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Abstract

Debt strategy is defined as the manner in which a government finances an excess of government expenditures

over revenues and any maturing debt issued in previous periods. The author gives a thorough qualitative

description of the complexities of debt strategy analysis and then demonstrates that it is, in fact, a problem

in stochastic optimal control. Although this formal definition is conceptually useful, the author recom-

mends the use of simulation to help characterize the set of strategies that a government can use to fund

its borrowing requirements. He then describes in detail a stochastic simulation framework, building from

previous work in Bolder (2001, 2002); this framework forms one important element in the debt strategy

decision-making process employed by the Government of Canada. The primary objective in constructing

this stochastic simulation framework is to learn about the nature of the risk and cost trade-offs associated

with different financing strategies. To this end, the paper includes a detailed description of the model; a set

of possible debt cost and risk measures, including one potentially useful conditional risk measure; illustrative

results under normal stochastic conditions; an analysis of the sensitivity of the results to various key model

parameters; a novel approach to stress testing; and a possible framework for selecting a financing strategy,

given assumptions about government risk preferences.

JEL classification: C0, C15, C52, H63

Bank classification: Debt management; Econometric and statistical methods; Economic models
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Résumé

Cette étude en deux volets porte sur la stratégie de la dette, qui peut se définir comme la façon dont le

secteur public finance l’excédent de ses dépenses par rapport à ses recettes, ainsi que sur le remboursement

des dettes arrivant à échéance. Dans le premier volet, l’auteur fait ressortir la complexité de l’analyse de la

stratégie de la dette, puis il montre que ce type d’analyse est par définition un problème de contrôle optimal

stochastique. Puisqu’une telle définition n’est pas très utile en pratique, malgré les avantages qu’elle présente

sur le plan conceptuel, l’auteur recommande d’utiliser des simulations pour déterminer les caractéristiques

d’une stratégie globale de financement du secteur public. Dans le second volet, l’auteur reprend et expose

en détail un cadre de simulation stochastique proposé dans deux de ses études précédentes (Bolder, 2001

et 2002); ce cadre est un élément important du processus de décision associé à la stratégie de la dette du

gouvernement canadien. On trouve dans ce volet une description détaillée du modèle; un ensemble possible

de mesures des risques et des coûts (notamment la possibilité d’une mesure conditionelle des risques et des

coûts); des résultats, donnés à titre d’illustration, de calculs effectués dans des conditions stochastiques; une

analyse de sensibilité des résultats à divers paramètres; une nouvelle méthode d’essai sous contraintes et

enfin un cadre possible de choix d’une stratégie de financement, lequel est établi à la lumière de diverses

hypothèses sur les préférences en matière de risques.

Classification JEL : C0, C15, C52, H63

Classification de la Banque : Gestion de la dette; Méthodes économétriques et statistiques; Modèles économiques

viii



A Stochastic Simulation Framework for Debt Strategy

1 Introduction

Debt strategy is defined as the manner in which a government finances an excess of government expenditures

over revenues and any maturing debt issued in previous periods. The question concerns the best way for the

government to borrow these required funds. Should it, for example, use short-term debt, such as treasury

bills or longer-term coupon bonds? Interestingly, an extensive academic literature on this subject does not

exist. There are some exceptions. Missale (1994) studies the relevant aspects of debt management and

demonstrates, in economic terms, that the composition of a government’s debt portfolio actually matters

but, unfortunately, offers little practical advice for debt managers.1 Barro (1995) presents a tax-smoothing

model as the basis for optimal debt management. This academic work notwithstanding, our perspective is

more practical. Our analysis is based on the belief that a sustainable and prudent debt structure is critical for

any sovereign nation. Moreover, we take the government’s fiscal policy as given and attempt to characterize

the set of financing strategies that have desirable risk-cost characteristics. Indeed, our primary objective in

this work is to learn more about the nature of the risk and cost trade-offs associated with different financing

strategies. The practitioner literature relating to better understanding this issue is found in publications

from sovereign debt managers.2

Adopting this pragmatic perspective, we demonstrate that one can conceptualize the government’s bor-

rowing decision as an optimal-control problem in a stochastic setting. This problem has been extensively

studied in the asset-pricing setting where an investor attempts to optimally select the proportion of risky

and riskless assets that maximize their expected utility subject to appropriate wealth constraints (for ex-

ample, Karatzas and Shreve 1998). In our situation, the government is attempting to optimally select the

composition of its debt portfolio to minimize expected debt costs subject to risk and liquidity constraints.

This useful mathematical definition of government debt strategy will be formalized later in the paper. Given

practical complexities, however, it is not obvious how to use dynamic programming techniques to find a

solution. Instead, we rely on simulation. In this sense, we extend the preliminary work begun in Black and

Telmer (1999). We have also found that a simulation methodology termed dynamic financial analysis in the

actuarial science literature is relevant for this task. Insurers are often faced with the problem of trying to

set premiums and capital reserves, given stochastically evolving claims and investment returns. Structurally,

the techniques used in dynamic financial analysis are relevant for our work in debt strategy analysis.3

1Under certain conditions on tax payments, one can argue that the division of a government’s financing between taxation

and debt is irrelevant.
2Excellent references in this area include Hörngren (1999), Danish Nationalbank (1998), Holmlund (1999), Holmlund and

Lindberg (2002), Bergström and Holmlund (2000), Danmarks Nationalbank (2000, 2001), and the IMF and the World Bank

(2001).
3Specific references that have been constructive in our work include Kaufmann, Gadmer, and Klett (2001), Cumberworth

et al. (1999), and the Dynamic Financial Analysis Committee of the Casual Actuary Society (1999).
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A Stochastic Simulation Framework for Debt Strategy

Because our approach to debt strategy analysis involves stochastic simulation, our secondary objective

is to present the details of this simulation framework. Moreover, it is our view that management of the

government’s borrowing program is an important and difficult task requiring a combination of judgment

and comprehensive analytical tools. The debt strategy simulation framework suggested in this paper is

one such tool. This paper neither describes an optimal debt strategy for the government nor outlines the

Government of Canada’s current debt strategy. Instead, its focus is on the methodology of the proposed

simulation framework that is used to compare and contrast alternative financing strategies. The more

realistic and flexible the tool, the more successful we will be in achieving our primary objective of better

understanding the risk and cost trade-offs of different financing strategies. By placing a discussion of this

methodology in the public domain, we hope to engender debate and commentary from others about the

defensibility of our assumptions and approaches. This should help us to construct a more complete and

realistic model.

This paper is divided into three main sections. The first section describes the nature of the debt strategy

problem in both qualitative and quantitative terms, to introduce the various aspects of the government’s

borrowing program and provide a formal mathematical definition of the problem. We proceed, in the second

section, to describe in detail our simulation framework. This includes a brief discussion of the stochastic

environment constructed in Bolder (2001, 2002), an overview of how the issuance of debt is modelled over

time, and a formal presentation of a set of measures of cost and risk used to distinguish between various

financing strategies. In the third and final section, we examine some illustrative applications of our model

to characterize the risk and cost trade-off associated with a variety of alternative financing strategies. The

section includes an examination of results under stochastic conditions with our base parameterization, an

analysis of the sensitivity of the results to various key model parameters, a novel approach to stress testing,

and a comparison of a large number of possible financing strategies. These results assist in the formulation of

a suggested approach for selecting a financing strategy, given assumptions about government risk preferences.

2 Background

Before we can discuss our debt strategy model, it is important to understand the principal ideas involved in

the formulation of government debt strategy. This section describes the concept of debt strategy in a clear,

straightforward, and conversational manner while working from first principles.

2.1 The key issues

The idea behind debt strategy analysis is deceptively simple, but in fact subtle. It starts with some basic

ingredients and poses a question. These ingredients include an existing stock of debt denominated in a variety

2



A Stochastic Simulation Framework for Debt Strategy

of instruments (treasury bills, coupon bonds, real-return bonds, retail savings bonds, etc.) and a sequence of

financial requirements.4 Not surprisingly, this sequence of financial requirements is a forecast the reliability

of which decreases as we move further from the current point in time. Generally, this forecast continues

out over a five- to ten-year time horizon; given the nature of the budgetary process, we typically focus on

an annual frequency. By combining the forecast annual financial requirements with the associated annual

rollover or refinancing of the existing debt, we determine the annual borrowing requirement. Here, we begin

to see some of the complexity of the problem: the actual debt refinancing in future periods will depend on

the financing strategy employed in previous periods. For example, consider a two-year scenario, where the

first year’s financing requirement is funded entirely with either one-year treasury bills or 10-year coupon

bonds. The implications for debt issuance in the second year are quite different under these two financing

strategies. In particular, the one-year treasury-bill strategy requires all of the first year’s issuance to be

refinanced in the second year, whereas the 10-year coupon bond strategy does not. This is one indication of

how the time dimension adds complexity to the problem.

These basic ingredients in hand, the question is: how should the government finance this series of annual

borrowing requirements? Clearly, there are an infinite number of ways to accomplish this task. We need some

way to distinguish between various strategies for financing the sequence of borrowing requirements. One

obvious approach is to select a financing strategy that has the lowest cost for the government and, ultimately,

for the taxpayer.5 To compute the cost of a given financing strategy is nevertheless more complex than it

might initially appear, because the set of financial instruments used to meet the government’s financing

requirements are fixed-income securities and thus depend importantly on future interest rates. This is a

difficulty, given that we have no a priori knowledge of future interest rates. We now begin to see a second

element of complexity in this analysis. In particular, there is a continuum of future term structures of interest

rates taking an infinite number of possible future forms. Moreover, each of them has some positive probability

of occurrence. Fortunately, we can construct models of the term structure of interest rates that reflect some

of its more important empirical properties and are also consistent with some key financial relationships, such

as the absence of arbitrage opportunities. That is the good news. In fact, a previous work (Bolder 2001)

describes how the class of affine term-structure models can be applied to the debt strategy problem. The bad

news is that modelling the dynamics of the term structure of interest rates is a tricky business. One needs

to be cautious on the theoretical side as well as with the statistical analysis required to find parameters for

these models. The consequence is that Bolder (2001) is not the final word on this subject of interest rate

modelling, but rather a reasonable starting point.
4Of late, in many countries, including Canada, these requirements have been negative, implying a government surplus

position; deficits, of course, are also possible.
5We realize that we have not, as yet, formally defined the concept of a financing strategy, but we subsequently discuss it in

substantial detail.
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Some shortcomings are associated with assessing the desirability of a given financing strategy by focusing

on a single dimension of cost. As stated earlier, we do not know with certainty the future evolution of

the term structure of interest rates. As a consequence, we cannot make definitive statements about the

annual interest cost of a given financing strategy. At best, we can quantify—conditional on our model of the

term structure of interest rates—what we expect the cost of a given financing strategy to be over some time

interval. Essentially, this expected (or average) cost reflects our uncertainty regarding future time periods.

Uncertainty in government budgeting and planning, however, is also problematic. In fact, the stability of a

government’s ability to fund itself must be a critical consideration in any complete analysis of a financing

strategy. For example, we may be able to say that the expected cost of a given financing strategy is low;

as stated earlier, this is an obviously desirable characteristic.6 If, at the same time, we state that our

uncertainty about this expectation is high, then we must consider this financing strategy as being somehow

less desirable. How much less desirable is this financing strategy? The answer will depend, of course, on

how uncertain we are about our estimate of the cost and how this uncertainty compares with other financing

strategies. This discussion implies that in some future states of the world (which have a positive probability

of occurrence) the actual realized cost of that financing strategy will be much higher than what we expect

to occur on average. Thus, it is essential to consider the variance of our cost estimate when investigating a

potential financing strategy. Indeed, the concept of variance is often termed, in an operational sense, risk.

Therefore, a particular financing strategy is risky when its expected cost has a high degree of uncertainty

or, alternatively stated, a large variance. As a consequence, in our analysis we need to consider not only the

expected cost of a given financing strategy but also its risk.

To complicate matters further, there tends to be a tension between the expected cost of a financing

strategy and its risk, which stems from the basic underlying characteristics of the term structure of interest

rates. More specifically, we typically observe an upward-sloping term structure, which implies that, on

average, the annual cost of borrowing funds for a short period of time, say three months to two years, is less

expensive than borrowing for a longer period of time, such as 10 to 30 years. Unfortunately, the situation is,

for at least two reasons, somewhat more complex than it might appear. First, when one borrows funds for

a short period of time, those funds must be refinanced in the relatively near future. Second, the short end

of the term structure tends to be substantially more variable than the long end; in fact, there are occasions

when the term structure will flatten, or even invert, for extended periods of time. While the first point

is obvious, when combined with the second point it has important implications. Financing strategies that

involve substantial amounts of short-term borrowing will tend to be less expensive relative to longer-term

financing. But short-term funds require significantly more refinancing under potentially adverse conditions.
6Or perhaps it is not so obvious when considering the government as an infinitely lived organization. In this discussion, we

assume that variable debt charges are negative from the government’s perspective. For a more detailed economic argument as

to why this might be a reasonable working assumption, see Missale (1994).
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The consequence is greater cost uncertainty, or risk, associated with low-cost financing strategies. That is,

we should not expect to find many financing strategies that simultaneously reduce both expected cost and

risk. We do not fully understand the actual trade-off between cost and risk over a wide range of financing

strategies, but this study aims to develop a better understanding of this cost-risk relationship. If we can do

this, then we will be a step closer to an approach that involves finding the lowest expected cost for a given

level of risk. Even better, we might find that certain financing strategies dominate others in terms of both

cost and risk.

The randomness of the evolution of the term structure of interest rates is not the only random element

in this analysis. As stated earlier, one important component of the financing requirement relates to the

government’s surplus or deficit position. A crucial question is, how is this quantity determined? The govern-

ment’s annual financial operating plan, the budget, depends importantly on the government’s receipts and

its expenditures. The interaction of these two elements, taking into consideration any non-cash account-

ing transactions, determines the deficit or surplus position for a given year. While the government makes

detailed plans with respect to these receipts and expenditures, there remains a non-trivial amount of uncer-

tainty which, again, increases as we move further out in time. Indeed, it is an incredibly complex process.

We can, nevertheless, make several general statements. For instance, the government tax receipts depend

substantially on the state of the economy. In recessionary periods, tax receipts will tend to fall, while they

will typically rise during periods of strong economic growth. Government programs, which constitute the

bulk of the government’s expenditures, also exhibit a business-cyclical pattern. The bottom line is that the

government’s surplus position will depend, in some manner, on the general macroeconomic conditions pre-

vailing in the economy during that period. Again, as with interest rates, we do not have a priori knowledge of

future macroeconomic conditions. This introduces another source of uncertainty into our modelling exercise.

Moreover, we also know that the term structure of interest rates is not independent of the macroeconomy.

In particular, we empirically observe a steep term structure preceding periods of economic expansion and a

flatter, or even inverted, term structure prior to recessionary periods.7 Thus we should, in principle, observe

a link between the surplus position of the government, the evolution of the term structure of interest rates,

and the general macroeconomy. This matter is of particular importance given the long-term horizon of the

debt strategy problem, which correspondingly unfolds over multiple business cycles. The consequence is that

an approach is required to capture this additional element of uncertainty in our model. Bolder (2002) out-

lines a reduced-form model for the joint evolution of the term-structure of interest rates, the macroeconomic

business cycle, and the government’s financial position.

Using the models in Bolder (2001, 2002), the next step requires the computation of the average, or

expected, cost of a given financing strategy and the riskiness of this estimate. A measure of expected cost
7In short, the term structure actually serves as a good leading indicator of economic activity.
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and its associated risk is not necessarily sufficient to distinguish between various financing strategies, since

there is an additional dimension to the problem. To understand this, we need to consider the intertemporal

nature of our analysis. In fact, it is a careful consideration of the time dimension that suggests that measures

of cost and risk alone may not adequately describe the government’s exposure to some uncertain outcomes.

In particular, a government may not wish to engage in a disproportionate amount of financing in any given

period. Consider, for example, an admittedly simplistic, three-period financing strategy that requires a

government to borrow $10 billion in the first period, $30 billion in the second period, and $20 billion in

the final period. This might be considered inferior to a financing strategy of $20 billion each period. The

reason for the first strategy’s inferiority is the concentration of issuance in the second period. This lack

of time diversification could expose our issuing sovereign to poor borrowing conditions (i.e., high interest

rates) during this second period. Depending on the composition of the issuance in the second period, it

may additionally expose the government to substantial refinancing risk in future periods. One possible

measure to capture the time diversification of a given portfolio is the proportion of the total debt that

must be financed in the upcoming year. This measure can be proxied by the ratio of floating debt stock

to the total debt stock. Floating, in this context, means that part of the debt matures in the next twelve

months. Traditionally, the Canadian government has looked at a simple transformation of the floating debt

ratio termed the fixed-debt ratio. This measure provides some insight into the intertemporal debt issuance

trade-off, or time diversification, made by a given financing strategy.8

To this point, in addressing our question, we have reviewed the sources of uncertainty and three potential

measures for distinguishing between financial strategies: expected cost, risk, and time diversification. We

have not as yet discussed the financing strategies themselves, because a financing strategy can be quite

complicated. Complexity aside, financing strategies are of paramount importance; they represent the only

element of our analysis that is under the control of the debt manager. As a consequence, they demand

serious investigation. In its simplest form, a financing strategy indicates how much of the annual borrowing

requirement to allocate to a given debt instrument. For example, with an annual borrowing requirement of

$20 billion, one financing strategy might be 50 per cent in one-year treasury bills, 25 per cent in two-year

coupon bonds, and a final 25 per cent in 10-year coupon bonds. Another financing strategy might prescribe

the issuance of 33 per cent of the $20 billion, or $6.7 billion, in each of these three debt instruments. These

types of financing strategies are called predetermined, or deterministic, because they are simple rules, known

at the initial point in time, that do not require knowledge of future outcomes for their application. Of

course, more complicated potential financing strategies could be followed. In particular, one might look at

the term structure of interest rates in each period and use a specific value to create a decision rule. For

instance, one might decide to meet the annual borrowing requirement entirely with 3-month treasury bills
8This is by no means a perfect measure of refinancing risk, or what we have been calling time diversification. It is, nevertheless,

a reasonably intuitive concept, and thus serves as a good starting point.
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if the one-year zero-coupon rate is below 4 per cent, but use exclusively two-year coupon bonds otherwise.

This may seem a strange financing strategy but we have selected it to raise a point: we do not initially know

what this rule will imply in terms of specific issuance. Actual issuance will depend upon the evolution of a

random variable, the one-year zero-coupon rate. Thus, this is an example of a non-determinstic or stochastic

financing rule. This is the most interesting type of financing strategy, but also the most difficult to handle

in an analytical setting. It seems, therefore, that we have another entry for our checklist; in particular, we

need the necessary analytical machinery to consider a wide array of financing strategies. The difference in

difficulty between deterministic and stochastic financing strategies is such that we believe it makes sense to

enter them separately on our list. That is, it makes sense to work towards understanding financing strategies

of a deterministic nature first, and then progress towards the more complicated, stochastic strategies later

if that proves necessary.

Not all financing strategies are permissible. A permissible strategy typically has a technical mathematical

definition. For our purposes, it relates to a more general issue about the nature of financial markets. In

particular, we have suggested that virtually any combination of debt instruments is acceptable to meet the

government’s annual borrowing requirements. This is not strictly true. The complication arises because

there exists a large and active secondary market of government securities for a number of maturities across

the term structure of interest rates. To maintain the liquidity of this marketplace—which is in the issuer’s

financial interest—the government must continue to issue at each of these key maturities.9 This is not to

say that there is no flexibility in the set of financing strategies that we may examine, but rather that our

options are constrained by the desire to maintain liquid and well-functioning government security markets.

The greater the liquidity of the secondary Government of Canada markets, the larger the demand for these

securities and hence the lower the borrowing costs for the government. On a related note, the government

fixed-income markets serve as a benchmark for a host of provincial and corporate issuers. In this way, the

efficiency of the underlying government securities markets has implications for the entire financial market.

Additionally, both the implementation and transmission of monetary policy occur through financial markets.

Thus, to the extent that financial markets are liquid and well-functioning, monetary policy will tend to be

more efficient. The larger point is that we must not lose sight of the realities of the underlying financial and

economic variables that we are attempting to model.

There are two additional complicating factors. First, one cannot assume that the government’s bor-

rowing requirement is independent of the financing strategy. Government debt charges form a significant

component of the government’s annual expenditures. If the government engages in a relatively higher-cost,
9Liquidity, in this setting, is defined as the ability of a market participant to quickly buy or sell a security with minimal

transactions costs and impact on the price of the security. This idea is very well expressed in Bennett, Garbade, and Kambhu

(2000). In particular, they state in an analysis of the American situation that “maximizing liquidity in the Treasury market is

coincident with minimizing the Treasury’s long-term interest expense.”
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lower-variability financing strategy, then government expenditures will increase. That is, while the financial

requirements may be less volatile on average, they will tend to increase government expenditures relative

to revenues.10 Conversely, a financing strategy consisting of entirely short-term debt may increase the vari-

ability of government expenditures and hence the variability of the government’s financial requirements.

This previous statement, however, is not true in a general sense. We will address this in a moment. Any

reasonable simulation model will need to incorporate this feedback between the financing strategy and the

government’s financial requirements. The second complicating factor is also a form of feedback. Namely,

alterations in the government’s financing strategy will have implications for the cost of financing in each debt

instrument. As stated in the previous paragraph, the cost of issuing a given debt instrument depends largely

on the amount of that instrument currently outstanding (i.e., its liquidity). A financing strategy involving

minimal issuance in a given debt instrument will be relatively costly. Conversely, very large issuance in

a given sector will be difficult for the market to digest. There is, for example, only a limited appetite for

10-year Government of Canada coupon bonds. To place very large amounts of issuance in a given instrument

will imply higher costs for the government. In short, there is an issuance range for each maturity sector

that maximizes liquidity without creating a situation of oversupply. This issue is relevant to a sovereign

borrower, but need not typically be considered by a corporate entity. Ultimately, a corporate entity issues

in a sufficiently small size that it can be considered a price-taker in debt markets. The relatively large size

of issuance by sovereign borrowers implies that moderate alterations in financing strategy can influence the

relative rates at which they can borrow.11 Again, to facilitate a fair comparison between various financing

strategies, this relationship between financing strategy and the term structure of interest rates must be

explicitly modelled.

As stated earlier, debt-cost variability does not immediately translate into budgetary volatility. To see

this, we note that the government’s financial requirements can be represented in the following form,

Ft = ηt − st︸ ︷︷ ︸
Primary

balance

−ct, (1)

where,

ηt
4
= government tax revenues in period t,

st
4
= government spending in period t,

ct
4
= debt-service charges in period t.

10The result might be to put a government that is in a surplus position into a deficit, or to push a government already in a

deficit even further into deficit.
11Not all sovereigns currently find themselves in this situation. Australia, for example, currently has a very small debt-to-GDP

ratio, and may potentially exit debt markets altogether.
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Equation (1) is relatively straightforward to interpret. If program spending and debt-service costs exceed

tax revenues in a given period, then the government will be in a deficit position. This shortfall will have to

be met with borrowing. If tax revenues are in excess of government expenditures, the government will be in

a surplus position. The government is, quite understandably, concerned with keeping itself in a balanced-

budget position.12 That is not to say that deficits are undesirable, but rather that extended periods of

deficit financing cannot be sustained. The key concern, for a government with a net-debt position, is that

variability in debt-service costs will contribute to variability in the overall budget balance—excessive variance,

for example, can contribute to a vicious circle in the budgetary cycle. We can explicitly write the financial

position variance as,

var(Ft) = var(ηt − st) + var(ct)− 2cov(ηt − st, ct). (2)

An inspection of equation (2) reveals that while the debt-service cost volatility (var(ct)) contributes to the

variance of the government’s financial position, the covariance of the debt-service costs and the primary

balance is also quite important. In particular, if this covariance (cov(ηt− st, ct)) is sufficiently positive, then

it will act to dampen debt-service cost volatility.

