

C. 1

1991 Digital Boundary File User Guide

NOT FOR LOAN NE S'EMPRUNTE PAS

1991 CENSUS RECENSEMENT DE 1991

1992

1991 DIGITAL BOUNDARY FILES
 USER GUIDE

Produced by the Geography Division Statistics Canada December 1992

La version trancalate de ce guide est disponlble sur demand

What's New in the 1991 Digltal Boundary Files?

-> Digital Boundary Files are avalable in a topologlcally consistent format, with no gaps or owerlaps, overshoots or slivers
-> an Enumeration Area Digital Boundary File is avallable for the first time
-> all levels of Digital Boundary Files are consistemt wheach other
-> Digtal Boundary Filles within Street Network Fie (formenly called Area Master Fils) coverage are conslstert whith the Street Network Fhef fgalures (The Street Network Files are other Statistics Caneeda geograpty digital products containing streets, raiways, hydrography, and other physical features, as well as feature names and street address ranges)
$\rightarrow \quad$ the Digital Boundary Files reflect the boundaries as required for the 1991 Census of Pcputation and Housing and the 1991 Census of Agriculture and their statistical data products

This document is irtended to provide the user with an understanding of the Digital Boundary File products, thelr uses and IImitations.

The Digital Eoundary Fles are geographic data mes that can prowide an infrastructure for many Geogrephlc Information Systems and mapplng software. The Digltal Boundary Flies do not include any software or Instructions on how to use the procluct with specific software packages. These products are basic boundary flles in a polygon format wth no undertying features such as streets or hydrography.

The Digital Boundary File products cover most levels of Statistics Canada's standard geographic areas:

- Provinces and Tertories (PR/TERA)
- Federal edectoral districts (FEDs)
- Census divisions (CDs) - equivalent to countles
- Census subdivitions (CSDs) - equivatert to local municlpaltiles
- Census consolideted subdivislons - groupings of CSDs
- Census tracts (CTs) - equivalent to neighbourhoods
- Uiban areas (UAs) - dense concentrations of population
- Enumeration areas (EAs) - the smellest geographic area for which census data are ususlly atvallable

All Digital Boundary Fille products were derived from the enumeration area digital base.
Detailed informatlon is provided on the creation of the Enumeration Area Dighal Boundary File product since the EA is the building-block for creating all other standard geographic areas. By understanding the creation of the EA Dlgital Boundary Filles, the user will be able to analyze and measure the qually of all tevels of Digital Boundary Fies for their own partcutar requirements.

TABLE OF CONTENTS

1. ABOUT THIS GUIDE 1
2. OVERVIEW OF THE DGGTAL BOUWDARY FILE PAODUCTS 2
2.1 introduction 2
2.2 Purpose of the Dlglial Boundary Files 2
2.3 Geographic Reference Date 3
2.4 Comparison to the 1986 CARILIB Product 3
2.5 The Census Geography Hierarchles 4
2.6 General Methodology 4
3. ENUMERATION APEA (EA) DHGTTAL BOUNDARY FILE 7
3.1 Content 7
3.2 Data Quallty Statement 10
3.2.1 Uneage 10
3.2.2 Postional Accuracy 15
3.3 .3 Aurlbite Accuracy 16
3.2.4 Loglcal Consistency 17
3.2.5 Completeness 17
3.2.6 EAs comprising more than one pert (polygon) 18
3.2.7 For users of the Digital Boundary Files with the Street Network Fies: 18
3.2.8 Other Conslderations 19
3.3 Technical Specifications 20
4. 1991 FEDERAL ELECTORAL DISTRACT (FED) DIBITAL BOUNDARY FILE 22
4.1 Cortent 22
4.2 Data Qualiky Statement 23
4.2.1 FEDs comprishatg more than one part (polygon) 24
4.2.2 Other Considerations 24
4.3 Technical Specifications 25
5. 1991 CENSUS SUEDNISYON (CSO) DIGITAL BOUNDARY FILE 27
5.1 Content 27
5.2 Data Quakiv Statement 28
5.2.1 CSDs comprising more than one part (polygon) 28
5.2.2 Other Considerations 29
5.3 Technical Speclifations 30
6. 1991 CENSUS CONSOLIDATED (CCS) DIGITAL BOUNDARY FILE 32
6.1 Content 32
6.2 Data Quainy Statement 33
6.2.1 COSs comprising more than one part (polygon) 33
6.2.2 Other Considerations 34
6.3 Technical Specifications 34
7. 1991 CENSUS DIVISION (CD) DIGITAL BOUNDARY FILE 36
7.1 Content 36
7.2 Data Oualiky Statement 37
7.2.1 COs comprising more than one part (polygon) 37
7.2.2 Other conslderations 37
7.3 Technical Speclications 38
8. 1991 URBAN AREA (UA) DIGITAL BOUNDARY FILE 40
8.1 Content 40
8.2 Data Cuality Statement 41
8.2.1 UAS comprising more than one part (polygon) 41
8.2.2 Other Considerations 42
B. 3 Tecturical Specifications 42
9. 1901 PROVINCE/TERRATORY (PR/TERA) OUGITAL BOUNDARY FILE 44
9.1 Content 44
9.2 Data Qualiky Statement 44
9.2.1 PRs comprising more than one part (polygon) 45
9.2.2 Other Considerations 45
9.3 Technical Specilications 45
10. 1901 CENSUS TRACT (CT) DIGITAL BOUNDARY FILE 47
10.1 Content 47
10.2 Data Quallity Statement 48
10.2.1 CTs comprising move than one part (polygon) 49
10.2.2 Other Considerallons 49
10.3 Techulcal Specifications 50
11. GLOSSARY OF TERMS 52
12. SUPPLEMENTARY INFORRATION 58
12.1 Related Geographic Products and Services 58
12.2 For Further Information 60
123 Additional References and Services 61
Appendix A: Lambert Confornal Conic Projection Parameters 62
Appendbr B: EAs not conslatert wh Street Network Flles 63
Appendix C: EAs comprising more than one polygon in the 1991 EA Digital Boundary File 64
Appendix D: CSDs comprising more than one polygon in the 1991 CSD Digital Boundary Fill 66
Appendix E: CCSs comprising more than one polygon in the 1991 CCS Digltal Boundary FHe 67
Appendix F: CDs comprising more than one polygon in the 1991 CD Dlgital Boundary File 6
Appendix G : UAs comprising more than one potypon in the 1991 UA Digtal Boundary Flle 69
Appendix H: CTs compristrg more than one polygen in the 1991 CT Digital Boundary File 70
Appendlx I: Detalled Intormation on the CT Digiten Boundary Files by CMA or CA 71

Iwo supplementary documents are attached:

SUPPLEMENT 1: Examples of geographic units in multiple parts SUPPLEMENT 2: EA Unkage ertors on the Geographic Atritbute Data Base and their Impact on the Digital Boundary Files

ARC/INFO* is a replstered trademark of the Environmental Systems Research Institute IBM ${ }^{\circ}$ is a registered trademark of international Business Machines Incorporated

1. ABOUT THIS GUIDE

This User Gulde is intended for users of any or all of the Digital Boundary Fle products.
The first sectlon provides an overview of all the Digtal Boundary Files, including the general methodology used to create the products, and a comparison with a 1966 product (CARTLIB).

Each of the next 8 sections focuses on one of the geographic units for which a standard Digital Boundary File is avaliable. For each, the contern, data quatity and the technical specfications of the product are described in the following terms:

- The content of the file glves the number of polygons and the format of the geographic codes for the particular geographic unit. Some technical information is also provided (such as the total number of llne segments and disk storage requirements).
- The data quality statement provides information to usars to evaluate the suitability of the data for a particular use. No statistices measurements have been done to date; thus the data qually is descriptive orly.

Details are provided for the data quality of the EA Dlgital Boundany File since it is the buildingblock for all other Digital Ecundary Files.

A sub-section for special conslderations tor each of the Digital Boundary Files is provided. In some cases, this section may be brief or even blank. Space is left for the user to add his/her comments. Statistics Canada would appreciate your comments to add to these sections. Fonward them to your nearest Statistics Canada Regional Relerence Centre. Updatas to thts User Gulde will be issued as required.

- The technical specifications are provided relative to the ARC/INFO* Geographic Information System. (ARC/INFO' is Statistics Canada's production Geographlc Intormation System.)

A Glossary is provided in Section 11. More detalls on geographle terms can be found in the 1991 Census Dictionay (Catalogue $\mathrm{N}^{0} 92-301 E$ or $92-301 \mathrm{ED}$). Supplemertary Information is given in Section 12.

Two supplementary dociments are included with this Usar Guide: Supplement 1 provides examples of geographlic units in mumiple parts. (Supplement 1 will not appear in electronlc verslons of the User Guide because of the mustrations which cannot be represented in ASCll format.) Supplement 2 llsts EA Ilrkage errors on the Geopraphlc Atirtbute Data Base and their impact on the Digltai Boundary Files. Both of these supplemerks will be updated as required. The user can contact their nearest Regional Reference Centre for informatlon on the latest update.

This Urer Guide does not provide detalls on spectic software packages for using the Dig*tal Boundary File products. The user is advised to contact the specilic soltware vendor for information. A current list of soltware vendors able to supply Digital Boundary Flle products in their own formats is maintained by Statistics Canada. Please contact your nearest Regional Reference Centre for Information.

This report is based on the best Informetion avalable at the time of its release. It in no way constitutes a warranty of the data in the event that users may observe characterlstics that deviate from thoses stated in thts document.

In addition, many geographic codes and numbers presented in this guide have been transcribed from computer screens and internal witten reports and then keyentered. All efforts have been mede to ensure the accuracy of the key-entry operation, however no guarantes can be made that the codes and numbers are 100\% correct.

2. OVERVIEW OF THE DIGITAL BOUNDARY FILE PRODUCTS

2.1 Introduction

The 1991 Digttal Boundary Fies are computer boundary files for the standard Census geographic levels. Digital Boundary Files ere avallable for each of the following geographle levels:

- Prownces and Tertitories (PR/TERR)
- Federal electoral disticts (FEDs)
- Census divislons (CDs) - equivalent to countios
- Cennsus subdivisions (CSDs) - equivalent to local munictpalities
- Census consolidated subbdivislons (CCSs) - groupings of CSDs
- Census tracts (CTs) - equivalent to nalghbouthoods
- Utban areas (UAs) - dense concentrations of population
- Enumeration areas (EAs) - the smallest geographic area for which census data are usually avalable

With the approprate computer software, Digital Bounidary Files provide the framework for computer anelysis and mapping. These files can also be used to create naw geographic areas by aggregathog standerd geographic areas, and for other data mantpulations avallable with the user's software.

2.2 Purpose of the Digital Boundary Files

The difital boundary filles were produced to support the 1991 Census of Population and Housing

- approxdmately 24,000 collection maps were automatically produced using a pre-census version of the EA dightal boundery file.
- approxdrately 1,200 EA reference maps were atomaticelly produced using a production version of the EA digittal boundary file.
- the CSD digital boundary fle was used to assist In the production of the 1991 CD/CSD reference maps series.
- all levels of digttal boundary filies were used for internal qually assurance processes.

23 Geographic Reference Date

AN census data reflects the census reference date of June 4, 1991. There is also a Geographic Feference Date on which the geographic framework takes effect. This date is earleer than the census reference date in order to give Statistics Canada enough time before Census Day to process the necessary boundary and name changes. For the 1991 Census, the Geographle Fieference Date is Janusary i, 1991. The Digital Boundary Files reflect the legislative/administrative geographic framework ts in exdsted on January 1, 1991, provkded that the information on any changes was recelved by Statistics Canada from the provincial or topritorial authorilies by March $\mathbf{1 , 1 9 9 1 .}$

The only exception ts the EA Digltal Boundary File which cortains all updates made to the EAs on Census Day as a resuli of dwellings not idemtified prior to actual census enumeration.

2.4 Comperison to the 1886 CARTLIB Product

The methodological approach ior the 1991 Dlgital Boundary Files makes these proctucts different from the 1996 digital boundary files that were avaifable as CARTLBs (Cattographic Ubrary).

A major change is that the 1986 CARTUB geographic arsas were generally digitized Independert of each other, and thus, m many cases, the bounderies were not fully compatible (e.g. a CSD boundary may not exactly overtay a matching CT boundary). However, for 1991, a digital boundary file was created for all EAs for the first time. Since EAs are the bulding-blocks for all other standard geographic areas, EA boundaries were aggregated to create higher level geographic areas. For example, EA boundaries were aggregated to create CT bounctaries. rather than digtizing the CT bounderies separately as was done in 1986. In this way, the conslstency of all digital boundary products is assured.

Another major change ts that, unlike the present boundary files, CARTUBs were aupmented with shorellines and some hydrographic features in order to provide more visually realisilic cartographic products. The 1991 Dlgital Boundary Flles do not have cartographic shorelines. Bounderies following ivers deplcted as single lines on the original source maps (generally in the more rural parts of the country) follow the natural curves of the iver. However, boundarles will extend into major shoreine areas such as the Great Lakes, St. Lawrence River, the Atlantic, Paclic and Arctic Oceans, as well as ivers depicted as double lines on the orginal source maps. Thus, Dtgital Bounciary Files ane not suitable for mepping applications where reallstic shoretine is important, or for compuaing land areas.

Finally, the placement of the EA representative point within the corresponding boundary polygons is 100% guararteed with the 1991 products. (Statistics Cantada defines a representative point (fiomerty called a "centrold") for each EA In Canada. Section 3.1 glves the definition and method of dervation for these points.) These representative points are used for data retrleval, data analysis or statisitical mapping. The method of derivation of these polnts assures that they are 100% consistent whth of the Dightal Boundary Files (1.e. If the points are plotted as an additional layer with the Digtal Boundary Fles, the poinds will fall in the correct boundary polygon). Thls guarantee could not be made with the 1986 EA representative points and CAFTLIBs.

2.5 The Cenaus Geography Hierarchios

The Enumeration Area (EA) is defined as the area covered by one enumerator for the Census of Population and Housing. An EA generally contalns a minimum of $\mathbf{1 2 5}$ dwellings in rural areas to a maxdmum of 375-400 dwellings in large urban centres. EAs must respect higher level geographic areas recognized by the census; thus, EAs can be aggregated to create all other geographlic areas.

The geographic erees are part of the standard herarchiles used by Statistics Canada. The following diapram shows these relationships as they pertain to the Digital Boundary Files (1.e. from the smallest unit aggregated to the larger geographic units).

EA -> CSD -> CCS -> CD -> PROV/TERR -> CANADA
EA -> FED -> PROV/TERR -> CANADA
EA -> CT -> CMA/CA
$E A \rightarrow U A$

Census tracts (CTs) are delineeted within ail 25 census metropoittan areas (CMAs) and 14 of the 115 census aggiomerations (CAs).

2.6 General Methodology

For census purposes, Caneda is divided into smal geographic areas (EAs), to ensure that all dwellings are enumerated. For the 1991 Census, 45,995 EAs were defined. Ats EAs are contained in the EA digital boundary file and each EA is represented by one or more polygons. (Sbdy-nine of the 45,99s EAs are represented by more than one polygon.) Each EA polygon is idenfified whth the appropriate unique EA code (an 8-dight number representing the province. fiedered electoral district and EA).

Since the EA is the bulling-block for all higher order geographle unlts, the EA digital boundary fle was created first. Different methods were used, depending on whether or not the EAs are covered by Street Network Flies'. Most large urban centures and some smaller urban centres

 popolation, but twos than 1% of the tatil lard aran of Conda.
are covered by the Street Network Flies. The features in the Street Network Flues which actually formed the EA boundarles (e.g. streets, rivers) were used. Apartment buildings and collective EAs are represerned by small polygoris at thelr approximate locatlon within the Street Network Fib.

In the remaining large and small urban centres, and in nural areas, the EA boundarles were digivized from the base maps on which the EAs had been manually delineated. Reler to the Data Qually Statement for the EA Digital Boundary File, Section 3.2, for more details on the derivation.

Since the EA digital boundaries were required for census collection during the pre-1991 census operations, the final EA Digited Boundary Fue was consiructed via a series of "cycle" updatee. The final EA Digital Boundary File represents the EA structure in Canada as of June 4, 1991 (Census Day) for disseminating 1991 Census data.

The finat EA Digital Boundary File for Cansda is the source for creating aill other geographic bounctary flles. Component EAs are agaregated to create all higher order geographic areas as descrited in the following:

Each EA code in the EA digltad boundary file is linked to the higher order geographic codes through the Geographic Autribute Data Base flommerty called the Geographic Attribute Data Base or CGDB), a set of data files maintained within Statistics Canada and which provides (among other ihings) all the linkages withon the various geography hlerarchies.

