## CERT

## Comité d'évaluation des ressources transfrontalières

## Document de référence 2006/06

Ne pas citer sans autorisation des auteurs

## TRAC

Transboundary Resource Assessment Committee

Reference Document 2006/06

Not to be cited without permission of the authors

# Assessment of Eastern Georges Bank Haddock for 2006 

L. Van Eeckhaute ${ }^{1}$ and Jon Brodziak ${ }^{2,3}$
${ }^{1}$ Fisheries and Oceans Canada
531 Brandy Cove Road
St. Andrews, New Brunswick E5B 2L9 Canada
${ }^{2}$ NOAA/NMFS
Northeast Fisheries Science Center
166 Water Street
Woods Hole, MA 02543
USA
${ }^{3}$ Present Address: NOAA/NMFS
Pacific Islands Fisheries Science Center
2570 Dole Street
Honolulu, HI 96822-2326
USA


#### Abstract

The total catch of eastern Georges Bank (EGB) haddock in 2005 was $15,112 \mathrm{mt}$ under a combined Canada/USA quota of 23,000 mt. The 2005 Canadian catch increased from $9,838 \mathrm{mt}$ in 2004 to $14,542 \mathrm{mt}$ while the USA catch decreased from $1,952 \mathrm{mt}$ in 2004 to 569 mt . Estimated discards from the Canadian scallop fishery and USA groundfish fishery were very low relative to the total catch. EGB haddock catches fluctuated around $5,000 \mathrm{mt}$ during 1985-1990. Under restrictive management measures, combined Canada/USA catches declined from over 6,500 mt in 1991 to a low of about 2,100 mt in 1995, averaged about 3,600 mt during 1996-1999 and have increased since then.

Adult population biomass has steadily increased from near an historical low of about $9,000 \mathrm{mt}$ in 1993 to about $74,000 \mathrm{mt}$ in 2003. Adult biomass subsequently decreased to about $51,000 \mathrm{mt}$ at the beginning of 2005 but increased to $123,000 \mathrm{mt}$ in 2006, higher than the 1931-1955 maximum of about $90,000 \mathrm{mt}$. The 2003 year class, at 338 million age-1 fish, is estimated to be the largest ever observed in the assessment time series (1931-1955 and 1969-2006). The 2001, 2002 and 2004 year classes are weak but initial estimates of the 2005 year class suggest it is about average at 28 million fish. Fishing mortality (ages 4+) was below the reference threshold ( $\mathrm{F}_{\text {ref }}$ ) of 0.26 during 1995 to 2004. Fishing mortality in 2005 was slightly above $F_{\text {ref }}$ due to the failure of the 2003 year class to contribute as expected to the 2005 fishery. The population age structure shows full representation of all age classes. However, resource productivity has diminished in recent years due to reductions in fish size at age.

With an assumed total catch of 22,000 mt in 2006, a combined Canada/USA catch of $19,000 \mathrm{mt}$ in 2007 would result in a neutral risk (50\%) that fishing mortality in 2007 would exceed $F_{\text {ref }}=0.26$. A catch of $16,000 \mathrm{mt}$ would result in a low risk (25\%) that fishing mortality in 2007 will exceed $F_{\text {ref }}$. Slow growth of the 2003 cohort will continue to impact the fishery. If the TAC in 2006 is caught, fishing mortality in 2006 will be higher than $F_{\text {ref }}$ on the fully recruited ages ( $F_{5+}=0.5$ ).


## RÉSUMÉ

En 2005, les prises totales d'aiglefin dans l'est du banc Georges se sont chiffrées à 15112 tm , le quota combiné du Canada et des États-Unis étant de 23000 tm . Les prises canadiennes ont augmenté, passant de 9838 tm en 2004 à 14542 tm en 2005, tandis que celles des États-Unis ont chuté de 1952 tm à 569 tm pendant la même période. Les rejets estimés dans la pêche canadienne du pétoncle et la pêche du poisson de fond aux États-Unis étaient très faibles par rapport aux prises totales. Les prises d'aiglefin dans l'est du banc Georges ont fluctué alentour de 5000 tm de 1985 à 1990. Suite à l'adoption de mesures de gestion restrictives, les prises combinées du Canada et des États-Unis ont diminué, passant de plus de 6500 tm en 1991 à un seuil d'environ 2100 tm en 1995, puis elles se sont situées en moyenne alentour de 3600 tm de 1996 à 1999 et ont augmenté depuis.

La biomasse de la population adulte a constamment augmenté après être tombée à environ 9000 tm , presque un seuil historique, en 1993 et elle s'est chiffrée à environ 74000 tm en 2003. Elle a ensuite diminué à environ 51000 tm au début de 2005, mais elle a augmenté au point d'atteindre 123000 tm en 2006, ce qui est bien au-delà de la biomasse maximale de la période 1931-1955, soit environ 90000 tm . On estime qu'avec ses 338 millions de poissons d'âge -1, la classe d'âge de 2003 est la plus grande observée dans les séries chronologiques des évaluations (1931-1955 et 19692006). Les classes d'âge de 2001, 2002 et 2004 sont faibles, mais les estimations initiales de la classe d'âge de 2005 donnent à penser qu'elle se situe à peu près dans la moyenne, avec 28 millions de poissons. La mortalité par pêche (âges 4+) s'est située sous le seuil de référence ( $F_{\text {réf. }}$ ) de 0,26 de 1995 à 2004. En 2005, elle a été légèrement supérieure à $F_{\text {réf. ( }}(F=0,29)$, la classe d'âge de 2003 n'ayant pas contribué à la pêche de 2005 autant que prévu. Toutes les classes d'âge sont pleinement représentées dans la structure d'âges de la population. Toutefois, la productivité de la ressource a baissé ces dernières années en raison de la diminution de la taille moyenne du poisson selon l'âge.

Si on se fonde sur des prises hypothétiques totales de 22000 tm en 2006, des prises combinées Canada-États-Unis de 19000 tm en 2007 se traduiraient par un risque neutre ( $50 \%$ ) que la mortalité par pêche en 2007 soit supérieure à $F_{\text {réf. }}=0,26$. Des prises de 16000 tm se traduiraient par un faible risque ( $25 \%$ ) que la mortalité par pêche en 2007 dépasse $F_{\text {réf }}$

La lente croissance de la cohorte de 2003 continuera de se répercuter sur la pêche. Si le TAC de 2006 est capturé, la mortalité par pêche en 2006 sera supérieure à $F_{\text {rét }}$. parmi les âges pleinement recrutés (F5+ = 0,5).

## Introduction

For the purpose of developing a sharing proposal and consistent management by Canada and the USA, agreement was reached that the transboundary management unit for haddock would be limited to the eastern portion of Georges Bank (DFO statistical unit areas $j$ and $m$ in NAFO sub-division 5Ze; USA statistical areas 551, 552, 561 and 562 in NAFO sub-division 5Ze; Figure 1; DFO 2002). This assessment applies the approach used by Van Eeckhaute and Brodziak (2005) to Canadian and USA fisheries information updated to 2005. Results from the Fisheries and Oceans Canada (DFO) survey, updated to 2006, and the USA National Marine Fisheries Service (NMFS) surveys in the spring, updated to 2006, and fall, updated to 2005, were incorporated.

## Fishery

## Commercial Catches

Haddock on Georges Bank have supported a commercial fishery since the early 1920s (Clark et al 1982). Catches from eastern Georges Bank (EGB) during the 1930s to 1950s ranged between 15,000 mt and 40,000 mt (Figure 2), averaging about 25,000 mt (Schuck 1951, R. Brown pers. com.). Records of catches by unit area for the early 1960s period have not been located, however, based on records for NAFO Subdivision 5Ze, catches from EGB probably attained record high levels of about 60,000 mt during the early 1960s. Catches in the late 1970s and early 1980s, ranging up to about $23,000 \mathrm{mt}$, were associated with good recruitment. Substantial quantities of small fish were discarded in those years (Overholtz et al 1983). Catches subsequently declined and fluctuated around 5,000 mt during the mid to late 1980s. Under restrictive management measures, combined Canada/USA catches declined from over 6,500 mt in 1991 to a low of about 2,100 mt in 1995, fluctuated between about 3,000 mt and $4,000 \mathrm{mt}$ until 1999 and increased to 15,112 mt in 2005 (Table 1, Figure 3). In 2005, the Canadian catch was $14,542 \mathrm{mt}$ and the USA catch was 569 mt under quotas of 15,410 mt for Canada and $7,590 \mathrm{mt}$ for the USA.

Quotas are the principal means used to regulate the Canadian groundfish fisheries on Georges Bank. Canadian catches since 1995 were below the quota due to closure of some fleet sectors when the cod quotas were reached, except for the year 2000 when the catch of $5,402 \mathrm{mt}$ was slightly above the Canadian quota of $5,400 \mathrm{mt}$. Quota regulation requires effective monitoring of fishery catch. Weights of all Canadian landings in 2005 were monitored at dockside and at-sea observers monitored $16 \%$ by weight of the haddock landed in 2005. Discarding and misreporting of haddock by the groundfish fishery have been negligible since 1992.

Since 1994, the Canadian fishery for groundfish is usually not permitted from 1 January to 30 May. In 2005, an exploratory groundfish fishery was allowed due to increasing haddock abundance. So as not to adversely affect the rebuilding of cod on EGB , the exploratory winter fishery was closed in mid-February when it was determined that cod were actively spawning, i.e. when $30 \%$ of cod were in the spawning or post-spawning
stages. In addition, 5 trips were made in May by otter trawlers under an exploratory license condition.

In recent years, the Canadian fishery has been conducted primarily by vessels using otter trawls and longlines with some handlines and gillnets. During 2005, otter trawlers under 65 ft and fixed gear vessels $45-65 \mathrm{ft}$ operated on individual quotas while fixed gear vessels under 45 ft operated on community quotas administered by local boards (Table 2). Vessels over 65 ft operate on Enterprise Allocations, which are company quotas. Smaller vessels are allowed to fish the quota which has been allocated to the larger vessels under the Temporary Vessel Replacement Program (TVRP) and increasing amounts of this quota have been taken by the TVRP boats in recent years. In 2005, $98 \%$ of the catch was taken by tonnage class 1, 2 and 3 (less than 150 tons) vessels (corresponding roughly to vessels less than 65 ft in overall length). Otter trawls took $84 \%$ of the haddock and longliners took 16\% (Table 3). The highest catches in 2005 occurred during July and August (Table 4, Figure 4). The winter fishery accounted for $15 \%$ of the landings.
Canadian landings until 1995 include those catches reported by the scallop fishery but, since 1996, this fishery has been prohibited from landing haddock and this species was then discarded. Landed haddock by-catch, when landings were allowed, was low with a maximum of 38 mt reported in 1987 (Table 3). Discards of haddock by the Canadian scallop fishery (Table 1) were derived by Van Eeckhaute et al (2005). Discards of haddock for 1969 to 1995, when landings were still allowed, ranged between 69 and 186 mt . Discards of haddock for 1996 to 2004 ranged between 29 and 102 mt , lower than most values reported before 1996 due to lower effort in the scallop fishery. In 2005, discards of 52 mt were estimated (Van Eeckhaute and Gavaris 2006).
USA catches of EGB haddock in 2005 were derived from mandatory fishing vessel logbooks and dealer reports using the same procedures as for 1994-2004. Regulations for the USA fishery since 1994 have included increased trawl mesh sizes, large-scale closed areas, year-round and seasonal closed areas, days-at-sea limits for individual fishing vessels, daily catch limits and trip limits (Table 2). Haddock trip limits and daily catch limits were introduced in 1994 and 1996, respectively, to reduce fishing mortality. Low trip limits during the mid-1990s increased regulatory USA discards which were included in the USA catch at age for 1994-1998. Haddock trip limits were then increased to reduce discards and improve yield. In 2004 quota management was introduced to regulate the USA groundfish fishery (Table 2).

USA catches of EGB haddock declined substantially in 2005 (Table 1). Catches were low because the groundfish fishery on EGB was closed in August when the USA cod quota was reached. USA landings in 2005, under a catch quota of $7,590 \mathrm{mt}$, were 512 mt , a 71\% decline from 2004 landings. USA discards declined from 156 mt in 2004 to 57 mt in 2005, a 63\% decline, while total USA catch declined from 1,952 mt in 2004 to 569 mt in 2005. Quarterly USA landings in 2005 were: 40 mt (8\%), 322 mt (63\%), 149 $\mathrm{mt}(29 \%)$ and $1 \mathrm{mt}(<1 \%)$ for calendar quarters 1 to 4 respectively (Table 5). Quarterly USA discards were: 5 mt (9\%), 18 mt , (31\%), 34 mt (60\%) and $<1 \mathrm{mt}(<1 \%)$ for calendar quarters 1 to 4 respectively. Overall, the ratio of discarded to landed catch by weight for the USA EGB haddock fishery increased from 9\% in 2004 to 11\% in 2005.

The contribution of USA landings by other gear was higher in 2005 than previous years since 1994 (Table 6). Otter trawl gear accounted for 91\% of the landings ( 465 mt ) and $96 \%$ of the discards ( 55 mt ). Hook and line gear accounted for $9 \%$ of the landings (47 mt ) and $4 \%$ of the discards ( 2 mt ). Gillnet gear accounted for less than $1 \%$ of the landings and discards. Overall, discards in the USA fishery have been relatively low in recent years due to high trip limits and larger trawl mesh size.

## Size and Age Composition

The size and age composition of haddock in the 2005 Canadian groundfish fishery was characterized using port and at-sea samples from all principal gears and seasons. Comparison of port and at-sea length frequencies did not reveal any persistent differences (Figure 5), therefore, all data were combined (Table 7). The size composition of catch in the Canadian fisheries peaked at 52.5 cm (21 in) for otter trawlers and longliners (Figure 6). Gill-netters caught few haddock. The percentage of haddock below 43 cm was less than $1 \%$ in the Canadian groundfish fishery.
The size composition of haddock discards in the 2005 Canadian scallop fishery was characterized by quarter using length samples obtained from 11 observed scallop trips. Age composition was obtained by applying survey and groundfish fishery age-length keys to the quarterly length frequencies. Van Eeckhaute and Brodziak (2005) describe the methods used to characterize size and age composition in previous years. The annual Canadian scallop fishery haddock discards by age are presented in Table 8 and reflect a correction in calculation of the 2004 and earlier discards reported in the previous assessment (Van Eeckhaute and Brodziak 2005).
USA landings of EGB haddock are divided into large and scrod market categories for sale. Landings of large haddock totaled 83 mt in 2005, a 78\% decrease from 2004 (Table 9). Landings of scrod also decreased from 1,421 mt in 2004 to 427 mt in 2005, a $70 \%$ decrease. The percentage of USA landings by weight of scrod haddock increased from $79 \%$ in 2004 to $84 \%$ in 2005. In general, the increase in the percentage of scrod landings reflects declines in haddock size at age on Georges Bank as well as the predominance of the 2000 year class in the catch.
Quarterly length samples from USA EGB landings in 2005 were used to characterize the length composition (Table 9). Because sampling intensity was relatively low in quarter 2 and also because no length samples were collected in quarter 4, the quarterly length frequency samples were augmented by length samples collected in adjacent areas ( 522 ( 5 Zh ) and 525 ( 5 Zn )) that have similar size compositions compared to EGB. Landings peaked at 52 to 54 cm and discards peaked at 30 cm with another smaller mode at 48 cm (Figure 7). Quarterly samples of discards collected by at-sea observers were used to characterize the catch at length of the USA discards. Observer coverage increased from a total of $9 \%$ of USA haddock landings by weight from EGB in 2004 to $44 \%$ in 2005 ( 226 mt ) during a total of 114 trips.

Quarterly age-length keys were applied to USA landings and discards at length to obtain catch at age. The quarter 1 USA fishery age-length key in 2005 was augmented with data from the DFO winter survey. Similarly, the USA fishery age-length keys in quarters 2 and 3 were augmented with NEFSC spring and autumn age-length data,
respectively, for lengths less than 40 cm to determine the catch at age of undersized discards.

Ages of survey and commercial-caught haddock were separately assigned by the DFO and the NMFS age readers, L. Van Eeckhaute and S. Sutherland, respectively. Intrareader agreement tests for the DFO reader were not conducted for this assessment but testing conducted in the past indicated that age interpretations were internally consistent. NMFS testing was conducted on data from the NMFS 2005 fall and 2006 spring surveys, USA 2005 commercial landings by quarter and a haddock otolith reference collection (Sutherland et al. 2007). The tests involved a total of 483 otoliths. Agreement ranged between 92 and $97 \%$ for first and second readings indicating a high level of consistency in age determinations with no pattern of seasonal bias. Inter-reader testing between the NMFS reader and the DFO reader was not conducted for this assessment. However, inter-reader testing conducted for the previous assessment was very good at about 96\% (Van Eeckhaute and Brodziak 2005). Age reader agreement was judged to be satisfactory for estimating catch at age.

The 2005 Canadian and USA landings and discards at age estimates by quarter (Table 10) were summed to obtain the quarterly and annual catch at age and appended to the 1969-2004 catch at age data (Van Eeckhaute and Brodziak 2005). Combined Canada/USA annual catch at age and average Canadian fishery weights and lengths at age are summarized in Tables 11, 12 and 13 and Figures 8 and 9. Canadian and USA fishery weights and lengths at age for 2005 are presented in Table 14. Canadian lengths and weights were generally higher than USA values, possibly reflecting seasonal differences in the catch. The 2000 year class (age 5), which contributed 77\% of the catch by number, and the 1998 year class (age 7), at 9\%, again dominated the fishery in 2005 (Figure 10). The exceptional 2003 year class had been projected to make up $32 \%$ in numbers of the total EGB catch but the actual catch of that year class was only $2 \%$ (Figure 11). The shortfall was due to the unanticipated slow somatic growth of that year class which resulted in a much lower partial recruitment to the fishery at age 2 than what was used in the previous assessment's projection. As a result, the 2000 year class made up a much higher percentage of the catch than anticipated, $77 \%$ instead of $45 \%$. Age 5 haddock, the dominant age group for both countries (Table 10), account for $63 \%$ of USA landings compared to $78 \%$ of the Canadian landings, a difference of $15.7 \%$ (Table 10). USA discards represented $30 \%$ by numbers of the USA catch, $73 \%$ of which were age 2 haddock, but only $1 \%$ by numbers of the combined Can/USA catch. Overall, USA discard numbers decreased by 58\% from 2004 totals. The dominant age group in the fishery has increased from age 2 and 3 during earlier periods to age 4 in recent years. The age composition during the 1969 to 1974 period was atypical since it was dominated by the outstanding 1962 and 1963 year classes which continued to contribute substantially at ages 6 and older (Figure 10).

## Abundance Indices

## Research Surveys

Surveys of Georges Bank have been conducted by DFO each year (February) since 1986 and by NMFS each fall (October) since 1963 and each spring (April) since 1968.

All surveys use a stratified random design (Figures 12 and 13). For the NMFS surveys, two vessels have been employed and there was a change in the trawl door in 1985. Vessel and door type conversion factors (Table 15), derived experimentally from comparative fishing, have been applied to the survey results to make the series consistent (Forrester et al 1997). Additionally, two different trawl nets have been used on the NMFS spring survey, a modified Yankee 41 during 1973-81 and a Yankee 36 in other years, but no conversion factors are available for haddock.
The spatial distribution of catches by age group (1, 2, and 3+ for spring and 0, 1 and $2+$ for fall) in the most recent surveys is plotted to show the distribution in comparison to the average over the previous 10 year period (Figures 14, 15 and 16). The 2003 year class at age 2 in the NMFS 2005 fall survey was abundantly distributed on the northern edge, peak and southern flank. At age 3, the DFO and NMFS spring 2006 surveys found this year class abundantly and widely distributed throughout the bank. This year class was found in large quantities on the US side as well as the Canadian side, especially during the 2006 NMFS spring survey. The 2004 year class at age 1 was also distributed around the edges of the bank in fall but was found in highest concentrations on the Canadian side of the southern flank by the DFO survey the following spring, an atypical distribution for this age group which is usually found most abundantly on the northern edge at this time of year. This year class also occurred elsewhere throughout the EGB area but generally at lower densities. The NMFS spring survey found very low densities of this age group distributed throughout the bank. Some moderate catches of the 2005 year class were found by the fall survey (age 0) on the northern part of the bank. The DFO survey found a concentration of this year class at age 1 on the southern flank and some moderate catches on the northern edge, a typical distribution pattern for this age group at this time of year. They were similarly distributed during the NMFS spring survey.
Age-specific, swept area abundance indices show that the three surveys are consistent and track year class strengths well (Tables 16, 17 and 18; Figure 17). Some year effects are evident. For example, low spring catches occurred in both the 1997 DFO and NMFS surveys. Survey biomass indices (ages 2-8 in fall; 3-8 in spring) peaked during the early 1960s (Figure 18). After declining to a record low in the early 1970s, they peaked again in the late 1970s, though at a lower level, and again during the mid to late 1980s at about half the level of the 1970s peak. Biomass generally increased during the 1990s. All three most recent surveys showed an increase in adult biomass (3+) from the previous year due to recruitment of the 2003 year class to the index.

All three survey series indicated that the 2003 year class is one of the strongest on record with good catches taken by the most recent surveys. Catches of the 2005 year class were higher than the 2004 year class for all 3 surveys. The 3 new survey observations for the 2004 year class support the view that it is somewhat stronger than the weak 2001 and 2002 year classes (Figure 19). The DFO spring and NMFS fall survey indices for the 2005 year class indicate it is a good year class although the NMFS spring survey is less optimistic.
The 2003 year class survey indices are the strongest in the time series, similar in abundance to the exceptional 1963 year class. The abundance of the 2000 year class is comparable to the strong 1975 and 1978 year classes.

