période prénatale et postnatale. Un facteur différent peut convenir s'il s'appuie sur des données scientifiques fiables.

En ce qui concerne l'exhaustivité de la base de données toxicologiques, une grande quantité de données relatives au quinoxyfène ont été fournies, y compris des études de toxicité pour le développement chez le rat et le lapin et une étude de toxicité pour la reproduction chez le rat portant sur deux générations.

En ce qui concerne les effets utiles à l'évaluation des risques pour les nourrissons et les enfants, aucun signe de sensibilité accrue n'a été constaté après l'exposition in utero chez le rat et le lapin dans les études de toxicité pour le développement. Les avortements spontanés relevés dans une étude de toxicité pour le développement chez le lapin sont survenus en fin de gestation et ont été associés à une toxicité maternelle induite aux doses élevées. Bien que l'effet observé ait été considéré comme un critère d'effet sérieux, la présence de toxicité maternelle a atténué les préoccupations. Lorsque la dose sans effet nocif observé (DSENO) établie pour les effets sur le développement est comparée à la DSENO utilisée pour l'évaluation des risques pour la santé humaine, un facteur de dix est appliqué. Dans l'étude de toxicité pour la reproduction chez le rat, une diminution du poids corporel et de la prise pondérale a été décelée chez les descendants pendant la lactation. Bien que les effets observés se soient produits à des doses qui ne sont pas toxiques pour les mères, les préoccupations se sont atténuées en raison de la faible intensité et de la nature des effets, de l'absence d'effet sur le poids corporel des descendants après le sevrage et de la présence d'effets similaires sur le poids corporel chez les adultes constatées à des doses comparables dans d'autres études. Par conséquent, la toxicité prénatale et postnatale associée au quinoxyfène est peu préoccupante. Étant donné le faible niveau de préoccupation relatif à la toxicité prénatale et postnatale et à l'exhaustivité de la base de données, le facteur prescrit par la Loi sur les produits antiparasitaires a été réduit, passant de 10 à 1.

3.2 Détermination de la dose aiguë de référence

La dose aiguë de référence (DARf) pour le quinoxyfène n'a pas été déterminée pour la population générale (y compris les nourrissons, les enfants et les personnes de sexe féminin âgées de 13 à 49 ans), car aucun critère d'effet préoccupant attribuable à une seule exposition n'a été défini dans les études de toxicité par voie orale.

3.3 Détermination de la dose journalière admissible

Pour établir la dose journalière admissible (DJA) recommandée pour le quinoxyfène, on a tenu compte de la DSENO de 20 mg/kg p.c./jour calculée dans l'étude combinée de toxicité chronique et de cancérogénicité de deux ans menée chez le rat. Cette valeur est également étayée par les DSENO calculées dans l'étude de toxicité de 12 mois chez le chien et l'étude de toxicité pour la reproduction chez le rat, soit 20 mg/kg p.c./jour. Dans l'étude de toxicité chronique sélectionnée, la diminution du poids corporel et les anomalies histopathologiques du foie (hypertrophie, nécrose légère et augmentation de la taille des hépatocytes), liées au traitement, sont survenues à la dose minimale entraînant un effet nocif observé (DMENO) de 80 mg/kg p.c./jour. Des facteurs d'incertitude de 10 pour les extrapolations interspécifiques et de 10 pour la variabilité intraspécifique ont été appliqués au calcul de la DJA. Comme il est mentionné à la section 3.1.1, Caractérisation des risques selon la *Loi sur les produits antiparasitaires*, le facteur prescrit par cette même Loi a été réduit à 1, ce qui donne un facteur global d'évaluation (FG) de 100.

La DJA est calculée selon l'équation suivante :

DJA =
$$\underline{\text{DSENO}}$$
 = $\underline{20 \text{ mg/kg p.c./jour}}$ = 0,2 mg/kg p.c./jour de quinoxyfène FG 100

3.4 Évaluation des risques en contextes professionnels et domestiques

3.4.1 Critères d'effet toxicologique

L'exposition professionnelle au fongicide Quintec se produit essentiellement par voie cutanée et par inhalation et se caractérise par une durée courte à intermédiaire.

Exposition cutanée, de durée courte à intermédiaire

Une étude de toxicité cutanée de 21 jours menée chez le rat valable pour le quinoxyfène a été considérée comme l'étude la plus appropriée pour évaluer les risques de toxicité par voie cutanée. Dans cette étude, la DSENO était de 1 000 mg/kg p.c./j, la dose la plus élevée utilisée dans l'essai. On estime que ce critère d'effet permet de protéger tous les sous-groupes de la population, y compris les nourrissons allaités et les enfants à naître dont les mères sont soumises à une exposition professionnelle. L'application des facteurs d'incertitude usuels (de 10 pour l'extrapolation interspécifique et de 10 pour la variabilité intraspécifique) donne une marge d'exposition (ME) cible de 100.

Exposition par inhalation, de durée courte à intermédiaire

Il n'existait aucune étude de toxicité par inhalations répétées valable pour le quinoxyfène. Comme la DSENO de 20 mg/kg p.c./jour établie pour les descendants dans l'étude de toxicité pour la reproduction par voie orale était la DSENO la plus élevée associée au critère d'effet préoccupant (diminution du poids corporel), on estimait que ce critère d'effet était le plus approprié pour l'évaluation des risques de toxicité par inhalation. Le choix du critère d'effet était fondé sur la diminution du poids corporel et de la prise pondérale chez les petits F1 et F2, pendant la lactation, à la DMENO de 100 mg/kg p.c./jour. La ME cible est de 100, pour les motifs expliqués plus haut dans la section portant sur la sélection du critère d'effet par la voie cutanée. On estime que ce critère d'effet et cette ME permettent de protéger tous les sousgroupes de la population, y compris les nourrissons allaités et les enfants à naître dont les mères sont soumises à une exposition professionnelle.

3.4.2 Exposition professionnelle et risques connexes

3.4.2.1 Exposition et risques connexes pour les travailleurs qui mélangent, chargent et appliquent

Les travailleurs peuvent être exposés au fongicide Quintec pendant le mélange, le chargement et l'application du produit. Les valeurs d'exposition professionnelle de ces travailleurs par voie cutanée et par inhalation ont été estimées à l'aide de la Pesticide Handlers Exposure Database (PHED), car les données propres au produit chimique destinées à l'évaluation de l'exposition humaine pendant la manipulation du pesticide n'ont pas été présentées.

L'exposition des travailleurs qui mélangent, chargent et appliquent le fongicide Quintec devrait être d'une durée courte à intermédiaire et se produire principalement par voie cutanée et par inhalation. Les valeurs d'exposition estimatives ont été calculées pour les travailleurs appliquant le fongicide Quintec à l'aide d'un pulvérisateur pneumatique sur les arbres fruitiers à noyau, le houblon et la vigne, et à l'aide d'une rampe d'aspersion sur les fraisiers, les melons, les

citrouilles, les courges d'hiver, les laitues pommées, les laitues frisées et le houblon. Pour ces calculs, on suppose que les travailleurs portent un vêtement à manches longues, un pantalon long et des gants résistant aux produits chimiques.

L'exposition par voie cutanée a été estimée par couplage des valeurs de l'exposition unitaire avec la quantité de produit manipulée par jour. Aucune valeur d'absorption cutanée n'a été requise, car le critère d'effet par voie cutanée est fondé sur une étude de toxicité cutanée. L'exposition par inhalation a été estimée par couplage des valeurs de l'exposition unitaire avec la quantité de produit manipulée par jour, le taux d'absorption par inhalation étant de 100 %. L'exposition a été exprimée en mg/kg p.c./jour et normalisée pour un adulte d'un poids corporel de 70 kg.

Pour obtenir les ME, on a comparé les valeurs estimatives d'exposition avec les valeurs des critères d'effet toxicologique (DSENO). La ME cible est 100. Toutes les ME ont dépassé la ME cible établie pour les travailleurs qui utilisent (mélangent, chargent ou appliquent) le fongicide et portent un vêtement à manches longues, un pantalon long et des gants résistant aux produits chimiques (tableau 3.4.1).

Tableau 3.4.1 Valeurs estimatives d'exposition par voie cutanée et par inhalation, et marges d'exposition dérivées pour les travailleurs qui mélangent, chargent et appliquent le produit

Cultures	Dose d'application (kg m.a./ha)	Superficie traitée/jour (ha)	Exposition cutanée estimée ^a (mg/kg p.c/jour)	Exposition par inhalation estimée ^a (mg/kg p.c/jour)	ME cutanée ^b	ME inhalation ^c
Melons, citrouilles, courges d'hiver	0,11	26	0,0034	0,0001	291 000	191 000
Vigne	0,075	20	0,0131	0,0002	76 100	126 000
Houblon (agriculteur; pulvérisateur pneumatique)	0,125	20	0,0219	0,0003	45 700	75 700
Houblon (agriculteur; rampe d'aspersion)	0,125	26	0,0039	0,0001	256 000	168 000
Houblon (spécialiste de la lutte antiparasitaire; rampe d'aspersion)	0,125	360	0,0541	0,0016	18 500	12 200
Laitues pommées et laitues frisées	0,06	20	0,0014	0,00001	693 000	456 000
Fraises	0,11	20	0,0026	0,0001	378 000	249 000
Fruits à noyau	0,125	20	0,0219	0,0003	45 700	75 700

^a Exposition estimée =

Exposition selon la PHED (μg m.a./kg m.a. manipulée) × dose (kg m.a. manipulée) × STJ (ha) poids corporel (kg) × 1 000 μg /mg

où STD: superficie traitée par jour

^b ME cutanée = 1 000 mg/kg p.c./j ÷ exposition cutanée (mg/kg p.c./j); ME cible = 100.

^c ME inhalation = 20 mg/kg p.c./j ÷ exposition par inhalation (mg/kg p.c./j); ME cible = 100.

3.4.2.2 Exposition et risques connexes pour les travailleurs qui entrent dans un site traité

Les travailleurs qui entrent dans des champs traités pour y accomplir leurs tâches habituelles après le traitement pourraient être exposés aux résidus de quinoxyfène présents sur le feuillage. L'exposition devrait être de durée courte à intermédiaire et se produire principalement par voie cutanée. Étant donné qu'aucune valeur de résidu foliaire à faible adhérence (RFFA) propre à cette substance chimique n'a été fournie, on a appliqué aux RFFA une valeur par défaut représentant 20 % de la dose d'application le jour de l'application et supposé un taux de dissipation quotidien de 10 % afin d'estimer le risque pour les travailleurs qui viendraient en contact avec le feuillage traité. Il est possible d'effectuer un maximum de cinq applications sur les vignes et les arbres fruitiers à noyau, de quatre applications sur les fraisiers, les melons, les citrouilles, les courges d'hiver et les laitues, et de deux applications sur le houblon. On a utilisé l'intervalle entre les traitements le moins long (10 ou 14 jours, selon la plante cultivée). Pour chaque plante cultivée, la valeur des RFFA le jour de la dernière application pour la dose approuvée la plus élevée a été employée pour l'estimation de l'exposition post-application. Les valeurs d'absorption cutanée n'étaient pas requises, car le critère d'effet cutané a été établi à l'aide d'une étude de toxicité cutanée. L'exposition post-application a été calculée selon l'équation suivante :

Exposition =
$$\frac{\text{RFFA (\mu g/cm}^2) \times \text{coefficient de transfert (cm}^2/\text{h}) \times \text{dur\'ee de l'exposition (8 h)}}{\text{poids corporel (kg)} \times 1 000 \ \mu \text{g/mg}}$$

Comme démarche de premier niveau, on a utilisé le coefficient de transfert (CT) le plus élevé pour chaque plante cultivée afin d'estimer l'exposition post-application en fonction de chaque groupe de cultures (tableau 3.4.2). Les ME cutanées ont été calculées en fonction d'une DSENO de 1 000 mg/kg p.c./jour. La ME cible est 100. Les ME dépassent la valeur cible de 100 le jour de la dernière application.

Tableau 3.4.2 Marges d'exposition post-application estimées pour le fongicide Quintec

Culture	Activité	Exposition ^a	$\mathbf{ME^b}$
		(mg/kg p.c./jour)	
Melons, citrouilles, courges d'hiver	Récolte manuelle, effeuillage, taille manuelle, éclaircissage, tournage (des fruits)	0,0951	10 500
Raisin	Incision annulaire, écimage-rognage	0,4288	2 330
Houblon	récolte manuelle, récolte mécanique, élagage des rameaux latéraux à la base, conduite	0,0702	14 200
Laitues pommées et laitues frisées	Récolte manuelle, taille manuelle, éclaircissage	0,0519	19 300
Fraises	Récolte manuelle, éclaircissage, taille manuelle, palissage	0,0571	17 500
Fruits à noyau	Éclaircissage	0,1309	7 640

^a Estimée à l'aide de l'équation suivante :

RFFA le jour de la dernière application (µg/cm²) × CT (cm²/h) × 8 h/jour (de travail) 70 kg (p.c.)

^b DSENO/exposition; ME cible = 100.

3.4.3 Exposition et risques connexes en contexte domestique

Comme aucun usage domestique n'est prévu pour le fongicide Quintec, l'évaluation des risques liés à cet usage n'était pas nécessaire.

3.4.3.1 Exposition des non-utilisateurs et risques connexes

L'exposition des non-utilisateurs devrait être négligeable, vu le risque minime de dérive. Le quinoxyfène n'est appliqué que sur des espèces agricoles et seulement lorsque le risque de dérive vers des zones habitées ou des zones d'activité humaine (par exemple, maisons, chalets, écoles et aires de récréation) est faible, compte tenu de la vitesse et de la direction du vent, de l'inversion ou non des températures, du matériel d'application et des réglages du pulvérisateur.

3.5 Évaluation de l'exposition aux résidus par le régime alimentaire

3.5.1 Résidus dans les denrées d'origine végétale ou animale

Aux fins de l'évaluation du risque et de l'application de la loi, le résidu défini dans les produits d'origine végétale est le quinoxyfène. La méthode d'analyse réglementaire par CPL-DDM est valable pour la quantification des résidus de quinoxyfène dans les matrices végétales. Les résidus de quinoxyfène se sont révélés stables à l'entreposage au congélateur à une température de - 18 °C pendant six mois dans les pommes, les abricots, les pêches, les fraises, les artichauts et les courgettes, et pendant 12 mois dans le raisin. Après la transformation des produits alimentaires bruts, les résidus de quinoxyfène n'étaient concentrés que dans les produits transformés de pruneaux secs (par un facteur de 3,5). Comme aucune des cultures du profil d'emploi actuel n'est utilisée dans le régime alimentaire des animaux d'élevage, les matrices animales ne devraient pas contenir de quantités décelables de résidus. Les essais contrôlés sur les résidus menés à divers endroits aux États-Unis et au Canada avec des préparations commerciales contenant du quinoxyfène appliquées à des doses approuvées ou à des doses excessives, dans ou sur les cantaloups, les cerisiers, les vignes, le houblon, les laitues, les pêchers, les pruniers, les fraisiers et les courges d'hiver suffisent à étayer les limites maximales de résidus proposées.

3.5.2 Concentrations dans l'eau potable

À l'aide d'une modélisation informatique, on a estimé les concentrations dans l'environnement (CEE) de deux résidus combinés (le quinoxyfène et un produit de transformation, le 2-oxoquinoxyfène⁴) dans les sources possibles d'eau potable (eaux souterraines et eaux de surface). Un aperçu de la méthode est présenté dans le document de principes de l'ARLA SPN2004-01, Estimation de la concentration de pesticides dans l'eau dans le cadre de l'évaluation de l'exposition par le régime alimentaire. Pour calculer les CEE des résidus combinés dans les eaux souterraines, on a utilisé le modèle LEACHM permettant de simuler le lessivage dans un sol stratifié sur une période de 50 ans. Les concentrations obtenues à l'aide de ce modèle sont calculées en fonction du flux, ou de la migration, du pesticide dans des eaux souterraines peu profondes au fil du temps. Les CEE des résidus combinés dans les eaux de

Jusqu'en 2005, un produit de transformation principal du quinoxyfène avait été identifié comme étant le 3-OH-quinoxyfène. Depuis, il a été établi qu'il s'agissait du 2-oxoquinoxyfène.

surface ont été calculées à l'aide des modèles PRZM et EXAMS, lesquels permettent de simuler le ruissellement d'un pesticide depuis un champ traité jusqu'à un plan d'eau adjacent, ainsi que le devenir du pesticide dans ce plan d'eau. Les concentrations du pesticide dans les eaux de surface ont été estimées pour deux types de sources d'eau potable vulnérables : un petit réservoir et une mare-réservoir.

Dans la présente évaluation, les résidus combinés du composé d'origine et du produit de transformation 2-oxoquinoxyfène ont été utilisés pour simuler une contamination de l'eau potable. Les demi-vies dans le sol et l'eau ont donc été calculées pour les deux résidus combinés.

Une évaluation de niveau 1 a été réalisée pour l'eau potable, fondée sur des hypothèses prudentes quant au devenir dans l'environnement, à la dose d'application, au calendrier d'application et aux paramètres géographiques. Les données d'entrée du modèle sont présentées dans le tableau 8 de l'annexe I. Cette estimation de niveau 1 de la CEE devrait permettre dans le futur d'étendre l'utilisation à d'autres cultures à cette dose d'application. Huit dates d'application de départ, en mai et en juin, ont été utilisées pour la simulation. Dans tous les scénarios, les simulations ont porté sur une période de 50 ans. Les valeurs de CEE les plus élevées obtenues dans toutes les simulations sélectionnées sont présentées dans le tableau 9 de l'annexe I.

Pour obtenir des précisions concernant les données d'entrée et les calculs utilisés pour la simulation dans l'eau, veuillez en faire la demande.

3.5.3 Évaluation des risques par le régime alimentaire

L'évaluation des risques de toxicité chronique induite par le régime alimentaire a été réalisée à l'aide du logiciel Dietary Exposure Evaluation Model-Food Commodity Intake Database (DEEM-FCID, version 2.14), lequel fait appel à des données à jour sur la consommation d'aliments provenant des Continuing Surveys of Food Intakes by Individuals (CSFII) du département de l'Agriculture des États-Unis (USDA) des années 1994 à 1996 et de 1998.

3.5.3.1 Résultats relatifs à l'exposition chronique par le régime alimentaire et caractérisation de cette exposition

Aux fins de l'évaluation de base de l'exposition chronique, on a utilisé les LMR fixées pour toutes les plantes cultivées. Selon l'évaluation de base, l'exposition chronique par le régime alimentaire découlant de toutes les utilisations appuyées du quinoxyfène sur les denrées représente 1,3 % de la DJA pour l'ensemble de la population. L'exposition globale associée à la consommation d'aliments et d'eau est jugée acceptable. L'ARLA estime que l'exposition chronique au quinoxyfène attribuable à la consommation d'aliments et d'eau représente 1,3 % de la DJA (0,002572 mg/kg p.c./j) pour l'ensemble de la population. Les valeurs d'exposition et de risque sont les plus élevées pour les enfants âgés d'un ou deux ans et représentent 2,1 % de la DJA (0,004190 mg/kg p.c./j).

3.5.3.2 Résultats et caractérisation de l'exposition aiguë par le régime alimentaire

Aucun critère d'effet toxicologique attribuable à une exposition unique n'a été identifié pour la population générale, y compris les nourrissons et les enfants. Par conséquent, aucune évaluation de l'exposition aiguë par le régime alimentaire n'a été menée.

3.5.4 Exposition et risques globaux

Le risque global lié au quinoxyfène ne comprend que l'exposition par la nourriture et l'eau potable; il n'existe aucun usage domestique. Les risques globaux ont été déterminés en fonction de critères d'effet toxicologique associés à une exposition chronique. Aucun critère d'effet associé à une exposition aiguë n'a été mis en évidence pour la population générale, y compris les nourrissons et les enfants.

3.5.5 Limites maximales de résidus

Tableau 3.5.1 Limites maximales de résidus proposées

Denrées	LMR recommandée (ppm)
Laitue frisée	19,0
Laitue pommée	7,0
Fraises	0,9
Groupe de cultures 12-09 : fruits à noyau	0,7
Citrouilles	0,2
Courges d'hiver	0,2
Sous-groupe de cultures 9A : cucurbitacées (melons)	0,08

Pour de plus amples renseignements sur la situation internationale et l'incidence commerciale de ces LMR, veuillez consulter l'annexe II.

La nature des résidus dans les matrices d'origine animale et végétale, les méthodes de dosage, les données des essais sur le terrain et les valeurs estimatives des risques découlant d'une exposition chronique par le régime alimentaire sont présentées aux tableaux 1, 5 et 6 de l'annexe I.

4.0 Effets sur l'environnement

4.1 Devenir et comportement dans l'environnement

D'après ses propriétés physicochimiques, le quinoxyfène est modérément soluble dans l'eau, la solubilité diminuant généralement lorsque le pH augmente. Il est peu probable qu'il se volatilise d'un sol humide dans des conditions naturelles, mais il pourrait être légèrement volatil à la surface de l'eau. Comme le quinoxyfène est considéré comme faiblement volatil, la volatilisation dans l'atmosphère ne devrait pas être la principale voie de dissipation. Le quinoxyfène ne devrait pas être transporté sur une grande distance vu sa faible pression de vapeur. Il devrait être peu susceptible à la phototransformation directe sous une lumière naturelle. La valeur de $\log K_{oe}$ du quinoxyfène indique qu'il pourrait s'accumuler dans les organismes aquatiques.

Les données sur le devenir et le comportement du quinoxyfène et de ses produits de transformation dans l'environnement sont présentées dans les tableaux 7 à 10 de l'annexe I.

Le quinoxyfène pénètre dans le sol lorsqu'il est utilisé comme fongicide pour diverses plantes cultivées. Des études en laboratoire indiquent que l'hydrolyse et la phototransformation dans le sol ne devraient pas être des voies importantes de transformation du quinoxyfène. D'après une étude en laboratoire, la biotransformation dans le sol en aérobie varie en fonction de la température : le quinoxyfène peut être modérément persistant sous des températures élevées (30 °C) à persistant sous des températures basses (15 et 25 °C). Le quinoxyfène devrait se transformer lentement en 2-oxoquinoxyfène, en DCHQ et en d'autres produits secondaires. Même s'il n'a pas été possible de calculer les demi-vies, cette étude révèle que le 2-oxoquinoxyfène peut être persistant, car ce produit de transformation atteint au maximum 67,5 % de la concentration du composé d'origine à la fin de l'expérience, sans présenter de signe de diminution. Dans une étude de biotransformation en sol anaérobie, le quinoxyfène a été persistant; il s'est soit lié lentement aux particules de sol, soit transformé en 2-oxoquinoxyfène, le principal produit de transformation. À la fin de l'étude (de 100 jours), le quinoxyfène représentait 72 % des résidus, et le 2-oxoquinoxyfène, 6 %; 19 % des résidus étaient liés aux particules de sol et ne pouvaient être extraits. Des études en laboratoire signalent que le quinoxyfène devrait être immobile et être peu susceptible de se lessiver dans les conditions normales d'utilisation, que le 2-oxoquinoxyfène serait immobile dans n'importe quel sol et que la DCHQ serait faiblement mobile ou immobile. Par conséquent, le 2-oxoquinoxyfène ne devrait pas se lessiver. Selon un modèle de simulation du lessivage des résidus combinés de quinoxyfène et de 2-oxoquinoxyfène dans un sol stratifié sur une période de 50 ans, aucun résidu ne devrait atteindre les eaux souterraines. Dans une étude sur le terrain menée au Canada, le 2-oxoquinoxyfène et la DCHQ sont restés généralement dans la couche supérieure du sol. Une étude sur le terrain en milieu terrestre réalisée au Canada a révélé des résultats qui concordent avec ceux d'études en laboratoire effectuées à 30 °C, à savoir que le quinoxyfène a été modérément persistant ($TD_{50} = 83,6$ jours). Les concentrations du 2-oxoquinoxyfène et de la DCHQ ont été maximales à 3,7 % et à 7,7 % de la quantité appliquée à 392 jours et à 62 jours. respectivement. Il n'a pas été possible de calculer correctement les demi-vies des produits de transformation. Dans cette étude, la rémanence a été établie à 15 % de la quantité de quinoxyfène appliquée sur le sol, au début de la saison de végétation suivante. Le pourcentage a été plus élevé dans des études sur le terrain menées en Europe. D'après des études en laboratoire sur le sol, la température aurait une incidence importante sur la vitesse de dégradation du quinoxyfène, ce qui pourrait expliquer ces écarts.