The key question, therefore, relates to the sign and magnitude of the covariance term. Is this covariance

indeed positive? The answer is yes, in most circumstances, the covariance between the primary balance

and debt-service charges is positive. Consider an expansionary period, where the economy is growing above

capacity. In this case, tax revenues increase and program spending falls, contributing to a larger primary

balance. At the same time, the monetary authority will increase short-term interest rates, thereby leading to

higher debt-service costs.13 The result is positive co-movement between these two macroeconomic variables.

It also applies in the opposite direction. Easing of monetary conditions during recessionary periods will

contribute to lower debt charges as the primary balance falls due to weaker tax revenue and increased

program spending.

There are four main points to note about this relationship:

(i) Central banks typically tighten and ease monetary conditions in a gradual manner. Moreover,

monetary policy operates with a lag of 12 to 18 months and, as such, a monetary authority will

formulate and implement monetary policy on a forward-looking basis. The consequence is that

while there may be a positive primary balance and debt-service cost covariance, its magnitude may
12The fiscal objectives of a particular government may vary, of course, depending on their debt-to-GDP ratio. A government

that is a large net-debtor may, for example, attempt to maintain a surplus position over the medium term, to pay down their

debt stock.
13This is something of a simplification, because tightening, or easing, of monetary conditions does not impact each sector of

the term structure of interest rates in an equal fashion. Generally, particularly when inflationary expectations are anchored,

the short end of the term structure is more sensitive to changes in monetary policy.
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be relatively modest. Figure 1 demonstrates that, for sufficiently variable debt-service charges,

a fairly substantial degree of positive covariance is required to dampen out the volatility in the

government’s financial position.

(ii) The size of the covariance depends on the composition of the debt portfolio. If, for example,

the majority of the debt stock consists of long-term instruments then, its sensitivity to interest-

rate changes will be dramatically reduced. A debt stock entirely denominated in treasury bills,

conversely, will exhibit a greater degree of covariance.

(iii) The surplus-deficit position of the government also plays a role in this relationship. If the gov-

ernment is in a deficit position, all else being equal, the weight of debt-charge volatility will play

a more important role in the volatility of the government’s financial requirements.14 A surplus

position will have the opposite effect. Figure 1 illustrates this relationship for a balanced budget.

From a risk-management perspective, a debt manager should be concerned about the potential

for a deficit situation to erode the impact of positive covariance between debt charges and the

primary balance.

(iv) The most important point is that there are economic examples where this relationship clearly

does not always hold. In particular, if shocks to the economy arise from the supply side, then the

previously described relationship between primary balance and debt-service charges can reverse.

A supply-side shock—for example, a dramatic increase in oil prices—can be inflationary and lead

to weaker economic conditions. In this situation, the primary balance will deteriorate, but interest

rates will remain high.15 The resulting stagflation—which was experienced in the 1970s—can

have dramatic effects on the government’s financial position. Moreover, the shorter the maturity

structure of the debt portfolio, the worse the impact. Figure 1 reveals that negative covariance

can contribute to significant increases in the volatility of the government’s financial position. A

supply-side shock is not a high-probability event, but it can have dramatic effects if it does occur.

The consequence is that the relationship between the variance in the government’s financial position and

the financing strategy is more complex than it might at first appear.16 This analysis, however, does not

consider supply shocks. Furthermore, our stochastic environment is structured such that positive covariance
14To see this, recall that, for computational purposes, we actually rewrite equation (2) as,

var(Ft) = ω2
1var(ηt − st) + ω2

2var(ct)− 2ω1ω2cov(ηt − st, ct), (3)

where ω1 and ω2 represent the weights of the primary balance and government debt charges, respectively. Mathematically, a

government deficit implies that ω1 < ω2, while a government surplus implies the converse.
15Indeed, the monetary authority may even be forced to tighten monetary conditions to stave off inflationary pressures.
16I would like to thank Patrick Georges from the Department of Finance Canada for clarifying my thinking about this

important issue.
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between the primary balance and debt-service charges is evident. In future work, we wish to expand this to

consider a broader range of outcomes.

Figure 1: Financial Position Variance: This graph illustrates the variance of the government’s financial posi-

tion for a primary balance standard deviation of 10 per cent and four possible debt-service cost standard-deviation

values: 5 per cent, 15 per cent, 20 per cent, and 25 per cent. In each case, the primary balance and debt-service charge

correlation values range from -1 to 1. For the purposes of this computation, debt charges and the primary balance are

assumed to contribute equally (i.e., the budget is balanced) to the government’s financial position standard deviation.
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Therefore, while one might at first think that the government’s debt strategy is merely a question of

issuing debt at the lowest cost to cover its borrowing requirements, the situation is more complex. In

particular, the existing debt stock, the evolution of the term structure of interest rates, and the way in

which the macroeconomy affects these interest rates as well as government revenues and expenditures need

to be considered in depth. We also must be able to use these random inputs to consider a variety of different

financing strategies in terms of expected cost, risk, and time diversification. We must keep in mind the various

real-world restrictions imposed on us by the need to maintain liquid and well-functioning government debt

markets. It will be useful to keep these concepts in mind as we progress to the following sections of this

discussion. Indeed, our goal in this paper is to create a road map that can aid us in finding a solution to our
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original question. In doing so, we want to define debt strategy in both qualitative and quantitative terms.

To this point, we have discussed the problem in a qualitative sense; we will move to put the question on a

more mathematical basis. While the nature of our question is such that we cannot analytically solve this

problem, its formal mathematical definition provides substantial insights. We then abstract from our formal

mathematical definition and consider the structure of our simulation framework.

2.2 An optimal-control problem

Having discussed debt strategy in broad qualitative terms and reviewed some of the requisite motivation for

our analysis, we will attempt to put our problem on a mathematical footing. In its purest form, our question

falls into the class of stochastic optimal-control problems. Appendix A sets out a more thorough definition

of our problem, with the aim of developing some intuition for those who want more detail. The goal of this

section is not technical. Instead, it is intended to highlight the sources of difficulty that we will confront in

analyzing the problem.

Our problem, to paraphrase from section 2.1, is that we would like to minimize some measure of expected

financing costs over some time interval while simultaneously keeping the risk, or variance, of these costs under

control and maintaining a certain level of market liquidity. To formulate this in a mathematical sense, we

need to develop some notation for the various quantities that we discussed in section 2.1. For technical

reasons, we define a probability space, (Ω,F ,P), a filtration {Ft, t ≥ 0}, and a time interval, t ∈ [0, T ]. The

notation takes the form of the following definitions:

Ξ
4
= the stock of government debt at time 0,

θ ≡ θ(t) 4= financing strategy at time t,

Θ
4
= {the set of financing strategies that maintain market liquidity},

S ≡ S(t)
4
= the state of the economy,

r ≡ r(t, y1(t), ..., yn(t))
4
= instantaneous interest rate,

{y1(t), ..., yn(t)} 4= the sources of uncertainty driving the dynamics of r,

P ≡ P (t, T, S, r)
4
= bond price function,

F ≡ F (t, S, P )
4
= the government’s financial requirements (i.e., surplus/deficit position),

f ≡ f(t, F, θ,Ξ)
4
= the government’s borrowing requirement at a given instant in time,

c ≡ c(t, f,Ξ, P )
4
= the cost of servicing the debt.

While somewhat stylized, this set of definitions does capture the main points that must be considered in

the analysis. Let us put all these symbols into words. Specifically, we are assuming that the government’s
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borrowing requirements (F ) are a random function that depends upon time and the short rate of interest

(r). The bond price function (P ) is critical; it tells us how much it will cost to borrow money in each

debt instrument at each instant in time. The key assumption is that bond prices are a function of the

instantaneous short rate, which is itself a random function—depending on n state variables y1(t), ..., yn(t)

and the state of the macroeconomy (S)—sufficient to describe the entire term structure of interest rates. We

can see that the amount of financing at a given point in time (f) will depend upon the initial stock of debt

(Ξ), the financial requirements of the government up to that point in time (F ), the state of the economy (S),

and the financing strategy (θ). Finally, the debt servicing costs (c) will depend upon the initial stock of debt,

the financing that has occurred up to that point in time and, of course, the bond price function. In a general

dynamic programming setting, what one would like to do is find the financing strategy or, more formally,

the optimal control process from the set of permissible processes (Θ) that will minimize the cost of servicing

the debt. Formally, we can represent this problem in a manner that looks very similar to equation (57) in

Appendix A. Specifically,

min
θ(t)

E

[∫ T

0

c(t, f(θ(t)),Ξ, P ) dt

]
, (4)

subject to,

var

[∫ T

0

c(t, f(θ(t)),Ξ, P ) dt

]
≤ δ, (5)

with δ > 0, which is a risk contraint, and

θ(t) ∈ Θ, (6)

which is, of course, a liquidity constraint. For a more detailed, though still largely heuristic, discussion of

equation (4), see Appendix A. Stated another way, we are seeking a financing strategy (θ) that minimizes

the government’s expected debt charges (c) over some time interval ([0, T ]), subject to restrictions on the

amount of variance in these expected debt charges and maintenance of some minimum level of liquidity in

the government securities market. This is a problem in stochastic optimal control. That is, given a system

(our public debt) governed by random forces (interest rates, government financial requirements, and the

macroeconomy), we seek to find a control (financing strategy) that optimizes our variable of interest (debt

charges) over some time interval. Given the close correspondence to our qualitative definition of our debt

strategy problem, this represents a clean and intuitive way to conceptualize it.

The news, however, is not all good. Despite the fact that we can define the debt strategy question in

this straightforward manner, we cannot directly solve this problem in an analytical fashion. It does provide

us with a framework for thinking about the problem. In particular, it helps us understand where (and why)

we need to alter our analysis, from the theoretical case, to get at a potential solution. Although we cannot
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directly solve our problem, we may devise an approach for determining an approximate solution. Let us,

therefore, consider the specific reasons why we cannot solve this problem in its theoretical form. There are at

least three reasons. The first is that the definition of the problem assumes, by construction, that the surplus,

financing, and debt-charge processes are time-continuous. Often, we use continuous functions or processes

to approximate their discrete equivalents because of mathematical convenience. In this case, however, we

will be forced to discretize the time dimension.

The second reason is that our function, c, is not known, because it depends on a number of stochastic

processes, such as government surpluses and interest rates, that are themselves unknown. Worse, from a

mathematical perspective, there are a number of feedbacks between these variables. In addition, even if the

aforementioned processes were known and deterministic, the actual structure of the government’s existing

debt stock is enormously complicated. We can, however, compute c in a numerical fashion. That is, given

an existing debt stock, a term-structure model, government financial requirements, and a financing strategy,

we can determine the required financing and the associated debt servicing costs. This can be determined for

any single realization of our random processes. In fact, we need to perform this computation for a very large

number of realizations to calculate the expected cost and variance for the financing strategy in question.

Our ability to perform this numerical calculation will form the basis of our approach to this problem. As we

will see later, this presents a number of serious practical complications that need to be resolved.

The third reason is that our ability to numerically compute the expected cost and variance of a very large

number of financing strategies does not necessarily bring us any closer to finding an optimal financing strategy.

Indeed, optimality would imply that, from the entire set of permissible financing strategies, we have found

the best financing strategy in terms of expected cost, variance, and time diversification. Mathematically,

we cannot accomplish this task without some kind of optimization algorithm overlaid onto our simulation

framework.17 That is, we require clearly defined and well-behaved functions, along with detailed knowledge

of the nature of the exact statistical nature of the randomness in the model, to find an optimal solution.

None of this, unfortunately, is available in the present set-up, for a reason that is not entirely mathematical.

While we know that the government is risk-averse, it is fundamentally difficult to quantify this risk aversion

in terms of both variance of expected cost and time diversification. The result is that, instead of finding

an optimal solution, we must seek to understand the nature of the potential trade-offs that can be made

between expected cost, variance, and time diversification, and thereby better inform policy-makers about

the nature of the debt strategy decision.
17This is clearly an interesting direction for analysis that we would like to explore in the future. In particular, the stochastic

gradient methods outlined in Ermoliev and Wets (1988) and Benveniste, Métivier, and Priouret (1997) could prove useful in

this respect. There is also a literature on stochastic programming that may very well be applicable to this problem.
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3 The Model

We have discussed the issues of debt strategy analysis at length and have seen that the problem can be defined

in a mathematically rigorous fashion. More importantly, we have demonstrated that a reasonable approach

to characterizing the solution to the debt strategy problem involves stochastic simulation. Nevertheless,

there are still a large number of things to consider in the construction of a simulation model, and thus some

additional form of classification is necessary. We have correspondingly divided our simulation framework into

three separate analytic components: the stochastic model, the control model, and distributional analysis.

More specifically, the stochastic and control models feed into the debt strategy engine, which provides its

outputs to the area of distributional analysis. This classification is outlined in the schematic in Figure 2.

Before delving into the specifics of each individual component in Figure 2, it is worth providing an

overview of what we need to accomplish in our simulation model. In its most basic form, we are faced with

the following sequence of tasks:

(i) First, we select a time horizon for our analysis (i.e., [0, T ]). We have, for the purposes of this

paper, elected to use a 10-year time horizon with quarterly time increments.

(ii) We must also determine the composition of the initial portfolio (i.e., Ξ). This is somewhat more

involved than it might at first appear.

(iii) We need to select a financing strategy (i.e., θ). In our analysis, we treat this as a vector of weights

in each debt instrument. It turns out this is not as immediately obvious as it sounds and we will

discuss this issue in detail later.

(iv) We must generate a random sequence of future macroeconomic states, government financial

requirements, and term structure of interest rates (i.e., S(t), F (t), P (t, s) for t ∈ [0, T ] and

s ∈
[

1
12 , 30

]
). In short, we need to create our stochastic model. This requires substantial compu-

tational expense.

(v) We then apply the financing strategy for each period over our time horizon. This requires

that we take into account maturing debt stocks and new financial requirements. We also must

ensure that we respect the government’s reopening cycle and keep the portfolio composition

in balance with the desired financing strategy.18 The feedback between financing strategy and

financial requirements, as well as the relationship between the financing strategy and issuance
18In Canada, as in a number of other countries, a bond may be issued in small increments over a period of time. A given 10-

year Government of Canada coupon bond, for example, is typically auctioned to government securities dealers on four occasions

over the course of a year, before a new maturity is introduced.
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rates, must also be respected. This step describes the work of our control model. Again, this step

is computationally expensive.

(vi) For each period, we compute the associated debt charges to the government associated with the

selected financing strategy (i.e., c(θ, · · · )).

(vii) The preceding steps must be performed literally thousands of times to generate a distribution of

government debt charges. This requires that we be cautious in the construction of our computer

programs.19

(viii) Using this debt-charge distribution, we consider various measures of cost and risk to assess the

relative desirability of a given financing strategy. We call this final step distributional analysis.

This sequence of steps falls into one of the four categories described in Figure 2. The remainder of this

section will address the various issues involved in each of these categories and highlight our corresponding

modelling choices.

3.1 Stochastic model

The first area of discussion is the stochastic model. This is perhaps the most important element of the

analysis, because an ill-specified or incomplete stochastic environment will imply incomplete or flawed results.

Bolder (2001, 2002) directly addresses the stochastic model that we will be using in our simulation framework

for debt strategy. We stress that these works do not represent the final word on this area, but rather a

reasonable first step towards approximating the complicated random element of this analysis. Moreover, we

are not attempting to predict future outcomes. Instead, we characterize the range of possible future outcomes

and use this information to approximate the corresponding distribution of future debt-charge outcomes.

This first step is to specify the dynamics of the term structure of interest rates. As described in Bolder

(2001), we have identified three desirable characteristics in a term-structure model for use in Bank of Canada

applications: an adequate temporal description of the dynamics of the Canadian term structure, the exis-

tence of an analytic representation for the relationship between the underlying state variables for speed of

computation in our simulation setting, and a parameter set that is relatively easy to estimate and interpret.

These considerations point us towards a rich set of term-structure models, popularized by Duffie and

Kan (1996), termed the class of affine term-structure models. This class encompasses the models of Vasicek
19It would appear that this would be a natural application for the idea of variance reduction. We did, in fact, write our code

to permit the use of antithetic variables and control variates. Our concern was that, by dampening the variance of our estimates,

we would actually be dampening the volatility of the debt-charge sample paths. The result would be to underestimate the

risk associated with a given financing strategy. Appendix C provides a brief review of some of the principal variance-reduction

techniques.
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Figure 2: A Model Schematic: This figure illustrates the various components of our simulation framework for

debt strategy.
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(1977), Cox, Ingersoll, and Ross (1985a,b), Longstaff and Schwartz (1992a,b), and a number of others. These

models are formulated by assuming that future dynamics of the term structure of interest rates depend, in its

simplest form, on the evolution of a single observed, or unobserved, factor. This factor, also termed a state

variable, is a random process that is restricted by the assumption of an absence of arbitrage in the underlying

financial market. The no-arbitrage restriction permits the derivation of a deterministic relationship between

the term structure of interest rates and this state variable. Two special cases of this model, the Cox, Ingersoll,

and Ross (CIR) and the Vasicek model, can readily be extended to incorporate multiple-state variables and

permit analytic solutions for the bond price function; the two-factor CIR model is our selected model for

term-structure evolution. Multiple-state variables are important, because substantial evidence suggests that

the use of a single-state variable to explain the random future movement of the term structure is inadequate.

This inadequacy stems from the fact that the dynamics of the term structure of interest rates are too complex

to be summarized by a single source of uncertainty.

As noted, the term structure of interest rates is only one component of the stochastic environment.
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The government’s financial requirements also vary over time in a random fashion. Bolder (2002) constructs

a reduced-form model that describes the joint evolution of the economic business cycle, the government’s

financial position, and the term structure of interest rates. To accomplish this goal, it models the dynamics

of the business cycle with the hidden-Markov model suggested by Hamilton (1989). Thus, the stochastic

framework is built on a conceptually straightforward and flexible foundation. Bolder (2002) then employs a

transformation of the filtered probability of recession to capture the flat or inverted term-structure outcomes

observed to occur prior to business cycle downturns. It captures these dynamics—in an admittedly simplistic

manner—by constructing a time-varying market price of risk parameter through a convex combination

involving the filtered probabilities. The government’s financial position is specified as a modified Ornstein-

Uhlenbeck process. The process is modified in the sense that the dynamics of the government’s financial

position depend importantly on the current state of the business cycle.

The previous paragraphs briefly discussed our stochastic model. The interested reader is referred to

Bolder (2001, 2002) for an in-depth presentation of these models of randomness. A critical issue in any

stochastic model is their parameterization. Not only do we use statistical estimation techniques to fit our

models to historical data, but we also perform a number of diagnostic tests to ensure that the behaviour

of our theoretical models is consistent with this data. These diagnostic tests allow us to accomplish three

objectives. First, they provide assurance that our theoretical models are doing what we think they are doing.

This is always critical when using complicated models. Second, because an estimated parameter set may not

perform exactly as we might wish, diagnostics permit us to calibrate the parameters to obtain the desired

behaviour of our models. Third, they help us to understand the key elements of our theoretical models and

often provide useful suggestions for sensitivity analysis. Appendix B provides a more detailed description of

the model estimation, calibration, and diagnostics.

3.2 Control model

The control model is exactly as the name suggests. It represents those elements of the debt strategy problem

over which the government exercises a level of control. In particular, the government controls the choice of

financing strategy. That is, the composition of debt issuance in any one period is determined by sovereign

debt managers. As we learned in section 2, the stochastic environment is not entirely independent of the

financing strategy. As such, our goal in this section is to describe the elements of debt issuance and the

appropriate relationships with the stochastic environment in a defensible manner. Following the schematic

in Figure 2, we address the key issues in the control model over the next three subsections.
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3.2.1 Time horizon and initial portfolio

The first issue is the determination of an appropriate time horizon. Because the government has the option

to issue very long-term debt instruments (i.e., 30 years), it would seem reasonable to argue that the minimum

time horizon for our analysis would be the maturity of the longest-term debt instrument in the portfolio. On

the other hand, a long-term horizon is both computationally expensive and difficult to model in a reasonable

manner. How, for example, does one reliably model the evolution of key macroeconomic variables over a

30- to 40-year time horizon? There is also the confounding influence of the initial portfolio. If we analyze

a financing strategy that is significantly different from the composition of the initial portfolio, then we are

in essence examining the transition of the portfolio from its current composition to a new structure. The

risk-cost characteristics of this financing strategy will, in fact, be the risk-cost characteristics of the transition

from one government debt portfolio to another. This may be useful in some circumstances, but it is not

helpful for an overall comparison of different financing strategies. Ultimately, we wish to compare financing

strategies in equilibrium or in their steady state. What does this mean? A portfolio is in steady state if the

proportion of debt instruments in the overall portfolio is identical to the portfolio weights in the financing

strategy vector (i.e., Ξ is equivalent to θ).

The consideration of equilibrium portfolios is consistent with the work of Bergström and Holmlund (2000),

and we believe it is crucially important that we use so-called steady-state initial portfolios for our analysis.

To a large extent, this eliminates the problem of determining the time horizon in the analysis. In this way,

our measures of cost and risk capture the dynamics of the portfolio in equilibrium and not a potentially

noisy (and incomplete) transition to a new equilibrium level. Of course, the important question of optimal

transition to the new state is not examined in this framework. Thus, our focus in this work is implicitly

on the long-term strategic direction of the management of government debt. The current portfolio remains

critically important for determining the short-term tactical decisions. Clearly, these are related issues, but we

believe the strategic component of this decision best lends itself to quantitative analysis. Tactical analysis,

by constrast, tends to be highly related to the institutional details of the government debt market. Long-

term strategic analysis compares the risk-cost characteristics of various financing strategies. Once these

are determined, the government can select the specific financing strategy that is most desirable, given their

objectives. If this differs substantially from the current portfolio, then a transition strategy must be selected

and short-term tactical analysis comes into play. This may not always be necessary. In particular, there

need not be a one-to-one correspondence between a government financing strategy and its cost-risk exposure.

Numerous European sovereigns use interest-rate swap contracts to partially decouple their issuance pattern

and their risk exposure. That is, they might issue in several debt instruments and then use interest-rate

swaps to create a portfolio with only one or two maturities. This theoretically appealing option does raise a

number of thorny practical questions. Nevertheless, it illustrates a potential distinction between transition
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and equilibrium financing strategies.

Another way to consider this problem is from a control-theory perspective. In some sense, examination

of equilibrium strategies is a form of characterizing the solution space of the control problem. It identifies

those financing strategies in the overall set of permissible strategies that are desirable. One then proceeds

to consider the current portfolio and works out how to get to this desired state. This is, roughly speaking,

similar in spirit to the backwards induction argument used in the dynamic programming techniques employed

to solve optimal-control problems.