The following three dlagrams ilustrate the process for aggregating EA boundary polygons to the other geographlc areas. The example shows the creation of CT boundaries from the EA digital boundary fle.

This firsh diagram deptcts a potion of the EA digital boundary file. Each polygen represents one EA whi lts undque EA code assigned to the appropriate polygon:

10503001	10503002	10503003	10503004
10503009	10503007	10503006	10503005
10503009	10503010	10503011	10503012
10503016	10503015	10503014	10503013

Using the EA code as a link to the Geographic Attribute Data Base, the appropriate CT numerical name is identified and assigned to each EA polygon. The dlagram below shows the EA polygons with the appropriate CT mumerical name below the EA code.

10503001 0201.01	10503002 0201.01	10503003 0201.01	105030004 0203.00
10503008	10503007	10503006	10503005
0201.01	0201.01	0203.00	0203.00
10503009	10503010	10503011	10503012
0201.02	0201.02	0201.02	0203.00
10503016	10503015	10503014	10503013
0201.02	0201.02	0201.02	0201.02

The EA boundaries commion to nefghbouring EAs within the same CT are "dissolved" or eflminated. The resulting CT boundiary filio is deplcted below.

This same procedure was used to prochuce the CSD, FED, UA, CT and PR/TERR Digital Boundary Files. The CSD Digital Boundary File was used to create the CCS and CD Digital Boundary Files (by aggregating componert CSDs).

In each case, the Canadia EA boundary file was used to create a Canada file of each of the other geographlc unlts. The provincial and territorlal flles were created from the nationel file by selecting those geographic units whitin a particular province or territory.

All processing was done using ARC/INFO Version 4.0 In the Lambert Conic Conformal projection (see Appendx A). As an alternate projecilon, the Digital Boundary Files are also avaitable in latitude/hongitude. This converston was performed through ARC/INFO'.

3. ENUMERATION AREA (EA) DUGITAL BOUNDARY FIIE

3.1 Content

The EA boundary file contains 46,103 polygons representing 45,998 EAs which corresponds to the national coverage. A list of the EAs comprising more than one polygon is given in Appendix C.

A breakdown of the number of EAs and number of polygons by province/teritory, with other information relevent to the cortern and disk storage requirements are provided below.

PRONDTEE: THinitcin	$\begin{aligned} & \text { Munasid } \\ & \text { of Pas } \end{aligned}$	Hamaer DF POLYCQ*S	Manten OF EAS WITH MODFE THAN CNE POLYEOM	TOTAL mamesh OF L"NE secment	$\begin{aligned} & \text { TOTAL } \\ & \text { mynien } \\ & \text { of arics } \end{aligned}$	b18\% sTopice (BYTES) ARCAMFO Expert fines
Alwwioundtand	1,155	1,156	t	83,167	3,000	3,413,000
Prince Edwand tolmud	249	248	0	5,408	689	439,000
Nova Scolith	1,442	1,445	1	81, 2 郒	4,023	3008000
Nown Bruntwick	1,20\%	1,268	2	60,393	3,57\%	2,883,000
Oumbe	10912	10,519	7	285,671	29,490	10,858,000
Ontario	15,119	15,174	24	259,245	40,700	20,120,000
Menhobat	2,030	2048	8	80,335	5,585	3,331,000
Seetretehownan	2,799	2,608	8	00,800	0,678	4,145,009
Abouts	4,602	4,609	7	115,687	12,037	7,184,000
Brivesh Codumbla	6,162	6,172	10	207,327	18,477	11,139.000
Yukon Tmattory	97	8	1	5,484	237	298,000
Northweer Tentiosimp	1粒	162	0	24,58\%	401	908,000
CONAOA	4,505	4×100	4	1,708,137	12messe	71,973,000

${ }^{1}$ As of June 4, 1992. These numbers will alffer from chose given in the Census Diceionary, (Catalogue No. 92-301E or 92-301ED) which show numbers of EAs as of Novenber B, 1991.
${ }^{2}$ All features in the Digital Boundary Fikes are represented by a series of x, y coordinates (points). A lins segnent joins two consecutive points.
${ }^{3}$ An arc is a line between two consecutive intersections. It will generally be composed of more than one line segnent.

Goopraphic_Codes:

Each EA is unlquely identlified across Cennada by an B-digit code. This code provides unicuue numeric identification for three types of geopraphic areas. These are:

- provinces and tenitories (PR/TERPs)
- federat electoral districts (FEDs)
- enumeration areas (EAs)

The three geographic areas are hierarchicaily related. EAs aggregate to FEDs, which in turn aggregate to a province or teritory. This relationshlp is refiected in the 8 -dig' code:

PR/TERR	FED	EA
$\mathbf{X X}$	XXX	Xox
2 digis	3 dlglts	3 diglts

The 2-digit PR/TERR code is the same code as used in the Standard Geographical Classfication (SGC) code (see Section 5.1).

ARC/INFO" Potvgon "-abel Points"

ARC/INFO* automatically computes and uses one point whithereach polygon for ploting polygon altributes (e.g. the geographic code or name). This point is called the ARC/INFO' 7abel point", and is located whin mach polygon at a polnt sukable for label or symbol placement (an approximation of the visuel centre).

Statistics Canada defines a point In each EA for the purpose of assigning aggregate data to that point for data retrieval, data amalysls or stallstical mapping. This point is called the EA representative point (formenty caffed a "centrold"). It is defined as a pair of coordinate values (x,y) which is located by the following methods:

1. For EAs within the Streat Network Flies - the ARC/INFO* label poftr" is used.
2. For EAs outiside the Streat Network Flle coverage - by a manusil, juchamental procedure based on the visual Inspection of building and/or streat pattems on EA census collection maps (some of which have topographic base-map information). The represertative point is located, when possible, at or beside a predominamt cluster of bulldinge and/or streets. If there is no predominamt cluster, then the polint io located between two or more chusters. In the absence of any cluster, the point is placed at the visual centre of the EA. This point wats then manually digltzed.

In the EA Digital Boundary Fie, the coordizates of the ARC//NFO* label point have been replaced by the coondinates of the EA representative points. Thls will have an Impact when ploting with ARC/INFO ${ }^{\circ}$ in areas not covered by the Street Network Fie, since the attribute information may not appear at the centire of the polygon as might be expected. An example is given betow.

Three EAs are depicted in the dlagram below. The shaded EA is in the Street Network Fire coverege, the ofher two EAs are not, The symbol Δ denotes dwellings/streets as they might appear on the source map. The symbol X Indicates the location of the EA representative polnt.

In the example cllsplayed above, the EA representative point in the Street Network Fite EA is positioned relative to the centire of the polygon (regarcless of the location of the sureets or dwellings). Outside Strees Nework Flis areas, the EA representative points are posstioned based on the dwelling/street concentration as shown on the source bese meps whith the EA. AAC/INFO ${ }^{\circ}$ will plot the EA code at these points.

The EA boundary file has some cocurrences of EAs in multiple parts as explained eartler, Outside Street Network File coverage areas, on'ly the principel part with the largest oweilling concentration has the manually selected and digitized EA representative point. Label points for the cther EA parts were also manually digitized whth no special attention to the dwelling citterla (a visual centre was approximated).

The representative point coordinates will be overwritten by the ARC/INFO" label points" If the ARC CREATELABELS command is exectited.

The (x , y) coordinates of the EA representative points are maintalned in the Geography Attritute Data Base and contained in the GEOREF and Geography Atribute File products. They are also provided on the Postal Code Conversion Flie as point locators for postal codes in small urban and rural areas. (Contact your nearest Statstics Canada Reglonal Reference Centure for more information on these products.)

3.2 Data Qualliy Statement

The purpose of a data quatity statement is to provide detalled informalion for users to eveluate the suitablity of the data for a particular use. Five fundememtal components of a data quality statement are: Ilneage, postlonal accuracy, logical consistency, completeness and attribute accuracy.

3.2.1 Lineage

Lineege includes descriptions of the source matertal from which the data were derived and the maltrods of derivation, including the dates of the source matertal and all transformations inwolved in producing the fintal ollgtat fities or map products.

This section relates the history of the 1991 EA Digheal Boundary File from the original source materials to the finel digital product. This description does not contaln all aspects, buit tiles to cover any information with potential inpact on quality.

The EA Digwt Boundary File for Canada was created over a perlod of 3 years. The Federal Electoral Distict (FED) was used as the processing unt since all EAs must respect FED boundaries and the FED is the principle unid for organtzing the census collection operations. First preliminary digital EA boundaries were crealed (by FED), which were subsequently updated due to municipality boundary changes, updates to the street network, and changes in dweling counks. The 1991 EA boundaries were finalized with the Census, June 4, 1991. Some EAs may have been "spitr" during the census collection process if the mumber of dwellings was greater than expected. These EA spilts are Inctuded in the EA boundary file. The EA boundary files for each of the 295 FEDs were compleaed and verfiled, and finally joined topether to create the naitonal file.

Computer processing was primarity done using the geographic intormation system ARC/INFO* Version 4.0 and the Lambert Conlc Conformal profection. (See Appendix A.)

More detailed information on the methods used to create the EA Digital Boundary File is described below.

The EA Digftal Boundary File was created using dififerent methodologles, depending on the avalability of in-house digital files called Street Network Flies. In most large urban centres (and a fow small urban centres), Statistics Candeda maintains dightal Street Network Files (iormerty called Area Master Fies) containing strents, raliways, hydrography and other physlcal features, munacipalily boundarles, end other relevant information such as teature names and address ranges. The Street Network Files were origlnally digitized trom mapt at varous scales ranging from 1:2,400 to $1: 50,000$. Street Network Filles cover more than 60\% of the poputation, but less than 1\% of the total land area.

Where avalable, Street Network Fhes were used to generate the 1991 digital EA boundary files.
 centros):

Dunting the two yeers prior to the census, a preliminary set of EA boundary files (by FED) was created from the Sueet Network Filles using one of the following methods:
(1) Approximately 12,000 of the 22,000 EAS In Street Network File areas were manually delineated on map plots derived from the Street Network Files. The digital boundarles were then created by extracting the xy coordinates of the Street Network Flle features that formed the perimeter of each EA using in-house sotware. The EAs were then formed into polygons.
(2) The remaining 10,000 digital EA boundarles were created antometically using an ARC/INFO ${ }^{\circ}$ based Computer.Agslsted Districting software system developed in-house.

In most ceses, the EA boundaries followed Streat Network File features. Where this was not possible, line tegments repressenting these portions of the EA boundarles were added to the Sureet Network Files'. These features are referred to as "non-physical" features in the following text. This processing was done in a maindrame environment using lohouse developed computer programs and the Universal Transverse Mercator (UTM) projection.

After the preliminary EA digital boundary files were created, the Streal Network Files were updated to include find EA boundary non-physicat features and more up-to-date street Information from municipel documents. They were then converted to ARC/INFO format and the Lambert Conic Conformal profection. To update the digitel EA boundarles, the prellminary EA boundaries were overlaid on the updated Street Network Flies to asslgn each block (polygon) an EA number atirituite. EA boundaries were then re-created by "dissolving" the internal Street Network File tealures based on the EA number attribute. The following diagrams illustrate the process described above.

[^0]This diapram represents the prellminary digtal EA boundary file with an EA code assigned.

The foilowing diagram represents the updated Street Network Flle. The lines could represent streets, ivers, etc. or the "non-physicar features added to the Sireet Network Flle for those portions of the EA boundary that were "Imaginary' and did not tollow a physical feature.

The folllowing cliagram deplcts the preliminary EA boundary fle oversid onto the updated Street Network Fite. The EA codes are automatically assigned to each block (polygon).

001	001	001	002
003	001	002	002
003	003	002	002
003	003	003	003

At this polnt, manual Intervention may revise EA codes to change or correct the boundaries as shown below. (Boundarles may change as a result of updated informalion such as new streets or dwelings. Boundaries may require correcting as a resutt of ongoing checking procedures.)

001	001	001	002
003	001	009001	002
003	003	002	002
003	0003	003	003

The atreets common to neiphbouring blocks whitn the same EA wre "dissolved" or ellminated. The resulting EA boundary file is depicted below.

Edpe-matening

Street Network Files have traditionally been created and mulralained as Individual files consisting of one or several municipamies (depending on the size). The process described above was done prior to the edige-matching of contiguous Street Network Fles. Edge-matching was thus requitred to join the indiwidual EA boundary files created using this process. Subsequent edgematching of the Street Network Files was performed (ARC/NFO* format) independently from the corresponcting EA boundary files. Approximately 120 discrepancies were found at mundcipelity boundarles when comparing the EA boundary flle to the Street Network File for the same area. These discrepancies remain in the files, and will be corrected in future updates.

2. EAl not covered by girapl Altwork fines:

Parts of some large urten centres are not completely covered by a Strent Network Flle. In addition, most small urten centres are not covered, nor are rural areas. The EAs in these areas were digitized using conventional digitizing methods with the AFC/INFO geographic information system. In all of these cases, EAs were mamually dellneated onto base maps, and the EAs digitized. As EAs were updated on the base maps, the digitel EA boundarles were also updeted.

The following background base maps wore used for EA dellneation. The vintage indicated refers to the orginal map. Updates to the street information as identified from the prevlous census, had been marually drifted on the maps.

In lerge urban centres not covered by the Street Hetwork Files:
For these menually-produced maps, with scales ranging from 1:2,400 to 1:75,000, the background base map ufformation was obtalned from various source documents: National Topographic System (NTS) maps produced by Energy, Mines and Resources Canada (EMR), muncipal town plans, road maps, 1986 census collection maps, and pre-1991 fietd upctate maps were used. The map projections vary depending upon the sources.

The user can refor to the approximetely 207 manually dratted maps in the 1991 EA Reference Maps Series 1 (formerty called G13s), which are photographically reduced versions of the maps used to digitize the EAs'.

Mn emall urban centres:
The source maps for digizizing EAs in small uban centres were marually dirated maps depkting EAs in censuss subdivisions or unincorportited places. Map scales varied from $1: 2,400$ to $1: 250,000$. These maps were drafted using information from topographic maps, munkipal town maps, road maps, 1986 census collection maps, and 1969/90 census field update maps. The map profections varied, depending on the original source material.

The Liser can refer to the 1991 EA Reference Map Series 2 (formerty called G14s and G16s). which were procuced trom the same sotrice maps used to dilitize the EAs.

mo rural areas:

The user can refer to the 1991 EA Reference Map Serles 3 (formenty caled G123), which were produced from the same source maps used to digitize the EAs.

10 Provinces: National Topographic Serles (NTS) published by Energy, Mines and Resources, Canada, at scales $1: 50,000$ and $1: 250,000$. Map vintages range from 1954 to 1950 , with mamually dratted updates from previous centus collection maps. The map projection is Transverse Mercator.

> Yukon Teritory: MCR Serles, Map $\# 25$, at $1: 1,000,000$. The map vinkage is 1972, whth manually dratted updates from the previous census collection maps. The mep projection is Lambert Contormal Conic with standard paralels at 49° N and $77^{\circ} \mathrm{N}$.

> Northwest Tertiories: NCR Serles, Map \%給战 1:4,000,000. The map vintage is 1974, with manually dratted updates from the previous census collection maps. The map profection is Lambert Conformal Conic, with standard parallels at $64^{\circ} \mathrm{N}$ and $88^{\circ} \mathrm{N}$.

As the final tetep:

Since the EAs were digtized by Individual FEDs, FED flies were dige-matched as the final operation. The digikal boundaries created from the small untan centres were adjusted where necessary to the rural files. This comblned file was then adjusted where necessary to match the EA boundarles as created from the Street Network Flies.

3.2 .2 Pothiond Accuracy

Positional accuracy is the oliference between the "true' position of a feature in the rat wortd and the "estimated" position stored in the digital filie.

For thls report, the "rue" EA boundery ls considered 10 be the boundary as depicted on the source meterials.

Postitonal accuracy depends on the quallity of the source material used (EMR's NTS and MCR map series, and the Streat Network Fie, for the position of roads, rall-roads, ivers, lakes, etc.), as well as the manual drafting of the base map features and boundaries. No numerical measurements of positional accuracy have been made. Positionad accuracy is presented here in ternis of descriptive statements comparing the digitel fles to the source base materidels.

Atter the prellinimary EA boundary files were created (by FED) as described under 3.2.1 Lineage, a complete verfication process was conducted where the prelliminary EA boundary files were plotted and overlaid on the original source maps. Acceptable tolerances were defined as 1.6 mm East-West and 1 mm North-South as moasured on the scurce map. The following obsenvaitons were made and actlons taken:

In large urban centres (Street Network Fill coverege): EA boundary errors could only occur if the boundary followed an Incoriect teature alnce the EA linits were generated from the Street Network Files. Errors were marked and subsequentry corrected.