Le quinoxyfène peut pénétrer dans les milieux aquatiques par dérive de pulyérisation et ruissellement. Une fois dans l'eau, il ne devrait pas être hydrolysé. Dans la zone euphotique (les 15 cm supérieurs) des eaux de surface claires, la phototransformation devrait être un procédé de transformation importante du quinoxyfène si le milieu est acide. Le produit de transformation principal, la CFBPO, se phototransforme rapidement aussi en deux produits de transformation principaux non identifiés qui atteignent leur concentration maximale en une journée. Après sept jours, le quinoxyfène et les trois produits de transformation principaux présentaient une concentration inférieure à la limite de quantification (LQ). Un grand nombre de produits de transformation secondaires ont été isolés dans cette étude. D'après une étude de

biotransformation dans l'eau et les sédiments menée en laboratoire, le quinoxyfène devrait se distribuer rapidement dans les sédiments où il sera biotransformé. Les valeurs des demi-vies dans un système eau-sédiments indiquent que le quinoxyfène est légèrement persistant. Le produit de transformation principal a été le 2-oxoquinoxyfène, qui était surtout présent dans les sédiments où sa concentration a été maximale à 48 jours. La demi-vie n'a pu être calculée, car les seules autres données accessibles avaient été produites à la fin de l'étude de 100 jours. À la fin, le quinoxyfène, le 2-oxoquinoxyfène et les résidus non extractibles représentaient 24 %, 33 % et 21 % de la quantité initiale de radioactivité appliquée, respectivement.

Le quinoxyfène s'est révélé non persistant en conditions anaérobies dans l'étude de biotransformation anaérobie dans les sédiments aquatiques. Le 2-oxoquinoxyfène a été le produit de transformation principal et a continué à augmenter jusqu'à la fin de l'étude, ce qui indique qu'il peut être persistant dans les sédiments. Dans l'eau, la DCHQ a été un produit de transformation secondaire; il n'a été formé qu'en conditions aérobies.

D'après ses propriétés physicochimiques, le quinoxyfène ne devrait pas être entraîné par transport à grande distance. La demi-vie dans l'atmosphère a été estimée à 1,88 jour à l'aide de l'Atmospheric Oxidation Program de la Syracuse Research Corporation. Cette valeur se situe juste en-dessous de la valeur critère de la Politique de gestion des substances toxiques (PGST) en ce qui a trait à la persistance dans l'atmosphère (voir la section 6). Un examen préliminaire d'une étude de surveillance sur le dépôt du quinoxyfène en Suède a révélé que le composé était peu susceptible d'être entraîné par transport à grande distance. À l'heure actuelle, rien n'indique que la persistance du quinoxyfène dans l'atmosphère et son potentiel de transport à grande distance soient préoccupants.

Le quinoxyfène est susceptible de se bioaccumuler, comme l'indiquent sa valeur de log K_{oe} (4,66) et son facteur de bioconcentration (5 040) déterminés dans une étude menée sur des poissons. Cette étude signale toutefois que les poissons l'ont rapidement éliminé lorsqu'ils ont été placés dans de l'eau propre. Dans une étude de métabolisation chez le rat, il n'y a eu aucun indice de bioaccumulation; le quinoxyfène a été vite absorbé, largement métabolisé et presque entièrement excrété.

Un examen préliminaire des études de surveillance dans les biotes menées en Europe a indiqué qu'il existe une certaine bioaccumulation dans le lombric. Des résidus ont aussi été quantifiés dans des macroinvertébrés aquatiques et quelques espèces de poissons. Des facteurs de bioaccumulation (FBA) s'élevant jusqu'à 13 ont été estimés pour les lombrics, mais il n'a pas été possible de calculer correctement les facteurs de bioaccumulation pour le biote aquatique faute de données sur les concentrations dans l'eau et les concentrations non décelées dans les sédiments. Vu les faibles concentrations de quinoxyfène dans les organismes, il ne devrait pas y avoir de bioaccumulation considérable.

4.2 Caractérisation des risques pour l'environnement

Dans le cadre de l'évaluation des risques pour l'environnement, on combine les données sur l'exposition environnementale avec les renseignements écotoxicologiques afin d'estimer les effets nocifs sur les espèces non ciblées. Pour ce faire, on compare les concentrations d'exposition avec les concentrations ayant causé des effets nocifs. Les concentrations d'exposition estimées sont les concentrations du pesticide dans divers compartiments environnementaux, comme la nourriture, l'eau, le sol et l'air. Elles sont établies à l'aide de modèles standard tenant compte de la ou des doses d'application du composé, de ses propriétés chimiques et de son devenir dans l'environnement, y compris sa dissipation entre les applications. Les renseignements écotoxicologiques consistent en des données de toxicité aiguë et de toxicité chronique pour divers organismes ou groupes d'organismes vivant dans des habitats terrestres ou aquatiques, y compris les invertébrés, les vertébrés et les végétaux. Les critères d'effet toxicologique employés dans les évaluations des risques peuvent être modifiés pour tenir compte des différences possibles de sensibilité entre les espèces et des divers objectifs de protection (c'est-à-dire de la protection à l'échelle de la communauté, de la population ou de l'individu).

En premier lieu, on effectue une évaluation préliminaire des risques afin de déterminer quels pesticides ou quels profils d'emploi particuliers ne posent aucun risque pour les organismes non ciblés, et quels groupes d'organismes pourraient être à risque. L'évaluation préliminaire des risques fait appel à des méthodes simples, à des scénarios d'exposition prudents (par exemple, une application directe à une dose d'application cumulative maximale) et à des critères d'effet toxicologique traduisant la plus grande sensibilité. On obtient le quotient de risque (QR) en divisant la valeur estimée de l'exposition par la valeur toxicologique appropriée (QR = exposition/toxicité), et on compare ensuite ce QR avec le niveau préoccupant (NP).

Si le QR déterminé dans l'évaluation préliminaire est inférieur au NP, les risques sont alors jugés négligeables, et aucune caractérisation approfondie des risques n'est requise. Par contre, s'il est égal ou supérieur au NP, il faut pousser l'évaluation afin de mieux définir les risques. L'évaluation approfondie fait appel à des scénarios d'exposition plus réalistes (comme la dérive de pulvérisation vers des habitats non ciblés) et pourrait examiner différents critères d'effet toxicologique. Il peut s'agir par exemple de caractériser davantage les risques à l'aide d'une simulation de l'exposition, de données de surveillance, de résultats d'études sur le terrain ou en mésocosmes, ou de méthodes probabilistes d'évaluation des risques. L'évaluation peut être approfondie jusqu'à ce que les risques soient suffisamment caractérisés ou qu'il ne soit plus possible de les définir davantage.

4.2.1 Risques pour les organismes terrestres

L'évaluation des risques associés au quinoxyfène pour les organismes terrestres s'appuie sur l'évaluation des données de toxicité du quinoxyfène pour les lombrics (toxicité aiguë par contact), les abeilles (toxicité aiguë par contact), deux espèces d'oiseaux (toxicité aiguë par voie orale, toxicité par le régime alimentaire et toxicité chronique), les mammifères (toxicité aiguë par voie orale et toxicité chronique) et les végétaux terrestres (levée des plantules et vigueur végétative). Un résumé des données de toxicité pour le quinoxyfène est présenté au tableau 11 de

l'annexe I. Aux fins de l'évaluation des risques, les critères d'effet toxicologique sélectionnés pour l'espèce la plus sensible ont servi de données de substitution pour un vaste ensemble d'espèces qui pourraient être exposées au quinoxyfène après l'application de ce produit (tableau 12, annexe I). L'évaluation préliminaire des risques a été réalisée à l'aide des CEE déterminées à la dose d'application la plus élevée pour le quinoxyfène (625 g m.a./ha).

Lombrics: Le quinoxyfène est pour ainsi dire non toxique pour les lombrics soumis à une exposition aiguë (plus de 619 mg m.a./kg sol). Le NP de l'évaluation préliminaire n'a pas été dépassé (tableau 13, annexe I).

Abeilles (insectes pollinisateurs) : Le quinoxyfène est pour ainsi dire non toxique pour les abeilles soumises à une exposition aiguë par contact. Le NP de l'évaluation préliminaire n'a pas été dépassé (tableau 13, annexe I). D'autres données sont nécessaires pour déterminer les risques de toxicité aiguë pour les abeilles par l'ingestion de résidus de quinoxyfène.

Arthropodes utiles : Des données sont requises pour déterminer les risques pour les arthropodes utiles.

Oiseaux : Le quinoxyfène a été non toxique pour le colin de Virginie (*Colinus virginianus*) soumis à une exposition aiguë par voie orale; il n'y a eu aucun cas de mortalité liée au traitement. Il n'y a pas eu non plus de cas de mortalité liée au traitement pendant une exposition de courte durée par le régime alimentaire chez le colin de Virginie et le canard colvert. Une réduction de la prise pondérale a été toutefois constatée chez ces deux espèces. Chez le canard colvert, une réduction du poids a été observée aux deux concentrations d'essai les plus élevées. Pendant des études de toxicité pour la reproduction réalisées chez le colin de Virginie et le canard colvert, aucun effet lié au traitement n'a été relevé sur le plan de la mortalité, du poids corporel ou de la consommation d'aliments chez les sujets adultes. La fécondité globale n'a pas été touchée chez le colin de Virginie, mais elle a diminué chez le canard colvert, dans le groupe ayant reçu la dose la plus élevée. Les QR pour l'exposition aiguë et l'exposition pendant la période de reproduction des oiseaux à l'évaluation préliminaire des risques ne dépassent pas le NP pour les oiseaux de taille petite, intermédiaire ou grande (tableaux 14 et 15, annexe I).

Mammifères: Les risques pour les petits mammifères terrestres ont été évalués à l'aide des données de toxicité du quinoxyfène provenant d'une étude en laboratoire chez le rat. Les préparations commerciales contenant 53,9 et 41,3 % de quinoxyfène n'ont pas été toxiques pour les rats après une exposition aiguë (tableau 11, annexe I). Dans l'étude de toxicité pour la reproduction menée chez le rat, une diminution du poids corporel et de la prise pondérale a été observée chez les descendants. Cependant, ces effets étaient peu importants sur le plan toxicologique, et l'exposition au quinoxyfène ne semble pas avoir eu d'incidence sur la fécondité globale du rat. À l'évaluation préliminaire des risques, les QR pour l'exposition aiguë des mammifères ne dépassaient pas le NP pour les mammifères de taille petite, intermédiaire ou grande (tableaux 14 et 15, annexe I). Un léger risque pour la reproduction a été constaté pour les mammifères de taille intermédiaire (QR = 1,1). Cependant, étant donné que le QR se situait juste au-dessus du seuil du niveau préoccupant (1,1) et que les scénarios d'exposition et de toxicité de l'évaluation préliminaire étaient des scénarios prudents, il n'a pas été nécessaire de caractériser

davantage les risques. L'utilisation du quinoxyfène à la dose d'application de 625 g m.a./ha ne devrait pas poser de risque inacceptable pour la reproduction chez les mammifères.

Végétaux non ciblés : La toxicité d'une préparation de quinoxyfène d'une concentration de 251 g m.a./L pour les végétaux non ciblés a été déterminée dans des essais sur la vigueur végétative et la levée des plantules à l'aide d'espèces agricoles ordinaires. Aucun effet nocif significatif (> 25 %) n'a été observé sur les espèces végétales dans l'essai sur la levée des plantules. Dans l'essai sur la vigueur végétative, une relation dose-réponse a été constatée chez le concombre, le poids frais diminuant avec l'augmentation des concentrations (6,5 à 29,3 %). Par conséquent, la CE₂₅ est supérieure à 553 g m.a./ha pour la levée des plantules et s'élève à 410 g m.a./ha pour la vigueur végétative (tableau 11, annexe I). L'évaluation préliminaire des risques réalisée avec le critère d'effet traduisant la plus grande sensibilité a permis d'établir que le NP n'était pas dépassé. Par conséquent, le quinoxyfène ne devrait pas avoir d'incidence sur les végétaux terrestres non ciblés adjacents à la zone de traitement.

4.2.2 Risques pour les organismes aquatiques

Les organismes aquatiques peuvent être exposés au quinoxyfène par suite d'une dérive de pulvérisation et d'un ruissellement de surface. Afin de déterminer les effets nocifs possibles, on a appliqué, comme valeurs estimatives de l'exposition, les CEE en milieu aquatique établies dans l'évaluation préliminaire pour une application directe sur l'eau, à l'application de quinoxyfène sur les arbres fruitiers à noyau et les fraisiers. Les risques associés au quinoxyfène (une préparation contenant 250 g m.a./L) ont été évalués pour les organismes dulcicoles et marins, d'après l'examen des données de toxicité pour les invertébrés, les poissons, les plantes vasculaires et les algues d'eau douce, ainsi que pour les invertébrés, les poissons et les diatomées estuariens ou marins.

Il est à noter que, à cause de certains comportements et propriétés physicochimiques du quinoxyfène, il peut être difficile de réaliser des études dans l'eau, dans lesquelles les concentrations de quinoxyfène doivent être maintenues pendant une période donnée. Cela ajoute des incertitudes quant à l'exposition réelle des organismes aquatiques au quinoxyfène, ce qui pourrait influer sur les valeurs du critère d'effet utilisées dans l'évaluation des risques. Par exemple, le quinoxyfène est modérément soluble dans l'eau distillée à 20 °C (0,116 mg/L) et, en général, sa solubilité diminue avec la hausse du pH. Le quinoxyfène est fortement adsorbé par le verre et se distribue rapidement dans les sédiments. De plus, la phototransformation du quinoxyfène dans l'eau est très rapide, ce qui doit être pris en compte dans les études en milieu aquatique effectuées avec de la lumière. Certains solvants employés pour augmenter la solubilité du quinoxyfène pourraient aussi être photosensibilisants et accroîtraient ainsi la vitesse de phototransformation du quinoxyfène. Par conséquent, il se peut que les concentrations de quinoxyfène ne demeurent pas constantes après une première application et, le cas échéant, on a calculé la moyenne des concentrations mesurées pour caractériser l'exposition au quinoxyfène.

Un résumé des données de toxicité pour le quinoxyfène et deux produits de transformation principaux est présenté au tableau 11 de l'annexe I. Aux fins de l'évaluation des risques, les critères d'effet toxicologique sélectionnés pour l'espèce la plus sensible ont servi de données de substitution pour un vaste ensemble d'espèces qui pourraient être exposées au quinoxyfène après

l'application de ce produit. L'évaluation des risques pour les amphibiens a été réalisée à l'aide des données produites pour les poissons dulcicoles (données de substitution; tableau 12, annexe I).

Invertébrés dulcicoles : Dans des études en laboratoire, le quinoxyfène a causé une toxicité aiguë chez l'invertébré aquatique *Daphnia magna*. La toxicité aiguë des produits de transformation principaux 2-oxoquinoxyfène et DCHQ a aussi été examinée chez *D. magna*. Aucun effet toxique associé aux produits de transformation n'a été observé jusqu'aux concentrations maximales d'essai. L'exposition chronique de *D. magna* au quinoxyfène a entraîné des effets négatifs sur la longueur moyenne de l'invertébré et sur la reproduction de l'espèce. Chez le moucheron dulcicole *Chironomus riparius*, l'exposition chronique au quinoxyfène a affecté la croissance, ainsi que la vitesse à laquelle l'insecte atteint un stade mature. L'exposition chronique au 2-oxoquinoxyfène n'a pas eu d'effet sur l'émergence et la vitesse de développement de ce moucheron (tableau 11, annexe I).

Les valeurs de QR à l'évaluation préliminaire pour l'exposition aiguë ou chronique au quinoxyfène ont dépassé le NP; une évaluation approfondie était donc nécessaire (tableau 6, annexe I). On a également calculé les valeurs de QR pour les produits de transformation 2-oxoquinoxyfène et DCHQ en supposant que 100 % du quinoxyfène était transformé. Pour la DCHQ, le QR pour une exposition aiguë a été inférieur au NP. Pour le 2-oxoquinoxyfène, les QR pour une exposition aiguë de *D. magna* et une exposition chronique du chironome ont été inférieurs au NP (tableau 16, annexe I).

Les QR à l'évaluation approfondie fondés sur le scénario de dérive de pulvérisation du quinoxyfène ont dépassé légèrement le NP pour une exposition chronique de l'invertébré dulcicole *D. magna* découlant d'applications par pulvérisateur pneumatique (tableau 17, annexe I). Par conséquent, il existe un risque pour les invertébrés dulcicoles exposés au quinoxyfène par suite de la dérive de pulvérisation produite par une application au moyen d'un pulvérisateur pneumatique.

Les QR à l'évaluation approfondie fondés sur le scénario de ruissellement n'ont pas dépassé le NP pour les espèces invertébrées dulcicoles, ce qui indique que le ruissellement du quinoxyfène dans les plans d'eau ne devrait pas présenter un risque pour ces organismes (tableau 18, annexe I).

Poissons dulcicoles et amphibiens: Dans des études en laboratoire, le quinoxyfène a causé une toxicité aiguë chez la truite arc-en-ciel et la carpe. Il n'a pas causé de toxicité aiguë chez le crapet arlequin, et ce, jusqu'à la concentration maximale d'essai mesurée. La toxicité aiguë du produit de transformation principal 2-oxoquinoxyfène a aussi été évaluée chez la truite arc-enciel; aucun effet toxique n'a été constaté, et ce, jusqu'à la concentration maximale d'essai. De la mortalité et des effets sublétaux ont été constatés par suite d'une exposition chronique au quinoxyfène chez la truite arc-en-ciel. Le critère d'effet traduisant la plus grande sensibilité dans l'ensemble des espèces dulcicoles provenait d'un essai de toxicité aux premiers stades de vie effectué avec le quinoxyfène sur le tête-de-boule, dans lequel la longueur des poissons juvéniles a été affectée. À 0,112 mg/L, la survie chez les juvéniles a été significativement touchée (tableau 11, annexe I). Les valeurs de QR à l'évaluation préliminaire pour l'exposition aiguë ou

chronique au quinoxyfène ont dépassé le NP; une évaluation approfondie a donc été nécessaire (tableau 16, annexe I). On a aussi calculé le QR pour le produit de transformation 2-oxoquinoxyfène, en supposant que 100 % du quinoxyfène était transformé. Le QR pour une exposition aiguë chez la truite arc-en-ciel a été inférieur à une valeur dépassant le NP, en raison de l'absence de toxicité à la concentration maximale d'essai. Par conséquent, on a procédé à une évaluation approfondie afin de déterminer le risque associé à la dérive de pulvérisation et au ruissellement. Les QR à l'évaluation approfondie fondés sur le scénario de dérive de pulvérisation du quinoxyfène ont dépassé légèrement le NP pour l'exposition chronique du tête-de-boule et de la truite arc-en-ciel découlant d'applications par pulvérisateur pneumatique sur les arbres fruitiers à noyau (tableau 17, annexe I). Par conséquent, il existe un risque pour les poissons dulcicoles exposés au quinoxyfène par suite de la dérive de pulvérisation produite par une application au moyen d'un pulvérisateur pneumatique. Les QR à l'évaluation approfondie fondés sur le scénario de ruissellement n'ont pas dépassé le NP pour les espèces de poissons dulcicoles, ce qui indique que le ruissellement du quinoxyfène dans les plans d'eau ne devrait pas présenter un risque pour ces organismes (tableau 18, annexe I).

On a caractérisé le risque pour les amphibiens à l'évaluation préliminaire en comparant les CEE calculées pour un plan d'eau de 15 cm de profondeur avec les valeurs de critères d'effet toxicologique établies pour les poissons comme données de substitution pour les stades aquatiques du cycle biologique des amphibiens. Les risques aigus ont été évalués pour l'exposition au quinoxyfène et au produit de transformation 2-oxoquinoxyfène, tandis que les risques chroniques ont été estimés pour l'exposition au quinoxyfène. Les QR à l'évaluation préliminaire pour les amphibiens ont dépassé le NP (tableau 16, annexe I). Les QR à l'évaluation approfondie fondés sur un scénario de dérive de pulvérisation du quinoxyfène ont dépassé le NP pour les expositions aiguës et aux premiers stades de vie par suite d'applications au moyen d'un pulvérisateur pneumatique et d'une rampe d'aspersion (tableau 17, annexe I), ce qui signifie qu'il existe un risque. Les QR à l'évaluation approfondie fondés sur le scénario de ruissellement ont légèrement dépassé le NP pour les amphibiens, ce qui indique que le ruissellement du quinoxyfène dans les plans d'eau pourrait poser un risque pour ces organismes (tableau 18, annexe I). Cependant, la valeur de CEE la plus prudente des écoscénarios (maximum à 18 μg m.a./L) a été utilisée. À l'aide de la deuxième valeur de CEE la plus élevée dans la modélisation avec le critère d'effet de substitution employé pour les amphibiens, soit une concentration estimée à 2,2 µg m.a./L à 96 heures, le QR est réduit à 0,2 et ne dépasse pas le NP. Ces organismes ne devraient donc pas être à risque advenant le ruissellement du quinoxyfène dans les plans d'eau.

Algues et plantes d'eau douce : La toxicité a été évaluée sur trois espèces d'algues et une espèce de plante dans des études en laboratoire. Le quinoxyfène s'est révélé toxique pour les algues vertes (*Selenastrum capricornutum*), la diatomée d'eau douce (*Navicula pelliculosa*) et la lenticule bossue (*Lemna gibba*). Il n'a pas été toxique pour l'algue bleu-vert *Anabaena flosaquae* et ce, jusqu'à la concentration maximale d'essai. Le produit de transformation DCHQ n'a pas été toxique pour les algues vertes, et ce, jusqu'à la concentration maximale d'essai (tableau 11, annexe I). Les QR à l'évaluation préliminaire pour les algues vertes et la diatomée d'eau douce exposées au quinoxyfène ont dépassé le NP (QR > 1; tableau 16, annexe I). Les QR à l'évaluation approfondie fondés sur le scénario de dérive de pulvérisation du quinoxyfène ont légèrement dépassé le NP pour l'application au moyen d'un pulvérisateur pneumatique. Le NP

n'a pas été dépassé pour l'application au moyen d'un pulvérisateur agricole (tableau 17, annexe I). Par conséquent, il existe un risque pour les algues d'eau douce associé à certaines utilisations du pulvérisateur pneumatique. Les algues ne devraient pas être à risque d'après les résultats d'un scénario de ruissellement du quinoxyfène (tableau 18, annexe I). Le QR à l'évaluation préliminaire pour les algues vertes exposées au produit de transformation DCHQ n'a pas dépassé le NP.

Pour la plante d'eau douce, la lenticule bossue, le QR à l'évaluation préliminaire pour l'exposition au quinoxyfène et toutes les utilisations n'a pas dépassé le NP (tableau 16, annexe I).

Espèces marines et estuariennes : Dans des études en laboratoire, le quinoxyfène a causé une toxicité aiguë chez la diatomée d'eau salée (Skeletonema costatum), l'huître (Crassostrea virginica) et le mysidacé (Americamysis bahia). Il n'a pas causé de toxicité aiguë chez le méné tête-de-mouton (Cyprinodon variegatus) et ce, jusqu'à la concentration maximale d'essai. Toutefois, dans l'étude de toxicité chronique, l'exposition au quinoxyfène pendant 39 jours a entraîné une réduction de la reproduction chez le méné tête-de-mouton, tandis que l'exposition au quinoxyfène aux premiers stades de vie chez cette espèce a affecté la survie de l'alevin (tableau 11, annexe I). Les QR à l'évaluation préliminaire, fondés sur des scénarios d'exposition aiguë, chronique et/ou aux premiers stades de vie des algues, des invertébrés et des poissons marins et estuariens, ont dépassé le NP (tableau 16, annexe I). Les QR à l'évaluation approfondie fondés sur un scénario de dérive de pulvérisation du quinoxyfène ont dépassé le NP pour le mysidacé et l'huître (application au moyen d'un pulvérisateur pneumatique sur les arbres fruitiers à noyau), mais pas pour la diatomée d'eau salée (tableau 17, annexe I). Il existe donc un risque pour les invertébrés marins et estuariens exposés au quinoxyfène par suite d'une dérive de pulvérisation produite par une application au moyen d'un pulvérisateur pneumatique. Les QR à l'évaluation approfondie fondés sur un scénario de ruissellement n'ont pas dépassé le NP, ce qui indique que le ruissellement du quinoxyfène ne devrait pas présenter de risque pour les organismes marins et estuariens (tableau 18, annexe I).

