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ABSTRACT 

In response to growing concerns over fisheries sustainability and the vulnerability to climate 
changes, precautionary reference points have become central priorities for maintaining the 
healthy status of fish populations and fisheries. In the present study, we applied a hierarchical 
Bayesian state-space formulation of surplus production models to assessments of Arctic Char 
biomass dynamics in the Cambridge Bay area and to estimates of a set of precautionary 
reference points (PRPs) with uncertainties for evaluation processes. Four kinds of probability 
distribution functions (pdfs), uniform (UKR), lognormal (LNKR), half-Cauchy lognormal 
(HCLNKR), and random walk with lognormal (LNKRWQ), were structured to specify priors on 
model parameters, K, r, and q in a Markov chain Monte Carlo (MCMC) framework. We 
employed deviance information criterion (DIC) and multimodel inference (MMI) to evaluate 
model performance and model selection. The model considered the best fit has the smallest 
DIC value, leading to the recognition that the model LNKRWQ was identified as the best among 
the candidate models. Model UKR produced next lowest DIC value, with a substantial difference 
(5.18) from LNKRWQ. Models LNKR and HCLNKR did not substantially support the model 
averaging of MMI. Given two better model scenarios, the populations for all years under model 
LNKRWQ, 93% DIC weight, had experienced somewhat lower targeted exploitation rate 
(FMSY=0.1761±0.1098 per year) and the population biomass remained in the healthy zone. 
Under model UKR, 7% DIC weight, the targeted exploitation rate seemed to be slightly higher 
(FMSY=0.2390±0.1182 per year) but were never exceeded. The results from both models 
demonstrated that Cambridge Bay Arctic Char populations were in the Cautious Zone of the 
Precautionary Approach Framework at the start of the time series. Under the current 
exploitation strategy, the populations are in the Healthy Zone. With the data currently available it 
was not possible to estimate these reference points for individual stocks (i.e., waterbodies). This 
does not imply that there should be a change to the current management units or methods of 
the collection of fishery statistics. However, additional information, proportional contributions 
from river-based stocks and river-specific catch-per-unit-effort (CPUE), should be collected that 
would facilitate definition of individual stock reference points.  
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Modélisation bayesienne hiérarchique pour l'omble chevalier de la Cambridge Bay, 
Salvelinus alpinus (L.), incorporant des points de référence de précaution 

RÉSUMÉ 
En réponse aux préoccupations croissantes concernant la durabilité des pêches et la 
vulnérabilité aux changements climatiques, l'utilisation de points de référence de précaution est 
devenue une priorité centrale du maintien de l'état sain des populations de poissons et des 
pêches. Dans la présente étude, nous avons appliqué une formulation bayesienne hiérarchique 
état-espace des modèles de production excédentaire aux évaluations de la dynamique de la 
biomasse de l'omble chevalier dans la région de Cambridge Bay ainsi qu’aux estimations d'un 
ensemble de points de référence de précaution (PRP) avec certaines incertitudes pour les 
processus d'évaluation. Quatre types de fonctions de distributions de probabilités (FDP), soit 
uniforme (UKR), log-normale (LNKR), log-normale demi-Cauchy (HCLNKR) et marche aléatoire 
+ log-normale (LNKRWQ) ont été structurées pour préciser a priori les distributions des 
paramètres du modèle, K, r et q dans un cadre de Monte Carlo par chaîne de Markov (MCMC). 
Nous avons utilisé le critère DIC (deviance information criterion) et l'interférence multimodèles 
(MMI) pour évaluer le rendement et la sélection des modèles. Le modèle jugé comme étant le 
mieux adapté a la valeur DIC la plus faible, ce qui nous a permis de reconnaître que le modèle 
LNKRWQ était le meilleur parmi les modèles envisagés. Le modèle UKR est arrivé au 
deuxième rang en termes de valeurs DIC les plus faibles, avec une différence substantielle par 
rapport au modèle LNKRWQ (5,18). Les modèles LNKR et HCLNKR n'ont pas soutenu de 
façon substantielle la combinaison de modèles de la MMI. Vu qu'il y avait deux meilleurs 
scénarios modèles, dans le modèle LNKRWQ, les espèces (pondération DIC 93 %) ont connu 
des taux d'exploitation ciblés plutôt faibles pour toutes les années (FRMS = 0,1761 ± 0,1098 par 
année) et la biomasse de la population est restée dans la zone saine. Dans le modèle UKR 
(pondération DIC 7 %), le taux d'exploitation ciblé semblait être légèrement plus élevé (FRMS = 
0,2390 ± 0,1182 par année), mais n'a jamais été dépassé. Les résultats des deux modèles ont 
démontré que les populations d'omble chevalier de Cambridge Bay étaient dans la zone de 
prudence du cadre de l'approche de précaution au début de la série chronologique. Dans le 
cadre de la stratégie d'exploitation actuelle, les populations se trouvent dans la zone saine. 
Avec les données actuellement disponibles, il n’a pas été possible d'estimer ces points de 
référence pour des stocks individuels (c.-à-d. étendues d'eau). Cela ne signifie pas qu'il faille 
apporter des changements aux unités de gestion actuelles ou aux méthodes de collecte de 
statistiques sur les pêches. Toutefois, il faudrait recueillir des renseignements supplémentaires 
et apprendre les contributions proportionnelles de stocks fluviaux et les captures par unité 
d’effort (CPUE) propre aux rivières. Cela faciliterait la définition de points de référence pour les 
stocks individuels.  
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INTRODUCTION 
Following the international guidelines for precautionary approaches to fisheries (FAO 1995a, b, 
c), Fisheries and Oceans Canada (DFO) has adopted a fishery decision-making framework and 
integrated fisheries management plans (IFMPs), which detail how the precautionary approach 
will be put into practice in Canadian waters (DFO 2006). The Arctic is both one of the places on 
Earth that is most vulnerable to climate change and a place where vulnerability is of urgent 
global relevance (WWF 2008). Also, fisheries in the Arctic, marked by critical differences in 
ecosystem structural and functional components, need to receive urgent consideration for 
sustainable applications. Currently, this vulnerable system is experiencing increasing human 
interests for gas, oil, mineral, and fisheries development, and conspicuous modifications from 
global climate changes over sub-Arctic and Arctic habitats (Reist et al. 2006). Arctic Char, 
Salvelinus alpinus (L.), is a highly migratory salmonid that is found throughout sub-Arctic and 
Arctic freshwater and coastal areas (Reist et al. 1995, Scott and Crossman 1998). Cambridge 
Bay Arctic Char are targeted in one of the largest char fisheries across Nunavut and the 
Northwest Territories (Yaremchuk et al. 1989, Day and de March 2004). In response to growing 
concerns over fisheries sustainability and the vulnerability of fishes to climate changes, 
precautionary reference points have become central priorities for maintaining the healthy status 
of fish populations and fisheries in the Arctic. 

Within DFO’s integrated fisheries management framework, fishery stock assessment has 
become a key toolbox to be used for assessing stock status, informing management advice, 
and defining uncertainties (Hilborn and Walters 1992). Two mainstream statistics are used to 
these ends. Classical statistics, that is frequentist statistics, is prominently based on maximum 
likelihood estimates and hypothesis tests of p-values; they give no direct advice on how to 
implement analytical outcomes in the face of a multitude of uncertain possibilities. The Bayesian 
approach to statistical inference and decision making, as an alternative, has experienced rapid 
growth over the last thirty years in environmental modeling, particularly fishery stock 
assessment (Punt and Hilborn 1997, Hilborn and Liermann 1998). Compared with classical 
statistics, Bayesian statistics provides theoretical concerns with applicable management options 
and probabilities as a measurement of uncertainty (or relative credibility) (Carlin and Louis 
2009). Beginning exactly as traditional frequentist methods do, the Bayesian approach 
combines point estimates of classical statistics with probability densities and decision analyses, 
taking a further step to help choose the best decision from a list of candidates (Kinas and 
Andrade 2007).  

Applying Bayesian statistics to fisheries stock assessments involves the integration of a 
knowledge base (likelihood), current stock status information (probability distribution functions, 
pdfs), and nowadays inference toolboxes of precautionary management options with 
uncertainties for evaluation processes. The Bayesian approach is becoming a natural choice 
since it provides tools to perform the following tasks:  

i) display inferences in the form of posterior probability distributions;  

ii) include all relevant information outside the data by way of a prior probability distribution; 
and  

iii) use Bayesian decision theory to compare and choose among alternative management 
options.  

In fact, fisheries resources are rife with some degree of uncertainty, especially through the 
processes of field observations and laboratory experimentation. In contrast to a single aquarium 
in which we know the exact number of fish, it is impossible to count all of the individuals in the 
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standing abundance in a waterbody of closed lakes and open rivers and marine systems using 
a sampling gear. Instead, inference becomes an intellectual alternative to estimate the total 
number of individuals and biomass through index sampling by a selected gear under defined 
assumptions. During their complicated life cycles, Arctic fish undergo seasonal migrations for 
feeding, spawning, and overwintering purposes, which normally occur in separate habitats. This 
results in spatial separation during life histories and co-existence with other species, and 
sympatric and allopatric competition. The study of fish population dynamics primarily requires 
the collection of field observation to represent stock status across all habitats. In fact, survey 
results are often biased during data collection with a single gear or in particular locations. 
Nevertheless, observational uncertainties cannot be controlled, even with carefully designed 
sampling protocols. Especially for commercial and recreational fisheries, experimental data 
collection and harvest statistics include observational uncertainty sources (Francis and Shotton 
1997). In addition, a number of uncertainties occur during model construction, implementation, 
and institutionalization, as was proposed by Rosenberg and Brault (1993) and O’Boyle (1993). 

Despite increasing concerns regarding climate change impacts, especially for the sustainability 
of Arctic fisheries, there is still limited information available on the biological characteristics of 
Arctic Char, which impedes the creation of stock assessment and fisheries management 
frameworks. Guided by DFO’s benchmark on precautionary approaches (PA) to fisheries 
management and IFMPs (DFO 2006), this study on Cambridge Bay Arctic Char, Salvelinus 
alpinus (L.), was conducted primarily towards the following objectives:  

i) construct a baseline model of an Arctic Char surplus production model, based on the 
dataset from 1960-2008; 

ii) determine kernel parameters of fisheries management interest; 

iii) delineate stock status and precautionary reference points; and  

iv) account for uncertainties in the risk assessment and decision advice. 