In smal urben centres: The diversiy of source documents and scales used fior small ubsan areas have resutted In poor positional accuracy of the EA boundarles when plotted over the source base maps. Some EA boundaries had errors much greater than the tolerance; these were not corrected due to the dificulty in locating valid control points.

In rurt meale: Errors were manked ind subsequently contected. Boundarias crossing map sheets were dig"tzed as they eppeared on the source maps. Because of the diversity of source map vintages, digitzed features may not appear continuous from one map sheet to the other, even li thay are connimuous in the real world.

No subsequert verification of EA boundaries was done using the map owertay technique.

As noted earlier, some EA boundarles follow hydrographic features; however malor shoreline areas such as the Great Lakes, St. Lawrence Aiver, and the Atbantic, Pacific and Arctic Ocoans are not depicted. In these areas, the EA boundaries are diawn (and represented in the digital boundary files) ass stralght lines which extend into major water bodies to ensure complete coverage of the land ares and islands and to follow offictal mumleipal boundaries.

In addition, It an EA boundary follows a single line "meandering" feature (such as a itver or stream), the EA boundary may appear questionable, depending on the number of points used to reprosent the feature.

3.2.3 Attribute Accuracy

Attribure accuracy refers to the accuracy of the non-positional informatlon attached to each EA polygon.

The 1991 EA Digital Boundary File procuct in ARC/INFO* contalns an 8-digit PR/FED/EA cocte as described in Section 3.1.

The following checks were done in order to vertly the accuracy of the 8-digit EA codes atteched to each EA polygon:

- The EA codes In the dighal EA boundary file were matched with the EA codes on the Geographic Attribute Data Base fcontalning all EA codes and thelr linkages to other standard gacgraphic areas, such as municipelitiles, census tracts and federal electoral districts, ttc.). The match was 100% correct, ensuring ihat all EAs were present in the EA boundary flle, and that no EAs were missing.
- The prelliminary EA boundarles wera plotted and overtald on the original source maps used for EA dellneation (as described under Postitoned Accuracy). The EA codes were manually checked. Corrections were made and verfifed at the same time as the subsequert cycte of boundary updates as described in the following paragraph.
- Llsts of geographic areas with their component EAs were produced from the Geography Atirbute Data Base. A manual verification (using lists of ofher geographic areas with their component EAs produced from the Geography Attribute Deta Base) was done to check that
all highor order geographic areas connained the correct EAs as they appeared in the Geography Atribute Data Base. Erors were corrected and verified. Although there is essurance that the correct EAs are present within each level of geographic area (e.g. municlpelty, census tract, federal electoral districti), it is possible that even if the boundaries of the two EAs are correct, thelr EA codes are interchanged. (A test of 2774 non-randomly selected EAs had 2 EAs with thelr EA codes swithched.)

3.3.4 Logical Conalistency

Logicat consistency describes the fodelity of relationships encoded in the deta structure of the clightal spatial cata (i.e., how weil elements of the cdatit structure follow the ntes imporitd on them).

Automated processing through ARC/INFO* verfied that all EA polygons were topologically correct, that they closed, with no overtaps, owershoots or slivers. Lnes are Intersected only where Intended and no lines are entered twice.

There are, however, two polygons (gaps') whthin Canada's geographic area that are nos aseociated with an EA. Both of these polygons are within water bodies (one In Georgian Bay, and the otther between the three provinces of Pirice Edward Istand. Nowa Scolka and New Brunswick). These two polygons will appeer in all Canada level digltal boundary files (except the Uman Area (UA) and the Census Trect (CT) files). One of these polygons will also appear ity the Ontario dighal boundary files (except UA and CT fies). These polygons are not courtect in the total number of polygons in any of these files, slince ARC/INFO ${ }^{\circ}$ associates them with the area outside the Canada boundary, (in ARC/INFO' terminology, these polygons are counted with the world" polygons, wth 3 "world" polygons in the Capada flies, and 2 in the Ortario flies.)

3.2.5 Completenese

Completeness expresses the degree to which the geographic entites (features) are captured acconding to the data capture specifications. It also contains hformation aboun setection criteria, defintions used and olther relevint mapping rutes.

The nationsa EA Digltal Bounctary File contalns 46,103 boundary polygons, representing the 45,955 EAs used for the dissemination of 1991 census data (es EAs have more than one part; a list of thess EAs is glven in Appendix C.)

Data are limited to EA boundary polygons. No other major features are present.
In addition, since the objective of the 1991 EA Digital Boundary Fle is to depict EAs as defined for census collection, major shorellines (as described eartien) are not represented.

3.2.6 EAs comprising more then one part (polygon)

Appendix C lists all the EAs whth more than one part (polygon).
An EA can comprise more than one part (polygon) due to the manner of dellneation or digitization, or due to technical reasons glven below. Examples depicting geopraphlc unlts in multiple parts are given in Supplement 1 to the User Guida.

1. In general, if en EA conststs of a group of kslands, or part of the malutand and one or move tsiends, the EA boundery is drawn (and then dightized) with a line enciosing all of the component parts. However, in some cases, one or more of the lslands and/or the malaland portion, were diglized separately. Other discontinulties may be caused by water bodles.
2. Sorne EAs within CSDs comprising more than one pert were dellneated im more than one part (fior example Indian Reserves).
3. The structure of an EA may create 2 parts foined at a single point when the scale of the source map and the tolerances used in the computer softivare cause the polygon to be "pinched" when 2 points very close together "snap" to a slingle point.
4. During the creation of EAs which comprised of one block-face whithin a Street Network File, a non-physical feature was added using one or more street intersections to enclose the required block-face. In some cases, thas caused a surrounding EA to be split into two parts.
5. In a very few cases, EAs will appear as two polygons as the result of appending two contipuous Street Network Files. For example, the Calgary Street Network Flle was stored as two distinct files, one for the UTM zone 11, the other for UTM zone 12. When the two flles were appended, a gap occurred between 2 representations of the same feature (one in each fle) which had minor discrepancies in the x,y coordinate values. If an EA crosses that toature, th will appoar ats 2 polygons jolned at one point.

3.2.7 For users of the Diglal Boundiry Files with the Steet Network Flies:

The 1991 EA Digital Boundary Flle created from the Street Network Files will be conslstent with the features (physlcal and non-physicall) of the ARC/INFO ${ }^{\circ}$ version of the Strett Network File except in the following:

- epproximately 115 cases where non-physical EA boundary features were mlesed from the Street Network Files. Approximately 200 EAs are affected (see Appendtx B) and thelr dightal boundaries subsequently corrected using computer-assisted techniques. The missing nonphysical features will be added to the Street Nefwork Flles in future updates.
- approximutiely 120 cases where the edge-matching of some conligurous Sureet Network Fites was done Independendly of the edge-matching of the corresponding digtal EA boundary file.

These ditscrepancies shoudd not impect on the usefuness of the EA boundary fle for mapping using the Street Network File as an undertying base. An extample of this is the 1991 EA Reterence Mep Series 1 (formerty called $\mathbf{G 1 3 s}$), produced automatically using the Street Network Files and a production version of the EA Digital Boundary Fila. Thus the user can refer to these maps for a phyaical represertation of these digital file products.

These discrepancles between the Street Network Fle and the EA boundary file may have some impaci 1 It the two digital data filles are "Johned" or "vertically integrated" (using approprlate software). Appendix 8 lists the EAs which whll have porions of theit bounderies missing in the Street Network File.

There maty be further discrepancles between the EA Digital Boundary File and the Street Network Files obtalned in the traditionel ASCII format, sance these lefter fles have not been edge-matched.

The user should refer to the Data Ouelity Statement for the Street Network Fiwes for more informetion on the source material.

3.2.8 Other Considerations

The 1991 EA Digital Boundary File may be used in conjunction with data avallable through GEOREF or the Geography Attritute File, which ere other Statistics Canada electronlc products derved from the Geographic Atrftute Data Base. These products contain among other thingss the limkages of EAs to all other standard census geogrephy, EA representative poimt coordinates. and EA populetion and dwelling counts. This will tallow the aggregation of the EA boundary polyoons to create the boundarles of the other standard census geographic areas. Errors in the digital boundary files may occur if there are geographlc code ilnkage errons on the Geographic Attribute Data Base. Supplement 2 to the Digital Boundery Fle User Gulde cortalns a list of all the efrors on the Geographlic Atribute Data Base that have been idemtified up to the time of the release of this User Guide. The Supplement indicates the erroneous linkages, as well as showing If the error has been corrected on the appropriate digital boundary flle. If the error has boen corrected on the digital boundary file, there may be a discrepancy between the Digital Boundary File product as supplied by Statistics Canada and a digital boundary file that a user may create by doing his/her own aggregation by linking the EA code through a digital product created from the Geographic Atrifute Datid Base. The user should consuit the Data Qualty Statement of the linkage fie used for any agoregations.

The lack of hydrographlc fetures and shorelines may lime the usefulness of the product tor cartographic applications where realistlc shorelines are required and no underiying digital base features are avalable from other data files. The lack of shorellne will also limit the usefitness of the product for analysls requining real land area calcuations (e.g. population density).

1991 Census deta by EA may be used with the EA boundary file for spatial anelysts and some mapping (where the lack of shoreline is not important).

The 1994 EA Digital Boundary File will be consistent with Statistics Caneada's other digital boundary products (census subdivision, census tract, utban area, federisl electoral district, eftc.) since these boundary flies were created by aggregaing the component dightal EA boundaries.

The Digital Boundary File products do not contain any undedying base features (such as major lakes, ivers or roads) that the user may require for referencing the location of the EA boundary polygons. The Street Network Files can be used as a base where they are avallable. Statistics Canada does not have a corresponding digital base for areas outside of Street Network File areas.

The EA digital boundertes may not be precise If plotited at a larger scale than the scale of the source base maps used for digtivizing.

The ARC/INFO* version of the EA Digital Boundary Flie will plot names at the coordinates of the EA representative points (see Section 3.1) which may not be the visual centre In small urban and nural areas.

3.3 Techunical Specticationts

The 1991 EA Digital Boundary Files are in ARC/INFO* EXPORT format. They were created using the following AAC commands:

```
EXPORT COVER MHI_EAO1 NRN_EA91.E00
```

where mm is the abbreviation to represent the level of coverage created.
mar = NAT for the Canada cowerage, or mm $=$ the 3 or 4 character abbreviation for each of the province or terriorles (NFLD, PEI, NS, NB, QUE, ONT, MAN, SASK, ALTA, 8C, YUK, NWT) as demonstrated by the following examples:

EXPORT COVER MAT EA91 NAT EA91.E00 for the Canada EA Digital Bounctary Fue
EXPORT COVER MAN_EAO1 MAN_EAP1.E00 for the Mantiobs EA Dlgital Boundary Fime

The ARC/INFO* coverage can be restored using the following commands:
HMPORT COVER MO_EA91.E00 Usemame
where usemame is the name selected by the user.

INFO Tablas:

The expcution of the commands ouftined in the previous section will result in the creation of a coverage called userrame and the following INFO table:

DATAFILE NAME: Usemame.PAT
5 ITEMS: STARTING IN POSITION

COL	ITEM NAME	WDTH	OPUT	TYP	N.DEC	ALTERNATE NAME
1	AREA	4	12	F	3	
5	PERIMETER	4	12	F	3	
9	usemamet	4	5	B	0	
13	usemameld	4	5	B	0	
17	EA	8	8	1		
	** REDEFN					
17	PROV	2	2	1	-	

A descripiton of thls table follows:

them Description
Polvaon Atrabute Table
AREA Of the polygon - malnained by AFC/INFO ${ }^{\circ}$
PERAMETER of the potygon - malntained by ARC/INFO*
username* maintalned by ARC/INFO ${ }^{\circ}$ for whemal processing
usemametD meinthined by ARC/INFO' for internal processing
EA \quad-digh code kdentifing the PR/FED/EA; the first 2 digits are the PR/TERR code, the next 3 digits are the FED code, and the last 3 digits represent the EA

PROV the PR/TERR code (the first 2 digits in columns 17-18 of the B-digit EA code) can be accessed with thls tem mame PROV

4. 1991 FEDERAL ELECTORAL DISTRACT (FED) DIGITAL BOUNDARY FILE

4.1 Content

The 1991 FED Digital Boundary File (which corresponds to the national coverage) contalns 299 polygons representing the $\mathbf{2 9 5}$ federal electoral dilsticts (FEDs) according to the 1987 Representation Order.

A breakdown of the number of FEDs by province/teritiory, the number of polygons per FED, and other velevant intormation regarding the content of the fle is given below:

PROCNWMEI TEAATIDAY	MUNRER OF FED	NLTMBEA OF POLVEOHS	$\begin{gathered} \text { mungen of } \\ \text { FEDe wirn } \\ \text { More Tiwn } \\ \text { OWE } \\ \text { pocyenon } \end{gathered}$	TOTAL MUMEA OF LEEAE		$\begin{aligned} & \text { asx } \\ & \text { STopice } \\ & \text { (tivTES } \\ & \text { Arciwiop } \\ & \text { Export ines } \end{aligned}$
Nowloundund	7	7	0	8,429	38	364,000
Prince Edward latend	4	4	0	598	13	4,000
Nown Seotil	11	12	1	4,638	37	20,000
Nuwn Brutamek	10	10	0	5,83s	41	240,000
Ounbor	7	78	3	37,10\%	247	1,200,000
Ontario	-	s9	0	24,723	310	881.000
Mantioba	14	14	0	11,107	65	390,000
Stukatohtwath	14	14	0	12,809	67	451,000
	26	28	0	20,700	111	\%en,000
Eritiah Columbla	32	32	0	3, 7 年	183	1,046,000
Yutcon Tomplory	1	1	0	1,947	6	110,000
	2	2	0	19,683	整	640,000
cavaba	205	200	4	155,011	1,074	481813000

'All features in the Digital Boundary Files are represented by a series of x, y coordinates (points). A line segpent joins two consecutive points.
${ }^{\mathbf{2}}$ An arc is a line between two consecutive intersections. It will generally be composed of more than one line segment.

Geographlc Codes

Each FED is identified across Canada by a 5-digit code. This code provides unique numeric Identification for two types of geographic areas. These are:

- provinces and tertiorles (PR/TERRis)
- foderal electoral districts (FEDs)

These two geographic areas are hlerarchically selated in that FEDs aggregate to a province of tenttory. This relationship is reflected in the 5-diglt code:

PR/TERR	FED
$\underset{2 \text { digits }}{\mathbf{X X}}$	Y0XX
3 digits	

The 2-digit PR/TERR code ts the same code as used in the Standard Geographlcal Classification (SGC) code (see Section 5.1).

4.2 Deta Ouality Statement

The 1991 FED Digital Boundary File was created by aggregating EA polygons in the 1991 EA Digital Boundary File as described in Section 2.6 General Meftodolory. The user should review the Data Quality Statement for the 1991 EA Digital Boundary File (Section 3.2) since the quality of that file has a direct implication on the derved FED Digital Boundary File, and the uses and considerations descrlbed thereln will also apply to the FEDs.

The panticular hlerarchy used for the aggregation is:
EA -> FED -> PR/TERR -> CANADA

4.2.1 FEDA comprising more then one pent (polygon)

There are four FEDs which are represented by more than one polygon in the FED Digltal Boundary Fili. (Pefer to Supplement 1 to this User Gulde for Mustrations depicting geographice units in multiple parts.)

FED 12009 which includes Seble islend which has been digitized tas a separate polygon.
FED 24010 containing a seperstely digtized lstand (lies de la Madeleine),
FEDs 24030 and 24044, each contaning an EA at the edpe connected to the main portlon of the FED by a point. This occurs when the FED polypon is "pinched" When two points along the boundary are so close together that the computer software "snaps" the points together, creailng two polygons for that FED, joined at the "srapped' point.

4.22 Other Considerations

4.3 Technical Specilicationt

The 1991 FED Digital Boundary Files are in ARC/INFO ${ }^{\circ}$ EXPORT format. They were created using the following ARC commands:

EXPOFT COVER MN_FED91 Mm_FED91.E00
Where now is the abbreviation to represent the level of coverage created.
mn = NAT for the Cantada coverage, or nmm $=$ the 3 or 4 character abbreviation for each of the province or terthories (NFLD, PEI, NS, NB, QUE, ONT, MAN, SASK, ALTA, BC, YUK, NWT) as demonstrested by the following examples:

EXPOAT COVER MAT_FED91 MAT_FED91.E00 for the Canada FED Digital Boundary File EXPORT COVER MAN_FED91 MAN_FEDA1.E00 for the Manimoba FED Dtgital Boundary File

The ARC/INFO ${ }^{\circ}$ coverage can be restored using the following commands:
IMPORT COVER mn EA91.E00 usemsme
Whera usemame is the name selected by the user.