## Growth

Canadian fishery weights and lengths at age (Table 12 and 13, Figure 9) for ages 2 and 3 were generally higher during the mid-1990s than prior to the 1990s. This increase reflects a change in gear selectivity that occurred in the early 1990s. Canadian fishery weights in 2005 and DFO survey weights (Table 19 and Figure 9) and lengths (Table 20 and Figure 20) in 2006 declined or increased only slightly, continuing a downward trend that started after the mid-1990s for the older ages. Younger ages did not exhibit this declining trend until 2001. Average size at age has declined substantially so that haddock of age 2 and older are now at or smaller than the size that the next younger age group was in previous years before the declines occurred. Although survey adult biomass increased, the increase was not as great as expected, given the estimated magnitude of the 2003 year class. The slower growth of adult biomass was due to the marked reduction in growth of the recruiting 2003 year class.
Weights at age from the DFO survey are considered beginning of year population weights and are calculated using the method in Gavaris and Van Eeckhaute (1998) in which weights observed during the survey are weighted by population numbers at length and age. Fishery weights at age are derived from the sampled lengths at age and a length-weight relationship (Waiwood and Neilson 1985). In some cases, the mean weight at age in the catch was larger than the population mean weight at age at the beginning of the following year for the same cohort. This feature was mostly attributable to commercial fishery gear selectivity (Gavaris and Van Eeckhaute, 2000). However, some discrepancies in weights at age were more persistent and may be due to problems associated with the length-weight relationship and gutted-to-round weight conversion factors.

## Harvest Strategy

The Transboundary Management Guidance Committee (TMGC 2003) has adopted a strategy to maintain a low to neutral risk of exceeding the fishing mortality limit reference, $\mathrm{F}_{\text {ref }}=0.26$. When stock conditions are poor, fishing mortality rates should be further reduced to promote rebuilding.

## Estimation of Stock Parameters

## Calibration of Virtual Population Analysis (VPA)

Tuned virtual population analysis was used to estimate stock parameters. The adaptive framework, ADAPT, (Gavaris 1988) was used to calibrate the virtual population analysis with the research survey data. An investigation of model formulations and model assumptions was conducted by Gavaris and Van Eeckhaute (1998). They provide details for the established model formulation and objective function used in this assessment. Based on this formulation it was assumed that observation errors for the catch at age data were negligible. Observation errors for the abundance indices were assumed to be independent and identically distributed after taking natural logarithms of the values. The annual natural mortality rate, M , was assumed constant and equal to 0.2 . Similar model assumptions and methods were applied to the updated information
here. Minor differences in the handling of zero terminal catches for a year class were implemented as a refinement to the software to afford more flexibility. The population abundance for the 9+ age group was calculated but not calibrated to the indices. In the first quarter of the first year, the 9+ abundance calculation was based on the assumption that the fishing mortality for the 9+ age group was equal to the population weighted fishing mortality for ages 4-8. In the first quarter of subsequent years, the 9+ abundance was calculated as the sum of the age 8 and age group 9+ abundances at the end of the last quarter of the previous year.
The VPA was based on quarterly catch at age, $C_{a, t}$, for ages $a=0,1,2 \ldots 8,9+$, and time $t=1969.0,1969.25,1969.5,1969.75,1970.0 \ldots 2005.75$ where $t$ represents the beginning of the time interval during which the catch was taken. In previous assessments the catch at age contained no age 0 haddock since none were caught in the groundfish fishery. The inclusion of discards from the scallop fishery introduced age 0 fish into the catch at age. The effect of adding age $0 s$ to the catch at age was determined to be negligible and since the discards were poorly estimated and values were low, age 0 catch was set to zero in the analysis. Ages 1 and older discards were included in the catch at age. The effect on the population estimate of adding older discards was minimal. The population was calculated to the beginning of 2006. The VPA was calibrated to bottom trawl survey abundance indices, $I_{s, a, t}$, for
$s=$ DFO, ages $a=1,2,3 \ldots 8$, time $t=1986.16,1987.16 \ldots$ 2005.16, 2006.00
$s=$ NMFS spring (Yankee 36), ages $a=1,2,3 \ldots 8$, time $t=1969.29,1970.29,1971.29$, 1972.29, 1982.29, 1983.29...2005.29, 2006.00
$s=$ NMFS spring (Yankee 41), ages $a=1,2,3 \ldots 8$, time $t=1973.29$, 1974.29...1981.29
$s=$ NMFS fall, ages $a=0,1,2 \ldots 5$, time $t=1969.69,1970.69 \ldots 2005.69$
Since the population is calculated to beginning year 2006, the NMFS and DFO spring surveys in 2006 were designated as occurring at time 2006.00 The NMFS fall survey captures young of the year and that information is included as 0 group, but older haddock appear less available during this season. Survey indices for older ages where catches were sparse and where there were frequent occurrences of zero catches were not included (e.g., NMFS fall survey ages 6 and older and ages greater than 8 in the NMFS spring and the DFO surveys). Zero observations for abundance indices were treated as missing data as the logarithm of zero is not defined. During years when discarding was high, survey information was used along with interviews to obtain estimates of the USA catch. This lack of complete independence between catch and survey data does not influence population estimates but may deflate variance estimates marginally.

Statistical properties of estimators were determined using conditional non-parametric bootstrapping of model residuals (Efron and Tibshirani 1993, Gavaris and Van Eeckhaute 1998). Population abundance estimates at age 1 exhibited a large relative error of about $60 \%$ and a large relative bias of $16 \%$, while the relative error for other ages was between $27 \%$ and $43 \%$ with a relative bias between $3 \%$ and $8 \%$ (Table 21). The relative bias on fishing mortality for ages 4 and older in 2005 was small at about $3 \%$. While trends in the three surveys are generally consistent, the survey indices
exhibit high variability and the average magnitude of residuals is large relative to other assessments. Although several large residuals were apparent, these do not appear to have a substantial impact on estimates of current abundance (Figures 21-25). Some patterns in the residuals (by cohort and by age) suggest year class and/or year effects.

## Retrospective Analysis

Retrospective analyses were used to detect any patterns to consistently overestimate or underestimate fishing mortality, biomass and recruitment relative to the terminal year estimates. This stock assessment does not display a retrospective pattern. While recruitment estimates may sometimes change substantially when more data becomes available, e.g., the 1998, 2000 and 2003 year classes, successive estimates of year class abundance at age do not display any persistent tendency to be higher or lower (Figure 26). Similarly, retrospective analysis showed no persistent patterns in the estimates of adult biomass (ages 3-8) or fishing mortality (ages 4-8 weighted by population numbers) (Figure 27).

## State of Resource

The state of the resource was based on results from an age structured analytical assessment (VPA) that used fishery catch statistics and sampling for size and age composition of the catch for 1969 to 2005 (including discards). The VPA was calibrated to trends in abundance from three bottom trawl survey series; NMFS spring, NMFS fall and DFO. For each cohort, the terminal population abundance estimates from ADAPT were adjusted for bias estimated from the bootstrap, and used to construct the history of stock status (Tables 21, 22 and 23). This approach for bias adjustment was considered preferable to using potentially biased point estimates of stock parameters (O'Boyle 1998). The weights at age from the DFO survey (Table 19) were used to calculate beginning of year population biomass (Table 24). A weight of 2.4 kg , which was midway between the age 6 and 8 weight for that cohort, was used for age 7 in 1995 as no data were available for that age group. The 1986-95 average weight at each age was used for 1969-85. Data to approximate the age composition of the catch from unit areas 5Zj and 5Zm during 1931 to 1955 were used to reconstruct a population analysis of EGB that was suitable for comparison of productivity.
Population biomass (ages 3+) increased to $39,000 \mathrm{mt}$ during the late 1970 s and early 1980s due to recruitment of the strong 1975 and 1978 year classes whose abundances were estimated to be above 50 million age-1 fish each (Figure 28). However, biomass declined rapidly in the early 1980s as subsequent recruitment was poor and these two cohorts were fished intensely at young ages. Improved recruitment in the 1990s and the strong 2000 year class, lower exploitation, and reduced capture of small fish in the fisheries allowed the biomass to increase from near an historical low of 8,600 mt in 1993 to $73,800 \mathrm{mt}$ in 2003. Adult biomass subsequently decreased to 51,000 mt in 2005 but increased in 2006 to 123,000 mt (80\% Confidence Interval: 93,300 mt $167,300 \mathrm{mt}$ ), higher than the 1931-1955 maximum biomass of about $90,000 \mathrm{mt}$. The marked increase in 2006 is due to the exceptional 2003 year class, estimated at $88,000 \mathrm{mt}$ at age-3. Older ages sustained the fishery in 2005 and the strong 2000 year class is expected to continue to contribute substantially to the catch weight in 2006.

Recruitment improved in the 1990s and the exceptional 2003 year class, estimated at 338 million age- 1 fish, is the largest in the assessment time series (1931-1955 and 1969-2005). The 2000 year class ( 72 million at age 1) is estimated to be larger than the strong 1975 and 1978 year classes (Figure 28). In contrast, the 2001, 2002 and 2004 year classes are weak, at about 4, 2 and 9 million fish respectively. Initial estimates of the 2005 year class ( 28 million age- 1 fish) suggest that it is about average.
Fishing mortality for ages 4+ fluctuated between 0.2 and 0.4 during the 1980s (Figure 29) and markedly increased between 1989 and 1993 to about 0.6, the highest observed. Since 1995, fishing mortality has been below the reference, $F_{\text {ref }}=0.26$, but increased in 2005 to slightly above $F_{\text {ref }}\left(F_{2005}=0.29 ; 80 \%\right.$ Confidence Interval: 0.23 0.37 ). However, the age at which haddock are fully recruited to the fishery has increased and fishing mortality based on these ages, $5+$, has been higher than F for ages 4+ since 2003 and in 2004 was also slightly above $F_{\text {ref }}$.
The significant reduction in weights at age and the decline in condition are reflected in a reduction in partial recruitment to the fishery. The average partial recruitment for 2004 and 2005 shows a decrease from the 2002 to 2004 average for ages 3 and 4 (Table 25 and Figure 30). The partial recruitment values used to project the 2005 catch (Van Eeckhaute and Brodziak 2004) were normalized on ages 4-8. Lower weights at age have resulted in a reduced partial recruitment so that age 4 is now no longer fully recruited to the fishery. Partial recruitment estimate for ages 1 to 4 for recent years are more appropriately normalized on ages 5-8 (Table 26). Due to the magnitude of the 2003 year class, the partial recruitment pattern used for this year class will have a significant impact on estimates of the magnitude and composition of future catches.
Gains in fishable biomass may be partitioned into those associated with somatic growth of haddock, which have previously recruited to the fishery, and those associated with new recruitment to the fishery (Rivard 1980). We used age 2 as the age of first recruitment to the fishery. This choice facilitated comparisons with historic stock productivity but may be less representative of the current fishery selectivity. Except for 1996, 2001, 2003 and 2004 surplus production (biomass gains from growth and from recruitment, decremented by losses due to natural deaths) since 1993 has exceeded fishery harvest yields, resulting in net population biomass increases (Figure 31). Growth of fish is the dominant component of the biomass gain but recruitment accounts for significant portions when stronger year classes enter the population, e.g. the 2000 year class in 2002 and the 2003 year class in 2005 (Figure 32). The biomass contributed by the 2003 year class, both when it recruited at age 2 and through growth during that year was greater than that of any other previous cohort since 1969.

## Productivity

Stock characteristics such as recruits per spawner, age structure, spatial distribution and fish growth reflect changes in the productive potential.
Stock-recruitment data indicates that the chance of a good year class is significantly enhanced for adult biomass above about 40,000 mt (Figure 33). Since 1969, only the 1975, 1978, 2000 and 2003 year classes have been above the average abundance of
year classes observed during the period 1931-55. The recruits per adult biomass ratio was generally low during the 1980s but higher during the 1990s, comparable to that in the 1931-1955 period (Figure 34). The recruits per adult biomass ratio suggests that higher recruitment might occur when the biomass is above $40,000 \mathrm{mt}$. However, in the early 2000's, excepting 2000 and 2003, which have among the highest ratios seen since 1931, recruits per spawner for three of those years were again low.
A broad representation of age groups is apparent, in both absolute number and percent composition, reflecting improved recruitment and lower exploitation, particularly at younger ages, since 1995 (Figure 35).
The spatial distribution patterns observed during the most recent bottom trawl surveys were similar to the average patterns over the previous ten years. However, consistent with the pattern observed for previous large year classes, the exceptional 2003 year class, the main component of the $3+$ age group, was widely distributed throughout the survey area (Figures 14, 15 and 16).
DFO survey average weights at length, used to reflect condition, show a decrease for smaller haddock ( 48 to 53 cm ) during the last 3 years and a longer trend is evident for larger fish (68 to 73 cm ). For these lengths, weights are at their lowest values in the DFO survey time series (Figure 36). The percent change in weight at length indicates a decline in condition for most lengths during the years 2000 and 2004 and from the year 2000 to the beginning of 2006 there is a decline in condition for all except one length grouping (Figure 37). Reduced growth is also evident in the rate of change in DFO survey lengths at age (Table 27 and Figure 38) and is particularly evident in 2001 and 2004.

In summary, productivity increased since the 1980s due to improved recruits per spawner and increases in the number of larger and older fish in the population, however, productivity has severely diminished in recent years due to reductions in fish size at age and condition.

## Outlook

This outlook shows the effects of alternative catch quotas on the risk of exceeding the fishing mortality reference level in 2007. Uncertainty about standing stock generates uncertainty in forecast results which is expressed here as the risk of exceeding $F_{\text {ref }}=0.26$. The risk calculations assist in evaluating the consequences of alternative catch quotas by providing a general measure of the uncertainties. However, they are dependent on the data and model assumptions and do not include uncertainty due to variations in weight at age, partial recruitment to the fishery, natural mortality, systematic errors in data reporting or the possibility that the model may not reflect stock dynamics closely enough.

The 2003 year class will comprise a large portion of the 2007 catch. Predictions of weights at age and partial recruitment for this year class used for input into the risk assessment are very influential for catch projections. A scatterplot of the observed instantaneous growth rates, calculated as growth rate $=\ln \left(L_{a+1}\right)-\ln \left(L_{a}\right)$, for the 1998, 1999 and 2000 year classes suggests that growth rate diminishes with length (Figure 39).

Only these year classes were used to characterize the growth of the 2003 year class because the growth rates of earlier year classes was higher. Applying a parsimonious linear functional form, the relationship between growth rate and length was approximated as growth rate $=0.484-0.00889 \times$ length. The predicted growth rate at length was applied to the 2006 DFO survey average length for the 2003 year class (34 cm at age 3) to obtain the beginning of year length at age 4, i.e. $L_{4}=L_{3} \times e^{\text {growth rate }}$, and then sequentially, at age 5 using the growth rate predicted for the length at age 4, etc (Table 28). Average fishery lengths were determined by interpolating between beginning of year lengths using the observed patterns from nearby year classes (Figure 40). The length estimates were then converted to weights using the length weight relationship used to convert the Canadian fishery lengths to weights and were reduced by $10 \%$ to account for the observed reduction in fish condition in recent years (Table 29).

Recent observed (2003 to 2005) partial recruitment values were compared to beginning year (survey) lengths (Figure 41) to help determine partial recruitment values for the 2003 yearclass. A value of 0.3 which is about $10 \%$ less than the partial recruitment for age 4 in 2005 was judged to be appropriate for the 2003 year class at age 4. This value is also lower than the recent 3 year average for this age group, which is appropriate since lengths and weights at age were higher at that time. The 2005 observed fishery weights and partial recruitment were used for year classes preceding and following the 2003 year class except for the weight for age 1, which, in 2005, was derived from only one observation. The 2001 age 1 (2000 year class) fishery weight, the lowest observed value from the most recent five years, was used for age 1 to reflect the decline in growth.

A risk assessment was conducted to beginning year 2008 based on these patterns in growth and partial recruitment. Stock size estimates at the beginning of 2006 were used to start the forecasts. Abundances of the 2006 and 2007 year classes were assumed to be 20 million at age 1 . Natural mortality was assumed to be 0.2 (Table 30).
Assuming a 2006 catch equal to the 22,000 mt total quota, a combined Canada/USA catch of $19,000 \mathrm{mt}$ in 2007 would result in a neutral risk (50\%) that the fishing mortality rate in 2007 will exceed $F_{\text {ref }}=0.26$ (Figure 42). A catch of 16,000 mt would result in a low risk (25\%) that the fishing mortality rate in 2007 will exceed $F_{\text {ref. }}$. Adult biomass is projected to be 149,000 mt in 2007 and will increase by less than $10 \%$ in 2008. The 2003 year class (age 4) will comprise the highest proportion of the total 2007 yield accounting for $72 \%$ of the catch at the $19,000 \mathrm{mt}$ level ( $81 \%$ by numbers). The 2000 year class will account for the second highest proportion (17\% of the catch biomass and 11\% by numbers) (Table 31).
Medium term projections were not conducted due to uncertainties in future growth trends of the 2003 year class and this cohort's overwhelming influence on future adult biiomass.

## Special Considerations

The outstanding 2003 year class was expected to contribute substantially (32\%) to the 2005 catch. However, the contribution was negligible (2\%) due to a failure to recruit to the fishery because of slow growth. The failure of this year class to contribute as expected to the fishery resulted in fishing mortality above $F_{\text {ref }}$ on the older ages in 2005. This has been exacerbated by the two weak year classes preceding the 2003 year class. Slow growth of the 2003 cohort will continue to impact the fishery. If the TAC in 2006 is caught, fishing mortality will be higher than $F_{\text {ref }}$ on the fully recruited ages $\left(F_{5+}=0.5\right)$. Due to the high abundance of the 2003 cohort and its slow growth, discards of this year class may be high and should be monitored.

While best judgement was used to determine the weights at age and fishery partial recruitments for the projections, the risk analysis may not capture the full extent of uncertainty of the consequences for various catch levels, which are important in this instance and should be used in a precautionary manner.

## Acknowledgements

G. Donaldson, E. Williams, J. Fennel and Javitech Ltd. provided samples from the Canadian fishery. We thank members of the fishing industry who spent time to discuss their experiences in the fishery. We also thank Stratis Gavaris and Ralph Mayo for providing valuable comments on the draft manuscript.

## Literature Cited

Clark, S.H., W.J. Overholtz, and R.C. Hennemuth. 1982. Review and assessment of the Georges Bank and Gulf of Maine haddock fishery. J. Northw. Atl. Fish. Sci. 3: 127.

Cleveland, W. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of American Statistical Association 74: 829-836.

DFO, 2002. Development of a sharing allocation proposal for transboundary resources of cod, haddock and yellowtail flounder on Georges Bank. DFO Maritime Provinces, Regional Fisheries Management Report 2002/01:59 p.

Efron, B., and R.J. Tibshirani. 1993. An introduction to the bootstrap. Chapman \& Hall. New York. 436p.

Forrester, J.R.S., C.J. Byrne, M.J. Fogarty, M.P. Sissenwine, and E.W. Bowman. 1997. Background papers on USA vessel, trawl, and door conversion studies. SAWISARC 24 Working Paper Gen 6. Northeast Fisheries Science Center, Woods Hole, MA.

Gavaris, S. 1988. An adaptive framework for the estimation of population size. CAFSAC Res. Doc. 88/29: 12 p.

Gavaris, S., and L. Van Eeckhaute. 1998. Assessment of haddock on eastern Georges Bank. DFO CSAS Res. Doc. 98/66: 75 p.

Gavaris, S., and L. Van Eeckhaute. 2000. Assessment of haddock on eastern Georges Bank. DFO CSAS Res. Doc. 2000/082: 68 p.

O'Boyle, R.N. (Chair.) 1998. Proceedings of the Transboundary Resource Assessment Committee 20-24 April 1998. CSAS Proc. Ser. 98/10: 49p.

Overholtz, W.J., S.H. Clark, and D.Y. White. 1983. A review of the status of the Georges Bank and Gulf of Maine haddock stocks for 1983. Woods Hole Lab. Ref. Doc. 83-23.

Rivard, D. 1980. Back-calculating production from cohort analysis, with discussion on surplus production for two redfish stocks. CAFSAC Res. Doc. 80/23: 26 p.

Schuck, H.A. 1951. Studies of Georges Bank haddock, Part I: Landings by pounds, numbers and sizes of fish. Fish. Bull. U.S., 52: 151-176.

Sutherland, S.J., N.L. Shepherd, S.E. Pregracke, and J.M. Burnett. 2007. Accuracy and precision exercises associated with 2006 TRAC production aging. US Dep Commer, Northeast Fish Sci Cent Ref. Doc. 07-01; 20 p.

TMGC, 2003. Transboundary Management Guidance Committee Guidance Document 2003/1, 7 p.

Van Eeckhaute, L., and J. Brodziak. 2004. Assessment of eastern Georges Bank haddock. TRAC Ref. Doc. 2004/01: 70 p

Van Eeckhaute, L., and J. Brodziak. 2005. Assessment of haddock on eastern Georges Bank. TRAC Ref. Doc. 2005/03: 73 p

Van Eeckhaute, L., and S. Gavaris. 2006. Estimation of cod, haddock and yellowtail flounder discards from the Canadian Georges Bank scallop fishery for 2005. DFO TRAC Ref. Doc. 2006/04.

Van Eeckhaute, L., S. Gavaris, and H. Stone. 2005. Estimation of cod, haddock and yellowtail flounder discards from the Canadian Georges Bank scallop fishery from 1960 to 2004. DFO TRAC Ref. Doc. 2005/07.

Waiwood, K.G., and J.D. Neilson. 1985. The 1985 assessment of 5Ze haddock. CAFSAC Res. Doc. 85/95:49 p.