MATERIALS AND METHODS 

STUDY AREA 
Situated on the southeast coast of Victoria Island (Kitlineq), in the Canadian Arctic Archipelago, 
between Dease Strait and Queen Maud Gulf, Cambridge Bay (69°6’N, 105°8’W) is a 
transportation and administrative center for the Kitikmeot Region (Figure 1). The traditional 
Inuinnaqtun name for the area is Ikaluktuutiak (old orthography) or Iqaluktuttiaq (new 
orthography), meaning "good fishing place". Historically, all river systems in the area were likely 
fished for subsistence (DFO 2004). 

Climatic conditions in Cambridge Bay are largely influenced by the geographic position of 
Victoria Island and the cold currents of the Arctic Ocean. Monthly mean temperatures above 
0°C occurred in June through August, when rainfall peaked at more than 30 mm. Monthly 
temperatures varied between -33.50 ± 0.40°C in February and 8.35 ± 0.20°C in July, with an 
annual average of -14.58 ± 0.17°C, during 1950-2010 (Figure 2). During the winter (December 
to March), air temperature was below -30°C while the daily average depth of snowfall was >5 
cm. The overall amount of precipitation, rainfall and snow combined, showed a single period of 
seasonal variation that was positively related to the air temperature (r=0.5568, p<0.0001, 
Climate Weather Office). Average monthly precipitation was 10 mm between June and October. 
The general climate pattern was for wetter and warmer weather in summer and early fall, while 
drier and colder conditions prevailed during winter. 
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DATA SOURCES 
Fisheries and biomass index 
Collection of commercial fisheries statistics commenced in 1960 (Yaremchuk et al. 1989). 
Fishers sought sea-run migrants at the mouths of the Lauchlan, Halovik, and Paliryuak rivers, 
north of Wellington Bay, in mid-July (Figure 3), and sea-return migrants in mid-August and early 
September by means of gillnets and weirs in several rivers (Day and de March 2004). With the 
exception of the Lauchlan River in 1963, the fisheries for char from the mouths of the Lauchlan, 
Halovik and Paliryuak rivers were combined under the Ekalluk River during the 1960s (Table 1). 
Although gillnets of various mesh sizes were used, the minimum mesh size allowed was 
established as 140 mm knot-to-knot stretched mesh. In recent years there has been a change in 
fishing gear from gillnets to weirs for several of the Cambridge Bay river mouth fisheries. There 
is no minimum fish-size limit but mesh-size is constrained by fishing license regulations. 

Within the time spans from 1960 to 2010 (Table 1), three temporal phases of commercial fishery 
development can be easily seen over the seven fishing locations: an early development phase 
of the commercial fisheries during 1960-1976; a fully developed phase during 1977-1990; and 
the restoration of dynamics during 1991-2010 following a five-year reduction in the Ekalluk 
fishery in the early 1990s (Figure 3). A river-specific quota system commenced in 1972, and the 
fishable quota peaked between 1978 and 1984 (Table 2). The combined harvests from the 
Ekalluk and Jayco rivers have accounted for >50% of the total quota since 1994. As is detailed 
in a complementary document (Zhu et al. 2014), two sets of population biomass-based catch-
per-unit-effort (CPUE) indices are used in the analysis: an experimental sampling series from 
1975-2006, and an estimated series derived from a correlation between CPUE and winter 
(March) Arctic oscillation index (AOI) with a five-year lag. This index was expressed as tonnes 
per unit of gillnet.  

SURPLUS PRODUCTION MODEL 
Biomass index 
Weight-based CPUE is an index of biomass (Bt). It is described by a functional relationship 
between the fishing mortality rate and fishable biomass. The fishing mortality rate can be further 
expressed by the product of the invested fishing effort at time t, Et, and its catchability 
coefficient, q, 

𝐶𝐶𝑡𝑡 = 𝑞𝑞𝐸𝐸𝑡𝑡𝐵𝐵𝑡𝑡 (1) 

𝐼𝐼𝑡𝑡 = 𝑞𝑞𝐵𝐵𝑡𝑡 (2) 

where Ct and It are the reported harvest and CPUE at time t, respectively. The catchability 
coefficient specifies the retained proportion of the species captured by one unit of gear-specific 
effort (Hilborn and Walters 1992, Quinn and Deriso 1999). In fact, CPUE is greatly subject to 
changes in gear type and configuration as well as changes in targeting practices, such as 
switching from a single species to a multi-species bycatch pursuit (Hilborn and Walters 1992).  

BIOMASS DYNAMICS MODEL 
When only harvest and relative abundance or biomass datasets are available, surplus 
production models simplistically integrate the quantities of growth, recruitment, and natural 
mortality into a comprehensive part of surplus production. Dynamic changes in instantaneous 
biomass can be balanced between surplus production and harvest removals, which is 
commonly represented by the Graham-Schaefer logistic surplus production model (LSPM) 
(Schaefer 1957, Hilborn and Walters 1992, McAllister and Kirkwood 1998),  
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝐵𝐵 �1 − 𝑑𝑑
𝐾𝐾
� − 𝑞𝑞𝐸𝐸𝐵𝐵 (3) 

and generalized surplus production model (GSPM) (Pella and Tomlinson 1969; Fletcher 1978), 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑟𝑟
𝑧𝑧
𝐵𝐵(1 − (𝑑𝑑

𝐾𝐾
)z) − 𝑞𝑞𝐸𝐸𝐵𝐵 (4) 

where, parameters r and K are the intrinsic population growth rate and virgin biomass or 
carrying capacity, respectively. An additional parameter, z, refers to a measure of production 
density dependence (Pella and Tomlinson 1969). When z=1, equation (4) is a logistic function 
(3) (Polacheck et al. 1993). Otherwise equation (4) is a skew-asymmetric function with a shape 
parameter z (Prager 2002, Barker and Sibly 2008).  

To reduce parameter confounding, such as between Bt and K (Meyer and Millar 1999a, b, Millar 
and Meyer 2000), the GSPM was re-parameterized using relative biomass (Pt=Bt/K) to express 
annual biomass proportional to K, 

𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑟𝑟𝑃𝑃𝑡𝑡(1− 𝑃𝑃𝑡𝑡𝑧𝑧) − 𝐶𝐶𝑡𝑡
𝐾𝐾

 (5) 

Then, a grid of alternative parameters for composing precautionary reference points can be 
derived, including maximum surplus production (MSP=(BMSP)×(FMSP)), fishing mortality at 
maximum surplus production (FMSP=r/((z+1)(1/z)), biomass at maximum surplus production 
(BMSP=K/((z+1)(1/z)), the relative fishing mortality rate (F/FMSP), and relative biomass (B/BMSP) at 
sampling series (Quinn and Deriso 1999). 

HIERARCHICAL BAYESIAN MODEL 
A hierarchical Bayesian paradigm can explicitly account for a smooth ‘signal fit’ from noisy data 
and pursue a plausible representation of nonlinear covariates in both the population dynamics 
model and observations (Millar and Meyer 2000, Buckland et al. 2004). Combined with relevant 
uncertainties for errors with respect to parameter estimation, two interactive processes are 
involved in model performance: a state process of underlying stochasticity in population 
dynamics is an unobserved vector, representing Arctic Char population biomass; and a space 
process of data collection described by an observable vector, biomass-based CPUE from index 
surveys or covariate prediction, is a function of the unobserved state process (Francis and 
Shotton 1997, Meyer and Millar 1999a, Buckland et al. 2004, Thomas et al. 2005). 
Conceptually, the state process error also indicates uncertainty accounted for environmental 
noise or natural variability, assuming the observations are made without errors and all of the 
errors occur as a result of changes in population size (Polacheck et al. 1993, Bousquet et al. 
2008). The observation process error estimator is made by assuming the population dynamics 
are deterministic and that all of the errors occur in the sampling procedures (Polacheck et al. 
1993). In fact, these analytical errors may account for differences between expected and 
observed CPUE, and between model-derived and true biomass quantities.  

As such, these stochastic forms for relative biomass (Pt) and CPUE (It) are obviously 
represented by a skewed and multiplicative lognormal distribution (Limpert et al. 2001) for 
t=1960,…2008, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡 = log (𝑃𝑃�𝑡𝑡) + 𝜇𝜇𝑡𝑡 (6) 

𝐿𝐿𝑃𝑃𝑡𝑡 = 1
�2𝜋𝜋𝜋𝜋𝑃𝑃𝑡𝑡

exp (− log(𝑃𝑃𝑡𝑡)−log (𝑃𝑃�𝑡𝑡))2

2𝜋𝜋2
 (7) 

log (𝐼𝐼𝑡𝑡) = log (𝐼𝐼𝑡𝑡) + 𝑣𝑣𝑡𝑡 (8) 

𝐿𝐿𝐼𝐼𝑡𝑡 = 1
�2𝜋𝜋𝜋𝜋𝐼𝐼𝑡𝑡

exp (− log(𝐼𝐼𝑡𝑡)−log (𝐼𝐼𝑡𝑡))2

2𝜋𝜋2
 (9) 
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Where μt and νt are independent and identically-distributed (iid) normal probabilities of N(0,σ2) 
and N(0,τ2), respectively. LPt and LIt are likelihoods for Pt and It, given 𝑃𝑃�𝑡𝑡  and 𝐼𝐼𝑡𝑡, respectively.  

Priors and posterior probability distributions 
As was indicated earlier, a Bayesian-based GSPM (eq. 4) is determined by the conditional state 
process posterior pdf (eq. 5), the state process pdf (eq. 6-7), the observation process pdf (eq. 8-
9) with an unobservable parameter set, Θ={K, r, q, z, σ2, τ2}, and relevant priors. Overall, there 
are six model parameters in Θ, 49 unknown and derived state time series of relative biomass Pt, 
and predicted CPUE (It) where t = 1960,…2008. 