4.2.3 Déclarations d'incidents

Les déclarations d'incidents ayant des effets sur l'environnement sont obtenues auprès de deux sources principales : le Système canadien de déclaration d'incidents liée à l'exposition aux pesticides (qui regroupe les déclarations obligatoires des titulaires et les déclarations volontaires du public et d'autres ministères) et l'Ecological Incident Information System (EIIS) de la United States Environmental Protection Agency (EPA). Pour de plus amples renseignements au sujet du Règlement sur les déclarations d'incident relatif aux produits antiparasitaires entré en vigueur le 26 avril 2007 en application de la Loi sur les produits antiparasitaires, consultez la page Web à l'adresse http://www.hc-sc.gc.ca/cps-spc/pest/part/protect-proteger/incident/index-fra.php.

Au 12 août 2010, un incident avait été enregistré dans la base de données EIIS de l'EPA. L'incident est survenu en Californie le 19 mai 2008 et la cause a été jugée comme possible. L'incident aurait été signalé pour réclamer des dommages de 300 \$ causés à des végétaux après une application directe du fongicide Quintec dans une ceriseraie. Ni la dose d'application ni le pourcentage de dommages n'étaient indiqués. L'ARLA a conclu que les renseignements relatifs à l'incident n'avaient aucune incidence sur l'évaluation des risques.

5.0 Valeur

5.1 Efficacité contre les organismes nuisibles

5.1.1 Allégations d'efficacité acceptables

5.1.1.1 Suppression de l'oïdium causé par *Podosphaera clandestina* sur les fruits à noyau

Quatre essais réalisés aux États-Unis (WA) ont été présentés en appui à l'allégation de suppression de l'oïdium causé par *Podosphera clandestina* dans les cerisiers produisant des cerises douces. Les résultats d'essais ont révélé que le fongicide Quintec a permis une suppression de l'oïdium allant jusqu'à 100 % dans des conditions où la pression de la maladie était faible à modérée aux doses variant de 439 à 585 ml/ha. Le fongicide Quintec a donné d'aussi bons résultats que le produit commercial de comparaison. L'allégation de suppression de *P. clandestina* dans les cerisiers produisant des cerises douces a été étendue à d'autres arbres fruitiers à noyau, car l'agent pathogène attaque aussi d'autres arbres fruitiers à noyau.

5.1.1.2 Répression de l'oïdium causé par Sphaerotheca pannosa sur les fruits à noyau

Un essai sur les pêchers a été mené aux États-Unis (WA). Le fongicide Quintec a permis de supprimer 47 % de *S. pannosa* avec une dose d'application de 585 ml/ha et quatre applications. Seule l'allégation de répression de l'oïdium causé par *S. pannosa* à la dose proposée de 500 ml/ha avec cinq applications peut être appuyée. L'allégation de suppression de *S. pannosa* dans les pêchers a été étendue à d'autres arbres fruitiers à noyau, car l'agent pathogène attaque aussi d'autres arbres fruitiers à noyau.

5.1.1.3 Suppression de l'oïdium causé par *Uncinula necator* dans les vignes

Trois essais menés aux États-Unis (MI, NY et OR) ont révélé que le fongicide Quintec supprimait jusqu'à 94 % l'oïdium lorsqu'il était appliqué à des doses variant de 293 à 439 ml/ha. La dose d'essai faible de 293 ml/ha a été aussi efficace que la dose d'essais élevée de 439 ml/ha appliquée dans des conditions de forte pression de la maladie. Cependant, la valeur pour l'utilisation de la dose élevée proposée de 480 ml produit/ha n'a pas été déterminée. Seule la dose faible proposée (300 ml/ha) est appuyée.

5.1.1.4 Suppression de l'oïdium causé par Sphaerotheca macularis sur les fraises

Un essai mené au Québec a été examiné. Les résultats de l'essai ont révélé que le fongicide Quintec appliqué à des doses de 293 et 439 ml/ha a permis de supprimer l'oïdium dans les fraisiers. Le fongicide Quintec a donné de meilleurs résultats que les produits commerciaux de comparaison.

5.1.1.5 Suppression de l'oïdium causé par Sphaerotheca fuliginea sur les melons, les citrouilles et les courges d'hiver

Quatre essais dont deux menés sur des melons véritables et deux sur des citrouilles ont été examinés. Les résultats ont révélé que le fongicide Quintec appliqué aux doses de 293 ml/ha et 493 ml/ha ont permis une suppression de 100 % de l'oïdium dans des conditions où la pression de la maladie était modérée à forte. L'allégation de suppression de l'oïdium à la dose proposée de 300 à 400 ml/ha chez les melons véritables et les citrouilles a été étendue aux melons et à la courge d'hiver, car la maladie chez ces plantes cultivées est causée par le même agent pathogène.

5.1.1.6 Suppression de l'oïdium causé par Erysiphe cichoracearum sur la laitue pommée et la laitue frisée

Trois essais ont été examinés pour la suppression de l'oïdium sur les laitues. Le fongicide Quintec appliqué à 293 ml/ha et à 493 ml/ha a permis de supprimer l'oïdium jusqu'à 100 % dans des conditions où la pression de la maladie était modérée à forte. En outre, des doses plus faibles que celles proposées (0,7 à 0,8 fois la dose proposée) ont été aussi efficaces que les doses proposées. Pour ces raisons, l'allégation de suppression de l'oïdium dans la laitue pommée et la laitue frisée est appuyée à la dose de 240 ml/ha, ce qui est égal à 0,8 fois la dose proposée la plus faible (300 ml/ha).

5.1.1.7 Suppression de l'oïdium causé par *Sphaerotheca fuliginea* sur le houblon

L'efficacité du fongicide Quintec à supprimer Sphaerotheca fuliginea a été démontrée dans des essais d'efficacité sur les fraisiers. Cependant, seule l'allégation de répression de l'oïdium est appuyée moyennant une limite de deux applications au lieu de quatre, pour une question de gestion de la résistance. Il n'existe aucun autre fongicide homologué pouvant être utilisé en alternance avec le fongicide Quintec pour supprimer S. fuliginea dans le houblon. En deux applications, le fongicide Quintec a permis une suppression de S. fuliginea de 67 %.

5.2 Phytotoxicité

Les essais n'ont révélé aucune phytotoxicité.

5.3 Incidences économiques

Cet aspect n'a pas été évalué.

5.4 Durabilité

5.4.1 Solutions de remplacement

Une liste des solutions de remplacement est présentée au tableau 20 de l'annexe I.

5.4.2 Compatibilité avec les pratiques de lutte actuelles, y compris la lutte intégrée

Cet aspect n'a pas été évalué.

5.4.3 Renseignements sur l'induction réelle ou possible d'une résistance

Le quinoxyfène appartient au groupe 13 et est considéré par le Fungicide Resistance Action Committee (FRAC) comme un fongicide présentant un risque modéré d'induction de résistance. L'homologation du fongicide Quintec permettra aux producteurs de recourir à un nouveau mode d'action pour lutter contre l'oïdium résistant aux inhibiteurs de la déméthylation et contribuera à retarder davantage l'acquisition d'une résistance aux fongicides du groupe des strobilurines.

5.4.4 Contribution à la réduction des risques et à la durabilité

Cet aspect n'a pas été évalué.

6.0 Considérations relatives à la politique sur les produits antiparasitaires

6.1 Considérations relatives à la Politique de gestion des substances toxiques

La Politique de gestion des substances toxiques (PGST) est une politique du gouvernement fédéral visant à offrir des orientations sur la gestion des substances préoccupantes qui sont rejetées dans l'environnement. Elle vise la quasi-élimination des substances de la voie 1 (celles qui répondent aux quatre critères précisés dans la politique, c'est-à-dire le caractère toxique ou équivalent à toxique selon la Loi canadienne sur la protection de l'environnement, l'origine principalement anthropique, la persistance et la bioaccumulation).

Dans le cadre de l'évaluation, l'ARLA a évalué le quinoxyfène et ses produits de transformation en application de la directive d'homologation DIR99-03⁵ de l'ARLA et en fonction des critères définissant les substances de la voie 1. L'Agence est parvenue aux conclusions suivantes :

• D'après un examen préliminaire des données, le quinoxyfène ne répond pas à tous les critères définissant les substances de la voie 1 et n'est pas considéré comme une substance de la voie 1. D'autres renseignements sont requis pour l'évaluation des incertitudes, en particulier pour le 2-oxoquinoxyfène. Pour l'évaluation des données du quinoxyfène en fonction des critères de la voie 1 de la PGST, veuillez consulter le tableau 19.

DIR99-03, Stratégie de l'Agence de réglementation de la lutte antiparasitaire concernant la mise en œuvre de la Politique de gestion des substances toxiques.

- Le quinoxyfène est persistant dans le sol dans des conditions de laboratoire et répond au critère de persistance de la PGST.
- Dans l'eau, le quinoxyfène ne répond pas aux critères de persistance de la PGST.
- Dans l'air, le quinoxyfène ne devrait pas répondre aux critères de persistance de la PGST en raison de sa faible volatilité.
- Comme le quinoxyfène répond au critère pour la persistance dans un compartiment, ce critère est considéré comme rempli.
- Bien que le quinoxyfène satisfasse aux critères numériques en laboratoire indiquant un potentiel de bioaccumulation, les vitesses d'élimination rapides et les études sur le terrain indiquent qu'une bioaccumulation significative dans des conditions naturelles est peu probable.
- D'après des études en laboratoire, le 2-oxoquinoxyfène peut répondre aux critères pour la persistance dans le sol et les sédiments.
- Le potentiel de bioaccumulation du 2-oxoquinoxyfène n'est pas connu. D'autres données de confirmation sont requises pour l'évaluation des incertitudes.

6.2 Produits de formulation et contaminants préoccupants pour la santé ou l'environnement

Dans le cadre de l'évaluation, les contaminants décelés dans le produit technique et les produits de formulation, ainsi que ceux décelés dans la préparation commerciale sont recherchés dans la Liste des formulants et des contaminants de produits antiparasitaires qui soulèvent des questions particulières en matière de santé ou d'environnement tenue à jour dans la Gazette du Canada⁶. Cette liste est utilisée conformément à l'avis d'intention NOI2005-01⁷ de l'ARLA et est fondée sur les politiques et la réglementation en vigueur, notamment les directives DIR99-03 et DIR2006-02⁸, et tient compte du Règlement sur les substances appauvrissant la couche d'ozone (1998) pris en application de la Loi canadienne sur la protection de l'environnement (substances désignées par le Protocole de Montréal). L'ARLA est parvenue aux conclusions suivantes :

Le fongicide technique Quinoxyfène et la préparation commerciale, le fongicide Quintec, ne contiennent aucun des produits de formulation ou contaminants préoccupants pour la santé ou l'environnement mentionnés dans la *Gazette du Canada*.

-

Gazette du Canada, partie II, volume 139, numéro 24, TR/2005-114 (2005-11-30), pages 2641 à 2643 : Liste des formulants et des contaminants de produits antiparasitaires qui soulèvent des questions particulières en matière de santé ou d'environnement, et dans l'arrêté modifiant cette liste publié dans la Gazette du Canada, partie II, volume 142, numéro 13, TR/2008-67 (2008-06-25), pages 1611 à 1613. Partie 1 - Formulants qui soulèvent des questions particulières en matière de santé ou d'environnement, Partie 2 - Formulants allergènes reconnus pour provoquer des réactions de type anaphylactique et qui soulèvent des questions particulières en matière de santé ou d'environnement et Partie 3 - Contaminants qui soulèvent des questions particulières en matière de santé ou d'environnement.

NOI2005-01, Liste des formulants et des contaminants de produits antiparasitaires qui soulèvent des questions particulières en matière de santé ou d'environnement en vertu de la nouvelle Loi sur les produits antiparasitaires.

DIR2006-02, Politique sur les produits de formulation de l'ARLA.

L'utilisation de produits de formulation dans les produits antiparasitaires homologués est évaluée de manière continue dans le cadre des initiatives de l'ARLA en matière de produits de formulation et conformément à la directive d'homologation DIR2006-02⁹.

7.0 Résumé

7.1 Santé et sécurité humaines

La base de données toxicologiques présentée aux fins de l'évaluation du quinoxyfène est suffisante pour définir la plupart des effets toxiques qui pourraient découler de l'exposition à ce composé. Dans des études de toxicité par expositions répétées menées sur des animaux de laboratoire, le principal organe cible de la toxicité a été le foie, chez toutes les espèces soumises aux essais, et le système hémolytique, chez le chien. Aucun signe de cancer n'a été constaté chez la souris et le rat. Aucune sensibilité des jeunes n'a été mise en évidence dans les études de toxicité pour le développement. Une augmentation des avortements spontanés a été relevée dans l'étude de toxicité pour le développement chez le lapin à une dose toxique pour les mères, laquelle était aussi la dose maximale d'essais. Dans l'étude de toxicité pour la reproduction, une légère diminution du poids corporel chez les petits a été observée pendant la lactation en l'absence d'effet nocif chez les parents, et a été jugée peu préoccupante. Rien n'indique que le quinoxyfène soit toxique pour la reproduction; il n'est pas considéré comme génotoxique ou neurotoxique.

Les travailleurs qui mélangent, chargent et appliquent le fongicide Quintec, ainsi que les travailleurs qui pénètrent dans les zones traitées ne devraient pas être exposés à des concentrations posant un risque inacceptable si ce fongicide est employé conformément au mode d'emploi figurant sur son étiquette. L'équipement de protection individuelle indiqué sur l'étiquette du produit protège suffisamment les travailleurs.

La nature du résidu dans les végétaux est suffisamment caractérisée. Le résidu défini aux fins de l'application de la loi est le quinoxyfène. L'utilisation du quinoxyfène sur les plantes cultivées énumérées sur l'étiquette et l'importation de denrées traitées par le quinoxyfène ne constituent pas un risque inacceptable par le régime alimentaire (consommation d'aliments et d'eau potable) pour aucun sous-groupe de la population, y compris les nourrissons, les enfants, les adultes et les personnes âgées. L'ARLA a examiné un nombre suffisant de données sur les résidus pour recommander des LMR permettant de protéger la santé humaine.

7.2 Risques pour l'environnement

mammifères sauvages ainsi que les plantes aquatiques et terrestres. Le risque pour les arthropodes utiles et les abeilles découlant d'une exposition par ingestion n'est pas connu. Comme précaution, des énoncés à l'égard des abeilles et des arthropodes utiles seront ajoutés sur l'étiquette. Il n'y a pas à craindre, à court terme, que l'utilisation du quinoxyfène affecte les poissons, les amphibiens, les invertébrés aquatiques et les algues. Des risques pour les organismes aquatiques par suite de la dérive de pulyérisation ont été décelés pour les habitats

À court terme, il n'y a pas à craindre que le quinoxyfène affecte les lombrics, les oiseaux, les

⁹ DIR2006-02, Politique sur les produits de formulation de l'ARLA.

aquatiques avoisinant le site de traitement. Pour atténuer les risques liés au quinoxyfène pour les organismes aquatiques non ciblés, des zones tampons visant à protéger les habitats d'eau douce et marins adjacents à l'aire traitée doivent être respectées. Les zones tampons seront de 1 à 20 m pour les doses d'application variant de 240 à 625 g/ha. Aucun risque découlant du ruissellement n'a été décelé pour les espèces aquatiques.

D'autres données ont été demandées pour l'évaluation du risque lié à une exposition au quinoxyfène pour les abeilles et les arthropodes utiles, de même que pour l'évaluation du risque lié à une exposition chronique au 2-oxoquinoxyfène pour les organismes aquatiques.

Le risque pour l'environnement sera réexaminé une fois que toutes les données demandées auront été présentées.

7.3 Valeur

Les données sur l'efficacité et la valeur fournies aux fins de l'homologation du fongicide Quintec ont été suffisantes pour appuyer les utilisations suivantes :

- suppression de l'oïdium sur la laitue pommée, la laitue frisée, la vigne, les melons, les citrouilles, les courgew d'hiver et lew fraises;
- suppression (Podosphaera clandestina) ou répression (Sphaerotheca pannosa) de l'oïdium sur les fruits à noyau;
- répression de l'oïdium sur le houblon.

7.4 **Utilisations rejetées**

Un résumé des allégations approuvées et rejetées est présenté au tableau 21 de l'annexe I.

8.0 **Décision d'homologation**

En vertu de la Loi sur les produits antiparasitaires et conformément à ses règlements d'application, l'Agence de réglementation de la lutte antiparasitaire (ARLA) de Santé Canada accorde l'homologation conditionnelle, à des fins de vente et d'utilisation, du fongicide technique Quinoxyfène et du fongicide Quintec, qui contiennent comme matière active de qualité technique du quinoxyfène, pour la suppression de l'oïdium sur plusieurs fruits et légumes.

D'après l'évaluation des renseignements scientifiques à sa disposition, l'ARLA juge que, dans les conditions d'utilisation approuvées, les produits ont de la valeur et ne présentent pas de risque inacceptable pour la santé humaine ni pour l'environnement.

Bien que les risques et la valeur aient été jugés acceptables pour autant que toutes les mesures de réduction des risques soient appliquées, le demandeur devra, comme condition à ces homologations, présenter des données scientifiques complémentaires. Pour de plus amples renseignements, veuillez consulter l'Avis aux termes de l'article 12 associé à ces homologations conditionnelles. Le demandeur devra fournir ces renseignements.

REMARQUE : L'ARLA publiera un document de consultation lorsqu'une décision sera proposée à l'égard des demandes visant à convertir les homologations conditionnelles en homologations complètes ou à renouveler les homologations conditionnelles, selon la première éventualité.

Santé humaine

Des données sur la toxicité du 2-oxoquinoxyfène sont requises pour la caractérisation du risque pour les personnes exposées au 2-oxoquinoxyfène par la consommation d'eau provenant des eaux souterraines. Comme condition à l'homologation, une justification valable comparant la toxicité du 2-oxoquinoxyfène à celle du composé d'origine, y compris toute donnée toxicologique accessible sur le 2-oxoquinoxyfène, doit être fournie.

Environnement

Pour le composé d'origine, le quinoxyfène :

- CODO 9.2.4.2 Étude de toxicité aiguë par voie orale sur les abeilles;
- CODO 9.2.5 Étude de toxicité aiguë sur l'acarien prédateur Typhlodromus pyri;
- CODO 9.2.6 Étude de toxicité aiguë sur la guêpe parasitoïde Aphidius rhopalosiphi.

Pour le produit de transformation 2-oxoquinoxyfène :

Niveau 1

- CODO 8.6 Autres études, données, rapports (étude de détermination du K_{oe});
- CODO 9.5.3.1 Essai de toxicité aux premiers stades de vie sur les poissons.

Niveau 2 (selon les résultats d'études à fournir au niveau 1)

- CODO 9.5.3.2 Essai de toxicité sur l'ensemble du cycle biologique des poissons avec le 2-oxoquinoxyfène;
- étude en mésocosme aux fins de la détermination du potentiel de bioaccumulation et du devenir du quinoxyfène et du 2-oxoquinoxyfène.

Liste des abréviations

4-FP 4-fluorophénol μg microgramme

ADF fibres insolubles dans les détergents acides ALENA Accord de libre-échange nord-américain

ARLA Agence de réglementation de la lutte antiparasitaire

BBCH Biologische Bundesanstalt, Bundessortenamt and Chemical industry: code

décimal des stades de croissance des céréales

CAS chemical abstracts service

CE₂₅ concentration efficace requise pour observer une réduction de 25 % de la

population

CE₅₀ concentration efficace requise pour observer une réduction de 50 % de la

population

CE₅₀b concentration requise pour observer une réduction de 50 % de la biomasse

CEE concentration estimée dans l'environnement

CFBPQ 2-chloro-10-fluoro[1]benzopyrano[2,3,4-de]quinoléine

CIM cote d'irritation maximale

CL₅₀ concentration létale pour 50 % de la population soumise à l'essai

cm centimètre(s) cm² centimètre(s) carrés CMM cote moyenne maximale

CODO code de données

CPG-DDM chromatographie en phase gazeuse couplée à la discrimination de masse

CPG-SM/SM chromatographie en phase gazeuse couplée à la spectrométrie de masse en tandem

CPLHP chromatographie en phase liquide à haute performance

CSEO concentration sans effet observé CSPO cinétique simple de premier ordre

DA dose administrée

DAAR délai d'attente avant la récolte DCHQ 5,7-dichloro-4-hydroxyquinoléine

DJA dose journalière admissible

DL₅₀ dose létale pour 50 % de la population soumise à l'essai

DMENO dose minimale entraînant un effet nocif observé

DSENO dose sans effet nocif observé DSEO dose sans effet observé

e.a. équivalent acide

EIIS Ecological Incident Information System

EJE exposition journalière estimée EPA Environmental Protection Agency

ET écart-type

F1a première portée de petits dont les parents ont été les premiers adultes soumis à

l'essai (génération parentale)

F1b deuxième portée de petits dont les parents ont été les premiers adultes soumis à

l'essai (génération parentale)

F2 première portée de la deuxième génération; descendants de la génération F1

FBA facteur de bioaccumulation

FBC facteur de bioconcentration FG facteur global d'évaluation

FRAC Fungicide Resistance Action Committee

g gramme h heure ha hectare

IDM inhibiteur de la déméthylation IT intervalle entre les traitements

j jour

JADA jour après la dernière application

JAT jour après le traitement

 K_{co} coefficient de partage carbone organique:eau

kg kilogramme

 K_{oe} coefficient de partage *n*-octanol:eau

L litre

LAD Loi sur les aliments et drogues

LCPE Loi canadienne sur la protection de l'environnement

LD limite de détection

LMR limite maximale de résidus

LPA Loi sur les produits antiparasitaires

LQ limite de quantification

M mole

m.a. matière active Max maximum

ME marge d'exposition mg milligramme MI Michigan Min minimum ml millilitre

MPEET moyenne la plus élevée des essais sur le terrain

N nombre de sujets soumis à l'essai

nm nanomètre

NP niveau préoccupant NY New York (État de)

ON Ontario OR Oregon Pa Pascal

PAL phosphatase alcaline p.c. poids corporel

PC préparation commerciale PEHD polyéthylène haute densité

p.f. poids frais

PGST Politique de gestion des substances toxiques PHED Pesticide Handlers Exposure Database

 pK_a constante de dissociation

ppb partie par milliard ppm partie par million p.s. poids sec

PSV premiers stades de vie PT produit de transformation PTPE poly(téréphtalate d'éthylène)

QR quotient de risque RA radioactivité appliquée

RCC renseignements commerciaux confidentiels

RFFA résidus foliaires à faible adhérence

RRT résidus radioactifs totaux

s.o. sans objet

STJ superficie traitée par jour

T1/2 demi-vie

TD₅₀ temps de dissipation de 50 % (temps requis pour observer une diminution de 50 %

de la concentration)

TIA taux d'ingestion alimentaire uma unité de masse atomique

UV ultraviolet

WA Washington (État de)

	/iations

Annexe I Tableaux et figures

Tableau 1 Analyse des résidus

Matrice	Méthode	Analyte	Type de méthode	Limite de	quantification	Référence
Végétal	Méthode réglementaire ERC 95.26	Matière active	CPG-DDM (chromatographie en phase gazeuse couplée à la discrimination de masse)		Raisin, jus de raisin, raisins secs, vin, moût de raisin, cerises Marc de raisin, houblon	779404, 779405, 779406
Sol/sédiments	Méthode d'analyse ERC 94.27 DowElanco	Matière active	CPG-DDM 237 u 272 u	10 ppb	Loam limoneux Sable loameux Loam sablo- argileux	1642947, 1642948, 1642949
		Métabolite 1	CPG-DDM 337 u, 330 u	10 ppb	Loam limoneux Sable loameux Loam sablo- argileux	
Sol/sédiments	Méthode d'analyse GRM 00.16	Matière active	307 u 272 u	5,8 ppb	Types de sols non indiqués	1642950
	Dow AgroSciences LLC	Métabolite 1	CPG-SM/SM 380 u 344 u	5,9 ppb		
		Métabolite 2	CPG-SM/SM 270 u 206 u	3,7 ppb		
Eau	ERC 95.14 DowElanco Europe	Matière active	CPLHP-UV	0,5 ppb	Eau potable	1642952
Eau	ERC 95.18 DowElanco Europe	Matière active	CPG-DDM 237 u 272 u	1,0 ppb	Eaux de surface	1642953
Eau		Métabolite 2	CPG-DDM 270 u 234 u			
Eau	Protocole n° AA8702 (étude n° 42537) ABC Laboratories	Matière active		4,32 ppb	Essais de toxicité aquatique en eau douce	1642955