INFO Tables:

The execution of the commands outined in the previous section will resuit in the creation of a coverage called usemame and the following INFO table:

DATAFLLE NAME: usemame.PAT
5 ITEMS: STARTING IN POSITION 1
COL TEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME

1	AREA	4	12	F	3
5	PERIMETER	4	12	F	3
9	usemamen	4	5	B	0
13	usarnamedD	4	5	B	0
17	FED	5	5	1	-
	** REDEFINED ITEMS	**			
17	PROV	2	2	1	-

A description of thls table follows:

Item Description
Polygon Atribute Table

Area	of the polygon - maintained by ARC/INFO*
PERIMETER	of the polygon - mainained by ARC/INFO*
usernamet	malntained by ARC/INFO' for internal processing
usemame-ID	maintalned by ARC/INFO* for internal processing
FED	5-digit code idertityling the FED; the first 2 dipits are the PR/TERR code, the last 3 digks are the FED code
PROV	the PR/TERR code the fixst 2 digits in columns 17-18 of the 5-diglt FED code) can be eccessed whith this item name PROV

5. 1091 CENSUS SUBDVISION (CSD) DİITAL BOUNDARY FILE

5.1 Content

The 1991 CSD Digital Boundary Fle contalna 6,435 polygons representing 6,006 CSDs which corresponds to the national coverage. Of these, 221 CSDs have more than one polygon (see Mst in Appendix D).

A breakdown of the number of CSDS by prowince/teritory, the number of polygons per CSO, and other relevart information regarding the content of the file Is given below.

PRONINCEI TERRITDFY	HLHME OF Cosp	NWN:ER dF POLYEOHS	 C80] WIIH MONE THAN ONㅏㅂ POLYEOM			DABK sTpracte (BYTES) ARCINFO Expert ines
Brwfoundiand	404	412	8	-0,481	ten	2,103,000
Princt Egwind laland	120	129	2	30080	346	275,000
Nova Ecota	. 118	128	7	17,784	204	606,000
Now Brurowiols	278	208	6	22,888	801	\$46,000
Duetees	1.637	1,740	48	92.276	4,789	4,072,000
Ontaro	E-1	1,050	43	65,737	2,575	2,732,000
Manitobel	293	382	2	24,123	754	1,000,070
Sagkatofammon	\$03	809	19	40,133	1,825	1,458,000
Aloerta	438	4	17	4,489	800	1,670,000
Britigh Columbia	里	74	40	74,4,09	1,355	2,705,000
Yutwon Teritiory	38	37	1	2,609	50	169,000
Northwed Terimories	78	72	4	21.108	140	722,000
Chand	\% 000	840\%	21	44830	14277	17,420,000

All features in the Digital Boundary Files are represented by a series of x, y coordinates (points). A ifne seg ont joins two consecutive points.
${ }^{2}$ An arc is a line between two consecutive intersections. It will generally be composed of more than one line segment.

Georraphic Codes

Each CSD is undquely identified by kt Siandand Geographical Cinasification (SGC) code. The SCC is Statisics Canada's official classification providing unique numertc kdentification tor three types of gecgraphic areas. These are:

- provinces and tentiories
- census divisions (CDs)
- census subdivisions (CSDs)

The three geographic areas are herarchically related. CSDs aggregate to CDs, which in furn aggregate to a province or a territory. This relationship is reflected in the 7-diglt SGC code:

PR/TERR	CD	CSD	
$\underset{2 \text { diglts }}{\mathbf{X X}}$	$\mathbf{X X X}$	3 digits	

The 7 -digit SGC code is assigned to each CSD polygon.

5.2 Data Qualiky Statement

The 1991 CSD Digital Boundary Fin was created by aggregating EA polygons in the 1991 EA Digital Boundary File as described in Section 2.6 Ganersl Methodolory. The user shoud reviow the Data Qualily Statement for the 1991 EA Dighal Boundary Fle (Section 3.2) since the quality of that file has a direct implication on the derved CSD Dfokal Boundary Fie, and the uses and considerations described therein will also apply to the CSDs.

The particular gecgraphy hlerarchy moolved in the aggregation is:

$$
\text { EA } \rightarrow \text { CSD } \rightarrow \text { CCS -> CD }->\text { PR/TERR -> CANADA }
$$

5.2.1 CSDs comprising more than one part (polypon)

A complete list of all CSDs comprising more than one polygon is given in Appendix D. CSDs can comprise more than one polygon for the following reasons. (Refer to Supplement 1 to thls User Guide. Mustrations are provided which deplct geographic units in metriple parts.)

- component EAs comprise more than one part (see Section 3.2)
- the CSD is an indian Peserve which conslstst of one or more distinct and separate parts.

6.2.2 OCher Conalderatione

- The SGC codes and bounderles are those that were in effeci on January 1, 1991 (the Geographic Reference Dats of the 1991 Censusp). Where notification trom provincial or teritorial authoities was not received or was peceived atter March 1. 1991, the SGC code or IIm: of the CSD may not correspond with those recognized by provinctal or teritionid authorties.
- The CSD Digital Boundary File was created by Iliking EA codes in the EA Digital Boundary flles to their corresponding SGC code on the Geographlc Altrlbute Data Base. Thus errors in the CSD Dtgtal Eoundary Fles may occur y there are geographic code linkage errors on the Beographic Attribute Data Base.

Supplemert 2 to the Ddpital Bpundary Flie User Gulde contains a Ilst of all the errors on the Geographic Attribute Data Base that have been identiled up to the time of the releesse of this User Gulde. The Supplement indicates the erroneous lirkages, as well as showing y the ertor has been corrected on the eppropriate digital boundary fle. If the error has been corrected on the digltal boundary tite, there may be a discrepancy between the Dtgltal Boundary File product as supplled by Statistics Canada and a digital boundary file that a user may create by dolng his/her own aggregation by linking the EA code through a digitel product created from the Geographic Anribute Data Base. The ueer should connsuth the Data Qualliy Statement of the linkage file used for any aggregations.

5.3 Technical Specifications

The 1991 CSD Dighat Boundary Flles are in ARC/INFO' EXPORT format. They were created using the following ARC commands:

EXPORT COVER $n n_{n}$ CSD91 mn_CSD91.E00
where n inf is the abbreviation to represent the level of coverage created.
nNT = NAT for the Canada cowerage, or rmm $=$ the 3 or 4 character abbrevietion for each of the prowince or termotes (NFLD, PEI, NS, NB, OUE, ONT, MAN, SASK, ALTA, BC, YUK, NWT) as demonstrated by the following examples:

EXPOFT COVER MAT_CSD01 NAT_CSDP1.E00 for the Canada CSD Digital Boundery Flle
EXPORT COVER MAN_CSDe1 MAN_CSD91.E00 for the Manltoba CSD Dightal Boundary Fle

The ARC/INFO* coverage can be restored using the following commends:
IMPORT COVER mn CSDP1.E00 unameme
where username is the name selected by the user.

INFO Tables:

The execution of the commands outtined in the previous section will resuft in the creation of a coverage called username and the following INFO table:

DATAFILE NAME: ussername.PAT 5 TEMS: STARTING IN POSTION I					
COL	ITEM NAME	WDTH	OPUT	TYP	N.DEC ALTERNATE NAME
1	AREA	4	12	F	3
5	PERIMETER	4	12	F	3
9	usernamey	4	5	B	0
13	usemame-ID	4	5	B	0
17	CSD	7	7	1	*
	** REDEFIN	**			
17	PAOV	2	2	1	-

A description of this table tollows:
Item Descripetion
Polyon Attribute Tabta
AREA of the polygon - malriained by ARC/INFO*
PERIMETER of the polyoon - maintained by ARC/INFO*
usemame* meintalned by ARC/INFO* for internal processing
usememe-ID meintained by ARC/INFO ${ }^{\circ}$ for internal processing
CSD \quad 7-digt SGC code ldentifying the PR/CD/CSD; the first 2 digits are the PR/TERR code, the next 2 are the CD code, the last 3 dights are the CSD code

PROV the PR/TERR code the first 2 digits in columns 17-18 of the 7-digit CSD code) can be accossed with this them name PROV

6． 1901 CENSUS CONSOLIDATED（CCS）DIGITAL BOUNDARY FILE

8．1 Comtemt

The 1991 CCS Diglisa Boundary File contains 2，679 polygors representing 2，630 CCSS which corresponds to the national coverage．Of these， 25 CCSs have more than one polygon．（See Ilst In Appendix E．）

A breakdown of the mumber of CCSs by province／teritory，the number of polygons per CCS， and other relevant information reganding the content and storage requirements of the file are given below：

PAOMNCEI TERRITOAY	Mumben of cosse	mumben of POLVEOWS	Mumeen of Cose WITM MORE THAN OHE PGLYEON	TOTAL MUMOR OF LEGMENT		DGSK STCRACE （EYTES） ARCINFOP Epport 을
Nowtoundiand	87	87	¢	29，825	285	1，001，000
Prince Efward latend	60	80	0	1，自78	207	172000
Nowa Scotid	54	54	0	13，751	167	\＄04，000
Naw Eruntwlat	150	183	1	14，860	475	613，000
Cusber	1，153	1，1倍	8	74，749	3，511	3，17\％，000
Ontarlo	628	850	6	41，345	1，585	1，008，000
Manltoba	127	135	6	18，0幏	399	\＄37，000
Seskalohownm	302	304	1	20，944	837	1，0¢7，000
Nberta	73	74	1	31，801	260	1，044，000
Ettah Columbia	83	85	2	49，615	304	1，577，000
Yution Tenttory	1	1	0	1，047	0	110000
Nortiweel Tentioriey	5	5	0	18，818	58	61a，000
camaba	2，64	2，87\％	23	200，501	7，092	10，713，000

${ }^{1}$ All features in the Digital Boundary Files are represented by a series of x, y coordinates（points）．A line segnent joins two consecutive points．
${ }^{2}$ An are is a line between two consecutive intersections．It will generally be composed of more than one line segnent．

Gegoraphic Codas

The Code assigned to each CCS Is the Standard Geographlical Classification (SCC) code (see Section 5.1) of one of its component CSDs, usually the one with the largest land area.

6.2 Data Gually Statament

The 1991 CCS Digltal Boundary File was created by aggregating CSD polypons in the 1991 CSD Didital Boundary Fle as described in Section 2.6 General Methodolocy. The user should review the Data Qually Statement for the 1991 CSD and EA Digital Boundary Files (Section 3.2 and Secton 5) since the 1991 CSD Digital Boundary File was created by engregating component EAs. The quatity of these flles has a direct umplication on the derived CCS Digital Boundary Fie, and the uses and conslderations diascribed therein will also apply to the CCSs.

The particuler geography hlerarctry involved in the aggregation is:
EA -> CSD and then CSD -> CCS -> CD -> PR/TERR -> CANADA

6.2.1 CCSs compriaing more than one parl (polygon)

The concept of a CCS is a grouping of small CSDs within a containing CSD, created for the corwerience and ease of geographic referencing. In general, CCSs should be a contiguous geographle area, however, 25 CCSs comprise two or more non-contlguous parts. A complete list is prowided in Appendlx E. Twenty-ithree of the $\mathbf{2 5}$ CCSs are noncontiguous because a component CSD comprises more than one part, with one part being non-contiguous from the larger containing CSD.

The remaining two CCSs (2462912 and 2462920) were delineated tollowing the explick defineation niles, resuling with the non-conilguous parts. The nules will be reviewed and the 2 CCSs will be corrected for the 1996 Census.

Supplement 1 to this User Guide provides axamples of geographic units in multiple parts.

Q.22 Other Conaiderations

The COS Digltal Boundary File has been creeted by linking CSO codes in the CSD Digital Boundary file to thetr corresponding CCS code on the Geographic Atribute Deta Base. Thus errors in the CCS Digital Boundery Flies may occur If there are geographic code linkege errors on the Geographic Attributia Data Base.

Supplement 2 to the Digltal Boundery Fille User Gukde contains a list of all the errors on the Geographic Altribute Data Base that have been identified up to the time of the release of thls User Guide. The Supplement Indicates the eironeous limkages, as well as showing if the error has been corrected on the appropriate digital boundary file. It the efror has been corrected on the digital boundary file, there may be a discrepancy between the Digital Boundary File product as supplied by Statistics Canacta and a dightal boumdary file that a user may create by doing his/her own aggregation by inding the EA code through a digital product created from the Geographic Attribute Data Base. The user should consult the Data Quality Statement of the linkage file used for any aggregations.

6.3 Technicpl Specifications

The 1991 CCS Digital Boundary Flies are in ARC/INFO ${ }^{\circ}$ EXPOFT format. They were created using the following ARC commands:

EXPORT COVER nm_CCS01 nm_CCSOt.E00
where $\mathrm{n} M \mathrm{~m}$ is the abbreviation to represent the level of coverage created.
nNT = NAT for the Cenada coverage, or $\mathrm{mm}=$ the 3 or 4 character abbreviation for each of the province or teritiories (NFDD, PE, NS, NB, OUE, ONT, MAN, SASK, ALTA, BC, YUK, NNT) as demonstrated by the following examples:

EXPORT COVER NAT_CCS91 NAT_CCSO1.E00
Fle
EXPORT COVER MAN_CCSO1 MAN_CCS91.E00 for the Manltoba CCS Digital Boundary Fille

The ARC/INFO ${ }^{\bullet}$ coverage can be restored using the following commands:

LINPOFT COVER AMn_CCS91.E00 Lsemame

Where usemame is the name selected by the user.
INEO Tebles:
The exectition of the commands outlined in the previous section will result in the creation of a coverage called username and the following INFO table:

DATAFILE NAME: usemame.PAT
5 ITEMS: STARTNG IN POSITION 1

COL	ITEM NAME	WDTH	OPUT	TYP	N.D
1	AREA	4	12	F	3
5	PERIMETER	4	12	F	3
9	username*	4	5	B	0
13	usernemeld	4	5	B	0
17	ccs	7	7	1	-
	** REDEFINED TEMS **				
17	PROV	2	2	1	-

A description of tils table follows:
Item Description
Polygon Attribute Table

AREA	of the polygon - maintalned by ARC/INFO*
PERAMETER	of the polygon - maintained by ARC/INFO

7. 1991 CENSUS DIVISION (CD) DIGITAL BOUNDARY FILE

7.1 Content

The 1991 CD Dloltal Boundery Fine contalns 296 polygons representing 290 census divisions (CDs) which corresponds to the national coverage. Of these, $\mathbf{5 C D s}$ have more than one polygon. (See list in Appendlx F.)

A breakdown of the number of CDs by province/teritory, the number of polygons per CD , and other relevaint wiformation regarding the content of the file is aiver below:

Frowntes TERRIIDFY			MANBR GF HD HITH WORE THAM DNE POLYEOH		$\begin{array}{r} \text { TQTA } \\ \text { Ntirgen } \\ \text { Or Ancs } \end{array}$	Disesk smoners (BTMES) AFENMFO Expert files
Nevfouncland	10	10	0	13,248	这	457,000
Pinow Ediutud talayd	3	3	0	420	10	78,000
Kowa Spofl	1*	19	1	4,001	56	193,000
	15	15	0	6,778	57	243,000
Quobec	99	108	3	30,254	347	1,260,000
Ontorio	49	49	0	18, EOF	167	843,000
Monvioba	3	24	1	10,724	90	398,000
	18	18	0	7,14\%	44	285,000
Aberta	19	19	0	18,555	81	619,000
Britioh Columbla	38	30	0	34,290	139	1,006,000
Yukon Teribory	1	1	0	1,947	0	1180000
Nortimuett Tenftorios	5	5	0	18,818	57	818,000
canan	200	2	5	145.30	1,904	

${ }^{1}$ All features in the Digital Boundary Files are represented by a series of x, y coordinates (points). A line gegment joins two consecutive points.
${ }^{2}$ An arc is a line between two consecutive intersections. It will generally be composed of more than one line segment.

