Scientific Excellence • Resource Protection \& Conservation • Benefits for Canadians Excellence scientifique - Protection et conservation des ressources • Bénéfices aux Canadiens

23607

Strait of Georgia Sport Fishery Creel Survey Statistics for Salmon and Groundfish, 1984

T.F. Shardlow and L.D. Collicutt

Department of Fisheries and Oceans 3225 Stephenson Point Road Nanaimo, British Columbia V9T 1K3

December 1989

Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2032

Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distributuon is restricted to institutions or individuak located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely. Fisheries and aquatic sciences.

Manuscript reporis may becticd as fut pubtications Thecorrect citaitionappears above the abstract of each report. Each report is abstracted in Aquatie Sikeness and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers I 900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 901 - 1425 were issued as Manuscript Reports of the Fisheries Research Board of Canada. Numbers 14261550 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuserits contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais quitraitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particutlères đu Canada. in n? aucune restriction quatr ant sujet; de fait, la série reflète la vaste gamme des intérèts et des politiques du ministerre des Pêches et des Oceans, cest-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent étre cités comme des publications complètes Lec titre exact parait au-dessüs du résume de chaque rapport. Ie rapports manuscrits sont résumés dans la revue Résumés des sciences aquatiques et halieuriques. et its sont classés dans l'index annuel des publications scientifiques et techniques du Ministerre.

Les numéros 1 à 900 de cette série ont été publiés à titre de manuscrits (série biologique) de l'OTlice de biologic du Canada, et apres le changement de la devignation de cet organisme par décret du Parlement. en 1937. ont été classés comme manuscrits (série biologique) de l’Office des recherches sur les pécheries du Canada. Les numeros 901 à 1425 ont été publiés à titre de rapports manuscrits de l'Office des recherches sur les pécheries du Canada. Les numéros 1426 à 1550 sont parus à titre de rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Les rapports manuscrits sont produits à leechelon régional. mais numérotes à l'échelon mational. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Manuscript Report of Fisheries and Aquatic Sciences 2032

December 1989

STRAIT OF GEORGIA SPORT FISHERY CREEL SURVEY STATISTICS FOR SALMON AND GROUNDFISH, 1984

by
T. F. Shardlow and L. D. Collicutt

Department of Fisheries and Oceans
3225 Stephenson Point Road
Nanaimo, British Columbia
V9T 1K3 creel survey statistics for salmon and groundfish, 1984. Can. MS Rep. Fish. Aquat. Sci. 2032 : 61 p.

TABLE OF CONTENTS

Page
LIST OF FIGURES iv
LIST OF TABLES v
LIST OF APPENDICES vi
ABSTRACT/RÉSUMÉ vii
1.0 INTRODUCTION 1
2.0 METHODS 1
2.1 FIELD SURVEYS 2
2.11 Angler Interviews 2
2.12 Aerial Overflights 2
2.2 DATA ANALYSIS 3
3.0 RESULTS 3
3.1 DISTRIBUTION OF SAMPLING EFFORT 3
3.2 SPORT FISHING EFFORT AND CATCH 3
3.21 Salmon 4
3.22 Groundfish 5
3.3 BIOLOGICAL DATA 6
3.31 Proportion and Catch of Marked Chinook and Coho 6
3.32 Catch-At-Age for Chinook. 7
3.33 Mean Length-At-Age for Chinook 7
4.0 SUMMARY 8
5.0 ACKNOWLEDGEMENTS 9
6.0 LITERATURE CITED 9
FIGURES 10
TABLES 22
APPENDICES 37

LIST OF FIGURES

Figure Page

1. Tidal effort statistics and sport catches of coho and chinook salmon for the Strait of Georgia, 1960-1984 11
2. Interview site locations, and summer and winter overflight routes, Strait of Georgia, 1984 12
3. Sample of 1984 interview form 13
4. Comparison of monthly total fishing effort and monthly total interviews, Strait of Georgia, 1984 14
5. Monthly fishing effort estimates for the Strait of Georgia sport fishery, 1981-1984 15
6. Monthly chinook catch for the Strait of Georgia sport fishery, 1981-1984 16
7. Monthly chinook catch per boat trip for the Strait of Georgia sport fishery, 1981 -1984 16
8. Annual sport catches of chinook and coho salmon by Statistical Area in the Strait of Georgia, 1983-1984 17
9. Monthly coho catch for the Strait of Georgia sport fishery, 1981-1984 18
10. Monthly coho catch per boat trip for the Strait of Georgia sport fishery, 1981-1984 18
11. Total salmon landed and total fishing effort expended by Statistical Area in the Strait of Georgia sport fishery, 1983 and 1984 19
12. Monthly percent age composition of chinook salmon sampled in the Strait of Georgia Creel Survey, 1984 20
13. Length frequency distribution of chinook salmon sampled in the Strait of Georgia Creel Survey, 1984 21

LIST OF TABLES

Table Page

1. Tidal effort statistics and sport catches of coho and chinook salmon for the Strait of Georgia, 1960-1984 23
2. Number of interviews by month and Statistical Area, Strait of Georgia, 1984 24
3. Fishing effort and catch by species and month, Strait of Georgia, 1984 25
4. Fishing effort and catch by species and Statistical Area, Strai of Georgia, 1984 26
5. Monthly catch success by species, Strait of Georgia, 1984 27
6. Identification of rockfish by species in each Statistical Area, Strait of Georgia, 1984 28
7. Estimated catch of rockfish by species and Statistical Area, Strait of Georgia, 1984 29
8. Monthly number of marked chinook observed by region, Strait of Georgia, 1984 30
9. Monthly number of marked coho observed by region, Strait of Georgia, 1984 31
10. Monthly estimated catch of marked chinook by region, Strait of Georgia, 1984 32
11. Monthly estimated catch of marked coho by region, Strait of Georgia, 1984 33
12. Monthly number and percent age composition of chinook sampled for age in the Strait of Georgia Creel Survey, 1984 34
13. Monthly estimated catch at age of chinook in the Strait of Georgia, 1984 35
14. Monthly mean nose-fork length at age of chinook sampled in the Strait of Georgia Creel Survey, 1984 36.

LIST OF APPENDICES

Appendix Eage
A. Methods and equations used in analysis of catch and effort statistics for the Strait of Georgia sport fishery creel surveys, 1983-1984 38
B. Catch and effort statistics by month and Statistical Area for Strait of Georgia, 1984 47
B-1. Fishing effort 48
B-2. Coho catch summary 49
B-3. Chinook catch summary 50
B-4. Pink catch summary 51
B-5. Catch summary for other salmon 52
B-6. Catch summary for total salmonids 53
B-7. Catch summary for released salmon 54
B-8. Rockfish catch summary 55
B-9. Lingcod catch summary 56
B-10. Dogfish catch summary 57
B-11. Catch summary for other finfish 58
C. Annual proportion of chinook catch at age by period, 1983 to 1988 59
D. Strait of Georgia Creel Survey study area 60
E. Species commonly included with other finfish 61

ABSTRACT

Shardlow, T. F. and L. D. Collicutt. 1989. Strait of Georgia sport fishery creel survey statistics for salmon and groundiish, 1984. Can. MS Rep. Fish. Aquat. Sci. 2032 : 61 p.

Catch and effort statistics for the Strait of Georgia tidal sport fishery are presented for each month in 1984. The statistics were derived by combining the data from over 30,000 interviews and 55 aerial surveys. Estimates were provided for the number of sport fishing boat trips and the catches of chinook, coho, and pink salmon along with rockfish, lingcod, dogfish and other finfish. Also given are numbers of marked (adipose fin-clipped) and unmarked chinook and coho expmined during the creel survey, and the age composition and length distribu,ion of chinook catches. The appendix includes all catch and effort statistics for each combination of month and Statistical Area.