3.2.2 The financing strategy

In a general optimal-control setting, the control—or, in our problem, what we have defined as the financing

strategy—is itself a function of time. It is not, in fact, constant from one period to the next. In a stochastic

optimal-control setting, therefore, this generalizes such that this function of time can depend on the stochastic

environment. Thus, in full generality, one can consider the financing strategy to be itself a stochastic process,

which means that the type of financing strategies the government could undertake are virtually unlimited.

The government could entertain an issuance strategy, for example, that depends importantly on the evolution

of the term structure of interest rates.

This could deeply complicate our analysis. At this point, therefore, it is useful to discuss the borrowing

objectives of the Government of Canada to provide some guidance in our analysis. In a variety of public

documents—Department of Finance Canada (2001) is a good example—the federal government clearly de-

scribes among its operational principles of debt strategy the ideas of transparency, liquidity, and regularity.

Given the size of the federal government’s debt and its importance as a benchmark for the Canadian fixed-

income market, the Government of Canada does not engage in opportunistic borrowing. As a consequence,

financing strategies that attempt to pick ideal market conditions for the issuance of various debt instruments

are not considered. Instead, we need to consider financing strategies that reflect the government’s long-term,

strategic approach to financing its debt porfolio. We argue that a reasonable way to represent this approach

is to consider the proportion of its overall portfolio the government wishes to hold in each of the available

debt instruments. Does the government, for example, wish to have a debt portfolio with a large proportion

of issuance in treasury bills and a small amount in two-, five-, 10-, and 30-year bonds? And, if so, what is

the relative proportion of the debt portfolio in each of these bonds? Are they equally weighted or skewed

towards the long end? It seems that a reasonable way to perform this analysis is to consider a large number

of possible portfolio weights. In this analysis, therefore, we will define our financing strategies as fixed vectors

of portfolio weights.

This is a useful idea, but how do we put it into operation? It turns out that applying a fixed vector

of weights to total issuance in each period is not a reasonable approach; that is, a flow rule is difficult to
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put into place. Indeed, a flow-based financing strategy will not maintain the portfolio in a steady state. To

illustrate this point, consider an extreme example. Assume that we have an initial one-time annual financial

requirement of $100 billion. Moreover, we decide to follow a financing strategy half of which consists of

30-year bonds, with the other half consisting of 3-month treasury bills. In the first year, therefore, we issue

$50 billion of each instrument. Observe that it will require some time before the first 30-year bond arrives

at maturity. In the second quarter of the first year, therefore, there will be no 30-year bond maturity. This

is contrasted with $50 billion of 3-month treasury bills that will mature in the second quarter. If we were to

apply our flow-based issuance rule to these maturities, we would have $25 billion of new 30-year and 3-month

treasury-bill issuance occurring in the second quarter. In the third quarter, because of the lack of 30-year

bond maturities, we would be required to issue $12.5 billion of 30-year bonds and 3-month bills. Repeated

application of this financing rule would, in short order, lead to a portfolio completely dominated by longer-

term borrowing, in stark contrast to the initial intention. This is less extreme when starting with an existing

portfolio that involves continuously maturity long-term debt, but the effect is quite similar. Ultimately, this

approach fails, because it focuses exclusively on flow measures of the portfolio. The bottom line is that a

flow-based approach to financing strategy construction is not workable.

What are the alternatives? We suggest a fairly reasonable solution. It requires consideration of both

flow and stock measures of the portfolio and requires two steps.20 First, we separate the quarterly financial

requirement into refinancing of previously issued debt and new borrowing related to the government’s bud-

getary position. Second, we proceed to reissue any maturing amounts at their original term to maturity. For

example, if this maturing bond was initially issued as a five-year bond, then this will lead to a new five-year

issue in that quarter equal to the notional value of that bond.21 Any new borrowing will use the fixed vector

of weights that represent our financing strategy.

As long as the government is always in a deficit or has a zero financial requirement, this will maintain

the portfolio in its initial steady state. Problems in the model arise if the government moves into a surplus

position, because our previously described financing strategy does not permit negative issuance. There are

two potential solutions to this problem. First, we could allow any surplus position to be applied to the

government’s treasury-bill stock. This approach will not maintain the government’s steady-state portfolio.

Second, we could simply apply the fixed vector of weights in a negative fashion (i.e., assume that these are

buybacks), to bring the portfolio equally back into line with the reduced financial requirements. This will

maintain the steady-state portfolio over all periods. We adopt the second approach in this paper.

The success of this approach would seem to depend on an even issuance pattern for all bonds across
20This discussion of financing strategy modelling is, by necessity, fairly specialized to the Canadian situation. Other sovereign

borrowers face similar circumstances and thus we suspect that, with some modification, this algorithm could be applied more

generally.
21This will require that our computer program keep track of the initial issuance maturity of all instruments.
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periods. For example, in our actual portfolio we actively use bond reopenings to ensure that we obtain

large, liquid benchmarks. This implies, for example, that we typically have two reopenings for each two-year

government coupon bond. This situation is magnified with approximately four to six reopenings for the

five-, 10-, and 30-year bonds. Thus, if we applied the previously described solution to the problem, we would

be forced to issue a huge amount of bonds in a single quarter to maintain the steady-state portfolio. With

some care we can deal with this problem, but we will have to tolerate some short-term deviations from the

steady-state portfolio. The idea is that when a large benchmark matures, we do not immediately refinance

the entire bond, but instead follow a gradual reissuance pattern.22 For example, if $12 billion of originally

issued 10-year bonds matures in a given quarter, it is not realistic to assume that we refinance the entire

issue in that quarter. Instead, we reopen this bond over the next n quarters, where n ∈ {3, 4, 5}. This is

accomplished by issuing a new bond in each quarter, at par value, but reducing the term to maturity of the

bond in each subsequent quarter. With a two-year bond, for example, where n = 3, we would start with a

maturity of 2 1
4 years, then 2 years, followed by 1 3

4 years.

Thus, 10-year issuance in each quarter would amount to $ 12
n plus any adjustments required from the

government’s deficit or surplus position. This would also have some repercussions for how we construct our

steady-state portfolio. Instead of having equal issuance in each previous quarter, we could apply a more

complicated rule. In particular, for our two-year bond example, we would have to go back to 2 1
4 years and

reconstruct the past quarterly issuance following a cycle of three reopenings per bond. As long as n = 3

remained constant over the entire period of analysis, we would remain relatively close to the steady-state

portfolio. The benefit of the increased complexity involved in this approach is that we could continue to

examine the rollover risk of the portfolio. We chose this stylized solution because it is both reasonable and

workable. Were we, for example, to have a new maturity for each bond in each quarter, then our redemption

profile would be unrealistically smooth. This would, of course, simplify the implementation, but it would

undermine completely our ability to say anything about refinancing risk.23

There is one additional complexity. If we decide to spread the maturity of a given, typically fairly large,

benchmark over a number of quarters, we still have to meet the initial maturity repayment. The question

is, where do we raise these funds? Our solution involves the creation of a cash account. The role of this cash

account is to serve as a residual value in the overall balance equation. In general, maturing bonds plus new

financial requirements of the government less any issuance in the period must be equal to zero. Consider

a quarter wherein we have $9 billion of two-year bonds maturing and we plan to refinance this issue over

n = 3 quarters. Moreover, assume that the government’s financing requirement in that quarter is zero. The
22In reality, some portion of a large benchmark may be repurchased by the government over the bond’s lifetime. In this

analysis, however, we abstract from the Canadian government’s bond repurchase program.
23As a practical matter, we permit two reopenings per year for the two-year bond and four reopenings for the five-, 10-, and

30-year bonds.
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consequence is that we have $9 billion of maturities, no financial requirement, and only $3 billion of new

issuance. The required value, therefore, of the cash account in that period would have to be $6 billion. This

could be financed at the 3-month treasury-bill rate and would, therefore, need to be refinanced in the next

period. If the reopening cycle is restricted to a single fiscal year, then the portfolio should remain on a yearly

basis in its steady state, although there would, of course, be some intra-year deviations.

3.2.3 Financial requirement feedback

In section 2, we discussed the role of debt charges in the government’s financial position. The base model in

Bolder (2002) aggregates the entire government financial requirement. In other words, it does not indicate

what proportion stems from debt-service charges and what relates to program spending. In general, the

impact of debt charges is countercyclical. That is, given generally lower interest rates during dips in the

business cycle, the government typically experiences some debt-charge relief during these periods. Conversely,

although revenue is stronger and expenditures smaller during strong economic conditions, interest rates are

typically higher, implying higher debt-service costs. The strength of these relationships will, of course,

depend on the government’s financing strategy and the size of the existing debt stock. In particular, the

greater the proportion of short-term debt, the more sensitive the portfolio to interest rate changes, and hence

the greater the countercyclical effect. Clearly, this is an important factor in our analysis. What we require

is an extension to our model to capture this interplay between the financing strategy and the government’s

financial position.

Perhaps the simplest approach would be to model the government’s financial requirements on an ex-

interest-charge basis. The long-term average government financial requirements—along with an initial

portfolio—would allow us to determine some constant assumed value for the debt-service component. Let us

say, for example, that this value is $40 billion. That is, we would set the long-term average financial require-

ment in the stochastic differential equation that describes the dynamics of the financial position process to

$40 billion.24 Then, we would dump the accumulated debt charges from that period into the government’s

financial position. In this manner, we could explicitly account for the dependence of the government’s finan-

cial position on the financing strategy. This is problematic for two reasons. First, how does one find this

constant value? It seems reasonable to expect that this value varies with both time and choice of financing

strategy and, thus, is not constant at all. Second, we are ignoring the path-dependency in our problem. That

is, the government will react to both positive and negative surprises in financial requirement—including the

debt-service component—and adjust its budgetary position as required. This may occur with a lag, but it

will nonetheless occur.

Another, somewhat more complete, approach is to constuct a prediction model for the government’s
24In this case, the financial requirement is positive, indicating a surplus position.

23



A Stochastic Simulation Framework for Debt Strategy

debt-service costs. How might this work? As discussed in Bolder (2002), we model the financial requirement

process, Ft, as a modified Ornstein-Uhlenbeck process. Let us denote the actual realized debt charges from

period t as gt. We suggest that we incorporate this form of feedback by adding the debt charges from the

previous period to the financial requirement and simultaneously subtract the average realized debt charges

from a number of previous periods, as follows:

F θt = Ft + gt−1 − ḡ, (7)

where,

ḡ =
1
N

N+2∑
i=2

gt−i, (8)

and F θt represents the total financial requirements associated with financing strategy, θ. The idea is that

the government predicts the debt-charge component for the overall financial requirement by constructing

a simple average of the quarterly debt charges over the previous N periods.25 If the financing strategy is

quite variable (for example, consisting entirely of short-term issuance), then one would expect this prediction

to have large variance. That is, ḡ, would be a fairly poor predictor for gt−1. This variability would then,

in turn, impact the variability of the financial requirement process and, in the true manner of feedback,

lead to more variable debt-charge distributions. We considered a number of different financing strategies

with various parameterizations of the financial requirement process, and concluded that ḡ is perhaps too

accurate a predictor of gt−1. Part of the reason is that the government cannot, structurally speaking, update

its forecast on a quarterly basis. Instead, this occurs on an annual basis. We recommend, therefore, the

following revision to equations (7) and (8),

F θt = Ft + gt−1 − g̃, (9)

where,

g̃ =
1
N

N+2∑
i=2

gτ−i, (10)

where τ is the final quarter of the previous fiscal year. In this way, the government updates the debt-charge

component of its financial requirements on an annual basis.26

We did also try an alternative specification, ĝ, such that,

ĝ ∼ N

(
1
N

N+2∑
i=2

gt−i, η
2
θ

)
, (11)

25We need to work with a lag because the current financial requirements are necessary for the determination of the current

debt charges. This could be solved using an iterative approach, but computationally this is not a feasible solution, using our

already highly computationally intensive simulation approach.
26In the illustrative results described in section 4, we set N = 8.
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where η2
θ is the forecasting error associated with financing strategy, θ. Put simply, this formulation implies

that the government predicts the future debt-charge component of the financial requirement as an average

of past behaviour plus a Gaussian random-error component. While this has some conceptual appeal, we

rejected this approach in the end. We feel that the simple average approach is sufficiently naive that we

could not justify adding an incremental forecasting error.

3.2.4 Issuance feedback

A final important relationship is the link between issuance and market yield. It is not reasonable to assume

that market rates are constant while the amount of issuance varies substantially across various financing

strategies. For example, the government cannot issue its entire financial requirement in a given sector of the

term structure and not see fairly significant upward impact on market yields. This is, however, symmetric.

The government cannot reduce issuance to very small levels and expect to issue at a neutral market rate.

There is, therefore, an interval of issuance, quite likely depending upon the sector of the term structure,

where debt can be issued at market rates. This is a second form of feedback, between the term structure of

interest rates and the financing strategy. Again, we will try to consider a fairly ad hoc approach to modelling

this relationship. Our approach is to add a penalty, for the ith debt instrument, to the par interest rate

denoted pi, such that,

pi(x) =


pi(x) > 0 : x ∈ [0, ai)

pi(x) = 0 : x ∈ [ai, bi]

pi(x) > 0 : x ∈ (bi,∞)

, (12)

for i = 1, ...,H where H denotes the number of available debt instruments. Thus, the interval [ai, bi] would

define the interval for the ith debt instrument where issuance does not impact market rates. Outside this

interval, the cost of debt issuance would tend to increase. While this seems intuitively quite appealing, it

does raise a number of difficult questions. First, how does one proceed to determine the size of the relative

interval [ai, bi], and what is the form of pi(x)? Mathematically, there are a number of good choices for pi(x),

such that equation (12) is satisfied.27 Economically, however, the increase in par rates outside the interval is

difficult to determine. This raises the second difficult question. Significant arbitrary changes in the par rates

imply significant arbitrary changes in the zero-coupon term structure of interest rates. There is, therefore,

the potential for our ad hoc alterations to par rates to introduce arbitrage into our interest-rate system.

This is a concern, because our term-structure model was carefully constructed to avoid this problem. We

do believe that, while this is clearly an issue, if the changes in rates are sufficiently small and we perform

diagnostic tests to ensure no arbitrage opportunities in our interest rate system, there should not be any

serious problems.
27A piecewise polynomial is one obvious choice.
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These serious issues aside, we propose the following structure to model the penalty function for issuance

outside of the interval [ai, bi],

pi(x) =


αi(ai − x)2 : x ∈ [0, ai)

0 : x ∈ [ai, bi]

βi(x− bi)2 : x ∈ [0, 3bi]

βi(3bi − bi)2 : x ∈ (3bi,∞)

, (13)

where, i = 1, ..., N . Essentially, this is a piecewise polynomial whereby issuance costs below ai, and above

bi increase parabolically. The cost of issuance exceeding bi flattens off at three times the upper bound. The

choices of the parameters {αi, βi, i = 1, ..., N} are made to provide reasonable values for the penalty function;

we chose to impose higher penalties to short-term issuance, given the higher absolute levels of issuance in

these sectors. Figure 3 outlines the actual parameter selections for some debt instruments. The selected

upper and lower bounds for non-penalized issuance are described in Table 1; these bounds were selected

based on benchmark targets for government debt issuance described by the Department of Finance Canada

(2001). Consider an example. Given our selected parameters for equation (13), borrowing $4 billion at the

10-year maturity would occur at the best possible cost: the par interest rate generated by our model. The

government, however, would pay a five-basis-point penalty if it issued $15 billion during a given quarter.

Table 1: Quarterly Issuance Intervals: This table outlines the upper and lower bounds for quarterly debt
issuance by instrument. These values are used in the computation of the penalty function described in equation (13).

Debt Lower Upper Maximum
instrument bound bound penalty

($ billions) ($ billions) (basis points)
3-months 18.00 40.00 43
6-months 9.00 20.00 12
1-year 9.00 20.00 12
2-year 2.50 5.00 9
5-year 2.25 3.75 9
10-year 2.25 3.75 5
30-year 0.80 1.50 3

Careful modelling of the interplay between financing strategy and debt issue costs is, in fact, a form

of issuance constraint. It captures the idea that market liquidity is a function of the amount issued in a

given sector. Moreover, it avoids a dangerous ceteris paribus assumption that one can alter the government’s

financing strategy and not alter the cost of debt issuance. Analysis performed using this ceteris paribus

assumption would tend to yield corner solutions. It might suggest, for example, that the government should

fund itself entirely with 3-month treasury bills. Figure 3 illustrates the penalty functions, described in

equation (13), for each of the debt instruments used by the Government of Canada for a somewhat arbitrary,
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Figure 3: Piecewise Polynomial Issuance Penalty Function: Given our selected parameters, these graphs

illustrate the penalty function, described in equation (13), for 3-, 6-, and 12-month treasury bills and for 2-, 5-, and

10-year Government of Canada coupon bonds.
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but hopefully reasonable, choice of parameters.28 Table 1 outlines the upper and lower bounds associated

with this parameterization. Despite the arbitrary nature of these parameters, we believe that it is important

to include this feature in the model. Close inspection of the penalty functions shows quite clearly that these

are small values. Because it is not obvious how to establish these quantities, it did not seem prudent to use

overly large penalty values.

3.3 Distributional analysis

To this point, a substantial amount of work has gone into constructing a debt-cost distribution for each

individual financing strategy. Constructing this distribution itself is not our ultimate objective. Instead,

we wish to look at various aspects of this distribution to assess the relative desirability of each financing
28It was not obvious as to how we might estimate these parameters.
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strategy. In it simplest form, we would merely look at the cumulative debt charges over the entire time-

horizon of our analysis and select that financing strategy providing the lowest expected cumulative debt

charges. Although this quantity is appealing from a conceptual perspective, it is difficult to interpret. What

does it mean, for example, to distinguish between financing strategies based on expected cumulative debt

charges for a 10-year time horizon? Moreover, this approach fails to capture the intemporal variation that

is a key concern of a sovereign debt manager. Ultimately, the focus needs to be on an annual frequency to

aid with the annual decision-making process. We will see in the following discussion that how this should

be done is not immediately obvious.

Our simulation framework provides us with a tremendous amount of data. Clearly, this is a job for sta-

tistical analysis. Note that we have been using the term distribution quite loosely. In fact, the government’s

debt charges at a given time are described as,

ct ≡ c(t, f,Ξ, P, S, θ). (14)

In words, this means that government debt charges depend upon a wide range of factors, including time,

the government’s financial requirements, the initial portfolio, the term structure of interest rates, and the

state of the economy. In our simulation model, therefore, when we generate N sequences of values for{
ct, t = 1

4 ,
1
2 , ..., 10

}
, we have actually constructed N sample paths for the stochastic process, ct.

There are two primary ways we can think about the collection of ct sample paths generated by our

simulation model. First, we can freeze the time axis at any point and examine the distribution of debt

charges. Figure 4 demonstrates this point graphically by examining the debt-charge distribution after five

years. Given this structure, it is natural to consider various moments of this distribution as well as percentile-

based tail measures. Notationally, we will denote this distribution as,

f1(cT ), (15)

for T = 1
4 ,

1
2 , ..., 10. Because this is the standard approach employed in this type of problem, we will begin

our discussion with a consideration of measures of distributions of the form f1.

Some measures of these distributions are straightforward. Given a choice of T , the mean is perhaps the

most obvious choice. As no assumptions of normality are made in the underlying interest-rate processes, it is

also reasonable to consider a measure of central tendency not influenced by extreme observations such as the

median. Correspondingly, one would also recommend that measures of disperson be examined, such as the

standard deviation and the interquartile range.29 These common measures are well-known and conceptually

straightforward, and hence require no explanation. They do, however, form an important component of our

analysis.
29The interquartile range is defined as the difference between the 75th and 25th percentiles.
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Figure 4: A Debt-Charge Distribution at a Given Point in Time: In the first graph of this figure, we

observe a collection of 200 debt-charge sample paths. In the second graph, we construct the distribution of debt-charge

values at time T equal to five years.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

D
e

b
t 

C
h

a
rg

e
s 

(b
ill

io
n

s)

Time (years)

5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

Debt Charges (billions)

R
e

la
tiv

e
 F

re
q

u
e

n
cy

Distribution at T=5 years. 

Often, in examining distributions, one also considers higher moments such as skewness and kurtosis as

specific numerical quantities. In this setting, these are not terribly easy to interpret, because we are quite

interested in tail events. That is, we ask: what is the worst outcome that we might normally observe based

on the assumptions of our simulation model? Skewness and kurtosis measures might indicate that there is a

greater chance of movements in one direction, or more probability mass in the tails of our distribution, but

they do not provide a magnitude or an easy basis for comparison among various financing strategies. The

most common measure used in this area was pioneered by Danish Nationalbank (1998), which borrowed a

page from the well-known value-at-risk methodology. This measure, termed cost-at-risk (CaR), is defined

as,

CaR(x, p) = sup{z : P(x ≤ z) ≤ 1− p}, (16)

where x represents the random variable in question—in our case, government debt charges—and p is the

critical percentile cut-off value. In words, it is the largest amount of government debt charges, over a given

time horizon, that is not exceeded with probability 1−p. Under assumptions of normality, the CaR measure
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is merely a multiple of the standard deviation of x. In our more general setting, the CaR measure is a

percentile measure of the distribution. If, as is the case in our analysis, we set p = 0.95, then the CaR

measure provides us with the largest debt-charge realization, such that it is exceeded by 5 per cent of the

debt-charge observations (i.e., the 95th percentile).

In our setting, it is often more interesting to consider the CaR measure relative to its mean (or median)

value, because, in general, financing strategies that are dominated by longer-term borrowing are more ex-

pensive to the government. They nevertheless exhibit substantially less variability over time, because of

lower variability in long-term rates and less refinancing risk. As the CaR measure is attempting to measure

deviations from normal conditions, it makes sense to consider the distance between the CaR measure and

the mean observation. This measure is termed relative Cost-at-Risk and is defined as,

RCaR(x, p) = sup{z : P(x ≤ z) ≤ 1− p}︸ ︷︷ ︸
equation (16)

−E(x). (17)

In short, the relative CaR measure provides us with a sense of a kind of worst-case deviation from the mean.

Relative CaR is nevertheless somewhat arbitrary, given that we select the critical cut-off value, p. More-

over, it does not provide any real sense of how bad things could get once we move further out into the tail of

the debt-charge distribution. An alternative measure of the tail of the distribution is termed the conditional

tail CaR. It is defined as,

TCaR(x, p) = E(x : x ≥ CaR(x, p)︸ ︷︷ ︸
equation (16)

). (18)

The conditional tail CaR is the expected debt charges for a given period conditional on being in the tail of the

distribution. Furthermore, the tail of the distribution is defined as being all observations that occur beyond

the CaR. If we are examining 10,000 different debt-charge outcomes at T = 5 years, then the conditional

tail CaR is the average of the largest 500 outcomes.30 In simple terms, the conditional tail CaR is telling

us that if things go badly and the government finds itself in the tail of the distribution, then, under these

circumstances, it provides the expected debt charges. We can, of course, also define the relative conditional

tail CaR in a manner identical to equation (17),

RTCaR(x, p) = E(x : x ≥ CaR(x, p))︸ ︷︷ ︸
equation (18)

−E(x). (19)

Overall, we believe the conditional tail CaR measure is more robust to non-Gaussian distributions with large

positive skewness. Given that the state variables in our term-structure model have non-central χ2 transition

densities, this is precisely the situation in which we find ourselves.
30Similarly, to compute the CaR measure one simply orders the outcomes from smallest to largest and then reads off the

9,500th element.
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As a side note, there is an entire literature devoted to the study of coherent risk measures. This involves

specifying a number of properties that would be desirable in a measure of risk.31 The seminal paper in this

area is by Artzner et al. (1999). Without getting embroiled in the mathematical details of this work and

getting too far afield, this work provides theoretical reasons that support the use of conditional tail CaR in

our analysis. Specifically, they demonstrate that the VaR measure is not coherent, because it fails to satisfy

the subadditivity property. Thus, if x1 and x2 are two random variables, then,

CaR(x1 + x2, p) 6≤ CaR(x1, p) + CaR(x2, p). (20)

The idea is that the combination of two entities, or portfolios, should not create incremental risk. The

conditional tail CaR measure, however, does satisfy this property. As such, in this analysis, we will consider

both the relative CaR and relative conditional tail CaR measures.