Statistics Canada

Geographlc Codes

The 290 COs across Canada are undquely Identified by the first 4 digits of the Standand Geographlcal Classlication (SGC) code (See Section 5.1 for a complete description of the SGC). These 4 diglts provide unique identicication of CDs, and reflect ithe ilerarchical relationship that CDs agoregate to a province or teritiony. The 4 -dight code is described by:

PR/TERR	$C D$
$\mathbf{x X}$	XX 2 dignts
2 digns	

7.2 Data Cuality Statoment

The 1991 CD Digital Eloundery File was crasted by aggregating CSD polygons in the 1991 CSD Dlgital Boundeny Fie as described in Section 2.6 General Mefhodoloay. The user should review the Data Cually Statement for the 1991 CSD and EA Digital Boundary Fles (Section 3.2 and Section 5) since the quality of these files has a direct implicatlon on the derived CD Digital Bounclary Flie, and the uses and considerations described thereln will also apply to the CDs.

The particular aggregations involved are:
EA -> CSO and then CSD -> CD -> PR/TERR -> CANADA

7.2.1 CDs comprising more then one part (polygent)

Five CDs have more than one polygon. In general this occurs because the componert CSDs comprise more than one part or by a discontinuity caused by a water body. Appendlx F proviles a list of the $5 \mathrm{CD}_{3}$. Supplement 1 prowides examples of ceograpitc units in multiple parts.

7.22 Other contalderaikont

The CD Digital Boundary File was created by linking CSD codes in the CSD Digital Boundary files to their corresponding CD code on the Geographic Autibute Data Base.

Thus errors in the CD Digtal Boundary Files may occur if there are geographic code linkage errors on the Geographic Atulbule Data Base.

Supplement 2 to the Digital Boundery Fine User Guide contains a list of all the emors on the Geographic Atribute Data Base that have been Idertifled up to the time of the release of this User Gulde. The Supplememt indicates the erroneous linkages, as well as showing if the error has been corrected on the appropriate digtad boundary fle. If the ofror has been corrected on the dlgital boundery flle, there may be a discrepancy between the Dipital Boundary Flie product as suppled by Statstics Canada and a dightal boundary file thet a user may create by dolng his/her own aggregation by linking the EA code through a digtal product crasted from the Gecgraphic Aftitbite Data Base. The user should consult the Data Qualily Statement of the llinkage flle used for any aggregations.

7.3 Tectuical Specilications

The 1991 CD Diglal Boundary Flies are in ARC/INFO* EXPORT format. They were created using the following ARC commands:

EXPORT COVER mA_CDO1 nnn_CD91.E00
where mm is the abbreviation to represent the level of coverage created.
nNT = NAT for the Canada coverage, or nan $=$ the 3 or 4 character abbrevation for each of the province or territorles (NFLD, PEI, NS, NB, QUE, ONT, MAN, SASK, ALTA, BC, YUK, NWT) ts demonstrated by the following examples:

```
EXPORT COVER NAT_CD91 NAT_CDA1.E00 for the Canada CD Dlghta& Boundary Fito
EXPORT COVER MAN_CD91 MAN_CDO1.E00 for the Manitoba CD Dightal Boundary Fing
```

The ARC/INFO' coverage can be restored using the following commends:
IMPORT COVER mn_CD91.E00 csememe
Where usamame is the name selected by the user.

NFO Tables:

The execution of the commends oudined in the prevlous section will resubl in the creation of a coverage called username and the following INFO table:

DATAFILE NAME: usemrame.PAT
5 ITEMS: STARTING IN POSITON 1

COL	TEEM MANE	WDTH	OPUT	TYP	N.DEC ALTERNATE NAME
1	AREA	4	12	F	3
5	PERIMETER	4	12	F	3
9	usernameg	4	5	B	0
13	usermumeld	4	5	B	0
17	CD	4	4	I	-
	** FEEDEFINE	ITEMS	**		
17	PROV	2	2	I	-

A description of this table follows:
Item Description
Polvion Antribute Table
AREA of the polygon - meintalned by ARC/NFO ${ }^{\circ}$
PEPAMETER of the polygon - matriained by ARC/INFO
usemame: maintalned by ARC/INFO* for internal processing
usernametD maintained by ARC/INFO ${ }^{\circ}$ for intemal processing
4 -dight code identifying the CD; the first 2 digits are the PR/TERR code, the last 2 diglts are the CD code

PROV the PR/TERR code (the first 2 digits in columms 17-18 of the 4-digin CD code) can be accessed with thls item name PROV

9. 1991 LPBBAN AREA (UA) DIGITAL BOUNDARY FILE

6.1 Content

The 1991 UA Dlgital Boundary Fite contalns 929 polygons represerting 893 UAs which corresponds to the national coveraga. Of these, 16 UAs have more thian one polygon. (See list in Appendio G.)

A breakdown of the number of UAs by province/tertitory, the number of polygons per UA, and other relevant information regarding the content and storage requirements of the file are given below.

Prownce TEHATTONY	$\begin{aligned} & \text { Mumber } \\ & \text { OF that } \end{aligned}$	Munter OF POLYCON	Aminer OF UA\$ WITH MONE THAN ONE POLYCOM	TOTAL Mumen OF UNR secments	$\begin{aligned} & \text { Torial } \\ & \text { or ances } \end{aligned}$	DHSK stonact (BYTES) ARCAMFO Export nim
Nowfoundend	42	43	1	4,069	43	227,000
Prince Elward latind	7	7	0	667	7	104,000
Nowa Scotia	33	38	0	5,438	41	239,000
Nomm Crunambek	38^{*}	38	1	5,659	48	245,000
Cueber	273"	24\%	2	18,897	27	730000
Onturio	248*	248	2	21,489	205	817,000
Manhoba	42*	42	0	1,947	45	140,000
Saikathowen	60*	09	0	2,432	71	167,000
Nbowt	9\%	100	1	5,000	102	277,000
Britimh Columblat	02	98	4	12,000	106	482,000
Yukon Tamitory	1	1	0	560	2	79,009
Northwest Teritarios	4	4	0	1,018	5	03000
cantoa	meg	边	16	132.611	1,107	4,200,000

* Urtan areas croesing provincial llmits are courted In both prowinces.

[^1]Fine UAs straddle provinclad boundaries. They are:

```
0122 Cempbemton (New Arwnswick-Quebec)
0365 Hawkesbury (Quabec-Onkario)
0616 Otawa-Hull (Onterlo-Ouebec)
0262 Fin-Flon (Manltoba-Saskatchewain)
0478 Loydminster (Saskatchewan-Alberta)
```

These five UAs are represented as 2 polygons each in the Canada UA Digital Boundary Fle, with one polypon in each of the two provinces.

Gromanhle Codes

UAs are uniqualy identifed across Canada by a 4 -digit code. This 4 -dight UA code may condein leading zeroes which form ten hitegred part of the code (they should not be replaced with blanks). For example, UA 0001 ks valid, UA 1 is not valld.

5.2 Data Cualky Statemem

The 1901 UA Digtal Boundary File was created by aggregating EA polyons in the 1991 EA Difital Boundary File as described In Section 3 General Methodology. The user should reviow the Data Qually Statement for the 1991 EA Digtal Boundery File (Section 3.2) since the qually of that file has a direct Implication on the derived UA Digital Boundary Flle, and the uses and considerations described therein will also apply to the UAAs.

The particular geography hlerarcty imolved in the aggregation is:

$$
E A->U A
$$

8.2.1 UAs comprising mone than one pert (polygon)

The five UAs which straddle provincial boundaries comprise 2 polygons in the Canada UA Digtat Boundary Flie (one polygon in each province). The user will need to "dissolve" (i.e. eliminate) the common boundary to a single polygon if required for these UAs. Provincial boundary files will contain only that part of the UA contalned in the province.

The 11 other UAs having more than one polygon are preserited In Appendix G, with explanaltons. Supplement 1 to this User Guide provides examples of peoprapthic units In mulitple parts.

6.2.2 Other Considerations

Snce UAs do not aggregate to provinces, territories or Canada boundarles, the UA Digizal Boundary File does not comtain the national or prowincial/territorlal boundaries, nor can these be derved from the UA boundary polygons.

8.3 Technical Spechications

The 1991 UA Dtgltal Boundary Fles are in ARC/INFO* EXPORT format. They were created using the following ARC commands:

where rmin ts the abbreviation to represent the levol of covernge created.
ninn = NAT for the Canada coverage, or nnm $=$ the 3 or 4 character abbreviation for each of the province or territorles (NFLD, PEI, NS, NB, CUE, ONT, MAN, SASK, ALTA, BC, YUK, NWT) es dernonstrated by the following examples:

Export COVER NAT_UA91 NAT_UAg1.E00 for the Canada UA Digital Boundary Fie EXPORT COVER MAN_U491 MAÑ_bA01.E00 for the Manitoba UA Digital Boundary File

The ARC/INFO* coverage can be restored using the following commands:
IMPORT COVER mm_UA91.E00 msemame
where usemame is the name selected by the user.

INEC Tables:

The executlon of the commends outined in the prevlous section will resulilin the creation of a coverage called username and the following INFO table:

DATAFILE NAME: wsemame.PAT
5 TEEMS: STARTING IN POSITION :

COL	ITEM NAME	WDTH	OPUT	TYP	N.dEC Alternate name
1	AREA	4	12	F	3
5	PERIMETEA	4	12	F	3
9	usernamef	4	5	8	0
13	usemmeld	4	5	B	0
17	PROV	2	2	1	-
19	UA	4	4	C	-
	** REDEFINED HEMS	**			
17	PROV_UA	6	6	I	-

A description of tils table follows:
Item Description
Polvoon Attribute Table
AREA of the polygon - maintalned by ARC/INFO*
PERAMETER of the polygon-maintalned by ARC/NFFO ${ }^{\circ}$ usemame* maintained by ARC/INFO* for Internal processing usememe-ID malintanned by ARC/INFO ${ }^{\circ}$ for Internal processing PROV the 2-diglt code identilying the prowince or teritiony UA the 4 character code idenilfying the UA

PROV_UA the PR code (the first 2 digits in columas $17-18$ is concatenated to the UA code to allow the uniqua idendification of the part of an UA within a single province)
9. 1991 PROVINCE/TERFITORY (PA/TERR) DVGITAL BOUNDAGY FLLE

9.1 Content

The 1991 PR/TERR Dlgital Boundary Fie contakns 14 polygons representing 12 provinces and teritories (PR/TERRs) which corresponds to the national coverage. Of these, two provinces have more than one polygon.

Some relevant informetion regarding the content and storage requirements of the file are given below.

PMONMCE Trimitrony	$\begin{aligned} & \text { Muncesp } \\ & \text { of } \\ & \text { pirterins } \end{aligned}$		TOTAL MXMER OF Lit getiments	$\begin{aligned} & \text { Total } \\ & \text { Munger } \\ & \text { of Ancs } \end{aligned}$	OHS stophase (EYTES) ARC/WFO Export
cavaba	12	41	53,290	149	1,844,000

Geopraphic Codes

Each province and teritory has hs own unique 2 ding code which form the first 2 characters of the Standard Geographical Classification code (see Section 5).

8.2 Dete Ouality Statement

The 1991 PR/TERR Digital Boundary File was created by aggregating EA polygons in the 1991 EA Digital Boundary File as described in Section 2.6 Generel Methodolocy. The user should review the Data Quallty Statement for the 1991 EA Dightal Boundary File (Section 3.2) since the qualliy of that fife has a drect Implication on the derived PR/TERA Dlgitai Boundary File, and the uses and considerations described thereln will elso apply to the PR/TERRS.

The particular geography hlerarchy Involved in the aggregation is:
EA -> PR/TERR -> CANADA
'All features in the Digital Boundary Files are represented by a series of x, y coordinates (points). A line egmant joins two consecutive points.
$z_{\text {An }}$ arc is a line between two consecutive intersections. It will generally be composed of more than one line segment.

0.2.1 PRe comprieing more than one part (polygon)

Nowa Scolia conslstst of two boundary polygons due to the separate digitizing of Seble Istand.

Ouebec atso appears as two polypons with the digitizing of thes de la Madeleine as a separate part

0.2.2 OAher Conalderstion:

9.3 Techndeal Specificationt

The 1991 PR/TERR Digital Boundary File is in ARC/INFO* EXPORT format. It was created using the following ARC commands:

EXPORT COVER NAT_PROVO1 NAT_PROVO1.E00

The ARC/NFFO* coverage can be restored using the following command:

where usemame is the name selected by the user.

INFO Tables:

The execution of the commends outioned in the previous section will result in the creation of a coverage called usemame and the following INFO table:

DATAFILE NANE: usemame.PAT 5 ITEMS: STARTING IN POSTION 1

COL TEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME

1	AREA	4	12	F	3
5	PEPIMETER	4	12	F	3
9	Lsermumey	4	5	8	0
13	username-ID	4	5	B	0
17	PR	2	2	I	-
	** REDEFN	17	**		
17	PROV	2	2	1	-

A description of this table follows:
Item Description Polycion Attribute Table

AREA of the polygen - maintalned by ARC/NNFO*
PERIMETER of the polygon - malntalned by ARC/INFO*
usemame* maintained by ARC/INFO* for Internal processing
usemame-lD
P月
meintalned by ARC/NFO* for internal processing
2-digh code the province or tentiony
PROV the PR code cen atso be accessed with the tem name PROV (for conslstency across all Digltal Boundary Flies, to enable common programming cods access)
10. 1991 CENSUS TRACT (CT) DIGTAL BOUWLOARY FILE

10.1 Comem

The 1991 CT Digital Boundary File contains 4076 polygons representing 4058 CTs which corresponds to the national coverage. Of these, elght CTs have more than one polygon. (See list in Appendix H .)

A breakdown of the number of CTs by province/teritory, the number of polygons por CT, and other relevant infornation regarding the content and storage requirements of the file are glven betow:

PROVINCE TEPRATOHY	$\begin{aligned} & \text { mungers } \\ & \text { of CTS } \end{aligned}$	$\begin{aligned} & \text { MMBER OF } \\ & \text { POLYeovis } \end{aligned}$	Mundef OF CTE WHH MOFEETMAN POLYEON	TOTM NUMBER OF LINE	$\begin{aligned} & \text { Toral } \\ & \text { mimper } \\ & \text { of Ancs } \end{aligned}$	OSXX STCFACPE (EYTES) ARCINFO* Expert inve
Nuwtoundiand	40	40	0	3,769	112	201,000
Prince Edward lalund	0	0	0	0	0	0
Nova Socte	75	75	0	8,834	212	\$10,000
New Brunawack	67	67	0	4,485	188	242,000
Duebec	1,052	1.054	2	28,580	2.931	1,678,000
Ontario	1,731	1,733	2	48,756	4,609	2,750,000
Manltobe	156	158	0	4,115	432	297,000
Saskatchowen	08	∞	1	3,489	281	234,000
Abenta	385	306	1	14,169	t,033	734,000
Britioh Cohmithela	464	488	2	18,100	1,28s	1033,000
Yukton Tertitory	0	0	0	0	0	0
Nortluweot Thatitoripy	0	0	0	0	0	0
cakada	4,060	4,078	t	131,842	11,114	

A more detalled list of CMAs and CAs showing the number of CTs whin each and other relevarat information is provkded in Appendix I.

[^2]CTs are created within CMAs or CAs which contaln a murnclpally (CSD) with a popudation of 50,000 or more ot the last census. The CT is also identified with any component PCMAs or PCAs it the CMA or CA is consolidated (CTs aggregate to PCMAs and/or PCAs, which in turn egrregate to the CMA or CA).

Groorabhic Codes

CTs are identlied by a 6 character numerical name of the form xocx.xx where x ts one digit. This form le referred to as the "CT name". These CT names are designed to be unique withln the PCMA or PCA containing the CT. If the CMA or CA does not have any component PCMAs or PCAs, the CT name is urique within the CMA or CA. For the 1991 census geographic structure, the CT names are unique within a CMA or CA regardless if it contalins PCMAs and/or PCAs. This undquenest may not remain in subsequent censuses as more PCMAs and PCAs are created.

In order to identily a CT uniquely within a province or across Canada, the relevant CMA or CA codes are provided whth the CT name in the CT Dipitel Boundary Files.

Leading zeroes in the 6 -character CT neme and in the 3 -dight CMA/CA code must be represemtited with a ' 0 ', and not left blank. For example, 040.00 is a valld CT name, 40.00 or 40 are not valid. Often, it the 2 decinas dights are 00, they may not be shown on Statistics Canada's reference maps, but they must be used when processing with digitel files which inchude the CT name.

CMAs and CAs are Identlfied uniqualy across Canada by a 3-dlgit code. Leading 2eroes must be specified (not replaced by blanks). Note that the first digit of the 3-dight character code is the second diglt of the PR/IERR code if the CMA or CA does not straddle a provincial or teritorial boundary (as in the case of the CMA of Ottawa-Hull which straddiles the Ontario/Quebec border).