Keywords: salmon, groundfish, creel survey, sport fishing, catch, effort, age composition, length distribution.

RÉSUMÉ
Shardlow, T. F. and L. D. Collicutt. 1989. Strait of Georgia sport fishery creel survey statistics for salmon and groundfish, 1984. Can. MS Rep. Fish. Aquat. Sci. 2032 : 61 p.

Les statistiques relatives aux prises et a l'effort de pêche de la pêche sportive de la zone tidale du détroit de Géorgie sont présentées pour chaque mois de 1984. Ces valeurs ont été obtenues en réunissant les données de plus de 30,000 entrevues et 55 relevés aériens. On y trouve les estimations du nombre de sorties des bateaux de pêche sportive et des prises de saumons quinnat, coho et rose en plus de celles de scorpènes, d'ophiodon, d'aiguillat et d'autres poissons. Le nombre de saumons quinnat et coho marqués (coupe de la nageoire adipeuse) et non marqués examinés au cours des relevés des prises et la composition par âges et la distribution par longueur des prises de saumon quinnat sont aussi présentés. On trouve aussi en appendice toutes les statistiques relatives aux prises et à l'effort de pêche pour chaque mois et combination de zones statistiques.

Mots clés: saumon, poisson de fond, releve des prises, pêche sportive, prises, effort de pêche, composition par âges, distribution par longueur.

1.0 INTRODUCTION

This report documents the 1984 catch and effort statistics for the Strait of Georgia sport fishery and discusses methodology for collecting these data. During the 1970s, the sport fishery grew to be the largest harvester of chinook and coho salmon in the Strait of Georgia. Figure 1 and Table 1 show historical catch statistics for the Strait of Georgia sport fishery for the period 1960-1984. Prior to 1980, fisheries managers recognized the need for accurate catch statistics. In 1980, the Strait of Georgia Creel Survey Program was initiated to meet the need for accurate and timely sport catch statistics primarily for chinook and coho. Since then, the objectives of the Creel Survey Program have been expanded to provide accurate estimates of all major sport-caught finfish, and age and length composition of chinook catches. This report is one of a series of Strait of Georgia Creel Survey Reports which document annual creel survey activities and estimation procedures, and provide official published Strait of Georgia tidal sport fishery catch statistics.

In 1984 the creel survey gathered a comprehensive set of annual sport fishing data for Strait of Georgia. The only project interruption occurred during April when no interview or overflight data were collected due to fiscal constraints.

In this report, all figures, tables and appendices are located at the end of text.

2.0 METHODS

The Strait of Georgia Creel Survey is comprised of two independent surveys: angler interviews and aerial overflights. Angler interviews provide data on sport fishing catch per unit effort (CPE) and daily activity patterns. Aerial overflights provide estimates of the total sport fishing effort in the study area at the time of the aerial survey. These data are combined to provide monthly estimates of total sport fishing effort and total catch of salmon and groundfish in the sport fishery. In its simplest form, the estimated total catch is calculated by multiplying estimated total effort by catch per unit effort.

The design of the Strait of Georgia Creel Survey conducted in 1984 was similar to the 1983 survey and similar to that used by DPA Consulting Ltd. (1982) with some modifications to the data analyzed, sampling intensity, flight routes and data processing. Sampling was conducted during each month of the year (except April) and estimates were produced for 10 time periods. January and February data were grouped together, as were November and December data because of reduced fishing activity and sampling in these winter months. Mid-week days and weekend days were considered independently because sport fishing activity is known to be quite different between the two types of days. The Strait of Georgia study area was also stratified by geographic region. Catch and effort statistics were produced for each of the 10

Statistical Areas within the Strait of Georgia (Areas 13 - 19A, $19 \mathrm{~B}+, 28$ and 29, Fig. 2); Statistical Area $19 \mathrm{~B}+$ includes the portion of Area 20 east of Sheringham Point (see Appendix D for a complete description of the study area). Data collection, entry and preliminary processing were conducted for most of the year by DPA Consulting Ltd., and are reported in their 1985 document. Estimation of catch and effort statistics was conducted by the Department of Fisheries and Oceans.

2.1 FIELD SURVEYS

2.11 Angler Interviews

Sport fishermen were interviewed at the end of their fishing trip to determine time spent fishing, locations fished and catch of each species on the trip. Demographic information was also collected during each interview. Figure 3 shows the interview form used in 1984.

Interviewers trained in fish identification inspected each boating party's catch. Unlike other methods of collecting sport fishery information, such as mail-in or telephone surveys, there was little memory-related recall bias, non-response bias, and fish identification concern with this approach to determining sport fishery catch. Landed chinook and coho were checked for a missing adipose fin which indicates the presence of a coded wire tag embedded in the fish nose cartilage. In addition, scale samples for age determination and measurements for nose-fork length were taken during every sampling shift in the winter and every other shift in the summer. Five scales were removed from the INPFC (International North Pacific Fisheries Commission) preferred area of each biosampled chinook (Mosher 1968).

The interviews were conducted at 31 landing sites (boat ramps, marinas, or resorts, Fig. 2) representative of sport fishing activity in each Statistical Area. The number of sites selected in each area was dictated by targets of desired precision and number of surveyors available。 For each area - day type - work block stratum, sampling shifts at a site were chosen on a near random basis from the total number of shifts available. For definition of the above terms (day type, work block, shift) see Appendix A.

2.12 Aerial Overflights

Aerial surveys, conducted from float planes travelling along pre-defined routes, allowed observers to count vessels actively sport fishing throughout the Strait of Georgia. Planes flew at an altitude of 500-700 feet to facilitate a broad range of vision and still allow easy identification of vessel characteristics. Each plane carried three observers, two on the right side and one on the left, and each observer counted sport fishing boats to his/her side of the flight path. Figure 2 shows the flight paths used in 1984. The winter (October - April) flight path was slightly reduced to correspond with lower winter effort.

The flight path and time of departure were designed to cover major concentrations of sport fishing activity at peak periods. Whenever possible, the route was flown to keep most of the sport fishing boats to the right side to allow averaging of the two right side counts. To maximize precision, flying times during which fishing effort was rapidly changing were avoided. The number of overflights each month was governed by targets of desired precision and the expected number of interviews from the given number of sampling shifts (English et al. 1986). The days for overfights during a month were randomly selected for each day type.

2.2 DATA ANALYSIS

Data analysis included calculation of catch and effort statistics, calculation of variance of total fishing effort and total catch, estimation of marked chinook and coho salmon, and estimation of age composition of chinook catch. Appendix A details the methods and equations used in the above data analysis.

3.0 RESULTS

3.1 DISTRIBUTION OF SAMPLING EFFORT

Table 2 shows the number of creel survey fishing interviews conducted by month and Statistical Area in 1984, and the number of monthly overflights. A total of 32,454 interviews (27,225 fishing interviews) and 55 overflights were conducted in 1984. The monthly distribution of interviews reflected the monthly distribution of fishing effort (number of boat trips, Table 3), except in April when no interviews were conducted (Fig. 4). Interview effort was reduced during winter months, especially for Statistical Areas 13,14 and 15 in the northern portion of Strait of Georgia (Table 2). The total fishing interviews represented 4.2% of the estimated total fishing effort for the entire study area (651,090 boat trips, Table 3) and ranged in each Statistical Area from a low of 1.9% of the estimated fishing effort in Area 18 to a high of 7.6% in Area 19B+ (Tables 2 and 4).