A challenge associated with these annual-based measures of cost and risk pertains to the time dimension.

In a one-period problem, the interpretation of cost and risk is relatively straightforward. For example,

consider a situation where we generate a debt-charge distribution for a one-year time horizon. To summarize

the cost of this portfolio, we might look at the expectation of this distribution or perhaps some median value.

Risk could be summarized by variance, relative CaR, or relative conditional tail CaR. If we extend our time

horizon to five or 10 years, how do we alter our measures of risk and cost? It is not obvious as to how one

should interpret the annual expected debt charges for a period 10 years in the future. How, therefore, do we

integrate out the time dimension for our analysis?

A natural approach would be to consider some set of average risk and cost measures over the interval.

While this is appealing in many respects, it could potentially hide trends in the data over time. Swedish

debt managers, in particular, have given this issue substantial consideration. Holmlund and Lindberg (2002)

average their measure of debt costs across sample paths and examine this distribution of averages. They

then proceed to disaggregate risk into two dimensions: scenario risk and time-series risk. Scenario risk is

defined as the dispersion of the distribution over time and is calculated as the relative distance between the

95th and 50th percentiles of the distribution of debt-charge averages. The second element, time-series risk,

is defined as the deviation, or variation, around the trend in the individual sample paths. To compute this

quantity, Holmlund and Lindberg fit a trend using OLS to each individual sample path. They then calculate

the average absolute deviation from this trend and examine the resulting distribution of averages of absolute

deviations from the linear trend.

This novel approach is a good first step at examining the problem. Our concern with this methodology

relates to the fitting of the trend. The entire sample path is required to fit the trend, but in reality the entire

sample path is not known to the government until the end of the period. This led us to consider how one
31Conceptually, this is similar to the definition of a metric in mathematical analysis and the concept of a measure in a

measure-theoretic setting.

31



A Stochastic Simulation Framework for Debt Strategy

Figure 5: A Conditional Debt-Charge Distribution Over Time: In this figure, we observe 25 debt-

charge sample paths. At T = 5, assume that c5 is $25 billion. The question then becomes, what is the distribution

of possible values of c6? The conditional distribution provides an answer to this question.
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might better describe the evolution of the sample paths over time. One way of thinking about this collection

of sample paths is to focus on the conditional debt-charge distribution.32 Figure 5 illustrates a conditional

distribution. Essentially, this is a pathwise measure. That is, if we are told the value ct, we ask ourselves

what the distribution of possible values is for ct+1. Notationally, we denote this distribution as,

f2(ct+1 | σ{ct}), (21)

for t ∈ T =
{

1
4 ,

1
2 , ..., 10

}
and where σ{ct} is the σ-algebra generated by the debt-charge process, {ct, t ∈ T}.

A bit of reflection will reveal that this is an interesting distribution for a government debt manager. It

provides a sense of the evolution of this process over time. The variance of the conditional distribution is

of particular interest. It provides a measure of the uncertainty facing the government at each step in time

as it attempts to forecast debt charges for the subsequent period. Ultimately, this is another alternative to

capturing the time-series risk defined in Holmlund and Lindberg (2002).

How, then, might we characterize this conditional distribution? We suggest using a very simple approach
32This is occasionally termed the transition density.

32



A Stochastic Simulation Framework for Debt Strategy

by assuming that its distribution is Gaussian, and using a first-order autoregressive model to determine its

first two moments. For example, given the debt-charge process ct, we assume that,

ct = φ0 + φ1ct−1 + εt, (22)

where,

εt ∼ N (0, ξ2). (23)

It is well known, and quite easy to show using a recursive argument, that the unconditional mean of ct

associated with this model is,

E[ct] =
φ0

1− φ1
, (24)

which precludes φ1 from taking the value of unity.33 By a similar argument, the unconditional variance is,

var[ct] =
ξ2

1− φ2
1

. (25)

These will be useful to determine whether our estimates are giving sensical results. The conditional distri-

bution associated with equation (22) is given as

f2(ct | σ{ct−1}) ∼ N (φ0 + φ1ct−1, ξ
2). (26)

Estimating this model directly poses some practical issues. We have N sample paths, but in our model

construction each individual sample path has only 10 annual debt charge outcomes. To overcome this issue,

we estimate the model N times using OLS and report the average values for our parameters, φ0, φ1, and ξ.34

The conditional variance ξ2 is of the most interest. It is an admittedly imperfect measure of the average

prediction error facing a government that attempts to forecast debt charges for the subsequent period in its

budgetary process, because we are making the strong assumption of Gaussianity in deriving these estimates.

Nevertheless, we believe this assumption is reasonable given its simplicity and ease of interpretability. In

section 4, we explore the validity of this assumption by examing the empirical distribution of debt-charge

first-differences.

The conditional volatility is a risk measure that captures the path dependency inherent in the debt

strategy problem. One way to think about the AR(1) model is as a sequence of forecasts. One selects the

value of φ0 and φ1 such that, at the beginning of each fiscal year, one produces the best linear forecast

that one can construct (i.e., φ0 + φ1ct−1) based on the past year’s debt charges (ct−1). This forecast is

subject to error, of course, and this is captured by the conditional volatility, ξ. This notion of risk is closely

aligned with the manner in which a debt manager conceptualizes risk. Furthermore, it provides a long-term

description of the annual, conditional uncertainty associated with a given financing strategy.
33Indeed, this would imply that ct was a non-stationary distribution or, equivalently, that ct was white noise.
34We found maximum likelihood to be relatively non-robust to the small number of data points and, more importantly, very

slow, because it requires the use of a non-linear optimization routine.
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4 Illustrative Results

In this section, we amalgamate the understanding of the problem developed in section 2 with the modelling

details outlined in section 3 and demonstrate our simulation framework in action. We stress that these results

represent a portfolio that is structurally similar to the Government of Canada’s domestic debt portfolio, but

this analysis neither represents an optimal policy for the government nor attempts to arrive at any conclusions

about future debt strategy. Instead, our goal is to learn about the nature of the risk and cost trade-offs

associated with different financing strategies. There are a series of items that we would like to answer:

(i) How does the introduction of a more complicated modelling environment influence the results of

our analysis relative to a simpler approach focusing only on interest-rate variability?

(ii) How sensitive are the results to assumptions about the stochastic environment?

(iii) The results represent the risk-cost characteristics of a set of financing strategies under normal

financial-market conditions. How do they perform under situations of market stress that involve

extreme macroeconomic outcomes?

(iv) How sensitive are measures of cost and risk to changes in the financing strategy? That is, if we

make a small change in the financing strategy, can we expect to observe large changes in cost

and risk outcomes? Moreover, what is the nature of this relationship? Is it relatively simple or

more complex?

(v) How do various financing strategies compare when we adjust for their risk? Are certain financing

strategies on this risk-adjusted basis, for example, more desirable than others?

(vi) Understanding these four previous points, what is a reasonable set of cost and risk measures to

use in analyzing debt strategy questions?

These six questions will be addressed in turn in the bulk of this section. We begin in section 4.1 by reviewing

the key assumptions employed in this study. Section 4.2 examines the differences between measures of cost

and risk for a simple model that includes only interest-rate variability and for an extended model of the

stochastic environment. This examination is performed by considering five distinct financing strategies.

Section 4.3 plays with the parameterization of our stochastic models to help us better understand the

sensitivity of our results to the modelling assumptions. In section 4.4 we describe and demonstrate a

novel approach to stress testing that we believe will prove quite useful. This stress-testing idea is based

on an exploitation of the hidden Markov model for the evolution of the business cycle. In section 4.5, we

consider 225 distinct financing strategies and examine the relevant trade-offs in terms of cost, risk, and time

diversification. We also use regression analysis to help us describe the relationship between risks, costs,
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and the financing strategy. Also in section 4.5, we attempt to provide an answer to the last two questions

listed above by extracting the lessons learned from the analysis of the base portfolio, different sensitivities,

extreme scenarios, and a wide range of financing strategies. Our objective will be to outline a framework

for analyzing the risk and cost trade-offs associated with different financing strategies and to develop a

risk-adjusted measure of debt cost.

4.1 Key assumptions

Ideally, to answer the above-noted questions, we need to consider a wide range of different approaches to the

problem. Ultimately, we would like to examine these different approaches for a large number of financing

strategies, but the exposition of our results in this case would prove cumbersome. Our solution is to consider

a smaller number of financing strategies that will, we hope, allow us to reach qualitatively similar conclusions

without a ridiculous amount of computer effort or a bewildering myriad of results. Specifically, we consider

the first three questions in our list by examining five quite substantially different financing strategies.

How did we select these five sample financing strategies? To best replicate the current Canadian debt

strategy environment, we used seven possible debt instruments, including three-, six-, and 12-month treasury

bills and two-, five-, 10-, and 30-year bonds.35 Then, in an attempt to create very different financing

strategies, we discretized the amount of treasury bills used in each strategy. That is, we selected five

strategies with 0 per cent, 25 per cent, 50 per cent, 75 per cent, and 100 per cent of the portfolio weight in

treasury bills; the residual weight is financed with nominal coupon bonds. Given this discretization, we split

the remaining weight in each individual debt instrument equally. The actual weights for the five financing

strategies used in the following analysis are described in Table 2.

Table 2: Five Sample Financing Strategies: To demonstrate the various features of our debt strategy model,
we selected these five significantly different financing strategies. We consider the debt-charge distributions of each of
these different strategies under various model assumptions.

Financing strategy 3-month 6-month 1-year 2-year 5-year 10-year 30-year
100% bills 1/3 1/3 1/3 0 0 0 0
75% bills 1/4 1/4 1/4 1/16 1/16 1/16 1/16
50% bills 1/6 1/6 1/6 1/8 1/8 1/8 1/8
25% bills 1/12 1/12 1/12 3/16 3/16 3/16 3/16

100% bonds 0 0 0 1/4 1/4 1/4 1/4

Having selected our financing strategies, let us now describe the methodology used to compute our results.
35For the purposes of this analysis, we have excluded Canada’s index-linked debt, which is termed the Canadian Real Return

bond. In recent years, Real Return bonds comprised approximately 6 per cent of the Canadian government’s outstanding

market-debt stock.
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First, we perform our analysis in the context of an initial steady-state portfolio. Specifically, the portfolio at

the starting point of each simulation is in equilibrium. Each financing strategy, as discussed in section 3.2.2,

is constructed to maintain the portfolio in this steady state over the 10-year time horizon of our analysis.

We can therefore look at summary measures for these portfolios, including the fixed-debt ratio, the average

term to maturity (ATM), and the MacCauley duration, because, since the portfolios are in steady state,

these do not change over across either time or stochastic scenarios.36 These summary measures, for each of

our five financing strategies, are described in Table 3. The ATM and MacCauley duration measures are, by

construction, very similar. The key difference is that the ATM measure does not consider intermediate cash

flows and thus is a generally larger measure than the MacCauley duration. The fixed-debt ratio represents

the proportion of debt, at a given point in time, that need not be refinanced in the next year. This will not

map directly into the proportion of treasury bills in the portfolio, because bonds with less than one year

remaining to maturity must also be considered as floating-rate debt.

Table 3: Summary Portfolio Measures: As each of these portfolios is in its steady state, each will maintain its
portfolio composition over the 10-year analysis horizon. This table summarizes three popular portfolio measures—the
fixed-debt ratio, average term to maturity, and duration—for each of our five sample financing strategies.

Financing Fixed-debt ATM Duration
strategy ratio
100% bills 0.00 0.42 0.42
75% bills 0.20 1.75 1.25
50% bills 0.40 3.09 2.12
25% bills 0.59 4.43 3.14

100% bonds 0.79 5.77 4.37

For this analysis, we have selected an initial portfolio size of $400 billion. This is rebalanced—following

the relevant financing strategy—on a quarterly basis over a 10-year time horizon. For each financing strategy,

we need to decide the number of separate realizations of our stochastic environment in the construction of our

debt cost distributions. This decision is important, because we are attempting to achieve a reasonable degree

of accuracy in our solution. The results of a simulation are, of course, subject to approximation error. It

turns out that we can characterize this error in our Monte Carlo approximations quite accurately by making

use of two well-known statistical results. The first result, termed the weak law of large numbers, holds that,

for a sequence of independent, identically distributed random variables, X1,X2, ..., where µ = EXi <∞,

lim
n→∞

P

[
X1 + · · ·+Xn

n
− µ > ε

]
= 0, (27)

36Clearly, the MacCauley duration is a function of the term structure of interest rates and thus will vary across scenarios.

We have nevertheless elected to use an average set of zero-coupon rates to keep this measure constant over time.
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for all ε > 0. In words, this means that the average of independent trials will converge to its mean in

probability—or rather, the Monte Carlo approximation error becomes arbitrarily small for very large values

of n. Even better, if σ2 = var (Xi) <∞, we have that,

lim
n→∞

P

[
X1+···+Xn

n − µ
σ
√
n

< α

]
=

1√
2π

∫ α

−∞
e−

z2
2 dz, (28)

for all α ∈ R. This is one version of the central-limit theorem and it gives us a prescription for determining the

error in our Monte Carlo estimate for sufficiently large values of n. In particular, we construct a confidence

interval for our Monte Carlo estimate as,

X1 + · · ·+Xn

n
± Φ−1

(
1− α

2

) σ̂n√
n
, (29)

where, Φ−1 is the inverse of the standard normal cumulative distribution function and σ̂n is the sample

standard deviation.37 Inspection of equation (29) reveals that the error of our simulation estimate decreases

at the rate of O(
√
n).38 Figure 6 illustrates the debt-charge values from the first year of an arbitrarily

selected simulation. Observe their variation around the mean value of $22.66 billion. Using equation (29),

we can proceed to characterize the error in this estimate for a range of scenarios.

Table 4: Simulation Error Estimates: This table provides an example of the simulation error for various values
of n in the first-year debt costs illustrated in Figure 6. We use a mean debt charge of $22.6629 and sample standard
deviation of $1.4636 billion.

Scenarios Lower Upper Confidence
(n) bound bound interval size
100 22.3760 22.9497 0.5737

1,000 22.5722 22.7536 0.1814
2,500 22.6055 22.7203 0.1147
5,000 22.6223 22.7035 0.0811
10,000 22.6342 22.6916 0.0574
100,000 22.6538 22.6720 0.0181

The results of a small experiment with different selections of n are summarized in Table 4. Note that for

1,000 scenarios we observe a 95 per cent confidence interval of more than $180 million, whereas increasing

the number of scenarios to 10,000 reduces this to just under $6 million. The incremental effort of performing
37Fishman (1995) indicates that, while this is an asymptotically valid confidence interval, there are, at least, three potential

sources of error: non-uniform convergence of the sample statistic to the normal distribution, the error associated with using

the sample standard deviation instead of the true variance, and the potential for positive correlation between the sample mean

and the sample standard deviation. For the purposes of this study, we will assume that n is sufficiently large for these errors

to be relatively minimal.
38O(

√
n) means that the speed at which the error declines is proportional to the speed at which 1√

n
goes to zero.
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100,000 simulations to reduce the size of the confidence interval to around $2 million does not seem worth-

while. Based on this analysis, therefore, and the computational capacity available to us, we have elected to

consider 10,000 scenarios for each of the financing strategies analyzed in this section.39

Figure 6: Simulated Debt Charges: This figure outlines a set of 2,500 annual debt charges from the first year

of an arbitrarily selected simulation.
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4.2 The basic model

In this subsection, we examine the cost-risk trade-offs associated with our five previously defined financing

strategies in the context of two stochastic environments. The first setting is a simple stochastic environment.

More specifically, the only source of uncertainty relates to the evolution of the term structure of interest

rates. This means that the financial requirements of the government are assumed to be constant at zero,

there is no business cycle, the government’s issuance costs are independent of the financing strategy, and

the government’s financial requirements—given that they are constant—are naturally independent of the

financing strategy. In the second stochastic environment, we use our full model. That is, we permit variation
39On average, the computation of 10,000 stochastic simulations for each financing strategy required between 45 minutes to one

hour of computing time, depending on the options selected in the program. Our model was constructed using the mathematical

software, MATLAB, and was run on a Sun Microsystems Blade Workstation running the Solaris 2.8 operating system.
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of the government’s financial requirements, incorporate a business cycle model, and allow for interplay

between the financing strategy and both the government’s financial requirements and the cost of issuing

these debt instruments. The reason for this two-step approach is to construct a base case—involving only

interest-rate variation—to compare the effects of the relaxation of these assumptions in the full stochastic

model. On balance, owing to our careful model calibration, we should not expect drastic differences in the

model results. Instead, we expect to observe a trend towards greater volatility in the general model, given

its heightened realism and additional sources of uncertainty and interplay between key variables.

Our first step is to investigate the nature of our five financing strategies. It is instructive to look at

the financing strategy weights as described in Table 2, but this does not provide a very clear sense of

the amount of periodic debt issuance this implies for the government. In Table 5, we outline the average

quarterly issuance associated with our five financing strategies. Clearly, the financing strategies dominated

by treasury bills require significant quarterly issuance in these instruments. Also note that the 100 per cent

bonds financing strategy actually requires a relatively modest amount of 3-month treasury bills each quarter,

because to accommodate the reopening cycle of our four benchmark bonds, we need to use a cash account

that takes the form of a 3-month treasury bill.

Table 5: Average Quarterly Issue by Instrument: This table summarizes the average quarterly issuance
by debt instrument implied by our five different financing strategies. Observe that, for cash-management purposes,
it is necessary to use the 3-month treasury bill in a limited manner for the 100 per cent bond financing strategy.

Financing strategy 3-month 6-month 1-year 2-year 5-year 10-year 30-year
Simple and full stochastic environments

100% bills 133.69 66.85 33.43 0.00 0.00 0.00 0.00
75% bills 103.71 50.14 25.07 3.13 1.25 0.63 0.21
50% bills 73.73 33.42 16.71 6.27 2.51 1.26 0.42
25% bills 43.75 16.71 8.36 9.40 3.76 1.88 0.63

100% bonds 13.77 0.00 0.00 12.54 5.02 2.51 0.85

Note that the average quarterly issuance is virtually identical under the simple and full stochastic envi-

ronments. This does not imply that the issuance is identical under our two specifications. The key difference

stems from the fact that, because the simple stochastic model does not permit any variation in the govern-

ment’s financial requirements, the government’s budgetary balance is assumed to be constant at zero. This

implies that, in the simple setting, the average issuance values are constant across all scenarios. This is not

the case in the full stochastic environment, which permits variability in government financial requirements.

The average issuance levels are highly similar due to the calibration of the parameters in the full stochastic

model. In expectation, this model will generate a zero level for the government’s financial requirements. It

will, of course, vary around zero for any given realization. The model parameters and calibration procedure
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are discussed in Appendix B.

Table 6: Standard Deviation of Quarterly Issue by Instrument: This table summarizes the standard
deviation of quarterly issuance by debt instrument implied by our five different financing strategies. As the govern-
ment’s financing requirements vary over time, there will be a corresponding variation in quarterly issuance. This is
reflected in these statistics.

Financing strategy 3-month 6-month 1-year 2-year 5-year 10-year 30-year
Full stochastic environment

100% bills 2.35 1.20 0.63 0.00 0.00 0.00 0.00
75% bills 1.76 0.88 0.46 0.06 0.03 0.02 0.02
50% bills 1.18 0.58 0.30 0.12 0.06 0.04 0.04
25% bills 0.64 0.28 0.15 0.18 0.09 0.06 0.06

100% bonds 0.11 0.00 0.00 0.24 0.12 0.08 0.08

Table 6 summarizes the standard deviation of average quarterly issuance by debt instrument for the full

stochastic environment. Financing strategies dominated by treasury-bill issuance quite clearly exhibit greater

variability than financing strategies with larger proportions of bond issuance. This is intuitively reasonable

given that more frequent refinancing exposes the government to additional variability in its issuance pattern.

Another reason for the incremental variation in treasury-bill-dominated financing strategies is their sheer

amount of average quarterly issuance. Higher absolute issuance should imply higher volatility.

There is also an additional element driving issuance volatility: the interplay between the financing strategy

and the government’s financial requirement. The debt charges associated with short-term borrowing are more

volatile, thereby contributing, on average, to less accurate financial requirement forecasts for the government.

This, in turn, adds to the overall volatility in average quarterly debt issuance. A separate examination of

average quarterly debt issuance—not shown here due to space limitations—nevertheless reveals that the

variability in the financial requirements is the more important effect for two reasons. First, the forecast rule

we assume the government uses for projecting future debt charges, described in equation (50), is quite stable.

Second, the assumed variability in government financial requirements is relatively small. We address this

second point in section 4.3 when we consider the sensitivity of our model to two alternative parameterizations.

How do these differences in issuance impact measures of cost and risk? Table 7 describes the mean debt

charges and their associated volatility for each of the five financing strategies across the 10,000 stochastically

generated outcomes. These results are reported for the first, fifth, and tenth years of the 10-year simulation

horizon. In both the simple and full stochastic environments, we observe a clear inverse trend between

average cost and volatility. More specifically, as we increase the proportion of long-term debt in the financing

strategy, we increase the expected cost to the government, but simultaneously reduce the volatility of these

debt charges. In the first year, in the simple stochastic setting, for example, we observe expected debt

charges of about $18 billion for a financing strategy composed entirely of treasury bills, as compared with
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approximately $25 billion for a bonds-only financing strategy. The volatility of the treasury-bill-dominated

financing strategy stands at almost $3 billion in the first year versus only $500 million for the 100 per cent

bonds financing strategy.

Table 7: Expected Debt Charges and Volatility by Financing Strategy: This table outlines the ex-
pected debt charges and the associated volatility (standard deviation) of these debt charges for the first, fifth, and
tenth year of the analysis horizon.