Prior to model implementation, two categories of prior pdfs need to be specified, assuming the 
parameters in Θ are independent a priori (Meyer and Millar 1999a, b, Millar and Meyer 2000): 
informative and non-informative. Informative priors are primarily determined by intensive 
assessment of the parameter choices and expert judgment using knowledge-based information 
(Walters and Ludwig 1994, Punt and Hilborn 1997, McAllister and Kirkwood 1998). Non-
informative priors refer to prior probability distributions created without any information or 
without favoring one parameter value over another (Carlin and Louis 2009). The resulting 
inferences are completely objective. In this study, we applied both categories of priors when 
specifying prior pdfs for model parameters, especially for estimates of K and r. 

To define non-informative uniform pdfs for K and r, because of the scarcity of sufficient 
documentation, we estimated the bound quantities for K used in the models, combined with 
spatially-specific harvest history. Since 1960, total harvested biomass in the commercial Arctic 
Char fisheries ranged from 5.77 metric tonnes in 1962 to 67.94 metric tonnes in 1978 (Table 1). 
The censored intervals for Arctic Char biomass, uniform pdf U(100, 1500), were subjectively 
selected by incorporating historical harvest records with an approximate factor of twenty times. 
Model parameter r is interchangeable with similar biological characteristics among species and 
stocks (Hilborn and Walters 1992, Sibly and Hone 2002). Accordingly, we described parameter r 
as a randomized variation of the uniform distribution probability U(0.01,1.05). For catchability 
coefficient q, a non-informative flat normal pdf was initiated with a bound of (10-6, 1.0). Similarly, 
the shape parameter z was specified by a non-informative flat normal pdf prior with a bound of 
(0.1, 10).  

𝐾𝐾 ~ uniform(100,1500) or 𝐾𝐾 ~ log-normal(𝜇𝜇𝐾𝐾 , 𝜏𝜏𝐾𝐾)I(100,1500) 

𝑟𝑟 ~ uniform(0.01,1.05) or 𝑟𝑟 ~ log-normal(𝜇𝜇𝑟𝑟, 𝜏𝜏𝑟𝑟)I(0.01,1.05) (10) 

𝑧𝑧 ~ normal(0.0,10-6)I(0.1,15) 

𝑞𝑞 ~ normal(0.0,10-6)I(10-6, 1) 

where μK and μr are the prior means for parameters K and r, respectively, and τK and τr are the 
corresponding prior precisions for parameters K and r, which are known as hyper parameters 
(Harley and Myers 2001). To incorporate time-varying effects, lognormal pdfs were employed to 
express random walk q priors (Wilberg et al. 2010),  

𝑞𝑞𝑡𝑡+1 = �𝜋𝜋𝑞𝑞
2𝜋𝜋

 1
𝑞𝑞

exp (−𝜋𝜋𝑞𝑞
2

(𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞 − 𝑞𝑞𝑡𝑡  )2 ) (11) 

Here, qt+1 and qt were timely changes in q in year t+1 and t, and the precision term τq was 
specified by a non-informative prior as an inverse uniform pdf U(0.01,1.0). 

To account for vague estimates for subsistence use, the following formula is used for total 
harvest, 
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Total harvest=Commercial Χ (1+HRR) (12) 

Here HRR, harvest report rate, is considered as the proportion of fisheries for subsistence use. 
Combined with a Nunavut Wildlife Harvest Study (Table 3; Priest and Usher 2004), an 
informative prior of 50% commercial harvest (Day and Harris 2013) was applied to the normal 
pdf prior with the bound of (0.01, 1.05), 

HRR~normal(0.0,10-6)I(0.01,1.05) (13) 

In a scenario associated with a half-Cauchy hyper prior distribution, the estimation is obtained 
as the ratio of a normal and square root of a χ2 distribution with one degree of freedom (Gelman 
2006).  

Process uncertainty variance, σ2, was considered when modeling uncertainties of recruitment 
variability and environmental noise (Millar and Meyer 2000, Bousquet et al. 2008). Observation 
uncertainty variance, τ2, was linked to uncertainties in data collection during sampling for the 
abundance index and fisheries statistics (Walters 1998; Meyer and Millar 1999b). Under the 
assumption of deterministic population dynamics, a reasonable range for observation error was 
0.1 to 0.3 on the basis of a coefficient of variation (CV) on abundance-based CPUE (Hilborn and 
Liermann 1998, Walters 1998). A vague Gelman’s prior, an inverse uniform pdf, U(0.01,100), 
was applied to σ2 and τ2 in the overall models (Carlin and Louis 2009). All notations of models 
are summarized in Table 4 with sequential calculations listed in Table 5. 

Stochastic simulation and multimodel inference 
Incorporated with a Markov Chain Monte Carlo (MCMC) simulation for a full range of 
uncertainties, Metropolis-Hastings within Gibbs sampling was employed for Bayesian nonlinear 
GSPM, defined in equations (3), (4), and (5). Under the computational framework of WinBUGS, 
we adopted three groups of model scenarios:  

i) a general model pursuit using non-informative uniform pdfs for constants K and r (model 
UKR); 

ii) comparative models by applying lognormal and half-Cauchy lognormal pdfs for constants 
K and r (LNKR and HCLNKR, respectively); and 

iii) incorporation of time-varying effects on the catchability coefficient q (LNKRWQ).  

For each model scenario, we used MCMC to run two-chains of Gibb’s sampling with 3,250,000 
iterations each. Following a burn-in period of 650,000 iterations, a total of 8,000 samples were 
obtained by sampling in a thin of the 325th iteration to avoid highly auto-correlated neighboring 
values (Spiegelhalter et al. 2002). Model convergence and stationarity were diagnosed using 
the R-based evaluation package CODA (Convergence Diagnosis and Output Analysis) for 
Gibbs sampling output, version 0.13-5 (Plummer et al. 2006, Ntzoufras 2009).  

Deviance information criterion (DIC) with a priori parsimonious predictive Bayesian statistics 
was employed to measure the relative goodness of fit of the structural models, which profile the 
complexity and instability resulting from particular parameterization (Burnham and Anderson 
1998, Spiegelhalter et al. 2002, Carlin and Louis 2009). Those models profile the complexity 
and instability resulting from a particular parameterization (Millar and Meyer 2000; Burnham and 
Anderson 2002; Spiegelhalter et al. 2002; Carlin and Louis 2009). The principle that the lowest 
DIC is the best model was applied for model selection among the plausible candidate models. 
As a generalization of the AIC, DIC can be expressed as, 
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𝐷𝐷(𝜃𝜃) = −2log𝑓𝑓(𝑦𝑦|𝜃𝜃) + 2 logℎ(𝑦𝑦) 

𝐷𝐷𝐼𝐼𝐶𝐶 = 𝐷𝐷 + 𝑝𝑝𝐷𝐷 (14) 

𝑝𝑝𝑝𝑝 = 𝐷𝐷 − 𝐷𝐷 

where f(y|θ) is the likelihood function for the observed data vector y given the parameter vector 
θ, and h(y) is a standardization function of the data alone (Carlin and Louis 2009). 𝐷𝐷, D and pD 
are the posterior mean of the deviance as a measure of fit, the deviance of the posterior mean 
and the effective number of parameters as a measure of complexity in a Bayesian model, 
respectively (Lunn et al. 2009).  

Multimodel inference (MMI) is one of information theoretic approaches to selection of the best 
model from a candidate model pool; the subsequent inference is conditional on that model 
(Burnham and Anderson 2002). For each fitted estimation model, the DIC weight (wi) was 
calculated in terms of differences between the current (DICi) and minimum DICmin, 

∆𝑖𝑖 = DIC𝑖𝑖 − DIC𝑚𝑚𝑖𝑖𝑚𝑚 (15) 

𝑤𝑤𝑖𝑖 =
exp �−∆𝑖𝑖2 �

∑ exp �−∆𝑖𝑖2 �
𝑐𝑐
𝑖𝑖=1

 

As a rule of thumb for MMI, Spiegelhalter et al. (2002) suggested that if models differ by only 
one or two DIC units then one cannot distinguish between the two models. If models differ by 
three to seven DIC units there is some support for the first model but the second model is 
clearly better. Essentially no support is found for two models whose DIC difference is greater 
than 10. So, a simple quantity, DIC, offers a straightforward means of comparing different 
models when using exactly the same observed data (Carlin and Louis 2009; King et al. 2010). 
The multi-model average model parameters, βMMI, were estimated using wi for the comparative 
model parameters  

βMMI = ∑ β𝑖𝑖𝑤𝑤𝑖𝑖
𝑐𝑐
𝑖𝑖   (16) 

where βi is the appropriate parameter.  

RESULTS 

DIAGNOSTIC TESTS FOR CONVERGENCE AND MODEL SELECTION 
In the R-based package CODA with MCMC iterations, there are four kinds of tests for model 
diagnosis for convergence and stationarity (Plummer et al. 2006). The Geweke diagnostic is 
used to check for convergence of the mean of each parameter separately from the sampled 
values of a single chain. The derived Z-score indicates convergence if |Z|≤2. Despite the 
appearance of possible outliers (|z|>2) for some parameters in all model scenarios, the range of 
Z-scores in a single chain was smallest in LNKRWQ and greatest in HCLNKR (Table 6). 
Overall, the percentages of outliers varied from zero in one chain to 27% in other chains of 
UKR, suggesting the model was sensitive to the initial value. In addition, the average outlier 
percentage over two chains was lowest in LNKR (2.32%), followed by LNKRWQ (3.51%), 
indicating fewer outliers appeared in both models. The Gelman-Rubin diagnostic involves 
checking the convergence of the chain using two or more samples generated in parallel. Values 
close to one indicate convergence, showing that all samples of the model parameters reached 
convergence. The Raftery-Lewis test by independence factor is used to evaluate the 
appropriateness of setting the values of the burn-in period, the thinning period, and the total 
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length of the sample; we concluded that the length of the burn-in and the number of subsequent 
cycles for all model scenarios were sufficient for the results to form the basis for inference (the 
average independence factor varied between 326-331), except LNKRWQ (independence factor 
414-418). The fourth index diagnostic, the Heidelberger-Welch test, is used for the analysis of 
sample convergence of single chains from univariate observations, expressed by p-values. 
Under the statistically critical level α=0.05, the derived results showed that all parameters 
passed the test in models UKR and HCLNKR, but one parameter, P1965, in LNKRWQ and nine 
parameters in LNKR did not. 