3.2 SPORT FISHING EFFORT AND CATCH

The 1984 Strait of Georgia sport fishing effort and catch statistics are summarized for each species by month in Table 3 and by Statistical Area in Table 4. Appendix B shows the fishing effort and catch statistics for each combination of month and Statistical Area.

Sport fishermen made 651,090 boat trips during 1984, which represents the highest level of effort recorded for this fishery to date except for 1980 (Table 1). The fishing effort followed the same general seasonal pattern as seen in previous years (Fig. 5). Effort levels climbed steadily from April, peaked in July and August, and declined rapidly in September and October. However, compared to previous years, the distribution of fishing effort in 1984 was shifted slightly toward the earlier months (Fig. 5) 。

The total finfish sport catch in the Strait of Georgia in 1984 was estimated at $1,213,460$ pieces (including steelhead and cutthroat trout, Table 3) and consisted of 68% salmon and 32% groundfish. An additional 639,676 salmon of mixed species were released by anglers (Appendix $B=7$). The two main catch groups are discussed below.

3.21 Salmon

Salmon sport catches in the Strait of Georgia in 1984 totalled 828,092 pieces (Tables 3 and 4) and consisted of 54% coho, 45% chinook, 1% pink salmon and 0.6% other salmon.

Chinook sport catches showed a substantial increase in 1984, with anglers taking 369,445 fish (Tables 3 and 4) compared to 198,433 in 1983 and 163,793 in 1982 (Fig. 1, Table 1). The majority of the increased catch was taken during the months of June, July and August when catches more than doubled the revious years' average for those months (Fig. 6). The annual distribution of catch was shifted slightly earlier in the season than in previous years which corresponds to the slightly earlier timing in the effort.

Seasonal catch efficiency for chinook showed an unusual pattern in 1984. Catch per boat trip was highest in June (0.9 fish) rather than during the winter months which typically have higher catch success compared to the summer months (Fig. 7, Table 5). The earlier timing of the chinook catch and effort and the unusually high catch efficiency seen in the summer months were probably a result of greater than normal abundance of this species during the spring and summer of 1984 . The greater abundance most likely resulted from a combination of a strong brood return and a shortened commercial troll season. A strong brood return was expected in 1984, based on the large catch component of age 2 chinook the previous year (57% of the 1983 chinook catch consisted of age 2 fish, Shardlow et al. 1989). In addition, the commercial troll fishery, which takes the majority of its chinook catch in the spring months (Argue et al. 1987), was delayed in 1984 from April to July.

The highest annual chinook catches in 1984 were taken in Area 13 (25\% of total) and Area 14 (15%), which was similar to the 1983 catch pattern (Table 4, Fig. 8). In some months, other Statistical Areas dominated the catch (Appendix B-3). During the summer months (May - September) in 1984, 76% of the landed chinook were taken in the northern region of Strait of Georgia Statistical Areas 13 to 17. In the winter months (January - April, October December), 66% of the chinook catch came from the southern region - Statistical Areas 18, 19, 28 and 29. During November and December, many of the chinook came from Victoria/Sooke waters in Statistical Area 19B+.

The 1984 coho catch of 443,590 pieces (Tables 3 and 4) represents a slight increase from the 1981 to 1983 levels (Fig. 1, Table 1). This higher catch parallels the increased fishing effort observed in 1984 (Fig. 5). Coho catches in 1984 showed an average seasonal timing with the catch peaking in July; in comparison, coho catch peaked earlier than usual in 1983 (Fig. 9). Coho catch success in 1984 reached a high of 0.95 fish per boat trip in May, then declined through August (Fig. 10, Table 5). As in previous years, the highest coho catches were taken in Area 13 (34% of total) and Area 14 (24%) (Table 4, Fig. 8).

In 1984, Strait of Georgia anglers caught approximately 10,000 pink salmon (Table 3). Significant pink catches were not expected in 1984 because pink salmon returns to Strait of Georgia rivers (primarily the Fraser River) are much lower in even numbered compared to odd numbered years. Areas 13 and 14 were responsible for 94% of the pink catch (Table 4).

The landings of other salmon consisted of chum and sockeye, and were estimated at about 5,000 pieces (Table 3). The majority of this catch was taken in November and December (53% of total, Table 3). Statistical Areas 17 and 18 showed the highest catch contribution (45% of total, Table 4), much of it attributed to chum runs returning to local rivers.

In addition to the above salmon species, small numbers (<200) of steelhead, cutthroat trout and unidentified salmon were caught in the Strait of Georgia in 1984, bringing the total salmonid catch to 828,290 pieces (Appendix B-6).

The average number of total salmon caught during each boat trip in 1984 was 1.3 (Table 5). This represents a better catch success for salmon than during the 1981 to 1983 period when between 1.0 and 1.2 salmon per boat trip were reported (Shardlow et al. 1989).

In 1984, as in previous years, more salmon were landed and more effort was expended in Area 13 than in any other Statistical Area (Table 4, Fig. 11). Boaters fishing in Area 13 had an average catch of 1.8 salmon per trip. Area 14, as in 1983, recorded the greatest number of salmon hooked and released (169,492), with Area 13 next at 137,660 pieces (Appendix B-7). These two areas have major coho fisheries characterized by the release of many sub-legal coho.

3.22 Groundfish

While salmon accounted for the majority of the total finfish sport catch in the Strait of Georgia in 1984, the groundfish catch of 385,170 pieces made up 32% of the overall catch (Tables 3 and 4). The species composition of the groundfish catch, based on the Table 4 data, was as follows:

Groundfish species	Catch	\% Of total groundfish catch	Major catch Area
Rockfish (Sebastes spp.)	158,676	41\%	17, 13, 19B+
Lingcod (Ophiodon elongatus)	137,492	36\%	13, 16
Dogfish (Squalus acanthias)	4,649	1\%	18
Other finfish (Appendix E)	84,353	22\%	16
Total	385,170	100\%	

The majority of the groundfish catch was taken in the summer months, reflecting the seasonal change in fishing effort (Table 3, Fig. 4). Catch by Statistical

Area for rockfish was highest in Area 17 (22% of total), followed by Areas 13 and $19 \mathrm{~B}+$ each contributing approximately 14% to the total (Table 4). Lingcod were caught mainly in Area 13 (29% of total) and Area 16 (21%), while the largest dogfish catch came from Area 18 (32% of total, Table 4). Area 16 produced the largest catch of other finfish (34\% of total).

Rockfish species were identified for the entire suryey area for the first time in 1984 (Table 6). Applying the identification results to the 1984 rockfish catch estimates (Table 7) showed the following species dominance:

Rockfish	Catch	\% Of total rockfish catch	Major catch
species	56,794	36%	13
Quillback	31,606	20%	17,18
Copper	15,298	10%	16
Yelloweye	6,439	4%	19
Black	48,539	30%	17
Other	158,676	100%	
Total			

The above "other" rockfish category consisted of tiger, yellowtail, china, canary and unidentified species.

The catch success (CPE) for both the rockfish and lingcod species was relatively constant throughout the year, each averaging 0.2 fish per boat trip (Table 5). The catch success for all non-salmon species averaged 0.6 fish per boat trip and was also relatively constant throughout the year. Catch success for total finfish during 1984 was 1.9 fish per boat trip (Table 5).