Table 1. Nominal catches (mt) of haddock from EGB during 1969-2005. For "Other" it was assumed that $40 \%$ of the total $5 Z$ catch was in EGB.

| Year | Landings |  |  | Discards |  | Total Catch | Quotas |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Canada | USA | Other | Canada | USA |  | Canadian | USA |
| 1969 | 3941 | 6622 | 695 | 123 |  | 11258 |  |  |
| 1970 | 1970 | 3153 | 357 | 116 |  | 5480 |  |  |
| 1971 | 1610 | 3534 | 770 | 111 |  | 5914 |  |  |
| 1972 | 609 | 1551 | 502 | 133 |  | 2795 |  |  |
| 1973 | 1565 | 1396 | 396 | 98 |  | 3455 |  |  |
| 1974 | 462 | 955 | 573 | 160 | 757 | 2907 |  |  |
| 1975 | 1353 | 1705 | 29 | 186 |  | 3273 |  |  |
| 1976 | 1355 | 973 | 24 | 160 |  | 2512 |  |  |
| 1977 | 2871 | 2429 |  | 151 | 2966 | 8417 |  |  |
| 1978 | 9968 | 4724 |  | 177 | 1556 | 16425 |  |  |
| 1979 | 5080 | 5211 |  | 186 |  | 10477 |  |  |
| 1980 | 10017 | 5615 |  | 151 | 7561 | 23344 |  |  |
| 1981 | 5658 | 9077 |  | 177 |  | 14912 |  |  |
| 1982 | 4872 | 6280 |  | 130 |  | 11282 |  |  |
| 1983 | 3208 | 4454 |  | 119 |  | 7781 |  |  |
| 1984 | 1463 | 5121 |  | 124 |  | 6708 |  |  |
| 1985 | 3484 | 1683 |  | 186 |  | 5353 |  |  |
| 1986 | 3415 | 2200 |  | 92 |  | 5707 |  |  |
| 1987 | 4703 | 1418 |  | 138 |  | 6259 |  |  |
| 1988 | 4046 | 1693 |  | 151 |  | 5890 |  |  |
| 1989 | 3060 | 787 |  | 138 |  | 3985 |  |  |
| 1990 | 3340 | 1189 |  | 128 |  | 4657 |  |  |
| 1991 | 5456 | 949 |  | 117 |  | 6522 |  |  |
| 1992 | 4058 | 1629 |  | 130 |  | 5817 | 5000 |  |
| 1993 | 3727 | 421 |  | 114 |  | 4262 | 5000 |  |
| 1994 | 2411 | 33 |  | 114 | 258 | 2816 | 3000 |  |
| 1995 | 2065 | 22 |  | 69 | 25 | 2181 | 2500 |  |
| 1996 | 3663 | 36 |  | 52 | 41 | 3792 | 4500 |  |
| 1997 | 2749 | 48 |  | 60 | 63 | 2919 | 3200 |  |
| 1998 | 3371 | 311 |  | 102 | 14 | 3798 | 3900 |  |
| 1999 | 3681 | 355 |  | 49 |  | 4084 | 3900 |  |
| 2000 | 5402 | 187 |  | 29 |  | 5618 | 5400 |  |
| 2001 | 6774 | 604 |  | 39 | 40 | 7417 | 6989 |  |
| 2002 | 6488 | 914 |  | 29 | 35 | 7431 | 6740 |  |
| 2003 | 6775 | 1564 |  | 98 | 63 | 8437 | 6933 |  |
| 2004 | 9745 | 1796 |  | 93 | 156 | 11790 | 9900 | 5100 |
| 2005 | 14490 | 512 |  | 52 | 57 | 15112 | 15410 | 7590 |

${ }^{1} 1895 \mathrm{mt}$ excluded because of suspected area misreporting.

Table 2. Regulatory measures implemented for the $5 Z$ and EGB fishery management units by the USA and Canada, respectively, from 1977, when jurisdiction was extended to 200 miles for coastal states, to the present.

|  | USA | Canada |
| :---: | :---: | :---: |
| 1977-82 | Mesh size of $51 / 8^{\prime \prime}(140 \mathrm{~mm})$, seasonal spawning closures, quotas and trip limits. |  |
| 1982-85 | All catch controls eliminated, retained closed area and mesh size regulations, implemented minimum landings size ( 43 cm ). | First 5Ze assessment in 1983. |
| $\begin{array}{\|l\|} \hline 1984 \\ \text { Oct. } \\ \hline \end{array}$ | Implementation of the 'Hague' line. |  |
| 1985 | $5^{1 / 2 "}$ mesh size, Areas 1 and 2 closed February-May. |  |
| 1989 |  | Combined cod-haddock-pollock quota for 4X5Zc |
| 1990 |  | EGB adopted as management unit. For MG < 65 ft . - trip limits with a $30 \%$ bycatch of haddock to a maximum of 8 trips of 35,000 lbs per trip between June 1 and Oct. 31 and 130 mm square mesh required. Fixed gear required to use large hooks until June |
| 1991 | Established overfishing definitions for haddock. | MG < 65 ft similar to 1990 but mesh size increased to 145 mm diamond. |
| 1992 |  | Introduction of ITQs and dockside monitoring. Total allowable catch $(T A C)=$ 5000 mt . |
| 1993 | Area 2 closure in effect from Jan 1-June30. | OT fishery permitted to operate in Jan. and Feb. <br> Increase in use square mesh. TAC $=5000$ mt . |
| 1994 | Jan.: Expanded Area 2 closure to include June and increased extent of area. <br> Area 1 closure not in effect. <br> 500 lb trip limit. <br> Catch data obtained from mandatory log books combined with dealer reports (replaces interview system). <br> May: 6" mesh restriction. <br> Dec.: Area 1,2 closed year-round. | Spawning closure extended to Jan. 1 to May 31. <br> Fixed gear vessels must choose between $5 Z$ or 4X for the period of June to September. <br> Small fish protocol. <br> Increased at sea monitoring. <br> OT > 65 could not begin fishng until July 1. <br> Predominantly square mesh by end of year. $\text { TAC }=3000 \mathrm{mt} .$ |
| 1995 |  | All OT vessels using square mesh. Fixed gear vessels with a history since 1990 of $25 t$ or more for 3 years of cod, haddock pollock, hake or cusk combined can participate in $5 Z$ fishery. <br> ITQ vessel require at least $2 t$ of cod and $8 t$ of haddock quota to fish Georges. TAC $=2500$ mt . <br> Restrictions on catching of cod and haddock under 43 cm (small fish protocol). |
| 1996 | July: Additional Days-at-Sea restrictions, trip limit raised to 1000 lbs. | Fixed gear history requirement dropped. TAC $=4500 \mathrm{mt}$. |
| 1997 | May: Additional scheduled Days-at-sea restrictions. | Vessels over 65 ft operated on enterprise allocations, otter trawlers under 65 ft on |


|  | USA | Canada |
| :---: | :---: | :---: |
|  | September: Trip limit raised to $1000 \mathrm{lbs} /$ day, maximum of $10,000 \mathrm{lbs} /$ trip. | individual quotas, fixed gear vessels $45-65 \mathrm{ft}$ on self-administered individual quotas and fixed gear vessels under 45 ft on community quotas administered by local boards. $\mathrm{TAC}=$ 3200 mt . |
| 1998 | Sept. 1: Trip limit raised to $3000 \mathrm{lbs} / \mathrm{day}$, maximum of $30,000 \mathrm{lbs} /$ trip. | Fixed gear vessels $45-65 \mathrm{ft}$ operated on individual quotas. TAC $=3900 \mathrm{mt}$. |
| 1999 | May 1: Trip limit 2,000 lbs/day, max. 20,000 lbs/trip. <br> Square mesh size increased to 6.5" (diamond is $6^{\prime \prime}$ ). <br> June 15: Scallop exemption fishery in Closed Area II. <br> Nov. 5: Trip limit 5,000 Ibs/day, max. 50,000 lbs/trip. | TAC $=3,900 \mathrm{mt}$.; mandatory cod separator panel when no observer on board; |
| 2000 | October: Daily trip limit suspended to April 2001but retained max. trip limit of 50,000 lbs/trip. | TAC $=5,400 \mathrm{mt}$. |
| $\begin{aligned} & 2001- \\ & 2002 \\ & \hline \end{aligned}$ | Day and trip limit adjustments. Daily trip limit suspended July 5, 2002. | TAC $=6,989$ and 6,740 mt for 2001 and 2002 respectively. |
| $\begin{aligned} & 2002- \\ & 2003 \\ & \hline \end{aligned}$ | 30,000-50,000 lb/trip limit. <br> Trip limit suspended in Oct. 2003. | TAC $=6,933 \mathrm{mt} \mathrm{for} 2003$. |
| Canada - USA Resource Sharing Agreement on Georges Bank |  |  |
| 2004 | May 1, day and trip limits removed. TAC = $5,100 \mathrm{mt}$. Oct. 1: unit areas 561 and 562 closed to groundfish vessels. Nov. 19: Special Access Program (SAP) for haddock opened. Dec. 31: Haddock SAP closed. | TAC $=9,900 \mathrm{mt}$. |
| 2005 | TAC= 7,590 mt. Jan. 14: cod separator trawl required. | TAC $=15,410 \mathrm{mt}$; exploratory winter fishery Jan. to Feb. 18, 2005. |

Table 3. Canadian landings (mt) of haddock from EGB during 1969-2005 by gear category and tonnage class for principal gears.

| Year | Otter Trawl |  |  |  |  |  | Longline |  |  | Scallop Fishery | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Side | Stern |  |  |  |  |  |  |  |  |  |  |
|  |  | 2 | 3 | 4 | 5 | Total ${ }^{1}$ | 2 | 3 | Total ${ }^{1}$ |  |  |  |
| 1969 | 777 | 0 | 1 | 225 | 2902 | 3127 | 2 | 21 | 23 | 15 | 0 | 3941 |
| 1970 | 575 | 2 | 0 | 133 | 1179 | 1314 | 6 | 72 | 78 | 2 | 1 | 1970 |
| 1971 | 501 | 0 | 0 | 16 | 939 | 955 | 18 | 129 | 151 | 3 | 0 | 1610 |
| 1972 | 148 | 0 | 0 | 2 | 260 | 263 | 23 | 169 | 195 | 1 | 2 | 609 |
| 1973 | 633 | 0 | 0 | 60 | 766 | 826 | 23 | 80 | 105 | 0 | 1 | 1565 |
| 1974 | 27 | 0 | 6 | 8 | 332 | 346 | 29 | 59 | 88 | 1 | 0 | 462 |
| 1975 | 222 | 0 | 1 | 60 | 963 | 1024 | 25 | 81 | 107 | 0 | 0 | 1353 |
| 1976 | 217 | 0 | 2 | 59 | 905 | 967 | 48 | 108 | 156 | 0 | 15 | 1355 |
| 1977 | 370 | 92 | 243 | 18 | 2025 | 2378 | 43 | 51 | 94 | 1 | 28 | 2871 |
| 1978 | 2456 | 237 | 812 | 351 | 5639 | 7039 | 121 | 47 | 169 | 17 | 287 | 9968 |
| 1979 | 1622 | 136 | 858 | 627 | 1564 | 3185 | 190 | 80 | 271 | 2 | 0 | 5080 |
| 1980 | 1444 | 354 | 359 | 950 | 6254 | 7917 | 129 | 51 | 587 | 4 | 65 | 10017 |
| 1981 | 478 | 448 | 629 | 737 | 2344 | 4159 | 331 | 99 | 1019 | 1 | 1 | 5658 |
| 1982 | 115 | 189 | 318 | 187 | 3341 | 4045 | 497 | 187 | 712 | 0 | 0 | 4872 |
| 1983 | 106 | 615 | 431 | 107 | 1130 | 2283 | 593 | 195 | 815 | 1 | 3 | 3208 |
| 1984 | 5 | 180 | 269 | 21 | 149 | 620 | 614 | 192 | 835 | 2 | 1 | 1463 |
| 1985 | 72 | 840 | 1401 | 155 | 348 | 2745 | 562 | 33 | 626 | 2 | 39 | 3484 |
| 1986 | 51 | 829 | 1378 | 95 | 432 | 2734 | 475 | 98 | 594 | 4 | 32 | 3415 |
| 1987 | 48 | 782 | 1448 | 49 | 1241 | 3521 | 854 | 113 | 1046 | 38 | 50 | 4703 |
| $1988{ }^{2}$ | 72 | 1091 | 1456 | 186 | 398 | 3183 | 428 | 200 | 695 | 16 | 80 | 4046 |
| 1989 | 0 | 489 | 573 | 376 | 536 | 1976 | 713 | 175 | 977 | 12 | 95 | 3060 |
| 1990 | 0 | 928 | 890 | 116 | 471 | 2411 | 623 | 173 | 853 | 7 | 69 | 3340 |
| 1991 | 0 | 1610 | 1647 | 81 | 689 | 4028 | 900 | 271 | 1309 | 8 | 111 | 5456 |
| 1992 | 0 | 797 | 1084 | 56 | 645 | 2583 | 984 | 245 | 1384 | 4 | 87 | 4058 |
| 1993 | 0 | 535 | 1179 | 67 | 699 | 2489 | 794 | 156 | 1143 | 2 | 93 | 3727 |
| 1994 | 0 | 495 | 911 | 79 | 112 | 1597 | 498 | 47 | 714 | 9 | 91 | 2411 |
| 1995 | 0 | 523 | 896 | 14 | 214 | 1647 | 256 | 75 | 390 | 7 | 21 | 2065 |
| 1996 | 1 | 836 | 1405 | 166 | 270 | 2689 | 561 | 107 | 947 | 0 | 26 | 3663 |
| 1997 | 0 | 680 | 1123 | 91 | 96 | 1991 | 501 | 116 | 722 | 0 | 36 | 2749 |
| 1998 | 0 | 863 | 1340 | 98 | 71 | 2422 | 570 | 252 | 921 | 0 | 28 | 3371 |
| 1999 | 0 | 954 | 1471 | 174 | 145 | 2761 | 486 | 241 | 887 | 0 | 32 | 3680 |
| 2000 | 0 | 1313 | 2269 | 230 | 246 | 4146 | 619 | 258 | 1186 | 0 | 70 | 5402 |
| 2001 | 0 | 1564 | 2555 | 0 | 757 | 5112 | 754 | 302 | 1633 | 0 | 29 | 6774 |
| 2002 | 0 | 1217 | 2720 | 0 | 657 | 4954 | 794 | 151 | 1521 | 0 | 12 | 6488 |
| 2003 | 0 | 1186 | 3246 | 0 | 0 | 4985 | 806 | 249 | 1776 | 0 | 14 | 6775 |
| 2004 | 0 | 2152 | 4651 | 0 | 67 | 7744 | 716 | 223 | 2000 | 0 | 1 | 9745 |
| 2005 | 0 | 2929 | 7393 | 326 | 0 | 12115 | 706 | 78 | 2375 | 0 | 0 | 14490 |

${ }^{1}$ Total includes catches for tonnage classes which are not listed, only tonnage classes with substantial catches listed
${ }^{2}$ Catches of 26t, 776t, 1091t and 2 t for side otter trawlers and stern otter trawlers tonnage classes 2,3 and 5 respectively were excluded because of suspected area misreporting.

Table 4. Monthly landings (mt) of haddock by Canada from EGB during 1969-2005.

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 105 | 74 | 6 | 291 | 588 | 691 | 559 | 580 | 551 | 360 | 102 | 34 | 3941 |
| 1970 | 2 | 105 | 0 | 1 | 574 | 345 | 103 | 456 | 242 | 103 | 26 | 12 | 1970 |
| 1971 | 0 | 9 | 1 | 0 | 400 | 132 | 283 | 278 | 97 | 246 | 141 | 21 | 1610 |
| 1972 | 0 | 119 | 2 | 0 | 2 | 111 | 84 | 116 | 98 | 68 | 7 | 2 | 609 |
| 1973 | 4 | 10 | 0 | 0 | 0 | 184 | 198 | 572 | 339 | 232 | 22 | 4 | 1565 |
| 1974 | 19 | 0 | 1 | 0 | 0 | 58 | 63 | 53 | 96 | 61 | 92 | 19 | 462 |
| 1975 | 4 | 14 | 0 | 0 | 0 | 166 | 256 | 482 | 100 | 166 | 118 | 45 | 1353 |
| 1976 | 0 | 7 | 62 | 68 | 60 | 587 | 152 | 190 | 186 | 26 | 9 | 7 | 1355 |
| 1977 | 102 | 177 | 7 | 0 | 23 | 519 | 1059 | 835 | 13 | 59 | 56 | 22 | 2871 |
| 1978 | 104 | 932 | 44 | 22 | 21 | 319 | 405 | 85 | 642 | 5433 | 1962 | 0 | 9968 |
| 1979 | 123 | 898 | 400 | 175 | 69 | 1393 | 885 | 396 | 406 | 261 | 53 | 22 | 5080 |
| 1980 | 38 | 134 | 14 | 29 | 223 | 2956 | 2300 | 965 | 1411 | 1668 | 104 | 176 | 10017 |
| 1981 | 38 | 481 | 568 | 4 | 254 | 1357 | 1241 | 726 | 292 | 82 | 378 | 239 | 5658 |
| 1982 | 129 | 309 | 1 | 11 | 46 | 1060 | 769 | 682 | 585 | 837 | 398 | 44 | 4872 |
| 1983 | 32 | 67 | 29 | 47 | 60 | 1288 | 387 | 483 | 526 | 195 | 88 | 6 | 3208 |
| 1984 | 3 | 5 | 81 | 88 | 73 | 433 | 219 | 254 | 211 | 71 | 25 | 0 | 1463 |
| 1985 | 1 | 11 | 33 | 99 | 26 | 354 | 392 | 1103 | 718 | 594 | 61 | 93 | 3484 |
| 1986 | 11 | 28 | 79 | 99 | 40 | 1339 | 1059 | 369 | 233 | 139 | 12 | 8 | 3415 |
| 1987 | 24 | 26 | 138 | 70 | 12 | 1762 | 1383 | 665 | 405 | 107 | 97 | 14 | 4703 |
| $1988{ }^{1}$ | 39 | 123 | 67 | 79 | 15 | 1816 | 1360 | 315 | 130 | 65 | 13 | 24 | 4046 |
| 1989 | 33 | 94 | 48 | 7 | 20 | 1398 | 356 | 566 | 141 | 272 | 108 | 18 | 3060 |
| 1990 | 35 | 14 | 50 | 0 | 7 | 1178 | 668 | 678 | 469 | 199 | 18 | 22 | 3340 |
| 1991 | 144 | 166 | 49 | 26 | 21 | 1938 | 1004 | 705 | 566 | 576 | 123 | 137 | 5456 |
| 1992 | 118 | 205 | 97 | 152 | 36 | 1381 | 619 | 414 | 398 | 401 | 209 | 28 | 4058 |
| 1993 | 468 | 690 | 96 | 78 | 25 | 723 | 505 | 329 | 202 | 198 | 230 | 183 | 3727 |
| 1994 | 3 | 3 | 1 | 2 | 0 | 398 | 693 | 373 | 375 | 220 | 211 | 133 | 2411 |
| 1995 | 5 | 1 | 1 | 1 | 0 | 762 | 327 | 290 | 281 | 109 | 197 | 93 | 2065 |
| 1996 | 0 | 0 | 0 | 0 | 0 | 1067 | 672 | 706 | 359 | 278 | 191 | 391 | 3663 |
| 1997 | 0 | 0 | 0 | 0 | 0 | 328 | 751 | 772 | 426 | 190 | 116 | 166 | 2749 |
| 1998 | 0 | 0 | 0 | 0 | 0 | 687 | 420 | 580 | 707 | 542 | 164 | 271 | 3371 |
| 1999 | 37 | 0 | 0 | 0 | 0 | 898 | 975 | 562 | 573 | 295 | 269 | 70 | 3681 |
| 2000 | 1 | 0 | 0 | 0 | 0 | 1368 | 1175 | 1026 | 848 | 658 | 175 | 150 | 5402 |
| 2001 | 0 | 0 | 0 | 0 | 0 | 971 | 1335 | 930 | 1267 | 1075 | 647 | 548 | 6774 |
| 2002 | 0 | 0 | 0 | 0 | 0 | 572 | 1703 | 983 | 1364 | 820 | 593 | 452 | 6488 |
| 2003 | 0 | 0 | 0 | 0 | 0 | 840 | 1767 | 1290 | 930 | 952 | 676 | 320 | 6775 |
| 2004 | 0 | 0 | 0 | 0 | 0 | 1547 | 2268 | 2109 | 1753 | 1275 | 556 | 236 | 9745 |
| 2005 | 1025 | 1182 | 0 | 0 | 13 | 1423 | 3006 | 3820 | 2203 | 1198 | 357 | 266 | 14490 |

[^0]Table 5. Monthly landings (mt) of haddock by the USA from EGB during 1969-2005. Details for 19942005 are not available because data are preliminary.