The terms CT name and CT code are not aynonymous. The former is the numerical name (described abowe) that is used to identify CTs on maps and in data products, whereess the CT code is a four-dight numeric Identlfier used to access a CT on Statistics Canada's internal digtal fies. The CT name is used in the CT Digite Boundary Files (e-characters) with leading and traling zeroes specilied explictily.

10.2 Data Cuninty Statement

The 1991 CT Dlgital Boundary File was created by aggregating EA polygons in the 1991 EA Dlgital Boundary File as described in Section 2.6 Goneral Mofhodology. The user should review the Data Qually Statement for the 1991 EA Dlgital Boundary File (Section 3.2) since the qualliy of that flie hes a drect implication on the derived CT Digital Boundary File, and the uses and consklerations described therein will also apply to the CTs.

The particular geography hierarchy involved in the aggregation is:
EA -> CT -> CMA/CA

CTs are avallable for at 25 CMAs and for 14 of the 115 CAs.
CTs also aggregate to PCMAs and PCAs (EA -> PCMA/PCA -> CMA/CA) if the CMA/CA is consolidated whth component PCMAA and/or PCAs. However, nether PCMA or PCA boundaries are identified on the CT Digital Boundary File products.

10.2.1 CTe compriaing more than one part (polygon)

Elght CTs comprise more than one polygon. A complete list ls provided in Appendix H. Supplement 1 to this User Guide provides examples of how geographic units in mulipie parts occur in the digital boundary fies.

10.2.2 OAher Conalderations

- Since CTs (and CMA/CAs) do not apgregate to provinces, tentories or Canada boundarles, the provinctal, territorial or Canada boundaries are not Included in the 1991 CT Digital Boundary Fles, nor can they be derived from the CTs or CMA/CAS.
- The CT Digital Boundary File was created by linking EA codes In the EA Digital Boundary Flle to their correspondting CT numerical name on the Geographic Altrlbute Data Base. Thus errors in the CT Dtgital Boundary Flies may occur It there are geographic code linkage enrors on the Geographic Attribute Data Base.

Supplement 2 to the Digital Boundary Flie User Guide contains a list of all the errors on the Geographic Atribute Data Bese that have been Identified up to the time of the release of this User Guide. The Supplement Indicates the erroneous linkeges, ats well as showing y the error has been corrected on the appropriate digkel boundary file. If the error has. been corrected on the digltal boundary file, there may be a discrepancy between the Digltal Boundary File product as suppliad by Statistics Canada and a difitel boundary file that a user may create by doing hts/her own apgregation by linking the EA code through a digital product created from the Gecpraphic Attribute Data Base. The user should consult the Data Qually Statement of the linkege file used for any aggregations.

10.3 Technietin Spectications

The 1991 CT Digital Boundary Fliss are in ARC/INFO* EXPORT format. They were created using the following ARC commands:

EXPORT COVER CAnnn_CT91

Where nim is the abbreviation to represent the level of coverage created.
nWH = NAT for the Canada coverage, or rmm $=$ the 3 or 4 charscter abbreviation for each of the province or tertitorles (NFLD, PEI, NS, NB, QUE, ONT, MAN, SASK, ALTA, BC, YUK, NWT) or the 3-charecter CMA/CA code, as demonstrated by the following examples:

EXPORT COVER MAT CT91 NAT CT91.E00 for the Canada CT Dlgital Boumdany Fie EXPORT CONER MAN CT91 MANT CT01.E00 for the Manliobal CT Digital Boundary Fie EXPORT COVER CA706_CTO1 CA705_CT91 for the CT Digltal Boundary Fine for CA 705

The ARC/INFO ${ }^{+}$coverage can be restored using the following commands:

IMPORT COVER mn_CT91.E00 4 Semame

where usomame is the name selected by the user.

INFO Tables:

The execution of the commands outined in the previous secion will result in the creation of a coverage called username and the following INFO table:

DATAFILE NAME: usemame.PAT
5 ITEMS: STARTING IN POSITION 1
COL TEM NAME WDTH OPUT TYP N.DEC ALTERNATE NAME

1	AREA	4	12	F	3
5	PEFAMETER	4	12	F	3
9	usemame*	4	5	B	0
13	usemameld	4	5	B	0
17	CA	3	3	C	-
20	CT NAME	6	6	C	-
26	Proov	2	2	1	-
	** REDEFINED	ITEMS	**		
17	CA_CTNAME	9	9	C	-

A description of this table follows:
Hem Description
Polyogon Attribute Table
AREA of the polygon - maintalned by ARC/INFO ${ }^{\circ}$
PERIMEIER of the polygon - maintalned by ARC/LNFO*
usernamet malntained by ARC/INFO* tor intemal processing
usemmame-ID malntained by ARC/INFO* for Internal processing
CA 3 character CA or CMA code
CT NAME 6 character code for the CT numerical name form x coc.xx
PRÖV 2 diglt province code
CA_CTNAME the CA or CMA code is concatenated to the CT name to allow the unique idensilication of the CT within a province or Canada

11. GLOSSARY OF TERMS

Elock-Finct

The general concept of a block-tace ls one of a small, recognizable geographlcal unit to which census data can be associated. The goal is to approximate, through aggregation, user-defined query areas for census data extraction and tabuation. The block-face refers to one shde of a chty street, normally between consecutive intersectlons with streets or other physlcal teatures (such as creeks or ratiways).

Centinas Agglomeration (CA)

The general concept of a census agglomeration (CA) is one of a large urban erea, together wth adjacent urban and nural areas which have a high degree of economic and sociel integration whth that urban area.

A CA is delineoted around an urban area (called the umanized core and having a poputation of at least 10,000 , hased on the previous censuls). Once a CA attains an ubbenlzed core population of at least 100,000, based on the previous census, a becomes a census metropolkan area (CMA).

Consus Consolldated Subdivaions (CCS)

The concept of a census consolidated subdivision is a grouping of small centure subdivitione within a contalning census subdivislon, created for the corwenience and ease of geographlt referencing.

Census consolldated subdivistons are defined within cenaus divisions according to the following citterla:
(1) A census subdivision whth a net land arel greater than 25 square kilometres can form a CCS of has own.
(2) A census subdivision with a net land area greater than 25 square kilometres and surrounded on more than hall its perimeter by another census subdvision is usually inctuded as part of the CCS formed by the surrounding census subduision.
(3) Census subdivistons having a net land area smaler than 25 kilometres are usually grouped with a larger census subdivision.
(4) A census subdiviston with a population greater than 100,000 according to the last consus uskelly forms a CCS on its Own.
(5) The censuls consolldated subdivislon's name usually concides with its largest census subtiliviston component in terms of tand sarea.

Cenibus Division (CD)

Fiefers to the geneval term applying to geographic areas established by provincial law, which are intermedlate geographic areas between the censuas subdivision and the prowince (e.g. divisions, counties, regiontal districts, regional mundcipelities and seven other types of geographle ereas made up of groups of census subdivislons).

In Newloundland, Manitoba, Saskatchewan and Alberta, provincial law does not provide for these administraitve geopraphic areas. Therefore, census dvishons have been created by Statistics Canada in co-operation whth these provinces.

Consurs Matropoliten Area (CMA)

The general concept of a census metropolitan area (CMA) is one of a very large urban ared, together with adjacent urban and nural erwe which have a high degree of economle and soclal integration with that urban area.

A CMA ds dellneated around an ubsan area (celled the piganized core and haveng a population of at least $\mathbf{1 0 0 , 0 0 0}$, based on the previous census). Once an area becomes a CMA, in is retalned In the progrem even if its population subsequently decinnes.

Smaimer urban areas, centred on urbanized cores of a population of at least $\mathbf{1 0 , 0 0 0}$, are inchuded in the cenneps agglomeration (CA) program.

Census Subdivition (CSO)

fefers to the general term applying to muricipalitiles (as determined by provincian legislation) or their equivalent, e.g., Indlan reserves, indlan settlaments and unorganized territories.

In Newfoundland, Nova Scotia and British Columbla, the term also describes geographic areas that heve been created by Statistics Canada in coroperation with the provinces ats equivalents for mumicipalliles.

The type indicates the municipal status of a censue subdivislon. Census subdivisions (CSDs) are ctassified into various types, according to official destonations adopted by provinclal or federal authortiles.

Caness Tract (CT)

The general concept of a census tract (CI) is thet of a permanent, small urban nelghbourhoodilke or rural community-llike area established in large urban-centured regions with the help of local spectalists interested in ubban and sockal science research.

Census tracts are delineated joindly by a local commititee and Statistics Canada according to the following criteria:
(1) Whenever posslble, census tutat boundaries must follow permanent and easily recognizable phystical teatures.
(2) The popplation of a census tract must be between 2,500 and 8,000 , whe a preferred average of 4,000 persons, except for those census tracte in centural business districts, in other malor commerctal and industrial zones, or in perpheral nural or ulban areats that may have ether a lower or higher popdation.
(3) When first dellneated, or subsequently subdivided, census tracts must be as homogeneous as possible in terms of the economic status and social living conditions of their populations.
(4) Thelr shape must be as compact as possible.

All centins metropoltan areat (CMAs) and cenous agiomerations (CAs) in Canada cortalning a cansus subdivieion (CSD), i.e. municipatily, having a population of 50,000 or more部野 proubus_census, are eligible for a census tract proprem. Once a census metropolitan area or census agglomeration is added to the program, It is retained even if the population subsequently decreases below $\mathbf{5 0 , 0 0 0}$. CSDs alreedy whithin a tracted CMA do not qualliy for a separate CT program when they reach a poputation of 50,000 .

CMA/CA Compontern

Refers to the cenaus subdivisions (CSDs) which form the building blocks of a census motropollan erea (CMA), cemaus agolomeration (CA), promary centus metropelitisn area (PCIMA) or primary cenaus epplomeration (PCA).

CMA/CA Pants

The concept of CMA/CA parts distingulshes between central and peripheral triban and rurat areat within a cenalis metropolkan wete (CMA) or a census agplomeration (CA). There are three CMA/CA parts: uibenlzed core, urban fringe and rural fringe.

Urbantized core: A large urban area around which a CMA or a CA is dellneated. The urbarized core must have a population (based on the previous census) of at least 100,000 in the case of a CMA, or between 10,000 and 99,999 In the case of a CA.
Hrban frinog: An urban area within a CMA or CA, bett outside the urbenized core. Rurd fithoe: Al territory within a CMA or CA lying outskle ubten areas.

Electronle Shelf

This is a new data service for the 1991 Census. For some products, geographlc detall not included in the published program will be avallable.

Users are able to select Individual tables in ether print or electronic format in a variefy of commonly used commerctas software data formats.

Enumeration Area (EA)

An enumeration area (EA) is the geographic area canvassed by one census representalive.

Federal Electoral District (FED)

A federal electoral district refers to any place or teritorlal area enitiled to retum a member to serve in the House of Commons (source: Canada Elections Act, 1990). There are 296 FEDs in Canada according to the 1987 Representation Order.

Federal electoral districts are defined according to the following criteria:
(1) the legel Imits and descriptions are the responstbitity of the Chief Electoral Officer and are published In the Cantada Gazette;
(2) FED Mmits are usually revised every 10 years after the results of the decennad cerisus.

Gepcoding

Gaocoding refers to the technique that is used to geographically code and link census households to small geographical urits. This supports the retrieval service (commonly known as the geocoding service) by user-specilifed query areas.

Geographle Atribune Data Bace

The Geographlc Attribute Data Base (formefly called the Census Geographic Data Base or CGDB) is a set of data atirbute files maintained within Stetistics Canada and which provides (among other things) all the linkages withln the various geography himeralchles.

Map Projecilon

Lathude/Longltude

A system of measuring location on the surface of the eath which recognizes that the eerth is spharical.

The latitude measures the angle north or south of the equator from 0 degrees at the equator (nommally in degrees, murutes and seconds) to 90 degrees at the poiles. For the land mass of Cenada, the latiludes range from roughty 42 to 83 degrees noth.

Longitude corresponds to the angle (normally in degrees, minutes and seconds) wast of the prime meridian which rune through Grearwich, England. For the land mass of Canada, the longltude ranges from roughly 52 degrees to 141 degrees west.

Unkerse: Transyorse Mercator (UTM)
An internatlonelly standiurdized grid system which involves dividing the earth into 60 separate zones of six degrees of longitude each. Canada is divided into $1620 n e s$ beering numbers 7 to 22 from west to east. For the UTM, the Transverse Mercator projection is employed (GaussKnuger type).

West-east poshions (eastings) are measured from a separate point for each zone. Eastings are counted from the central meridian (called the 500,000 -metre line), those to the west of it having an easting value of less than 500,000 and those to the east of it having a value greater than 500,000 . Eastings are all greater than 0 and less then $1,000,000$.

South-north postions (nortinings) are deslignated by their distance in metres from the equator. Because Canada's southemmost pont is about 4,620,000 metres from the expator, all points in Canada have a northing value greater than $4,620,000$.

Lambert Conformal Conic Projection

A map projection which is widely used for mapping Canada on one sheet, since it provides good directonal and shape retathonships for mid-latitude regions having a mainty east-fo-west extent. Standard parallels th $45^{\circ} \mathrm{N}$ and 77 N are most commonly used, as well as a central meridian at $91^{\prime \prime} 572 \mathrm{~W}$.

Locations are spectied in easting and nothing co-ordinates in metres relative to a pre-defined origh.

Primary Cinaus Ampropolmen Area (PCMA) - Primery Conaus Agglomeration (PCA)

The primary census metropoiltan area (PCMA) or primary census agglomeration (PCA) concept recognizes the tact that adjacem cenalus metropositan areas (CMAA) and census apgiomertions (CAB) are soclally and economically litegrated within a larger consolkdated CMA Or CA.

Adjecent CMAs and CAs are consolideted who a single CMA or CA in the total commuting interchange between the two ks equal to 敞 least 35% of the employed labour force Ming in the smaller CMA or CA, based on the previous census. The original CMAs or CAs are known as PCMA or PCA subreglons of the CMA or CA.

Province

Refere to the major political division of Canada. From at statistical polrt of view, il is a basic unik for which data are tabulated and cross-classilited.

Provinciel Canous Tract (PCT)

The general concept of a provincial census tract (PCT) is that of a permanent, small, urban and/or nural nelghboumhood-like or comkmunity-like area outside those census metropolthen ereas (CMAs) and centuse agglonerations (CAs) having a consus tract (CT) program. Taken together. CTs and PCTs cover all of Canada.

Provinctal census tracts are delineated to encompass populetions between 3,000 and 8,000 , with a prefermed average of 5,000 . Boundarles, as much as posslble, follow permentent physical fastures.

Aural Aree

The general concept of a rural area is that of a sparsely popudated area.
Statistics Canada defines rural ereas as those areas of Canada lying outside urtenn aresa.

Standerd Geographices Claselficetion (SCC)

The Standand Geopraphical Claselifestion (SGC) is Statistics Canada's officiel classification of geographic areas in Catiada. The SGC provides unique numeric identificalion of three types of goographlc areas. These are:

- provinces and terillorles:
- census dvislons (CDs);
- census subdivisions (CSDs).

The three geographic areas are hierarchlcally retated. Census subdiwisions (CSOs) aggregate to census divislons (CDs), which in turn aggregate to a province or teritory. This relationship ts reflected In the sever-digit code:

Subprovincial Region (SPR)

Refers to a sutpprovinctal geographical unit smaller than a province (with the exceptlon of Prince Edward lstand and the Territories) made up of groupings of complete centaus divisions.

The subprovinclal regions were crealed in response to the requifement for a geographical unit sultable for the analysts of repional economic activty, Such a unik is small enough to permit reglonal enalysis, yet large enought to Inctude a sufficient mumber of respondents, such that, ather confildential deta ere suppressed, a broad range of statistics can still be released. The regions are based upor work by Camu, Weeks and Sametz in the 1960 s with minor ecjustments over the years to accommodate chenges in census division boundaries and the views of provinclal offictals.

Subprovinclal regions may be economic. administralive or planning repions. In some prowinces, these regions are designated by law. In other prowinces, the regions were created by agreement between Statistics Canada and the province or terfitorles concemed.

Territory

Refers to two major polilical divisions of Canada, ramely Yukon and Nortiwest Territories. From a statisticat polit of view, these territories are equivalent to provinces, le. a bask unit for which cata are tabulated and cross-ctasslifod.

Unincorporated Place (UP)

The concept of unincorporated place (UP) is that of a cluster of dwellinge (i.e. a settement) lacking legal Ilmins or tocal govemment.

A UP is defined as any chaster of five or more occupied dwellings in rural areas, locally known by a spectic name, but not having a local government or legal ilmits. A UP has the same Stenderd Geographicet Classtication (SGC) code as the censur aubdidetion (CSD) In which It is located. However, UPs are distinct from CSDs to that a UP has no legal status or limit.