3.3 BIOLOGICAL DATA

3.31 Proportion and Catch of Marked Chinook and Coho

In 1984, 16,457 chinook and 19,443 coho were examined for adipose fin clip marks. Tables 8 and 9 show the observed numbers of marked chinook and coho respectively, by month and region. Data were presented by region since some Statistical Areas had insufficient numbers of fish examined for marks in some months, and those data were included with other Areas. Three regions were defined: the North Gulf represented by Areas 13-16; the South Gulf represented by Areas $17,18,28,29$ and the Sanich Inlet portion of Area 19 (Area 19A); and Victoria region represented by the remainder of Area 19 (Area 19B+) (Fig. 2).

Among chinook examined for marks, 2.0% had adipose fin clips. The largest observed proportion of chinook marks was in the North Gulf catch (0.023) and the lowest proportion in the Victoria catch (0.015, Table 8). Among coho examined for marks, 3.5% had adipose fin clips. The largest observed proportion of coho marks was in the South Gulf catch (0.050), and the lowest proportion in the Victoria catch (0.015 , Table 9). Monthly catch estimates of marked chinook
and coho are shown by region in Tables 10 and 11 respectively. The seasonal recovery pattern of marked chinook and coho salmon was generally similar to that observed in 1983 (Shardlow et al. 1989).

3.32 Catch-At-Age for Chinook

During 1984, 1,936 chinook biosamples were collected for age and length analysis. Table 12 shows the monthly number and percent age composition of chinook sampled for age. These data are sumarized graphically in figure 12. The monthly age proportions were applied to the estimated monthly chinook catches to provide breakdown by age group (Table 13). In 1984, the majority of chinook sport catch in the Strait of Georgia consisted of age 3 fish (67.3%), followed by age 2 (21.6\%), age $4(9.4 \%$) and age 5 or older (1.7%). This catch breakdown by age group contrasts with the 1983 catch data where the majority (57. 1%) of chinook caught were age 2 and only 25.5% were age 3 (Shardlow et al. 1989). As mentioned in section 3.2 , the increase in age 3 catch component in 1984 was likely the result of a strong brood return combined with a delayed opening of the troll fishery.

Figure 12 and Table 12 show a shift in the age composition of sampled chinook and hence of chinook catch, between the first six months and the remainder of the year. From January to June, the catch was dominated by age 3 fish. In July, the age 2 group strengthened, and together the age 2 and 3 classes became the dominant age groups for the remainder of the year. The high proportion of age 2 chinook in July to December catches was the result of age 2 recruitment to the sport fishery. Age 2 chinook generally reach the minimum legal size limit of 45 cm in July (Argue et al. 1983).

3.33 Mean Length-At-Age for Chinook

Table 14 shows the monthly mean nose-fork length at age for the 1,932 chinook for which both length and age data were available. Figure 13 shows the length frequency distribution for all the measured chinook (2,123 aged and unaged fish). The largest portion of measured chinook (717 fish or 34% of the total sample) was in the $60-69 \mathrm{~cm}$ length category. This is consistent with the large catch proportion of age 3 fish (Table 13) which were found to have an annual mean length of 63.6 cm (Table 14). Of the total chinook measured in 1984, 4% were sub-legal in size (less than 45 cm) and these were landed mostly in June and July. Age 2 chinook showed a consistent growth trend from May through December when the mean length increased from 40.0 cm to 52.3 cm (Table 14). The largest chinook sampled (98 cm) was landed at Cowichan Bay in Area 18 on August 20, 1984, and was 5 years old.

4.0 SUMMARY

A sport fishery creel survey was conducted in the Strait of Georgia in 1984 in order to estimate the catches of all the important recreational finfish species and the total sport fishing boat trips. The numbers of chinook and coho salmon with adipose fin clips were also estimated. These data are presented by month and Statistical Area. Monthly age and length compositions of chinook catch are also shown.

In 1984, a total of 32,454 boating parties were interviewed at 31 landing locations in the Strait of Georgia creel survey area. The 27,225 fishing interviews conducted represents approximately 4% of the total number of boat trips conducted by sport fishermen in the Strait of Georgia in 1984. A total of 55 overflights were also conducted to take "snapshot" counts of fishing effort.

In 1984, sport fishermen made an estimated 651,090 boat trips in the Strait of Georgia and landed an estimated total finfish eatch of 1,213,000 pieces of which 68% were salmon and 32% were groundfish. The 828,000 landed salmon consisted of 444,000 coho, 369,000 chinook, 10,000 pink salmon and 5,000 combined chum and sockeye. An additional 640,000 salmon of mixed species were released by anglers.

The 385,000 landed groundfish consisted of 159,000 rockfish, 137,000 lingcod, 5,000 dogfish and 84,000 other finfish. Rockfish catches were identified as quillback (36% of rockfish catch), copper (20%), yelloweye (10%), and black (4%); the remaining 30% of the rockfish catch consisted of tiger, yellowtail, china, canary and unidentified species.

Catch success per boat trip averaged 1.3 salmon (all species) and 0.6 groundfish.

Among salmon examined for marks, 2.0% of chinook and 3.5% of coho had adipose fin clips. The majority of chinook sport catch in 1984 consisted of age 3 fish (67.3%), followed by age 2 (21.6%), age 4 (9.4%) and age 5 or older (1.7%). Of the total chinook measured in 1984 , 4% were sub-legal in size (less than 45 cm).

5.0 ACKNOWLEDGMENTS

The authors wish to thank Tom Hoyt for his valuable contribution to creel survey operations. We acknowledge the substantial contribution of Gordon Gislason, Geoffrey Zeiss and Susan Hamilton of D.P.A. Consulting Limited who collected and assembled the data from May to the end of the year. Our appreciation is extended to private marina and boat ramp owners for their valuable assistance and cooperation. We are grateful to the many thousands of anglers who participated in the interviews and creel checks. We also thank Carmen McConnell for assistance in preparation of tables and figures, Alice Fedorenko for editing the report and preparing it for publication, and Peggy Sutherland for typing the drafts.

6.0 LITERATURE CITED

Argue, A. W., R. Hilborn, R. M. Peterinan, M. J. Staley, C. J. Walters and R. Yorgue. 1983. The Strait of Georgia chinook and coho fishery. Bull. Can. J. Fish. Aquat. Sci. 211: 91 p.

Argue, A. W., M. P. Shepard, T. F. Shardlow and A. D. Anderson. 1987. Review of salmon troll fisheries in southern British Columbia. Can. Tech. Rep. Fish. Aquat. Sci. 1502 : 150 p.

DPA Consulting Ltd. 1982. Georgia Strait sport fishing creel survey 1980-81. Final Report, prepared for Department of Fisheries and Oceans, Pacific Region by DPA Consulting Limited, Vancouver B.C.78p.

DPA Consulting Ltd. 1985. The $1984 / 85$ Georgia Strait sport fishing creel survey. Prepared for Department of Fisheries and Oceans, Pacific Region by DPA Consulting Limited, Vancouver, B.C. 115 p .

English, K. K., T. F. Shardlow and T. M. Webb. 1986. Assessment of Strait of Georgia sport fishing statistics, sport fishing regulations and trends in chinook catch using creel survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1375 : 54 p.

Gilbert, C. H. and W. H. Rich. 1927. Investigations concerning the red-salmon runs to the Karluk River, Alaska. U.S. Bur. Fish. Bull. 43(2): 1-69.

Mosher, K. H. 1968. Photographic atlas of sockeye salmon scales. U.S. Fish and Wild1. Sci. Fish. Bull. 67(2): 243-280.