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 525 | 559 | 976 | 1825 | 670 | 809 | 204 | 219 | 249 | 226 | 203 | 157 | 6622 |
| 1970 | 169 | 219 | 242 | 375 | 608 | 374 | 324 | 333 | 179 | 219 | 61 | 50 | 3153 |
| 1971 | 155 | 361 | 436 | 483 | 668 | 503 | 338 | 152 | 147 | 165 | 58 | 68 | 3534 |
| 1972 | 150 | 196 | 91 | 90 | 239 | 261 | 97 | 164 | 84 | 63 | 52 | 64 | 1551 |
| 1973 | 90 | 111 | 77 | 85 | 138 | 365 | 217 | 196 | 37 | 3 | 22 | 55 | 1396 |
| 1974 | 135 | 70 | 47 | 70 | 122 | 160 | 165 | 43 | 27 | 6 | 19 | 91 | 955 |
| 1975 | 152 | 123 | 32 | 116 | 388 | 489 | 138 | 95 | 57 | 24 | 52 | 39 | 1705 |
| 1976 | 116 | 147 | 83 | 106 | 323 | 162 | 7 | 6 | 5 | 2 | 3 | 13 | 973 |
| 1977 | 75 | 211 | 121 | 154 | 374 | 372 | 434 | 191 | 73 | 52 | 146 | 226 | 2429 |
| 1978 | 336 | 437 | 263 | 584 | 752 | 750 | 467 | 221 | 245 | 426 | 194 | 49 | 4724 |
| 1979 | 274 | 329 | 352 | 548 | 766 | 816 | 588 | 659 | 224 | 202 | 281 | 172 | 5211 |
| 1980 | 632 | 1063 | 742 | 784 | 711 | 461 | 324 | 254 | 221 | 91 | 110 | 222 | 5615 |
| 1981 | 550 | 1850 | 634 | 627 | 882 | 1326 | 1233 | 873 | 321 | 284 | 242 | 255 | 9077 |
| 1982 | 425 | 754 | 502 | 347 | 718 | 1801 | 757 | 145 | 201 | 216 | 276 | 138 | 6280 |
| 1983 | 492 | 931 | 272 | 181 | 310 | 1145 | 231 | 178 | 187 | 110 | 227 | 190 | 4454 |
| 1984 | 540 | 961 | 366 | 281 | 627 | 1047 | 370 | 302 | 250 | 196 | 92 | 89 | 5121 |
| 1985 | 165 | 190 | 254 | 300 | 352 | 206 | 60 | 47 | 1 | 24 | 41 | 43 | 1683 |
| 1986 | 184 | 396 | 334 | 479 | 496 | 221 | 31 | 6 | 12 | 6 | 6 | 29 | 2200 |
| 1987 | 225 | 52 | 43 | 307 | 233 | 342 | 67 | 30 | 24 | 4 | 23 | 68 | 1418 |
| 1988 | 196 | 152 | 207 | 245 | 366 | 316 | 30 | 19 | 6 | 1 | 45 | 110 | 1693 |
| 1989 | 114 | 56 | 47 | 164 | 161 | 145 | 15 | 8 | 1 | 5 | 25 | 46 | 787 |
| 1990 | 148 | 21 | 155 | 274 | 214 | 306 | 23 | 3 | 5 | 5 | 16 | 19 | 1189 |
| 1991 | 105 | 28 | 76 | 133 | 89 | 434 | 1 | 20 | 6 | 0 | 19 | 19 | 931 |
| 1992 | 253 | 81 | 51 | 149 | 353 | 669 | 20 | 20 | 17 | 3 | 2 | 12 | 1629 |
| 1993 | 15 | 12 | 16 | 55 | 84 | 209 | 6 | 3 | 3 | 7 | 2 | 8 | 421 |
| 1994 |  |  |  |  |  |  |  |  |  |  |  |  | 33 |
| 1995 |  |  |  |  |  |  |  |  |  |  |  |  | 22 |
| 1996 |  |  |  |  |  |  |  |  |  |  |  |  | 36 |
| 1997 |  |  |  |  |  |  |  |  |  |  |  |  | 48 |
| 1998 |  |  |  |  |  |  |  |  |  |  |  |  | 311 |
| 1999 |  |  |  |  |  |  |  |  |  |  |  |  | 355 |
| 2000 |  |  |  |  |  |  |  |  |  |  |  |  | 187 |
| 2001 |  |  |  |  |  |  |  |  |  |  |  |  | 604 |
| 2002 |  |  |  |  |  |  |  |  |  |  |  |  | 914 |
| 2003 |  |  |  |  |  |  |  |  |  |  |  |  | 1564 |
| $2004{ }^{1}$ |  | 266 |  |  | 1196 |  |  | 307 |  |  | 27 |  | 1796 |
| 2005 ${ }^{1,2}$ |  | 40 |  |  | 322 |  |  | 149 |  |  | 1 |  | 512 |

[^1]Table 6. USA landings (mt) of haddock from EGB during 1969-2005 by gear category and tonnage class. Details for 1994-2005 are not available because data are preliminary.

| Year | Otter Trawl |  |  | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | Total |  |  |
| 1969 | 3010 | 3610 | 6621 | 0 | 6622 |
| 1970 | 1602 | 1551 | 3154 | 0 | 3153 |
| 1971 | 1760 | 1768 | 3533 | 0 | 3534 |
| 1972 | 861 | 690 | 1551 | 0 | 1551 |
| 1973 | 637 | 759 | 1396 | 0 | 1396 |
| 1974 | 443 | 512 | 955 | 0 | 955 |
| 1975 | 993 | 675 | 1668 | 36 | 1705 |
| 1976 | 671 | 302 | 972 | 2 | 973 |
| 1977 | 1721 | 700 | 2423 | 5 | 2429 |
| 1978 | 3140 | 1573 | 4713 | 11 | 4724 |
| 1979 | 3281 | 1927 | 5208 | 4 | 5211 |
| 1980 | 3654 | 2955 | 5611 | 4 | 5615 |
| 1981 | 3591 | 5408 | 9031 | 45 | 9077 |
| 1982 | 2585 | 3657 | 6242 | 37 | 6280 |
| 1983 | 1162 | 3261 | 4423 | 29 | 4454 |
| 1984 | 1854 | 3260 | 5115 | 5 | 5121 |
| 1985 | 856 | 823 | 1679 | 4 | 1683 |
| 1986 | 985 | 1207 | 2192 | 9 | 2200 |
| 1987 | 778 | 639 | 1417 | 1 | 1418 |
| 1988 | 920 | 768 | 1688 | 6 | 1693 |
| 1989 | 359 | 419 | 780 | 6 | 787 |
| 1990 | 486 | 688 | 1178 | 4 | 1189 |
| 1991 | 400 | 517 | 918 | 13 | 931 |
| 1992 | 597 | 740 | 1337 | 292 | 1629 |
| 1993 | 142 | 191 | 333 | 88 | 421 |
| 1994 |  |  | 32 | 0 | 33 |
| 1995 |  |  | 21 | 0 | 22 |
| 1996 |  |  | 36 | 0 | 36 |
| 1997 |  |  | 48 | 0 | 48 |
| 1998 |  |  | 311 | 0 | 311 |
| 1999 |  |  | 355 | 0 | 355 |
| 2000 |  |  | 187 | 0 | 187 |
| 2001 |  |  | 602 | 2 | 604 |
| 2002 |  |  | 913 | 1 | 914 |
| 2003 |  |  | 1564 | 0 | 1564 |
| 2004 |  |  | 1794 | 2 | 1796 |
| 2005 |  |  | 465 | 47 | 512 |

Table 7. Haddock age and length samples for landings from the Canadian groundfish fishery and for discards from the scallop dredge fishery in 2005 from EGB.

| Qtr. | Gear | Month | Landings (kg) | Length Frequency Samples |  |  |  | Ages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | At Sea |  | Port |  |  |
|  |  |  |  | Trips | Measured | Samples | Measured |  |
| 1 | OT<65 | Jan | 1,019,348 | 4 | 1,210 | 5 | 928 | Survey = 1,171 |
|  |  | Feb | 1,181,622 | 8 | 1,049 | 3 | 685 | Port = 26 |
|  | LL<65 | Jan | 5,713 |  |  |  |  | Estimated $=4$ |
|  | DR ${ }^{1}$ |  | 10,934 | 3 | 474 |  |  | Total $=1201$ |
| 2 | OT<65 | May | 12,521 |  |  |  |  | $\begin{aligned} & \text { At Sea = } 194 \\ & \text { Port }=201 \\ & \text { Estimated }=7 \\ & \text { Total }=402 \end{aligned}$ |
|  |  | June | 1,329,149 | 21 | 15,781 | 9 | 1856 |  |
|  | OT >65 | June | 47,963 | 2 | 2,001 |  |  |  |
|  | LL <65 | June | 45,520 | 1 | 127 | 2 | 450 |  |
|  | GN<65 | June | 88 |  |  |  |  |  |
|  | DR ${ }^{1}$ |  | 5,755 | $2^{2}$ | $191{ }^{2}$ |  |  |  |
| 3 | OT < 65 | July | 2,646,157 | 28 | 15,050 | 8 | 1680 |  |
|  |  | Aug | 2,696,768 | 14 | 6,457 | 7 | 1670 |  |
|  |  | Sept | 1,531,412 | 1 | 482 | 5 | 874 |  |
|  | OT >65 | Jul | 49,012 | 2 | 1,306 |  |  |  |
|  |  | Aug | 100,433 |  |  |  |  | At Sea $=115$ |
|  |  | Sept | 36,271 |  |  |  |  | Port = 411 |
|  | LL <65 | July | 310,445 | 5 | 3,367 | 2 | 396 | Estimated $=12$ |
|  |  | Aug | 1,022,408 | 12 | 11,104 | 6 | 1435 | Total $=538$ |
|  |  | Sept | 635,373 | 3 | 660 | 3 | 1540 |  |
|  | GN <65 | July | 243 |  |  |  |  |  |
|  |  | Sept | 80 |  |  |  |  |  |
|  | DR ${ }^{1}$ |  | 20,298 | 4 | 981 |  |  |  |
| 4 | OT <65 | Oct | 801,595 | 3 | 2,801 | 6 | 1496 |  |
|  |  | Nov | 323,008 | 1 | 2,377 | 1 | 490 |  |
|  |  | Dec | 247,849 | 2 | 1,786 | 3 | 705 |  |
|  | OT>65 | Oct | 64,835 |  |  |  |  |  |
|  |  | Nov | 10,542 | 1 | 137 |  |  | $\text { Port = } 224$ |
|  |  | Dec | 16,524 |  |  |  |  | Estimated $=26$ |
|  | LL <65 | Oct | 331,222 | 1 | 681 | 2 | 435 | $\begin{aligned} & \text { Estimated = } \\ & \text { Total = } 269 \end{aligned}$ |
|  |  | Nov | 23,094 | 1 | 619 | 1 | 175 |  |
|  |  | Dec | 1,184 |  |  |  |  |  |
|  | GN < 65 | Oct | 48 |  |  |  |  |  |
|  | DR ${ }^{1}$ |  | 15,506 | 3 | 349 |  |  |  |
| Totals |  |  | 14,490,478 | 122 | 68,990 | 63 | 14,815 | 2,410 |

OT=Otter Trawl Bottom, GN=Gill Net, LL=Longline, DR=Scallop Dredge, $<65=$ Less than 65' overall length, >65=Greater than 65' overall length.
${ }^{1}$ Discards from the scallop fishery were estimated by quarter.
${ }^{2}$ Augmented with one July sample (145 measured).

Table 8. Revised ${ }^{1}$ annual Canadian scallop fishery numbers of discards at age of haddock from EGB during 1968-2005. The age compositions for 1968 to 2003 and 2004 in quarters 1 and 2 were determined using survey data. The age compositions for 2004 in quarters 3 and 4 and for 2005 were derived using length samples from the scallop fishery.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | + |
| 1968 | 494 | 1023 | 18888 | 492 | 2768 | 37455 | 12263 | 2453 | 840 | 3264 | 79940 |
| 1969 | 5635 | 67 | 135 | 10426 | 1895 | 2499 | 24194 | 11892 | 1894 | 3089 | 61727 |
| 1970 | 0 | 41524 | 2597 | 103 | 4027 | 4643 | 4263 | 13682 | 8699 | 3180 | 82718 |
| 1971 | 42997 | 0 | 19315 | 4145 | 0 | 5746 | 1442 | 1764 | 18021 | 5673 | 99102 |
| 1972 | 117647 | 86946 | 0 | 13932 | 1399 | 269 | 1814 | 2242 | 282 | 19725 | 244256 |
| 1973 | 6677 | 103487 | 35717 | 0 | 5852 | 736 | 0 | 1366 | 0 | 5871 | 159706 |
| 1974 | 9093 | 20096 | 152048 | 28838 | 0 | 1972 | 0 | 196 | 331 | 5666 | 218240 |
| 1975 | 552921 | 17124 | 8900 | 76268 | 14473 | 0 | 2074 | 1208 | 432 | 2490 | 675891 |
| 1976 | 1101 | 328833 | 7845 | 7625 | 20916 | 646 | 0 | 26 | 0 | 443 | 376435 |
| 1977 | 155 | 1301 | 192529 | 2536 | 4103 | 3659 | 2577 | 12 | 100 | 412 | 207383 |
| 1978 | 109719 | 4098 | 6378 | 125375 | 2502 | 3169 | 4473 | 289 | 76 | 376 | 256454 |
| 1979 | 12084 | 212346 | 2166 | 8658 | 56811 | 2557 | 423 | 2077 | 196 | 41 | 297357 |
| 1980 | 30501 | 29828 | 140223 | 1505 | 2342 | 17090 | 1756 | 722 | 97 | 488 | 225429 |
| 1981 | 6138 | 54507 | 32609 | 85831 | 7088 | 2999 | 8485 | 736 | 119 | 195 | 198706 |
| 1982 | 569 | 1898 | 18211 | 9661 | 48383 | 3897 | 2369 | 7109 | 262 | 120 | 92478 |
| 83 | 74629 | 10672 | 9705 | 14653 | 8228 | 24516 | 545 | 247 | 6778 | 361 | 150335 |
| 1984 | 764 | 72015 | 23157 | 10389 | 8897 | 5989 | 11766 | 820 | 454 | 3714 | 137965 |
| 1985 | 353386 | 8589 | 83877 | 11608 | 5990 | 9329 | 4375 | 10454 | 609 | 2934 | 491149 |
| 1986 | 286 | 83347 | 1642 | 28729 | 2336 | 103 | 1649 | 1081 | 1674 | 1089 | 122864 |
| 1987 | 19469 | 443 | 90538 | 4610 | 20907 | 3811 | 1961 | 1326 | 1332 | 2986 | 147384 |
| 1988 | 868 | 48549 | 1698 | 53850 | 3042 | 17266 | 2358 | 2436 | 706 | 1913 | 132687 |
| 1989 | 7869 | 2227 | 116929 | 6986 | 22633 | 2764 | 6045 | 328 | 428 | 949 | 167158 |
| 1990 | 18440 | 29378 | 859 | 69120 | 2331 | 12176 | 966 | 2277 | 196 | 531 | 136273 |
| 1991 | 35349 | 16172 | 25223 | 2769 | 39414 | 1609 | 3789 | 291 | 902 | 376 | 125895 |
| 1992 | 150919 | 42787 | 8943 | 12353 | 977 | 18440 | 128 | 4331 | 726 | 1694 | 251297 |
| 1993 | 4446 | 73676 | 36597 | 7468 | 3200 | 1697 | 10139 | 678 | 1525 | 917 | 140344 |
| 1994 | 13494 | 32649 | 62697 | 24747 | 4679 | 2042 | 322 | 3161 | 101 | 899 | 144791 |
| 1995 | 4377 | 6591 | 23097 | 20155 | 6313 | 1099 | 561 | 52 | 1217 | 1084 | 64547 |
| 1996 | 6210 | 3670 | 4801 | 14864 | 10046 | 4634 | 442 | 254 | 31 | 965 | 45916 |
| 1997 | 698 | 27618 | 21398 | 4399 | 7030 | 5406 | 2318 | 231 | 195 | 522 | 69815 |
| 1998 | 18774 | 18065 | 34832 | 12757 | 6744 | 7869 | 7528 | 1713 | 269 | 537 | 109088 |
| 1999 | 1580 | 26031 | 8509 | 14370 | 3754 | 3994 | 2493 | 2401 | 1074 | 405 | 64610 |
| 2000 | 1025 | 5870 | 9636 | 5356 | 3231 | 946 | 514 | 757 | 387 | 262 | 27985 |
| 2001 | 456 | 19700 | 2489 | 10624 | 3744 | 3218 | 989 | 651 | 782 | 870 | 43523 |
| 2002 | 40 | 727 | 24393 | 4276 | 4083 | 1103 | 743 | 278 | 189 | 447 | 36277 |
| 2003 | 485703 | 634 | 1558 | 38188 | 3951 | 7293 | 1149 | 944 | 313 | 1024 | 540758 |
| 2004 | 304 | 82967 | 1608 | 2065 | 45363 | 3930 | 6721 | 1624 | 974 | 820 | 146375 |
| 2005 | 0 | 1496 | 25526 | 514 | 1010 | 18646 | 1784 | 2485 | 435 | 358 | 52254 |

[^2]Table 9. USA landings of haddock in 2005 by quarter and market category from EGB and NMFS sampling intensity for lengths and ages.

| Market Category | Large | Scrod | Unclassified | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | Landings (mt) |  |  |  |
| Quarter 1 | 11 | 29 | 1 | 40 |
| Quarter 2 | 41 | 281 | 1 | 322 |
| Quarter 3 | 31 | 117 |  | 149 |
| Quarter 4 | 1 | 1 |  | 1 |
| Total | 83 | 427 | 2 | 512 |
|  | Length per 100 mt (Number measured) |  |  |  |
| Quarter 1 | 276 (29) | 161 (46) | N/A | 436 (75) |
| Quarter 2 | 57 (23) | 83 (234) | N/A | 140 (257) |
| Quarter 3 | 739 (231) | 85 (100) | N/A | 824 (331) |
| Quarter 4 | 0 (0) | 0 (0) | N/A | 0 (0) |
| Total | 1071 (283) | 329 (380) | N/A | 1400 (663) |

Age per 100 mt (Number aged)

| Quarter 1 | $238(25)$ | $52(15)$ | N/A | $290(40)$ |
| :--- | ---: | ---: | ---: | ---: |
| Quarter 2 | $0(0)$ | $20(55)$ | N/A | $20(55)$ |
| Quarter 3 | $272(85)$ | $43(50)$ | N/A | $314(135)$ |
| Quarter 4 | $0(0)$ | $0(0)$ | N/A | $0(0)$ |
| Total | $510(110)$ | $114(120)$ | N/A | $624(230)$ |

Table 10. Components of the 2005 catch at age in numbers of haddock from EGB by quarter.

|  | Age Group |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 1+ |
| Canadian Landings |  |  |  |  |  |  |  |  |  |  |  |
| 2004 | 0 | 0 | 159 | 1093 | 20000 | 788670 | 121940 | 201031 | 50029 | 39121 | 1222043 |
| 2004.25 | 0 | 3 | 2348 | 5641 | 32393 | 539933 | 88246 | 158895 | 20290 | 22450 | 870201 |
| 2004.5 | 0 | 0 | 69692 | 18290 | 148641 | 4368695 | 198720 | 307113 | 40846 | 75807 | 5227804 |
| 2004.75 | 0 | 0 | 14832 | 2239 | 12188 | 896889 | 81827 | 63914 | 6048 | 3651 | 1081588 |
| Year total | 0 | 3 | 87031 | 27263 | 213223 | 6594187 | 490734 | 730953 | 117214 | 141029 | 8401636 |

USA Landings

| 2004 | 0 | 0 | 0 | 0 | 200 | 12600 | 2500 | 5000 | 1100 | 1700 | 23300 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2004.25 | 0 | 0 | 0 | 200 | 4400 | 118700 | 17800 | 55400 | 5600 | 8600 | 210800 |
| 2004.5 | 0 | 0 | 0 | 100 | 1200 | 70900 | 4400 | 7500 | 1300 | 1800 | 87300 |
| 2004.75 | 0 | 0 | 0 | 0 | 400 | 100 | 200 | 0 | 0 | 0 | 800 |
| Year total | 0 | 0 | 0 | 300 | 6200 | 202300 | 24900 | 67900 | 8000 | 12100 | 322200 |

Canadian Discards

|  | 0 | 0 | 124 | 54 | 222 | 4433 | 639 | 978 | 218 | 125 | 6794 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2004 | 0 | 0 | 2120 | 45 | 198 | 1976 | 357 | 499 | 60 | 77 | 5332 |
| 2004.25 | 0 | 45 | 15079 | 206 | 455 | 7053 | 276 | 450 | 113 | 113 | 23788 |
| 2004.5 | 0 | 1452 | 8202 | 209 | 135 | 5185 | 513 | 558 | 44 | 43 | 16340 |
| 2004.75 | 0 | 1496 | 25526 | 514 | 1010 | 18646 | 1784 | 2485 | 435 | 358 | 52254 |
| Year total |  |  |  |  |  |  |  |  |  |  |  |
| USA Discards |  | 569 | 6677 | 147 | 298 | 2565 | 316 | 289 | 73 | 10 | 10944 |
| 2004 | 0 | 565 |  |  |  |  |  |  |  |  |  |
| 2004.25 | 0 | 216 | 21082 | 273 | 778 | 7768 | 1225 | 2026 | 161 | 170 | 33700 |
| 2004.5 | 0 | 8578 | 70804 | 130 | 451 | 9455 | 243 | 364 | 48 | 141 | 90216 |
| 2004.75 | 0 | 3 | 19 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 25 |
| Year total | 0 | 9366 | 98583 | 549 | 1530 | 19789 | 1784 | 2680 | 282 | 321 | 134884 |


| Total |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2004 | 0 | 569 | 6961 | 1293 | 20721 | 808268 | 125395 | 207298 | 51420 | 40956 |
| 1263081 |  |  |  |  |  |  |  |  |  |  |
| 2004.25 | 0 | 220 | 25550 | 6158 | 37770 | 668377 | 107628 | 216821 | 26111 | 31297 |
| 2004.5 | 0 | 8623 | 155576 | 18726 | 150747 | 4456103 | 203639 | 315427 | 42307 | 77861 |
| 5429108 |  |  |  |  |  |  |  |  |  |  |
| 2004.75 | 0 | 1455 | 23053 | 2448 | 12725 | 902174 | 82540 | 64471 | 6092 | 3694 |
| Year total | 0 | 10865 | 211139 | 28626 | 221963 | 6834922 | 519202 | 804018 | 125931 | 153808 |