Year 1 Year 5 Year 10Financing
strategy Mean Volatility Mean Volatility Mean Volatility

Simple stochastic environment
100% bills 18.33 2.74 17.96 5.90 17.96 6.76
75% bills 20.08 2.16 19.45 5.06 19.31 5.99
50% bills 21.82 1.59 20.94 4.23 20.66 5.28
25% bills 23.57 1.03 22.44 3.45 22.01 4.64
100% bonds 25.31 0.46 23.93 2.75 23.37 4.11

Full stochastic environment
100% bills 19.28 2.79 18.93 6.22 19.02 7.26
75% bills 20.92 2.21 20.33 5.35 20.22 6.48
50% bills 22.26 1.63 21.45 4.48 21.22 5.71
25% bills 23.76 1.05 22.71 3.66 22.37 5.04
100% bonds 25.53 0.48 24.15 2.93 23.69 4.48

Inspection of Table 7 also reveals that the full stochastic setting generates both higher cost and volatility

estimates across all periods relative to the simple stochastic environment. The expected cost, for example,

in the full stochastic setting is higher by approximately $1 billion for 100 per cent treasury bill financing

strategy, but decreases to only about $200 million for the 100 per cent bond financing strategy. The volatility

of these expected costs increases fairly uniformly across all observations. This is fairly clear evidence of

the incremental cost and risk associated with frequent refinancing of the government’s portfolio. It also

demonstrates that failure to model the random nature of the government’s financial position will tend to

bias downwards one’s cost and risk estimates.

The next point is that, while the average debt charges remain stable across the 10-year horizon of our

analysis—indeed, they even tend to fall slightly—their volatility rises dramatically across time.40 Further-

more, although the shorter-term debt-based financing strategies continue to remain more volatile relative

to the longer-term-debt strategies, the spread between them decreases with time. This is natural, because

the uncertainty in the future realizations of our stochastic environment increases with time. It is clear, for

example, that the range of possible term-structure outcomes is greater over a five-year period than a one-year

period.
40The slight decline in debt charges is due to the slightly higher interest rates used to generate the cost of the initial portfolio.
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Figure 7: Annual Cost Distributions for 100 per cent Treasury Bills: This figure is a sequence of an-

nual histograms for the simple and full stochastic environments. The first graph relates to the simple setting and the

second describes the full setting.
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Although Table 7 summarizes the first two moments of our debt-cost distribution, it tells us relatively

little about the tails of this distribution. Tail events are important because they provide information about

the worst-case outcomes that we can expect to observe under our stochastic environment. Figures 7 and 8

graphically describe the annual debt cost distributions associated with the 100 per cent treasury bill and the

100 per cent bond strategies for both the simple and full stochastic environments; the first set of histograms,

in each figure, relates to the simple setting, and the second set describes the full stochastic setting. Note

in Figures 7 and 8 the positive skew in the annual debt-charge distributions. This stems from the form of

the conditional distributions for the state variables used in our two-factor CIR interest-rate model. These

state variables have non-central χ2 distributions that preclude interest rates from becoming negative. This

implies that there is a negative bound on debt charges. With relatively small probability—primarily because
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this behaviour is dampened by the mean-reversion inherent in these models—interest rates can take large

positive values. This feature of our interest-rate model, which incidentally is a reasonable approximation

of reality, contributes to the positive skew in our debt-charge distributions. Again, this positive skewness

increases over time as the range of possible interest-rate realizations becomes more dispersed over time.

Also note in Figures 7 and 8 that, on balance, there is greater dispersion in debt-cost outcomes under the

full stochastic environment. This relates to both the greater volatility in government financial requirements

and the fact that the full stochastic model includes negative shocks to government financial requirements

under recessionary conditions—this is described in section 3.1 and Bolder (2002). This generates a moderate

negative tendency to financial requirements when the economy is in recession. On average, this generates

somewhat larger debt charges and the deficit position acts to offset the positive covariance between the pri-

mary balance and debt charges, thereby generating greater financial requirement volatility and contributing

to a lengthier tail for the annual debt-cost distribution.

A final observation about Figures 7 and 8 is the significantly lower volatility in the 100 per cent bond

strategy relative to the 100 per cent treasury-bill strategy. Furthermore, the probability mass in Figure 8 is

centred around $25 billion, rather than the $18 billion central value in Figure 7. Although these observations

should come as no surprise, given our analysis of Table 7, it nonetheless lends some credibility to these figures.

That is, an extreme short-term debt-based financing strategy leads to low expected cost but high volatility,

while the longest-term based financing strategy (i.e., 100 per cent bond) generates high expected costs with

low volatility.

While these graphs are helpful, we would also like to describe the tail of the annual debt-charge distri-

butions in quantitative terms. In section 3.3, we defined two different measures that accomplish exactly this

task. In particular, we defined the relative cost-at-risk (RCaR) in equation (17) and the relative conditional

tail cost-at-risk in equation (19). Both of these quantities are outlined in Table 8 for the first, fifth, and tenth

year of our analytical time horizon; the table also considers both the simple and full stochastic environments.

To paraphrase the discussion of section 3.3, the best way to think about these measures is as the worst-case

deviation from the mean that we would expect to observe under normal market conditions.

We would expect, based on our review of Figures 7 and 8, that these two measures for the full setting

should dominate those for the simple setting. This is exactly the case. In the first year, the difference,

ranging from $40 to $100 million, is not very extreme. Over time, however, the spread between the full and

simple setting increases more substantially. This is a quantification of the greater volatility inherent in the

full stochastic environment. If we focus only on interest-rate dynamics, we ignore other potential aspects

that could contribute to extreme debt-charge outcomes.

Within each stochastic environment, we continue to observe a greater amount of tail risk associated with

the treasury-bill-dominated financing strategies relative to the longer-term-based borrowing strategies. In

the 100 per cent treasury-bill strategy under the simple stochastic environment, for example, we see that
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Figure 8: Annual Cost Distributions for 100 per cent Bonds: This figure includes a sequence of annual

histograms for the simple and full stochastic environments. The first graph relates to the simple setting and the

second describes the full setting.
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the worst-case deviation from the mean ranges from $4.8 to $6.3 billion in the first year under our two

measures. In contrast, the 100 per cent bonds strategy exhibits a worst-case deviation of only $800 million

to $1.1 billion. We also observe that, in a manner similar to the cost volatility measure, both the RCaR

and RTCaR measures increase over time and the distinction between the various financing strategies falls

in relative terms. The first-year RCaR of the 100 per cent treasury-bill financing strategy, for example, is

almost six times greater than the RCaR of the 100 per cent bond strategy; in the tenth year, however, it is

only 1.6 times larger.

This raises another question. How do we interpret annual debt-charge-based measures of risk, whether

they be RCaR, RTCaR, or cost volatility? While the reason for the increased volatility of these measures

over time is clear, it does not help us with their application. Indeed, in the tenth year of the analysis, the two
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Table 8: Percentile Measures of Risk: This table describes the relative CaR and expected tail CaR for the
first, fifth, and tenth year of the analysis horizon. These values are computed based on the 95th percentile of each
annual debt cost distribution using equations (17) and (19).

Year 1 Year 5 Year 10
Relative Relative Relative Relative Relative RelativeFinancing

strategy CaR tail CaR CaR tail CaR CaR tail CaR
Simple stochastic environment

100% bills 4.87 6.37 11.73 16.50 13.33 19.97
75% bills 3.87 5.05 10.08 14.18 11.91 17.83
50% bills 2.85 3.73 8.43 11.91 10.54 15.84
25% bills 1.83 2.41 6.85 9.74 9.33 14.03
100% bonds 0.83 1.11 5.43 7.74 8.36 12.50

Full stochastic environment
100% bills 4.98 6.51 12.39 17.60 14.16 21.74
75% bills 3.95 5.17 10.63 15.16 12.75 19.49
50% bills 2.91 3.82 8.86 12.73 11.22 17.29
25% bills 1.87 2.47 7.18 10.41 10.16 15.36
100% bonds 0.87 1.15 5.65 8.29 9.11 13.72

CaR-based measures provide estimates that are of similar magnitude to the expected cost of the portfolio.

This would suggest that, as we move further along the time dimension, annual debt-charge-based measures

of risk become substantially less useful as a policy tool.

One of the reasons for the tremendous variance in annual debt-charge based measures is that we are

examining the unconditional distribution of debt costs at each point in time. The only exception, of course,

is the first year of the analysis, because all of the stochastic realizations begin from the same initial starting

point. When we examine the debt cost distribution for the fifth year, however, we are not conditioning on

the value of the debt charges for the fourth year in the simulation. This information is nevertheless critical,

because the entire simulation is strongly path-dependent. That is, current debt charges will depend in an

important manner on the debt charges—and thus the stochastic environment—prevailing in the previous

periods. We need to explicitly consider this path-dependency in any useful measure of risk to be applied

over a longer-term time horizon.

It is exactly due to these concerns that we developed the conditional cost volatility measure, in section 3.3,

that deals with the entire time dimension. Indeed, this is quite a simple approach. If our concerns stem

from not conditioning on previous outcomes in each sample path, then why not explicitly condition on these

values? In other words, our risk measure represents the residual uncertainty in forecasting the next year’s

debt charges conditioning on the current value. Moreover, given the nature of our stochastic model, which

involves strong mean reversion of our stochastic processes, this distribution is stationary. As such, we can

safely interpret our measure of risk in the natural way.
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Table 9 demonstrates the results of the pathwise estimation of an AR(1) model by financing strategy

and stochastic environment. The first columns of Table 9, φ0, φ1, and ξ, are the parameters that we use to

describe the conditional debt cost distribution. φ0 is an intercept term and can be considered as the base

debt charges that are independent of the current state of the stochastic environment. The second parameter,

φ1, essentially describes the stationarity of conditional distribution. Consider this value as representing

how much weight is being placed on the current value when forecasting the amount of debt charges for the

next year. Caution is required, however, because when the model places too much weight on the previous

observation we run into stability problems. A value of φ1 = 1, for example, would imply that,

ct − ct−1 = φ0 + εt. (30)

In other words, this would imply that the process, {ct, t ≥ 0}, is entirely random and has non-finite variance.41

This would be highly problematic. Fortunately, all of the estimated values suggest stationary conditional

distributions.

The third parameter, ξ, representing the conditional volatility is the most useful for our purposes. As

stated earlier, this single measure describes the uncertainty associated with forecasting debt charges for the

subsequent period using this AR(1) model. We note the same trends in this measure as we detected in the

previous analysis. In particular, the values are higher for the full stochastic environment than for the simple

setting. Moreover, the short-term debt dominated financing strategies exhibit significantly more—on the

order of five times for the two extreme financing strategies—conditional volatility relative to longer-term-

debt focused financing strategies. Thus, this measure is consistent with our previous analysis.

The final two columns exploit the structure of our AR(1) model to compute the first two moments of the

unconditional debt cost distribution. The unconditional mean values are similar in both level and trend to

the previously considered expected cost values. Also observe that the unconditional volatility is significantly

larger—on the order of $300 to $400 million—than the conditional volatility. This represents the increase in

the efficiency of the forecast associated with being able to condition one’s forecasts of future debt costs on

the current level.

One concern with this approach is that these parameters are computed based on an implicit assumption

of a Gaussian conditional distribution. Unfortunately, based on the nature of our stochastic environment,

this is not strictly true. To assess this more carefully, Figure 9 includes four separate histograms of the first

differences (∆ct = ct − ct−1 for t = 2, 3, 6, and 10) of the cost distribution for the 50 per cent treasury-bill

financing strategy. These histograms, which each have an overlaid normal density, indicate that they are

not Gaussian.42 In particular, each histogram exhibits positive skewness, an excess of observations in the

tails, and too much mass in the centre of the distribution. Nevertheless, as a first-order approximation, the
41In the econometric literature, of course, this is referred to as a unit root.
42The results are highly similar for the other four financing strategies.
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Table 9: Conditional Cost Distribution: This table describes the parameters of the conditional cost density.
These are estimated assuming that this density is reasonably described by a first-order autoregressive process.

Conditional parameters Unconditional parameters
Intercept Slope Conditional Mean VolatilityFinancing

strategy (φ0) (φ1) volatility (ξ)
(

φ0
1−φ1

) (√
ξ2

1−φ2
1

)
Simple stochastic environment

100% bills 8.17 0.52 2.42 16.89 2.83
75% bills 8.39 0.55 1.91 18.59 2.29
50% bills 8.02 0.60 1.41 20.27 1.76
25% bills 6.60 0.70 0.93 21.69 1.30
100% bonds 4.45 0.80 0.50 22.12 0.83

Full stochastic environment
100% bills 8.49 0.52 2.47 17.88 2.89
75% bills 8.59 0.56 1.97 19.50 2.38
50% bills 8.00 0.61 1.46 20.77 1.84
25% bills 6.57 0.70 0.96 21.80 1.34
100% bonds 4.53 0.80 0.53 22.16 0.88

assumption of Gaussianity does not seem unreasonable.

Clearly, more work is required in considering more elaborate techniques for estimating these condi-

tional densities. We could, for example, attempt to find a better approximation for these first-difference

distributions and explicitly account for this using maximum-likelihood estimation. One could also use non-

parametric kernel-based regressions to avoid making any assumptions about the form of the conditional

density. Nevertheless, we consider the current approach as a first-order approximation that demonstrates a

general approach to measuring the longer-term risk associated with a given financing strategy.

With a good understanding of the conditional distribution, we could easily extend these ideas by com-

puting a worst-case conditional volatility. Assuming that the assumption of Gaussianity is reasonable, for

example, we could calculate something like a time-conditional cost-at-risk (TCCaR) as,

TCCaR = Φ−1
(

1− α

2

)
ξ, (31)

where α represents the critical level for the tail of the distribution. This could, of course, be generalized to

other distributional assumptions or computed non-parametrically.

4.3 Sensitivity analysis

The results of any mathematical model depend on the nature of the assumptions made in its construction. It

is therefore essential that we include a facility in our analysis to test these assumptions. In this subsection,

we consider some alternative parameterizations for our full stochastic model. Obviously, although there is
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Figure 9: First-Difference Distributions: This figure summarizes four separate histograms for the first differ-

ences of the 50 per cent treasury-bill financing strategy. Overlaid on each histogram is a normal density to assess the

hypothesis of a Gaussian conditional density for the government’s debt costs.
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scope for a much higher level of sensitivity analysis, we are constrained in what can be effectively presented.

We have selected, therefore, two alternative specifications for the volatility of our stochastic system that

we believe are quite interesting. First, we hold all other parameters constant and increase the volatility of

the government’s financial requirement process by a factor of two and a half. We selected this specification

for our sensitivity analysis because the government’s financial requirements are critical in determining how

much must be borrowed in each given period. Note, however, that the impact of a recession on the govern-

ment’s financial requirements remains unchanged. The altered parameter describes the financial requirement

volatility that is orthogonal to the general state of the macroeconomy. In other words, we are considering a

situation where the government’s budgetary position is subject to a greater degree of noise.

The second parametric change to our model involves our interest-rate model. Again, we hold all other

48



A Stochastic Simulation Framework for Debt Strategy

parameters constant and increase the volatility of the dynamics of the term structure of interest rates.

Specifically, we increase the volatility of the first state variable—associated with the general slope of the

term structure—by a factor of 1.3 and augment the volatility of the second state variable—which describes

parallel movements in the term structure—by a quarter. This second candidate for sensitivity analysis was

selected given that interest rates are essential in determing how much must be paid to finance new borrowing

in each period.43

As in the previous section, we consider the five financing strategies described in Table 2 for 10,000

scenarios with an initial debt stock of $400 billion. Table 10 illustrates the mean and associated volatility of

the debt charges across all financing strategies for each sensitivity analysis. A natural point of comparison

is Table 7 on page 41. Interestingly, there is a relatively small increase in the mean and volatility of debt

charges when we increase the variability of the government’s financial requirement process. The increase in

cost volatility for the first sensitivity analysis, in fact, seems to appear primarily for the longer-term-debt

dominated strategies.

Table 10: Expected Debt Charges and Volatility by Financing Strategy: This table outlines the ex-
pected debt charges and the associated volatility (standard deviation) of these debt charges for the first, fifth, and
tenth year of the analysis horizon.

Year 1 Year 5 Year 10Financing
strategy Mean Volatility Mean Volatility Mean Volatility

Increased financial requirement volatility
100% bills 19.22 2.76 18.74 6.19 18.87 7.50
75% bills 20.87 2.19 20.16 5.40 20.10 6.83
50% bills 22.22 1.62 21.29 4.59 21.07 6.15
25% bills 23.73 1.05 22.56 3.87 22.22 5.61
100% bonds 25.51 0.51 24.02 3.28 23.53 5.23

Increased term-structure volatility
100% bills 19.24 5.10 18.61 8.66 18.98 9.27
75% bills 20.88 4.01 19.99 7.18 20.06 7.80
50% bills 22.22 2.91 21.11 5.71 20.94 6.37
25% bills 23.73 1.82 22.36 4.32 21.97 5.07
100% bonds 25.50 0.74 23.81 3.09 23.16 4.01

Conversely, we observe a significant jump in the volatility of debt costs associated with augmented

term-structure variance. Specifically, the 100 per cent treasury-bill financing strategy demonstrates a cost

volatility of more than $2 billion more than the base parameterization outlined in Table 7. This dampens out

substantially as we move towards financing strategies with a greater emphasis on long-term borrowing. The
43The exact specifics of our parameter selection and associated diagnostics for our stochastic model are described in Ap-

pendix 5.
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mean level of debt costs, however, remains almost identical to that evidenced by the base parameterization.

This suggests that, on average, the term structure has the same general form, albeit with a greater level of

volatility.

Table 11, which is directly comparable with Table 8 on page 45, provides an overview of our two tail risk

measures for the two sensitivity analyses. The same trend is evident for the increased financial requirement

volatility. Specifically, the short-term-debt based financing strategies are virtually identical to the base pa-

rameterization, while the longer-term-debt based strategies exhibit a somewhat larger tail risk. One possible

reason for this effect is that the total amount of short-term borrowing required under the treasury-bill-

dominated strategies are relatively insensitive to small changes in the volatility of the government’s financial

requirements. The absolute level of borrowing among the bond-dominated financing strategies, however,

is quite small, and is perhaps more sensitive to increased volatility of government financial requirements.

That is, the error in the financial requirement model that is independent of the business cycle appears to

be relatively unimportant to the overall results. Other aspects of the business cycle model also need to be

examined to determine their importance to the simulation results.

Table 11: Percentile Measures of Risk: This table describes the relative CaR and expected tail CaR for the
first, fifth, and tenth year of the analysis horizon.

Year 1 Year 5 Year 10
Relative Relative Relative Relative Relative RelativeFinancing

strategy CaR tail CaR CaR tail CaR CaR tail CaR
Increased financial requirement volatility

100% bills 4.87 6.40 11.88 17.32 14.38 22.60
75% bills 3.86 5.08 10.33 15.09 12.94 20.53
50% bills 2.85 3.76 8.79 12.83 11.51 18.45
25% bills 1.85 2.45 7.37 10.75 10.35 16.68
100% bonds 0.91 1.20 6.14 8.96 9.80 15.28

Increased term-structure volatility
100% bills 9.24 12.74 16.44 24.39 17.55 26.66
75% bills 7.27 10.00 13.64 20.25 15.01 22.60
50% bills 5.30 7.26 10.74 16.15 12.00 18.67
25% bills 3.31 4.53 8.13 12.31 9.61 15.14
100% bonds 1.36 1.84 5.84 8.91 7.83 12.22

The increased interest-rate volatility sensitivity analysis, not surprisingly, generates large increases in

the estimated tail risk. The relative CaR for the 100 per cent bills strategy, for example, is close to twice

the value associated with the base parameterization. Increased interest-rate volatility has a greater impact

on financing strategies with larger portions of short-term debt that must be frequently refinanced. This is

consistent with both the behaviour of our term-structure model and generalized stylized facts about the term
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structure of interest rates. In particular, the short end of the term structure is substantially more variable

than the long end.

Table 12: Conditional Cost Distribution: This table describes the parameters of the conditional cost density.
These are estimated assuming that this density is reasonably described by a first-order autoregressive process.

Conditional parameters
Intercept Slope Conditional UnconditionalFinancing

strategy (φ0) (φ1) volatility (ξ) mean
(

φ0
1−φ1

)
Increased financial requirement volatility

100% bills 8.25 0.54 2.47 17.76
75% bills 8.20 0.58 1.97 19.37
50% bills 7.58 0.63 1.47 20.44
25% bills 6.19 0.71 1.00 21.49
100% bonds 4.41 0.80 0.61 21.92

Increased term-structure volatility
100% bills 9.72 0.45 4.55 17.54
75% bills 10.17 0.47 3.59 19.23
50% bills 9.98 0.51 2.62 20.52
25% bills 8.83 0.59 1.68 21.75
100% bonds 6.03 0.73 0.82 22.56

The final set of measures involves the conditional cost volatility outlined in Table 12. There are relatively

few surprises in this table compared with the conclusions we have drawn from Tables 10 and 11. That is,

there is relatively little difference—compared with the base parameterization—for the financial requirement

sensitivity analysis, but a substantial increase in the conditional cost volatility associated with increased

interest-rate variability.

The strong concordance of the various results in this section would suggest that interest rates are more

important to the final results than the government’s financial requirements. While this is not a terribly

surprising result, the scope of the difference is larger than one might expect. One possible reason for the

relative unimportance of the government’s financial requirements relates to the assumed level of accuracy of

the government’s debt forecasts. In equation (8), we postulate our model for the government’s determination

of the magnitude of debt charges for the subsequent period. If this assumption overestimates the government’s

ability to predict and react to shocks to the level of financial requirements, then we will systematically

underestimate the importance of financial requirement volatility in our analysis.

4.4 Stress testing

The stochastic simulation framework proposed in this paper attempts to model the impact of key macroeco-

nomic variables under normal market conditions on various financing strategies. It is nevertheless reasonable
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to ask how our financing strategies might fare under abnormal market conditions. The examination of ab-

normal outcomes is called stress testing and it represents an important element in our debt strategy analysis.

The usual approach to this problem is to construct a negative set of outcomes and examine how one’s port-

folio performs under these situations. This standard stress-testing methodology, however, does not make

any statement about the probability of the occurrence of abnormal market conditions. This feature of the

conventional stress-testing approach is not ideal because, in the absence of any sense of their likelihood, it

makes stress-test results difficult to interpret. For example, imagine that a particular financing strategy per-

forms quite badly under one possible stress scenario, but is otherwise quite attractive under normal market

conditions. If debt managers believe that the stress scenario has a relatively high probability of occurring,

then this would likely preclude consideration of this strategy. If, conversely, the expected probability of this

stress scenario is relatively low, then this may not be as problematic for the financing strategy in question.

Lacking an assessment of the probability of the extreme event, therefore, the situation is intractable.

Given this drawback of standard stress-testing approaches, we suggest an alternative methodology. We

wish to specify a state of the world that involves extreme outcomes for our stochastic model. While this may

seem vague, it is easily put into operation in the context of our Markov-chain based model of the evolution

of the business cycle. As discussed in Bolder (2002), the macroeconomic business cycle is described by a

two-state hidden Markov model with the estimated transition probabilities,

P[St = 0 | St−1 = 0] = q = 0.53, (32)

P[St = 1 | St−1 = 1] = p = 0.96,

yielding the following transition matrix,

P =

 q 1− p
1− q p

 =

0.53 0.04

0.47 0.96

 . (33)

Using this structure, we propose the addition of a third state to our Markov chain that corresponds to a set

of extreme outcomes. This could be a large parallel shift in the term structure of interest rates, substantially

increased interest rate volatility, or term-structure inversion. It could also involve negative outcomes for the

government’s financial position. This is similar in spirit to the peso problem. That is, the large, black-market

depreciation of the Mexican peso during the late 1970s was attributed to the small probability of a hidden

regime with huge consequences.44 Clearly, we have no way to estimate the transition probabilities of such a

state, so, instead, we assign some arbitrary but small probability of occurrence to this third state.