Shardlow, T. F., K. K. English and L. D. Collicutt. MS 1989. Strait of Georgia Creel Survey Sport Fishery Statistics, 1980-1982. Can. MS Rep. Fish. Aquat. Sci. (In prep).

Shardlow, T. F., K. K. English, T. Hoyt, G. E. Gillespie and T. A. Calvin. 1989. Strait of Georgia Creel Survey sport fishery statistics, 1983. Can. MS Rep. Fish. Aquat. Sci. 1872 : 53 p.

Figure 1. Tidal effort statistics and sport catches of coho and chinook salmon for the Strait of Georgia, 1960 - 1984.

SUMMER OVERFLIGHT ROUTE

WINTER OYERFLIGHT ROUTE

Figure 2. Interview site locations, and summer and winter overflight routes, Strait of Georgia, 1984.
Landing Area: Statistical Area: \qquad
Interviewer: Date: TR $\mathrm{MO} / \mathrm{DAY}$ TIME (INT) \qquad : AM
PM

PRESENT BOAT TRIP COMPLETED

1. Total Number of Individuals in Party: \square
2. Time of Landing: \qquad : \qquad AM
PM Time Block: \square
3. Was Your Party Sport Fishing on This Trip: YES NO
4. Guided:
YES
NO
5. Residences of Party:
B. C. \square Rest of Canada \square Other \square
6. Length of Boat Trip: \square HRS .
7. Times Lines were in the Water: (EXCLUDE time not fishing)
(1) before 7:00 AM
(2) 7:00-7:59(5) $10: 00-10: 59$(9) $2: 00-2: 59$
PM
(13) 6:00-6:59(14) 7:00-7:5915) $8: 00-8: 59$
(3) 8:00-8:59(6) 11:00-11:59

(10) 3:00-3:59
(4) 9:00-9:59(8) $1: 00-1: 59$(11) 4:00-4:59
\square
. Average Number of Lines in the Water for TOTAL boat Party: \square
8. CATCH SUMMARY

Total Catch for Trip:

Total Time Fishing:

\square
HRS.
MARKED:
UNMARKED:

COHO AND CHINOOK ONLY
10. How much Fishing Time was Directed at Each of the Following?
CO \square
\square
\square
LC

RF \square
\square
SF
\square
OTHER \square
11. Did you encounter any problems with seals, sea lions, or whales on today's fishing trip? YES NO

Figure 3. Sample of 1984 interview form.

Figure 4. Comparison of monthly total fishing effort, monthly total interviews and monthly total fishing interviews, Strait of Georgia, 1984.

Figure 5. Monthly fishing effort estimates (number of boat trips) for the Strait of Georgia sport fishery, 1981 - 1984.

Figure 6. Monthly chinook catch for the Strait of Georgia sport fishery, 1981-1984.

Figure 7. Monthly chinook catch per boat trip for the Strait of Georgia sport fishery, 1981-1984.

Coho
挤 Chinook

Figure 8. Annual sport catches of chinook and coho salmon by Statistical Area in the Strait of Georgia, 1983-1984.

Figure 9. Monthly coho catch for the Strait of Georgia sport fishery, 1981-1984.

Figure 10. Monthly coho catch per boat trip for the Strait of Georgia sport fishery, 1981-1984.

Figure 11. Total salmon landed and total fishing effort expended by Statistical Area in the Strait of Georgia sport fishery, 1983 and 1984.

Figure 12. Monthly percent age composition of chinook salmon sampled in the Strait of Georgia Creel Survey, 1984.

Figure 13. Length frequency distribution of chinook salmon sampled in the Strait of Georgia Creel Survey, 1984.

Table 1. Tidal effort statistics and sport catches of coho chinook salmon for the Strait of Georgia, 1960-1984.*

Year	$\begin{gathered} \text { Effort } \\ \text { (boat trips) } \end{gathered}$	Catch	
		Coho	Chinook
1960	189,150	238,000	83,000
1961	199,935	152,000	63,000
1962	205,547	167,000	86,000
1963	247,590	199,000	65,000
1964	198,120	182,000	51,000
1965	250,020	175,000	53,000
1966	259,100	249,000	80,000
1967	254,500	200,000	115,000
1968	265,030	250,000	150,000
1969	281,475	2,00,000	185,000
1970	306,255	500,000	220,000
1971	341,123	800,000	255,000
1972	300,349	335,000	287,000
1973	293,141	373,000	272,000
1974	443,441	772,000	269,000
1975	334,490	454,000	398,000
1976	340,729	415,000	490,000
1977	363,350	682,000	372,000
1978	369,035	1,103,000	500,000
1979	404,710	708,735	350,000
1980	769,000	655,000	371,000
1981	637,000	391,200	253,300
1982	642,200	436,090	163,793
1983	574,257	404,031	198,433
1984	651,090	443,590	369,445

* Source: Coho catch statistics: 1960-1978 from Argue et al. (1983), 1979 from R. Kadowaki (pers. comm.), 1980-1982 from Shardlow et al. (MS 1989), 1983 from Shardlow et al. (1989).

Chinook catch statistics: 1960-1977 from Argue et al. (1983), 1978 and 1979 from B. Riddell (pers. comm.) following the methods of Argue et al. (1983), 1980-1982 from Shardlow et al. (MS 1989), 1983 from Shardlow et al. (1989).

Effort statistics: 1960-1979 from annual published and unpublished Fisheries Officer statistics, 1980-1982 from Shardlow et al. (MS 1989), 1983 from Shardlow et al. (1989).

Table 2. Number of fishing interviews by month and Statistical Area, Strait of Georgia, 1984.

Month	Statistical Area											Overflights
	13	14	15	16	17	18	19A	19B+	28	29	Total	
$\mathrm{Jan}+\mathrm{Feb}$	45	60	0	196	159	43	70	593	85	139	1,390	5
Mar	24	52	0	184	126	41	50	278	36	42	833	4
Apr *	0	0	0	0	0	0	0	0	0	0	0	0
May	241	496	44	321	410	51	355	241	319	86	2,564	5
Jun	749	1,438	84	640	659	124	286	572	820	217	5,589	6
Jul	1,175	1,063	75	773	882	143	345	1,033	803	287	6,579	10
Aug	1,005	844	34	382	624	152	349	763	387	233	4,773	9
Sep	354	567	13	221	281	88	329	556	190	302	2,901	8
Oct	31	115	0	112	95	88	235	381	45	55	1,157	4
Nov+Dec	13	29	0	218	43	57	92	669	103	215	1,439	4
Total	3,637	4,664	250	3,047	3,279	787	2,111	5,086	2,788	1,576	27,225	55

* No interviews or overflights were conducted in April.

Table 3. Fishing effort and catch by species and month, Strait of Georgia, 1984.

* Includes chum and sockeye.
** A total closure for lingcod was in effect from January 1 to April 15, and November 15 to December 31. Reported figures most likely represent illegal catches by anglers.
+ Indirect estimate. The interview and overflight data from March and May were combined to produce the April estimates.
++ In addition, an estimated 198 steelhead, cutthroat trout and unidentified salmon were caught by sport fishermen.

Table 4. Fishing effort and catch by species and Statistical Area, Strait of Georgia, 1984.

* Includes chum and sockeye.
+ In addition, an estimated 198 steelhead, cutthroat trout and unidentified salmon were caught by sport fishermen.