Table 11. Total annual commercial catch at age numbers (000's) of haddock from EGB during 19692005. Estimates of discards are included.

| Year |  |  |  | Age Group |  |  |  |  |  |  | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | $9+$ | $1+$ |  |
| 1969 | 6 | 0 | 18 | 1451 | 262 | 334 | 2909 | 831 | 91 | 283 | 6184 |
| 1970 | 0 | 66 | 84 | 7 | 351 | 151 | 130 | 1153 | 372 | 193 | 2508 |
| 1971 | 43 | 0 | 1201 | 251 | 31 | 252 | 159 | 161 | 774 | 412 | 3284 |
| 1972 | 118 | 346 | 1 | 390 | 72 | 21 | 94 | 39 | 16 | 451 | 1547 |
| 1973 | 7 | 1119 | 1758 | 6 | 364 | 38 | 10 | 39 | 8 | 169 | 3517 |
| 1974 | 9 | 37 | 2257 | 276 | 0 | 32 | 3 | 0 | 29 | 63 | 2706 |
| 1975 | 553 | 18 | 279 | 1504 | 216 | 5 | 36 | 2 | 2 | 31 | 2645 |
| 1976 | 1 | 402 | 157 | 173 | 834 | 135 | 0 | 19 | 0 | 18 | 1739 |
| 1977 | 0 | 1 | 8028 | 66 | 182 | 307 | 164 | 0 | 15 | 15 | 8778 |
| 1978 | 110 | 6 | 291 | 9956 | 164 | 173 | 306 | 80 | 10 | 9 | 11105 |
| 1979 | 12 | 212 | 17 | 208 | 4307 | 364 | 201 | 217 | 43 | 14 | 5597 |
| 1980 | 31 | 32 | 17701 | 343 | 302 | 2425 | 193 | 130 | 52 | 12 | 21220 |
| 1981 | 6 | 55 | 693 | 6773 | 400 | 497 | 1243 | 119 | 33 | 7 | 9826 |
| 1982 | 1 | 2 | 731 | 1057 | 2848 | 205 | 379 | 730 | 62 | 65 | 6080 |
| 1983 | 75 | 11 | 149 | 663 | 554 | 1653 | 208 | 104 | 409 | 35 | 3860 |
| 1984 | 1 | 72 | 100 | 259 | 350 | 270 | 1131 | 186 | 166 | 318 | 2854 |
| 1985 | 353 | 9 | 2146 | 386 | 182 | 199 | 128 | 381 | 53 | 117 | 3954 |
| 1986 | 0 | 89 | 39 | 2586 | 175 | 143 | 124 | 119 | 174 | 42 | 3492 |
| 1987 | 19 | 0 | 2081 | 131 | 1536 | 100 | 58 | 83 | 70 | 111 | 4190 |
| 1988 | 1 | 53 | 53 | 2199 | 124 | 894 | 111 | 39 | 46 | 100 | 3619 |
| 1989 | 8 | 2 | 1270 | 85 | 757 | 132 | 326 | 31 | 21 | 45 | 2677 |
| 1990 | 18 | 31 | 8 | 1334 | 128 | 755 | 69 | 166 | 42 | 42 | 2593 |
| 1991 | 35 | 22 | 466 | 92 | 2080 | 90 | 393 | 73 | 146 | 61 | 3458 |
| 1992 | 151 | 49 | 249 | 323 | 128 | 1464 | 89 | 319 | 26 | 91 | 2891 |
| 1993 | 4 | 80 | 283 | 351 | 282 | 87 | 645 | 34 | 155 | 75 | 1997 |
| 1994 | 13 | 34 | 304 | 762 | 153 | 56 | 49 | 129 | 29 | 40 | 1568 |
| 1995 | 4 | 8 | 83 | 546 | 420 | 54 | 26 | 3 | 52 | 17 | 1213 |
| 1996 | 6 | 4 | 34 | 496 | 872 | 424 | 61 | 18 | 3 | 73 | 1992 |
| 1997 | 1 | 30 | 103 | 85 | 549 | 488 | 196 | 13 | 8 | 34 | 1507 |
| 1998 | 19 | 19 | 198 | 295 | 265 | 547 | 453 | 116 | 12 | 35 | 1960 |
| 1999 | 2 | 27 | 44 | 752 | 319 | 248 | 346 | 255 | 99 | 25 | 2117 |
| 2000 | 1 | 6 | 318 | 443 | 1249 | 250 | 201 | 209 | 182 | 65 | 2924 |
| 2001 | 0 | 23 | 67 | 1719 | 525 | 831 | 255 | 199 | 226 | 194 | 4041 |
| 2002 | 0 | 1 | 358 | 222 | 1862 | 370 | 657 | 110 | 106 | 278 | 3964 |
| 2003 | 486 | 5 | 9 | 1806 | 281 | 1459 | 419 | 470 | 107 | 227 | 5269 |
| 2004 | 2 | 249 | 18 | 63 | 3602 | 588 | 1482 | 513 | 418 | 260 | 7195 |
| 2005 | 0 | 11 | 211 | 29 | 222 | 6835 | 519 | 804 | 126 | 154 | 8911 |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table 12. Average weight at age ( kg ) of haddock from the Canadian commercial groundfish fishery from EGB during 1969-2005. The 1989 to 1991 year-classes (shaded) grew faster than adjacent year-classes.

| Year | Age Group |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1969 | 0.600 | 0.763 | 1.282 | 1.531 | 1.649 | 1.836 | 2.298 | 2.879 |
| 1970 | 0.721 | 1.067 | 0.812 | 1.653 | 1.886 | 2.124 | 2.199 | 2.841 |
| 1971 | 0.600 | 0.928 | 1.059 | 1.272 | 2.011 | 2.255 | 2.262 | 2.613 |
| 1972 | 0.759 | 1.000 | 1.562 | 1.750 | 2.147 | 2.505 | 2.411 | 2.514 |
| 1973 | 0.683 | 1.002 | 1.367 | 1.804 | 2.202 | 1.631 | 2.885 | 3.295 |
| 1974 | 0.600 | 0.970 | 1.418 | 1.800 | 1.984 | 3.760 | 2.700 | 3.128 |
| 1975 | 0.600 | 0.872 | 1.524 | 2.062 | 1.997 | 2.422 | 4.114 | 3.557 |
| 1976 | 0.596 | 0.956 | 1.293 | 1.857 | 2.417 | 2.700 | 2.702 | 3.000 |
| 1977 | 0.600 | 0.970 | 1.442 | 1.809 | 2.337 | 2.809 | 2.700 | 3.095 |
| 1978 | 0.619 | 1.151 | 1.433 | 2.055 | 2.623 | 2.919 | 2.972 | 2.829 |
| 1979 | 0.600 | 0.987 | 1.298 | 1.805 | 2.206 | 2.806 | 3.219 | 3.277 |
| 1980 | 0.405 | 0.892 | 1.034 | 1.705 | 2.115 | 2.593 | 3.535 | 3.608 |
| 1981 | 0.600 | 0.890 | 1.262 | 1.592 | 2.270 | 2.611 | 3.505 | 4.009 |
| 1982 | 0.600 | 0.965 | 1.363 | 1.786 | 2.327 | 2.557 | 2.958 | 3.531 |
| 1983 | 0.600 | 1.024 | 1.341 | 1.750 | 2.118 | 2.509 | 2.879 | 3.104 |
| 1984 | 0.600 | 0.876 | 1.354 | 1.838 | 2.159 | 2.605 | 2.856 | 3.134 |
| 1985 | 0.600 | 0.950 | 1.230 | 1.915 | 2.227 | 2.702 | 2.872 | 3.180 |
| 1986 | 0.452 | 0.981 | 1.352 | 1.866 | 2.367 | 2.712 | 2.969 | 3.570 |
| 1987 | 0.600 | 0.833 | 1.431 | 1.984 | 2.148 | 2.594 | 2.953 | 3.646 |
| 1988 | 0.421 | 0.974 | 1.305 | 1.708 | 2.042 | 2.350 | 3.011 | 3.305 |
| 1989 | 0.600 | 0.868 | 1.450 | 1.777 | 2.183 | 2.522 | 3.012 | 3.411 |
| 1990 | 0.639 | 0.999 | 1.419 | 1.787 | 2.141 | 2.509 | 2.807 | 3.002 |
| 1991 | 0.581 | 1.197 | 1.241 | 1.802 | 2.087 | 2.596 | 2.918 | 3.012 |
| 1992 | 0.538 | 1.163 | 1.622 | 1.654 | 2.171 | 2.491 | 2.988 | 3.388 |
| 1993 | 0.659 | 1.160 | 1.724 | 2.181 | 2.047 | 2.623 | 2.386 | 3.112 |
| 1994 | 0.405 | 1.135 | 1.661 | 2.235 | 2.639 | 2.422 | 2.831 | 3.223 |
| 1995 | 0.797 | 1.055 | 1.511 | 2.033 | 2.550 | 2.755 | 2.908 | 3.010 |
| 1996 | 0.576 | 1.022 | 1.439 | 1.795 | 2.294 | 2.485 | 3.322 | 2.032 |
| 1997 | 0.685 | 1.215 | 1.336 | 1.747 | 2.120 | 2.476 | 3.034 | 3.365 |
| 1998 | 0.568 | 1.131 | 1.573 | 1.697 | 1.983 | 2.312 | 2.864 | 3.395 |
| 1999 | 0.678 | 1.095 | 1.570 | 1.910 | 1.865 | 2.182 | 2.535 | 2.773 |
| 2000 | 0.664 | 1.103 | 1.470 | 1.920 | 2.242 | 2.098 | 2.497 | 2.816 |
| 2001 | 0.394 | 1.102 | 1.471 | 1.755 | 2.107 | 2.367 | 2.186 | 2.522 |
| 2002 | 0.405 | 1.009 | 1.417 | 1.762 | 1.940 | 2.339 | 2.657 | 2.377 |
| 2003 | 0.475 | 0.758 | 1.381 | 1.589 | 1.851 | 1.894 | 2.343 | 2.839 |
| 2004 | 0.482 | 0.589 | 1.102 | 1.514 | 1.643 | 1.880 | 2.002 | 2.282 |
| 2005 | $0.056^{1}$ | 0.697 | 0.989 | 1.433 | 1.685 | 1.857 | 2.041 | 2.059 |
| Low | 0.056 | 0.589 | 0.812 | 1.272 | 1.643 | 1.631 | 2.002 | 2.032 |
| High | 0.797 | 1.215 | 1.724 | 2.235 | 2.639 | 3.760 | 4.114 | 4.009 |
| Median | 0.600 | 0.987 | 1.381 | 1.787 | 2.141 | 2.505 | 2.864 | 3.104 |
| Average | 0.569 | 0.982 | 1.366 | 1.787 | 2.129 | 2.454 | 2.793 | 3.047 |
| 2003-05 | 0.338 | 0.681 | 1.157 | 1.512 | 1.726 | 1.877 | 2.129 | 2.393 |

[^3]Table 13. Average lengths at age (cm) of haddock from the EGB Canadian commercial fishery during 1969-2005. The 1989 to 1991 year-classes (shaded) grew faster than adjacent year-classes.

| Year | Age Group |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1985 |  | 43.2 | 47.6 | 56.1 | 56.8 | 63.6 | 66.3 | 65.8 |
| 1986 | 33.7 | 43.8 | 50.1 | 56.2 | 63.4 | 62.8 | 68.7 | 72.3 |
| 1987 |  | 41.4 | 49.2 | 56.6 | 57.5 | 60.2 | 62.9 | 68.2 |
| 1988 | 32.8 | 43.7 | 48.4 | 53.7 | 58.1 | 58.1 | 64.1 | 64.1 |
| 1989 |  | 41.8 | 49.7 | 53.8 | 57.8 | 61.2 | 62.3 | 64.1 |
| 1990 | 37.9 | 43.5 | 50.2 | 52.9 | 58.0 | 57.8 | 62.0 | 59.3 |
| 1991 | 36.2 | 47.0 | 47.0 | 54.2 | 56.0 | 61.5 | 58.9 | 63.2 |
| 1992 | 35.7 | 46.4 | 52.6 | 52.6 | 58.1 | 56.3 | 64.0 | 61.2 |
| 1993 | 38.3 | 46.4 | 53.4 | 58.1 | 56.9 | 61.6 | 64.0 | 65.1 |
| 1994 | 32.5 | 46.1 | 52.6 | 58.1 | 61.6 | 59.5 | 62.8 | 65.4 |
| 1995 | 40.2 | 45.0 | 50.8 | 56.2 | 60.8 | 62.4 | 63.5 | 64.2 |
| 1996 | 36.4 | 44.5 | 50.0 | 53.8 | 58.6 | 60.0 | 66.6 | 56.5 |
| 1997 | 38.6 | 47.2 | 48.8 | 53.4 | 57.0 | 60.2 | 64.4 | 66.9 |
| 1998 | 36.5 | 46.1 | 51.6 | 52.8 | 55.7 | 58.7 | 63.3 | 67.2 |
| 1999 | 38.7 | 45.6 | 51.5 | 55.1 | 54.5 | 57.4 | 60.5 | 62.4 |
| 2000 | 38.5 | 45.6 | 50.4 | 55.2 | 58.2 | 56.3 | 59.9 | 62.6 |
| 2001 | 32.1 | 45.5 | 50.4 | 53.5 | 56.9 | 59.2 | 57.6 | 60.3 |
| 2002 | 32.5 | 44.3 | 49.7 | 53.5 | 55.2 | 58.9 | 61.5 | 59.0 |
| 2003 | 34.2 | 40.2 | 49.3 | 51.6 | 54.4 | 54.8 | 58.9 | 63.1 |
| 2004 | 34.5 | 36.9 | 45.6 | 50.8 | 52.3 | 54.7 | 55.9 | 58.3 |
| 2005 | $16.5^{1}$ | 38.8 | 44.0 | 49.8 | 52.8 | 54.5 | 56.1 | 56.3 |
| Low | $32.1{ }^{2}$ | 36.9 | 44.0 | 49.8 | 52.3 | 54.5 | 55.9 | 56.3 |
| High | 40.2 | 47.2 | 53.4 | 58.1 | 63.4 | 63.6 | 68.7 | 72.3 |
| Median | 36.0 | 44.5 | 50.0 | 53.8 | 57.0 | 59.2 | 62.8 | 63.2 |
| Average | 34.8 | 44.0 | 49.7 | 54.2 | 57.2 | 59.0 | 62.1 | 63.1 |
| 2003-05 | 28.4 | 38.7 | 46.3 | 50.8 | 53.1 | 54.6 | 57.0 | 59.2 |

${ }^{1}$ One haddock measured.
${ }^{2}$ Excludes 16.5 cm value in 2005.
Table 14. Weights and lengths at age for USA and Canadian commercial haddock fisheries on EGB in 2005.

|  | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| Weights |  |  |  |  |  |  |  |  |  |
| USA Landings | 0 | 0.963 | 0.919 | 1.306 | 1.499 | 1.606 | 1.705 | 2.007 | 2.332 |
| USA Discards | 0.156 | 0.252 | 0.683 | 0.870 | 1.159 | 1.108 | 1.252 | 1.230 | 1.369 |
| USA Catch | 0.156 | 0.252 | 0.766 | 1.221 | 1.469 | 1.573 | 1.688 | 1.981 | 2.308 |
| Canadian Groundfishery | 0.056 | 0.697 | 0.989 | 1.433 | 1.685 | 1.857 | 2.041 | 2.059 | 2.221 |
| EGB Total Catch ${ }^{1}$ | 0.156 | 0.460 | 0.982 | 1.426 | 1.678 | 1.842 | 2.010 | 2.054 | 2.228 |
| Lengths |  |  |  |  |  |  |  |  |  |
| US landings | 0 | 0 | 46.3 | 46.2 | 51.6 | 53.8 | 55.0 | 56.1 |  |
| Canadian groundfishery | 16.5 | 38.8 | 44.0 | 49.8 | 52.8 | 54.5 | 56.1 | 56.3 | 59.0 |

${ }^{1}$ Excludes Canadian scallop fishery discards.

Table 15. Conversion factors used to adjust for changes in door type and survey vessel in the NMFS surveys during 1968-2006.

| Year | Door | Spring |  | Fall |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Vessel | Conversion | Vessel | Conversion |
| 1968 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1969 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1970 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1971 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1972 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1973 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1974 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1975 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1976 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1977 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1978 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1979 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1980 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1981 | BMV | Delaware II | 1.2218 | Delaware II | 1.2218 |
| 1982 | BMV | Delaware II | 1.2218 | Albatross IV | 1.49 |
| 1983 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1984 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1985 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1986 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1987 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1988 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1989 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 1990 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 1991 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 1992 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1993 | Polyvalent | Albatross IV | 1 | Delaware II | 0.82 |
| 1994 | Polyvalent | Delaware II | 0.82 | Albatross IV | 1 |
| 1995 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1996 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1997 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1998 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1999 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2000 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2001 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2002 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2003 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 2004 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2005 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2006 | Polyvalent | Albatross IV | 1 |  |  |

Table 16. Total swept area estimates of abundance at age (numbers in 000's) of EGB haddock from DFO surveys during 1986-2006.

| Year | Age Group |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ | Total |
| 1986 | 5057 | 306 | 8176 | 997 | 189 | 348 | 305 | 425 | 401 | 16205 |
| 1987 | 46 | 4286 | 929 | 3450 | 653 | 81 | 387 | 135 | 1132 | 11099 |
| 1988 | 971 | 49 | 12714 | 257 | 4345 | 274 | 244 | 130 | 686 | 19670 |
| 1989 | 48 | 6664 | 991 | 2910 | 245 | 526 | 40 | 34 | 265 | 11724 |
| 1990 | 726 | 108 | 12300 | 168 | 4466 | 299 | 1370 | 144 | 389 | 19968 |
| 1991 | 383 | 2163 | 134 | 10819 | 114 | 1909 | 117 | 505 | 225 | 16368 |
| 1992 | 1914 | 3879 | 1423 | 221 | 4810 | 18 | 1277 | 52 | 656 | 14249 |
| 1993 | 3448 | 1759 | 545 | 431 | 34 | 1186 | 19 | 281 | 147 | 7849 |
| 1994 | 4197 | 15163 | 5332 | 549 | 314 | 20 | 915 | 18 | 356 | 26864 |
| 1995 | 1231 | 3224 | 6236 | 3034 | 720 | 398 | 0 | 729 | 849 | 16422 |
| 1996 | 1455 | 2290 | 4784 | 5305 | 3113 | 303 | 274 | 38 | 684 | 18247 |
| 1997 | 1033 | 1550 | 1222 | 2742 | 2559 | 1397 | 150 | 65 | 372 | 11090 |
| 1998 | 2379 | 10626 | 5348 | 3190 | 5312 | 5028 | 2248 | 348 | 601 | 35080 |
| 1999 | 24593 | 4787 | 10067 | 3104 | 1963 | 1880 | 1764 | 448 | 174 | 48780 |
| 2000 | 3177 | 15865 | 7679 | 12108 | 2900 | 2074 | 2726 | 1591 | 813 | 48932 |
| 2001 | 23026 | 3519 | 14633 | 4255 | 5608 | 1808 | 1426 | 1963 | 2299 | 58536 |
| 2002 | 732 | 28174 | 5977 | 12659 | 2980 | 2644 | 647 | 528 | 2420 | 56760 |
| 2003 | 1682 | 1503 | 82161 | 5533 | 15105 | 3675 | 2355 | 1106 | 1986 | 115107 |
| 2004 | 91843 | 539 | 2682 | 54882 | 5001 | 9695 | 1654 | 954 | 634 | 167883 |
| 2005 | 1669 | 20958 | 531 | 1557 | 25559 | 3403 | 4815 | 1087 | 548 | 60125 |
| 2006 | 9451 | 5831 | 185072 | 2671 | 2319 | 15894 | 775 | 1646 | 262 | 223920 |

Table 17. Total swept area estimated abundance at age (numbers in 000's) of EGB haddock from NMFS spring surveys during 1968-2006. From 1973-81, a 41 Yankee trawl was used while a 36 Yankee trawl was used in other years. Conversion factors to adjust for changes in door type and survey vessel were applied.