To alter our transition matrix, we define St = 2 as the economy residing in the extreme state in period
44In this case, the event was the devaluation of the peso by Mexican authorities. It eventually occurred in 1982. For more

details, see DeGrauwe (1989, page 129).
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t. Furthermore, we assume that the transition probabilities have the following form,

P[St = 2 | St−1 = 0] = ε, (34)

P[St = 2 | St−1 = 1] = ε,

where ε is a small, arbitrary, positive value. Our goal is to introduce a third extreme state with the minimum

possible perturbation to our macroeconomic model. We are assuming, therefore, that the probability of

transitioning into the extreme state is equal, and small, whether one currently resides in a recession or an

expansion. This assumption is based on the idea that these extreme states are related to large economic

shocks—such as war or some other form of geopolitical turmoil—that are independent of the current state

of the economy. We construct the revised transition matrix as,

P̃ =


P[St = 0 | St−1 = 0] P[St = 0 | St−1 = 1] P[St = 0 | St−1 = 2]

P[St = 1 | St−1 = 0] P[St = 1 | St−1 = 1] P[St = 1 | St−1 = 2]

P[St = 2 | St−1 = 0] P[St = 2 | St−1 = 1] P[St = 2 | St−1 = 2]

 , (35)

=


q 1− p− ε 1−m

1− q − ε p 0

ε ε m

 ,

=


0.53 0.04− ε 0.70

0.47− ε 0.96 0

ε ε 0.30

 .
Inspection of this transition matrix reveals our remaining assumptions. First, we have assumed that the

probability of remaining in an extreme state is relatively low at 30 per cent. Second, we have assumed a

zero probability for the economy’s transition from an extreme state to an expansionary state. That is, if

the economy currently resides in the extreme state, it can either remain in that state of the world (with

probability m = 30 per cent) or transition into a recessionary state (with probability 1−m = 70 per cent).

In this section, we will examine the risk and cost characteristics—using our usual battery of measures—

for ε = 0.05 per cent and 1 per cent. These are arbitrarily selected values intended to demonstrate how the

approach works in general. It is nevertheless natural to ask how we interpret a given selected value for ε.

One of the pleasant analytical properties of Markov chains is that we can—under certain assumptions that

are satisfied in our analysis—compute the unconditional probabilities implied by our choice of transition

matrix.45 The unconditional probability of recession in the two-state model is 8.06 per cent, implying that
45For an N -state Markov chain, the N × 1 vector of ergodic (or steady-state) probabilities, denoted π, satisfies the following,

Pπ = π. (36)
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the corresponding unconditional probability of expansion is 91.94 per cent. When we set

P[St = 2 | St−1 = 0] = P[St = 2 | St−1 = 1] = ε, (38)

then we slightly alter these probabilities. If ε = 0.5 per cent, then the unconditional (or ergodic) probability

of being in the extreme state is 0.7 per cent. If, however, we double ε to 1 per cent, then the ergodic

probability also doubles to 1.4 per cent. Another way to think about this is that, under this assumption,

the econonomy should on average find itself in an extreme state 1.4 quarters (just over four months) out of

every 100 quarters (25 years). These assumptions for ε lead to slight alterations in the ergodic probabilities

of recession and expansion of 8.09 per cent and 91.20 per cent for ε = 0.5 per cent. These probabilities are

correspondingly 8.11 per cent and 90.48 per cent when we set ε = 1 per cent.

Table 13: Expected Debt Charges and Volatility by Financing Strategy: This table outlines the ex-
pected debt charges and the associated volatility (standard deviation) of these debt charges for the first, fifth, and
tenth year of the analysis horizon.

Year 1 Year 5 Year 10Financing
strategy Mean Volatility Mean Volatility Mean Volatility

First stress test: ε = 0.5%
100% bills 19.49 3.25 19.45 6.82 19.50 7.84
75% bills 21.09 2.59 20.77 5.87 20.66 6.99
50% bills 22.39 1.91 21.83 4.92 21.61 6.16
25% bills 23.84 1.25 23.01 4.03 22.71 5.44
100% bonds 25.57 0.59 24.39 3.24 23.99 4.86

Second stress test: ε = 1%
100% bills 19.72 3.80 19.91 7.35 20.01 8.32
75% bills 21.27 3.03 21.17 6.33 21.12 7.41
50% bills 22.52 2.24 22.17 5.31 22.01 6.52
25% bills 23.93 1.47 23.29 4.37 23.06 5.76
100% bonds 25.60 0.70 24.60 3.54 24.27 5.14

The next question is, what is the nature of the extreme scenarios? We decided to alter our term-structure

model by increasing the long-term instantaneous interest rate by 600 basis points from 4 per cent to 10 per

cent, raise the volatility of the first state variable by 130 per cent and the second state variable by 70 per

cent, and finally increase the average slope of the term structure by approximately 75 basis points.46 Clearly,

It is the vector, π, that describes the steady-state probabilities of a Markov chain. Moreover, we have the following result,

lim
m→∞

Pm = π~1, (37)

where ~1 is a 1×N row vector of ones. See Bolder (2002, Appendix A) for more details.
46One could also, in this framework, alter the parameters of the term-structure model such that the term structure of interest

rates is primarily inverted.
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this is both a negative and extreme state of affairs for a sovereign borrower. It is, nevertheless, arbitrary and

was selected entirely for illustrative purposes. One could also simultaneously generate extreme outcomes for

the government’s financial requirements.

Table 14: Percentile Measures of Risk: This table describes the relative CaR and expected tail CaR for the
first, fifth, and tenth year of the analysis horizon.

Year 1 Year 5 Year 10
Relative Relative Relative Relative Relative RelativeFinancing

strategy CaR tail CaR CaR tail CaR CaR tail CaR
First stress test: ε = 0.5%

100% bills 4.48 8.62 12.85 19.73 15.08 23.86
75% bills 3.53 6.86 11.17 17.00 13.80 21.33
50% bills 2.60 5.08 9.32 14.28 12.10 18.87
25% bills 1.67 3.31 7.64 11.74 10.78 16.76
100% bonds 0.76 1.56 6.10 9.46 9.72 15.03

Second stress test: ε = 1%
100% bills 4.93 11.17 13.73 21.58 15.94 25.40
75% bills 3.91 8.90 11.78 18.61 14.39 22.64
50% bills 2.86 6.60 9.84 15.65 12.72 19.98
25% bills 1.82 4.32 8.09 12.92 11.31 17.71
100% bonds 0.82 2.05 6.50 10.53 10.21 15.94

Table 13 outlines the mean and cost volatility for our five financing strategies with ε = 0.05 per cent and

1 per cent. Again, we should be comparing these results with the normal conditions summarized in Table 7.

Note that, even with these very small probabilities of extreme events, we observe higher expected costs and

associated volatility across all financing strategies. The impact, in terms of both cost and volatility, of the

presence of an extreme state is greater for those financing strategies with larger proportions of short-term

debt instruments. This is to be expected, given the much larger refinancing burden associated with these

portfolios, and thus the enhanced exposure to negative market conditions. In other words, the increased

expected cost of a longer-term-debt dominated financing strategy can be considered as something of an

insurance premium given its relative insulation against extreme events. Ultimately, we see this style of stress

testing as a tool for determining the probability of an extreme state (i.e., ε) that is required to make this

insurance premium worth paying.

Stress testing, in general, is an exercise in examining tail events. Therefore, it is critical to examine

tail-based measures such as CaR and conditional tail CaR. We have already established that these measures

are of questionable use over longer-term time horizons. Even worse, as these are events that occur with very

low probability, we need to examine long-term time horizons to get a reasonable estimate of their impact

on the government’s debt cost distribution. A one-year relative cost-at risk measure, for example, is not
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sufficiently long for us to assess the impact of low-probability extreme events. This is clear from a comparison

of Table 14 with Table 8 on page 45. The one-year RCaR and RTCaR measures are virtually identical to

the results under normal conditions. The longer-term RCaR and RTCaR measures, however, do dominate

the corresponding values for the normal stochastic environment. Clearly, a one-year time horizon is not

sufficiently long to adequately perform stress testing. This would suggest that the measures in Table 14 are

of little practical use.

Table 15: Conditional Cost Distribution: This table describes the parameters of the conditional cost density.
These are estimated assuming that this density is reasonably described by a first-order autoregressive process.

Conditional parameters
Intercept Slope Conditional UnconditionalFinancing

strategy (φ0) (φ1) volatility (ξ) mean
(

φ0
1−φ1

)
First stress test: ε = 0.5%

100% bills 8.95 0.52 2.59 18.48
75% bills 9.02 0.55 2.06 19.99
50% bills 8.40 0.60 1.53 21.09
25% bills 6.89 0.69 1.01 22.20
100% bonds 4.60 0.80 0.56 22.51

Second stress test: ε = 1%
100% bills 9.24 0.51 2.74 19.01
75% bills 9.26 0.55 2.17 20.41
50% bills 8.63 0.60 1.61 21.45
25% bills 7.12 0.68 1.07 22.57
100% bonds 4.75 0.79 0.60 22.75

Our conditional cost volatility measure avoids this problem. It considers, by construction, the entire

time interval used in the analysis and synthesizes this information into a single risk measure. While not

a panacea, we do believe it is a step in the right direction. Table 15 summarizes the parameters for our

model of the conditional cost distribution under extreme conditions for our five financing strategies. These

are directly comparable with the results under normal conditions outlined in Table 9. Observe that the

conditional volatility, unconditional mean, and unconditional volatility for both assumptions on the value

of ε dominate those values in Table 9. The conditional cost volatility for ε = 1 per cent, for example,

is approximately $250 million greater than the associated value computed under the normal stochastic

environment. It is nevertheless reassuring to see that the differences are relatively small, given the small

probability of occurrence associated with these extreme outcomes.

Overall, we consider that this stress-testing methodology is useful for a sovereign debt manager who

is determining the probability of an extreme state (i.e., ε) required for the government to alter its risk

preferences and, consequently, its financing strategy.
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4.5 Examining multiple financing strategies

In analyzing the five different financing strategies, we have learned a few lessons about the nature of debt

strategy. In addition, we have explored a number of features of our stochastic framework. This analysis has

nonetheless failed to describe the relationship between cost and risk for a large number of financing strategies.

In this subsection, we will address this issue in some detail. The first challenge is how to organize and analyze

the overwhelming number of results associated with a substantial number of financing strategies—indeed, we

found it cumbersome in the context of five financing strategies. Our suggested approach is to examine the

relationship between the portfolio weights—in other words, the financing strategy—and various measures of

the cost and risk of the resulting debt-charge distributions for each of these financing strategies.

To make this clearer, let us define the number of financing strategies as K and the number of available

debt instruments as H. We define the proportion of debt in instrument h for the kth financing strategy as

ωkh. In vector form, we have

ωk
4
=


ωk1

ωk2

· · ·
ωkH

 , (39)

for k = 1, ...,K. In aggregate, we may represent the portfolio weights in matrix form as,

Ω
4
=
[
ω1 ω2 · · · ωK

]
. (40)

Thus the matrix Ω, with dimensions H ×K, is a compact representation for the proportion of debt issued

in the available instruments for each financing strategy. Let us further define a financing strategy that puts

all of its weight on a single debt instrument as a bullet portfolio.

We need a tool to facilitate our analysis. If y is an arbitrary measure of debt cost or risk, then we can

examine the relationship between portfolio composition and this measure as follows,

y = Ωβ + ε, (41)

where β is a vector of K parameters and ε represents the error in this linear representation.47 One approach,

of course, to determine the parameter vector is ordinary least squares. In other words, we plan to examine

the relationship between Ω and various measures of risk and cost in a highly straightforward univariate

setting. Note, however, that in this setting we cannot arbitrarily select Ω. The well-known solution to the
47A potential complicating factor in this approach is that y, our measure of cost or risk, is computed through simulation and

thus is observed with error. This is discussed in Judge et al. (1985), among others, and it can give rise to certain statistical

problems. We will, however, abstract from these potential complications during this analysis.
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least-squares problem arising from equation (41) is,

β = (ΩTΩ)−1ΩT y. (42)

If ΩTΩ is singular, we cannot solve this problem. One certain way to achieve this is to require that the

rows of Ω, or rather each ωk, k = 1, ...,K, be linearly independent. Moreover, we require the additional two

conditions,

ωkh ≥ 0, (43)

for h = 1, ...,H and k = 1, ...,K, and

H∑
i=1

ωkh = 1, (44)

for k = 1, ...,K. Even with these constraints, there is a very large, indeed an infinite, number of possibly

linearly independent weights. For relatively large N , however, it is not terribly difficult to generate a singular

ΩTΩ. The resulting approach used in this analysis is to carefully construct 225 linearly independent sets

of portfolio weights. This is not a basis for the space of linearly independent weighting vectors with the

conditions in equations (43) and (44).48

Table 16: OLS Regression of Mean and Volatility: This table lists the coefficients and R2 for the linear
regression describing the relationship between the financing strategy and both debt-charge mean and volatility.

Year 1 Year 5 Year 10Regression
statistics Mean Volatility Mean Volatility Mean Volatility

3 months (β1) 19.78 5.12 20.58 7.89 20.57 8.51
6 months (β2) 18.70 3.57 18.67 6.87 18.75 7.82
1 year (β3) 20.08 1.88 18.89 5.80 19.03 7.00
2 years (β4) 22.19 1.04 19.82 5.05 19.97 6.47
5 years (β5) 24.84 0.50 22.75 4.19 22.76 6.25
10 years (β6) 26.22 0.49 25.55 2.54 24.47 5.00
30 years (β7) 30.29 1.09 30.59 1.96 30.03 2.42
R2 coefficient 0.97 0.80 0.94 0.78 0.94 0.81

To permit this analysis, we ran 225 financing strategies using the full stochastic environment with the

same parameterization used in section 4.2. We considered 2,500 scenarios for each financing strategy with

an initial portfolio of $400 billion.49 Table 16 illustrates the results of the estimation of equation (41) for
48The idea is that we consider K bullet portfolios consisting entirely of issuance in the kth debt instrument. We then construct

linearly independent portfolios of instrument k and k+ 1, then k, k+ 1, k+ 2, and repeat this until K − 1. This leaves one debt

instrument absent. We then move forward to instrument k+ 1 and repeat. The final addition is the equally weighted portfolio.
49We were forced to reduce the number of scenarios, relative to the previous analysis, given computational constraints.
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the first two moments of the debt cost distribution for the first, fifth, and tenth year of the analysis. Given

the nature of the data, it is quite straightforward to interpret the regression coefficients. The value of β1

for the first-year mean debt cost is the predicted first-year cost of a financing strategy consisting entirely

of 3-month treasury bills. In other words, each regression coefficient describes the cost or risk for a bullet

portfolio. An equally weighted financing strategy, therefore, would involve a proportionate share in each

of the coefficients. Finally, a review of the coefficient values indicates that the estimated values are quite

reasonable. Bullet portfolios of longer-term debt, for instance, are more costly and less volatile than bullet

portfolios of shorter-term debt.

The most striking feature of Table 16 is the size of the R2 coefficients in the final row. This regression

statistic summarizes the amount of overall sample variance that is described by our linear model; the measure

of both mean and volatility of cost are very substantial. We observe, for example, that 97 per cent of the

variation in average debt costs is summarized by this linear model in the financing strategy weights; the

associated value is 80 per cent for the first-year cost volatility. A very similar pattern is evident in Table 17,

which outlines the regression results for our two measures of tail risk. While the RTCaR measure is somewhat

less well described by a linear model than the RCaR measure, they both exhibit relatively high R2 values.

Table 17: OLS Regression of Percentile Measures of Risk: This table lists the coefficients and R2 for the
linear regression describing the relationship between the financing strategy and both the RCaR and RTCaR measures.

Year 1 Year 5 Year 10
Relative Relative Relative Relative Relative RelativeRegression

statistics CaR tail CaR CaR tail CaR CaR tail CaR
3 months (β1) 7.99 15.84 14.80 23.23 16.22 25.75
6 months (β2) 5.69 9.98 13.13 20.03 14.99 23.54
1 year (β3) 3.22 4.46 11.30 16.76 13.41 21.14
2 years (β4) 1.98 2.27 10.07 14.30 12.44 19.87
5 years (β5) 0.80 1.37 7.81 12.34 12.68 19.71
10 years (β6) 0.60 1.68 4.59 7.73 9.77 15.61
30 years (β7) 1.03 4.95 3.27 6.29 4.59 7.60
R2 coefficient 0.93 0.63 0.85 0.71 0.80 0.77

It would seem reasonable to expect the cost of the portfolio to be linear in the portfolio weights, but one

would generally predict the relationship between the financing strategy and risk to be inherently non-linear.

Note that this does imply that the risk measures are not entirely linear in the financing strategy, but they

are nevertheless relatively well described by a linear model. This is worth considering in more detail. It

essentially suggests that the benefits of diversification are relatively modest. What does this mean? In the

extreme, it means that if we have two debt instruments, a and b, then the standard deviation of their annual
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debt charges for a portfolio, p, constructed from these two instruments is given by,

σp = ασa + βσb. (45)

In general, however, the portfolio standard deviation is summarized by,

σp =
√
ω2
aσ

2
a + σ2

bσ
2
b + 2ωaωbσaσbρab. (46)

When are equations (45) and (46) equivalent? If we set them equal, expand, and equate the coefficients,

we find that this holds only if the correlation between debt instruments a and b is equal to unity. In the

perfect correlation situation, therefore, diversification is not possible. Clearly, this is not entirely the case in

our situation, but our analysis does suggest that the benefits of diversification are lower than we might have

initially anticipated.

Table 18: Estimated Par-Rate Correlation: This table summarizes the estimated correlation of the par-
interest rates arising from our two-factor CIR model estimated using Canadian term-structure data from 1994 to
2001. The results are estimated from 2,500 randomly generated, 40-period sample paths.

Par interest- Estimated Standard
rate pair correlation deviation

3 mos. - 30 yrs. 0.65 0.21
3 mos. - 10 yrs. 0.73 0.17
3 mos. - 5 yrs. 0.84 0.11
3 mos. - 2 yrs. 0.96 0.03
3 mos. - 1 yr. 0.97 0.01

3 mos. - 6 mos. 0.98 0.00

What is driving this high degree of correlation? One possible reason is that our interest-rate model is

parameterized such that all interest rates are perfectly correlated. This is, in fact, exactly the case in a

single-factor model of the term structure of interest rates. In our two-factor setting, we have one factor that

describes parallel movements in the term structure, the perfect correlation case, and another that describes

changes in the steepness of the term structure over time. The introduction of the second factor eliminates

the perfect correlation between zero-coupon interest rates. Table 18 highlights the pairwise correlation

between the 3-month interest rate and the other key nodes on the term structure. Note that this analysis

was performed with par interest rates, rather than with zero-coupon interest rates, because these are the

rates at which the debt is actually issued; as par rates are essentially coupon-weighted averages of zero-

coupon rates, they will exhibit a higher relative correlation. Nonetheless, actual interest rates exhibit quite a

substantial correlation between adjacent values, but less when we consider non-adjacent values on the term

structure (i.e., 3 months versus 10 years). This highlights the fact that we should be exploring other possible

term-structure models that permit less correlation between nodes on the term structure.50

50There is a class of jump-diffusion models, for example, that may be worth considering.
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Another possible reason for the modest diversification benefits is the importance of the initial portfolio.

When the initial portfolio is large, the importance of newly issued debt in the overall debt charges is

dampened. In fact, the debt-charge distribution should be overwhelmingly driven by the large amount

of previously issued debt that has a fixed and known cost. This is particularly evident in the early years

of the simulation. Some rough analysis indicated that the initial portfolio is not terribly important in the

results. The main reason is the influence of treasury-bill borrowing, which by definition is refinanced within

one year. Any financing strategy with a non-trivial amount of short-term debt will have the corresponding

amount of refinancing.

The final, and most plausible, reason for the relatively high degree of linearity between risk and financing

strategy relates to the nature of debt issuance in any given financing strategy. As previously described,

our analysis employs a stock rule for the application of the vector of portfolio weights associated with each

financing strategy. The idea is to issue the appropriate amount of debt instruments to maintain the overall

portfolio in balance, as described by the set of portfolio weights. This implies that we need to be careful

about the interpretation of the portfolio weights. Consider the simple example of a portfolio of two assets

composed equally of 3-month treasury bills and 30-year bonds. This does not imply that each quarter the

government will issue 50 per cent of its financing requirement in 3-month treasury bills and the other 50

per cent of its financing requirement in 30-year bonds51: the treasury bills need to be completely refinanced

each quarter, whereas the 30-year bonds are quite infrequently refinanced. In any given period, then, there

is much more issuance at the short end of the term structure than at the long end. Table 19 explains

this phenomona by summarizing the average quarterly issuance for a $400 billion initial portfolio with four

reopenings per bond and equal weights in each of the usual seven debt instruments.52

Table 19: Average Quarterly Issuance: This table outlines the average quarterly issuance, in $ billions, of a
$400 billion initial portfolio with equal portfolio weights.

3 mos. 6 mos. 1 yr. 2 yrs. 5 yrs. 10 yrs. 30 yrs.
72.8 32.0 16.0 8.0 3.2 1.6 0.8

Observe that the quarterly issuance in the 3-month sector is more than 90 times larger than the average

quarterly issuance in the 30-year sector, and more than 45 times greater than the average quarterly 10-

year issuance. The majority of the issuance occurs in the short end of the term structure, where the

correlation between instruments approaches unity. The standard formula for standard deviation, as outlined

in equation (46), is thus not terribly useful in a dynamic setting, because it does not take into account
51In fact, for each stock rule there exists an equivalent flow rule that achieves the same result. This would involve altering

the proportions of issuance to take into account their maturity.
52For the two-year bond, there are only two reopenings.
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the concept of issuance. The benefits of diversification are, therefore, less important than might have been

expected. This is clearly a strong conclusion that suggests a sovereign’s debt strategy decision is driven more

by relative risk preferences and concern about extreme events than attempts at diversification.

We have argued that the benefits of diversification are less substantial than one might have initially

suspected. Let us now look more closely at these trade-offs in graphical form to see whether this is a

reasonable conclusion. Figure 10 illustrates the two-dimensional cost-risk trade-off for four different measures

of risk: one-year RCaR, one-year RTCaR, one-year cost volatility, and conditional cost volatility (ξ). We

characterize the first three risk measures as short term, given their one-year focus. Conversely, the final

measure, conditional cost volatility, is a longer-term measure of the risk associated with a given financing

strategy.

There appear to be two separate clouds of points on each graph. This discontinuity stems from our

model of the relationship between financing strategy and issue cost.53 Financing strategies that involve

highly concentrated or very limited issuance in a few debt instruments will tend to be more expensive. Thus,

these non-diversified strategies will be inefficient for a given level of risk. An important diversification effect,

therefore, in our analysis stems from the interplay between the financing strategy and issuance costs.

What is meant by this diversification effect? Long-term dominated financing strategies demonstrate

high cost but low risk; these are the financing strategies represented in the bottom right-hand corner of each

graph in Figure 10. Those financing strategies in the top left-hand corner, or the shorter-term based financing

strategies, involve lower costs at the expense of higher risk. The interior points are financing strategies that

involve combinations of long- and short-term debt instruments. Inspection of Figure 10 reveals evidence of

a diversification effect. That is, financing strategies using short-, long-, and medium-term debt instruments

appear both less risky and costly than a simple linear combination of short-term and long-term financing

strategies would imply.