Table 5. Monthly catch success (catch per boat trip) by species, Strait of Georgia, 1984. *

Month	Coho	Chinook	Total ** Salmon	Rock- Fish	Lingcod	Total NonSalmon	All Finfish
Jan+Feb	0.09	0.67	0.77	0.25	0.01	0.49	1.27
Mar	0.38	0.56	0.94	0.46	0.03	1.30	2.24
Apr +	0.91	0.53	1.47	0.32	0.25	0.75	2.22
May	0.95	0.58	1.56	0.35	0.22	0.65	2.20
Jun	0.77	0.87	1.68	0.20	0.1	0.54	2.21
Jul	0.89	0.63	1.53	0.21	0.20	0.53	2.06
Aug	0.48	0.37	0.86	0.25	0.24	0.62	1.48
Sep	0.58	0.37	0.96	0.22	0.22	0.57	1.52
Oct	0.29	0.49	0.80	0.25	0.23	0.55	1.36
Nov+Dec	0.12	0.79	1.05	0.18	0.23	0.60	1.65
Total	0.68	0.57	1.27	0.24	0.21	0.59	1.86

* Calculated using Table 3 data.
** Includes coho, chinook, pink, chum and sockeye.
+ Indirect estimate. The interview data from March and May were combined to produce an estimate of catch success for April.

Table 6. Identification of rockfish by species in each Statistical Area, Strait of Georgia, 1984.

Species	Statistical Area										Total Sample
	13	14	15	16	17	18	19A	19B+	28	29	
Quillback (Sebastes maliger)	377	210	47	213	203	63	95	501	93	7	1,809
Copper (S. caurinus)	2	64	0	2	288	180	24	248	135	17	960
Yelloweye (S. ruberrimus)	12	115	16	140	72	0	15	20	61	15	466
Black (S. melanops)	4	26	0	0	5	2	1	307	18	0	363
Tiger (S. nigrocinctus)	0	11	4	10	7	1	2	3	1	1	40
Yellowtail (S. flavidus)	4	5	0	0	0	0	13	8	0	0	30
China (S. nebulosus) *	0	0	0	0	0	0	0	0	0	0	0
Canary (S. pinniger) *	0	0	0	0	0	0	0	0	0	0	0
Unidentified	46	87	13	47	289	95	67	255	558	117	1,574
Total Sample	445	518	80	412	864	341	217	1,342	866	157	5,242

* China and canary species were not observed during the 1984 identification program, but were reported for the study area in other years.

Table 7. Estimated catch of rockfish by species and Statistical Area, Strait of Georgia, 1984. *

Species		Statistical Area										Total
		13	14	15	16	17	18	19A	$19 \mathrm{~B}+$	28	29	
Quillback	Catch	19,258	5,857	2,520	8,332	8,301	3,746	2,246	3,990	1,678	866	56,794
	S.D.	1,932	631	664	1,005	1,359	607	397	413	196	227	2,866
Copper	Catch	102	1,785	0	78	11,777	10,763	567	3,990	1,678	866	31,606
	S.D.	73	268	0	56	1,873	1,351	143	413	196	227	2,386
Yelloweye	Catch	613	3,207	858	5,477	2,944	0	355	322	758	764	15,298
	S.D.	185	400	288	715	558	0	106	77	114	211	1,084
Black	Catch	204	725	0	0	204	119	24	4,939	224	0	6,439
	S.D.	104	155	0	0	97	85	24	492	56	0	545
Other +	Catch	2,555	2,873	912	2,230	12,105	5,649	1,939	8,348	6,423	5,505	48,539
	S.D.	1,099	1,082	762	1,289	4,791	1,788	689	1,690	867	907	5,973
Total	Catch	22,732	14,447	4,290	16,117	35,331	20,277	5,131	21,589	10,761	8,001	158,676
	S.D.	2,234	1,351	1,051	1,785	5,351	2,323	815	1,856	919	985	7,146

* Calculated using data from Table 6 and Appendix B-8.
+ Other includes tiger, yellowtail, china, canary and unidentified rockfish.

Table 8. Monthly number of marked chinook observed by region, Strait of Georgia, 1984.

Month		North Gulf	South Gulf	Victoria	Total Sample
Jan+Feb	Obs *	4	8	8	20
	Insp **	289	304	708	1,301
Mar	Obs	8	2	2	12
	Insp	234	149	124	507
Apr +	Obs	1	4	2	7
	Insp	30	51	19	100
May	Obs	13	18	1	32
	Insp	686	1,003	96	1,785
Jun	Obs	39	30	0	69
	Insp	2,448	1,667	165	4,280
Jul	Obs	54	21	8	83
	Insp	2,142	1,124	281	3,547
Aug	Obs	26	14	5	45
	Insp	822	665	232	1,719
Sep	Obs	11	12	2	25
	Insp	465	477	119	1,061
Oct	Obs	7	6	1	14
	Insp	218	258	132	608
Nov+Dec	Obs	12	6	10	28
	Insp	347	401	801	1,549
Total	Obs	175	121	39	335
	Insp	7,681	6,099	2,677	16,457
Proportion of marks		0.023	0.020	0.015	0.020

* Obs - marks observed.
** Insp - fish inspected.
+ No samples taken in April. Data estimated using 1985-88 average proportions.

Table 9. Monthly number of marked coho observed by region, Strait of Georgia, 1984.

		North Gulf	South Gulf	Victoria	Total Month
Jan+Feb	Obs *	Insp **			

* Obs - marks observed.
** Insp - fish inspected.
+ No samples taken in April. Data estimated using 1985, 1987 and 1988 average proportions.

Table 10. Monthly estimated catch of marked chinook by region, Strait of Georgia, 1984.

Month		North Gulf	South Gulf	Victoria	Total
$\mathrm{Jan}+\mathrm{Feb}$	Catch	21	104	38	163
	S.D.	14	40	15	45
Mar	Catch	32	40	23	95
	S.D.	18	31	17	40
Apr ${ }^{+}$	Catch	224	794	101	1,119
	S.D.	224	395	70	459
May	Catch	229	401	10	640
	S.D.	69	109	10	129
Jun	Catch	1,065	502	0	1,567
	S.D.	181	98	0	206
Jul	Catch	1,636	505	113	2,254
	S.D.	236	116	41	266
Aug	Catch	1,086	430	74	1,590
	S.D.	223	117	34	254
Sep	Catch	322	371	22	715
	S.D.	99	110	16	149
Oct	Catch	49	86	11	146
	S.D.	- 211	38	12	45
$\mathrm{Noy}+\mathrm{Dec}$	Catch	77	109	66	252
	S.D.	25	46	24	58
Total	Catch	4,741	3,342	458	8,541
	S.D.	452	472	97	661

* Calculated using data from Table 8 and Appendix B-3.
+ No samples taken in April. Data estimated using 1985-88 average proportions.

Table 11. Monthly estimated catch of marked coho by region, Strait of Georgia, 1984. *

Month		North Gulf	South Gulf	Victoriz	Total
$\mathrm{Jan}+\mathrm{Feb}$	Catch	106	8	4	118
	S.D.	153	9	4	153
Mar	Catch	49	45	45	139
	S.D.	29	28	21	45
Apr +	Catch	687	310	39	1,036
	S.D.	173	91	24	197
May	Catch	1,172	918	82	2,172
	S.D.	175	312	57	362
Jun	Catch	2,740	294	243	3,277
	S.D.	302	79	72	320
Jul	Catch	3,110	955	17	4,082
	S.D.	324	195	17	379
Aug	Catch	1,856	600	113	2,569
	S.D.	283	156	48	327
Sep	Catch	640	1,228	16	1,884
	S.D.	159	228	16	278
Oct	Catch	36	11	21	68
	S.D.	23	11	13	29
Nov+Dec	Catch	0	0	0	0
	S.D.	0	0	0	0
Total	Catch	10,396	4,369	580	15,345
	S.D.	622	477	112	792

* Calculated using data from Table 9 and Appendix B-2.
+ No samples taken in April. Data estimated using 1985, 1987 and 1988 average proportions.