Urban Area (UA)

The general concept of an urban ared (UA) is that of an area containing a dense concentration of popitation.

Statisticas Cenada defines an urban area as an area which has attalned a population concentration of at least 1,000 , and a population density of at least 400 per square kllometre, at the previous census. All teritiory tying outside urban areas is considered rural. Taken together, urtan and rural areas cover all of Canada.

Uitban areas separated by gaps of less than two kilometres are combined to form a single umban area.

12. SUPPLEMENTARY INFOPMATIOK

12.1 Aetated Geographic Producta and Servicen

The following is a summary of other geographle products and services available Irom Statistics Canada.
PEFERENCE MAPS: There are four types of Reference Maps avaliable:
Emumeration Area (EA) Maps are subdivided inko three teries: Large ufban centres (formerty G13 \& G13A); small uttan centres (formely G14 \& G16); and rural areas (formerly G12).

Consus Divishon (CD) and Census Subdivision (CSD) Mang stow boundarles for census divisions (aroes such as countles and regional districtis) and censuls subdivisions (such as citles and towns). Boundaries for Census Metropolltan Arses and Census Agglomerations are also shown.

Census hotropoltan Area (CMA), Census Angomeration (CA) and Census Tract (CT) Mars show the boundaries of CSDs, CMA/CA parts and CTs. Publications in the Census Tract Profile sefles contain corresponding maps for each tracted CMA or CA.

Federa_ Electoral District_(FED) Map ts a colour map showing the federal electoral disticts of Centada according to the 1987 Representation Order.

ENIMAERATION AREA REFERENCE USTS: This is a series of natlonal and regional products identifying the linkages between enwimeration aress (EAs) and standard geographlc areas. Through these Enumeration Area Reference Lists users can determine to which higher levels of geography EAs are Ilrked.

ECUNVALENT ENUMERATION AREAS, 1001 AND 1986: Thls publleation provides direct comparisons between 1991 and 1996 enimeration areas, with tables sorted by both 1991 and 1586 codes. As well, Indexes to equivalent groups of EAs are provided for 1991 and 1986.

GEOREF: This is a new diskette product designed for IBM compatible micro-computers. This product is based on the emumeration area (EA) and links EAs to hipher levets of Geography. Software is inctuded to allow users to display differem standard geographical areass and their retationship to other geographical areas. For example, for any standand geographlc area the component EAs can be listed. Or, vice-versa, for any enmmeration area its ilnkeape to other standard geopraphlcal areas can be shown. It also features 1991 population and dwelling counts, selected land areass, the EA representative point (ccentrold") as well es noting which census subdivisions (CSDs) are covered by the Street Network Flles (SNFs).

STREET NETWORK FILES (SNF): These computer filles provide the street network for most large urban centres in Canada. They indude streets, riil-road tracks and ofher features, as well as retevant Information such as street rames end address ranges. Street Network Files are used as the base for a user's geographic application software for mapping purposes or speclal applicalions such as transportation planning or delvery services. The user should be aware of the virtages of the individual Street Network Flies when considiering the particular appllication.

DIGITAL EOUNDARY FILES: Dlgital Boundary Files are avaltable for most levels of standard geograpty (from the enumeration area up to the province and tenttory). In comblnetion whth the user's eqpropriate software, these files provide the user with a spathal analyilcal tool for designing thelr own geographlical areas (by aggregating standard geographlcal areas), for mapoling, and for other data menlpulation operations and anelysts offered by the usor's software.

POSTAL CODE CONVERSION FILE (PCCFF: This computer file links the sbx character postal code whth standard 1991 Census geographical ereas (such as enumeration areas, municipalties (CSDs). census tracts, etc.) It also provides the $\{\mathrm{x}, \mathrm{y}\}$ coordinates for a point representing the location of the postal code to support mapping appilcations.

STPEET INDEX: This paper product is an ahphabetical listing of street and address ranges from the Sreet Network Files, linked to specticic standard goographicel areas. Three products will be avallable: (1) lunkuge to enumeration areas; (2) linkage to census divisions and census subdlvistons; and (3) linkage to census tracts. The Street Indexes will be avaliable as print-on-demand products by census metropolitan areas or cemsus agglomerations which are in the census tract progrem. Coverage in those areas is restricted to those component CSDs having Street Network Flles.

BLOCK-FACE DATA FiAE: The block-face is defined as one side of a street between two consecuitive intersectons in large ubtan centres. It is the smallest geographical unit avallable from Statistics Canteda. This computer file relates the block-tace to most standard levels of geography. Inciuded in the file are the block-kace representative point ("centrold"), the street names with coresponding address ranges, geographical ares codes, and the block-face 1991 population and dwelling counts.

GEOGRAPHY GUDE BOOK: In easy to understand language, this publication explains the applications of most of Statistics Canada's geographic areas and ithelr hierarchles. Five brief case studles show the reader what steps to follow in research stiustions, detine the geographle terms and describe related products and services avallable.

GEOCODNG SERVICE: This custom service allows users to define their own peographicel area of study for census data retrievels. This custom geography is produced from an aggregation at the blocktace level in large urban areas, and at the enumeration area level for small urban and rural areas.

CUSTOM SERVICE: It the standard geography products do not satisfy a user's need, the Custon Service may be able to produce the product as a special request. Examples include spectal data retrievals or merges using any of the gecgraphy computer flies (postal codes, aturibute flles, boundary flies and street network files), spectal populatlon complations using basic census collection reconds, and digitizing user-defined boundarles for a user's own computer software. Some custom mapping is avallable.

12.2 For Furtiver Informition

For further information on the Digital Boundary Fies or other geagraphic products and services avallable from Statistics Canada, conkact your nearest Reglonal Reference Centre. I you live outslde the iocal dialing area, call one of the toll tree numbers provided in the llst that follows:

Mewfoundland and Labredor
Statistlcs Canada
Advisory Services
and Floor
Viling Bulding
Crosble Road
St. John's, Newfoundiand A18 3 P2
Local calls: 709-722-4073
Toㅐ free: 1-600-563-4255
Fax: 1-709-772-6433
Martime Prowinces
Statistics Canada
Advisory Servicee
North American Lís Centre
3nd Floor
1770 Market Street
Halliax, Nowa Scotia
B3J 3M3
Local calls: 902-426-5331
Toll free: 1-800.565.7192
Fax; 1.902-426-9638
Ounbec
Statistics Cenada
Advisory Services
200 René-Levesqua Bivd. West
Guy-Favreas Complex
4th lloor, East Tower
Mortréal, Quebec
$\mathrm{H}_{2} \mathrm{Z}$ 1X4 $_{4}$
Local calls: 514-283-5725
Toll free: 1-800-361-2831
FaX: 1.514-283-9350
National Capital Fegion
Statistics Canada
Statistical Reference Centre
Lobby
R.H. Coats Bulkiling

Tunney's Pasture
Holland Avenus
Ottawa, Ontarlo
K1A OTS
Local calls: 613-951-8916
If outskde the locel calling area, clial the toll-iree number for your province.
Fax: 1-613-951-0581

Ontario
Statistles Canada
Advisory Services
104h Floor.
Anthur Matghen Buriding
25 St. Clair Avenue Eart
Toromto, Ontarlo
M4T 1MM
Local calls: 416-973-6506
Toll free: 1-800-269-1136
Fax:1-416-973-7475
Maritoba
Statlatics Canuda
Advisory Services
Suite 300
MacDonald Street
344 Edmontion Streot
WInvipeg. Manitoba
R3B 349
Local calls: 204-963-4020
Toll tree: 1.800-542-3404
Fax: 1-204-983-7543
Sarekatcheman
Stalistics Canada
Advisory Services
9th Foor
Avord Tower
2002 Victoria Avenue
Regrna, Saskatchewan
S4P 0 R 7
Local calls: 306-780-5405
Toll free: 1-800-667-7164
Fax: 1306-780-5403

Absita and Northwest Teritortes

Statistics Carada
Advisory Services
8th Floor
Park Square
10001 Bellamy Hill
Edmonton, Alberta
T5J 386
Local calls: 403-495-3027
Toll free: 1-800-282-3907
N.W.T.: Coll collect 1-403-485-3028

Fax: 1-403-495-3026

12.3 Additional Relermentand Services

In addition to the Reglonal Reference Centres and depository llbraries, Stalstics Canada publicalions may be ordered through your local bookstore or subscriptlon agent. Conlact the nearest Reglonal Reference Centre for a list of Canadian outlets avalable, or consuit the 1981 Census Catalogue (Catalogue No. 92-302E).

Secondary distibibutors offer data access and analytical support through a variery of consuining and computer-based services not avallable at Statistics Canada. The names and addresses of Ilcensed distrifutors may be obtained from any Reglonal Fieference Centre.

Statistics Caneda provides digttal geographic products which allow computer manipulation of geographlc data. A customized retrieval service is avallabie for users who wish to define their own geographic area of study. A varlety of data retrieval filles and sevices prowide flexibility in selecting a geographic base.

A complete description of avalable digital fles and services is documerted in the 1991 Censuls Cotalogue (Catalogue No. $92 \cdot 302 \mathrm{E}$).

Information concerting Census of agriculture products and services may be referenced in the 1991 Census of Agriculture Products and Services publication, Catalogue No. $92-303$, or by calling toll free 1-800-465-1991,

Users with speckal deta requirenents may requsest post-census survey services. Data are made available on mlerocomputer diskettes for use wth spreadsheet sotware, or on paper oufput. For additional information, please contect the nearest Regional Reference Centre.

The Dissemmanation Division is responslble for CANSIM, Statistics Canada's computerzed database network and information retrieval service. Users are provided with access to current and tistorical statistics in various forms including specialized data manipulation and analysts packages, graphics faclities and a bithlographic search service. For more information about CANSIM, cortact any Regonal Reference Ceritre.

Appendix A: Lambert Conformal Conic Projection Parametera

The Lambert Corformal Conic Profection is a map profection whleh is widely used for mapping Canada on one sheet, since it provides good directional and shape relationships for mid-atitude reglons having a maindy east-to-west extent. Standand persilels at 49 N and 77 N are most commonty used, as well as a central meridian at $91^{-5} 52^{\prime} \mathrm{W}$.

Locations are specified in easting and northing co-ordinates in metres relative to a predefined orlgin.

The specific parameters are:

$49^{\circ} \mathrm{N}$	- latitude of lower standard paramel
$77^{\circ} \mathrm{N}$	- latitude of upper standard paraliel
91* $52^{\prime} \mathrm{W}$	- Central Meridian
$63^{6} 23^{26.43 ' N}$	- latitude of profection's origin
6,200,000	- false northing (maters)
3,000,000	- false easting (meters)

Appendix B: EAE not comppatible whith Street Network Fles

The following list represents approximately 200 EAs whose bounderies are not compatible with those that appear In the Street Network Fles (SNF). This is due to mussing non-physical (or nor-vislble) features in the SNF upon the creation of the DEF. While the DBF incorporates these features, they will only appear in a future edition of the SNF (reler to Section 3.2 for detalis). The list is sorted by PR/FED/EA code.

This list was compiled from internal documents. Athrough every effort was made to ensure correctness, errors in transcription and key entry may have occurred.

STPEET METWOMK FILE	EA	STNEET WETWOPMK FILE	EA
Morction	13000010,025	Port Colborne	35019103.113
Moncton	13008204,206	Etopbiothe	35029413,416
Saint John	13010157,200,213	Etobicolep	35024357,369
Salit John	13010207,212	Fockdend	35025314,315
		Gumiph	35025211,284
Montreal	24002453,43\%	Guelph	
Menmeal	24003219,221	Guatph	35020315,323
Miontreal	24003219,274	1 Ingatom	35037453,440
Mtomtreal	24003317,318	London	35045416,4.22,423
Montreni	24003960,382	Toronto	35046404,417
Mortroct	2400ss 64,370	Mortham	35046460,462
Montreal	24003309,370	Wiesiessguas	\$56040002,004
Chutupary	240132\%	Noppen	35050052,077
Gotinear	24015057,059	Nepoten	36080113,184
Charlatherum	24016107, 100	Prolkwing	35056281,335,336
Charmbroum	24016204,206,206	Prevering	35056401,403
Chariestoung	24019255,257	Prowering	35056403,413
chwooutimi	24019812,213	Ottewe	35059122,124
Chlooutimi	24019292,203	Otawi	35050052,057
Leval	24021110,112	Cuma	35061154,157
Aypimir	24024001,002	Teroniop	35065704
Montreel	24009211,212	Torbino	35089707.801
Monimeal	24020356,357	St-Cutherint	35070105,35060367
Oumber	24031311,313	Smand	35072151,159
St-Jorome	24034107,171	Samim	\$5072151,152
Level	24038215,502,303	Somborruigh	35074205,215
Luwa	24036311,351,383	Thunder Bay	35094018
St-N60hatas	24038311,312	Voughan	35006270,280
Swfoy	2404t15\%,169		
St-Foy	24041313,352,359,354	Wirripeg	46012110
Miontreas	24046002.011	Winnipeg	46012113
Berupert	24040011,013		
Beuport	24940012,014	Calgary C	40003858,585
Dollard-des-Ormaux	24651162,166	Caljary C	480098484,45
\$t-Rapheel	24051300,369	Culpary 6	4800400,413,414
Montreat	24082160,305	Calpary C	46000316317
Montreal	24062254,207	Edmontor Eat	48010411
Montrael	24058201,561		
Montrel	24085512.560	Vanoundr C	50001118,151
Shertorocke	2405016,022,023	Detta	59005007,02\%
Lehine	24071159,160,171	Cupa Sut B	80006405,406
Viudireulis	24073152, 171	Motetip	58000165, 172,173,174
Mormiresh	24075108,107,120,121	North Vancouver North Vencoury	500161 限, 188 50010258,284
Mathentir	35009162,179	Contind Sentioh	50024267,274
Oftowa	35010009,070	Surty North	56026461,462,464
Ouawa	35010018,075	Sumey	58027215
North York	35074068,212	Vancouver E	50009703,712

16\％1 En	Nuniner of Parto （petyranit		Is tue EA contined in the Strent liatwork File covtrage？
10007206	2	1001542	NO
12004017	4	1217020	NO
13401262	2	1308018	10
13004110	2	1305033	0
24004016	2	2472802	10
24080008	2	243c90	NO
24039112	2	24800ct	YES
24039457	2	2456030	YES
240411家	2	2423000	YES
24042209	2	2497010	10
24071307	7	2484015	YES
35001011	2	3551018	NO
35001280	2	3557017	NO
36016329	2	35180027	YES
35095019	15	3501007	MO
3×02010	3	3501007	1 NO
30005013	8	3500058	10
35035214	4	\＄560005	10
35035189	7	\＄56002	10
360xat06	2	3500090	10
Sctest28	2	3580095	NO
35035370	2	3580484	NO
35035403	3	3500008	NO
34003405	3	35600：5	10
35038411	5	3560075	0
3503\％415	3	家敞6077	10
$3003: 418$	2	3560097	NO
350950021	3	38 c	N0
36043420	2		YE8
30064004	2	3549073	NO
35000014	5	3543070	10
35060915	2	3543050	0
300pue10	2	\＄543076	0
36040414	3	\＄543989	NO
46001210	2	4607060	NO
48002021	3	4610052	10
40002032	3	4319062	10
46000023	2	4319077	NO
4809×441	8	4930＊＊	10
400003316	2	4 coser 1	10
4900836	2	4801978	N0
40008970	2	4613056	NO
45001236	2	4712048	NO
4700141\％	2	4717024	10
47004424	2	4718022	10
47504460	2	4718824	10
47008974	2	47 tbeen	0
47011463	2	4705031	NO
－47013202	2	4718861	NO
47013256	3	4716048	10
48001258	2	闍17025	10
48001200	2	4191783	10

Appaminx C cominnued:

teg ea	Momber of Parts (polypones)	Secc oode for the 1801 EA	If the Pa contmined in the \$trent intivolk eqvercie?
40001260	2	4917831	140
46000051	2	4800018	VES
48015482	2	4811081	VES
46015532	2	4811051	YES
46023105	2	4807039	NO
50002323	2	5031012	NO
59015124	2	5929003	10
50019490	2	5007024	NO
Eprenoris	2	\$18063	VES
Efocasmo	2	[els0is	VES
Ectoesta3	2	Eerspo	YES
59029068	2	Stision	YES
90008070	2	6015083	YES
59020317	2	8915032	YES
59029898	2	5015002	YES
00001164	2	6001040	NO

Appendix D: CSDs comprising more than one polygon in ithe 1901 CSD Digital Boundary File

Peratistice Caneda

Appendix E: CCSs compriting more than one polypon in the 1991 CCS Diglith Boundery File

Prownuce	$\begin{aligned} & \text { ccs } \\ & \text { cope } \end{aligned}$	$\begin{aligned} & \text { munger } \\ & \text { Of PARTS } \end{aligned}$
Niow Cruntwick	1300006	4
Ouebec	2414902	2
	2443015	2
	2444075	2
	24*** $\mathbf{1 2}^{1}$	2
	24820920 ${ }^{1}$	2
	2470040	2
	2403908	2
	2490040	2
Ontario	3501012	18
	3529080	3
	3543060	3
	3547095	2
	3597074	2
	3888004	2
Manitobe	4801067	2
	4801094	2
	4818087	4
	40560¢0	3
	4818003	2
	4620055	2
Soeketctiowan	4700028	3
Alberta	4819049	2
Ertan Columble	[915003	2
	5\%17046	2

 part.
 nulte will be roviswed and the CCSe corrected for the 1990 Cencua.