The model considered to have the best fit has the smallest DIC value. LNKRWQ was identified 
as the best among the four candidate models (Table 7). Uniform pdfs for K and r (model UKR) 
produced the next lowest DIC value, although with a substantial difference (5.18) from 
LNKRWQ. Models LNKR and HCLNKR generated very similar DICs with the difference of <1 
between the two, but a definitive difference >15.70 between them and the best model. For 
simplicity, some parts of our analyses will omit the results of LNKR and HCLNKR. Using MMI, 
DIC weight wi was calculated as 93% and 7% for LNKRWQ and UKR, respectively (Table 7). 

Posterior median trends for the biomass index (CPUE) and total harvest mimic the observed 
data during 1960-2008 under three model scenarios: UKR, LNKRWQ and MMI estimates 
(Figure 4). There was considerable scatter in CPUE around the fitted distributions, especially for 
models UKR and LNKRWQ (Figure 4a). All models looked similar from the onset of data 
collection through 1992, when harvest underwent gradual increases to full exploitation (Figure 
4b). The posterior median biomass trends for these models are shown in Figure 4c. Three 
stages of Arctic Char population development can be seen within the time series:  

i) prior to the first peaks in CPUE and biomass in 1972;  

ii) during fully-developed fisheries with stable biomass during 1973-1990; and  

iii) a period of biomass re-growth and dynamic changes in harvest after 1991.  

Taking examples of parameter P and biomass in three representative years, 1960, 1978, and 
2008, we can further examine temporal variations in two parameters. Relative biomass 
(P=Biomass/K) increased more than fourfold between 1960 and 1978, from 0.1620 in 1960 to 
0.7480 in 1978 (Figure 5a). From 1978 to 2008, P increased by only 0.14%. Similarly, biomass 
increased from 131 tonnes in 1960 to 568 tonnes in 1978, and continued to increase to 663 
tonnes in 2008 (Figure 5b). Comparing two-chain results for posterior local likelihood density 
estimates of P and B, agreement was found on the basis of a K-S test (p=0.99), suggesting that 
there was proportionality between model parameter P and biomass given constant K. 

QUANTITIES OF MANAGEMENT INTEREST 
Regardless of the model structures and prior selections, the posterior distributions of K and r are 
of great interest for both stock assessment and decision-making purposes, particularly when 
incorporated with uncertainties of stochastic and observational processes. Among four 
candidate models, the variations of median K showed two similar groups: models UKR and 
LNKRWQ versus models LNKR and HCLNKR (Table 8), with a difference of 34 tonnes between 
the two extremes. For parameter r, the highest estimate was obtained in UKR (0.4977) and 
similar values were produced among the remaining three models (0.3427-0.3473), which is 
similar to the pattern observed for parameter HRR. Assuming a priori value of 50% of the 
commercial fisheries catch was used for estimating subsistence consumption by means of an 
informative prior in the models, the actual quantities were 34%, 35%, and 34% in LNKR, 
HCLNKR, and LKNRWQ, respectively, while a value of 47% was obtained in the UKR model 
scenario. The posterior distributions of BMSP and FMSP did not differ substantially between LNKR 
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and HCLNKR. Comparing the UKR, HCLNKR, and LNKRWQ model scenarios, the posterior 
median for BMSP was 460, 490, and 522 tonnes, while FMSP was 0.2390, 0.1619, and 0.1761 per 
year, respectively. As a result, the posterior medians of maximum surplus production were 110, 
80, and 92 tonnes for the UKR, LNKR, and LNKRWQ models, respectively. With respect to 
time-varying catchability (q), a random walk exercise was included to account for variation in 
gear configuration, such as gear structure, mesh size, and set duration, without fixed time 
constraints. Compared with UKR, there were substantial differences when the population was 
very low, before 1970, which conflicts with the constant assumption in LNKRWQ and MMI 
estimates (Figure 6). 

Over-exploitation can be ascribed when the biomass status is less one (<1) or when fishing 
mortality status is greater than one (>1). Throughout the time series from 1960 to 2008, Arctic 
Char fisheries in Cambridge Bay underwent exploitation below the critical lower biomass level 
(Figure 7a), while it was near the full-exploitation criterion (Figure 7b) during 1978-1990 
because of higher fishing mortality from LNKRWQ and MMI analysis. Since 1990, posterior 
median biomass status was >1 and fishing mortality status was <0.50, which suggested that the 
Arctic Char stocks have been well within the Healthy Zone.  

Two types of uncertainties are included in assessing the model performance: process and 
observational. Among the four candidate models, the catchability-embedded model (LNKRWQ) 
produced the smallest values for process and observation errors, but separated natural variation 
in catchability, 0.1399, more than process error (0.0952) for random walk effects (Figure 8). 
More than three times the observation errors occurred in all other models. Among the tools 
proposed by Patterson et al. (2001), the choice of tools used to assess uncertainties in fish 
stock assessment may depend on the underlying stock assessment models, the major concerns 
regarding model structure, and the approaches used to assess the quantities of uncertainties, 
such as Bayesian, frequentist, and likelihood analyses.  

BIOLOGICAL REFERENCE POINTS AND THE PRECAUTIONARY APPROACH 
The determination of biological reference points (BPRs) is intended to trigger the establishment 
of management objectives that adhere to the reference points (Caddy and Mahon 1995). A 
fishery harvest control rule, also known as a decision rule, a catch control law, or a feedback 
control rule, represents a consistent procedure used to decide upon total allowable catch (TAC) 
given a set of biomass estimates from stock assessment models. In Bayesian statistics cases, 
the quantities of interest are the probability distributions of certain outcomes given a range of 
catch limit options. The target of the rule is therefore to provide a pre-defined means of 
changing the TAC in response to changes in the condition of the stock. Combined with control 
rules for stock status and harvest, underlying reference points and control rules have been 
incorporated in the DFO precautionary approach strategies (DFO 2006), both in the national 
fishery decision-making framework and in integrated fisheries management plans. The primary 
components of the generalized framework of the precautionary approach define the decision 
rules and reference points as short-term objectives (Patterson et al. 2001) by recognizing three 
zones of stock status regarding abundance or biomass (Caddy and Mahon 1995, DFO 2006):  

(1) Critical zone where fishery management actions must promote stock growth and 
removals from all sources must be kept to the lowest possible until the stock has cleared 
this zone. Harvest rate is kept to an absolute minimum. A conservation plan must be in 
place to ensure a high probability of the stock to be rebuilt within a reasonable timeframe; 

(2) Cautious zone where socio-economic and biological factors will be balanced to reflect the 
stock trajectory and location in the zone. Harvest rate should progressively decrease from 
the established maximum and should promote the stock to grow into the healthy zone; 
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(3) Healthy zone where the removal rate should not exceed the maximum acceptable 
removal reference. Conservation measures should be consistent with sustainable use. 
Fishery management actions should be tolerant of normal stock fluctuations. 

The delineation of the zones of stock status is mainly specified by a number of precautionary 
reference points that take into account the rational utilization of fisheries resources. The points 
are categorized into Target Reference Points (TRPs) and Limit Reference Points (LRPs). TRPs 
are considered indicators of desirable stock status for fisheries management after active 
monitoring and continuous re-adjustments of management measures on appropriate time-
scales. LRPs are delineated by the boundaries of the critical and cautious zones; they largely 
indicate the states of fishing or resource use during exploitation, development, or rebuilding 
paradigms (Caddy and Mahon 1995, Prager et al. 2003, Schnute and Haigh 2006). In addition, 
an upper stock reference point (USP) was created at the boundary between the cautious and 
healthy zones, as well as removal references for each of the three zones, which provides 
sufficient opportunities for the management system to recognize declining stock status and 
sufficient time for management actions to be taken effect (DFO 2006).  

For comparative purposes, the precautionary reference points are listed separately based on 
the UKR, LNKRWQ and MMI estimates: 

(1) Critical zone specified by LRP 
UKR: CPUE=0.0482 tonnes/gillnet, biomass=184 tonnes, 
LNKRWQ : CPUE=0.0544 tonnes/gillnet, biomass=209 tonnes, 
MMI: CPUE=0.0539 tonnes/gillnet, biomass=207 tonnes 

(2) Cautious zone defined by USP 
UKR: CPUE=0.0965 tonnes/gillnet, biomass=368 tonnes, 
LNKRWQ : CPUE=0.1087 tonnes/gillnet, biomass=417 tonnes, 
MMI: CPUE=0.1078 tonnes/gillnet, biomass=414 tonnes 

(3) Healthy zone defined by TRP 
UKR: CPUE=0.1206 tonnes/gillnet, biomass=460 tonnes, 
LNKRWQ : CPUE=0.1359 tonnes/gillnet, biomass=522 tonnes, 
MMI: CPUE=0.1348 tonnes/gillnet, biomass=517 tonnes 

(4) The targets of fishing management would be considered, 
UKR: BMSP =459 tonnes, and FMSP =0.2390, 
LNKRWQ: BMSP =522 tonnes and FMSP =0.1761, 
MMI: BMSP=517 tonnes and FMSP=0.1805 

As is expected for the precautionary approach, the critical zone is entered if the mature biomass 
is less than or equal to 40% of BMSP: biomass ≤40% BMSP. Management strategies of closing 
fisheries and protecting areas would be ideal for ensuring the recovery of threatened species 
located in the critical stock status zone. The cautious zone is entered if the biomass is higher 
than 40% of BMSP but less than 80% of BMSP: 40% BMSP ≤Biomass≤80% BMSP. This defines the 
upper stock point (USP). Direct reductions in exploitation should also be implemented when the 
exploited stock is in the cautious zone until the population biomass approaches the USP. The 
healthy zone is entered if the biomass or its index is higher than 80% of BMSP: Biomass≥80% 
BMSP. In the healthy zone, the removal rate could be controlled on the basis of targets of 
maximum surplus production, but timely monitoring of stock status is required. 