The fact that this relationship is reasonably linear between all four measures of risk and cost is also

quite evident in Figure 10. This underscores the relatively limited nature of the diversification benefits. The

diversification benefit associated with the feedback between the financing strategy and debt issuance costs

appears to be more important than the diversification effect derived from the correlation structure of the

term structure of interest rates. Moreover, once a government decides on its relative preferences for short-

and long-term risk, a relatively small number of financing strategies should be considered.

At this point, while considering Figure 10, a natural question is what is the best financing strategy (i.e.,

ωk) for the government. One might be tempted, given its widespread popularity, to use the usual Markowitz
53It is discontinuous because we use a discontinuous function to mathematically model this relationship.
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Figure 10: Dispersion Risk and Cost Tradeoffs: This figure includes three short-term risk-cost trade-offs;

one-year relative cost-at-risk, relative tail cost-at-risk, and one-year cost volatility. It also includes a long-term

measure of risk in the form of conditional cost volatility. Cost is measured by the first-year mean cost for the first

three measures and unconditional mean debt cost.
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efficient frontier approach that is described as the following straightforward optimization problem,

min
ωk

ωTk Σωk
2

, (47)

subject to: ωTk ~1 = 1,

ωTk ~µ = E(µ),

ωkh ∈ [0, 1] for all h ∈ {1, ...,H},

where the costs of the vector of seven debt instruments are N (~µ,Σ), ~1 is a vector of ones, and E(µ) is the

desired expected cost of the portfolio. In other words, the usual way to deal with this type of setting is to

minimize the variance of cost subject to a given level of expected cost (i.e., E(µ)). There are, at least, three

reasons why this is not applicable in our setting. First, we make no assumption of normality of our debt

costs. This is a key assumption that permits one to examine only the first two moments of the debt-charge

distribution. Second, this is a single-period model and we are faced with a multiperiod problem. Third,

and perhaps most importantly, a generalization of this approach does not permit us to consider the inherent
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path dependency in the debt strategy problem. That is, the set of outcomes in period n depend importantly

on the outcomes in period n− 1.

We can, of course, solve equation (47) for the first period and examine the results. The consequent

efficient frontier is outlined in Figure 11 along first-year expected debt costs and associated first-year debt

cost volatility for the 225 financing strategies under consideration. Observe that it does appear to capture

the most desirable locus of risk and cost points. This approach is of limited usefulness, however, because it

cannot be generalized into a multiperiod setting and assumes a Gaussian debt cost distribution. We are not,

to be more precise, particularly interested in the best portfolio based on one-year debt charge volatility, but

rather we are interested in determining the best financing strategy based on conditional cost measures over

a long-term time horizon. Clearly, this is more complex. As we saw in section 2.2, this problem requires

a substantially more complicated structure than that described in equation (47); in fact, one needs to use

techniques from dynamic programming to solve this issue. As stated earlier, we do not attempt in this paper

to address the concept of optimality. Instead, we are trying to understand the risk and cost characteristics

of a number of different financing strategies.

Figure 11: An Efficient Frontier: This figure outlines the first-year expected debt costs and associated first-year

debt cost volatility. Solving equation (47), we then determine an efficient frontier.
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The four measures in Figure 10 address the risk associated with dispersed realizations of our stochastic
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environment. As we discussed in section 2, however, there is another element of risk in the debt strategy

problem; we termed this time diversification, or refinancing, risk. In the previous analysis of this section,

given the relatively small number of financing strategies, it was not appropriate to consider these measures.

In this setting, we need a general approach to quantitatively describe this type of risk. Figure 12 outlines

scatterplots for two different potential measures of time diversification risk: the fixed-debt ratio and the

average quarterly debt redemption (AQR).

Figure 12: Time-Diversification Risk and Cost Trade-offs: This figure includes four scatterplots that

attempt to describe time diversification (or refinancing) risk. These include the floating debt ratio and average

quarterly debt redemptions (AQR) as compared with both the unconditional cost of the portfolio and the conditional

volatility.
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The first two quadrants of Figure 12 outline the relationship between our two time-diversification measures

and the unconditional cost of the portfolio. We need to be somewhat cautious in interpreting these measures

because the amount of refinancing risk decreases as the fixed-debt ratio increases, but increases as the AQR

measure increases. We can make two broad conclusions from Figure 12. First, as refinancing exposure

increases, the expected cost of the portfolio decreases; that is, there is a negative relationship between

refinancing risk and debt cost. The second observation is a positive relationship between refinancing risk and

dispersion risk. More specifically, as the refinancing risk of the portfolio increases, there is a corresponding

increase in dispersion risk.
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It appears that the fixed-debt ratio is somewhat more useful than the AQR measure, because a large

number of different financing strategies appear to have very similar AQR values. Consider, for example, the

fact that more than one half of the portfolios have average quarterly redemptions of less than $100 billion.

With the fixed-debt ratio, the values are approximately equally distributed from zero to 100 per cent. We

would suggest that the fixed-debt ratio is a more efficient measure of refinancing risk relative to average

quarterly debt redemptions.

These relationships are identical to those uncovered in a general review of the financing strategies. In

fact, it appears that refinancing risk is actually a proxy for the basic composition of the portfolio associated

with a given financing strategy. A large amount of refinancing risk, for example, essentially describes a

financing strategy dominated by short-term debt. Indeed, one might argue that, given the financing strategy,

a measure of refinancing risk is redundant. We would nevertheless argue that the ease of interpretation of

fixed-debt ratio—relative to a financing strategy—makes these measures useful for a sovereign debt manager.

It effectively acts as a constraint to the problem. A government, for example, could place limits on the amount

of dispersion risk and refinancing risk it would undertake. This would provide a prescriptive direction for

the sovereign debt manager, in that certain financing strategies would no longer be permissible.

Figure 13: A Long-Term Cost, Risk, Time-Diversification Surface: This figure illustrates the three-

dimensional interplay between unconditional average debt costs, conditional volatility, and the fixed-debt ratio.
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Figure 13 describes the cost, dispersion risk, and time-diversification risk in three-dimensional space.
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This surface—and some decisions on risk preferences—essentially allows us to narrow down a large number

of financing strategies into a smaller preferred set. We could, for example, consider a target of 70 per cent

fixed-debt ratio and a conditional volatility of $2 billion. Inside the cloud of points that satisfy these two

criteria, of course, there are only a few associated financing strategies that are the most efficient in terms of

cost.

While Figure 13 narrows the financing strategy decision from a long-term perspective, one could repeat

the analysis for a shorter-term perspective using the first-year mean debt cost, the first-year relative tail

cost-at-risk, and the fixed-debt ratio. This type of analysis would permit the sovereign debt manager to

reconcile the long- and short-term perspective when selecting a financing strategy. Clearly, in practice, this

would be more difficult. It would be quite complicated, for example, if the long-term strategy—in steady

state—differed substantially from the current portfolio. One would then have to explicitly consider the

transition strategy. Moreover, the analysis in this paper does not help in determining a transition strategy.

Figure 14: A Short-Term Cost, Risk, Time-Diversification Surface: This figure illustrates the identical

three-dimensional trade-off, as in Figure 13, from a short-term perspective. We consider the first-year mean debt

cost, the first-year RTCaR measure, and the fixed-debt ratio.
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There is an additional issue to be considered. We have demonstrated in Figures 13 and 14 that there is

no unique financing strategy that will meet a given set of government time diversification and dispersion risk

preferences. A large part of the reason for this is the fact that many relatively distinct financing strategies
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share the same fixed-debt ratio. In theory, a strategy of 50 per cent treasury bills and 50 per cent 30-year

bonds will have a very similar fixed-debt strategy to an alternative strategy of 50 per cent treasury bills and

50 per cent 2-year bonds. While the differences in these portfolios become quite evident in terms of both cost

and risk, the fact does remain that there is additional room for another approach to describing the financing

strategy.

Ideally, one could simply use the actual financing strategy. This is, however, somewhat cumbersome.

Another alternative, used by a number of different sovereigns, is to use a summary portfolio measure to

describe the specific financing strategy in more detail. What we are suggesting here is that any single

measure of a given financing strategy is insufficient to describe its risk and cost characteristics. We suggest

a multifaceted approach with long-term cost and dispersion risk measures, a measure of refinancing risk,

and an additional higher-level portfolio measure. Two possible portfolio measures include the average term

to maturity (ATM) and the MacCauley duration of the portfolio. The relationship between each of these

measures, the unconditional debt cost, and the conditional volatility is summarized in Figure 15.

Figure 15: Possible Portfolio Measures: This figure illustrates two potential portfolio measures: average term

to maturity and MacCauley duration. The relationship between these two measures and both the unconditional debt

cost and the conditional volatility are summarized.
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There does not appear to be much difference between the ATM and MacCauley duration measures. This

should hardly be surprising, given the fact that the correlation between these two measures approaches unity.
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This would suggest that, to decide between these two portfolio measures, we need to consider additional

factors. The key distinction between these two approaches is that the MacCauley duration attempts to

consider the impact of coupon payments on the overall term to maturity of a given fixed-income security.

The ATM, however, is a simple weighted average of the various terms to maturity of the debt instruments

in the portfolio. The MacCauley duration appears to be a more realistic measure, but it is also more

difficult to interpret. In particular, assumptions about the term structure of interest rates are necessary for

a computation of this measure; as a consequence, it can vary over time. We avoid this problem by using

an average term structure for the computation of the MacCauley duration; this may not be a reasonable

assumption. For the purposes of this study, we use the ATM as a high-level summary of the government’s

financing strategy.54 This high-level measure is complemented by a long-term dispersion risk (conditional

volatility, ξ), short-term dispersion risk (relative tail CaR, RTCaR), and a refinancing risk measure (fixed-

debt ratio). We suggest that the use of the surfaces outlined in Figures 13 and 14 can help isolate the most

efficient financing strategy, in terms of cost, for a given set of pre-specified risk preferences. The methodology

is described graphically in Figure 16. To summarize, we suggest that the debt manager examine dispersion

risk, or the volatility of debt-service charges, from both a short-term and long-term perspective. In doing

so, the debt manager can also explicitly consider time-diversification, or refinancing, risk. The key idea is

that the debt manager should focus on multiple measures to describe the risk and cost characteristics of a

given financing strategy, because the complicated nature of the problem requires examination from multiple

perspectives.

The question still remains as to how one determines a target level for these various elements of our risk-

cost framework. We have seen, for example, that short-term-debt dominated financing strategies are less

costly but more risky than longer-term-debt focused financing strategies. One possible way to address this

issue is to adjust the cost of each individual financing strategy for the general level of risk. In other words,

we could normalize the cost of each financing strategy for its underlying level of uncertainty. In portfolio

theory, it is common to use the Sharpe ratio, defined as,

µ− r
σ

, (48)

where a given return of an asset, a ∼ N
(
µ, σ2

)
, and r represents a risk-free interest rate. This will not be

particularly useful for a debt manager. First of all, we do not have an obvious candidate for the risk-free

rate, because the risk-free rate is itself typically a government rate. More importantly, in an asset-based

approach, high expected returns are associated with high variance. Normalization by the standard deviation

reduces these returns somewhat. In our liability setting, high expected costs are associated with low variance.

Normalization by standard deviation, or some other measure of risk, would have the opposite effect.
54There are some practical limitations with the ATM measure as well. In particular, it is quite sensitive to the amount of

long-term issuance. This type of sensitivity may not be a desirable quality in a high-level summary measure.
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Figure 16: Risk-Cost Framework: This figure outlines a recommended approach to using our stochastic simu-

lation framework to select a specific financing strategy.
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We suggest instead that the risk of the portfolio be added to its expected cost. This measure of adjusted

cost (AC) is given by,

ACθ = Eθ(ct) + νθ,t, (49)

where νθ,t represents a measure of risk for financing strategy, θ, at time t. The idea behind this is quite

simple; if the expected cost of a portfolio is high, it will exhibit low risk and the adjusted cost will be very

similar to the unadjusted cost. If, conversely, the expected cost of a portfolio is quite high, it generally has

high risk and thus there will be a large upwards adjustment in the cost for that financing strategy. This will

place all the portfolios on an equal footing.

Before we actually examine these adjusted costs, let us alter equation (49), but putting these costs into

a percentage of the overall portfolio. That is, we define the relative adjusted cost (RAC) as,

RACθ =
Eθ(ct) + νθ,t

card(Ξ)
, (50)

where card(Ξ) represents the size of the steady-state portfolio. Figure 17 summarizes the risk-adjusted

expected debt costs for our 225 financing strategies relative to their ATM.55 We have adjusted costs based
55In the case of RCaR and RTCaR, the definition of equation (50) is equivalent to the CaR and TCaR measures defined in

equations (16) and (18), respectively.
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Figure 17: Risk-Adjusted Expected Cost: This figure summarizes the risk-adjusted expected debt costs for

our 225 financing strategies relative to their ATM. We have adjusted costs based on four different measures of risk:

conditional volatility (ξ), one-year RCaR, one-year RTCaR, and one-year cost volatility.
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on four different measures of risk: conditional volatility (ξ), one-year RCaR, one-year RTCaR, and one-year

cost volatility.

One might be tempted to conclude, from examining Figure 17, that across all four risk-adjusted cost mea-

sures the shorter ATM financing strategies are somehow preferable in risk-adjusted cost terms as compared

with longer-term financing strategies. That is, one could argue that there is a bias towards those financing

strategies that reduce the ATM of the overall debt portfolio. Caution, however, should be exercised, for at

least three reasons. First, we observe that risk-adjusted cost appears to spike upwards at very short-term

ATM levels. This underscores the riskiness of these strategies. This leads to the second point, that these

results were performed under normal market condition assumptions for our stochastic environment. In sec-

tion 4.4, we saw that the shorter-term-debt dominated financing strategies were more seriously impacted

in both cost and risk terms by the introduction of a low-probability extreme state. The effect, therefore,

of potentially extreme outcomes would be to flatten, or even invert, this relationship. This is underscored

by the fact that when we adjust for tail risk, the trend is somewhat weaker than when we consider the

variance-based measures of risk. Finally, a decision rule based entirely on this risk-adjusted cost analysis

has nothing to say about the risk preferences of the government. The government could be either risk-averse
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or risk-seeking, and the risk-adjusted cost would continue to provide the same result. Therefore, we would

suggest that the concept of risk-adjusted cost is a useful tool that, when considered in conjunction with the

other measures described in this text, can assist in the decision-making process.

5 Conclusion

We have covered a tremendous amount of ground. In section 2, we defined the debt strategy problem in

both qualitative and quantitative terms. We then worked through the conceptual and practical details of

our stochastic simulation framework in section 3. Combining the details of this discussion, we turned to

examine a set of illustrative results in section 4. This included an investigation of the new features of our

stochastic framework, a sensitivity analysis, a novel approach to stress testing, and the examination of a

relatively large number of financing strategies. This final analysis, in section 4.5, helped us develop a general

approach to using the stochastic simulation framework to select a given financing strategy predicated on the

consideration of a range of different measures of cost and risk. What have we learned from this analysis?

We summarize the key conclusions as follows:

• The use of the full stochastic environment, including a model of the macroeconomy and the gov-

ernment’s financial position, appears to be an improvement on the sole consideration of interest-rate

dynamics. The reliance on the simple stochastic environment tends to underestimate both the risk and

cost associated with a given financing strategy.

• The sensitivity analysis in section 4.3 revealed that assumptions regarding the random evolution of

the term structure of interest rates are a critical component in the overall analysis. Indeed, the term-

structure model appears to be significantly more important than the government’s financial requirement

process.

• Stress testing is an essential part of any complete debt strategy analysis. Even minute probabilities of

extreme future interest-rate realizations contribute to non-trivial increases in both the expected cost

and risk of a given financing strategy.

• The use of conventional risk measures, such as annual cost volatility and relative CaR, for longer-term

analysis is not always helpful, because they fail to condition on the state of the world in the previous

period. This is important because of the path-dependent nature of the debt strategy problem. We

recommend the use of a measure that explicitly conditions on previous outcomes: the conditional cost

volatility. This measure, which complements shorter-term measures such as RCaR and RTCaR, pro-

vides the flexibility for the consideration of cost and risk from both a short- and long-term perspective.
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• The diversification benefits across different debt instruments are relatively modest. This is a result of

two factors. First, our models produce a high level of correlation across all nodes of the term structure,

with particularly high correlation at the short end—this is consistent with empirical term-structure

behaviour. Second, there is a preponderance of short-term issuance across all financing strategies, which

implies that most actual issuance occurs at highly correlated short-term rates. The consequence is a

closer to linear relationship than expected between measures of risk and financing strategy. Ultimately,

this implies that the most important elements of the government’s choice of financing strategy are its

risk preferences and the protection it affords against extreme events.

• Diversification appears through the explicit consideration of the interplay between issuance cost and

financing strategy. Limited or concentrated issuance in a given debt instrument will precipitate in-

creased cost to the government. This implies that diversification among various debt instruments will

contribute to lower debt charges for a given level of risk.

• We have identified the need for additional measures to describe in more detail the nature of a given

financing strategy. In particular, we have shown the fixed-debt ratio to be a reasonable measure of

time-diversification risk and highlighted the usefulness of the average term to maturity as a high-level

portfolio summary measure.

• We have constructed a risk-adjusted measure of cost to permit us to determine a potential target for

the overall portfolio ATM. Our analysis suggests that a slight bias towards a shorter ATM is evident,

although this is somewhat tempered by a number of factors, including the potential for extreme events

to impact short-term strategies in a disproportionate manner.

This work is not the last word on the debt strategy problem. More work is required in a variety of

directions. We suggest four possible avenues for future analysis; there are surely a number of others. First,

given the sensitivity of the results to our term-structure model, greater effort is required to consider more

flexible models to describe the stochastic interest-rate environment. Second, we saw that the conditional

cost distributions are not normally distributed. It would be useful to consider more flexible parametric

or non-parametric approaches towards characterizing conditional debt-cost volatility. It is also obvious

that our overall stochastic environment is highly stylized. It does not, for example, consider inflation,

thereby precluding consideration of index-linked debt in our analysis. Moreover, ignoring inflation does not

permit us to examine the impact of supply relative to demand shocks on the macroeconomy. This issue is

critical to understanding the issues surrounding the covariance between the state of the economy, monetary

policy rules, and the primary balance. Future work is required to enhance the richness of our stochastic

environment while simultaneously keeping computational effort under control. Third, we suggest a more

detailed investigation of the relative advantages and disadvantages of the MacCauley duration and ATM as

73



A Stochastic Simulation Framework for Debt Strategy

high-level portfolio measures. Fourth, it would be extremely helpful to consider numerical techniques that

might help us determine—given some assumptions about government risk preferences—an optimal financing

strategy. There are a number of dynamic programming techniques that could, with some creativity and a

few simplifying assumptions, perhaps be profitably be applied to this problem.
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Appendix A: The Control Problem

As discussed in section 2.2, our question, in its purest form, falls into the class of stochastic optimal-control

problems. Because this area of mathematics may not be immediately familiar, the brief development that

follows is intended to build some intuition for the non-technical reader. The easiest way to understand

this problem, we believe, is to compare stochastic optimal control with a simpler set of problems and work

upwards to our more detailed question. We can, for example, start by considering classical optimization.

That is, in a classical optimization setting we are usually given some kind of real-valued, deterministic

function of some number of variables, say for simplicity h(x) where x ∈ R. We are then asked to find the

value of x that minimizes (or, conversely, maximizes) the value of h.56 More formally, we wish to solve the

following,

min
x

h(x), (51)

subject to,

x ≤ µ,

where µ ∈ R. Our success in this venture will, of course, depend on the characteristics of our function, h,

and any restrictions that we might wish to impose on x or h. Nevertheless, if h is not too poorly behaved,

this is a relatively simple calculus exercise. Indeed, this should be a very familiar problem. We can, however,

add an additional level of complexity. In particular, we might wish to ask what would happen if the value

of h depended instead upon time in some simple way. Say, for example, that time could take one of two

possible values t ∈ {t0, t1} and that our function, h, was time-separable. We could restate the problem as

follows,

min
xt0 ,xt1

ht0 (xt0) + ht1 (xt1) , (52)

subject to,

xt1 − xt0 ≤ µ(t1 − t0),

where µ ∈ R. This is, in principle, identical to the problem posed in equation (51), except we are now solving

for two parameters, xt0 and xt1 , as opposed to a single unknown, x. In addition, we have added a slight

complication to our constraint. That is, the difference in our two parameter values will be related, in a linear
56Please note that the following discussion is very fast and loose. There are a variety of issues relating to the continuity,

differentiability, and convexity of the functions in question that become critical; moreover, the nature and form of the constraints

is of some importance. We are abstracting from these details, given the illustrative nature of this discussion and the fact that

these technical details add little to the intuition we are trying to develop.
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fashion, to the size of the time interval; it is standard to constrain the dynamics of our parameter values

through time. Thus, we have generalized the basic problem. We can, in fact, continue this generalization

by simply considering an arbitrarily large number of time periods. That is, we may generalize to t ∈
{t0, t1, ..., tT } as follows,

min
xt0 ,xt1 ,...,xtT

T∑
i=0

hti (xti) (53)

subject to,

xti − xti−1 = µ(ti − ti−1),

for i = 0, 1, ..., T and where µ ∈ R. Essentially, instead of solving for two parameter values, we are instead

solving an optimization problem for a vector of time-dependent parameters {xt0 , xt1 , ..., xtT }. Another way

of thinking about this problem is that we seek a sequence of values that will control our function, h, in such

a way that it attains its minimum value over {t0, t1, ..., tT }. We have moved to the realm of a discrete-time

optimal-control problem. To eliminate some of the notational burden, let us move from this discrete-time

setting to continuous time by letting the number of discrete-time increments, which we consider over the

interval [0, T ], tend to infinity. This change has a subtle but important impact on the form of our problem.

Equation (53) will take the following form,

min
x(t)

∫ T

0

h (x(t)) dt (54)

subject to,

dx(t) = µdt,

for t ∈ [0, T ] and where,

µ ∈ R,

dx(0) = δ.

This is a problem of optimal control in a deterministic setting. Let us pause to make a few observations.

First of all, note that the solution to this optimization is the unknown function, x(t), rather than a sequence

of values. Thus, we are asked to find an optimal function, or process, x(t) such that h is minimized over some

time interval, [0, T ]. The second thing to note is that our condition, or constraint, on the dynamics of x(t) has

become, in continuous time, a differential equation. This is a very typical result. We are, essentially, trying to

find a function x(t) that will allow us to guide h to its minimum value over the time interval, [0, T ], and we are

also given its dynamics in the form of a differential equation. Consider a practical example from engineering.
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Let our function h represent the fuel usage of a satellite and x(t) represent our control over its trajectory. In

solving this problem, therefore, we may be trying to find the optimal flight path for our satellite—constrained

by some physical limits on our controls as summarized by our differential equation—that minimizes our fuel

consumption. This is a more complicated situation than that presented in equation (51) and, indeed, one

requires techniques from an area of mathematics termed dynamic programming to find its solution.