Appendix F: CDe comprieing more than one polypon in the 1891 CD Dighal Bounctary File

Appendix ©: UAs compriaing more thin one polypon in the 1001 UA Digital Boundery File

The following table thate the UAE which comprise more than on polygon in the 1991 UA Digital Boundery Fie:

PRONINCE	UA cove	UA Matre	$\begin{aligned} & \text { munaes } \\ & \text { OF PARTS } \end{aligned}$	EXPLAHATIO:
Nowtourdiend	0247	Durwile	2	Boundery potypon to "pinched".
Now Brunswick	0582	Nowcesthe	2	Disoontinutity it cearesed by a witior body.
Cutber	0000	Maniwatd	4	${ }^{1}$ The applifotion of 1 me populution tivenaly crikerion to CSDis in multiplo porti.
	Of:	Proun-Normats	2	${ }^{1}$ The tapplicetion of the pepulation deneity erturion to CSO_{4} in mulipip parta.
Onterio	0347	Haileybury	2	Boundery polypen if "phached".
	0663	Porl MoNicoll	2	EA as 2 perta, ond being an lalati,
Aberta	1258	Stomy Plain	2	
Briwsh Columbia	0112	Crehe Croek	2	Bountay pelygion is "plophadr.
	0567	NWHat	2	${ }^{1}$ The upplioution of the population density cifterion to CSO parta.
	0681	Prinvoriton	2	Comporient EA in 2 perts.
	1091	Whathank	2	Boundery polypon is 'pinchedr.

 whim the provinee.

Now Brunawlek. Quobec	0122	Campbeliton
Ouabuc-Ontario	0365	Hewkestury
Ouabec-Cntario	0816	Outwe - Hilll
Manitoter Saskhthewan	cosp	Flin Fion
8maknohwwinAberta	0470	Uloydminstar

 for the 1898 Cintiont

Appendix H: CTs comprising more than one polygon in the 1991 CT Digital Boundery Filte

Panovince	CT Mame	Fande and oode of Cink or Ca	$\begin{aligned} & \text { MUNDER } \\ & \text { OF PARTS } \end{aligned}$	EPPLALTION
Cumbec	0101.00	Oudbec Cind (421)	2	Boundery polygon io "pinched".
	0510.00	Horrwoll CMA (462)	$k_{\text {f. }} \therefore \ddots^{2}$	A CSD boundery chenge epilt the CT.
Onterio	0101.00	Windeer (2	In trallity thin CTT in In one pert, howevir the merging od 2 Street Notwork Fulos ersated 2 polvgons: jolnted when poln.
	0001.00	Thunder Bay (505)	2	The smamer of the 2 parts is caused by an Incornect Indage on the Geopraphic Autributio Data Booe.
	0100.04	Amalint (ros)	2	In rewity that CT is in orne part, nowever the merging of 2 sernet Notwort Files craaterd 2 polypons polnod al one point.
Abenta	0001.04	Calpary	2	In fality this tT Is in one part. thowever the merging of 2 Stroek Network Fles at a UTM zone created 2 polygons poined at on point.
	0031.00	Venoount (23a)	2	Two Istands wimin the sarne CT were dialitized suparataly.
	0155.08	Wetoria (2	a copporate part of the Cl.

Appendfx l：Detalled information on the CT Diginal Boundary Fllet by CMA or CA

PROWHuct	CMANEA MAME	coce	$\begin{aligned} & \text { NUNBEX } \\ & \text { OF CT: } \end{aligned}$	RHMEER OF		$\begin{array}{r} \text { TOTAL } \\ \text { minger } \\ \text { of } \operatorname{AROCs} \end{array}$
NEWFOUNDLANO	St．John＇s（CMA4	001	40	40	3，768	112
HONA SCOTLA	Holitax（Cima）	205	75	75	6，634	212
NEW BRIUNSWMCK	Sum John（Cand）	310	44	44	3，235	124
	Mabretan（CA）	305	2 m	23	1，250	64
Quebec	Chlsoutimindonquinim（CMA）	408	35	35	1，009	98
	Montriad（Cima）	462	749	750	16，635	2，047
	Othwarlhal（CMAS）（exchudes O4nwa）	505	5	51		
	Outha（CAth）	421	152	159	6，735	442
	Stimitrooke（CMA）	433	31	31	1，205	d7
	Trots Piviores（CMM	442	34	34	1，007	$\otimes 8$
ONTAPIO	Erantiord（CA）	343	24	21	929	53
	Gutioh（CA）	550	21	21	69	57
	Hmmilton（even）	\＄37	163	163	4，285	427
	Kingeton（CA）	S21	35	35	1，379	98
	Kwehereer（cmul）	541	堵	起	2，346	230
	Lenden（CMU）	585	血	的	2，992	245
	North Bay（en）	575	20	20	1，415	57
	O－hamen（CMA）	532	4	$4{ }^{4}$	1，504	120
	Otami＋hil（CMM）（mathodes Hulir）	506	160	10\％		
	Poterborouph（c）	529	23	23	1，278	64
	Samin－Clawrwithr（CA）	562	24	24	054	68
	Sout Sta，Mmario（CA）	500	29	23	035	64
	9．Cutherthenenimpara（CMA）	539	89	89	3，742	234
－	Sudbury（CMA）	500	3t	38	2，204	102
	Thunder Bay（CMu）	505	30	31	4，033	島

Statistlcs Canada
Page 71

PMONWIEE	CMACA MANE	coos	$\begin{aligned} & \text { Munger } \\ & \text { OF CTH: } \end{aligned}$	mumaj OF DOLYEONS	TOTAL MUMEBE OF Live	$\begin{aligned} & \text { TOTAL } \\ & \text { OUNBEER } \\ & \text { Of Ancs } \end{aligned}$
	Torento（CMA）	535	812	812	10，440	2，433
	Wendeor（Cim）	5＊9	50	60	1，000	172
MANTTOAA	Whonipeg（Cum）	002	156	150	4，115	432
SASKATCHEWAN	Prolina（CMH）	705	4	50	1，980	128
	Saskawon（CMA）	725	4	49	1.508	133
ALBERTA	Calgay（Cata）	828	153	154	8，997	407
	Edmanton（CWA		105	195	\％，做	567
	Lentrikios（cal）	810	21	21	702	55
	Pod Deer（CA）	830	16	16	1，334	14
BRITISH	K＝1plotope（CA）	025	22	管	1，241	62
	Ketowne（CA）	915	20	\％ 8	2，800	72
	Malmpri（CA）	032	\％ 8	29	1，439	8
	Prinot ©eorpe（CA）	970	23	23	020	62
	Vencouver（CHA）	939	299	\＄00	盛7275	816
	Victoria（CM1）	935	6	48	2．B50	$1{ }^{\text {c }} 7$

SUPPLEMENT t :
Examples of geographic unite in multiple parts

This Supplement to the Digital Boundary File User Gulde is provided to depict examples of geographic units in multiple parts. Some examples are wustrations of some peneral occurrences, others are actual examples. The user stould be able to relate most geographic units in mutiple parts to one or more of these examplas.

This Supplement will not appear in electronic versions of the User Guide because of the Mustrations which cannot be represented in ASCll format.

1. EAa compriaine more than one part (polygon)

An EA can comprise more then one part (polygon) due to the manner in which It was delineated or dightized, or due to technical reasons:
a. Water Bodies: In general. \#an EA consists of a group of Istands, or part of the mainland and one or more islands, the EA boundary is drawn (and then digitized) with a line enclosing all of the componert parts. However, in some cases, one or more of the lstands and/or the maindand portion, were digitized sepanately. Other discontnumies may be caused by water bodies, as shown below. EA 005 is spllt by a water body.

b. Pinching: The structure of an EA may create 2 parts joined at a slingle point when the scale of the source map and the tolerances used mine computer software cause the polygon to be "pincherf" when 2 points very close together 'snap" to a slangle poirt as shown In the following two examples. In Street Network File areas, this occurs as a resuft of the digitan representation of the two sides of a street as a single lina.

c. EAs delineated in more than one part:

In the following illustration EA 001 comprises most of the area showt. EA 001 contains several smaller EAs within one of which cortains the second part of EA 001. EA 003 thas also been delineaxed In two parts (both contained in the larger EA 001). (This example depicts the situation with the real EA 48001258.)

d. Bhock-lace EAs: During the creation of EAs which comprised of one block-face within a Street Network File, a non-physical feature was added using one or more street intersections to enclose the required block-face. In some cases, this caused a surrounding EA to be split into two parts, as shown in the following 2 examples.

Example 1

EA 24039457 is an actual occurrence of Example 1.
EA 24039112 is an actual occurrence of Example 2.
e. Appending Street Network filer: In a very few cases, EA5 will appear as two polygons as the result of appending two contiguous Street Network Files. For example, the Catgary Street Network File was stored as two distinct fils, one for the UTM zone 11, the other for UTM zone 12. When the two files were appended, a gap occurred between 2 representations of the same feature (one in each lite) which had minor discrepancies in the x, y coordinate values. If an EA crosses that feature, it may appear as two polygons joined at one point, though in reality, it is only one polygon.

2. Other geographic units comprising more than one part

Other geographic units such as CTs. CSDs, etc. can comprise more than one part as a resil of componert EAs comprising more than one part. In addtion, the reasons cited previousty may spif the geographic units, even though the component EAs are not separated. Specific examples follow:
a PPinctringt; CT $\mathbf{1 0 1 . 0 0}$ (shaded) in the Quebec CMA (421)

b. Merging Files: In reality, these geographic unks consist of one part, but eppear as 2 polygons joired at a potrt as the result of appending 2 flies. When the two files wers appended, a gap occurred between 2 representations of the same feature (one in each file) which had minor discrepancies in the x, y coordinate values. If a geographic unit crosses that feature, it will appear as 2 polygons joined at one point. Two examples are given.

Example 1: CT 101.00 (shaded) in Windsor CMA (559)

Example 2: CT 001.04 (shaded) in Catgary CMA (825). The discrepancy occurs at the line between UTM zones 11 and 12 . In resily, CT 001.04 comprises only one part.

c. Wiater Bodles: Example of CT 251.00 (shaded) in Vancouver CMA (933)

The example shown below depicts CT 251.00 as two parts, each of which comprises an island which has been diglized separately.

Abstract

This Supplement to the Dightal Boundary File User Gulde contains a list of all the errors on the Geographic Atulbute Data Base that have been ldentlied up to the time of the release of this User Guide. The Supplement hidicates the erroneous linkages, as well as showing If the efror has been conrected on the appropriate digital boundary file. If the error has been corrected on the digikal boundary file, there may be a discrepancy between the Digltal Boundary File product as supplled by Statistics Canada and a digital bounctary file that a user may create by dolng his/her own aggregation by liniking the EA code through a digital product creeted from the Geographic Atribute Data Base. The user should consuft the Data Quelity Statement of the linkage file used for any aggregations.

The Geographlc Attribute Data Base (formerly called the "Census Geographic Data Base) comprises a serles of relational data bases which are linked to other census operational deta bases. In particular, the Geographlc Altribute Data Base defines the EA linkages to other standard geographles used for the creation of digital boundary files as well as for the agoregations of EA level census data. These data bases are "rrozen" at the time of the lirst release of the census data. Errors identified after that date cannot be corrected on the data bases whthout losing the Integity between the many inter-related data bases. Encors In the 1991 Census data that resutt from errors to the EA linkages are documented and released as "Errata" with the approprate census data publications.

This Supplement wiel be updated as further errors are identified. The effective dete is noted on each table. Users should contact their nearest Fiegional Reference Centre tor information on the latest update of thls Supplement.

TABLE 1: Erors in Linkeges Between EAs and CSDs as of Nowmber 4, 1992

PROM-FID-EA	5 SBC f(ACY-CDCSD) LIWCHE W CEOCRAPHIC ATTMENTE DATA日ats	$\begin{gathered} \text { COPRECT SGC } \\ \text { (fiov-CD-CSD } \\ \text { LIWCACE } \end{gathered}$	confectso ON DIGITAL BOUNDAY FILE	1901 CENsus DATA
				EA POPULATION
24-047-183	24-68-0935	24-60-025	YES	0
24047*184	24-80-055	24-0005	YES	$t 71$
24047-185	24-68-053	24-0.025	YES	0
24,047.209	24-40900	24-6e-055	YES	176
24-047-210	24-50-000	24-058	YES	19\%
24-047-211	24-68-060	24-50-0,59	VES	328
24047:212	24-0\%-080	24-68-055	YES	379
24047-213	24-65-060	2400-055	YES	\$47
35-017-413	35-20-014	35-20-008	YES	258
35-017-465	35-20-014	35-20-008	VES	245
38-017-48*	35-200014	35-20008	YES.	208
$48-010-272$	48-11-081	48.11.052	YES	0
P0000-360	5 15-043	59.15-063	YES	4
50024.165	59-17-045	50-17-947	YES	0
61-001-209	61-08-098	61-0\%-095	YES	0

TABLE 2: Ewrors in Linkerpes Botwoen EAB and CTs/PCTs at of November 4, 1892

FPDVAFED-EA	Lntrog on ELDERAPHic ATHREATE DATA BABE		Correct Lnumge		Connactiod on Owfind Boundery Fit	$\begin{aligned} & \text { 1 DE1 CENSUS } \\ & \text { DATA } \end{aligned}$
	$\begin{aligned} & \text { pCingren } \\ & \text { or } \\ & \text { cmich } \end{aligned}$	CT Atme	pCMupca or craca	CT Mant		EA POPHCATION
24085-127	402	510.00	482	415.01	YES	0
2406\% 12:	4. ${ }^{\text {b }}$	510.00	462	418.01	YES	0
30-013-274	538	280.03	535	263.01	YES	535
49-020-023	897	165.00	新 ${ }^{\text {\% }}$	185.00	VES	841
35-084-003	805	001.00	505	100.00	NO	

TABLE 3: ETrons in Linkigts Between EAs and CCSe as of Novamber 4, 1992

PRON-PED-En	PNON-CD-Ces いNNNE W CEOCRAPHC ATTRIUGTE DATA E48E	CORPECT PAON-CO-COS LNWAOE	COPROECTED CHOATTAL	10er CENBus D期
			FIFF	EA POPULATION
35-017-413	38-80-014	. 30-20008	VES	2489
35-017-485	35-20-014	35-20-008	VES	245
35-017-48\%	35-20-014	35-294009	YES	208
48-016-272	49-11-0*1	4-1140020	YES	0
81-001-200	51-0.008	61-08-097	VES	0

TABLE 4: Errort in Lindeges Betweon EAs and CDs ma of Mowember 4, 1902

PMON-FED-EA	PNON-CD LHKAGE IN GEOCRAPHIC ATIRIGNTE DATA Buse	COMAECT PMON-CD Limbare	COARECTED OM Dietich eoundany FIE	$\begin{aligned} & \text { sopi cescus } \\ & \text { DATA } \end{aligned}$
				EA POPULATION
61-001-080	61.09	81-08		0

[^0]: 4

 consituyed muristipelity boundarien. Sinop they were now required in onder to genaratio pomplate EA boundery poippons, line

[^1]: ${ }^{1}$ All features in the Digital Boundary Files are represented by a series of x, y coordinates (points). A line seguent joins two consecutive points.
 ${ }^{2}$ An are is a line between two consecutive intersections. It will generally be composed of wore than one line segment.

[^2]: ${ }^{1}$ All features in the Digital Boundary Files are represented by a series of x, y coordinates (points). A line aegrent joins two consectitive points.
 ${ }^{2}$ An arc is a line between two consecutive intersections. It will generally be conposed of more than one line segment.