Given two model scenarios (Figure 9), under model UKR (upper panel) exploitation rates were 
somewhat lower than the target, and the population biomass remained in the healthy zone as 
compared to model LNKRWQ (lower panel). These results from both models also explicitly 
demonstrate that the population was located in the cautious zone in the very beginning of the 
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time series. Under the current exploitation strategy, the population is in the healthy or 
sustainable zone. Combined the estimates from two selected models above, we produced a PA 
model for managing Cambridge Bay Arctic Char (Figure 10) in terms of MMI. The general 
pattern was quite similar to that of LNKRWQ in terms of the 93% DIC weight; the reference 
parameters (BMSY=517 t, FMSY=0.1805 per year, and MSY=93 t) were slightly different. 

DISCUSSION 

ADVANTAGES OF HIERARCHICAL BAYESIAN STATE-SPACE MODELS 
In this study, we adopted hierarchical Bayesian state-space models to assemble a biomass 
index and fisheries series, focused on kernel model parameters of the population attributes of 
Cambridge Bay Arctic Char. Associated with the derived parameters, we developed 
precautionary reference points to diagnose stock status and outline management options for 
sustainability purposes. This exercise is our first attempt at quantitatively assessing Arctic Char 
population dynamics when confronted with a data-poor reality and rapid changes in an Arctic 
ecosystem (Tallman et al. 2014). During the modeling stages, we realized that there was a real 
challenge in knowing how sensitive the working models are to the initial value settings of 
parameter priors when the time-series index data was discontinuous (Zhu et al. 2014). 
Throughout the history of commercial Arctic Char fisheries, CPUE has only been observed for 
12 years; additionally, nothing was recorded regarding fishing effort and incomplete data is 
available for subsistence fisheries. Fortunately, surplus production models and Bayesian 
inference provide us with extremely flexible solutions. Given the latent productivity of a 
population, it is of interest to determine what surplus is available for harvesting after the 
population is replenished through recruitment and growth and diminishment by natural mortality 
(Quinn and Deriso 1999). 

The surplus production model is a standard model used for fish population assessments. 
Because of the simplicity of the model structure, topmost, and lower data requirement, it has 
been used for evaluations and management of a great number of animal populations (Meyer 
and Millar 1999, McAllister et al. 2001, Hammond and Trenkel 2005, Chaloupka and Balazs 
2007). Moreover, combined with hierarchical Bayesian models, the distinct advantages of this 
approach allow for the use of incomplete and unbalanced data, heterogeneous variances, and 
errors-in-variables (Carlin and Louise 2009), as well as different sources of information 
(Ntzoufras 2009). This was of critical importance because the biomass index was estimated by 
applying a pair-wise correlation between winter AOI and observed CPUE (Zhu et al. 2014). The 
use of the exchangeability assumption played a central role in this approach. In addition, 
hierarchical models are mostly based on the stochastic process of biological production and 
related descriptive properties of model parameters. In contrast with traditional models of 
deterministic process, the stochastic process depends largely on the probability distribution 
function of the model prior and posterior components. The model priors were decomposed into 
two parts: structural information or assumptions concerning the model, and actual subjective 
information regarding model parameters. The evident advantage is that provides flexibility in 
parameter quantities in the varying prior pdfs for most model parameters. As a result, the 
hierarchical Bayesian models can better incorporate with some degree of uncertainties for future 
fisheries management risk analysis. Specifically, the uncertainty has been accounted for both 
within the model and during observational processes, despite the fact that there are a number of 
other kinds of uncertainties that can be accounted for during fisheries management (Francis and 
Shotton 1997). Knowing the sources and amplitudes of uncertainty can be appreciably helpful to 
advise the fisheries managers how to pinpoint the possible risks and its consequences when 
implementing specific sets of harvest control rules. 
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POTENTIAL VIOLATIONS OF MODEL ASSUMPTIONS 
A number of assumptions are made when applying surplus production models for fish stock 
assessment, including the following: 

i) linear proportionality between the abundance index and the true abundance;  

ii) a symmetric relationship between relative biomass and production;  

iii) an instantaneous reaction of stock to exploitation;  

iv) the stock is self-sustained and recruitment is stable;  

v) no interspecific interactions;  

vi) the environment is steady; and  

vii) fishing catch is density-dependent.  

Despite the extensive use of surplus production models for fish stock assessment, there are 
many arguments to challenge the underlying assumptions of the model framework. Harley et al. 
(2001) suggested that the power coefficients between CPUE and the abundance of a 30% 
surveyed stock were >1, i.e. hyperdepletion, and the rest were <1, i.e. hyperstability. Hilborn 
and Walter (1992) pointed out that equilibrium fitting methods are biased and unreliable. Also, 
there were some concerns about the lack of environmental considerations in the model (Quinn 
and Deriso 1999). Prager (2002) suggested that the generalized surplus production model 
(GSPM) is sensitive to data outliers.  

In the Arctic Char population biomass models, we integrated winter AOI to extend the observed 
CPUE series, realizing that the population exhibited significant temporal variation with changing 
climatic scenarios (Zhu et al. 2014). When all interactions through meteorological, limnological, 
and biological processes are considered, changing climate conditions may impact Arctic Char 
population production, as was indicated by the time lag effect in this analysis. In fact, the 
fluctuations in the commercial fisheries can also demonstrate the existence of this interplay 
(Figure 3), combined with alterations in the targeting of stocks (Day and de March 2004). On the 
other hand, changes in fishing gear, either in the commercial harvest or during index sampling, 
were also responsible for biases in observation due to differences in catchability. ANOVA 
revealed that there were no significant differences from changes in sampling gears between 
gillnets and weirs (Zhu et al. 2014). With respect to those relevant assumptions, our model 
structure included a shape parameter to describe the symmetric and asymmetric relationship 
between relative biomass and production. It was assembled into the GSPM, indicating the 
applicability of asymmetric forms of biomass and production to Arctic Char populations.  

In terms of the model convergence by CODA, model goodness-of-fit based on DIC, , and MMI, 
the best model, given 93% DIC weight (Table 7), was selected as the combination of lognormal 
K and r with time-varying catchability (LNKRWQ). Despite diverse model structures and 
underlying assumptions for priors, there were some degrees of similarities in derived model 
parameters when using the same datasets, such as LNKR and HCLNKR models. Compared 
with the model outputs, we found that one of the assumptions, constant catchability coefficient 
q, was substantially violated before 1970 when the population biomass was at a critical lower 
level (Figure 6). As the population grew, the constant q can only be approximated after 1970. In 
addition to the time-invariant q, the assumption that a linear proportionality exists between 
biomass or abundance and density (CPUE), is questionable for Arctic Char which may be 
considered as metapopulations (Gyselman 1994, Kristofferson and Berkes 2005). Though quite 
high natal fidelity, the summer fished stock units, composed of metapopulations or mixed 
stocks, are a complicated mosaic of discrete stocks with uniform annual variation in population 
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parameters, as proposed by Day (2004). These stocks were believed mixed while overwintering 
and feeding over an extensive spatial scale. Current information collection for stock assessment 
is still insufficient to be able to distinguish stock-specific CPUE and harvest statistics. Instead, 
the discrete stock formulations will always be approximations irrespective of assumptions 
regarding density-dependence. 

APPLICATION OF THE METHOD TO FISHERIES MANAGEMENT 
The precautionary approach (PA) has been acknowledged as a central measure for managing 
fisheries and human participatory governance systems (DFO 2006, Punt 2006, Rice 2009). 
Implementation of the PA, integrated fisheries management plans (IFMP), and the ecosystem 
approach, such as ecosystem-based fisheries management (EBFM; Pikitch et al. 2004), 
requires a better understanding of the expected objectives for natural resources and indicator-
based frameworks. Normally, the objectives are defined based on quantitative stock 
assessments of monitored fish stocks through short-, medium-, and long-term observation 
programs. Many working models for stock assessments can, thus, be adopted on the basis of 
distinct objectives, the availability of information, and a well-developed risk-and-decision 
system. 

The analyses presented in this document provide evidence of the overall status of the Arctic 
Char populations in the Cambridge Bay area with respect to precautionary reference points. 
This information may be useful for managers tasked with setting quotas that are consistent with 
the PA. For fisheries that specifically target adults in particular rivers, attention should be given 
to interactions between the spawning stock and local environmental changes, as well as the 
spawner-recruitment relationship, because of reductions in fecundity and growth capacity of the 
exploited fish populations (Hilborn and Walters 1992). Preliminary reference points could be 
considered in concert with other indicators of population status, including abundance at 
recruitment, the sex ratio, fecundity, cohort strength, and feeding habits, among others. The 
development of decision control rules to guide fishing exploitation, which is an essential element 
in the application of the PA, depends on a sustainable balance between fishing capacity and 
resource availability. Socio-economic factors, such as the number of fishing licenses, the 
distribution of allocations among rivers, and local resource development, are also important 
considerations for exploitation decisions.  

When formulating precautionary reference points, there are a number of scientific issues with 
CPUE observations, records of fishing effort for commercial and subsistence fisheries, general 
fish biology, and logistics. For example, the char fisheries have been primarily concentrated in 
traditional locations that are close to Wellington Bay (Ekalluk, Paliryuak, and Halovik rivers) and 
Coronation Gulf (Lauchlan River), as well as north of Cambridge Bay (Jayco River); samples 
from the Ellice and Perry rivers, close to Queen Maud Gulf, have been discontinuous since 
2000. In the future, fisheries may occur in other locations.  