Matière active : quinoxyfène; 5,7-dichloro-4-(4-fluorophénoxy)quinoléine Métabolite 1 : 3-hydroxyquinoxyfène; 5,7-dichloro-4-(4-fluorophénoxy)-3-quinoléinol Métabolite 2 : 5,7-dichloro-4-quinoléinol

Tableau 2 Toxicité aiguë du fongicide technique Quinoxyfène et de sa préparation commerciale, le fongicide Quintec

Type d'étude	Espèce	Résultat	Commentaire	Référence
Γoxicité aiguë du fongic	ide technique Quinoxyf	iène		-
Orale	Rat	$DL_{50} > 5000 \text{ mg/kg p.c.}$	Toxicité faible	779432,
				779433
Cutanée	Lapin	$DL_{50} > 2000 \text{ mg/kg p.c.}$	Toxicité faible	779434
nhalation	Rat	$CL_{50} > 3.38 \text{ mg/L}$	Toxicité faible	779435
Irritation cutanée	Lapin	CIM = 0/8 CMM (24, 48 et 72 h) = 0/8	Non irritant	779437
Irritation oculaire	Lapin	CIM=7,2/110 à 1 h CMM (24, 48 et 72 h) = 1,3/110	Irritation peu sévère « ATTENTION - IRRITANT POUR LES YEUX »	779436
Sensibilisation cutanée (test de maximalisation)	Cobaye	Sensibilisant cutané	Sensibilisant cutané potentiel « SENSIBILISANT CUTANÉ POTENTIEL »	779438
Sensibilisation cutanée	Cobaye	N'est pas un sensibilisant	N'est pas un	779439
(test de Buehler)		cutané	sensibilisant cutané	
Toxicité aiguë de la prép	paration commerciale, le	e fongicide Quintec		
Orale	Rat	$DL_{50} > 5000 \text{ mg/kg p.c.}$	Toxicité faible	779388
Orale	Rat	$DL_{50} > 2000 \text{ mg/kg p.c.}$	Toxicité faible	779389
Cutanée	Rat	$DL_{50} > 5000 \text{ mg/kg p.c.}$	Toxicité faible	779390
Cutanée	Rat	$DL_{50} > 2 000 \text{ mg/kg p.c.}$	Toxicité faible	779392
Inhalation		on a été acceptée en raison de de la viscosité élevée de la sub-		779393, 779394
rritation cutanée	Lapin	CMM = 0.67/8	Légèrement irritant	779397
rritation cutanée	Lapin	CMM = 0/8	Non irritant	1771822
irritation oculaire	Lapin	CIM = 13,7/110 (1 h) CMM = 1,78/110 (24, 48, 72 h)	Irritation minime	779395
Irritation oculaire	Lapin	CIM = 1,33/110 (1 h) CMM = 0/110 (24, 48, 72 h)	Irritation minime	779396
Sensibilisation cutanée	Cobaye	N'est pas un sensibilisant	N'est pas un	779401,
test de Buehler)		cutané	sensibilisant cutané	779402
Sensibilisation cutanée	Cobaye	N'est pas un sensibilisant	N'est pas un	779398,
(test de Buehler)		cutané	sensibilisant cutané	779399

CMM = cote moyenne maximale après 24, 48 et 72 heures

CIM = cote d'irritation maximale

Tableau 3 Profil de toxicité du fongicide technique Quinoxyfène

Type d'étude	Espèce	Résultats (mg/kg/jour chez les mâles et les femelles)	Référence
Toxicité cutanée sur 28 jours	Rat	Irritation cutanée : aucun effet lié au traitement n'a été constaté, quelle que soit la dose. DSENO: 1 000 DMENO : non déterminée. Aucun effet lié au traitement.	779450, 940762
Toxicité orale par le régime alimentaire sur 28 jours (étude complémentaire)	Rat	Les doses causant un effet n'ont pas été établies, car l'ARLA considère cette étude comme complémentaire. Les effets liés au traitement consistaient en une diminution du poids corporel, de la prise pondérale et de la consommation d'aliments aux doses faibles, ainsi qu'en effets sur les testicules (testicules atrophiques, diminution de la spermatogenèse) à la dose limite.	779444
Toxicité orale par le régime alimentaire sur 28 jours (étude complémentaire)	Chien	Les doses causant un effet n'ont pas été établies, car l'ARLA considère cette étude comme complémentaire. Les effets liés au traitement consistaient en une diminution du poids corporel, de la prise pondérale et de la consommation d'aliments, ainsi qu'en une légère vacuolisation des hépatocytes (foie).	779446
Toxicité orale par le régime alimentaire sur 30 jours (étude complémentaire; étude non exigée)	Chien	Les doses causant un effet n'ont pas été établies, car l'ARLA considère cette étude comme complémentaire. Les effets liés au traitement consistaient en une diminution du poids corporel, de la prise pondérale et de la consommation d'aliments, ainsi qu'en une augmentation de la vacuolisation des hépatocytes (foie) et de la nécrose d'hépatocytes aux doses faibles. À la dose élevée, une diminution des paramètres érythrocytaires (femelles), une diminution de la taille du thymus et des testicules, ainsi qu'une vacuolisation des cellules tubulaires proximales (rein) ont été observés.	779445
Toxicité orale par le régime alimentaire sur 90 jours	Souris	DSENO: 100 DMENO: 500, établie d'après une augmentation du poids du foie, une hypertrophie et une nécrose hépatocellulaire (cellules isolées).	779440, 779441
Toxicité orale par le régime alimentaire sur 90 jours	Rat	DSENO: 253/10 DMENO: non établie/100, d'après une diminution du poids corporel et de la prise pondérale (femelles), une augmentation du poids du foie et une hypertrophie hépatocellulaire accompagnée de basophilie.	779442, 779443
Toxicité orale par le régime alimentaire sur 90 jours	Chien	DSENO : 100 DMENO : non déterminée. Aucun effet lié au traitement.	779447, 779448

Type d'étude	Espèce	Résultats (mg/kg/jour chez les mâles et les femelles)	Référence
Toxicité orale par le	Chien	DSENO : 20	779449
régime alimentaire sur	0111011	DMENO : 200, établie d'après une mortalité (chez un	, , , , ,
1 an		mâle; due à une anémie hémolytique), une diminution du	
		poids corporel, de la prise pondérale et de la	
		consommation d'aliments, une augmentation du poids du	
		foie, une augmentation de l'activité de la PAL, une	
		anémie hémolytique associée à une augmentation de	
		l'hématopoïèse dans la moelle osseuse et la rate, une	
		hypertrophie des hépatocytes parfois accompagnée d'une	
		dilatation des canalicules biliaires et une hématopoïèse	
		extramédullaire dans la rate.	
Cancérogénicité	Souris	DSENO: 80	779452,
(toxicité orale par le		DMENO : 250, d'après une diminution de la prise	940806,
régime alimentaire sur		pondérale (chez les 2 sexes) et de l'efficacité alimentaires	,
18 mois)		(femelle).	940897, 940899
		(, , , , , , , , , , , , , , , , , , , ,
		Aucun signe de cancérogénicité.	
Toxicité chronique et	Rat	DSENO: 20	779451,
cancérogénicité		DMENO : 80, d'après une diminution de la prise	940780,
(toxicité orale par le		pondérale et de la consommation d'aliments, une	940792, 940801
régime alimentaire sur		glomérulonéphrite chronique progressive modérée (chez	
2 ans)		les mâles), une surface rénale rugueuse et une	
		néphropathie chronique progressive (chez les mâles).	
T	D /	Aucun signe de cancérogénicité.	770452
Toxicité pour la	Rat	Toxicité pour les parents :	779453,
reproduction sur		DSENO: 100	941098,
2 générations		DMENO : non déterminée. Aucun effet lié au traitement.	941100, 941102
		Toxicité pour les descendants :	
		DSENO: 20	
		DMENO: 100, d'après une diminution du poids corporel	
		et de la prise pondérale des petits pendant la lactation.	
		Toxicité pour la reproduction :	
		DSENO: 100	
		DMENO : non déterminée. Aucun effet lié au traitement.	
		Aucun signe de toxicité pour la reproduction.	
Toxicité pour le	Rat	Toxicité pour les mères :	779454
développement		DSENO: 1 000	
		DMENO : non déterminée. Aucun effet lié au traitement.	
		Toxicité pour le développement :	
	1	DSENO: 1 000	
		DMENO : non déterminée. Aucun effet lié au traitement.	
		Aucun signe de tératogénicité ou de sensibilité accrue des	
	1	fœtus par comparaison avec les adultes.	
Toxicité pour le	Lapin	Les doses causant un effet n'ont pas été établies, car	779455
développement (étude	_	l'ARLA considère cette étude comme complémentaire.	
complémentaire de	1	Les effets liés au traitement consistaient en une	
détermination des		diminution du poids corporel, de la prise pondérale, de la	
intervalles de doses)		consommation d'aliments et de la mortalité chez les	
i	1	mères. La dose maximale tolérée a été dépassée.	1

Type d'étude	Espèce	Résultats (mg/kg/jour chez les mâles et les femelles)	Référence
Toxicité pour le développement		Toxicité pour les mères : DSENO : 80 DMENO : 200, d'après une aggravation des signes cliniques (diminution d'excréments, matières fécales molles, souillure de la région périnéale, présence de sang ou de sang dans l'urine dans le plateau de la cage), diminution de la prise pondérale et de la consommation d'aliments. Toxicité pour le développement :	779455, 779456
		DSENO: 80 DMENO: 200, d'après une augmentation des pertes fœtales (avortements spontanés). Aucun signe de tératogénicité ou de sensibilité accrue des fœtus par comparaison avec les adultes.	
Test de mutation	Souches de		779461
inverse	Salmonella typhimurium, E. coli		, , , , , ,
mammifères (in vitro)	Cellules d'ovaire de hamster chinois		779457
Test d'aberrations chromosomiques sur cellules de mammifères (in vitro)	Lymphocytes de rats	Négatif	779458
Essai cytogénétique in vivo sur cellules de mammifères	Souris	Négatif	779459-779460
Neurotoxicité aiguë (par gavage)	Rat		779464, 941108, 941110
Neurotoxicité par le régime alimentaire sur 1 an	Rat	DSENO (voie générale) : 80/20 DMENO (voie générale) : non déterminée /80, d'après une diminution de la prise pondérale chez les femelles.	779465, 941112
		DSENO (neurotoxicité) : 80 DMENO (neurotoxicité) : non déterminée. Aucun effet neurotoxique lié au traitement. Aucun signe de neurotoxicité.	
Métabolisation			779462, 779463

Type d'étude	Espèce	Résultats (mg/kg/jour chez les mâles et les femelles)	Référence
		très faible (≤ 1 %) et a été comparable d'une dose à	
		l'autre et entre les deux sexes. Aucun signe de	
		bioaccumulation n'a été décelé.	
		Métabolisation : Le quinoxyfène a été largement	
		métabolisé. Dans le sang, ≤ 3 % de la radioactivité était	
		associée au composé d'origine, ce qui indique un	
		métabolisme de premier passage important. Les	
		métabolites principaux décelés dans l'urine étaient issus,	
		dans une large mesure, de la rupture de la liaison diaryl-	
		éther du quinoxyfène donnant lieu à la formation de	
		conjugués, labiles en milieu acide, du 4-FP et de la	
		DCHQ, et, dans une moindre mesure, de DCHQ et de	
		4-FP sous forme libre. Les principaux métabolites trouvés	
		dans la bile étaient des conjugués glucuronidés et/ou	
		sulfatés de deux isomères de l'hydroxyquinoxyfène dont	
		l'hydroxyle était situé sur le noyau fluorophényle. Le	
		composé d'origine n'a pas été décelé dans l'urine, mais	
		une quantité infime a été mesurée dans la bile. Le	
		composé d'origine était présent dans les excréments; les	
		formes non conjuguées des deux mêmes isomères de	
		l'hydroxyquinoxyfène dont l'hydroxyle était situé sur le	
		noyau fluorophényle ont été détectées dans la bile.	
		Aucune différence apparente n'a été constatée dans le	
		métabolisme et l'élimination du quinoxyfène entre les	
		deux sexes ou entre une exposition unique et répétée.	

^a Effets observés chez les mâles et chez les femelles, sauf indications contraires

Tableau 4 Critères d'effet toxicologique utilisés dans l'évaluation des risques pour la santé liés au fongicide technique Quinoxyfène

Scénario d'exposition	Dose (mg/kg p.c./jour)	Étude	Critère d'effet	FG ^a ou ME cible ^b
Aiguë, par le régime alimentaire	Données non requis	ses.		
régime alimentaire		toxicité chronique et de cancérogénicité chez le rat sur 2 ans	Diminution de la prise pondérale et de la consommation d'aliments chez les 2 sexes; glomérulopathie chronique progressive, augmentation de l'azote uréique du sang et surface rénale rugueuse chez les mâles.	100
Par voie cutanée et par inhalation, de durée courte à moyenne	DSENO = 20	Toxicité pour la reproduction sur	Diminution du poids corporel des petits et de la prise pondérale globale des petits pendant la lactation.	100

^a Scénarios d'exposition par le régime alimentaire

^b Scénarios d'exposition professionnelle

Tableau 5 Résumé intégré de la caractérisation chimique des résidus dans les aliments

NATURE DES RÉSII	DUS DANS LES VÉGÉTAUX : CONCOMBRE Références : 779471 et 877574			
Position du marqueur	Cycle 4-fluorophénoxy uniformément marqué au ¹⁴ C et noyau quinoléine marqué au ¹⁴ C en			
radioactif	position 2			
Site d'essai	Serre			
Traitement	Pulvérisation foliaire			
Dose d'application	5,9 mg m.a./plante, jusqu'à écoulement			
Calendrier	Lorsque les fruits commencent à mûrir, puis 10 et 23 jours après le premier traitement			
d'application	Lorsque les fruits commencent à murir, puis 10 et 25 jours après le premier traitement			
Délai d'attente avant	7 jours			
la récolte	/ jours			
Préparation	Sous forme de suspension concentrée			
commerciale	Sous forme de suspension concentree			

Les résidus radioactifs totaux (RRT; exprimés en équivalents de quinoxyfène) dans ou sur des concombres pleinement développés se sont élevés à 0,079 ppm (noyau phényle marqué) et à 0,076 ppm (noyau quinoléine marqué). Dans le feuillage pleinement développé, les RRT ont représenté 4,218 ppm (noyau phényle marqué) et 3,399 ppm (noyau quinoléine marqué).

Dans les concombres, environ 77 % des RRT associés au noyau phényle marqué et 67 % des RRT associés au noyau quinoléine marqué ont été récupérés. Dans le feuillage, c'est environ 79 % des RRT associés au noyau phényle marqué et 60 % des RRT associés au noyau quinoléine marqué qui ont été récupérés. Au total, 106,7 % et 108,5 % des RRT associés au noyau phényle marqué, ainsi que 111,3 et 99,0 % des RRT associés au noyau quinoléine marqué ont été récupérés dans le concombre et le feuillage, respectivement.

Métabolites	Métabolites principaux		Métabolites secondaires				
décelés	(> 10 %	(> 10 % des RRT)			(< 10 % des RRT)		
Position du marqueur radioactif	Phényle	Quinoléine	Phényle		Quinoléine		
Concombre	Quinoxyfène	Quinoxyfène	Quinoxy	fène-N-oxyde	Quinoxyfène-N-oxyde		
Feuillage	Quinoxyfène	Quinoxyfène		fène- <i>N</i> -oxyde, noxyfène	Quinoxyfène- <i>N</i> -oxyde, 2-oxoquinoxyfène		
NATURE DES RÉSIDUS DANS LES VÉGÉTAUX			TE	Référence : 7	79417		
Position du marquei	narqueur Cycle 4-fluorophénoxy uniformément marqué au ¹⁴ C et noyau quinoléine mar			oléine marqué au 14C en			
radioactif	position 2	position 2					
Site d'essai	Parcelles extérieu	res					
Traitement	Pulvérisation folia	nire					
Dose d'application	0,11 à 0,12 kg m.a	a./ha, pour un total de	~ 0,6 kg m.a	a./ha			
Calendrier d'application	Première application lorsque les plantes portent des tomates non pleinement développé ou 6 semaines avant la récolte des fruits pleinement développés. Applications ultérieure intervalles entre les traitements (IT) de 7 jours						
Délai d'attente avan la récolte	Des échantillons de feuilles et de tomates pleinement développées ont été prélevés 14 jours après la cinquième application.			ont été prélevés 14 jours			
Préparation commerciale	Sous forme de sus	Sous forme de suspension concentrée					

Les résidus radioactifs totaux (RRT; exprimés en équivalents de quinoxyfène) dans ou sur des tomates pleinement développées se sont élevés à 0,191 ppm (noyau phényle marqué) et à 0,243 ppm (noyau quinoléine marqué). Dans le feuillage, les RRT ont été de 10,716 ppm (noyau phényle marqué) et de 14,112 ppm (noyau quinoléine marqué). Le rinçage des surfaces a éliminé environ 57 à 62 % des RRT des tomates pleinement développées et 41 à 49 % des RRT du feuillage pleinement développé.

Les résidus radioactifs dans ou sur des échantillons prélevés après le rinçage ont été extraits par étapes successives, selon le cas, à l'aide de solvants neutres et sous reflux acide d'un extrait obtenu avec de l'acétonitrile. Les eaux de

rinçage des surfaces, les extraits et les hydrolysats ont été analysés au moyen de techniques chromatographiques. Dans les tomates, > 71 à 74 % des RRT ont été décelés et caractérisés. Dans le feuillage, > 62 à 67 % des RRT ont été décelés et caractérisés. Extraits dans d'autres échantillons de feuillage, des RRT associés à des inconnus présents en faibles concentrations ont été caractérisés à l'aide de méthodes de fractionnement et d'isolement. Il a été établi provisoirement que ces inconnus étaient la 2-chloro-10-fluoro[1]benzopyrano[2,3,4-de]quinoléine (CFBPQ), ainsi que les métabolites 3-OH-quinoxyfène et p-hydroxyphénoxy.

Pour déterminer si les résidus liés étaient associés à des composants naturels, ceux-ci ont été soumis à une hydrolyse et à une extraction des fibres insolubles dans les détergents acides (ADF). Les résultats ont révélé que la plupart des résidus liés étaient associés aux ADF contenant de la lignine, de la cellulose et de l'hémicellulose, ces résidus représentant 10 à 12 % des RRT dans les tomates et 3,7 à 4,6 % des RRT dans le feuillage. Les résidus non extractibles restant après l'extraction simple, l'hydrolyse et l'extraction des ADF représentaient moins de 0,01 ppm.

Métabolites	Métabolites principaux		Métabolites secondaires		
décelés	(> 10 %	(> 10 % des RRT)		6 des RRT)	
Position du					
marqueur	Phényle	Quinoléine	Phényle	Quinoléine	
radioactif					
Tomate (fruit)	Quinoxyfène	Quinoxyfène	-	_	
Feuillage	Quinoxyfène	Quinoxyfène	4-fluorophénol	-	
	SIDUS DANS LES V	ÉGÉTAUX :	Références : 779416 e	4 020200	
BETTERAVE À S	BETTERAVE À SUCRE		References: 7/9410 6	21 939200	
Position du marquei	ır Cycle 4-fluorophé	noxy uniformément mar	qué au 14C et noyau quir	noléine marqué au 14C en	
radioactif	position 2				
Site d'essai	Parcelles extérieur	res			
Traitement	Pulvérisation folia	ire			
Dose d'application	348 à 361 g m.a./h	a/saison; 588 à 646 g m.	a./ha (étude avec doses	excessives)	
Calendrier				a BBCH; deuxième application 60 jours	
d'application	plus tard ou ~ 26 j	ours avant la récolte des	betteraves pleinement d	éveloppées	
Délai d'attente avan	te avant 0.7.14.28 issues analysis a manifest		ation ou 26 jours après la dernière application		
la récolte	0, 7, 14, 20 Jouis 8	ipies ia pienneie applica	non ou 20 jours apres la	ucimere application	
Préparation	Sous forma da sus	pension concentrée			
commerciale	Sous forme de sus	pension concentree			

Les résidus radioactifs totaux (RRT; exprimés en équivalents de quinoxyfène) dans ou sur des betteraves à sucre (racines) pleinement développées se sont élevés à 0,078 ppm (noyau phényle marqué) et à 0,049 ppm (noyau quinoléine marqué). Dans les feuilles de betterave à sucre, les RRT ont été de 1,892 ppm (noyau phényle marqué) et de 2,205 ppm (noyau quinoléine marqué). Les RRT plus faibles dans la betterave à sucre (racine) semblent indiquer que la translocation des feuilles vers la racine est peu importante.

Dans les matrices de betteraves à sucre, les résidus ont été extraits par traitements successifs avec des mélanges d'acétonitrile et d'eau. Dans la betterave à sucre (racine), les résidus extractibles représentaient 76,8 % des RRT associés au noyau phényle marqué et 68,0 % des RRT associés au noyau quinoléine marqué; dans les feuilles de betterave à sucre, ils représentaient 74,1 % des RRT associés au noyau phényle marqué et 54,8 % des RRT associés au noyau quinoléine marqué. D'après les analyses chromatographiques de l'extrait obtenu par traitements à l'acétonitrile et à l'eau, la nature de la radioactivité associée au noyau phényle est semblable à celle associée au noyau quinoléine.

Afin de mieux caractériser les métabolites polaires non identifiés, une hydrolyse en milieu acide et de multiples extractions liquide-liquide ont été tentées et la moyenne des résultats a été calculée. Après la première série d'extractions effectuées avec de l'acétonitrile et de l'eau, les résidus non extractibles représentaient 23,2 à 32,0 % des RRT dans les betteraves et 17,8 à 35,9 % des RRT dans les feuilles. Aucune autre tentative n'a été faite pour caractériser davantage les résidus liés dans les betteraves, car les RRT étaient ≤ 0,02 ppm. Pour la caractérisation des résidus liés dans les feuilles de betterave à sucre, ceux-ci ont été soumis à des méthodes d'extraction de la cellulose, de la lignine et des fibres insolubles dans les détergents acides. Les résultats obtenus ont révélé que la plupart de la radioactivité était associée à la lignine.

Métabolites			s principaux	Métabolites secondaires			
décelés		(> 10 %)	des RRT)	(< 10 % des RRT)			
Position du							
marqueur	Phényle	;	Quinoléine	Phényle	Quinoléine		
radioactif							
Feuilles de	Quinox	yfène,	Onin ann Gana	CEDDO	DCHQ,		
betterave à sucre	4-fluoro	phénol	Quinoxyfène	CFBPQ	CFBPQ		
Betterave à sucre	o :		0 . 0		_		
(racine)	Quinox	ytene	Quinoxyfène	-	-		
	SIDUS I	DANS LES VÉ	GÉTAUX : RAISIN	Référence : 779470			
Position du marquei	ır Cyc	le 4-fluorophér	noxy uniformément mar	qué au ¹⁴ C et noyau quir	noléine marqué au ¹⁴ C en		
radioactif	posi	tion 2	•		•		
Site d'essai	Serr	e					
Traitement	Pulv	érisation foliai	re				
D 11 11 11	0.33	0,33 à 0,52 mg m.a./grappe de raisin, jusqu'à l'écoulement, ou 0,62 à 0,76 mg m.a./grappe					
Dose d'application		de raisin					
Calendrier	App	lication hâtive	: 18 jours après la fin de	e la floraison			
d'application			e : 5 semaines après la pr				
Délai d'attente avan			s (raisin pleinement dév		tive;		
la récolte 0, 10 jours : application tardive							
Préparation commerciale		* *	pension concentrée				

Des échantillons ont été successivement lavés à l'eau, au dichlorométhane et au méthanol, puis la radioactivité a été mesurée dans les eaux de rinçage et les fruits. La plupart des RRT (81 à 99 % des RRT) ont été éliminés par le lavage en surface, quel qu'ait été l'intervalle entre le traitement et le prélèvement d'échantillons. Après le lavage en surface, les résidus dans ou sur les fruits ont été extraits avec des solvants organiques. Dans les échantillons prélevés dans ou sur du raisin traité pleinement développé, les RRT (exprimés en équivalents de quinoxyfène) ont diminué à chaque intervalle successif entre le traitement et le prélèvement d'échantillons. Dans les échantillons de raisin soumis à un traitement hâtif, prélevés à des DAAR de 0, 30 et 45 jours, les résidus ont diminué, passant de 13,30 à 2,513 ppm pour les RRT associés au noyau phényle marqué et de 9,121 à 1,985 ppm pour les RRT associés au noyau quinoléine marqué. Dans l'essai avec le traitement tardif, les résidus ont diminué. Après 10 jours, les RRT associés au noyau phényle marqué sont passés de 4,857 à 2,907 ppm, et les RRT associés au noyau quinoléine marqué de 4,954 à 4,235 ppm.