| Year |  |  |  |  | Age Group |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ | Total |  |  |  |
| 1968 | 0 | 3254 | 68 | 679 | 4853 | 2045 | 240 | 123 | 234 | 11496 |  |  |  |
| 1969 | 17 | 35 | 614 | 235 | 523 | 3232 | 1220 | 358 | 489 | 6724 |  |  |  |
| 1970 | 478 | 190 | 0 | 560 | 998 | 441 | 3165 | 2491 | 769 | 9092 |  |  |  |
| 1971 | 0 | 655 | 261 | 0 | 144 | 102 | 58 | 1159 | 271 | 2650 |  |  |  |
| 1972 | 2594 | 0 | 771 | 132 | 25 | 47 | 211 | 27 | 1214 | 5020 |  |  |  |
| 1973 | 2455 | 5639 | 0 | 1032 | 154 | 0 | 276 | 0 | 1208 | 10763 |  |  |  |
| 1974 | 1323 | 20596 | 4084 | 0 | 354 | 0 | 43 | 72 | 322 | 26795 |  |  |  |
| 1975 | 528 | 567 | 6016 | 1063 | 0 | 218 | 127 | 45 | 208 | 8773 |  |  |  |
| 1976 | 8228 | 402 | 424 | 1127 | 532 | 0 | 0 | 0 | 22 | 10735 |  |  |  |
| 1977 | 126 | 26003 | 262 | 912 | 732 | 568 | 0 | 22 | 102 | 28727 |  |  |  |
| 1978 | 0 | 743 | 20859 | 641 | 880 | 1163 | 89 | 23 | 116 | 24516 |  |  |  |
| 1979 | 10496 | 441 | 1313 | 9764 | 475 | 72 | 445 | 42 | 9 | 23056 |  |  |  |
| 1980 | 4355 | 66450 | 1108 | 1086 | 5761 | 613 | 371 | 693 | 360 | 80797 |  |  |  |
| 1981 | 3281 | 2823 | 27085 | 2906 | 751 | 2455 | 347 | 56 | 21 | 39725 |  |  |  |
| 1982 | 584 | 3703 | 1658 | 7802 | 767 | 455 | 697 | 0 | 0 | 15666 |  |  |  |
| 1983 | 238 | 770 | 686 | 359 | 2591 | 30 | 0 | 798 | 58 | 5529 |  |  |  |
| 1984 | 1366 | 1414 | 1046 | 910 | 847 | 1189 | 133 | 73 | 490 | 7469 |  |  |  |
| 1985 | 40 | 8911 | 1396 | 674 | 1496 | 588 | 1995 | 127 | 483 | 15709 |  |  |  |
| 1986 | 3334 | 280 | 3597 | 246 | 210 | 333 | 235 | 560 | 159 | 8953 |  |  |  |
| 1987 | 122 | 5480 | 144 | 1394 | 157 | 231 | 116 | 370 | 0 | 8013 |  |  |  |
| 1988 | 305 | 61 | 1868 | 235 | 611 | 203 | 218 | 178 | 0 | 3678 |  |  |  |
| 1989 | 84 | 6665 | 619 | 1343 | 267 | 791 | 58 | 92 | 47 | 9966 |  |  |  |
| 1990 | 1654 | 70 | 10338 | 598 | 1042 | 110 | 182 | 0 | 0 | 13995 |  |  |  |
| 1991 | 740 | 2071 | 432 | 3381 | 192 | 203 | 66 | 87 | 25 | 7198 |  |  |  |
| 1992 | 529 | 287 | 205 | 158 | 602 | 32 | 46 | 46 | 0 | 1905 |  |  |  |
| 1993 | 1870 | 1116 | 197 | 232 | 195 | 717 | 77 | 35 | 43 | 4480 |  |  |  |
| 1994 | 1025 | 4272 | 1487 | 269 | 184 | 118 | 278 | 28 | 84 | 7745 |  |  |  |
| 1995 | 921 | 2312 | 4184 | 1727 | 265 | 152 | 51 | 272 | 214 | 10099 |  |  |  |
| 1996 | 912 | 1365 | 3789 | 3190 | 1905 | 237 | 36 | 0 | 496 | 11931 |  |  |  |
| 1997 | 1635 | 1226 | 380 | 595 | 470 | 343 | 24 | 44 | 20 | 4736 |  |  |  |
| 1998 | 549 | 6046 | 2005 | 1281 | 1184 | 303 | 58 | 15 | 122 | 11562 |  |  |  |
| 1999 | 6286 | 1914 | 3655 | 661 | 1128 | 1062 | 468 | 476 | 46 | 15696 |  |  |  |
| 2000 | 2675 | 2131 | 3399 | 1624 | 636 | 564 | 438 | 305 | 165 | 11938 |  |  |  |
| 2001 | 10503 | 1186 | 3304 | 1232 | 374 | 294 | 113 | 20 | 20 | 17047 |  |  |  |
| 2002 | 231 | 40432 | 10938 | 4044 | 1492 | 473 | 287 | 229 | 236 | 58362 |  |  |  |
| 2003 | 125 | 1105 | 16915 | 2245 | 3773 | 476 | 200 | 82 | 286 | 25206 |  |  |  |
| 2004 | 195013 | 4724 | 2644 | 45872 | 3544 | 5261 | 960 | 1245 | 842 | 260104 |  |  |  |
| 2005 | 540 | 32911 | 257 | 614 | 5818 | 671 | 1196 | 240 | 67 | 42313 |  |  |  |
| 2006 | 2961 | 1247 | 48882 | 213 | 949 | 6650 | 325 | 574 | 187 | 61988 |  |  |  |
|  |  |  |  |  |  |  |  |  | 0 |  |  |  |  |

Table 18. Total swept area estimated abundance at age (numbers in 000's) of EGB haddock from NMFS fall surveys during 1963-2005. Conversion factors to adjust for changes in door type and survey vessel were applied.

|  | Age Group |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ | Total |
| 1963 | 105993 | 40995 | 10314 | 3378 | 5040 | 4136 | 1477 | 451 | 276 | 172061 |
| 1964 | 1178 | 123976 | 46705 | 4358 | 807 | 1865 | 477 | 211 | 167 | 179742 |
| 1965 | 259 | 1503 | 51338 | 8538 | 479 | 302 | 142 | 148 | 208 | 62918 |
| 1966 | 9325 | 751 | 1742 | 20323 | 3631 | 671 | 138 | 133 | 84 | 36798 |
| 1967 | 0 | 3998 | 73 | 327 | 1844 | 675 | 141 | 88 | 88 | 7233 |
| 1968 | 55 | 113 | 800 | 28 | 37 | 2223 | 547 | 177 | 313 | 4293 |
| 1969 | 356 | 0 | 0 | 509 | 62 | 30 | 739 | 453 | 108 | 2257 |
| 1970 | 0 | 6400 | 336 | 16 | 415 | 337 | 500 | 902 | 578 | 9483 |
| 1971 | 2626 | 0 | 788 | 97 | 0 | 265 | 27 | 73 | 594 | 4471 |
| 1972 | 4747 | 2396 | 0 | 232 | 0 | 0 | 53 | 0 | 275 | 7702 |
| 1973 | 1223 | 16797 | 1598 | 0 | 168 | 0 | 0 | 8 | 16 | 19809 |
| 1974 | 151 | 234 | 961 | 169 | 0 | 6 | 0 | 0 | 70 | 1589 |
| 1975 | 30365 | 664 | 192 | 1042 | 239 | 0 | 0 | 0 | 28 | 32530 |
| 1976 | 738 | 121717 | 431 | 25 | 484 | 71 | 0 | 17 | 37 | 123521 |
| 1977 | 47 | 238 | 26323 | 445 | 125 | 211 | 84 | 4 | 4 | 27480 |
| 1978 | 14642 | 547 | 530 | 7706 | 56 | 42 | 94 | 0 | 0 | 23617 |
| 1979 | 1598 | 21605 | 14 | 335 | 1489 | 45 | 12 | 0 | 0 | 25098 |
| 1980 | 3556 | 2788 | 5829 | 0 | 101 | 1081 | 108 | 25 | 4 | 13492 |
| 1981 | 596 | 4617 | 2585 | 2748 | 89 | 136 | 318 | 0 | 15 | 11103 |
| 1982 | 62 | 0 | 673 | 465 | 2508 | 153 | 97 | 528 | 42 | 4527 |
| 1983 | 3609 | 444 | 236 | 501 | 289 | 402 | 17 | 12 | 86 | 5598 |
| 1984 | 45 | 3775 | 856 | 233 | 194 | 45 | 262 | 0 | 41 | 5451 |
| 1985 | 12148 | 381 | 1646 | 199 | 70 | 68 | 46 | 30 | 21 | 14611 |
| 1986 | 30 | 7471 | 109 | 961 | 52 | 50 | 72 | 24 | 23 | 8793 |
| 1987 | 508 | 0 | 843 | 28 | 152 | 38 | 22 | 0 | 0 | 1592 |
| 1988 | 122 | 3983 | 184 | 2348 | 155 | 400 | 142 | 140 | 38 | 7513 |
| 1989 | 167 | 83 | 2645 | 112 | 509 | 68 | 73 | 0 | 0 | 3656 |
| 1990 | 1217 | 1041 | 36 | 1456 | 65 | 196 | 24 | 5 | 0 | 4040 |
| 1991 | 705 | 331 | 267 | 52 | 289 | 25 | 10 | 0 | 0 | 1679 |
| 1992 | 3484 | 1052 | 172 | 110 | 0 | 95 | 0 | 18 | 18 | 4948 |
| 1993 | 652 | 6656 | 3601 | 585 | 0 | 87 | 96 | 30 | 0 | 11707 |
| 1994 | 625 | 782 | 927 | 419 | 96 | 32 | 0 | 24 | 0 | 2905 |
| 1995 | 892 | 1436 | 5993 | 3683 | 550 | 30 | 0 | 0 | 53 | 12637 |
| 1996 | 1742 | 453 | 570 | 2302 | 963 | 167 | 0 | 0 | 0 | 6196 |
| 1997 | 217 | 5738 | 3368 | 592 | 690 | 385 | 0 | 0 | 13 | 11004 |
| 1998 | 2566 | 2966 | 4214 | 1085 | 705 | 526 | 722 | 0 | 0 | 12784 |
| 1999 | 3268 | 1236 | 5364 | 5060 | 837 | 2825 | 148 | 1150 | 991 | 20879 |
| 2000 | 1368 | 5284 | 6226 | 3712 | 622 | 229 | 0 | 146 | 97 | 17684 |
| 2001 | 659 | 16626 | 1382 | 6939 | 3000 | 1586 | 306 | 127 | 58 | 30684 |
| 2002 | 172 | 1864 | 44602 | 6040 | 5120 | 1660 | 863 | 457 | 354 | 61131 |
| 2003 | 196182 | 60 | 285 | 3415 | 655 | 739 | 20 | 99 | 158 | 201613 |
| 2004 | 2864 | 116289 | 322 | 775 | 17200 | 1034 | 2410 | 416 | 528 | 141837 |
| 2005 | 4981 | 3114 | 95159 | 340 | 532 | 3631 | 347 | 242 | 155 | 108502 |
|  |  |  |  |  |  |  |  |  |  |  |

Table 19. Average weight at age (kg) of EGB haddock from DFO surveys during 1986-2006, which are used to represent beginning of year weights.

| Year | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| 1986 | 0.135 | 0.451 | 0.974 | 1.445 | 3.044 | 2.848 | 3.598 | 3.376 | 3.918 |
| 1987 | 0.150 | 0.500 | 0.716 | 1.672 | 2.012 | 2.550 | 3.148 | 3.151 | 3.629 |
| 1988 | 0.097 | 0.465 | 0.931 | 1.795 | 1.816 | 1.918 | 2.724 | 3.264 | 3.871 |
| 1989 | 0.062 | 0.474 | 0.650 | 1.392 | 1.995 | 2.527 | 2.158 | 2.859 | 3.141 |
| 1990 | 0.149 | 0.525 | 0.924 | 1.181 | 1.862 | 2.073 | 2.507 | 2.815 | 3.472 |
| 1991 | 0.120 | 0.685 | 0.800 | 1.512 | 1.695 | 2.434 | 2.105 | 3.122 | 3.432 |
| 1992 | 0.122 | 0.602 | 1.118 | 1.061 | 2.078 | 2.165 | 2.709 | 2.284 | 3.440 |
| 1993 | 0.122 | 0.481 | 1.227 | 1.803 | 1.274 | 2.332 | 2.343 | 2.739 | 3.280 |
| 1994 | 0.107 | 0.469 | 1.047 | 1.621 | 1.927 | 2.154 | 3.154 | 2.688 | 3.084 |
| 1995 | 0.086 | 0.493 | 0.963 | 1.556 | 2.222 | 2.445 |  | 2.991 | 3.184 |
| 1996 | 0.139 | 0.495 | 0.919 | 1.320 | 1.932 | 2.555 | 2.902 | 2.611 | 3.588 |
| 1997 | 0.132 | 0.506 | 0.782 | 1.205 | 1.664 | 2.176 | 2.454 | 2.577 | 3.158 |
| 1998 | 0.107 | 0.535 | 1.035 | 1.161 | 1.570 | 1.954 | 2.609 | 3.559 | 3.462 |
| 1999 | 0.130 | 0.474 | 0.911 | 1.290 | 1.259 | 1.869 | 2.131 | 2.722 | 2.992 |
| 2000 | 0.116 | 0.543 | 0.949 | 1.478 | 1.871 | 1.789 | 2.298 | 2.508 | 2.901 |
| 2001 | 0.093 | 0.524 | 1.005 | 1.371 | 1.798 | 2.165 | 2.250 | 2.593 | 2.928 |
| 2002 | 0.096 | 0.332 | 0.778 | 1.138 | 1.494 | 1.965 | 2.177 | 2.206 | 2.708 |
| 2003 | 0.080 | 0.369 | 0.846 | 1.063 | 1.477 | 1.645 | 2.208 | 2.229 | 2.487 |
| 2004 | 0.064 | 0.310 | 0.781 | 1.151 | 1.306 | 1.558 | 1.622 | 1.956 | 2.216 |
| 2005 | 0.028 | 0.218 | 0.493 | 0.696 | 1.226 | 1.321 | 1.531 | 1.600 | 2.444 |
| 2006 | 0.059 | 0.171 | 0.389 | 0.657 | 0.870 | 1.366 | 1.591 | 1.742 | 2.355 |
| Low | 0.028 | 0.218 | 0.493 | 0.696 | 1.226 | 1.321 | 1.531 | 1.600 | 2.216 |
| High | 0.150 | 0.685 | 1.227 | 1.803 | 3.044 | 2.848 | 3.598 | 3.559 | 3.918 |
| Median | 0.112 | 0.487 | 0.922 | 1.346 | 1.807 | 2.160 | 2.343 | 2.705 | 3.171 |
| Average | 0.104 | 0.458 | 0.868 | 1.313 | 1.733 | 2.086 | 2.411 | 2.647 | 3.128 |

Table 20. Average lengths at age (cm) of EGB haddock from DFO surveys during 1986-2006.

| Year | Age Group |  |  |  |  |  |  |  | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 6 | 7 | 8 | $9+$ |  |
| 1986 | 22.9 | 36.2 | 45.4 | 51.0 | 63.7 | 61.9 | 67.8 | 66.0 | 70.7 |
| 1987 | 24.2 | 36.3 | 39.7 | 53.4 | 57.1 | 61.1 | 65.1 | 65.8 | 69.6 |
| 1988 | 22.3 | 36.4 | 45.1 | 55.7 | 55.9 | 58.0 | 62.4 | 65.8 | 71.5 |
| 1989 | 19.5 | 35.9 | 39.1 | 50.4 | 56.8 | 61.3 | 58.0 | 64.6 | 66.3 |
| 1990 | 24.7 | 35.8 | 44.4 | 48.0 | 55.9 | 58.7 | 61.6 | 63.1 | 67.5 |
| 1991 | 23.1 | 40.7 | 42.7 | 51.7 | 52.9 | 60.2 | 58.3 | 65.1 | 67.8 |
| 1992 | 23.2 | 39.2 | 47.7 | 46.8 | 57.7 | 62.5 | 63.9 | 60.3 | 68.1 |
| 1993 | 23.6 | 36.6 | 49.7 | 55.5 | 50.0 | 60.4 | 59.3 | 63.7 | 67.3 |
| 1994 | 22.3 | 35.8 | 45.8 | 53.8 | 57.6 | 58.5 | 65.9 | 66.5 | 65.4 |
| 1995 | 20.2 | 36.3 | 45.1 | 52.7 | 59.0 | 62.5 |  | 65.0 | 66.0 |
| 1996 | 24.2 | 36.2 | 44.4 | 50.1 | 56.9 | 62.7 | 66.2 | 61.8 | 68.4 |
| 1997 | 23.6 | 37.1 | 42.1 | 48.9 | 54.2 | 59.5 | 62.4 | 63.5 | 66.8 |
| 1998 | 21.8 | 37.6 | 46.4 | 47.3 | 52.9 | 57.2 | 62.5 | 69.3 | 68.7 |
| 1999 | 23.7 | 35.9 | 44.8 | 49.8 | 48.9 | 56.1 | 58.9 | 63.6 | 66.6 |
| 2000 | 22.7 | 37.6 | 44.3 | 52.1 | 56.4 | 54.7 | 59.6 | 61.7 | 64.7 |
| 2001 | 21.7 | 37.5 | 46.1 | 51.1 | 56.2 | 60.0 | 59.0 | 62.5 | 65.5 |
| 2002 | 21.5 | 31.8 | 42.1 | 47.5 | 52.0 | 58.1 | 60.3 | 59.2 | 64.4 |
| 2003 | 20.2 | 34.0 | 43.3 | 46.8 | 52.0 | 53.8 | 61.2 | 61.3 | 63.3 |
| 2004 | 19.1 | 31.8 | 42.0 | 47.9 | 50.6 | 53.3 | 55.3 | 59.1 | 60.2 |
| 2005 | 15.1 | 29.1 | 37.2 | 41.1 | 49.7 | 51.6 | 53.8 | 54.3 | 62.7 |
| 2006 | 18.7 | 27.0 | 34.0 | 40.2 | 42.6 | 51.8 | 52.8 | 55.7 | 62.2 |
| Low | 15.1 | 27.0 | 34.0 | 40.2 | 42.6 | 51.6 | 52.8 | 54.3 | 60.2 |
| High | 24.7 | 40.7 | 49.7 | 55.7 | 63.7 | 62.7 | 67.8 | 69.3 | 71.5 |
| Median | 22.3 | 36.2 | 44.4 | 50.1 | 55.9 | 58.7 | 60.8 | 63.5 | 66.6 |
| Average | 21.8 | 35.5 | 43.4 | 49.6 | 54.2 | 58.3 | 60.7 | 62.8 | 66.4 |

Table 21. Statistical properties of estimates of population abundance (numbers in 000's) at time 2006 and survey calibration constants (unitless, survey:population) for EGB haddock obtained from a bootstrap with 1000 replications.

| Age | Estimate | Standard Error | Relative Error | Bias | Relative Bias |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Population Abundance (000's) |  |  |  |  |  |
| 1 | 33212 | 21028 | 0.633 | 5354 | 0.161 |
| 2 | 7638 | 3249 | 0.425 | 635 | 0.083 |
| 3 | 240173 | 77809 | 0.324 | 14569 | 0.061 |
| 4 | 970 | 279 | 0.287 | 52 | 0.053 |
| 5 | 1708 | 454 | 0.266 | 55 | 0.032 |
| 6 | 16849 | 4925 | 0.292 | 745 | 0.044 |
| 7 | 2097 | 597 | 0.285 | 59 | 0.028 |
| 8 | 1967 | 773 | 0.393 | 95 | 0.048 |
| Survey Calibration Constants |  |  |  |  |  |
| DFO Survey |  |  |  |  |  |
| 1 | 0.225 | 0.043 | 0.190 | 0.003 | 0.014 |
| 2 | 0.438 | 0.088 | 0.201 | 0.004 | 0.010 |
| 3 | 0.900 | 0.182 | 0.203 | 0.012 | 0.013 |
| 4 | 0.925 | 0.185 | 0.200 | 0.014 | 0.016 |
| 5 | 1.040 | 0.208 | 0.200 | 0.008 | 0.008 |
| 6 | 0.904 | 0.178 | 0.196 | 0.019 | 0.021 |
| 7 | 1.069 | 0.225 | 0.210 | 0.023 | 0.022 |
| 8 | 1.143 | 0.229 | 0.200 | 0.017 | 0.015 |
| NMFS Spring Survey - Yankee 36 - 1969-72/1982-2006 |  |  |  |  |  |
| 1 | 0.127 | 0.022 | 0.173 | 0.001 | 0.007 |
| 2 | 0.330 | 0.056 | 0.170 | 0.006 | 0.017 |
| 3 | 0.437 | 0.074 | 0.170 | 0.004 | 0.010 |
| 4 | 0.429 | 0.073 | 0.169 | 0.003 | 0.007 |
| 5 | 0.497 | 0.089 | 0.178 | 0.006 | 0.012 |
| 6 | 0.407 | 0.071 | 0.175 | 0.006 | 0.016 |
| 7 | 0.426 | 0.075 | 0.177 | 0.009 | 0.020 |
| 8 | 0.513 | 0.090 | 0.176 | 0.004 | 0.007 |
| NMFS Spring Survey - Yankee 41 - 1973-81 |  |  |  |  |  |
| 1 | 0.223 | 0.072 | 0.325 | 0.011 | 0.049 |
| 2 | 0.509 | 0.160 | 0.315 | 0.021 | 0.042 |
| 3 | 0.637 | 0.208 | 0.327 | 0.023 | 0.036 |
| 4 | 0.794 | 0.276 | 0.347 | 0.051 | 0.064 |
| 5 | 0.947 | 0.316 | 0.334 | 0.054 | 0.057 |
| 6 | 0.889 | 0.340 | 0.382 | 0.045 | 0.050 |
| 7 | 1.491 | 0.514 | 0.345 | 0.095 | 0.064 |
| 8 | 0.659 | 0.256 | 0.388 | 0.051 | 0.077 |
| NMFS Fall Survey |  |  |  |  |  |
| 0 | 0.126 | 0.019 | 0.151 | 0.001 | 0.010 |
| 1 | 0.296 | 0.048 | 0.162 | 0.004 | 0.013 |
| 2 | 0.238 | 0.035 | 0.146 | 0.000 | 0.002 |
| 3 | 0.237 | 0.036 | 0.153 | 0.004 | 0.016 |
| 4 | 0.187 | 0.031 | 0.167 | 0.002 | 0.009 |
| 5 | 0.166 | 0.025 | 0.151 | 0.000 | 0.000 |