Most historical CPUE series were sampled in one location each year (except two locations were 
sampled in 1975, 1980, and 1981), principally in the Ekalluk and Jayco rivers. The underlying 
assumption, that the CPUE from a single river system is representative of the entire waterbody, 
is somewhat subjective as a result of limited abundance index time series. To detect spatial 
variation in CPUE index among individual river systems, firstly, we need to extend the 
monitoring of stock status into multiple fishing river systems in a single year. Secondly, with 
respect to the quantitative assessment of stock status, a consistent sampling protocol should be 
established and maintained for the annual collection of CPUE observations by gillnets and weirs 
in at least two of the above locations during August and September. This should be done in 
conjunction with the collection of other biological observations including age-growth, 
recruitment, feeding habits, and density-dependent or density-independent fishing mortality. 
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Thirdly, although the CPUE series can be estimated by a predictive function linked to a large-
scale climate covariant, wintertime AOI, future observations are needed for validation of the 
predictive model and timely adjustments. Fourthly, from a scientific perspective, we would also 
suggest a stock discrimination study to confirm the existence of one or multiple distinctly-
delineated stock unit within each river. 

Assessing fish stock dynamics and implementing harvest control rules within the framework of 
integrated fisheries management plans (IFMP) also depend on fishing effort information. For 
Arctic Char subsistence fisheries in the Canadian North these data are lacking. Despite the fact 
that minimum gear mesh size is fixed, it is still insufficient to get estimates of fishing mortality 
rate without fishing effort information, such as the number of nets used, the frequency at which 
the gear is checked, soaking time, and gear configuration. Additionally, no fishing effort 
information is available for local sport fisheries. A number of fishery-dependent data collection 
options could be initiated such as a pilot survey, a creel survey, interviews, and logbooks. It is 
not necessary to conduct these optional surveys every year, but it is valuable to measure the 
selectivity of particular fishing methods and estimate total fishing effort on the fish population 
dynamics. 

Because of limited data availability, the analysis in this report is primarily based on the 
relationship between the stock index and commercial fisheries harvest, and can be treated as a 
starting point for defining precautionary reference points and harvest control rules for managing 
Arctic Char fisheries. Our analysis is rather preliminary but the outcomes of the model are 
promising, at least for modulating several useful references on exploitation and management as 
a whole. One of the important outputs of the model is the description of the trajectory variation in 
population biomass throughout forty-nine years of exploitation. Although the model inputs only 
included the biomass index and harvest, irrespective of divisions by life stages, such as recruits, 
juveniles and spawners, or any age structure, the descriptors were manifestly referred to the 
entire population. Biological fisheries data showed that more than 50% of Arctic Char (64% of 
female and 70% of male char) constituted the commercial harvests before 1990, and recent 
maturity assessments in the Halovik and Jayco rivers indicated that all of the harvested char 
were mature (Day and Harris 2013). Finally, to improve the capacity and effectiveness of the 
candidate working model, it is hopeful that we will have well-defined sampling protocols and 
consistent monitoring plans in the future. Without sufficient data support and plausible expert 
knowledge, models are dangerous because the outputs can be misleading and, ultimately, 
could lead to the extirpation of the exploited population. 
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Kevin Hedges, Les Harris, Kathleen Martin and Holly Cleator for their editorial suggestions on 
the manuscript. 
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TABLES AND FIGURES 
Table 1. Commercial fisheries harvest (tonnes) of Arctic Char from estuaries of rivers around Cambridge 
Bay, Nunavut during 1960-2010. 

Year Lauchlan Halovik Paliryuak Ekalluk Jayco Ellice Perry Sum 
1960 0.00 0.00 0.00 15.88 0.00 0.00 0.00 15.88 
1961    10.82    10.82 
1962 0.00 0.00 0.00 5.77 0.00 0.00 0.00 5.77 
1963 2.27 0.00 0.00 13.88 0.00 0.00 0.00 16.15 
1964 0.00 0.00 0.00 15.50 0.00 0.00 0.00 15.50 
1965 0.00 0.00 0.00 20.87 0.00 0.00 0.00 20.87 
1966 0.00 0.00 0.00 16.78 0.00 0.00 0.00 16.78 
1967 0.00 0.00 0.00 27.70 0.00 0.00 0.00 27.70 
1968 0.00 2.61 6.47 34.30 0.00 0.00 0.00 43.38 
1969 0.00 25.86 0.00 22.70 0.00 0.00 0.00 48.56 
1970 2.42 26.20 5.88 0.00 0.00 0.00 0.00 34.50 
1971 19.05 10.43 0.00 0.00 0.00 12.82 0.00 42.30 
1972 20.99 6.48 0.00 0.00 0.00 12.52 0.00 40.00 
1973 9.66 1.92 0.00 9.63 0.00 7.24 0.00 28.44 
1974 8.13 0.00 0.00 12.54 0.00 6.96 0.00 27.62 
1975 0.00 0.00 0.00 12.26 8.23 10.36 0.00 30.85 
1976 0.00 2.78 0.00 13.63 9.44 12.68 0.00 38.52 
1977 1.52 4.62 3.26 15.90 7.56 20.80 13.65 67.31 
1978 8.54 5.73 8.42 14.59 13.41 9.12 8.14 67.94 
1979 10.85 7.32 11.82 15.81 12.24 7.18 1.74 66.93 
1980 9.15 7.48 7.50 10.52 14.47 6.63 3.38 59.13 
1981 8.72 7.01 8.64 14.28 13.32 5.74 2.84 60.55 
1982 8.92 6.85 9.05 14.23 5.71 8.86 0.00 53.62 
1983 9.11 6.83 8.83 14.84 12.97 9.05 0.00 61.61 
1984 9.88 7.31 8.81 14.50 13.52 8.95 0.00 62.96 
1985 9.06 6.45 9.29 14.52 11.58 5.60 0.00 56.50 
1986 8.24 6.83 9.12 14.35 12.08 4.18 0.00 54.80 
1987 9.55 6.88 8.67 14.66 13.69 4.53 0.00 57.97 
1988 9.43 6.81 8.57 14.83 11.82 6.54 0.00 58.00 
1989 9.18 6.86 9.18 13.57 10.29 5.97 0.00 55.05 
1990 8.94 6.97 9.32 15.29 12.87 6.37 0.00 59.76 
1991 8.81 6.35 8.95 0.00 2.23 7.97 0.60 34.91 
1992 9.32 6.87 8.88 0.00 0.00 0.00 0.00 25.08 
1993 9.31 5.94 6.58 1.48 15.41 8.02 0.00 46.73 
1994 0.00 3.86 0.00 1.64 16.29 7.18 0.00 28.96 
1995 1.44 4.27 0.00 4.67 12.56 7.54 0.00 30.47 
1996 2.35 4.91 0.00 10.21 16.91 4.50 0.00 38.89 
1997 0.90 5.00 0.00 14.33 10.59 0.00 0.00 30.81 
1998 1.43 5.14 0.00 19.83 17.07 0.00 0.00 43.47 
1999 2.74 5.12 5.68 14.58 17.09 4.50 0.00 49.71 
2000 0.00 5.21 5.81 16.93 17.31 0.00 0.00 45.26 
2001 0.44 5.43 5.77 16.55 16.37 0.00 0.00 44.55 
2002 0.00 4.77 7.62 16.23 16.71 0.00 0.00 45.32 
2003 1.52 5.48 0.00 15.84 17.17 0.00 0.00 40.01 
2004 3.27 6.91 9.01 14.70 7.57 0.00 0.00 41.45 
2005 2.91 6.62 8.83 13.72 2.61 0.00 0.00 34.69 
2006 8.81 7.60 7.48 14.27 12.78 0.00 0.00 50.94 
2007 8.68 6.80 8.75 10.61 8.65 0.00 0.00 43.50 
2008 8.80 7.59 7.46 14.50 13.60 0.00 0.00 51.94 
2009 0.00 5.22 8.66 12.67 6.51 0.00 0.00 33.06 
2010 2.53 3.32 9.07 20.43 0.00 0.00 0.00 35.36 
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Table 2. River-based quotas (tonnes) for Cambridge Bay Arctic Char commercial fisheries during 1960-
2010. 

Year Lauchlan Halovik Paliryuak Ekalluk Jayco Ellice Perry Sum 
1960         
1961         
1962    18.16    18.16 
1963    18.16    18.16 
1964    18.16    18.16 
1965    18.16    18.16 
1966    18.16    18.16 
1967         
1968         
1969         
1970         
1971      22.70  22.70 
1972 18.16 9.10    11.35  38.61 
1973 18.16 9.10  18.16  11.35  56.77 
1974 11.35   11.35  11.35  34.05 
1975    11.35 6.80 11.35  29.50 
1976  9.10  11.35 6.80 13.60  40.85 
1977 6.80 4.50 4.50 11.35 6.80 13.60 11.35 58.90 
1978 6.80 4.50 6.80 11.35 11.35 13.60 11.35 65.75 
1979 9.10 6.80 9.10 14.50 13.60 9.10 11.35 73.55 
1980 9.10 6.80 9.10 14.50 13.60 9.10 11.35 73.55 
1981 9.10 6.80 9.10 14.50 13.60 9.10 6.80 69.00 
1982 9.10 6.80 9.10 14.50 13.60 9.10 6.80 69.00 
1983 9.10 6.80 9.10 14.50 13.60 9.10 6.80 69.00 
1984 9.10 6.80 9.10 14.50 13.60 9.10 6.80 69.00 
1985 9.10 6.80 9.10 14.50 13.60 4.50 4.50 62.10 
1986 9.10 6.80 9.10 14.50 13.60 4.50 4.50 62.10 
1987 9.10 6.80 9.10 14.50 13.60 4.50 4.50 62.10 
1988 9.10 6.80 9.10 14.50 13.60 6.00 4.50 63.60 
1989 9.10 6.80 9.10 14.50 13.60 6.00 4.50 63.60 
1990 9.10 6.80 9.10 14.50 13.60 6.00 4.50 63.60 
1991 9.10 6.80 9.10 1.50 15.60 8.00 6.50 56.60 
1992 9.10 6.80 9.10 7.50 15.60 8.00 6.50 62.60 
1993 9.10 6.80 9.10 7.50 15.60 8.00 6.50 62.60 
1994 9.10 5.00 0.00 20.00 17.00 8.00 6.50 65.60 
1995 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
1996 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
1997 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
1998 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
1999 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
2000 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
2001 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
2002 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
2003 2.40 5.00 0.00 20.00 17.00 8.00 6.50 58.90 
2004 9.10 6.80 9.10 14.50 13.60 8.00 6.50 67.60 
2005 2.40 5.00 9.10 20.00 17.00 8.00 6.50 68.00 
2006 2.40 5.00 9.10 20.00 17.00 8.00 6.50 68.00 
2007 2.40 5.00 9.10 20.00 17.00 8.00 6.50 68.00 
2008 2.40 5.00 9.10 20.00 17.00 8.00 6.50 68.00 
2009 2.40 5.00 9.10 20.00 17.00 8.00 6.50 68.00 
2010 2.40 5.00 9.10 20.00 17.00 8.00 6.50 68.00 
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Table 3. Harvest statistics for subsistence use of Arctic Char by the Aboriginal residents of Cambridge Bay, Nunavut. Data is from a Nunavut 
wildlife harvest study conducted during 1996-2001 (Priest and Usher 2004), showing the numbers of char harvested and fishers for char by month 
and year. 