Une hydrolyse en milieu faiblement basique des résidus non extractibles de raisin traité « hâtivement » a permis de récupérer encore 1,2 à 2,0 % des RRT. Les résidus liés restant après le lavage en surface, une extraction simple et/ou une hydrolyse en milieu basique représentaient 1,2 à 4,6 % des RRT. Au total, on a récupéré 100,2 à 103,1 % des RRT associés au noyau phényle et au noyau quinoléine marqués et extraits dans le raisin cueilli à maturité, le raisin ayant été traité en début de croissance ou plus tard.

Des substances d'essai radiomarquées ont été appliquées en pulvérisation directe sur les fruits de pieds de vigne bien établis à une dose de 750 mg m.a./L (0,62 à 0,76 mg m.a./grappe). Les résidus dans ou sur des fruits pleinement développés lavés ont été extraits avec des solvants organiques. Les RRT associés au noyau phényle marqué se sont élevés à 6,672 ppm, et les RRT associés au noyau quinoléine marqué, à 5,273 ppm. La répartition de la radioactivité entre les eaux de rinçage des diverses surfaces et les fruits était semblable à celle observée à la dose d'application faible. Les proportions de quinoxyfène, de matières polaires non identifiées et de résidus non extractibles étaient semblables, elles aussi.

Une expérience séparée a été réalisée pour étudier la translocation. Les substances d'essai ont été appliquées directement sur une partie d'un pied de vigne entier à une dose de 375 mg m.a./L. D'après les résultats, il ne semble pas y avoir de translocation de résidus de la partie traitée vers les parties non traitées de la plante. Les profils métaboliques ont été semblables dans les échantillons de raisin et de vigne avec les RRT associés au noyau phényle ou au noyau quinoléine marqués, le quinoxyfène étant le résidu principal. Il semble cependant que le quinoxyfène soit davantage métabolisé dans le pied de vigne que dans le raisin, vu la concentration plus élevée de composants polaires non identifiés et de résidus liés dans les pieds de vigne que dans le raisin.

Métabolites décelés		es principaux o des RRT)	Métabolites secondaires (< 10 % des RRT)					
Position du marqueur radioactif	Phényle	Quinoléine	Phényle	Quinoléine				
Raisin	Quinoxyfène	Quinoxyfène	-	-				
NATURE DES RÉ D'HIVER	SIDUS DANS LES V	Références : 779468	Références : 779468 et 927812					
Position du marqueuradioactif	Cycle 4-fluoropho	qué au ¹⁴ C et noyau quir	noléine marqué au ¹⁴ C en					
Site d'essai	Parcelles extérieu	res						
Traitement	Pulvérisation folia	aire						
Dose d'application	250 g m.a./ha (fai	ble); 1 000 g m.a./ha (éle	evée)					
Calendrier d'application Application hâtive : au stade de croissance 32 selon la BBCH; Application tardive : ~4 semaines plus tard, pour distinguer les plantes au stade de croissance 49 selon la BBCH								
Délai d'attente avan la récolte		0, 14, 29, 105 jours pour l'application hâtive 1, 78 jours pour l'application tardive						
Préparation commerciale	Sous forme de co	ncentré émulsifiable						

Les résidus radioactifs totaux (RRT; exprimés en équivalents de quinoxyfène) dans ou sur des grains de blé pleinement développé se sont élevés à 0,036 ppm (noyau phényle marqué) et à 0,057 ppm (noyau quinoléine marqué). Dans la paille de blé pleinement développé, les RRT étaient de 2,073 ppm (noyau phényle marqué) et de 4,376 ppm (noyau quinoléine marqué). Le métabolisme du quinoxyfène dans le fourrage était le même que dans la paille, du point de vue qualitatif.

Dans les grains de blé, les RRT étaient faibles et les résidus extractibles ne représentaient que 9,82 % des RRT associés au noyau phényle marqué et 8,94% des RRT associés au noyau quinoléine marqué. Des sous-échantillons de grains de blé pleinement développé ont été soumis à d'autres méthodes de fractionnement pour l'étude de l'incorporation des résidus dans des éléments naturels tels que l'amidon. Il a été établi qu'environ 13 et 53 % des RRT associés au noyau phényle et au noyau quinoléine marqués, respectivement, étaient liés à l'amidon présent dans les grains.

Dans la paille de blé, les résidus extractibles représentaient 35,44 % des RRT associés au noyau phényle marqué et 25,66 % des RRT associés au noyau quinoléine marqué. Les travaux visant à caractériser le métabolite A ont indiqué qu'il n'était ni le composé d'origine ni un composé apparenté conjugué à des composés présents naturellement dans l'environnement, mais qu'il était constitué de petits acides organiques. Des échantillons de paille de blé ont été soumis à plusieurs fractionnements en vue d'une caractérisation approfondie des résidus liés. Étant donné les résultats obtenus au moyen de trois différentes méthodes d'extraction de la lignine/cellulose, il a été conclu que dans la paille de blé, au moins 15 et 20 % des RRT associés au noyau phényle et au noyau quinoléine marqués, respectivement, étaient liés à la lignine, et qu'au moins 24 et 29 % des RRT associés au noyau phényle et au noyau quinoléine marqués, respectivement, étaient liés à la cellulose.

Dans le grain, au total, 94,2 et 93,2 % des RRT associés au noyau phényle et au noyau quinoléine marqués ont été récupérés respectivement. Dans la paille, le total des RRT récupérés s'élevait à 101,7 et à 75,2 % des RRT associés au noyau phényle et au noyau quinoléine marqués, respectivement.

Métabolites	Métabolites	s principaux	Métabolites secondaires		
décelés	(> 10 %	des RRT)	(< 10 % des RRT)		
Position du marqueur radioactif	Phényle	Quinoléine	Phényle	Quinoléine	
Grain de blé d'hiver	-	-	Quinoxyfène, Métabolite A	Quinoxyfène, Métabolite A	
Paille de blé d'hiver	Quinoxyfène, métabolite A	Métabolite A	-	Quinoxyfène	

	CULTURES DE ROTATION EN COU, NAVET ET TOURNESOL	Référence : 779469			
Position du marqueur radioactif	Cycle 4-fluorophénoxy uniformément marque position 2	ué au ¹⁴ C et noyau quinoléine marqué au ¹⁴ C en			
Site d'essai	Serre en Angleterre				
Traitement	Pulvérisateur manuel				
Dose d'application	400 g m.a./ha				
Calendrier d'application	Sol nu				
Délai avant la plantation	30 jours				
Préparation commerciale	Sous forme de concentré émulsifiable				

Dans une étude sur des cultures de rotation en milieu isolé, du quinoxyfène à noyau phényle ou quinoléine marqué au ¹⁴C a été appliqué en solution de pulvérisation à la surface d'un sol limoneux-sableux à 400 g m.a./ha. Des graines de chou pommé (légume-feuille), de navet (culture racine) et de tournesol (culture semencière) ont été semées sur du sol traité 30 jours après l'application des substances d'essai. Les plantes ont été cultivées selon les pratiques agricoles habituelles. Les résidus radioactifs totaux (RRT; exprimés en équivalents de quinoxyfène) étaient en quantités inférieures à 0,01 ppm dans et sur tous les produits alimentaires bruts récoltés (racines de navet, feuilles de chou et fleurs de tournesol) à un délai avant la plantation (DAP) de 30 jours. Par conséquent, l'analyse des échantillons de plantes traitées n'a pas été approfondie.

Voies métaboliques proposées dans les plantes

composants végétaux naturellement présents

Dans les pieds de concombre et de tomate, le quinoxyfène inchangé est demeuré en grande partie à la surface des plantes traitées. La présence de multiples résidus polaires non identifiés semble indiquer que la métabolisation du quinoxyfène se déroule, dans une certaine mesure, pour former plus de composants solubles polaires, et s'accompagne d'une incorporation dans une matière insoluble telle que la lignine et la cellulose. Dans la betterave à sucre, le quinoxyfène semble être métabolisé, dans une certaine mesure, et il peut ensuite être incorporé aux composants végétaux naturellement présents tels que la lignine. La dégradation initiale du quinoxyfène sur les feuilles peut découler d'une photolyse de surface et les produits de photodégradation résultants peuvent être métabolisés à leur tour en résidus polaires. De plus, la liaison éther du quinoxyfène peut être rompue pendant la métabolisation, entraînant la formation des métabolites 4-fluorophénol et DCHQ.

ESSAIS CONTRÔLÉS SUR LE TERRAIN : FRUITS À NOYAU

Références : 779411, 779412, 1771827 et 1771828

Références: 1771829 et 1771832

Sept essais sur des cerises acides (un essai dans chacune des zones 1, 9 et 11, et quatre essais dans la zone 5) et six essais sur des cerises douces (deux essais dans chacune des zones 5, 10 et 11) ont été menés aux États-Unis au cours des saisons de végétation 2000-2001. Onze essais sur des pêches (un essai dans chacune des zones 1, 5 et 6, et quatre essais dans chacune des zones 2 et 10) et six essais sur des prunes (un essai dans chacune des zones 5 et 12, et quatre essais dans la zone 10) ont été menés aux États-Unis au cours de la saison de végétation 2003. Toutes les applications ont été réalisées avec le produit Quintec 250SC (EF-1295; 250 g/L quinoxyfène). Dans les essais sur les cerises, cinq applications foliaires ont été effectuées à une dose de ~120 g m.a./ha, pour une dose saisonnière de 620 g m.a./ha. Les cerises ont été récoltées à des DAAR de 6 à 8 jours. Dans les essais sur les pêches et les prunes, quatre applications foliaires ont été effectuées à une dose de ~146 g m.a./ha à intervalles de 6 à 8 jours, pour une dose totale de 575 à 598 g m.a./ha. À un site d'essai, dans un essai sur les pêches se déroulant en zone 6, une application additionnelle a été faite pour permettre aux fruits de se développer pleinement, la dose totale augmentant ainsi à 725 g m.a./ha. Des pêches pleinement développées ont été cueillies à des DAAR de 6 à 8 jours. Des prunes pleinement développées ont été récoltées et dénoyautées 7 jours après la dernière application.

Concentration des résidus de quinoxyfène (ppm) Dose totale DAAR Denrée Max (g m.a./ha) (jours) N Min **MPEET** Médiane Moyenne E.-T. Cerise acide 620 6-7 14 0,046 0,269 0,267 0,125 0.13 0.067 620 7-8 12 0,141 0,114 0,1 0,039 Cerise douce 0,03 0,146 575-598 6-8 0,475 0,095 20 0,063 0,540 0,150 0.123 Pêche 725 8 2 0,43 0,550 0,490 0,490 0,490 S.O. 578-585 0,091 0,010 0,024 Prune 12 < 0.01 0,095 0,031

ÉTUDE SUR LA DISSIPATION DES RÉSIDUS DANS LES FRUITS À NOYAU

Dans un essai sur les pêches et deux essais sur les nectarines menés en Europe, des échantillons de fruits ont été prélevés 0, 1, 3, 7 et 13-14 jours après la dernière application (JADA). La quantité moyenne de résidus dans les échantillons de fruits issus de cultures traitées est passée de 0,052 ppm (0 JADA) à < 0,01 ppm (13 JADA) sur les pêches, et de 0,069 ppm (0 JADA) à 0,01 ppm (14 JADA) sur les nectarines.

ESSAIS CONTRÔLÉS SUR LE TERRAIN : CANTALOUP Référence : 1771825

Onze essais contrôlés sur le terrain ont été menés aux États-Unis et au Canada sur des cantaloups au cours de la saison de végétation 2001 : un essai dans chacune des zones 5, 5B et 12, deux essais dans chacune des zones 2 et 6, et quatre essais dans la zone 10. Dans tous les essais sauf un, quatre applications foliaires de Quintec 250SC (EF-1295; 250 g/L quinoxyfène) ont été effectuées à une dose de ~146 g m.a./ha à intervalles de 6 à 12 jours, pour une dose totale de 581-619 g m.a./ha. Dans un essai, en raison du temps frais, cinq applications ont été réalisées, pour une dose totale de 747 g m.a./ha.). Dans tous les sites d'essais, les cantaloups ont été récoltés 2 à 4 jours après la dernière application.

Dannáa	Dose totale	DAAR	Concentration des résidus de quinoxyfène (ppm)							
Denrée	(g m.a./ha)	(jours)	N	Min	Max	MPEET	Médiane	Moyenne	ET.	
Cantaloup	581-747	2-4	22	< 0,01	0,056	0,050	0,028	0,030	0,01	
ÉTUDE SUR LA DISSIPATION DES RÉSIDUS DANS LE CANTALOUP Référence: 1771825										

Des échantillons de cantaloups ont été prélevés 0, 2, 3, 4, 7 et 14 jours après la dernière application (JADA). Les quantités moyennes de résidus dans les échantillons de cantaloups traités ont diminué, passant de 0,052 ppm (à 0 JADA) à 0,015 ppm (à 14 JADA).

ESSAIS CONTRÔLÉS SUR LE TERRAIN : RAISIN Références : 779414 et 941125

Quinze essais sur la vigne ont été menés aux États-Unis et au Canada au cours de la saison de végétation 1999 : un essai dans la zone 2, deux essais dans chacune des zones 1 et 5, trois essais dans la zone 11 et sept essais dans la zone 10. À chaque site d'essai, cinq applications de Quintec 250SC (EF 1295; 250 g/L quinoxyfène) ont été effectuées sur les vignes, en pulvérisation foliaire, à une dose de ~120 kg m.a./ha, pour une dose totale de 570-800 g m.a./ha. Dans les deux essais menés en Ontario, une parcelle additionnelle a reçu cinq applications foliaires à raison de 60 g m.a./ha/application, pour une dose totale de 300 g m.a./ha. Dans tous les essais, la première application a été effectuée au moment de la fructification de la vigne, et les applications ultérieures, à des intervalles entre les traitements (IT) de 6 à 8 jours. Le raisin pleinement développé a été récolté 13 à 15 jours après la dernière pulvérisation.

Donnáo	Dose totale	DAAR		Concentration des résidus de quinoxyfène (ppm)					
Denrée	(g m.a./ha)	(jours)	N	Min	Max	MPEET	Médiane	Moyenne	ET.
Raisin	300	14	4	0,085	0,135	0,125	0,107	0,11	0,023
	570-800	13-15	30	0,048	0,480	0,437	0,150	0,17	0,1

ÉTUDE SUR LA DISSIPATION DES RÉSIDUS DANS LE RAISIN Référence : 1771834

Un essai sur la dissipation des résidus sur le raisin a été mené dans le sud de la France au cours de la saison de végétation 1996 à une dose de 62,5 g m.a./ha. Des échantillons ont été prélevés à 0, 5, 10, 15 et 21 JADA. Les quantités moyennes de résidus dans les échantillons de raisin traité ont diminué, passant de 0,24 ppm (à 0 JADA) à 0,10 ppm (à 21 JADA).

ESSAIS CONTRÔLÉS SUR LE TERRAIN : HOUBLON Référence : 779413

Trois essais sur le houblon ont été menés au cours de la saison de végétation 1999 dans les zones 11 (deux essais) et 12 (un essai). À chaque site d'essai, trois ou quatre applications de Quintec 250SC (EF 1295; 250 g/L quinoxyfène) ont été effectuées sur le houblon, en pulvérisation foliaire, pour une dose d'application totale de 590 à 760 g m.a./ha. La première application a été réalisée au moment de la floraison du houblon, et les applications ultérieures à des IT de 11 à 20 jours. Les cônes de houblon séché ont été récoltés 20 à 21 jours après la dernière pulvérisation du calendrier.

Donrág	Dose totale	DAAR		Concentration des résidus de quinoxyfène (ppm)						
Denrée	(g m.a./ha)	(jours)	N	Min	Max	MPEET	Médiane	Moyenne	ET.	
Houblon	590-760	20-21	6	0,384	2,46	2,16	1,22	1,26	0,82	
ESSAIS CONTRÔLÉS SUR LE TERRAIN : LAITUE Référence : 1641969										

Des essais contrôlés sur le terrain ont été menés aux États-Unis au cours de la saison de végétation 2002 sur de la laitue pommée (huit essais en tout : un essai dans chacune des zones 2, 3 et 8, et cinq essais dans la zone 10) et sur de la laitue frisée (huit essais en tout : un essai dans chacune des zones 2, 3 et 8, et cinq essais dans la zone 10). Dans 14 des essais, quatre applications foliaires de Quintec 250SC (EF-1295; 250 g/L quinoxyfène) ont été effectuées à une dose de ~146 g m.a./ha et à intervalles de 5 à 9 jours, pour une dose totale de 571 à 622 g m.a./ha. Dans deux essais (un essai sur la laitue pommée et un autre sur la laitue frisée), cinq applications ont été réalisées en raison du temps frais, pour une dose totale de 738 à 747 g m.a./ha.) Dans tous les sites d'essais, les laitues pommées et les laitues frisées ont été récoltées un jour après la dernière application.

Denrée	Dose totale	DAAR	AR Concentration des résidus de quinoxyfène (ppm)						
Deniee	(g m.a./ha)	(jours)	N	Min	Max	MPEET	Médiane	Moyenne	ET.
Laitue frisée	571 - 738	1	16	1,20	14,0	13,0	3,05	4,46	3,8
Laitue pommée avec les feuilles extérieures	582 - 747	1	16	0,80	5,80	5,30	1,97	1,30	1,5

ÉTUDE SUR LA DISSIPATION DES RÉSIDUS DANS LA LAITUE Référence : 1771826

Des échantillons de laitue frisée ont été prélevés 1, 3-4, 7 et 14 jours après la dernière application (JADA). Les quantités moyennes de résidus dans les échantillons de laitues traitées ont diminué, passant de 4,55 ppm (à 1 JADA) à 1,02 ppm (à 14 JADA).

ESSAIS CONTRÔLÉS SUR LE TERRAIN : FRAISES Référence : 1641968

Huit essais contrôlés sur le terrain ont été menés aux États-Unis sur des fraisiers au cours de la saison de végétation 2002 : un essai dans chacune des zones 3, 5 et 12, deux essais dans la zone 2, et trois essais dans la zone 10. Dans tous les essais, quatre applications foliaires de Quintec 250SC (EF-1295; 250 g/L quinoxyfène) ont été effectuées à une dose de ~149 g m.a./ha et à des intervalles de 6 à 8 jours, pour une dose totale de 580 à 648 g m.a./ha. Dans tous les essais, la première application a été effectuée 20 à 22 jours avant la récolte et les fraises pleinement développées ont été récoltées un jour après la dernière application.

Donnás	Dose totale	DAAR		Concentration des résidus de quinoxyfène (ppm)						
Denrée	(g m.a./ha)	(jours)	N	Min	Max	MPEET	Médiane	Moyenne	ET.	
Fraises	580 - 648	1	16	0,032	0,574	0,561	0,325	0,322	0,185	

ÉTUDE SUR LA DISSIPATION DES RÉSIDUS DANS LES FRAISES Référence : 1641968

Des échantillons de fraises ont été prélevés 1, 3, 6-7 et 13-14 jours après la dernière application (JADA). Les quantités moyennes de résidus dans les échantillons de fraises traitées ont diminué, passant de 0,431 ppm (à 1 JADA) à 0,048 ppm (à 13-14 JADA).

ESSAIS CONTRÔLÉS SUR LE TERRAIN : COURGE D'HIVER Références : 1771824

Cinq essais contrôlés sur le terrain ont été menés aux États-Unis sur la courge d'hiver au cours des saisons de végétation 2003 et 2004 : un essai dans chacune des zones 3, 5 et 10, et deux essais dans la zone 2. Dans tous les

essais, quatre applications foliaires de Quintec 250SC (EF-1295; 250 g/L quinoxyfène) ont été effectuées à une dose de ~147 g m.a./ha à des intervalles de 6 à 9 jours, pour une dose totale de 580 à 600 g m.a./ha. Les courges d'hiver pleinement développées ont été récoltées 3 à 4 jours après la dernière application.

Dome	rá a	Dose totale	DAAR		Concentration des résidus de quinoxyfène (ppm)						
Denrée		(g m.a./ha)	(jours)	N	Min	Max	MPEET	Médiane	Moyenne	ET.	
Cour	rge d'hiver	580 - 600	3-4	10	0,027	0,106	0,106	0,059	0,062	0,03	
STA	STABILITÉ À L'ENTREPOSAGE AU CONGÉLATEUR Références : 1641950, 1641952 et 1641954										

Les données de stabilité à l'entreposage au congélateur indiquent que les résidus de quinoxyfène sont stables à une température de -18 °C pendant une période allant jusqu'à six mois dans les pommes, les abricots, les pêches, les fraises, les artichauts et les courgettes, et pendant une période allant jusqu'à 12 mois dans le raisin.

ALIMENTS TRANSFORMÉS DESTINÉS À LA CONSOMMATION
HUMAINE OU ANIMALE
Références: 779414, 941125 et
1771828

Des études sur la transformation d'aliments ont été menées sur le raisin et les prunes. Les résidus de quinoxyfène se sont concentrés uniquement dans les pruneaux secs $(3,5 \times)$.

Tableau 6 Caractérisation chimique des résidus dans et sur les aliments : aperçu des études sur le métabolisme et de l'évaluation des risques

ÉTUDES SUR LES VÉGÉTAU	J X								
DÉFINITION DU RÉSIDU AUX	FINS DE L'APPLICATION	N DE LA LOI							
Cultures principales			Quinoxy	fène					
Cultures de rotation			Quinoxy	fène					
DÉFINITION DU RÉSIDU AUX	K FINS DE L'ÉVALUATION	N DES							
RISQUES			Quinoxyfène						
Cultures principales									
Cultures de rotation			Quinoxy	riene					
			Le profi	l métabolique est					
PROFIL MÉTABOLIQUE DAN	S DIFFÉRENTES CULTUR	ES	semblab dissemb	le dans cinq cultures					
	· ·								
ÉTUDES SUR LES ANIMAUX									
DÉFINITION DU RÉSIDU AUX FINS DE L'APPLICATION DE LA LOI Sans objet									
DÉFINITION DU RÉSIDU AUX	K FINS DE L'ÉVALUATION	N DES	Sans objet						
RISQUES									
PROFIL MÉTABOLIQUE CHE	ZIES ANIMALIY			l métabolique chez les					
FROFIL METABOLIQUE CHE	L LES AMIMAUA		animaux n'a pas été étudié.						
RÉSIDU LIPOSOLUBLE			Non déterminé						
RISQUES LIÉS À LA CONSO	MMATION D'EAU ET DE	NOURRITURE							
		RIS	QUE ES	STIMATIF					
Risques non cancérogènes	POPULATION	E	N % DE	LA DJA					
associés à une exposition		Aliments unique	ement	Aliments et eau					
chronique par le régime	Nourrissons (< 1 an)	0,8		0,8					
alimentaire, déterminés par	Enfants de 1 et 2 ans	2,1		2,1					
l'évaluation de base	Enfants de 3 à 5 ans	1,8		1,8					
DIA = 0.2 mg/kg n a /iour	Enfants de 6 à 12 ans	1,3		1,3					
DJA = 0.2 mg/kg p.c./jour	Jeunes de 13 à 19 ans	1,1		1,1					
Concentration estimative dans	Adultes de 20 à 49 ans	1,3		1,3					
l'eau potable (exposition	Adultes de 50 ans et plus	1,2		1,2					
chronique) = $0.59 \mu g / L$	Ensemble de la population	1,3		1,3					

Tableau 7 Identité, taux de formation maximal et temps requis pour l'obtention du maximum de produits de transformation formés dans l'environnement

Code	Nom chimique	Structure chimique	Étude	% RA max (jours)	% RA récupérée à la fin de l'étude (durée de l'étude)
	OSÉ D'ORIGINE				
XDE -795 DE- 795	5,7-dichloro-4- (4-fluorophénoxy) quinoléine	CI ON THE REPORT OF THE PROPERTY OF THE PROPER			
Princip	aux produits de transfor	mation (> 10 %)			
	5,7-dichloro-4- (4-fluorophénoxy) quinoléin-3-ol (3-OH-quinoxyfène) ¹	CI OH	Sol aérobie (intervalle, car différents marqueurs, types de sols et températures utilisés)	5,8-67,5 (180-365)	2,2-67,5
		Cr • N	Sol anaérobie	18,25 (32)	6,0 (100)
			Photolyse dans le sol	0 (s.o.)	0 (30)
			Photolyse en milieu aqueux	0 (s.o.)	0 (7)
			Hydrolyse	0 (s.o.)	0 (21)
			Milieu aquatique aérobie (intervalle, car deux marqueurs utilisés)	38,4-42,7 (48)	30,6-36,4 (100)
			Milieu aquatique anaérobie (intervalle, car deux marqueurs utilisés)	81,8-86,9 (181-378)	81,8-84,5 (378)
			Études sur le terrain	2,0 (372)	< LD (489)
			Autre	S.O.	s.o.