Now, we take the critical step forward to the basic form of our problem. It will involve changing the

characteristics of our differential equation, dx(t). In particular, it asks what happens when the dynamics of

our control process, as described by dx(t), has a random component. That is, we define a probability space,

(Ω,F ,P), and let

dx(t) = µdt+ σdW (t), (55)

where,

µ, σ ∈ R,

and {W (t),F(t), t ≥ 0} is a standard, scalar Wiener process.57 There are other ways to introduce randomness

into the model but this is the most common and, in some ways, the cleanest approach. To be formal, dx(t)

has become a stochastic differential equation. This seriously changes the situation. Now, we have a function

h that not only depends on time but also depends on a function, x(t), whose dynamics are random. In this

case, we cannot with certainty know all the possible values of h over the time interval [0, T ]. Indeed, all

we can say is what we expect, on average, to happen over the time interval. In the context of our satellite

example, this is equivalent to saying that our controls are subject to some noise in the form of a measurement

error or interference of some kind. The result is that we can, at best, talk about minimizing the expected

value of this integral over the time period.58 This is represented in the underlying manner,

min
x(t)

E

[∫ T

0

h (x(t)) dt

∣∣∣∣∣Ft
]

(57)

subject to,

dx(t) = µdt+ σdW (t),

57One may think of this, in a heuristic sense, as being the continuous time equivalent of the discrete random-walk process.
58In a more formal setting, we would write this as the Lebesque integral of a slightly modified equation (54) with respect to

the probability measure, P. This is represented as follows,

min
x(t)

∫
A

∫ T

0
h(x(t)) dt dP, for all A ∈ Ft (56)
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for t ∈ [0, T ] and where,

µ, σ ∈ R,

dx(0) = δ

At last, we have a stochastic optimal-control problem. The task is to find the unknown function x(t), which

in a general setting may also be a function of time, that steers the function g to its highest expected value

over the time interval in question. To a reader familiar with microeconomic theory, this is similar to economic

agents facing various consumption bundles and attempting to maximize their expected utility over some time

horizon. This is a more involved question than that posed in equation (51) and dynamic programming is the

area of mathematics that deals with existence, uniqueness, and corresponding techniques for the solutions

to this class of problems.
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Appendix B: Model Estimation, Calibration, and Diagnostics

In this study, we rely on a number of parametric models to describe the evolution of the business cycle, the

government’s financial requirements, and the term structure of interest rates.59 This raises two important

questions. First, how does one determine the parameter for use in these models? The short answer is that

the parameters are either estimated, using an econometric technique, or calibrated to the research analyst’s

assumptions about the future. Second, once these parameters are determined, how does the research analyst

ensure that the parameters are actually consistent with both historical data and their assumptions regarding

future events? The short answer to this second, important question is to simulate the data, given the

parameter set, and examine its properties.

In this appendix, we will briefly describe the basic approach to dealing with these two issues. We begin

with the first step, which involves estimation and calibration. It is performed in a sequence of four steps.

Step 1 - The Term Structure The estimation of the two-factor CIR model, used to describe term-structure

dynamics, is performed using a Kalman filter estimation procedure. The technical details of this ap-

proach are discussed in substantial detail in Bolder (2001). In the full stochastic model, we extend

the two-factor CIR model to permit the steepness of the term structure of interest to evolve over time

in a manner that is consistent with the business cycle. Loosely speaking, this is achieved by letting

one of the parameters of the term-structure model, termed the market price of risk of the first state

variable, or λ1, vary through time as a convex combination of two extreme values, λe1 and λr1. These

values are not estimated but calibrated. More specifically, we choose λe1 and λr1 to keep the average

dynamics of the term structure of interest rates the same as in the simple stochastic environment (i.e.,

a stochastic model without business cycle dynamics). To conceptualize this idea, imagine two states of

the world. With a constant-parameter model, the estimation procedure will provide an average of the

two states, weighted by their occurence, over the estimation interval. With a time-varying parameter

model, conversely, you will have two sets of parameters that describe the two states. The average

result over the estimation period will, nevertheless, be the same. The actual approach to considering

the average dynamics is identical to the approach used in performing our model diagnostic; this will

be discussed later in this appendix. The results of this esimation/calibration procedure are outlined

in the first two columns of Table B1.

Step 2 - The Business Cycle Our model of the business cycle, which is based on Hamilton (1989), is

estimated using the non-linear filter suggested in the original Hamilton (1989) paper. This technique

is outlined in Bolder (2002). These parameters are outlined in the final two columns of Table B1.

Step 3 - Government Financial Requirements The final step is the calibration of the parameters of the
59The details of these models are thoroughly described in Bolder (2001, 2002).
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Table B1: Term-Structure and Business Cycle Model Parameter Estimates: In its first two columns,
this table summarizes the term-structure model parameters for the two-factor CIR model. It also, in the final two
columns, outlines the parameters for the AR(4) model using quarterly Canadian GDP data and the Hamilton (1989)
constant transition probability model.

Term-structure model Business cycle model
Parameter Estimate Parameter Estimate

κ1 0.980 p 0.959
κ2 0.119 q 0.535
θ1 0.030 φ1 0.177
θ2 0.012 φ2 0.474
σ1 0.074 φ3 0.301
σ2 0.075 φ4 -0.097
λe1 -0.319 σ 0.725
λr1 -0.134 µ0 0.282
λ2 -0.124 µ1 2.126

financial requirement process. We opted for a simple calibrated process for the government’s financial

position. This demonstrated our explicit preference for ease of interpretation of the model parameters

relative to a complicated econometric specification. The calibration is performed relative to a set of

assumptions. In this study, for instance, we specified a desire for a sequence of financial requirements

that are, in expectation, very close to zero with normal variation of plus or minus $1 billion. To achieve

this, we selected different parameter sets, simulated their dynamics conditional on these parameter

choices, and used the graphs in Figure B1 to compare the behaviour of the process to our previously-

stated assumptions. The resulting parameters are shown in Table B2.

Table B2: Financial-Requirement Model Parameter Estimates: This table describes the set of cali-
brated parameters, used in this study, for the government’s finanical requirements.

ParameterParameter
estimate

β -0.450
α 0.700
γ 1.000
ξ 1.000

Having worked through the previous sequence of steps, we have a set of potential candidates for the

parameterization of our joint model for the business cycle, the term structure, and the government’s financial

position. We still need to satisfy ourselves that the dynamics of this model is consistent with historical

behaviour. This is particularly true with the term structure of interest rates. The idea is quite simple.

Consider the example of the term structure of interest rates. We take the original data that we used to
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Figure B1: Financial-Requirement Model Diagnostics: This figure outlines four separate graphs that we

use to ensure that the parameterization of the financial requirements process, {Ft, t ≥ 0} is consistently calibrated to

our assumptions about its future behaviour.
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estimate our term-structure model and examine a number of its features, including its level, volatility, and

the empirical distribution of short-term zero-coupon rates. We then, for a given parameterization, generate

a large number of simulated term-structure outcomes. Then, we compare the features of the simulated data

with the actual data and compare the results. We would expect that our model does a good job of capturing

the features of the data, but some aspects of the model may be superior to others. This diagnostic procedure

serves, therefore, to highlight both the strengths and weaknesses of our term-structure model. Figure B2

outlines a suite of six graphs that we use in our diagnostics of the term-structure dynamics associated with

a given parameterization of our model. We discuss each of the individual graphs in order.

Level of the Curve The first graph compares the average level of the zero-coupon curve, over the estima-

tion period, with the average level of a fairly large number of simulated zero-coupon curves. The idea is

that we would like, on average, that when we simulate zero-coupon curves—which are so instrumental

in constructing our debt-cost distributions—that they are similar to observed zero-coupon curves over,

say, the last 10 years. This does not imply, of course, for any given realization that the zero-coupon
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curve cannot take a wide variety of forms.

Distribution of Curve Steepness The second graph provides some perspective on the relative frequency

of the steepness of the term structure of interest rates. Inspection of the histogram reveals that, on

average, the difference between the 10-year zero-coupon rate and the 3-month zero-coupon rate is

approximately 180 basis points. Over the range of simulations, it can increase to almost 400 basis

points and fall (i.e., invert) to -200 basis points.

Figure B2: Interest-Rate Model Diagnostics: This figure illustrates six separate graphs that we use to ensure

that the parameterization of the term-structure of interest rates is consistent with historical behaviour.

0 2 4 6 8 10
4

5

6

7

Term to Maturity (yrs.)

S
p

o
t 

Y
ie

ld
 (

%
)

Simulated
Actual

−200 0 200 400
0

50

100

150

Spot−curve steepness (bps.)

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

0 2 4 6 8 10
3

4

5

6

7

Term to Maturity (yrs.)

S
p

o
t−

c
h

a
n

g
e

 v
o

la
ti
lit

y
 (

b
p

s
.)

Simulated
Actual

0 2 4 6 8 10
6

8

10

12

14

Term to maturity (yrs.)

S
p

o
t−

le
v
e

l 
v
o

la
ti
lit

y
 (

b
p

s
.)

Simulated
Actual

0 2 4 6 8 10
0

5

10

15

3
−

m
o

n
th

 s
p

o
t 

ra
te

 (
%

)

Term to maturity (yrs.)
−5 0 5 10 15
0

100

200

300

400

3−month spot rate (%)

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Volatility of Rate Changes The next two graphs in Figure B2 attempt to examine the volatility structure

of the simulated term structures. The third graph compares the volatility of changes in actual zero-

coupon rates—for maturities from 1 month to 10 years—to the associated volatility of the changes
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in simulated zero-coupon rates. The actual realized volatility of zero-coupon rate changes decreases

gradually from seven basis points at the short end to three basis points at the 10-year maturity. This

is a general stylized empirical fact about the term structure of interest rates.

Volatility of Rate Levels The fourth graph focuses on the volatility of the level of zero-coupon interest

rates. That is, it compares the volatility of the level of actual zero-coupon rates—for maturities from

1 month to 10 years—with the associated volatility of the level of simulated zero-coupon rates. We

note that the volatility of actual zero-coupon levels is approximately 13 basis points at one month, falls

to about eight basis points at the two-year zero-coupon maturity, and then gradually increases to 10

basis points at 10 years. This quadratic form is difficult for our model to capture, but it does provide

a reasonable fit to the actual data.

Range of Short-Rate Outcomes In the fifth graph, each individual sample path for the 3-month zero-

coupon rate is illustrated. This provides some insight into the range of different outcomes that can occur

across the entire range of simulations. Note, for example, that there are a small number of sample paths

where the 3-month zero-coupon rate exceeds 10 per cent, but generally it remains bounded between 2

and 5 per cent.

Distribution of Short-Rate Outcomes The final graph provides another perspective on the range of

simulated outcomes for the 3-month zero-coupon rate. In particular, it provides a histogram describing

the relative frequency of various 3-month zero-coupon realizations across all simulations. Observe that

the 3-month zero-coupon rate exhibits a positive and positively skewed empirical distribution. This is

consistent with the non-negativity of the CIR model.
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Appendix C: Variance Reduction

In this appendix, we will introduce a methodology that could conceivably help us reduce the computational

expense of our current software platform: variance reduction. These are methods used to improve the

efficiency of an estimator (computed by simulation) for a given amount of work. The idea relates to the fact

that we can approximate the following integral, ∫ 1

0

f(x)dx, (58)

with the subsequent sum,

1
n

n∑
i=1

f(Ui), (59)

where Ui ∼ U [0, 1]. This result should look very similar to the basic idea behind numerical integration. The

key point is that,

E[f(U)] =
∫ 1

0

f(x)g(x)dx = lim
n→∞

1
n

n∑
i=1

f(Ui), (60)

where, g(x) = 1 is the probability density function for the uniform distribution.60 Of course, we can’t

actually let n tend to infinity, as suggested in equation (53), so our estimators of this integral will always

have some error, or variance. That is,

var

(
1
n

n∑
i=1

f(Ui)

)
> 0, (62)

for all n. It turns out, however, that there are some clever tricks we can use that will actually reduce this

variance for a given number of simulations, n. In fact, there are three main techniques that we will consider

briefly in the following sections. Note that the underlying presentation is quite general and some thought is

required to determine how these approaches might be applied to our problem.

C.1 Antithetic variables

Consider the following estimator for the integral in equation (58),

θ̂ =
1
2

(f(U1) + f(U2)) , (63)

60The general case is, ∫ b

a
f(x)dx = lim

n→∞

b− a
n

n∑
i=1

f(a+ (b− a)Ui), (61)

where Ui ∼ U [0, 1].
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where U1, U2 ∼ U [0, 1]. The variance of this estimator is defined as follows,

var(θ̂) =
1
2

(var(f(U1)) + cov(f(U1), f(U2))) . (64)

Observe that if cov(f(U1), f(U2)) < 0, then we have reduced the variance of this estimator. It turns out

that, for monotone f , the minimal covariance between U1 and U2 arises when we set U2 = 1− U1. Thus, in

the antithetic variance approach, we estimate equation (58) with the following sum,

1
n

n∑
i=1

1
2

(f(Ui) + f(1− Ui)) . (65)

C.2 Control variates

The following expression holds immediately (or, rather, vacuously),∫ 1

0

f(x)dx =
∫ 1

0

g(x)dx+
∫ 1

0

(f(x)− g(x)) dx. (66)

This implies the following estimator,

θ̂ =
∫ 1

0

g(x)dx+
1
n

n∑
i=1

[f(Ui)− g(Ui)] . (67)

This is not a particularly useful extension, unless g(x) is analytically integrable and the variance of the

difference between f(x) and g(x) is smaller than the variance of f(x) alone. In fact, the variance of this

difference is,

var(f(Ui)− g(Ui)) = var(f(Ui)) + var(g(Ui))− 2cov(f(Ui), g(Ui)). (68)

We can see that this technique is effective when the covariance between f and g is large and positive.

C.3 Importance sampling

As in the previous technique, we require an easily integrable function, g, where there exists c ∈ R such that,∫ 1

0

cg(x)dx = 1. (69)

This allows us to rewrite the integral in equation (58) as,∫ 1

0

f(x)dx =
∫ 1

0

f(x)
cg(x)

cg(x)dx = E

[
f(U)
cg(U)

]
, (70)

where U ∼ U [0, 1]. The corresponding estimator is,

θ̂ =
1
n

n∑
i=1

f(Zi
cg(Zi)

, (71)
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where Zi ∼ cg(z). Finally, the variance of this estimator is,

var(θ̂) =
1
n

var
[
f(U)
cg(U)

]
. (72)

In short, we have altered the underlying probability measure (from the Lebesque measure) to something

else that redistributes the weight given to each observation. This approach is effective when our probability

density function, cg(x) is a close fit to the original function of interest, f(x).

C.4 Generating non-central χ2 random variates

The generation of random variates, in a computer setting, always begins with the simulation of uniform

random variates. The uniform random variables are put through some form of transformation to arrive at

a draw from the desired distribution, be it Gaussian, Gamma, Beta, or Cauchy. Many software packages

provide built-in functions that perform this transformation in a manner that is transparent to the user. To

use a given variance-reduction technique, one must work directly with the original uniform random variates.

We must work through the nature of the transformation required to get to the random draws that are needed

in our application.61 In particular, to simulate the CIR model, we need to be able to take random draws

from the non-central χ2 distribution.

The theoretical foundations of constructing a non-central χ2 distribution are described in Bolder (2002,

Appendix B). Concisely put, if we have two random variables, X and Y , such that,

X ∼ N (
√
β, 1), (73)

Y ∼ χ2(α− 1), (74)

then,

XY ∼ χ2(α, β). (75)

Or, in words, XY follows a non-central χ2 distribution with α degrees of freedom and non-centrality param-

eter β.

The consequence is that, to simulate from a non-central χ2 distribution, we need to simulate X from

equation (73), Y from equation (74), and then simply take their product. Recall that, in each case, we need

to begin with a uniform random variate and apply the necessary transformation. Fortunately, the generation

of X is relatively straightforward. First, we ask the computer to provide us with a uniform random variate

defined on the unit interval,

U ∼ U (0, 1) . (76)

61This section draws heavily from Fishman (1995).
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We then apply the Box-Muller transformation to U ; this tranformation is described in section C.5. The

result is a standard normal random variate, which we will call V . That is,

V ∼ N (0, 1) . (77)

Now, it follows from the properties of the normal distribution that,

X = V +
√
β ∼ N

(√
β, 1
)
, (78)

for β ∈ R.

The generation of Y is more involved. As a first step, we would prefer to work with the Gamma

distribution rather than the χ2. There are several facts about the Gamma distribution that we will require

in our analysis.

Fact 1 Given the form of Y described in equation (74), an equivalent representation is

Y ∼ Gamma
(
α− 1

2
, 2
)
, (79)

where α−1 is a positive integer. The first parameter is known as the shape parameter, and the second

parameter is termed the scale parameter.

Fact 2 If Xi ∼ Gamma(γi, δ) for i = 1, ..., n then,

n∑
i=1

Xi ∼ Gamma

(
n∑
i=1

γi, δ

)
. (80)

Fact 3 If X ∼ Gamma (γ, 1) and δ ∈ R then,

Y = δX ∼ Gamma(γ, δ). (81)

This implies that we can always set the scale parameter equal to unity.

Fact 4 Given a random variable of the form, X ∼ Gamma(1, δ), an equivalent representation is,

X ∼ Exp(δ). (82)

Or, in words, a Gamma random variable with a shape parameter equal to unity and a shape parameter

of δ is equivalent to an exponential random variable with parameter δ.

Fact 5 If U ∼ U(0, 1) is a uniform random variate defined on the unit interval, then by the method of

inverse transform,

X = − ln(U) ∼ Exp(1). (83)
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One consequence of this fact is that it reduces our problem of simulating from equation (74), to a situation

of generating a random draw from

Y ∼ Gamma(γ, 1), (84)

where γ ∈ R is an arbitrary real number. Moreover, we can always represent γ as the sum of n and α where

these two values are the integer and real part of γ, respectively. For example, if γ = 4.35, then n = 4 and

α = 0.35. The plan, therefore, is to generate two Gamma random variates. The first is,

X1 ∼ Gamma(n, 1), (85)

where n ∈ N \ {0} and,

X2 ∼ Gamma(α, 1), (86)

where α ∈ (0, 1). It follows from our first, second, and third facts that,

Y = 2(X1 +X2) ∼ Gamma(n+ α, 2), (87)

∼ Gamma(γ, 2), (88)

∼ χ2(2γ). (89)

To actually generate, from a set of uniform random variates, a variable from equation (85), we employ

the fifth fact. That is, we ask our computer to generate U1, ..., Un uniform random variates defined on the

unit interval and construct X1 as,

X1 = − ln

(
n∑
i=1

Ui

)
, (90)

from which it follows that Xi ∼ Gamma(n, 1), as desired.

To generate X2 is not as straightforward. First, we use our computer to simulate three uniform random

variates, U1, U2, and U3 defined on the unit interval. Then, we set

V = − ln(U3) ∼ Exp(1). (91)

The next step is to construct the following random variable,

W =
U

1
α

1

U
1
α

1 + U
1

α−1
2

. (92)

If we have that the condition,

U
1
α

1 + U
1

α−1
2 < 1, (93)
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then,

VW ∼ Gamma(α, 1). (94)

as desired. If the condition in equation (93) does not hold, then we continue to generate U1 and U2 until it

is satisfied. This is termed Johnk’s algorithm.

C.5 The Box-Muller transformation

This technique is very useful for transforming independent uniformly distributed random variables into

independent random variables from a standard normal distribution. Traditional techniques do not work in

this instance, because we do not have an analytical expression for the inverse of the cumulative distribution

function of a standard normal distribution. This ingenious algorithm uses the usual transformation,

fY1,Y2(y1, y2) = fX1,X2(x1, x2) · |J |, (95)

where |J | is the determinant of the Jacobian matrix. The success of this method hinges on two cleverly se-

lected transformations, y1, y2. Given two random drawn values, x1 and x2, taken from a uniform distribution

on the unit interval, (0, 1), consider the following transformations:

y1 =
√
−2 lnx1 cos 2πx2, (96)

y2 =
√
−2 lnx1 sin 2πx2.

The claim is that y1 and y2 are independent standard normal variates. This may appear somewhat question-

able, but let us take a closer look. First, let us solve for x1 and x2 in terms of our transformation variables.

This will require a bit of cunning. Consider y2
1 + y2

2 ,

y2
1 + y2

2 = (
√
−2 lnx1 cos 2πx2) + (

√
−2 lnx1 sin 2πx2), (97)

y2
1 + y2

2 = −2 lnx1 cos2 2πx2 − 2 lnx1 sin2 2πx2,

y2
1 + y2

2 = −2 lnx1(cos2 2πx2 + sin2 2πx2),

and recall that,

cos2 2πx2 + sin2 2πx2 = 1, (98)

which implies that,

y2
1 + y2

2 = −2 lnx1, (99)

x1 = e
−y2

1−y
2
2

2 .
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Now, to find x2, let us take a look at the ratio of y1 and y2,

y1

y2
=
√
−2 lnx1 cos 2πx2√
−2 lnx1 sin 2πx2

, (100)

y1

y2
=

cos 2πx2

sin 2πx2
,

y1

y2
= tan 2πx2,

arctan
(
y1

y2

)
= arctan(tan 2πx2),

x2 =
1

2π
arctan

(
y1

y2

)
.

It remains to calculate the Jacobian matrix, which will have the following form:∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

 (101)

Let us look at each of these partial derivatives:

∂x1

∂y1
= −y1e

−y2
1−y

2
2

2 , (102)

∂x1

∂y2
= −y2e

−y2
1−y

2
2

2 ,

∂x2

∂y1
=

1
2π

(
−y2

y2
1

)
1

1 + (y2
y1

)2
,

∂x2

∂y2
=

1
2π

(
1
y1

)
1

1 + (y2
y1

)2
.

Our Jacobian is thus,  −y1e
−y2

1−y
2
2

2 −y2e
−y2

1−y
2
2

2 ,

1
2π

(
−y2
y2

1

)
1

1+(
y2
y1

)2
1

2π

(
1
y1

)
1

1+(
y2
y1

)2

 , (103)

and the determinant is, therefore,

|J | =
(
−y1e

−y2
1−y

2
2

2

)
·
(

1
2π

(
1
y1

)
1

1 + (y2
y1

)2

)
−
(
−y2e

−y2
1−y

2
2

2

)
·
(

1
2π

(
−y2

y2
1

)
1

1 + (y2
y1

)2

)
, (104)

=

(
− 1

2π
e
−y2

1−y
2
2

2
1

1 + (y2
y1

)2

)
−

(
− 1

2π
y2

2

y2
1

e
−y2

1−y
2
2

2
1

1 + (y2
y1

)2

)
,

= − 1
2π
e
−y2

1−y
2
2

2
1

1 + (y2
y1

)2

(
1 +

(
y2

y1

)2
)
,

= − 1
2π
e
−y2

1−y
2
2

2 ,

= −
(

1√
2π
e
−y2

1
2

)(
1√
2π
e
−y2

2
2

)
.
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This happy result is exactly what we were trying to establish. If we return to our original formula and recall

that the density function of the uniform distribution on (0, 1) is 1, we have that62

fY1,Y2(y1, y2) = fX1,X2(x1, x2) · |J | = −
(

1√
2π
e
−y2

1
2

)(
1√
2π
e
−y2

2
2

)
. (105)

That is, y1 and y2 are independent standard normal variates, as was desired.

62Recall that the density of uniform (a, b) is defined as f(x) = 1
b−a , ∀ x ∈ [a, b].
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