Year Number Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Total 

1996 Arctic Char 205 2,601 1,155 25 43 64 313     38 4,444 

1997 Arctic Char 194 668 328 110 35  22     80 1,437 

1998 Arctic Char 813 1,084 1,416 1,235 26 168    1  2 4,745 

1999 Arctic Char 977 4,087 3,063 965 129 21       9,242 

2000 Arctic Char 915 2,956 5,309 2,009 522 11 129    54 530 12,435 

 Mean 621 2,279 2,254 869 151 66 155   1 54 163 6,461 

1996 Hunter 6 14 9 1 2 1 1     3 23 

1997 Hunter 12 14 11 5 1  1     5 33 

1998 Hunter 27 14 14 14 3 4    1  2 40 

1999 Hunter 17 26 36 10 5 1       50 

2000 Hunter 22 29 37 20 10 1 2    2 8 55 

 Mean 17 19 21 10 4 2 1   1 2 5 40 
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Table 4. Notation for hierarchical Bayesian state-space statistics for a generalized surplus production 
model of Cambridge Bay Arctic Char. 

Symbol Description 

Indices and index ranges 

Y Final year of modeled time  
y Year, where 1≤y≤Y and y=1 corresponds to the first year 
N Number of non-missing observations for the index series 
i Index of non-missing biomass index observation i=1,…,n 

Data 

Cy Commercial harvest during year y 
Iy Survey relative biomass observation for year y 

Model parameters 

K Carrying capacity or virgin biomass 
r Intrinsic population growth rate 
q Catchability coefficient for relative biomass observations 
B0 Unfished or pre-exploitation population biomass 
z Shape parameter between relative biomass and harvest 

State variable 

By Biomass at the beginning of year y 

Derived management quantities of interests 

MSP Maximum surplus production 

FMSP Fishing mortality at MSP 

BMSP Biomass at MSP 

C* Quota based on optimal exploitation rate 

UMSP Optimal exploitation rate 

Statistical uncertainty (error) 

σ2 Process deviation squared coefficient of variation 
τ2 Observation deviation squared coefficient of variation 
µk Median for log-transformed K 
µr Median for log-transformed r 
τk Precision for prior K 
τr Precision for prior r 
τq Precision for prior q 
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Table 5. Generalized surplus production model used for management procedure simulation and stock 
assessment analyses. The table represents an error-in-variables formulation of the Pella-Tomlinson 
biomass dynamics stock assessment model for estimating biomass and management quantities each 
year. 

Model parameters 
 𝐶𝐶𝑡𝑡 = 𝑞𝑞𝐸𝐸𝑡𝑡𝐵𝐵𝑡𝑡 
 𝐼𝐼𝑡𝑡 = 𝑞𝑞 × 𝐵𝐵𝑡𝑡  
 𝑝𝑝𝐵𝐵

𝑝𝑝𝑑𝑑
= 𝑟𝑟𝐵𝐵 �1 −

𝐵𝐵
𝐾𝐾
� − 𝑞𝑞𝐸𝐸𝐵𝐵 

 𝑝𝑝𝐵𝐵
𝑝𝑝𝑑𝑑

=
𝑟𝑟
𝑧𝑧
𝐵𝐵(1 − (

𝐵𝐵
𝐾𝐾

)z) − 𝑞𝑞𝐸𝐸𝐵𝐵 

 𝑃𝑃𝑡𝑡+1 = 𝑃𝑃𝑡𝑡 + 𝑟𝑟𝑃𝑃𝑡𝑡(1 − 𝑃𝑃𝑡𝑡𝑧𝑧) −
𝐶𝐶𝑡𝑡
𝐾𝐾

 

Conditional  
 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑡𝑡 = log (𝑃𝑃�𝑡𝑡) + 𝜇𝜇𝑡𝑡 
 

𝐿𝐿𝑃𝑃𝑡𝑡 =
1

�2𝜋𝜋𝜋𝜋𝑃𝑃𝑡𝑡
exp (−

log(𝑃𝑃𝑡𝑡)− log (𝑃𝑃�𝑡𝑡))2

2𝜋𝜋2
 

 log (𝐼𝐼𝑡𝑡) = log (𝐼𝐼𝑡𝑡) + 𝑣𝑣𝑡𝑡 
 

𝐿𝐿𝐼𝐼𝑡𝑡 =
1

�2𝜋𝜋𝜏𝜏𝐼𝐼𝑡𝑡
exp (−

log(𝐼𝐼𝑡𝑡) − log (𝐼𝐼𝑡𝑡))2

2𝜏𝜏2
 

Prior specification 
 𝐾𝐾 ~ uniform(100,1500) or 𝐾𝐾 ~ log-normal(𝜇𝜇𝐾𝐾 , 𝜏𝜏𝐾𝐾)I(100,1500) 

𝑟𝑟 ~ uniform(0.01,1.05) or 𝑟𝑟 ~ log-normal(𝜇𝜇𝑟𝑟, 𝜏𝜏𝑟𝑟)I(0.01,1.05) 
𝑧𝑧 ~ normal(0.0,10-6)I(0.1,15) 
𝑞𝑞 ~ normal(0.0,10-6)I(10-6, 1) 

Random walk for catchability coefficient 
 

𝑞𝑞𝑡𝑡+1 = �
𝜏𝜏𝑞𝑞
2𝜋𝜋

 
1
𝑞𝑞

exp (−
𝜏𝜏𝑞𝑞
2

(𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞 − 𝑞𝑞𝑡𝑡 )2 ) 

Accounting for subsistence harvest portion 
 Total harvest=Commercial Χ (1+HRR)   
 HRR~normal(0.0,10-6)I(0.01,1.05) 
Management quantities of interests 
 𝐹𝐹𝑀𝑀𝑀𝑀𝑃𝑃 =

𝑟𝑟
(𝑧𝑧 + 1)(1/z) 

 
𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 =

𝐾𝐾
(𝑧𝑧 + 1)(1/z) 

 MSP=FMSP ×BMSP 
  

23 



 

Table 6. Convergence and stationarity tests by the R-based CODA package for each group of model scenarios: uniform priors for K and r (UKR), 
lognormal priors for K and r (LNKR), half-Cauchy priors for lognormal K and r (HCLNKR), lognormal priors for K and r with random walk q 
(LNKRWQ). The Geweke test |Z|>2 indicates non-convergence of the parameter. The Gelman-Rubin diagnostic test involves checking the 
convergence of the chain if the value is close to one. The Raftery-Lewis test is used to determine the appropriateness of the values of burn-in, 
thin, and total length of the sample. The Heidelberger-Welch diagnostic is used for the analysis of single chains by p-values. 

Test Summary 
UKR LNKR HCLNKR LNKRWQ 

Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2 

Geweke's Z-
score 

Min -1.7237 -2.9961 -1.3908 -2.3755 -3.6584 -2.4353 -2.3680 -1.8405 

Max 1.2174 2.3789 3.0995 1.1350 3.0050 2.8030 1.7740 2.1143 

Range 2.9411 5.3750 4.4903 3.5106 6.6633 5.2383 4.1420 3.9547 

Mean 0.0260 -1.1207 0.7627 -0.3832 0.5571 0.0365 -0.1587 0.2288 

s 0.5452 1.1049 0.7441 0.5747 0.9902 1.1363 1.2172 0.7398 

<-2 0 28 0 1 1 2 10 0 

>2 0 1 4 0 11 5 0 1 

% 0.00 26.85 3.70 0.93 10.53 6.14 6.37 0.64 

Gelman-Rubin 

Potential 
scale 

reduction 
factor (𝑅𝑅�) 

 

1 1 1 1 1 1 1 1 

Raftery-Lewis 
Average 

independence  
factor 

331 326 330 329 326 331 418 414 

Heidelberger-
Welch's p-value 

Min 0.0902 0.0550 0.0248 0.0026 0.0636 0.0600 0.0135 0.0551 

Max 0.9996 0.9965 0.9994 0.9949 0.9945 0.9968 0.9998 0.9974 

Mean 0.6845 0.4158 0.3604 0.6340 0.4524 0.6594 0.3907 0.5728 
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Table 7. Model selections using DIC values for kernel parameters of multiple model scenarios. Values of 𝐷𝐷, D and pD were posterior mean 
deviance, the deviance at the posterior mean, and a measure of model complexity. ∆i and wi were DIC difference and weight.  