Code	Nom chimique	Structure chimique	Étude	% RA max (jours)	% RA récupérée à la fin de l'étude (durée de l'étude)
	5,7-dichloro-4- (4-fluorophénoxy)- 2-oxo-quinoléine (2-oxoquinoxyfène) ¹	CI O H	F		
	5,7- dichloroquinoléin- 4-ol (DCHQ)	CI OH	Sol aérobie (intervalle, car plusieurs marqueurs, types de sols et températures utilisés)	0,0-20,2 (7-365)	0-20,2 (365)
			Sol anaérobie	0 (s.o.)	0 (100)
			Photolyse dans le sol	2,5 (30)	2,5 (30)
			Photolyse en milieu aqueux	0 (s.o.)	0 (7)
			Hydrolyse (pH 4, 50 °C; résistant à pH 7 et 9)	85 (21)	85 (21)
			Milieu aquatique aérobie	0,9 (100)	0,9 (100)
			Milieu aquatique anaérobie	0 (s.o.)	0 (378)
			Études sur le terrain	7,7 (62)	< LD (378)
			Autre	S.O.	S.O.
	2-chloro-10-fluoro- 7a,11a- dihydrochroméno [2,3,4-de]quinoléine (CFBPQ)	F	Sol aérobie	0 (s.o.)	0 (365)
			Sol anaérobie	0 (s.o.)	0 (100)
		Cr N	Photolyse dans le sol	0 (s.o.)	0 (30)
			Photolyse en milieu aqueux	91,0 (0,04)	1,7 (7)
			Hydrolyse	0 (s.o.)	0 (21)
			Milieu aquatique aérobie	0 (s.o.)	0 (100)

Code	Nom chimique	Structure chimique	Étude	% RA max (jours)	% RA récupérée à la fin de l'étude (durée de l'étude)
			Milieu aquatique anaérobie	0 (s.o.)	0 (378)
			Études sur le terrain	0 (s.o.)	0 (378)
Produit	ts de transformations sec	ondaires (< 10 %)	Autre	S.O.	S.O.
Tiodai	5,7-dichloro- 4-méthoxyquinoléine (DCMQ)	ÇI OMe	Sol aérobie	0,0-3,4 (300-365)	0,0- 3,3 (365)
			Sol anaérobie	0 (s.o.)	0 (100)
			Photolyse dans le sol	0 (s.o.)	0 (30)
		Cr N	Photolyse en milieu aqueux	0 (s.o.)	0 (7)
			Hydrolyse	0 (s.o.)	0 (21)
			Milieu aquatique aérobie	0 (s.o.)	0 (100)
			Milieu aquatique anaérobie	0 (s.o.)	0 (378)
			Études sur le terrain	0 (s.o.)	0 (378)
			Autre	S.O.	S.O.

Tableau 8 Principales données d'entrée fournies aux modèles d'eaux souterraines et d'eaux de surface aux fins de l'évaluation de niveau 1 du quinoxyfène et du 2-oxoquinoxyfène

Type de données	Paramètre	Valeur
d'entrée Renseignements sur	Culture(s) visée(s) par le traitement	Abricots, cerises, raisin, laitues,
l'application		melons, nectarines, pêches,
		prunes, prunes à pruneaux,
		citrouilles, courges, courgettes,
		fraises et houblon
	Dose d'application maximale permise par année (g	625 (abricots, cerises,
	m.a./ha)	nectarines, pêches, prunes et
		prunes à pruneaux)
		440 (melons, citrouilles,
		courges, courgettes et fraises)
	Dose d'application maximale pour chaque application (g	125 (abricots, cerises,
	m.a./ha)	nectarines, pêches, prunes et
		prunes à pruneaux)
		110 (melons, citrouilles,
		courges, courgettes et fraises)
	Nombre maximal d'applications par année	5 (abricots, cerises, nectarines,
		pêches, prunes et prunes à
		pruneaux)
		4 (melons, citrouilles, courges,
		courgettes et fraises)
	Intervalle minimal entre les applications (jours)	10
	Méthode d'application	Pulvérisateur pneumatique pour
Q	D : : 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	application foliaire
Caractéristiques	Demi-vie d'hydrolyse à pH 7 (jours)	stable
relatives au devenir dans l'environnement	Demi-vie de photolyse dans l'eau (jours)	0,006
dans i environnement	K _{co} d'adsorption (ml/g)	45224,2 (20 ^e centile de cinq
		valeurs de K _{co} pour le
	Davis in history of marking a faction to a 1 and 6 and	quinoxyfène)
	Demi-vie, biotransformation aérobie dans le sol (jours)	263, pour le composé d'origine,
		le quinoxyfène (la plus longue
		de deux demi-vies) 618, pour les résidus combinés
		de quinoxyfène et de
		2-oxoquinoxyfène (la plus
		longue de deux demi-vies)
	Demi-vie, biotransformation aérobie en milieu	33,7, pour le composé
	aquatique (jours)	d'origine, le quinoxyfène (la
	aquatique (jours)	plus longue de deux demi-vies)
		153, pour les résidus combinés
		de quinoxyfène et de
		2-oxoquinoxyfène (la plus
		longue de deux demi-vies)
	Demi-vie, biotransformation anaérobie en milieu	15,4, pour le composé
	wilder out all illied	
		d'origine, le quinoxyfène (une
	aquatique (jours)	d'origine, le quinoxyfène (une seule demi-vie)
		seule demi-vie)
		seule demi-vie) 2010, pour les résidus combinés
		seule demi-vie)

Tableau 9 Concentrations estimées dans l'environnement des résidus de quinoxyfène et de 2-oxoquinoxyfène (combinés) qui pourraient se trouver dans l'eau potable, selon l'évaluation de niveau 1

Composé	CEE eaux souterraines (µg m.a./L)		CEE eaux de surface (µg m.a./L)				
			Réservoir		Mare-réservoir		
	Par jour ^a	Par année ^b	Par jour ^c	Par année ^d	Par jour ^c	Par année ^d	
Résidus combinés (quinoxyfène + 2-oxoquinoxyfène)	0	0	4,5	0,23	7,1	0,59	

Remarques:

- ^a 90^e centile des concentrations moyennes par jour
- b 90^e centile des concentrations moyennes par année
- c 90e centile des concentrations maximales par année
- d 90° centile des concentrations moyennes par année

Tableau 10 Devenir et comportement dans l'environnement

Étude	Composé	Valeur	Remarques	Référence
Transformat	ion abiotique			
Hydrolyse	Quinoxyfène	À pH 4 et à 50 °C, 40 °C et 25 °C : $t \frac{1}{2} = 6.8, 15.6 \text{ et } 71.6 \text{ jours}$ À pH 7 et à 50 °C : $t \frac{1}{2} = 226 \text{ jours}$ À pH 9 et à 50 °C : stable	Pas de dégradation importante aux conditions de températures et de pH valables dans l'environnement	928643, 1642957
	DCHQ	Taux de dissipation non calculables	DCHQ décelée à toutes les conditions de températures et de pH utilisées À pH 4 et à 50 °C : 86,1 % RA à 21 JAT; À pH 4 et à 40 °C : 73,6 % RA à 30 JAT; À pH 4 et à 25 °C : 30,4 % RA à 46 JAT; À pH 7 et 9, et à 50 °C : 3,3 % RA et 1,0 % RA à 21 JAT;	
Photolyse dans le sol	Quinoxyfène	t½ = 87 jours dans une enceinte climatisée (équivaut à 242 jours d'exposition à la lumière naturelle du printemps à 51° de latitude nord)	N'est pas une voie de dissipation importante dans l'environnement.	928656, 1642958
Photolyse en milieu aqueux	Quinoxyfène	À pH 5, eau pure tamponnée : $t\frac{1}{2}$ = 8,1 minutes (dans l'environnement, au printemps, à 40° de latitude nord)	Voie de dissipation importante dans l'environnement.	928655, 1771841
	CFBPQ	CSPO, $TD_{50} = 0.2$ jour (exposition continue à la lumière)	75,7 % -1,7 % RA à 0,06-7 JAT	

Étude	Composé	Valeur	Remarques	Référence	
Biotransform				•	
Sol aérobie	Quinoxyfène	80° centile (intervalle), CSPO à 15 °C TD ₅₀ = 886,8 jours (562-921) à 25 °C TD ₅₀ = 261,2 jours (116-284) à 30 °C TD ₅₀ = 172,8 jours (74,3-174)	Modérément persistant à persistant. Varie de façon inversement proportionnelle à la température.	928668, 1642960	
	2-oxoquinoxy- fène DCHQ	Taux de dissipation non calculables Taux de dissipation non calculables	RA max = 5,8 %-67,5 % à 180-365 JAT RA max = 7,0 %-20,2 % à 240-365		
	Deng	raux de dissipation non calculables	JAT		
Sol anaérobie	Quinoxyfène	TD ₅₀ = 275 jours, CSPO (sable/loam sableux)	Persistant	928794, 1642961	
	2-oxoquinoxy- fène	Taux de dissipation non calculables	18 %-6 % RA à 32-100 JAT		
Eau aérobie/	Quinoxyfène	Ensemble du système : $TD_{50} = 33,7$ jours, CSPO	Légèrement persistant. Dissipation rapide dans la phase aqueuse.	928734, 1771846	
sédiments (en obscurité)	2-oxoquinoxy- fène	Taux de dissipation non calculables	0,8 % RA dans l'eau, 33,5 % RA dans les sédiments, à 100 JAT		
Aquatique anaérobie/	Quinoxyfène	Ensemble du système : $TD_{50} = 12,7$ jours, CSPO	Non persistant	928673, 1642963	
sédiments	2-oxoquinoxy- fène	Taux de dissipation non calculables	pation non calculables 0,3 % RA dans l'eau, 83,2 % RA dans les sédiments, à 378 JAT		
Adsorption/	Quinoxyfène	$K_{co} = 36949-74244$	Non mobile	1771848,	
désorption	2-oxoquinoxy- fène	$K_{co} = 17400-63900$	Non mobile	1642964	
	DCHQ	$K_{co} = 1490-8680$	Faiblement mobile à non mobile		
Dissipation sur le	Quinoxyfène	TD ₅₀ 83,6 jours, CSPO (écorégion 8,1, ON)	Modérément persistant	928766, 1667658	
terrain	2-oxoquinoxy- fène		Couche de 0-15 cm : max de 12,4 g e.a./ha à 372 JAT et < LD à 489 JAT		
			Couches de 15-30 cm et de 45-60 cm : 0 ou < LD (g e.a./ha) à tous les temps d'échantillonnage		
			Couche de 60-75 cm : max de 11,9 g e.a./ha à 14 JAT et 0 ou < LD à 62-372 JAT		
			Couche de 75-90 cm : 0 ou < LD à tous les temps d'échantillonnage		
	DCHQ		Couche de 0-15 cm : max de 47,5 g e.a./ha à 62 JAT et < LD à 372- 489 JAT		
			Couche de 15-30 cm : 0 à tous les temps d'échantillonnage		

Tableau 11 Toxicité pour les espèces non ciblées

Organisme	Type d'étude	Substance	Valeur du critère d'effet	Référence
Organismes terrestres				
Eisenia foetida (lombric)	Aiguë	Quinoxyfène	CL ₅₀ 14 j > 923 mg m.a./kg sol CSEO 14 j = 919 mg m.a./kg sol	928106, 1642970
Apis mellifera (abeille domestique)	Contact	Quinoxyfène	DL ₅₀ 48 h >100 μ g m.a./abeille domestique DSEO 48 h = 100 μ g m.a./abeille domestique (aucun effet à la dose la plus élevée)	928575, 1771855
Colinus virginianus (Colin de Virginie)	Aiguë, par voie orale	Quinoxyfène	DL ₅₀ 14 j > 2250 mg m.a./kg p.c. DSEO 14 j = 2250 mg m.a./kg p.c. (aucun effet à la dose la plus élevée)	927381, 1642994
	Régime alimentaire	Quinoxyfène	DL ₅₀ > 2467 mg m.a./kg p.c./jour DSEO 439 mg m.a./kg p.c./jour	927383, 1642995
	Reproduction, par le régime alimentaire	Quinoxyfène	DSEO 98,3 mg m.a./kg p.c./jour (aucun effet à la dose la plus élevée)	927385, 1642997
Anas platyrhynchos	Aiguë	Quinoxyfène	DL ₅₀ 5 j >1 039 mg m.a./kg p.c./jour DSEO 5 j = 104 mg m.a./kg p.c./jour	1771872, 1642996
(canard colvert)	Reproduction, par le régime alimentaire	Quinoxyfène	DSEO = 44,9 mg m.a./kg p.c./jour (\pm cufs éclos par poule; poussins normaux par poule; poussins normaux par ponte; survivants de 14 j par poule; et survivants de 14 j par œuf pondu)	927390, 1642998
Rat	Aiguë, par voie	Quinoxyfène	$DL_{50} > 5~000 \text{ mg m.a./kg p.c.}$	779432, 779433
	orale	EF-1351 (53,9 % m.a.)	$DL_{50} > 5~000 \text{ mg PC/kg p.c.}$	779338
		EF-1186 (41,3 % m.a.)	$DL_{50} > 2~000 \text{ mg PC/kg p.c.}$	779389
	Reproduction	Quinoxyfène	Composé d'origine: DSENO = 100 mg/kg p.c./jour Descendants: DSENO = 20 mg/kg p.c./jour DMENO = 100 mg/kg p.c./jour \$\dagger\$ p.c. des petits (DL 0-21 j); \$\dagger\$ prise de p.c. globale des petits (DL 21 j)	779453, 941098, 941100, 941102
Lapin	Développement	Quinoxyfène	DSENO = 80 mg/kg p.c./jour DMENO = 200 mg/kg p.c./jour	779455, 779456
Plantes vasculaires	Levée des plantules, 19 j	EF-1295 (251 g m.a./L), Solution de 11,4 ml/L	CE ₂₅ > 553 g m.a./ha	928112, 1643005
	Vigueur végétative, 19 j		$CE_{25} = 410 \text{ g m.a./ha (concombre)}$	
Organismes aquatiques d	ulcicoles			
Daphnia magna (cladocère)	Aiguë, 48 h	Quinoxyfène	$CE_{50} = 0,083$ mg m.a./L (en fonction de l'immobilisation) $CL_{50} = 0,091$ mg m.a./L	927432, 1642974
	Aiguë, 48 h	3-OH- quinoxyfène	CE ₅₀ > 0,5 mg PT/L (concentration nominale maximale d'essai)	927529, 1642976
	Aiguë, 48 h	DCHQ	CE ₅₀ > 0,5 mg PT/L (concentration nominale maximale d'essai)	1804894, 1642975

Organisme	Type d'étude	Substance	Valeur du critère d'effet	Référence
	Chronique, 21 j	Quinoxyfène	CSEO = 0.0278 mg m.a./L	927592, 1642977
Chironomus riparius (moucheron)	Chronique, 27 j	Quinoxyfène	CSEO = 0,0495 mg m.a./L (concentration moyenne dans la colonne d'eau)	928110, 1642978
			CSEO = 0,746 mg m.a./kg p.s. sédiments (concentration moyenne dans les sédiments)	
	Chronique, 27 j	2-oxoquinoxyfè- ne	CSEO = 0,116 mg PT/L (concentration moyenne dans la colonne d'eau)	1894315
Oncorhynchus mykiss (truite arc-en-ciel)	Aiguë, 96 h	Quinoxyfène	$CL_{50} = 0.27 \text{ mg m.a./L (mortalité)}$	927391, 1642985
	Chronique, 21 j	Quinoxyfène	CSEO = 14 µg m.a./L (léthargie, perte d'équilibre, mouvement erratique, mélanose et ascite)	927399, 1642990
	Aiguë, 96 h	2-oxoquinoxyfè- ne	$CL_{50} > 0.0419 \text{ mg m.a./L}$	1861980
Lepomis macrochirus Rafinesque (Crapet arlequin)	Aiguë, 96 h	Quinoxyfène	CSEO = 0,284 mg m.a./L $CL_{50} > 0,284$ mg m.a./L	927393, 1642986
Cyprinus carpio (carpe)	Aiguë, 96 h	Quinoxyfène	CSEO = 0,1 mg m.a./L (mortalité) $CL_{50} = 0,41$ mg m.a./L	927426, 1642987
Pimephales promelas (tête-de-boule)	28 j PSV	Quinoxyfène	CSEO = 0,013 mg m.a./L (taille du poisson)	927885, 1642991
Selenastrum capricornutum (algue verte d'eau douce)	5 j	Quinoxyfène	$CE_{50}b = 0.0278$ mg m.a./L $CE_{50} = 0.0268$ mg m.a./L (densité cellulaire)	928120, 1643001
,	96 h	DCHQ	CE ₅₀ > 0,5 mg PT/L (concentration nominale maximale d'essai)	928128, 1642999
Anabaena flos-aquae (algue bleu-vert)	5 j	Quinoxyfène	CE ₅₀ >1,24 mg m.a./L (concentration maximale d'essai)	928538, 1643000
Navicula pelliculosa (diatomée d'eau douce)	5 j	Quinoxyfène	$CE_{50}b = 0.0287 \text{ mg m.a./L}$	928539, 1771876
Lemna gibba (lenticule bossue)	14 j	Quinoxyfène	$CE_{50} > 1,66$ mg m.a./L (nombre de frondes)	928139, 1643006
Espèces aquatiques marine Americamysis bahia (mysidacé)	Aiguë, 96 h	Quinoxyfène	$CL_{50} = 0,0743 \text{ mg m.a./L}$	927591, 1642982
Crassostrea virginica (huître) Calcification de la coquille chez les mollusques	Aiguë, 96 h	Quinoxyfène	$CE_{50} = 0,072 \text{ mg m.a./L}$	927590, 1642983
Cyprinodon variegatus (méné tête-de-mouton)	Aiguë, 96 h	Quinoxyfène	CL ₅₀ > 0,168 mg m.a./L (concentration d'essai maximale mesurée)	927589, 1642988
	PSV	Quinoxyfène	CSEO = 0,00409 mg m.a./L (mortalité)	1642989
Skeletonema costatum (diatomée d'eau salée)	5 j	Quinoxyfène	$CE_{50} = 0,106 \text{ mg m.a./L}$	928142, 1643003

Tableau 12 Critères d'effet utilisés pour l'évaluation des risques et facteurs d'incertitude appliqués

Groupe taxinomique	Exposition	Critère d'effet	Facteur d'incertitude
Lombrics	Aiguë	CL_{50}	0,5
Abeilles	Aiguë contact	CL_{50}	1
Oiseaux	Aiguë	DL_{50}	0,10
	Chronique	DSEO	1
Mammifères	Aiguë	DL_{50}	0,10
	Chronique	DSEO	1
Végétaux terrestres non ciblés	Aiguë	CE ₂₅	1
Invertébrés aquatiques	Aiguë	CE ₅₀	0,5
	Chronique	CSEO	1
Poissons	Aiguë	CL ₅₀	0,10
	Chronique	CSEO	1
Amphibiens	Aiguë	CL ₅₀ poisson	0,10
	Chronique	CSEO poisson	1
Algues		CE_{50}	0,5
Plantes vasculaires aquatiques		CE ₅₀	0,5

Tableau 13 Évaluation préliminaire des risques pour les espèces terrestres non ciblées autres que les oiseaux et les mammifères

Organisme	Exposition	Valeur du critère d'effet	CEE	QR	NP dépassé?	
Invertébrés						
Lombrics	Aiguë	619 mg m.a./kg sol	0,273 mg/kg sol	$< 5.9 \times 10^{-4}$	Non	
Abeilles	Contact	> 112 kg m.a./ha	0,242 kg/ha	$< 21,6 \times 10^{-4}$	Non	
Plantes vasculaires						
Plantes vasculaires	Aiguë	410 g m.a./ha	0,242 kg/ha	0,59	Non	

Tableau 14 Données de toxicité pour les oiseaux et les mammifères utilisées dans l'évaluation préliminaire des risques

		Critère	e d'effet		Valeur utilisée dans
Groupe	Type d'étude	Critère d'effet lié à la dose	Valeur la plus sensible	Facteur d'incertitude	l'évaluation préliminaire des risques
Oiseaux	Aiguë, par voie orale	DL ₅₀	> 2 250 mg m.a./kg p.c.	0,1	225 mg m.a./kg p.c.
	Reproduction	DSEO	44,9 mg m.a./kg p.c./jour	-	44,9 mg m.a./kg p.c./jour
Mammifères	Aiguë, par voie orale	DL ₅₀	> 5 000 mg m.a./kg p.c.	0,1	500 mg m.a./kg p.c.
	Reproduction	DSEO	20 mg m.a./kg p.c./jour	-	20 mg m.a./kg p.c./jour

Tableau 15 Exposition journalière estimée de l'évaluation préliminaire et évaluation préliminaire des risques pour les oiseaux et les mammifères après plusieurs applications de quinoxyfène (cinq applications de 125 g m.a./ha à intervalle de 10 jours) sur des fruits à noyau

Poids de l'organisme (g)	TIA ^a (g p.s./j)	Critère d'effet	Valeur du critère d'effet (mg m.a./ kg p.c./j)	Guilde alimentaire (aliments)	EJE ^b (mg m.a./kg p.c./j)	QR	NP dépassé?
Oiseaux							
20 g	5,1	Aiguë	225	Insectivore (petits insectes)	12,20	0,05	Non
20 g	3,1	Reproduction	44,9	Insectivore (petits insectes)	12,20	0,27	Non
100 ~	10.0	Aiguë	225	Insectivore (petits insectes)	9,52	0,04	Non
100 g	19,9	Reproduction	44,9	Insectivore (petits insectes)	9,52	0,21	Non
1.000	50.1	Aiguë	225	Herbivore (graminées courtes)	9,94	0,04	Non
1 000 g	58,1	Reproduction	44,9	Herbivore (graminées courtes)	9,94	0,22	Non
Mammifères							
15 0	2,2	Aiguë	500	Insectivore (petits insectes)	7,02	0,01	Non
15 g	2,2	Reproduction	20,0	Insectivore (petits insectes)	7,02	0,35	Non
25 ~	15	Aiguë	500	Herbivore (graminées courtes)	21,99	0,04	Non
35 g	4,5	Reproduction	20,0	Herbivore (graminées courtes)	21,99	1,10	Oui
1000	(0.7	Aiguë	500	Herbivore (graminées courtes)	11,75	0,02	Non
1000 g	68,7	Reproduction	20,0	Herbivore (graminées courtes)	11,75	0,59	Non

^a TIA: taux d'ingestion alimentaire (Nagy, 1987). Pour le groupe générique des oiseaux dont le poids corporel est inférieur ou égal à 200 g, l'équation « des passériformes » a été appliquée; pour le groupe générique des oiseaux dont le poids corporel est supérieur à 200 g, l'équation de « tous les oiseaux » a été employée:

équation des passériformes (p.c. \leq 200 g) : TIA (g p.s./j) = 0,398 (p.c. en g) 0,850

équation de « tous les oiseaux » (p.c. > 200 g) : TIA (g p.s./j) = 0,648 (p.c. en g) 0,651

Pour les mammifères, l'équation de « tous les mammifères » a été appliquée : TIA (g p.s./j) = 0,235 (p.c. en g) 0,822 b EJE = exposition journalière estimée; se calcule selon l'équation suivante : (TIA/p.c.) x CEE

Dans l'évaluation préliminaire, les aliments associés à la CEE la plus prudente pour chaque guilde alimentaire sont utilisés.