Table 12. Monthly number and percent age composition of chinook sampled for age in the Strait of Georgia Creel Survey, 1984 (n gives sample size).

Month	Age 2		Age 3		Age 4		Age 5+		Total Sample
	n	\%	n	\%	n	\%	n	\%	
$\mathrm{Jan}+\mathrm{Feb}$	14	12.2\%	86	74.8\%	13	11.3\%	2	1.7\%	115
(Mar)	(0)	(0.0\%)	(72)	(84.7\%)	(12)	(14.1\%)	(1)	(1.2\%)	(85)
(Apr)	(2)	(2.4\%)	(70)	(84.3\%)	(10)	(12.0\%)	(1)	(1.3\%)	(83)
May	4	2.0\%	157	80.1\%	34	17.3\%	1	0.5\%	196
Jun	36	6.1%	481	81.9\%	60	10.2\%	10	1.7\%	587
Jul	64	23.7\%	172	63.7\%	26	9.6\%	8	3.0\%	270
Aug	109	40.8\%	140	52.4\%	16	6.0\%	2	0.7\%	267
Sep	64	49.6\%	54	41.9\%	9	7.0\%	2	1.6\%	129
Oct	57	50.4\%	52	46.0\%	2	1.8\%	2	1.8\%	113
Nov+Dec	120	46.3\%	138	53.3\%	1	n 4%	0	0.0\%	259
Total	470	-	1,422	-	183	-	29	-	2,104
Biosample *	468	-	1280	-	161	-	27	-	1,936

Overall age composition of catch $* *$	-	21.6%	-	67.3%	-4.4%	-

() No data given for March and April as no samples were taken. Values given in brackets are calculated from the 1985 to 1988 average proportion by month and age (see Appendix C).

* The number of chinook actually sampled for age, ie. excluding March and April estimates.
** Overall age composition of estimated catch based on data from Table 13.

Table 13. Monthly estimated catch at age of chinook in the Strait of Georgia, 1984. *

Month		Age 2	Age 3	Age 4	Age 5t	Total **
$J a n+F e b$	Catch	1,073	6,591	996	153	8,813
	S.D.	295	811	284	109	915
(Mar)	Catch	(0)	$(4,542)$	(756)	(65)	5,363
	S.D.	-	-	--	-	897
(Apr)	Catch	(427)	$(15,013)$	$(2,137)$	(232)	17,809
	S.D.	-	-	-	-	1,431
May	Catch	722	28,340	6,137	181	35,380
	S.D.	365	2,868	1,123	182	3,107
Jun	Catch	5,936	79,315	9,894	1,649	96,794
	S.D.	999	4,016	1,297	523	4,368
Jul	Catch	22,733	61,094	9,235	2,842	95,904
	S.D.	2,652	3,759	1,764	997	5,027
Aug	Catch	23,746	30,499	3,486	436	58,166
	S.D.	2,076	2,283	861	308	3,218
Sep	Catch	14,721	12,421	2,070	460	29,673
	S.D.	1,514	1,442	675	324	2,221
Oct	Catch	3,388	3,091	119	119	6,717
	S.D.	505	478	85	85	706
Nov+Dec	Catch	6,869	7,900	57	0	14,826
	S.D.	762	837	58	0	1,133
Total ***	Catch	79,616	248,806	34,888	6,136	369,445
	S.D.	3,961	6,882	2,710	1,233	7,932 + +
Overall age composition ***		21.6\%	67.3\%	9.4\%	1.7\%	100.0\%

* Calculated by applying to total monthly chinook catch the monthly age proportions from Table 12.
** Monthly total catch from Table 3.
() No data given for March and April as no samples were taken. Values in brackets are indirect estimates (see Table 12).
*** Total catch and overall age composition include March and April estimates.
++ S.E.

Table 14. Monthly mean nose-fork length (L) at age of chinook sampled in the Strait of Georgia Creel Survey, 1984 (n gives sample size).

Month	Age 2		Age 3		Age 4		Age 5		Age 6		Total Sample
	L (cm)	n	L (cm)	n	L (cm)	n	$\mathrm{L}(\mathrm{cm})$	n	L (cm)	n	
$\mathrm{Jan}+\mathrm{Feb}$	52.9	14	54.5	86	68.3	13	80.5	2	52.9	0	115
Mar *	-	-	-	-	-	-	-	-	-	-	-
Apr ${ }^{+}$	-	-	-	-	-	-	-	-	-	-	-
May	40.0	4	62.6	152	72.9	34	75.0	1	-	0	191
Jun	44.3	36	64.4	481	77.1	60	82.1	10	-	0	587
Jul	46.4	64	65.4	172	74.0	26	83.9	8	92.0	1	271
Aug	49.0	109	65.4	140	86.2	16	93.0	2	-	0	267
Sep	50.6	64	64.5	54	88.6	9	95.0	2	-	0	129
Oct	50.1	57	64.4	52	78.0	2	88.5	2	-	0	113
Nov+Dec	52.3	120	62.7	138	74.0	1	-	0	-	0	259
Total	49.5	468	63.6	1275	76.5	161	84.5	27	92.0	1	1,932

* Data not available for March since records were lost.
+ No lengths given for April as no samples were taken.

APPENDIX A
 METHODS AND EQUATIONS USED IN ANALYSIS OF CATCH AND EFFORT STATISTICS FOR THE STRAIT OF GEORGIA SPORT FISHERY CREEL SURVEYS, 1983-1984.

${ }^{1}$ Adapted from:

Shardlow, T. F., K. K. English, T. Hoyt, G. E. Gillespie and T. A. Calvin. 1989. Strait of Georgia Creel Survey sport fishery statistics, 1983. Can. MS Rep. Fish. Aquat. Sci. 1872 : 53 p.

METHODS AND EQUATIONS USED IN ANALYSIS OF CATCH AND EFFORT STATISTICS FOR THE STRAIT OF GEORGIA SPORT FISHERY CREEL SURVEYS, 1983-1984.

The description of terms, variables and subscripts used in the data analysis is given in Table $\mathrm{A}-1$.

Calculation of Catch and Effort Statistics

To estimate the monthly catch and effort, three components had to be calculated from that month's data:
(1) the weighted mean daily fishing pattern from interview data,
(2) the weighted mean catch per unit effort from interview data and
(3) the mean sport count from overflight data.

The equations used to estimate the means and variances for all catch and effort statistics are shown below. For April which had only overflight data, the interview data from preceding and following months were combined to estimate the mean daily fishing activity pattern and catch per unit effort. The catch and effort estimates for April are referred to as indirect estimates.

Weighting factors used to estimate the daily fishing activity pattern and mean catch per unit effort were calculated using the equations derived from DPA Consulting Ltd. (1982).

The data obtained from each shift were multiplied by the following weighting factor (W1) to expand for all possible stints at each site. The formula reads:

$$
\begin{equation*}
W 1_{d i j}=\frac{N_{d}}{n_{d i j}} \tag{1}
\end{equation*}
$$

where \mathbb{N}_{d} is the total number of days of type d in that month and $n_{d i j}$ is the number of times the jth work block at the ith site was sampled on type d days.