Parameter 
Chain 1 Chain 2 Average    

D D pD DIC D D pD DIC 𝐷𝐷 D pD DIC ∆i 𝑒𝑒−
1
2∆ wi 

 Uniform priors for K and r (UKR)    
HRR 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667    
I -134.202 -133.919 -0.283 -134.485 -134.202 -133.915 -0.287 -134.489 -134.202 -133.917 -0.285 -134.487    
P 4.640 3.936 0.704 5.344 4.640 3.937 0.703 5.343 4.640 3.937 0.704 5.3435    
q 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746    
Z 4.185 4.185 0.000 4.185 4.185 4.180 0.000 4.185 4.185 4.185 0.000 4.185    
Total -107.964 -108.385 0.421 -107.543 -107.964 -108.380 0.416 -107.548 -107.964 -108.383 0.419 -107.546 5.180 0.075 0.070 

 Lognormal priors for K and r (LNKR)    
HRR 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667    
I -135.152 -133.452 -1.700 -136.852 -135.143 -133.444 -1.699 -136.843 -135.148 -133.448 -1.700 -136.847    
K 6.789 6.789 0.000 6.789 6.789 6.789 0.000 6.789 6.789 6.789 0.000 6.789    
P 4.675 3.592 1.083 5.759 4.676 3.595 1.081 5.757 4.676 3.594 1.082 5.7575    
q 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746    
r 5.677 5.677 0.000 5.677 5.677 5.677 0.000 5.677 5.677 5.677 0.000 5.677    
z 4.185 4.185 0.000 4.185 4.185 4.185 0.000 4.185 4.185 4.185 0.000 4.185    
Total -96.412 -95.795 -0.619 -97.029 -96.402 -95.784 -0.619 -97.021 -96.408 -95.791 -0.618 -97.026 15.700 0.000 0.000 

 Half-Cauchy priors for lognormal K and r (HCLNKR)    
HRR 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667    
I -135.159 -133.39 -1.769 -136.928 -135.158 -133.387 -1.771 -136.929 -135.159 -133.389 -1.770 -136.9285    
K 6.875 6.875 0.000 6.875 6.875 6.875 0.000 6.875 6.875 6.875 0.000 6.875    
P 4.68 3.607 1.073 5.753 4.68 3.607 1.073 5.753 4.680 3.607 1.073 5.753    
q 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746    
r 5.774 8.774 0.000 5.774 5.774 5.774 0.000 5.774 5.774 5.774 0.000 5.774    
z 4.185 4.185 0.000 4.185 4.185 4.185 0.000 4.185 4.185 4.185 0.000 4.185    
Total -96.232 -95.536 -0.696 -96.928 -96.231 -95.533 -0.698 -96.929 -96.232 -95.535 -0.697 -96.929 15.797 0.000 0.000 

 
Lognormal priors for K and r with random walk q (LNKRWQ)  

HRR 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667 8.667 8.667 0.000 8.667    
I -139.221 -129.346 -9.875 -149.095 -138.810 -123.475 -15.334 -154.144 -139.016 -126.411 -12.605 -151.620    
K 6.789 6.789 0.000 6.789 6.789 6.789 0.000 6.789 6.789 6.789 0.000 6.789    
P 3.762 2.658 1.104 4.866 3.707 2.619 1.088 4.794 3.735 2.639 1.096 4.831    
RWQ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000    
Qinit 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746 8.746 8.746 0.000 8.746    
r 5.677 5.677 0.000 5.677 5.677 5.677 0.000 5.677 5.677 5.677 0.000 5.677    
Shape 4.185 4.185 0.000 4.185 4.185 4.185 0.000 4.185 4.185 4.185 0.000 4.185    
Total -101.394 -92.623 -8.771 -110.165 -101.038 -86.791 -14.247 -115.285 -101.217 -89.708 -11.509 -112.725 0.000 1.000 0.930 
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Table 8. Summary of posterior means and percentiles for management parameters and model variables 
derived from four hierarchical Bayesian state-space scenarios for modeling Cambridge Bay Arctic Char. 

Parameter Mean S.D.  MC error Percentiles 
2.5% median 97.5% 

Uniform priors for K and r (UKR) 
K (tonnes) 904.50 323.70 2.5E+00 336.60 897.50 1466.00 
r  0.4977 0.2738 2.2E-03 0.0830 0.4659 1.0120 
q 3.0E-04 1.3E-04 1.0E-06 1.4E-04 2.6E-04 6.4E-04 
HRR 0.4614 0.2940 2.2E-03 0.0278 0.4304 1.0110 
Z 1.88 1.97 1.6E-02 0.23 1.13 8.10 
BMSP (tonnes) 479.90 191.10 1.5E+00 187.20 459.50 935.60 
FMSP 0.2483 0.1182 9.5E-04 0.0547 0.2390 0.4703 
σ2 0.1301 0.0385 3.0E-04 0.0674 0.1257 0.2166 
τ2 0.4442 0.0687 5.0E-04 0.3130 0.4419 0.5861 
Lognormal priors for K and r (LNKR) 
K (tonnes) 881.60 337.80 2.6E+00 308.10 870.10 1463.00 
r  0.3443 0.2536 2.1E-03 0.0253 0.2748 0.9562 
q 3.2E-04 1.5E-04 1.1E-06 1.5E-04 2.8E-04 6.9E-04 
HRR 0.4022 0.2882 2.3E-03 0.0225 0.3431 0.9936 
Z 2.99 2.47 1.9E-02 0.33 2.12 9.14 
BMSP (tonnes) 523.30 229.20 1.8E+00 177.40 492.70 1021.00 
FMSP 0.1871 0.1200 9.5E-04 0.0170 0.1624 0.4588 
σ2 0.1331 0.0390 3.1E-04 0.0706 0.1286 0.2218 
τ2 0.4401 0.0698 5.1E-04 0.3057 0.4388 0.5820 
Lognormal half-Cauchy priors for K and r (HCLNKRL) 
K (tonnes) 877.70 336.50 2.8E+00 310.00 863.00 1463.00 
r  0.3427 0.2525 2.1E-03 0.0254 0.2735 0.9583 
q 3.2E-04 1.5E-04 1.1E-06 1.5E-04 2.8E-04 7.0E-04 
HRR 0.4058 0.2873 2.5E-03 0.0223 0.3514 0.9973 
Shape (z) 3.04 2.50 2.1E-02 0.33 2.16 9.24 
BMSP (tonnes) 522.20 228.60 1.9E+00 180.00 490.30 1026.00 
FMSP 0.1868 0.1194 9.6E-04 0.0170 0.1619 0.4558 
σ2 0.1330 0.0387 3.0E-04 0.0695 0.1285 0.2199 
τ2 0.4411 0.0696 5.5E-04 0.3077 0.4389 0.5825 
μK 0.5996 9.5250 7.2E-02 -17.9100 0.5727 19.2800 
μr -0.1782 9.5410 7.2E-02 -19.1100 -0.2262 18.7800 
τK 0.4181 2.6260 2.1E-02 0.0000 0.0095 3.4760 
τr 0.3645 2.1990 1.6E-02 0.0000 0.0098 2.9970 
Lognormal priors for K and r with random walk q (LNKRWQ) 
K (tonnes) 898.30 332.10 4.4E+00 316.00 896.60 1464.00 
r  0.3473 0.2292 2.1E-03 0.0423 0.2880 0.9269 
HRR 0.4001 0.2871 2.3E-03 0.0231 0.3376 0.9949 
z 3.31 2.53 2.0E-02 0.37 2.53 9.25 
BMSP (tonnes) 544.50 224.80 2.8E+00 187.50 521.60 1023.00 
FMSP 0.1963 0.1098 1.1E-03 0.0286 0.1761 0.4497 
σ2 0.0999 0.0424 4.4E-04 0.0321 0.0952 0.1950 
τ2 0.4230 0.0719 5.3E-04 0.2838 0.4218 0.5696 
τq 0.1592 0.1104 1.1E-03 0.0152 0.1399 0.4235 
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Figure 1. Map of Cambridge Bay, Nunavut, Canada, showing commercial fishing locations for commercial 
and subsistence uses of Arctic Char (after Kristofferson and Berkes 2005).  
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Figure 2. Monthly averages for air temperature (oC), rain (mm), snow (cm), and total precipitation (mm) in 
Cambridge Bay, Nunavut, during 1950-2010. Data source: Climate ID: 2400600, WMO ID: 71925, TC ID: 
YCB.  

 
Figure 3. Changes in Arctic Char fisheries in Cambridge Bay during 1960-2010. Coloured bars indicate 
commercial fisheries in individual rivers and hatched bars show estimated subsistence fisheries. The 
brown line indicates the allowable quota. 
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Figure 4. The posterior predictive medians of CPUE (upper panel), harvest (middle panel) and biomass 
(lower panel) of Cambridge Bay Arctic Char during 1960-2008, compared with the observed CPUE (black 
solid circles) and harvest statistics (grey bars). The predictions were made from hierarchical Bayesian 
state-space modeling by uniform (UKR), time-varying lognormal (LNKRWQ) K and r and MMI-based 
estimated values. 
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Figure 5. Graphical summary of LNKRWQ fitting for the hierarchical Bayesian state-space model, 
showing posterior local likelihood density estimates of relative biomass (upper panel) and biomass (lower 
panel) by lognormal K and r, and random walk q model. 

1960

1978

2008

0
1

2
3

4

0 .5 1.25 .75 0 .5 1.25 .75

Chain 1 Chain 2

D
en

si
ty

P = biomass / K

1960

1978

2008

0
.0

02
.0

04
.0

06

0 500 1000 1500 0 500 1000 1500

Chain 1 Chain 2

D
en

si
ty

Biomass (tonnes)

30 



 

 

Figure 6. Posterior predictive medians of catchability (q) incorporated with UKR, LNKRWQ, and MMI 
estimates from hierarchical Bayesian state-space models of Cambridge Bay Arctic Char. 
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Figure 7. Graphical summary of posterior median time-trajectories for (a) biomass status (B/BMSP) and (b) 
fishing mortality status (F/FMSP) derived from UKR, LNKRWQ, and MMI estimates for Cambridge Bay 
Arctic Char during 1960-2008. The exploitation benchmarks were biomass status <1 and fishing mortality 
status >1, indicating a history of over-exploitation. 
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Figure 8. Uncertainties of model process (sigma2), observation (tau2), and time-varying catchability (tauq) 
in the LNKRWQ hierarchical Bayesian state-space model of Cambridge Bay Arctic Char. 
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Figure 9. Precautionary approach models for managing Cambridge Bay Arctic Char fisheries based on 
the outcomes of uniform K and r priors (UKR) (upper panel) and lognormal K and r priors combined with 
random walk q (LNKRWQ) (lower panel). Reference zones are shown in green, indicating different 
harvest strategies depending on actual status of the stock. 
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Figure 10. Precautionary approach models for managing Cambridge Bay Arctic Char fisheries based on 
the outcomes of MMI. Reference zones are shown in green, indicating different harvest strategies 
depending on actual status of the stock. 
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