Tableau 16 Évaluation préliminaire des risques pour les espèces aquatiques non ciblées

Organisme	Substance	Exposition	Valeur du critère d'effet	CEE	QR	NP dépassé?		
Espèces dulcicoles								
Daphnia magna	Quinoxyfène	Aiguë	0,0415 mg m.a./L	0,054 mg m.a./L	1,3	Oui		
	Quinoxyfène	Chronique	0,0278 mg m.a./L		1,9	Oui		
	2-oxoquinoxyfène	Aiguë	> 0,25 mg PT/L	0,057 mg PT/L	< 0,2	Non		
	DCHQ	Aiguë	> 0,25 mg PT/L	0,038 mg PT/L	< 0,2	Non		
Chironome	Quinoxyfène	Chronique	0,0495 mg m.a./L	0,054 mg m.a./L	1,1	Oui		
	2-oxoquinoxyfène	Chronique	0,116 mg PT/L	0,057 mg PT/L	0,5	Non		
Truite arc-en-ciel	Quinoxyfène	Aiguë	0,027 mg m.a./L	0,054 mg m.a./L	2,0	Oui		
	Quinoxyfène	Chronique	0,014 mg m.a./L		3,9	Oui		
	2-oxoquinoxyfène	Aiguë	> 0,00419 mg PT/L	0,057 mg PT/L	< 13,6	S.O.		
Tête-de-boule	Quinoxyfène	PSV	0,013 mg m.a./L	0,054 mg m.a./L	4,2	Oui		
Amphibiens (valeurs du critère d'effet le	Quinoxyfène	PSV	0,013 mg m.a./L	0,288 mg m.a./L	22,2	Oui		
plus sensible chez le poisson utilisées comme		Aiguë	0,027 mg m.a./L		10,7	Oui		
données de substitution)	2-oxoquinoxyfène	Aiguë	> 0,00419 mg PT/L	0,302 mg PT/L	< 72,1	S.O.		
Algue verte d'eau	Quinoxyfène		0,0134 mg m.a./L	0,054 mg m.a./L	4,0	Oui		
douce (S. capricornutum)	DCHQ		> 0,25 mg PT/L	0,038 mg PT/L	< 0,15	Non		
Algues bleu-vert (A. flos-aquae)	Quinoxyfène		> 0,62 mg m.a./L	0,054 mg m.a./L	0,09	Non		
Diatomée N. pelliculosa	Quinoxyfène		0,014 mg m.a./L	0,054 mg m.a./L	3,8	Oui		
Plante vasculaire (<i>L. gibba</i>)	Quinoxyfène	Aiguë	> 0,83 mg m.a./L (14 j)	0,054 mg m.a./L	< 0,07	Non		
Espèces marines								
Mollusque	Quinoxyfène	Aiguë	0,036 mg m.a./L	0,054 mg m.a./L	1,5	Oui		
Méné tête-de- mouton	Quinoxyfène	Aiguë	> 0,0168 mg m.a./L		< 3,2	S.O.		
(Cyprinodon variegatus)	Quinoxyfène	PSV	0,00409 mg m.a./L		13,2	Oui		
Algues marines	Quinoxyfène	Aiguë	0,053 mg m.a./L		1,0	Oui		

Tableau 17 Évaluation approfondie des risques pour les espèces non ciblées liés à la dérive de pulvérisation

Organisme (exposition)	Critère d'effet (mg m.a./L)	CEE approfondie (mg m.a./L)	QR	NP dépassé ?				
Quinoxyfène sur des organismes dulcicoles								
Amphibiens	CSEO: Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,213		16,4	Oui				
	_	Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,170	13,1	Oui				
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,017	1,3	Oui				

Organisme (exposition)	Critère d'effet (mg m.a./L)	CEE approfondie (mg m.a./L)	QR	NP dépassé ?
Daphnia magna	CSEO: 0,0278 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	1,4	Oui
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	1,1	Oui
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,1	Non
Chironome	CSEO: 0,0495 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	0,8	Non
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	0,6	Non
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,1	Non
Tête-de-boule (PSV, 28 j)	CSEO: 0,013 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	3,1	Oui
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	2,5	Oui
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,2	Non
Truite arc-en- ciel	CSEO : 0,014 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	2,9	Oui
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	2,3	Oui
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,2	Non
Algues vertes	CL ₅₀ /2 : 0,0134 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	3,0	Oui
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	2,4	Oui
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,2	Non
2-oxoquinoxyfèn	e sur des organismes du	ılcicoles		
Truite arc-en- ciel	CL ₅₀ /10 : > 0,00419 mg PT/L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,042	< 10,1	S.O.
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,034	< 8,0	S.O.
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	< 0,8	Non
Amphibiens	CL ₅₀ /10 : > 0,00419 mg PT/L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,223	< 53,3	S.O.
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,178	< 42,5	S.O.
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,018	< 4,3	S.O.
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,034	< 1,3	S.O.
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	< 0,1	Non
Quinoxyfène sur	des organismes marins			
Méné tête-de- mouton	CSEO: 0,00409 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	9,8	Oui
(PSV, 39 j)		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	7,8	Oui

Organisme (exposition)	Critère d'effet (mg m.a./L)	CEE approfondie (mg m.a./L)	QR	NP dépassé ?
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,7	Non
Huître	CL ₅₀ /2 : 0,036 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	1,1	Oui
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	0,9	Non
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,1	Non
Diatomée d'eau salée	CL ₅₀ /2 : 0,053 mg m.a./L	Pulvérisateur pneumatique, en début de saison (dérive : 74 %) : 0,040	0,8	Non
		Pulvérisateur pneumatique, en fin de saison (dérive : 59 %) : 0,032	0,6	Non
		Pulvérisateur à rampe (moyen) (dérive : 6 %) : 0,003	0,1	Non

Tableau 18 Évaluation approfondie des risques pour les espèces non ciblées associés au ruissellement du quinoxyfène dans des modèles de prédiction

Organisme (exposition)	Critère d'effet (µg m.a./L)	CEE (µg m.a./L)	QR	NP dépassé ?
Daphnia magna	CSEO: 27,8	3,3 (région des Prairies)	0,1	Non
Amphibiens	CSEO: 13,0	18,0 (région des Prairies)	1,4	Oui
Tête-de-boule (PSV 28 j)	CSEO: 13,0	3,3 (région des Prairies)	0,3	Non
Algues vertes	CL ₅₀ /2:13,4	3,3 (région des Prairies)	0,2	Non
Huître	CL ₅₀ /2:36,0	2,6 (région de l'Atlantique)	0,1	Non
Méné tête-de-mouton (PSV 39 j)	CSEO: 4,1	2,6 (région de l'Atlantique)	0,6	Non
Diatomée d'eau salée	CL ₅₀ /2:53,0	2,6 (région de l'Atlantique)	0,0	Non

Tableau 19 Considérations relatives à la Politique de gestion des substances toxiques : évaluation en fonction des critères de la politique

Critère de la voie 1 de la PGST	Valeur du critère de la voie 1 de la PGST		Quinoxyfène Critères d'effet
Toxique au sens de la LCPE ou l'équivalent ^a	Oui		Oui
Principalement anthropique ^b	Oui		Oui
Persistance ^c Dans le sol, en laboratoire		Demi-vie ≥ 182 j	Demi-vie (jours), 80° centile et intervalle : À 15 °C : 886,8 (562-921) À 25 °C : 261,2 (116-284) À 30 °C : 172,8 (74,3-174)
	Dans le sol, sur le terrain		Demi-vie (jours): 83,6 Rémanence: 15,2 % À la fin de la saison, il restait au moins 37 % de la concentration dans le sol mesurée après l'application.

Critère de la voie 1 de la PGST	Valeur du critère de la voie 1 de la PGST		Quinoxyfène Critères d'effet
	Eau	Demi-vie	Demi-vie dans l'ensemble du système
		≥ 182 j	33,7 jours (aérobie)
	Sédiments	Demi-vie	12,7 jours (anaérobie) Demi-vie
	Sealments	\geq 365 j	35,3 jours (aérobie)
		2 303 j	12,6 jours (anaérobie)
	Air	Demi-vie	Demi-vie
		≥ 2 j ou	1,88 jour
	Peu probable	signe de	La volatilisation ne constitue pas une voie de
		transport à	dissipation importante et il est peu probable que la
		grande	substance soit aéroportée sur de longues distances,
		distance	étant donné sa pression de vapeur $(1,2 \times 10^{-5} \text{ Pa})$ et la constante de la loi d'Henry $(3,187 \times 10^{-2} \text{ Pa})$
			constante de la foi d Heiliy $(5,187 \times 10^{-4})$ Pa $m^3/mole$).
			$1/H = 7.64 \times 10^4$, indique une légère volatilité à la
			surface de l'eau.
			Substance non décelée en Suède en 2006 (examen
			préliminaire d'une étude de surveillance)
Bioaccumulable ^d	$\text{Log } K_{\text{oe}} \ge 5$		4,66
	Non		
	FBC ≥ 5 000		5 040 pour le poisson
			Résidus dans le poisson entier :
	Oui		À l'état stationnaire (14 jours) : 2 002 μg/kg poisson
			entier
	ED 4 > 7.000		Élimination (14 jours) : 192 µg/kg poisson entier
	$FBA \ge 5~000$		Lombrics: estimations ^e allant jusqu'à 13 Organismes aquatiques: seulement de faibles
	Peu probable		concentrations ont été mesurées dans le biote, dans
	1 cu produbic		une étude sur le terrain (jusqu'à 6,69 µg m.a./kg p.f.
			chez le poisson)
Le produit est-il une substance de la voie 1 selon la			,
PGST (doit répondre aux quatre critères)?		?	Peu probable

^a Aux fins de l'évaluation initiale des pesticides en fonction des critères de la PGST, tous les pesticides seront considérés comme toxiques ou équivalant à toxique au sens de la PGST. S'il y a lieu, l'évaluation en fonction des critères de toxicité de la LCPE peut être approfondie (c.-à-d. si la substance répond à tous les autres critères de la voie 1 de la PGST).

^b Aux termes de cette politique, une substance est jugée « principalement anthropique » si, de l'avis des experts, sa concentration dans l'environnement est attribuable en grande partie à l'activité humaine plutôt qu'à des sources naturelles ou à la libération découlant d'un phénomène naturel.

^c Si un pesticide et/ou un ou plusieurs de ses produits de transformation répondent à un critère de la persistance dans un milieu donné (sol, eau, sédiments ou air), alors l'ARLA estime que ces substances répondent au critère de la persistance.

 $^{^{\}overline{d}}$ L'ARLA préfère les données obtenues sur le terrain (p. ex. FBA) à celles obtenues en laboratoire (p. ex. FBC) qu'elle préfère encore aux propriétés chimiques (p. ex. log K_{oe}).

^eLes valeurs de FBA ont été recalculées à l'aide de ratios appropriés et estimées selon divers poids de lombrics exprimés en poids sec, car le poids des lombrics n'était indiqué qu'en poids frais dans les études.

Tableau 20 Liste des matières actives homologuées pour l'utilisation sur les vignes, les melons, les citrouilles, les courges d'hiver, la laitue pommée, la laitue frisée, les fruits à noyau, les fraises et le houblon

Culture	Agent pathogène	Matières actives à activité fongicide
Vignes	Uncinula necator	Soufre
		Phosalone + ferbame
		Cuivre
		Bacillus subtilis
		Bicarbonate de potassium
		Myclobutanil
Melons, citrouilles et	Sphaerotheca fuliginea	Cuivre
courges d'hiver		Chlorothalonil
		Métirame
		Boscalide
		Bacillus subtilis
		Bicarbonate de potassium
Laitue pommée et laitue frisée	Erysiphe cichoracearum	Bacillus subtilis
Fruits à noyau		Bicarbonate de potassium
_		Myclobutanil
Fraises	Sphaerotheca macularis	Boscalide
		Boscalide + pyraclostrobine
		Cuivre
		Myclobutanil
		Streptomyces lydicus souche WYEC 108
Houblon	Sphaerotheca macularis	Aucune

Tableau 21 Allégations d'utilisation proposées par le demandeur (pour l'étiquette) et décision prise à leur égard

Allégations proposées	Allégations appuyées
Raisin:	Raisin:
Suppression de l'oïdium de la vigne causé par	Suppression de l'oïdium causé par <i>Uncinula necator</i> ,
<i>Uncinula necator</i> , avec le fongicide Quintec à une	avec cinq applications du fongicide Quintec à une dose
dose de 300 à 480 ml produit/ha. Répéter	de 300 ml produit/ha. Répéter l'application à
l'application à intervalles de 14 jours. Maximum :	intervalles de 14 jours. Maximum : cinq applications.
cinq applications.	
Melons, citrouille, courge d'hiver :	Melons, citrouille, courge d'hiver :
Suppression de l'oïdium (blanc) causé par	Soutenue telle que proposée.
Sphaerotheca fuliginea, avec le fongicide Quintec	
à une dose de 300 à 440 ml produit/ha. Répéter	
l'application à intervalles de 10 à 14 jours.	
Maximum : quatre applications.	
Laitue pommée et laitue frisée :	Laitue pommée et laitue frisée :
Suppression de l'oïdium causé par <i>Erysiphe</i>	Suppression de l'oïdium causé par <i>Erysiphe</i>
cichoracearum, avec le fongicide Quintec à une	cichoracearum, avec quatre applications du fongicide
dose de 300 à 440 ml produit/ha. Répéter	Quintec à une dose de 240 ml produit/ha. Répéter
l'application à intervalles de 10 à 14 jours.	l'application à intervalles de 10 à 14 jours. Maximum :
Maximum : cinq applications.	cinq applications.
Arbres fruitiers à noyau :	Arbres fruitiers à noyau :
Suppression de l'oïdium causé par <i>Podosphaera</i>	Suppression de l'oïdium causé par <i>Podosphaera</i>
clandestina, avec le fongicide Quintec à une dose	clandestina, avec cinq applications du fongicide
de 500 ml produit/ha. Répéter l'application à	Quintec à une dose de 500 ml produit/ha.
intervalles de 10 à 14 jours. Maximum : cinq	Répression de l'oïdium (blanc) causé par Sphaerotheca
applications.	pannosa avec cinq applications du fongicide Quintec à
	une dose de 500 mL produit/ha. Répéter l'application à
	intervalles de 10 à 14 jours. Maximum : cinq
	applications.
Fraise:	Fraise:
Suppression de l'oïdium causé par Sphaerotheca	Soutenue telle que proposée.
macularis, avec le fongicide Quintec à une dose	
de 300 à 440 ml produit/ha. Répéter l'application	
à intervalles de 10 à 14 jours. Maximum : quatre	
applications.	
Houblon:	Houblon:
Suppression de l'oïdium causé par Sphaerotheca	Suppression de l'oïdium causé par Sphaerotheca
macularis, avec quatre applications du fongicide	macularis, avec le fongicide Quintec à une dose de 300
Quintec à une dose de 300 à 500 ml produit/ha.	à 500 ml produit/ha. Maximum : deux applications.
Répéter l'application à intervalles de 14 jours.	Répéter l'application à intervalles de 14 jours.
Maximum : quatre applications.	Maximum : quatre applications.

Annexe II Renseignements supplémentaires relatifs aux limites maximales de résidus : situation internationale et incidence commerciale

Toutes les limites maximales de résidus (LMR) au Canada correspondent aux tolérances établies aux États-Unis (titre 40, partie 180 du *Code of Federal Regulations*), mais diffèrent des LMR de la Commission du Codex Alimentarius.

Tableau 1 Comparaison des LMR adoptées au Canada avec celles établies par d'autres administrations

Denrée	Canada (ppm)	États-Unis (ppm)	Codex* (ppm)
Laitue frisée	19,0	19,0	20
Laitue pommée	7,0	7,0	8
Fraises	0,9	0,90	1
Groupe de cultures 12-09 : fruits à noyau	0,7	0,70 (Tolérances établies pour les fruits à noyau, groupe de cultures 12)	0,4 (pour les cerises); les autres fruits à noyau n'ont pas été examinés par la Commission du Codex Alimentarius
Courges d'hiver, citrouilles	0,2	0,20	Non comprises dans le Codex
Sous-groupe de cultures 9A : cucurbitacées (melons)	0,08	0,08	0,1 (pour tous les melons, sauf les pastèques)

La Commission du Codex Alimentarius est un organisme international sous l'égide de l'Organisation des Nations Unies. Elle fixe des normes internationales en matière d'alimentation, notamment des LMR.

Les LMR peuvent varier d'un pays à un autre pour un certain nombre de raisons, notamment des différences dans le profil d'emploi du pesticide et les sites d'essai sur le terrain d'où proviennent les données d'analyse chimique des résidus. En ce qui concerne les denrées d'origine animale, les écarts entre les LMR peuvent être dus à des différences sur le plan du régime alimentaire des animaux d'élevage et des pratiques connexes.

En vertu de l'Accord de libre-échange nord-américain (ALENA), le Canada, les États-Unis et le Mexique se sont engagés à harmoniser les LMR sur l'ensemble du territoire dans toute la mesure du possible. Cette harmonisation permettra d'assurer une protection uniforme de la santé humaine dans toute l'Amérique du Nord et de favoriser le libre-échange de produits alimentaires sûrs. D'ici à ce que le processus d'uniformisation soit achevé, les LMR canadiennes précisées dans le présent document doivent être respectées. Les différences de LMR indiquées ne devraient pas avoir de répercussions sur les activités commerciales ou la compétitivité internationale des entreprises canadiennes, ni nuire à quelque région du Canada que ce soit.

Annexe	П

Annexe III Groupes de cultures : numéros et définitions

Numéro du groupe de cultures	Nom du groupe de cultures	Denrées
9A	Cucurbitacées (melons)	Pastèques à confire, cantaloups, melons véritables (autres que ceux mentionnés au présent article), pastèques
12-09	Fruits à noyau	Abricots, cerises douces, cerises acides, nectarines, pêches, prunes, prunes chickasaw, prunes de Damas, prunes japonaises, prucots, prunes à pruneaux, abricots du Japon, cerises noires du Mexique, cerises tardives, cerises de Nankin, cerises de Virginie, prunes d'Amérique, prunes maritimes, prunes noires du Canada, prunes de prunier myrobolan, prunes Klamath, prunelles

Anne	exe III
	, AG 111

Références

A. Liste des études et des renseignements présentés par le titulaire

1.0 Analyses chimiques

Numéro de l'ARLA	Référence
779425	2001, Group A: Product Identity and Composition, Description of Materials Used to Produce the Product, Description of Production Process. Discussion of the Formation of Impurities, Certified Limits, Preliminary Analysis, Enforcement Analytical Method, and Submittal of Samples of Quinoxyfen Technical, DACO 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12.1, 2.12.2, 2.13.1, 2.13.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 CBI
779429	2000, Group B: Physical and Chemical Properties of Quinoxyfen (DE-795) and Supplemental Properties of 3-Hydroxy XDE-795, DACO: 2.14.1, 2.14.10, 2.14.11, 2.14.12, 2.14.13, 2.14.14, 2.14.2, 2.14.3, 2.14.4, 2.14.5, 2.14.6, 2.14.7, 2.14.8, 2.14.9 CBI
779430	2002, Storage Stability and Package Corrosion Characteristics of Quinoxyfen Technical; One Year Study, DACO: 2.14.14 CBI
1134782	2003, Analysis of Product Samples for the Active Ingredient and Impurities in Quinoxyfen Technical - Summary and Confidential Attachment, DACO: 2.13.1, 2.13.2, 2.13.3 CBI
1134807	2003, Correspondence - Analysis of Product Samples for the Active Ingredient and Impurities in Quinoxyfen Technical, DACO: 2.13.1,2.13.2,2.13.3 CBI
1642947	1995, (EPA 86-5) Determination of XDE-795 and 3-Hydroxy Metabolite Residues in Soil, DACO: 8.2.2,8.2.2.1
1642948	2001, Method Validation Report for the Determination of XDE-795 (Quinoxyfen) and the 3-Hydroxyl Metabolite Residues in Soil Using DAS Method ERC 94.27, DACO: 8.2.2,8.2.2.1
1642949	1995, (EPA 86-5) Independent Validation Method of DowElanco Method ERC 94.27 for the Determination of XDE-795 and its 3-Hydroxy Metabolite in Soil, DACO: 8.2.2,8.2.2.1
1642950	1995, Method Validation Report for the Determination of Quinoxyfen and its Metabolites in Soil by GC with Tandem Mass Spectrometry Detection using DAS Method GRM 00.16, DACO: 8.2.2,8.2.2.1
1642951	2008, 8.2.2 Sediment, DACO: 8.2.2.2
1642952	1995, (EPA 86-5) Determination of XDE-795 in Drinking Water, DACO: 8.2.2.3
1642953	1995, Determination of XDE-795 and DCHQ Residues in Surface Water, DACO: 8.2.2.3
1642955	1995, Validation of Analytical Methods for Use for the Determination of XDE-795 Technical Concentrations during Aquatic Toxicity Studies, DACO: 8.2.2.4

1771804	2002 Validation of Analytical Mathed DAS AM 02 001 for the
1//1804	2002, Validation of Analytical Method DAS-AM-02-001 for the
	Determination of the Active Ingredient and Related Impurities in Technical
	Grade Quinoxyfen [5,7-dichloro-4-(4-fluorophenoxy)quinoline], DACO:
1551005	2.13.1 CBI
1771805	2003, Analytical Method and Validation for Determination of Sulfolane in
	Quinoxyfen Technical, DACO: 2.13.1 CBI
1771806	2008, Specificity of Analytical Method DAS-AM-02-001 for the
	Determination of Impurities in Quinoxyfen Technical, DACO: 2.13.1 CBI
779380	2001, Group A - Product Identity, Composition, and Analysis for Quinoxyfen
	End-Use Product (EF-1295), DACO 3.2, 3.3.1, 3.4.1 CBI
779383	2000, Group B: Determination of Color, Physical State, Odor, Oxidizing and
	Reducing Action, Flammability, Explodability, pH, Viscosity and Density of
	EF-1295, a Liquid End Use Product containing Quinoxyfen DACO: 3.5.1,
	3.5.11, 3.5.12, 3.5.13, 3.5.14, 3.5.15, 3.5.2, 3.5.3, 3.5.4, 3.5.5, 3.5.6, 3.5.7,
	3.5.8, 3.5.9 CBI
779384	2000, Group B - Physical/Chemical Properties for EF-1295, a Liquid End-Use
	Products Containing Quinoxyfen, DACO 3.5.1, 3.5.2, 3.5.3, 3.5.4, 3.5.6, 3.5.7,
	3.5.8, 3.5.9, 3.5.11, 3.5.12, 3.5.13, 3.5.14, 3.5.15 CBI
779386	1999, (EPA 86-5) Packaging Storage Stability Trial for Quinoxyfen 250 g/L
	SC, DACO 3.5.5, 3.5.10 CBI
1771815	2009, 090607 Detailed Description of Quintec SC (EF-1295) from Technical
1,,1010	Material, DACO: 3.2.2 CBI
	Material, 51100. 3.2.2 ODI

2.0 Santé humaine et animale

Numéro de	Référence
l'ARLA	
779432	1994, XDE-795: Acute Oral Toxicity Study in Fischer 344 Rats, DACO:
	4.2.1
779433	2001, Supplemental Report for: XDE-795: Acute Oral Toxicity Study in
	Fischer 344 Rats. Comments: Summary & Annexe Table 1, DACO: 4.2.1
779434	1994, XDE-795: Acute Dermal Toxicity Study in New Zealand White
	Rabbits, DACO: 4.2.2
779435	1994, XDE-795: Acute Aerosol Inhalation Toxicity Study with Fischer 344
	Rats, DACO: 4.2.3
779436	1994, XDE-795: Primary Eye Irritation Study in New Zealand White
	Rabbits, DACO: 4.2.4
779437	1994, XDE-795: Primary Dermal Irritation Study in New Zealand White
	Rabbits, DACO: 4.2.5
779438	1994, XDE-795: Dermal Sensitization Potential in the Hartley Albino Guinea
	Pig, DACO: 4.2.6
779439	1995, XDE-795 Technical: Delayed Contact Hypersensitivity Study in the
	Guinea Pig, DACO: 4.2.6
779440	1992, XR-795: 13-Week Dietary Toxicity Study in CD-1 Mice, DACO: 4.3.1
779441	2002, Supplemental Report for: XR-795: 13- Week Dietary Toxicity Study in
	CD-1 Mice, DACO: 4.3.1