Table 22. Beginning of year population abundance (numbers in 000's) for EGB haddock during 19692006 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2006.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1+ | 2+ | 3+ |
| 1969 | 796 | 195 | 3975 | 863 | 893 | 8421 | 2790 | 184 | 780 | 18896 | 18100 | 17905 |
| 1970 | 3469 | 651 | 143 | 1958 | 471 | 436 | 4309 | 1545 | 458 | 13441 | 9972 | 9321 |
| 1971 | 452 | 2772 | 455 | 111 | 1290 | 250 | 240 | 2493 | 1138 | 9199 | 8747 | 5975 |
| 1972 | 5615 | 370 | 1159 | 147 | 64 | 830 | 63 | 55 | 1922 | 10225 | 4610 | 4239 |
| 1973 | 11520 | 4274 | 302 | 600 | 56 | 33 | 598 | 17 | 1208 | 18609 | 7089 | 2815 |
| 1974 | 3390 | 8424 | 1897 | 242 | 159 | 12 | 19 | 454 | 846 | 15443 | 12053 | 3629 |
| 1975 | 3261 | 2739 | 4861 | 1311 | 198 | 102 | 7 | 15 | 985 | 13479 | 10218 | 7479 |
| 1976 | 54641 | 2650 | 1981 | 2617 | 880 | 158 | 52 | 4 | 790 | 63774 | 9133 | 6483 |
| 1977 | 5834 | 44348 | 2029 | 1468 | 1405 | 601 | 130 | 25 | 634 | 56475 | 50641 | 6293 |
| 1978 | 4134 | 4767 | 28983 | 1603 | 1040 | 883 | 349 | 106 | 514 | 42379 | 38245 | 33478 |
| 1979 | 52558 | 3376 | 3620 | 14541 | 1161 | 698 | 452 | 213 | 491 | 77110 | 24551 | 21175 |
| 1980 | 6655 | 42779 | 2746 | 2774 | 8055 | 624 | 396 | 180 | 525 | 64733 | 58077 | 15299 |
| 1981 | 5078 | 5411 | 19054 | 1942 | 2002 | 4464 | 340 | 212 | 520 | 39024 | 33946 | 28535 |
| 1982 | 1773 | 4099 | 3791 | 9549 | 1236 | 1196 | 2563 | 173 | 564 | 24945 | 23171 | 19072 |
| 1983 | 2628 | 1448 | 2677 | 2152 | 5251 | 825 | 642 | 1446 | 492 | 17561 | 14934 | 13485 |
| 1984 | 15228 | 2137 | 1046 | 1587 | 1263 | 2832 | 489 | 432 | 1196 | 26211 | 10983 | 8846 |
| 1985 | 1613 | 12385 | 1659 | 623 | 985 | 796 | 1318 | 237 | 906 | 20522 | 18910 | 6525 |
| 1986 | 13653 | 1309 | 8130 | 1001 | 345 | 629 | 538 | 743 | 784 | 27133 | 13480 | 12171 |
| 1987 | 1301 | 11083 | 1035 | 4345 | 666 | 156 | 405 | 337 | 1062 | 20390 | 19089 | 8006 |
| 1988 | 15538 | 1063 | 7188 | 729 | 2178 | 455 | 75 | 257 | 982 | 28467 | 12929 | 11865 |
| 1989 | 802 | 12655 | 823 | 3899 | 485 | 995 | 274 | 28 | 885 | 20847 | 20044 | 7390 |
| 1990 | 2515 | 654 | 9213 | 596 | 2509 | 279 | 523 | 197 | 688 | 17175 | 14660 | 14006 |
| 1991 | 1878 | 2027 | 528 | 6332 | 374 | 1375 | 167 | 280 | 649 | 13610 | 11733 | 9706 |
| 1992 | 8208 | 1515 | 1232 | 350 | 3295 | 224 | 772 | 73 | 576 | 16246 | 8038 | 6522 |
| 1993 | 11741 | 6664 | 1012 | 716 | 173 | 1387 | 106 | 346 | 426 | 22571 | 10829 | 4165 |
| 1994 | 13165 | 9533 | 5187 | 509 | 335 | 65 | 565 | 56 | 432 | 29847 | 16683 | 7149 |
| 1995 | 4685 | 10733 | 7523 | 3536 | 275 | 222 | 8 | 345 | 336 | 27663 | 22978 | 12245 |
| 1996 | 6020 | 3821 | 8701 | 5655 | 2509 | 176 | 159 | 4 | 494 | 27540 | 21519 | 17699 |
| 1997 | 16978 | 4914 | 3093 | 6662 | 3824 | 1662 | 87 | 113 | 338 | 37671 | 20693 | 15779 |
| 1998 | 7215 | 13839 | 3924 | 2454 | 4942 | 2677 | 1179 | 59 | 330 | 36620 | 29404 | 15565 |
| 1999 | 26033 | 5878 | 11133 | 2933 | 1762 | 3535 | 1771 | 860 | 276 | 54181 | 28148 | 22270 |
| 2000 | 10874 | 21239 | 4767 | 8408 | 2108 | 1215 | 2578 | 1217 | 818 | 53223 | 42349 | 21110 |
| 2001 | 72214 | 8877 | 17084 | 3491 | 5725 | 1497 | 809 | 1916 | 1438 | 113053 | 40839 | 31962 |
| 2002 | 4273 | 58968 | 7200 | 12383 | 2372 | 3913 | 988 | 478 | 2354 | 92929 | 88656 | 29688 |
| 2003 | 1756 | 3489 | 47907 | 5686 | 8402 | 1598 | 2591 | 707 | 1964 | 74101 | 72345 | 68857 |
| 2004 | 338427 | 1429 | 2841 | 37506 | 4393 | 5529 | 922 | 1686 | 1882 | 394616 | 56189 | 54760 |
| 2005 | 8582 | 276353 | 1154 | 2267 | 27340 | 3063 | 3166 | 287 | 2302 | 324513 | 315932 | 39579 |
| 2006 | 27858 | 7003 | 225604 | 918 | 1653 | 16104 | 2038 | 1872 | 1871 | 284920 | 257062 | 250060 |

Table 23. Fishing mortality rate for EGB haddock during 1969-2005 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2006. The aggregated rates are weighted by population numbers. The rate for $4+$ is also shown as exploitation rate (\%).

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 4+ | 4+ (\%) | 4-8 | 5-8 |
| 1969 | 0.001 | 0.110 | 0.508 | 0.405 | 0.517 | 0.470 | 0.391 | 0.762 | 0.500 | 0.459 | 0.336 | 0.456 | 0.460 |
| 1970 | 0.024 | 0.159 | 0.056 | 0.218 | 0.435 | 0.399 | 0.347 | 0.305 | 0.603 | 0.332 | 0.258 | 0.318 | 0.347 |
| 1971 | 0.000 | 0.672 | 0.926 | 0.352 | 0.241 | 1.170 | 1.280 | 0.41 | 0.495 | 0.459 | 0.336 | 0.450 | 53 |
| 1972 | 0.073 | 0.002 | 0.458 | 0.774 | 0.447 | 0.128 | 1.097 | 0.374 | 0.290 | 0.291 | 0.230 | 0.292 | 22 |
| 1973 | 0.113 | 0.612 | 0.023 | 1.128 | 1.352 | 0.379 | 0.074 | 0.744 | 0.163 | 0.406 | 0.304 | 0.630 | 0.206 |
| 1974 | 0.013 | 0.350 | 0.170 | 0.000 | 0.249 | 0.265 | 0.013 | 0.071 | 0.082 | 0.083 | 0.073 | 0.085 | 0.117 |
| 1975 | 0.007 | 0.124 | 0.419 | 0.198 | 0.025 | 0.475 | 0.366 | 0.191 | 0.034 | 0.134 | 0.114 | 0.195 | 0.182 |
| 1976 | 0.009 | 0.067 | 0.100 | 0.422 | 0.182 | 0.000 | 0.511 | 0.000 | 0.025 | 0.291 | 0.230 | 0.348 | 170 |
| 1977 | 0.002 | 0.225 | 0.036 | 0.145 | 0.264 | 0.344 | 0.001 | 0.973 | 0.025 | 0.195 | 0.161 | 0.225 | 79 |
| 1978 | 0.002 | 0.075 | 0.490 | 0.123 | 0.199 | 0.469 | 0.294 | 0.109 | 0.020 | 0.210 | 0.172 | 0.234 | 0.309 |
| 1979 | 0.006 | 0.007 | 0.066 | 0.391 | 0.421 | 0.367 | 0.722 | 0.251 | 0.032 | 0.389 | 0.294 | 0.399 | 0.446 |
| 1980 | 0.007 | 0.609 | 0.146 | 0.126 | 0.390 | 0.408 | 0.424 | 0.367 | 0.027 | 0.318 | 0.248 | 0.331 | 0.392 |
| 1981 | 0.014 | 0.156 | 0.491 | 0.252 | 0.315 | 0.355 | 0.473 | 0.182 | 0.016 | 0.307 | 0.241 | 0.324 | 0.344 |
| 1982 | 0.003 | 0.226 | 0.366 | 0.398 | 0.204 | 0.422 | 0.373 | 0.493 | 0.132 | 0.371 | 0.283 | 0.380 | 0.348 |
| 1983 | 0.007 | 0.125 | 0.323 | 0.333 | 0.417 | 0.322 | 0.198 | 0.361 | 0.080 | 0.357 | 0.274 | 0.371 | 0.381 |
| 1984 | 0.007 | 0.053 | 0.318 | 0.277 | 0.262 | 0.565 | 0.525 | 0.533 | 0.338 | 0.418 | 0.312 | 0.433 | 0.482 |
| 1985 | 0.008 | 0.221 | 0.305 | 0.390 | 0.249 | 0.192 | 0.373 | 0.282 | 0.151 | 0.275 | 0.219 | 0.303 | 0.287 |
| 1986 | 0.009 | 0.035 | 0.427 | 0.207 | 0.597 | 0.239 | 0.268 | 0.287 | 0.059 | 0.240 | 0.194 | 0.283 | 0.317 |
| 1987 | 0.002 | 0.233 | 0.150 | 0.490 | 0.181 | 0.526 | 0.254 | 0.257 | 0.123 | 0.381 | 0.289 | 0.427 | 0.251 |
| 1988 | 0.005 | 0.056 | 0.412 | 0.207 | 0.583 | 0.307 | 0.795 | 0.216 | 0.118 | 0.383 | 0.290 | 0.454 | 0.514 |
| 1989 | 0.004 | 0.117 | 0.122 | 0.241 | 0.353 | 0.443 | 0.130 | 1.674 | 0.057 | 0.257 | 0.206 | 0.288 | 0.390 |
| 1990 | 0.016 | 0.014 | 0.175 | 0.267 | 0.401 | 0.311 | 0.424 | 0.267 | 0.069 | 0.329 | 0.255 | 0.372 | 0.390 |
| 1991 | 0.014 | 0.297 | 0.211 | 0.453 | 0.310 | 0.377 | 0.631 | 0.841 | 0.109 | 0.427 | 0.317 | 0.451 | 0.444 |
| 1992 | 0.008 | 0.204 | 0.343 | 0.504 | 0.665 | 0.550 | 0.602 | 0.497 | 0.191 | 0.587 | 0.406 | 0.635 | 0.645 |
| 1993 | 0.008 | 0.051 | 0.487 | 0.559 | 0.776 | 0.698 | 0.431 | 0.648 | 0.206 | 0.590 | 0.408 | 0.650 | 0.682 |
| 1994 | 0.004 | 0.037 | 0.183 | 0.414 | 0.210 | 1.872 | 0.294 | 0.873 | 0.110 | 0.340 | 0.262 | 0.404 | 0.399 |
| 1995 | 0.004 | 0.010 | 0.085 | 0.143 | 0.248 | 0.135 | 0.503 | 0.185 | 0.057 | 0.146 | 0.124 | 0.153 | 0.196 |
| 1996 | 0.003 | 0.011 | 0.067 | 0.191 | 0.212 | 0.505 | 0.139 | 2.022 | 0.183 | 0.203 | 0.167 | 0.204 | 0.229 |
| 1997 | 0.004 | 0.025 | 0.032 | 0.099 | 0.157 | 0.143 | 0.186 | 0.083 | 0.121 | 0.123 | 0.105 | 0.123 | 0.152 |
| 1998 | 0.005 | 0.018 | 0.091 | 0.131 | 0.135 | 0.213 | 0.116 | 0.258 | 0.126 | 0.151 | 0.127 | 0.151 | 0.157 |
| 1999 | 0.004 | 0.010 | 0.081 | 0.130 | 0.172 | 0.116 | 0.175 | 0.136 | 0.106 | 0.139 | 0.118 | 0.140 | 0.144 |
| 2000 | 0.003 | 0.018 | 0.111 | 0.184 | 0.142 | 0.207 | 0.097 | 0.184 | 0.094 | 0.162 | 0.136 | 0.166 | 0.144 |
| 2001 | 0.003 | 0.009 | 0.122 | 0.187 | 0.181 | 0.216 | 0.327 | 0.145 | 0.166 | 0.187 | 0.155 | 0.190 | 0.191 |
| 2002 | 0.003 | 0.008 | 0.036 | 0.188 | 0.195 | 0.212 | 0.134 | 0.288 | 0.143 | 0.188 | 0.156 | 0.193 | 0.202 |
| 2003 | 0.006 | 0.005 | 0.045 | 0.058 | 0.219 | 0.350 | 0.230 | 0.185 | 0.138 | 0.178 | 0.148 | 0.182 | 0.235 |
| 2004 | 0.003 | 0.014 | 0.026 | 0.116 | 0.161 | 0.357 | 0.966 | 0.323 | 0.167 | 0.169 | 0.142 | 0.169 | 0.329 |
| 2005 | 0.003 | 0.003 | 0.028 | 0.116 | 0.329 | 0.207 | 0.326 | 0.637 | 0.076 | 0.294 | 0.232 | 0.308 | 0.321 |

Table 24. Beginning of year biomass for EGB haddock during 1969-2006 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2006.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 1+ | 2+ | $3+$ |
| 1969 | 91 | 100 | 3716 | 1298 | 1779 | 19745 | 7577 | 539 | 2686 | 37532 | 37441 | 37340 |
| 1970 | 399 | 335 | 134 | 2944 | 939 | 1022 | 11705 | 4526 | 1576 | 23581 | 23182 | 22847 |
| 1971 | 52 | 1426 | 425 | 166 | 2569 | 586 | 651 | 7302 | 3919 | 17097 | 17045 | 15618 |
| 1972 | 646 | 191 | 1084 | 222 | 127 | 1945 | 172 | 160 | 6620 | 11165 | 10520 | 10329 |
| 1973 | 1324 | 2199 | 283 | 03 | 111 | 78 | 1624 | 51 | 4161 | 10734 | 9409 | 7210 |
| 74 | 390 | 4334 | 177 | 364 | 317 | 28 | 51 | 1331 | 2916 | 11504 | 14 | 6780 |
| 1975 | 37 | 1409 | 54 | 971 | 95 | 238 | 20 | 44 | 3393 | 2391 | 12016 | 106 |
| 1976 | 6281 | 364 | 85 | 936 | 1754 | 71 | 40 | 12 | 2721 | 18432 | 2151 | 10787 |
| 77 | 671 | 22818 | 97 | 207 | 800 | 09 | 352 | 74 | 218 | 34415 | 3745 | 26 |
| 78 | 47 | 2453 | 27098 | 241 | 2071 | 07 | 948 | 310 | 177 | 3960 | 913 | 36681 |
| 1979 | 6042 | 737 | 3384 | 21868 | 23 | 1636 | 1228 | 623 | 169 | 4052 | 34 | 43 |
| 80 | 765 | 22011 | 2567 | 4172 | 16049 | 1462 | 1075 | 527 | 1808 | 50435 | 49670 | 60 |
| 81 | 584 | 2784 | 17815 | 2921 | 3989 | 10468 | 922 | 621 | 1793 | 41897 | 41313 | 38529 |
| 1982 | 204 | 2109 | 3545 | 14360 | 2462 | 2805 | 6962 | 508 | 1943 | 34897 | 34693 | 32584 |
| 1983 | 302 | 745 | 2503 | 3237 | 10463 | 1934 | 1744 | 4234 | 1694 | 26857 | 26555 | 25810 |
| 1984 | 1750 | 1099 | 978 | 2387 | 2517 | 6641 | 1329 | 1264 | 4122 | 22087 | 20337 | 19237 |
| 1985 | 185 | 6372 | 1552 | 937 | 1963 | 1866 | 3580 | 694 | 3121 | 20271 | 20086 | 13713 |
| 1986 | 1838 | 5 | 7921 | 1446 | 1051 | 1791 | 1935 | 2509 | 3072 | 22155 | 20317 | 26 |
| 1987 | 195 | 7 | 741 | 7267 | 1341 | 397 | 1276 | 1062 | 3852 | 67 | 72 | 35 |
| 1988 | 151 | 494 | 6688 | 1309 | 39 | 873 | 205 | 840 | 3801 | 19677 | 18167 | 2 |
| 1989 | 50 | 600 | 535 | 543 | 968 | 2515 | 591 | 80 | 27 | 189 | 8 | 8 |
| 199 | 37 | 343 | 8515 | 704 | 4672 | 578 | 1312 | 555 | 238 | 19443 | 19069 | 18726 |
| 1991 | 225 | 1388 | 422 | 9571 | 633 | 3347 | 352 | 875 | 2228 | 19042 | 18817 | 17429 |
| 1992 | 1004 | 913 | 1377 | 371 | 6848 | 486 | 2092 | 167 | 1980 | 15237 | 14234 | 13321 |
| 1993 | 1432 | 3206 | 1241 | 1291 | 221 | 3235 | 248 | 948 | 1396 | 13219 | 11786 | 8580 |
| 1994 | 1404 | 4473 | 5430 | 825 | 646 | 140 | 1782 | 152 | 1332 | 16183 | 14779 | 10306 |
| 1995 | 404 | 5296 | 7245 | 5502 | 611 | 544 | 20 | 1031 | 1069 | 21723 | 21319 | 16023 |
| 1996 | 834 | 1891 | 7996 | 466 | 4846 | 449 | 462 | 11 | 1774 | 25728 | 24894 | 23003 |
| 1997 | 2244 | 2489 | 2418 | 029 | 6364 | 3616 | 213 | 292 | 1066 | 26731 | 24487 | 21998 |
| 1998 | 774 | 7409 | 4062 | 850 | 758 | 5232 | 3077 | 210 | 1143 | 32514 | 31740 | 24331 |
| 1 | 3375 | 2784 | 10140 | 3783 | 218 | 607 | 3775 | 2340 | 825 | 35846 | 32471 | 29687 |
| 2000 | 1259 | 11540 | 4522 | 12431 | 3943 | 2174 | 592 | 3052 | 2372 | 47217 | 45959 | 34419 |
| 2001 | 6742 | 4648 | 17175 | 4787 | 10292 | 242 | 1820 | 4970 | 4212 | 57886 | 51144 | 46497 |
| 2002 | 409 | 19552 | 5602 | 14088 | 3544 | 7688 | 2150 | 1054 | 6374 | 60460 | 60052 | 40499 |
| 2003 | 141 | 1289 | 40533 | 6044 | 12411 | 2629 | 5722 | 1577 | 4886 | 75230 | 75089 | 73800 |
| 2004 | 21624 | 443 | 2220 | 43178 | 5738 | 8615 | 1496 | 3298 | 4171 | 90783 | 69159 | 68715 |
| 2005 | 239 | 60177 | 568 | 1579 | 33521 | 4046 | 4847 | 460 | 5627 | 111064 | 110825 | 50648 |
| 2006 | 1634 | 1198 | 87729 | 603 | 1438 | 21999 | 3242 | 3260 | 4406 | 125509 | 123876 | 122677 |

Table 25. Partial recruitment of haddock normalized to ages 4 to 8 from the EGB Canadian commecial fishery during 1990-2005.

|  |  | Age Group |  |  |  |  |  |  | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ |
| 1990 | 0.043 | 0.039 | 0.470 | 0.718 | 1.078 | 0.836 | 1.139 | 0.717 | 0.187 |
| 1991 | 0.032 | 0.660 | 0.468 | 1.005 | 0.688 | 0.836 | 1.399 | 1.864 | 0.242 |
| 1992 | 0.013 | 0.322 | 0.541 | 0.794 | 1.048 | 0.867 | 0.948 | 0.783 | 0.301 |
| 1993 | 0.013 | 0.078 | 0.750 | 0.860 | 1.195 | 1.074 | 0.663 | 0.998 | 0.318 |
| 1994 | 0.010 | 0.091 | 0.454 | 1.025 | 0.520 | 4.631 | 0.727 | 2.160 | 0.273 |
| 1995 | 0.026 | 0.064 | 0.557 | 0.933 | 1.620 | 0.883 | 3.286 | 1.209 | 0.371 |
| 1996 | 0.015 | 0.055 | 0.329 | 0.939 | 1.041 | 2.481 | 0.681 | 9.927 | 0.897 |
| 1997 | 0.036 | 0.204 | 0.257 | 0.801 | 1.274 | 1.163 | 1.514 | 0.678 | 0.986 |
| 1998 | 0.033 | 0.117 | 0.601 | 0.866 | 0.893 | 1.408 | 0.767 | 1.709 | 0.830 |
| 1999 | 0.025 | 0.068 | 0.576 | 0.931 | 1.227 | 0.827 | 1.250 | 0.969 | 0.753 |
| 2000 | 0.017 | 0.107 | 0.672 | 1.112 | 0.857 | 1.248 | 0.582 | 1.110 | 0.567 |
| 2001 | 0.014 | 0.049 | 0.642 | 0.983 | 0.952 | 1.137 | 1.723 | 0.762 | 0.876 |
| 2002 | 0.014 | 0.040 | 0.187 | 0.973 | 1.010 | 1.099 | 0.694 | 1.489 | 0.738 |
| 2003 | 0.030 | 0.030 | 0.246 | 0.319 | 1.202 | 1.927 | 1.263 | 1.015 | 0.757 |
| 2004 | 0.016 | 0.085 | 0.152 | 0.686 | 0.949 | 2.110 | 5.702 | 1.908 | 0.988 |
| 2005 | 0.011 | 0.009 | 0.093 | 0.376 | 1.070 | 0.674 | 1.059 | 2.070 | 0.247 |
| Avg 2001-03 | 0.019 | 0.040 | 0.358 | 0.758 | 1.055 | 1.387 | 1.227 | 1.089 | 0.791 |
| Avg 2002-04 | 0.020 | 0.052 | 0.195 | 0.659 | 1.054 | 1.712 | 2.553 | 1.471 | 0.828 |
| Avg 2003-05 | 0.019 | 0.041 | 0.164 | 0.460 | 1.074 | 1.570 | 2.675 | 1.665 | 0.664 |