779442	1992, 13-Week Dietary Toxicity Study with 4- Week Study in Fischer 344
	Rats, DACO: 4.3.1
779443	2001, Supplemental Report for: 13-Week Dietary Toxicity Study with 4-
	Week Study in Fischer 344 Rats, DACO: 4.3.1
779444	1992, XR-795: Four-Week Dietary Toxicity Study in Fischer 344 Rats,
	DACO: 4.3.1
779445	1992, XR-795: Palatability and Toxicity Probe Study in Beagle Dogs,
	DACO: 4.3.2
779446	1993, XR-795: Four-Week Dietary Toxicity Study in Beagle Dogs, DACO:
	4.3.2
779447	1992, 13-Week Dietary Toxicity Study in Beagle Dogs, DACO: 4.3.2
779448	2001, Supplemental Report for: 13-Week Dietary Toxicity Study in Beagle
	Dogs, DACO: 4.3.2
779449	1995, XDE-795: One-Year Chronic Dietary Toxicity Study in Beagle Dogs,
	DACO: 4.3.2
779450	2000, Quinoxyfen: 4-Week Dermal Toxicity Study in Fischer 344 Rats,
	DACO: 4.3.5
779451	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
	Fischer 344 Rats, DACO: 4.4.1,4.4.4
779452	1995, XDE-795: Potential Tumourigenic Effects in Prolonged Dietary
	Administration to CD-1 Mice, DACO: 4.4.3
779453	1995, XDE-795: Two-Generation Dietary Reproduction Study in Sprague-
	Dawley Rats, DACO: 4.5.1
779454	1994, XDE-795: A Study of the Effect on Pregnancy of the Rat, DACO:
770455	4.5.2
779455	1993, XDE-795: Oral Gavage Teratology Probe Study in New Zealand
770456	White Rabbits, DACO: 4.5.3
779456	1994, XDE-795: Oral Gavage Teratology Study in New Zealand White
779457	Rabbits, DACO: 4.5.3 1994, XDE-795: Test for Chemical Induction of Gene Mutation at the
119431	HGPRT Locus in Cultured Chinese Hamster Ovary (CHO) Cells with
	Metabolic Activation, DACO: 4.5.5
779458	1994, Evaluation of CDE-795 in an in-vitro Chromosomal Aberration Assay
117430	Utilizing Rat Lymphocytes, DACO: 4.5.6
779459	1994, Evaluation of XDE-795 in the Mouse Bone Marrow Micronucleus
117437	Test, DACO: 4.5.7
779460	2001, Supplemental Report for: Evaluation of XDE-795 in the Mouse Bone
777 100	Marrow Micronucleus Test, DACO: 4.5.7
779461	1993, Evaluation of XR-795 in the Salmonella typhimurium Preincubation
775 101	Mutation Assay in the Presence and Absence of Aroclor-Induced Liver S-9
	with a Confirmatory Study, DACO: 4.5.8
779462	1995, XDE-795: Tissue Distribution and Metabolism of 14C-Labelled XDE-
,,,,,,,	795 in Fischer 344 Rats, DACO: 4.5.9
779463	2001, Quinoxyfen (DE-795): Determination of Hydroxylated Metabolites of
	Quinoxyfen Following a Repeated Oral Administration in Fischer 344 Rats,
	DACO: 4.5.9

779464	1999, Quinoxyfen: Acute Neurotoxicity Study in Fischer 344 Rats, DACO:
777101	4.5.10
779465	1995, XDE-795: Chronic Neurotoxicity Study in Fischer 344 Rats, DACO:
040756	4.5.11
940756	1995, XDE-795: One-Year Chronic Dietary Toxicity Study in Beagle Dogs, DACO: 4.3.2
940762	2000, Quinoxyfen: 4-Week Dermal Toxicity Study in Fischer 344 Rats,
J40702	DACO: 4.3.5
940780	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940782	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940784	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940786	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
0.40=00	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940788	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
040700	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940790	1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
940792	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4 1995, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
940/92	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940801	2001, XDE-795: Two-Year Dietary Chronic Toxicity/Oncogenicity Study in
740001	Fischer 344 Rats - Final Report, DACO: 4.4.1,4.4.4
940806	1995, XDE-795: Potential Tumourigenic Effects in Prolonged Dietary
7.0000	Administration to CD-1 Mice, DACO: 4.4.3
940808	1995, XDE-795: Potential Tumourigenic Effects in Prolonged Dietary
	Administration to CD-1 Mice, DACO: 4.4.3
940897	1995, XDE-795: Potential Tumourigenic Effects in Prolonged Dietary
	Administration to CD-1 Mice, DACO: 4.4.3
940899	1995, XDE-795: Potential Tumourigenic Effects in Prolonged Dietary
	Administration to CD-1 Mice, DACO: 4.4.3
941098	1995, XDE-795: Two-Generation Dietary Reproduction Study in Sprague-
0.41100	Dawley Rats, DACO: 4.5.1
941100	1995, XDE-795: Two-Generation Dietary Reproduction Study in Sprague-
041102	Dawley Rats, DACO: 4.5.1
941102	1995, XDE-795: Two-Generation Dietary Reproduction Study in Sprague-Dawley Rats, DACO: 4.5.1
941108	1999, Quinoxyfen: Acute Neurotoxicity Study in Fischer 344 Rats, DACO:
741100	4.5.10
941110	1999, Quinoxyfen: Acute Neurotoxicity Study in Fischer 344 Rats, DACO:
<i>y</i>	4.5.10
941112	1995, XDE-795: Chronic Neurotoxicity Study in Fischer 344 Rats, DACO:
	4.5.11
779388	2001, EF-1351: An Acute Oral Toxicity Study in Fischer 344 Rats 000264
	GLP, Unpublished, DACO: 4.6.1

779389	1993, EF 1186 (XDE 795 SC): Acute Oral Toxicity Study in the Rat GHE-T-356 GLP, Unpublished, DACO: 4.6.1
779390	2001, EF-1351: An Acute Dermal Toxicity Study in Fischer 344 Rats 000265 GLP, Unpublished, DACO: 4.6.2
779392	1993, EF 1186 (XDE 795 SC): Acute Dermal Irritation Test in the Rabbit GHE-T-336 GLP, Unpublished, DACO: 4.6.2
779393	2001, EF-1351: Justification for Waiver of Acute Inhalation Study GH-C 5189 GLP, Unpublished, DACO: 4.6.3
779394	2001, EF-1186: Justification for Waiver of Acute Inhalation Study GH-C 5188 GLP, Unpublished, DACO: 4.6.3
779395	1993, EF 1186 (XDE 795 SC): Acute Eye Irritation Test in the Rabbit GHE-T-368 GLP, Unpublished, DACO: 4.6.4
779396	2001, EF-1351: A Primary Eye Irritation Study in New Zealand White Rabbits 000267 GLP, Unpublished, DACO: 4.6.4
779397	2001, EF-1351: A Primary Skin Irritation Study in New Zealand White Rabbits 000266 GLP, Unpublished, DACO: 4.6.5
779398	1993, EF 1186 (XDE 795 SC): Delayed Contact Hypersensitivity Study in Guinea Pigs GHE-T-369 GLP, Unpublished, DACO: 4.6.6
779399	1993, EF 1186 (XDE 795 SC): Delayed Contact Hypersensitivity Study in Guinea Pigs (Amendment No. 1) GHE-T-369-1 GLP, Unpublished, DACO: 4.6.6
779400	2001, EF-1351: A Dermal Sensitization Study in Hartley Albino Guinea Pigs - Modified Buehler Design 000268 GLP, Unpublished, DACO: 4.6.6
779401	2001, Summary: Amended Report for EF-1351: A Dermal Sensitization Study in Hartley Albino Guinea Pigs - Modified Buehler Design 000268 GLP, Unpublished, DACO: 4.6.6
779402	1993, EF 1186 (XDE 795 SC): Acute Percutaneous Toxicity Study in the Rat GHE-T-370 GLP, Unpublished, DACO: 4.8
779404	2001, Method Validation Report for the Determination of Quinoxyfen (DE-795) IN Hops by Dow AgroSciences Method ERC 95.26.S1 GH-C 5175 GLP, Unpublished, DACO: 7.2.1
779405	2001, Independent Laboratory Validation for Quinoxyfen in Hops Using Dow AgroSciences Method ERC 95.26 DOW-08-00 GLP, Unpublished, DACO: 7.2.1
779406	2001, Method Validation Report for the Determination of Quinoxyfen (DE-795) in Grape Wine, Must and Pomace by Dow AgroSciences Method ERC 95.26 GH-C 5176 GLP, Unpublished, DACO: 7.2.1
779411	2002, Quinoxyfen: Magnitude of the Residue on Cherry Volume 2 of 3 IR-4 Study 07757 GLP, Unpublished, DACO: 7.4.1
779412	2002, Quinoxyfen: Magnitude of the Residue on Cherry Volume 3 of 3 IR-4 Study A7757 GLP, Unpublished, DACO: 7.4.1
779413	2001, Quinoxyfen: Magnitude of Residue on Hops IR-4 Study 07350 GLP, Unpublished, DACO: 7.4.1
779414	2001, Quinoxyfen: Magnitude of Residue on Grape IR-4 Study 07256 GLP, Unpublished, DACO: 7.4.1

779416	2001, A Nature of the Residue Study with 14C- Labelled Quinoxyfen Fungicide Applied to Sugarbeets GH-C 5201 GLP, Unpublished, DACO: 7.4.1
779417	2000, A Nature of the Residue Study with 14C- Labelled Quinoxyfen Fungicide Applied to Tomatoes GH-C 5141 GLP, Unpublished, DACO: 7.4.1
779420	2001, Multiresidue Method Testing for Quinoxyfen According to PAM I, Annexe II, as Updated January 1994, DACO: 7.2.4,7.8
779468	1995, The Metabolism of XDE-795 in Winter Wheat, DACO: 6.3
779469	1995, Uptake of XDE-795 into Three Succeeding Crops, DACO: 6.3
779470	1995, The Metabolism of DE-795 in Grapes, DACO: 6.3
779471	1996, The Metabolism of DE-795 in Cucumbers, DACO: 6.3
877574	2004, Response Letter - Quinoxyfen Technical Fungicide, Application for
	Import Tolerance for Cherries, Grapes, Hops, DACO: 6.1
927812	2004, Quinoxyfen Import Tolerance Correspondence: Response to request for information (Dow to PMRA), DACO: 6.3
939288	Tabulation of Data from Quinoxyfen Sugar Beet Nature of Residue Study, DACO: 6.3
941125	Quinoxyfen: Magnitude of Residue on Grape IR-4 Study 07256 GLP, Unpublished, DACO: 7.4.1
1641932	1995, Determination of XDE-795 Residues in Grapes, DACO: 7.2.1
1641933	1996, Determination of XDE-795 Residues in Grape Wine, Must and
1041/33	Pomace, DACO: 7.2.1
1641934	1996, Determination of XDE-795 Residues in Courgettes and Cucumbers, DACO: 7.2.1
1641935	1997, Determination of Quinoxyfen Residues in Peppers, DACO: 7.2.1
1641941	2005, Independent Laboratory Validation of the European Multi-Residue Enforcement Method DFG S19, DACO: 7.2.2,7.2.3
1641942	2002, Independent Laboratory Validation of the European Multi-Residue
	Enforcement Method DFG S19, DACO: 7.2.2,7.2.3
1641943	1996, Independent Laboratory Validation of DowElanco Analytical Method ERC 98.06 for the Determination of DE-795 in Cucumbers and Courgettes, DACO: 7.2.3
1641944	2001, Independent Laboratory Validation of DowElanco Analytical Method ERC 98.06 for the Determination of DE-795 in Cucumbers and Courgettes, DACO: 7.2.3
1641945	1996, Independent Laboratory Confirmation of DowElanco Analytical Method ERC 96.16 for the Determination of XDE-795 in Melon Peel and
1641946	Pulp, DACO: 7.2.3 1996, Independent Laboratory Confirmation of DowElanco Analytical
1041740	Method ERC 94.29 for the Determination of DE-795 in Grapes, DACO: 7.2.3
1641950	2006, Freezer Storage Stability of Quinoxyfen in Peach, Apricot and Apple, DACO: 7.2.5,7.3
1641952	2006, Freezer Storage Stability of Quinoxyfen in Strawberry, Artichoke and Zucchini, DACO: 7.2.5,7.3
1641954	1996, Freezer Storage Stability Study of DE-795 in Grapes, DACO: 7.2.5,7.3

1641968	2005, Quinoxyfen: Magnitude of the Residue on Strawberry, DACO: 7.4.1,7.4.2
1641969	2005, Quinoxyfen: Magnitude of the Residue on Lettuce (Head and Leaf), DACO: 7.4.1,7.4.2
1771824	2007, Quinoxyfen: Magnitude of the Residue on Winter Squash, DACO: 7.4.1
1771825	2004, Quinoxyfen: Magnitude of the Residue on Cantaloupe, DACO: 7.4.1
1771827	2007, Quinoxyfen: Magnitude of the Residue on Peach, DACO: 7.4.1
1771828	2006, Quinoxyfen: Magnitude of the Residue on Plum, DACO: 7.4.1
1771829	2005, Determination of the Magnitude and Residue of Quinoxyfen 250 g/L SC and (Quinoxyfen 48 g/L + Sulphur 630 g/L) SC in Peach Fruits, DACO: 7.4.1,7.4.2
1771832	2005, Determination of the Magnitude and Residue of Quinoxyfen 250 g/L SC and (Quinoxyfen 48 g/L + Sulphur 630 g/L) SC in Stone Fruits and Processed Commodity, DACO: 7.4.1,7.4.2,7.4.5
1771834	1997, Residues of DE-795 in Wine Grapes at Intervals Following Multiple Applications of EF-1295, Southern France - 1996, DACO: 7.4.2

3.0 Environnement

Numéro de l'ARLA	Référence
1642944	2001, Environmental Fate Summary of Quinoxyfen, DACO 8.1
1642948	2001, Method Validation Report for the Determination of XDE-795 (Quinoxyfen) and the 3-Hydroxy Metabolite Residues in Soil using Dow AgroSciences Method ERC 94.27, DACO 8.2.2.1
1642949	1995, Independent Validation of DowElanco Method ERC 94.27 for the Determination of Residues of XDE-795 and its 3-Hydroxy Metabolite in Soil, DACO 8.2.2.1
1642950	2001, Method Validation Report for the Determination of Quinoxyfen and Metabolites in Soil by Gas Chromatography with Tandem Mass Spectrometry Detection using Dow AgroSciences Method GRM 00.16, DACO 8.2.2.1
1642955	1995, Validation of Analytical Methods for Use in the Determination of XDE-795 Technical Concentrations During Aquatic Toxicity Studies, DACO 8.2.2.1
1642952	1995, Determination of XDE-795 Residues in Drinking Water, DACO 8.2.2.3
1642953	1995, Determination of XDE-795 and DCHO Residues in Surface Water, DACO 8.2.2.3
1771837	1995, Determination of XDE-795 Residues in Bovine Muscle, Kidney and Fat, DACO 8.2.2.4
1771838 1642957 1642958 1771841	1995, Determination of XDE-795 Residues in Bovine Liver, DACO 8.2.2.4 1994, The Hydrolysis of [14C]-XDE-795, DACO 8.2.3.2 1995, The Soil Photolysis of [14C]-XDE-795, DACO 8.2.3.3.1 2001, Aqueous Photolysis of Quinoxyfen in pH 5 Buffer under Xenon Lamp, DACO 8.2.3.3.2

Numéro de l'ARLA	Référence
1642960	2001, Aerobic Soil Metabolism of Quinoxyfen, DACO 8.2.3.4.2
1642961	1995, The Degradation of Radiolabelled XDE-795 in Soil under Anaerobic
	Conditions, DACO 8.2.3.4.4
1771846	2001, The Aerobic Aquatic Metabolism of Quinoxyfen, DACO 8.2.3.5.4
1642963	2001, Anaerobic Aquatic Metabolism of Quinoxyfen, DACO 8.2.3.5.6
1642964	2001, Soil/Sediment Adsorption/Desorption of Quinoxyfen, 3-
	hydroxyquinoxyfen, and 5,7-dichloro-4-hydroxyquinoline for US
	Registration, DACO 8.2.4.2
1667658	Field dissipation of quinoxyfen in Ontario, Canada, DACO 8.3.2
1861981	2005, Determination of the Correct Structure for the Major Aerobic Soil
	Metabolite of Quinoxyfen, DACO 8.6
1642947	1995, Determination of XDE-795 and the 3-Hydroxy Metabolite Residues in
	Soil, DACO 8.6
1868559	1995, Synthesis of 5,7-Dichloro-4-(4-fluorophenoxy)-3-hydroxyquinoline
	(X510421, DE-795 metabolite), DACO 8.6
1868561	1999, Synthesis of 5,7-Dichloro-4-(4-fluorophenoxy)-3-hydroxyquinoline
	(Quinoxyfen, DE-795 metabolite), DACO 8.6
1894307	2006, Monitoring the Environmental Impact of Quinoxyfen in Cereal-
	growing Regions of Germany, Part I (Exposure Monitoring), DACO 8.6
1894308	2007, Monitoring the Environmental Impact of Quinoxyfen in Cereal-
	growing Regions of Germany, Part II (Biota Monitoring), DACO 8.6
1894309	2006, Monitoring the Environmental Impact of Quinoxyfen in Vineyard
	Regions of Italy, Part I (Exposure Monitoring), Final Report, DACO 8.6
1894310	2007, Monitoring the Environmental Impact of Quinoxyfen in Vineyard
	Regions of Italy, Part II (Biota Monitoring), Final Report, DACO 8.6
1894313	2006, Quinoxyfen Monitoring in Deposition in Sweden, DACO 8.6
1642970	1993, Acute Toxicity of XDE-795 Fungicide to the Earthworm, Eisenia
	foetida, DACO 9.2.3.1
1771855	1993, XDE-795 Fungicide: An Acute Contact Toxicity Study with the
16100=1	Honey Bee, DACO 9.2.4.1
1642974	1993, XDE-795 Fungicide: Acute Toxicity to the Daphnid, <i>Daphnia magna</i>
1742075	Straus, DACO 9.3.2
1642975	2000, 5, 7-Dichloro-4-(1-H)-quinoline (DCHQ): An Acute Toxicity Study
1.6.4207.6	with the Daphnia, <i>Daphnia magna</i> Straus, DACO 9.3.2
1642976	2000, 5, 7-Dichloro-4-(4-Fluorophenoxy)-3-Hydroxyquinoline (3-
	HYDROXY-DE-795): An Acute Toxicity Study with the Daphnia, <i>Daphnia</i>
1642077	magna Straus, DACO 9.3.2
1642977	1995, XDE-795 Fungicide: Evaluation of the Chronic Toxicity (21-Day
1642070	Flow-Through) to <i>Daphnia magna</i> Straus, DACO 9.3.3
1642978	1996, Chronic Toxicity of 14C-XDE-795 Technical to <i>Chironomus riparius</i>
	From Aqueous Application in a 27-Day Exposure with Sediment, DACO 9.3.4
1894315	2007, 2-oxo-Quinoxyfen: Chronic Toxicity in Whole Sediment to
10/7313	Freshwater Midge, <i>Chironomus riparius</i> , DACO 9.3.4
	riconwater isituge, Chironomus ripurius, DACO 3.3.4

Numéro de l'ARLA	Référence
1642982	2000, Quinoxyfen (XDE-795) Technical: Acute Toxicity to the Mysid <i>Americamysis bahia</i> , DACO 9.4.2
1642983	2000, Quinoxyfen (XDE-795) Technical: Oyster Shell Deposition Test, DACO 9.4.4
1642985	1993, The Acute 96-hour Toxicity of XDE-795 to the Rainbow Trout, <i>Oncorhynchus mykiss</i> Walbaum, DACO 9.5.2.1
1642984	2006, Study Profile Template (SPT) for 2-oxo-Quinoxyfen: an Acute Toxicity Study with the Rainbow Trout, <i>Oncorhynchus mykiss</i> , DACO 9.5.2.1
1642986	1993, XDE-795: Acute 96-hour Flow-through Toxicity in Bluegill, <i>Lepomis macrochirus</i> Rafinesque, DACO 9.5.2.2
1642987	1996, Acute Static Renewal Toxicity of XDE-795 Technical to common Carp (<i>Cyprinus carpio</i>), DACO 9.5.2.3
1642988	2000, Quinoxyfen (XDE-795) Technical: Acute Toxicity to the Sheepshead Minnow, <i>Cyprinodon variegatus</i> , DACO 9.5.2.4
1642991	1996, Early Life-Stage Toxicity of XDE-795 Technical to the Fathead Minnow (<i>Pimephales promelas</i>) Under Flow-Through Conditions, DACO 9.5.3.1
1642989	2005, Quinoxyfen: Early-life Stage Toxicity Test with the Sheephead Minnow, <i>Cyprinodon variegatus</i> , under Flow-Through Conditions, DACO 9.5.3.1
1642990	1994, Evaluation of the Prolonged (21-day) Toxicity of XDE-795 Fungicide to the Rainbow Trout, <i>Oncorhynchus mykiss</i> Walbaum, DACO 9.5.3.1
1642993	1995, The Bioconcentration of XDE-795 by the Rainbow Trout, <i>Oncorhynchus mykiss</i> Walbaum, DACO 9.5.6
1642994	1994, XDE-795 Fungicide, An Acute Oral Toxicity Study with the Northern Bobwhite, DACO 9.6.2.1
1642995	1992, XDE-795 Fungicide, A Dietary LC50 Study with the Northern Bobwhite, DACO 9.6.2.4
1642996	1992, XDE-795 Fungicide, A Dietary LC50 Study with the Mallard, DACO 9.6.2.5
1642997	1999, Avian Reproductive Toxicity Study with Quinoxyfen in Bobwhite Quail, DACO 9.6.3.1
1642998	2000, Avian Reproductive Toxicity Study with Quinoxyfen in Mallard Ducks, DACO 9.6.3.2
1643001	1993, XDE-795 Fungicide: The Toxicity to the Green Alga <i>Selenastrum</i> capricornutum Printz, DACO 9.8.2
1642999	2000, 5,7-Dichloro-4-(1H)-quinoline (DCHQ): Growth Inhibition Test with the Freshwater Green Alga, <i>Selenastrum capricornutum</i> Printz, DACO 9.8.2
1643000	2000, Effects of Quinoxyfen (DE-795) on the Growth of the Freshwater Bluegreen Alga, <i>Anabaena flos-aquae</i> , DACO 9.8.2
1643002	1999, The Toxicity of 3-Hydroxy-Quinoxyfen to the Freshwater Unicellular Green Alga <i>Selenastrum capricornutum</i> , DACO 9.8.2
1771876	2000, Effects of Quinoxyfen (DE-795) on the Growth of the Freshwater Diatom, <i>Navicula pelliculosa</i> , DACO 9.8.2

Numéro de	Référence
l'ARLA	
1643003	2000, Effects of Quinoxyfen (DE-795) on the Growth of the Saltwater
	Diatom, Skeletonema costatum, DACO 9.8.3
1643005	2001, Effect of Quinoxyfen on the Emergence and Vegetative Vigor of Non-
	Target Terrestrial Plants (Tier I/II), DACO 9.8.4
1643006	2000, Effects of Quinoxyfen (DE-795) on the Growth of the Aquatic Plant,
	Duckweed, Lemna gibba L. G-3, DACO 9.8.5
928814	2003, Environmental Fate and Ecological Risk Assessment for the
	Registration of Quinoxyfen: 5,7-dichloro-4-(p-fluorophenoxy)quinoline,
	DACO 12.5
1643007	2003, Review report for the active substance quinoxyfen. 6781/VI/97-Final,
	DACO 12.5
1643008	2006, Quinoxyfen (222). JMPR Review, DACO 12.5
1643009	2004, Quinoxyfen, DACO 12.5

4.0 Valeur

Numéro de	Référence
l'ARLA	
1641979	2008. 10.1 Value Summary for Quintec Fungicide, DACO: 10.1
1641984	2008. 10.2.2 Description of Pest Problem - Quintec Fungicide, DACO: 10.2.2
1641986	2008. 10.2.3.1 Summaries, DACO: 10.2.3.1
1641988	2008. 10.2.3.1 Competitive Standards used in the Quintec Fungicide Trials,
	DACO 10.2.3.1
1641989	2008. 10.2.3.1 Summary of Quintec Trials, DACO 10.2.3.1
1771879	2008. 10.1 Value Summary Quintec Fungicide, DACO: 10.1