Table 26. Partial recruitment of haddock normalized to ages 5 to 8 from the EGB Canadian commecial fishery during 1990-2005.

|  |  | Age Group |  |  |  |  |  |  | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $9+$ |  |
| 1990 | 0.041 | 0.037 | 0.449 | 0.686 | 1.029 | 0.798 | 1.087 | 0.684 | 0.178 |
| 1991 | 0.032 | 0.670 | 0.476 | 1.021 | 0.699 | 0.849 | 1.421 | 1.893 | 0.246 |
| 1992 | 0.013 | 0.316 | 0.532 | 0.781 | 1.031 | 0.853 | 0.933 | 0.770 | 0.296 |
| 1993 | 0.012 | 0.074 | 0.715 | 0.819 | 1.139 | 1.023 | 0.632 | 0.950 | 0.303 |
| 1994 | 0.011 | 0.092 | 0.459 | 1.038 | 0.527 | 4.690 | 0.737 | 2.187 | 0.276 |
| 1995 | 0.020 | 0.050 | 0.437 | 0.731 | 1.269 | 0.691 | 2.574 | 0.947 | 0.291 |
| 1996 | 0.013 | 0.049 | 0.294 | 0.836 | 0.927 | 2.211 | 0.607 | 8.847 | 0.799 |
| 1997 | 0.029 | 0.166 | 0.208 | 0.650 | 1.033 | 0.943 | 1.228 | 0.550 | 0.799 |
| 1998 | 0.031 | 0.112 | 0.579 | 0.835 | 0.861 | 1.357 | 0.739 | 1.647 | 0.801 |
| 1999 | 0.025 | 0.066 | 0.561 | 0.908 | 1.196 | 0.806 | 1.218 | 0.945 | 0.734 |
| 2000 | 0.020 | 0.123 | 0.775 | 1.282 | 0.988 | 1.438 | 0.671 | 1.279 | 0.654 |
| 2001 | 0.014 | 0.049 | 0.638 | 0.977 | 0.946 | 1.130 | 1.713 | 0.758 | 0.871 |
| 2002 | 0.013 | 0.038 | 0.179 | 0.932 | 0.967 | 1.052 | 0.665 | 1.427 | 0.707 |
| 2003 | 0.023 | 0.023 | 0.191 | 0.247 | 0.931 | 1.492 | 0.978 | 0.786 | 0.586 |
| 2004 | 0.008 | 0.044 | 0.078 | 0.354 | 0.489 | 1.088 | 2.939 | 0.983 | 0.509 |
| 2005 | 0.010 | 0.009 | 0.089 | 0.361 | 1.027 | 0.647 | 1.016 | 1.987 | 0.237 |
| Avg. 2001-03 | 0.017 | 0.037 | 0.336 | 0.719 | 0.948 | 1.225 | 1.119 | 0.990 | 0.722 |
| Avg. 2002-04 | 0.015 | 0.035 | 0.149 | 0.511 | 0.796 | 1.211 | 1.527 | 1.065 | 0.601 |
| Avg. 2003-05 | 0.014 | 0.025 | 0.119 | 0.321 | 0.816 | 1.076 | 1.644 | 1.252 | 0.444 |

Table 27. Instantaneous rates of change in lengths at age of EGB haddock from DFO surveys during 1986-2005.

| Year |  | Age Group |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1986 | 0.460 | 0.093 | 0.161 | 0.114 | -0.041 | 0.051 | -0.031 | 0.044 | 0.061 |
| 1987 | 0.409 | 0.217 | 0.337 | 0.046 | 0.016 | 0.021 | 0.010 | 0.060 | 0.013 |
| 1988 | 0.475 | 0.072 | 0.111 | 0.020 | 0.092 | -0.001 | 0.035 | 0.050 | -0.079 |
| 1989 | 0.604 | 0.213 | 0.206 | 0.102 | 0.033 | 0.005 | 0.085 | -0.025 | -0.077 |
| 1990 | 0.501 | 0.177 | 0.151 | 0.097 | 0.075 | -0.006 | 0.054 | 0.020 | 0.076 |
| 1991 | 0.527 | 0.157 | 0.092 | 0.109 | 0.167 | 0.060 | 0.032 | 0.039 | -0.011 |
| 1992 | 0.455 | 0.237 | 0.153 | 0.066 | 0.047 | -0.053 | -0.003 | 0.068 | -0.031 |
| 1993 | 0.417 | 0.224 | 0.080 | 0.036 | 0.158 | 0.086 | 0.115 | 0.021 | 0.031 |
| 1994 | 0.489 | 0.232 | 0.141 | 0.093 | 0.081 |  | -0.013 | -0.045 | 0.020 |
| 1995 | 0.584 | 0.201 | 0.106 | 0.077 | 0.060 | 0.058 |  | 0.036 | 0.075 |
| 1996 | 0.427 | 0.152 | 0.096 | 0.078 | 0.045 | -0.004 | -0.041 | 0.073 | -0.006 |
| 1997 | 0.463 | 0.224 | 0.117 | 0.080 | 0.053 | 0.049 | 0.105 | 0.069 | 0.114 |
| 1998 | 0.497 | 0.176 | 0.071 | 0.032 | 0.058 | 0.030 | 0.018 | -0.045 | -0.011 |
| 1999 | 0.459 | 0.211 | 0.152 | 0.123 | 0.113 | 0.059 | 0.045 | 0.007 | 0.012 |
| 2000 | 0.501 | 0.204 | 0.142 | 0.076 | 0.062 | 0.075 | 0.048 | 0.037 | 0.070 |
| 2001 | 0.383 | 0.117 | 0.030 | 0.018 | 0.033 | 0.006 | 0.004 | 0.022 | -0.023 |
| 2002 | 0.457 | 0.307 | 0.106 | 0.091 | 0.035 | 0.051 | 0.015 | 0.036 | -0.005 |
| 2003 | 0.453 | 0.214 | 0.102 | 0.078 | 0.025 | 0.028 | -0.034 | 0.067 | -0.133 |
| 2004 | 0.422 | 0.156 | -0.022 | 0.036 | 0.019 | 0.009 | -0.018 | 0.043 | -0.041 |
| 2005 | 0.584 | 0.155 | 0.076 | 0.036 | 0.041 | 0.024 | 0.035 | 0.090 | 0.049 |
| Min | 0.383 | 0.072 | -0.022 | 0.018 | -0.041 | -0.053 | -0.041 | -0.045 | -0.133 |
| Average | 0.478 | 0.187 | 0.120 | 0.070 | 0.059 | 0.029 | 0.024 | 0.033 | 0.005 |
| Max | 0.604 | 0.307 | 0.337 | 0.123 | 0.167 | 0.086 | 0.115 | 0.090 | 0.114 |
| Avg (1986-1993) | 0.481 | 0.174 | 0.162 | 0.074 | 0.068 | 0.020 | 0.037 | 0.035 | -0.002 |
| Avg (1994-1999) | 0.486 | 0.199 | 0.114 | 0.081 | 0.068 | 0.038 | 0.023 | 0.016 | 0.034 |
| Avg (2000-2005) | 0.467 | 0.192 | 0.072 | 0.056 | 0.036 | 0.032 | 0.008 | 0.049 | -0.014 |

Table 28. Lengths estimated for the EGB haddock 2003 year class based on growth rates from the 1998, 1999 and 2000 year classes for input into the risk assessment for 2007.

| Age | Beginning year length <br> $(\mathrm{cm})$ | Growth <br> rate | Calculated length for following year² |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 3 | $34.0^{1}$ | 0.182 | 40.8 |
| 4 | 40.8 | 0.122 | 46.1 |
| 5 | 46.1 | 0.075 | 49.6 |

${ }^{1}$ Observed 2006 beginning year length for 2003 year class from DFO survey
${ }^{2}$ length $_{a+1}=$ length $_{a} \times e^{\text {growit rate }}$

Table 29. Beginning year and fishery lengths and weights estimated for the $5 Z$ haddock 2003 year class for input into the risk assessment for 2007.

| Age | Beginning of year $^{c}$ |  |  |  | Fishery |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Length $^{\text {Weight }^{2}}$ | $-10 \%^{3}$ |  | Length | Weight $^{2}$ | $-10 \%^{3}$ |  |
|  |  |  |  |  |  |  |  |
| 3 | $34.0^{1}$ | $0.389^{1}$ | $\mathrm{~N} / \mathrm{A}$ |  | $45.0^{5}$ | 1.046 | 0.942 |
| 4 | $40.8^{4}$ | 0.786 | 0.707 |  | $48.0^{5}$ | 1.263 | 1.137 |
| 5 | $46.1^{4}$ | 1.120 | 1.010 |  |  |  |  |

${ }^{1}$ Observed 2006 beginning year length or weight for 2003 year class from DFO survey
${ }^{2}$ weight $=0.0000158 \times$ length ${ }^{2.91612}$
${ }^{3}$ Weight reduced by $10 \%$ to reflect drop in conditon
${ }^{4}$ Calculated length
${ }^{5}$ Interpolating between beginning of year lengths using the observed patterns from nearby year classes

Table 30. Input for projections and risk analyses of EGB haddock for the 2007 fishery. A catch of $22,000 \mathrm{mt}$ in 2006 and $\mathrm{M}=0.2$ were assumed for the forecasts.

| Year | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| Population Numbers (000s) |  |  |  |  |  |  |  |  |  |
| 2006 | 27858 | 7003 | 225604 | 918 | 1653 | 16104 | 2038 | 1872 | 1871 |
| Partial Recruitment to the Fishery ${ }^{1}$ |  |  |  |  |  |  |  |  |  |
| 2006 | 0.01 | 0.03 | 0.05 | 0.36 | 1 | 1 | 1 | 1 | 1 |
| 2007 | 0.01 | 0.03 | 0.05 | $0.30^{2}$ | 1 | 1 | 1 | 1 | 1 |
| Weight at beginning of year for population (kg) ${ }^{3}$ |  |  |  |  |  |  |  |  |  |
| 2006 | 0.06 | 0.17 | 0.39 | 0.66 | 0.87 | 1.37 | 1.59 | 1.74 | 2.36 |
| 2007 | 0.06 | 0.17 | 0.39 | $0.71{ }^{4}$ | 0.87 | 1.37 | 1.59 | 1.74 | 2.36 |
| 2008 | 0.06 | 0.17 | 0.39 | $0.71{ }^{4}$ | $1.01{ }^{4}$ | 1.37 | 1.59 | 1.74 | 2.36 |
| Weight at age for catch (kg) ${ }^{5}$ |  |  |  |  |  |  |  |  |  |
| 2006 | $0.39{ }^{6}$ | 0.70 | $0.94{ }^{7}$ | 1.43 | 1.69 | 1.86 | 2.04 | 2.06 | 2.22 |
| 2007 | $0.39{ }^{6}$ | 0.70 | $0.94{ }^{7}$ | $1.14{ }^{7}$ | 1.69 | 1.86 | 2.04 | 2.06 | 2.22 |
| Maturity |  |  |  |  |  |  |  |  |  |
| 2005 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2006 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2007 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

${ }^{1}$ Estimated from observed 2005 partial recruitment except where indicated.
${ }^{2}$ Derived from relationship between 2003 to 2005 survey lengths at age and partial recruitment values.
${ }^{3}$ Equal to 2006 DFO survey weights except where indicated.
${ }^{4}$ Estimates for the 2003 and 2004 year classes based on a growth model.
${ }^{5}$ Equal to 2005 Canadian fishery weights except where indicated.
${ }^{6}$ Average weight for age 1 in 2001.
${ }^{7}$ Estimates for the 2003 and 2004 year classes based on a growth model.

Table 31. Bias adjusted deterministic projection results for EGB haddock for the 2007 fishery using 20 million recruits for the 2006 year class.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 1+ | 2+ | 3+ |
| Population Numbers (000s) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 27858 | 7003 | 225604 | 918 | 1653 | 16104 | 2038 | 1872 | 1871 |  |  |  |
| 2007 | 20000 | 22689 | 5644 | 179942 | 623 | 802 | 7816 | 989 | 1816 |  |  |  |
| 2008 | 20000 | 16332 | 18432 | 4561 | 136269 | 393 | 506 | 4934 | 1771 |  |  |  |
| Population Biomass (mt) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 1644 | 1197 | 87760 | 603 | 1438 | 21998 | 3243 | 3261 | 4405 | 125549 | 123906 | 122708 |
| 2007 | 1180 | 3880 | 2196 | 127219 | 542 | 1096 | 12435 | 1723 | 4277 | 154547 | 153367 | 149487 |
| 2008 | 1180 | 2793 | 7170 | 3225 | 137360 | 537 | 806 | 8595 | 4171 | 165836 | 164656 | 161863 |
| Fishing mortality |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 0.005 | 0.016 | 0.026 | 0.188 | 0.523 | 0.523 | 0.523 | 0.523 | 0.523 |  |  |  |
| 2007 | 0.003 | 0.008 | 0.013 | 0.078 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 |  |  |  |
| Projected Catch Numbers (000s) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 132 | 99 | 5279 | 143 | 615 | 5995 | 759 | 697 | 696 |  |  |  |
| 2007 | 47 | 160 | 66 | 12253 | 130 | 167 | 1629 | 206 | 379 |  |  |  |
| Catch Biomass (mt) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 52 | 69 | 4973 | 205 | 1037 | 11133 | 1549 | 1435 | 1547 | 22000 |  |  |
| 2007 | 19 | 111 | 62 | 13932 | 219 | 310 | 3324 | 424 | 841 | 19243 |  |  |



Figure 1. Fisheries statistical unit areas in NAFO Subdivision 5Ze. Alpha-numeric codes, e.g. 5Zej, are DFO designations and numeric codes, e.g. 561, are NMFS designations.


Figure 2. Historical catch of EGB haddock during 1931-1955 compared to recent catches during 19692005.


Figure 3. Nominal catch of EGB haddock during 1969-2005.


Figure 4. Haddock catches in EGB by month and gear for the Canadian commercial groundfish fishery in 2005 (wide bars) with sampling levels (narrow bars).


Figure 5. Comparison of length frequencies obtained at port and at sea from the EGB Canadian commercial groundfish fishery in 2005. The number of fish measured is shown in brackets.


Figure 5 (continued). Comparison of length frequencies obtained at port and at sea from the EGB Canadian commercial groundfish fishery in 2005. The number of fish measured is shown in brackets.


Figure 6. Catch at length by the principal Canadian EGB commercial haddock fisheries in 2005.


Figure 7. Catch at length by the USA EGB commercial haddock fisheries in 2005.


Figure 8. Total commercial catch at age (numbers) of EGB haddock during 1969-2005. The bubble area is proportional to magnitude.


Figure 9. Average weights at age for EGB haddock from the Canadian commercial groundfish fishery during 1969-2005 and from the DFO survey during 1986-2006.


Figure 10. Age composition of the haddock catch for the EGB commercial fishery in 2005 compared to the average age composition for the total catch of all fisheries during 1969-1974, 1975-1984, 1985-1994, and 1995-2004.


Figure 11. Actual and projected 2005 EGB haddock catch (by numbers).


Figure 12. Stratification scheme used for NMFS surveys. The EGB management area is indicated by shading.


Figure 13. Stratification scheme used for the DFO survey. The EGB management area is indicated by shading.


Figure 14. Distribution of EGB haddock abundance (number/tow) as observed from the DFO survey. The squares (left panels) are shaded relative to the average catch for 1996 to 2005 . The expanding symbols (right panels) represent the 2006 survey catches.


Figure 15. Distribution of EGB haddock abundance (number/tow) as observed from the NMFS spring survey. The squares (left panels) are shaded relative to the average catch for 1996 to 2005. The expanding symbols (right panels) represent the 2006 survey catches.


Figure 16. Distribution of EGB haddock abundance (number/tow) as observed from the NMFS fall survey. The squares (left panels) are shaded relative to the average catch for 1995 to 2004. The expanding symbols (right panels) represent the 2005 survey catches.


Figure 17. Estimated abundance at age (numbers in 000's) of EGB haddock for the DFO, NMFS spring and NMFS fall surveys during $1963-2006$. Bubble area is proportional to magnitude (see Tables 14-16). Conversion factors to adjust for changes in door type and survey vessel were applied to the NMFS surveys. From 1973-81 (pale circles), a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years. Symbol size has not been adjusted between surveys for the catchability of the survey.


Figure 18. Biomass from NMFS fall (ages 2-8), NMFS spring (ages 3-8) and DFO (ages 3-8) research surveys (scaled by calibration constants, Table 18) for EGB haddock during 1963-2006.


Figure 19. Year-class abundance for ages 0 and 1 from the NMFS fall survey and ages 1 and 2 from the NMFS spring and DFO research surveys (scaled by calibration constants, Table 16) for EGB haddock during 1963-2006.


Figure 20. Length at age for EGB haddock derived from DFO surveys during 1986-2006.


Figure 21. Residuals by year and age group for research survey indices during 1969-2006 for EGB haddock. Solid symbols indicate positive values, open symbols indicate negative values. Bubble area is proportional to magnitude. From 1973-81 (pale circles), a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years.


Figure 22. Age by age plots of the observed and predicted In abundance index versus In population numbers for EGB haddock from the DFO survey during 1986-2006.


Figure 23. Age by age plots of the observed and predicted In abundance index versus In population numbers for EGB haddock from the NMFS spring survey with a Yankee 36 net during 1969-1972 and 1982-2006.


Figure 24. Age by age plots of the observed and predicted In abundance index versus In population numbers for EGB haddock from the NMFS spring survey with a Yankee 41 net during 1973-1981.


Figure 25. Age by age plots of the observed and predicted In abundance index versus In population numbers for EGB haddock from the NMFS fall survey 1969-2005.


Figure 26. Retrospective estimates of EGB haddock year-class abundance as additional years of data were included in the assessment did not display any persistent trends.


Figure 27. Retrospective estimates from VPA of EGB haddock biomass and fishing mortality did not display any persistent trends for over or under estimation as successive years of data were excluded in the assessment.


Figure 28. Beginning of year adult (3+) biomass and number of age 1 recruits for EGB haddock during 1931-1955 and 1969-2006.


Figure 29. Fishing mortality rate for EGB haddock ages 4+ and 5+ during 1969-2005 and the fishing mortality threshold reference established at $\mathrm{F}_{\text {ref }}=0.26$.


Figure 30. Average partial recruitment of EGB haddock for 3 time periods compared to the years 2004 and 2005.


Figure 31. Surplus production of EGB haddock available to the commercial fishery compared to the harvested yield during 1969-2005.


Figure 32. Amount of productivity attributible to growth (ages 2 to $9+$ ) of EGB haddock and the amount contributed by recruitment (age 2) during 1969-2005.


Figure 33. Relationship between EGB adult (ages 3+) haddock biomass and recruits at age during 19311955 and during 1969-2005.


Figure 34. Ratio of recruits (numbers at age 1) to spawning biomass (kg) for EGB haddock during 19311955 and during 1969-2005.


Figure 35. The age composition and absolute abundance at age of the EGB haddock population in 2006 compared to averages during 1931-1955, 1969-1974, 1975-1984, 1985-1994, and 1995-2005.


Figure 36. DFO survey weights at lengths for EGB haddock for six 2 cm length groupings during 19862006.


Figure 37. Percent change in DFO survey weight at length for EGB haddock during 2000, 2001, 2002 2003, 2004, 2005 and from 2000 to 2006.


Figure 38. Rate of change in length at age for EGB haddock derived from DFO surveys during 19862005. Filled circles indicate a positive change and unfilled indicate a negative change. Shading used to highlight recent 2000 and 2003 year classes.


Figure 39. Relationship between length and growth rate derived for EGB haddock using observed growth increments from the 1998, 1999 and 2000 year classes.


Figure 40. Average population weights at age and average fishery weights at age of the 1997 to 2005 year classes of EGB haddock as observed from the DFO survey. Population and fishery weights for the 2003 year class were estimated from adjacent year classes. Predicted lengths that were used in the risk assessment are indicated by


Figure 41. Partial recruitment pattern by length observed for EGB haddock in 2003 to 2005. A smoothed line was fitted to the data using a loess algorithm (Cleveland 1979).


Figure 42. Risk of 2007 fishing mortality exceeding $F_{\text {ref }}=0.26$ for EGB haddock for increasing catch quotas.


[^0]:    ${ }^{1}$ Catches of 3 t , 1846 t and 46 t for Jan., Feb., and Mar., respectively for otter trawlers were excluded because of suspected area misreporting

[^1]:    ${ }^{1}$ Landings by quarter.
    ${ }^{2}$ Fishery was closed in August when cod by-catch quota reached.

[^2]:    ${ }^{1}$ Revised from previous assessment.

[^3]:    ${ }^{1}$ One haddock measured.