The interviews aggregrated by work block were multiplied by the weighting factor $W 2$ to expand for all boats that landed in each work block. The formula reads:

$$
\begin{equation*}
W 2_{\text {dijk }}=\frac{L_{\text {dijk }}}{I_{\text {dijk }}} \tag{2}
\end{equation*}
$$

where Ldijk is the number of boats landed and $I_{\text {dijk }}$ is the number of boats interviewed on the kth stint in the jth work block at the ith site on a day rype d.

Therefore, the following equations can be used to calculate an unbiased estimate of the total monthly catch ($\hat{C}_{d g r}$), fishing trips ($\hat{T}_{d g}$) and fishing activity in time block $\hat{A}_{d g t}$ for each day type (d) where g is a set of landing sites (i). These formulas read:

Table A-1. Description of terms, variables and subscripts used in this report.

DESCRIPTION OF TERMS

DESCRIPTION OF VARIABLES

A	-	Number of boats actively fishing
B	-	Number of boats observed on a flight
C	-	Catch
C^{\prime}	-	Catch of marked salmon
CPE	-	Catch per boat trip
E	-	Effort (estimated total number of boat trips)
I	-	Number of boats interviewed and found to have been fishing
L	\cdots	Number of boats landing
n	-	Number sampled
N	-	Population size from which n samples were observed
P	-	Proportion
T	-	Number of boat trips
V	-	Number found to be marked
W1	-	Weighting factor to expand for all possible stints at each site
W2	-	Weighting factor to expand for all boats that landed in each work block
		DESCRIPTION OF SUBSCRIPTS
a	-	age
g	-	a set of landing sites
d	-	day type
i	-	site
j	-	work block
k	-	stint
1	-	landing time block
m	-	month
q	-	the next boat landing at site i and upon interviewing, found to have been fishing (q ranges from 1 to n)
r	-	species
s	-	sub-Statistical Area
t	-	time block
u	-	flight
x	-	region
y	-	annual

$$
\begin{align*}
& \hat{\mathrm{C}}_{\text {dgr }}=\sum_{\mathrm{i}} \sum_{\mathrm{j}}\left[\mathrm{~W}^{1}{ }_{\text {dij }} \sum_{\mathbf{k}} \sum_{\mathrm{q}}\left(\mathrm{~W}{ }_{\text {dijk }} \mathrm{C}_{\text {dijklqr }}\right)\right] \tag{3}\\
& \hat{T}_{d g}=\sum_{i} \sum_{j}\left[W_{d i j} \sum_{k} \sum_{q}\left(W^{2}{ }_{\text {dijk }}\right)\right] \tag{4}\\
& \hat{A}_{d g t}=\sum_{i} \sum_{j}\left[W_{d i j} \sum_{k} \sum_{q}\left(W^{2}{ }_{d i j k} A_{d i j k q i}\right)\right] \tag{5}
\end{align*}
$$

where $C_{d i j k g r}$ is the catch of species r by the q th fishing party, and $A_{d i j k q t}$ can equal δ or 1 , thereby indicating whether the qth fishing party was actively fishing in time block t. Thus, the mean monthly catch per unit effort (CPE $_{\mathrm{dgr}}$) measured in terms of numbers of fish kept per completed boat trip, and proportion of daily fishing effort active during the hour of the aerial survey (P_{dg}) can be calculated with the following equations:

$$
\begin{gather*}
\text { CPE }_{\text {dgr }}=\frac{\hat{\mathrm{C}}_{\mathrm{dgr}}}{\hat{\mathrm{~T}}_{\mathrm{dg}}} \tag{6}\\
\mathrm{P}_{\mathrm{dgt}}=\frac{\hat{\mathrm{A}}_{\mathrm{dgt}}}{\hat{\mathrm{~T}}_{\mathrm{dg}}}
\end{gather*}
$$

where $C P E_{d g r}$ and $P_{d g t}$ are calculated for each day type (d) and group of landing sites (g). The groups of landing sites reflect geographic areas with similar catch rates and/or activity patterns.

The estimated mean number of boats fishing during the hour of the sport boat count by overflight was calculated for each sub-Statistical Area using the following equation:

$$
\begin{equation*}
\overline{\mathrm{B}}_{\mathrm{dst}}=\frac{\sum_{\mathrm{u}}^{\mathrm{B}_{\mathrm{dstu}}}}{\mathrm{n}_{\mathrm{ds}}} \tag{8}
\end{equation*}
$$

where $B_{d s t u}$ is the number of boats observed fishing on flight u at time t, in sub-Statistical Area s for day type d.

The mean sport boat count at the time of the overflight (\bar{B}_{dst}) and proportion of daily fishing effort active during the hour of the overflight ($P_{d g t}$) were used in the following equation to calculate the total fishing effort for sub-Statistical Area s on day type d:

$$
\begin{equation*}
E_{d s}=\bar{B}_{d s t} \frac{1}{P_{d g t}} N_{d} \tag{9}
\end{equation*}
$$

where N_{d} is the number of type d days in the month. Interview data for the sub-Statistical Areas fished (s) by anglers landing at each of the sites (i) within a landing group (g) were used to select the proportions ($\mathrm{P}_{\mathrm{dgt}}$) that are appropriate for each mean boat count ($\bar{B}_{d s t}$).

The estimate for total effor by sub-Statistical Area and day type ($E_{d s}$) and the weighted catch per boat rip for a group of landing sites by day type, area and species ($\mathrm{CPE}_{\mathrm{dgr}}$) were used to calculate total catch for each species (r) and each sub-Statistical Area (s).

$$
\begin{equation*}
C_{\mathrm{st}}=\sum_{\mathrm{d}}\left(E_{\mathrm{ds}} C P E_{\mathrm{dgy}}\right) \tag{10}
\end{equation*}
$$

The interview data were also used to select the catch per effort estimates ($\mathrm{CPE}_{\mathrm{dgr}}$) that should be applied to the effort estimate ($E_{d s}$) for a specific sub-Statistical Area (s).

Variance of Total Fishing Effort

The variance for estimates of total fishing effort has two components:
(1) the variance in aerial sport boat counts:

$$
\begin{equation*}
S_{B_{d s t}}^{2}=\frac{\sum_{u} B_{d s t u}^{2}-\frac{\left(\sum_{u} B_{d s t u}\right)^{2}}{n_{d s}}}{n_{d s}\left(n_{d s}-1\right)}\left[\frac{N_{d}-n_{d s}}{N_{d}-1}\right] \tag{11}
\end{equation*}
$$

where $B_{d s t u}$ is the aerial sport boat count at time t during an aerial survey u on a type d day in sub-area $s ; n_{d s}$ is the number of aerial surveys in which boats were counted on type d days, in sub-Statistical Area s; and N_{d} is the total number of type d days in the month.
(2) the variance in the proportion of boats fishing during the hours of the aerial boat counts:

$$
\begin{equation*}
S_{P_{d g t}}^{2}=\frac{P_{d g t}\left(1-P_{d g t}\right)}{I_{d g}} \tag{12}
\end{equation*}
$$

where $P_{d g t}$ is the mean proportion of boats fishing for a group of landing sites g during the hour of the aerial boat count t on type days, and $I_{d g}$ is the total number of sport fishing boats interviewed. The above formula assumes $P_{d g t}$ is unbiased and normally distributed where the number of interviews is large.

The variances for boat counts ($\mathrm{S}^{2}{ }_{\mathrm{B}_{\mathrm{dst}}}$) and proportion of boats fishing ($\mathrm{S}^{2} \mathrm{P}_{\mathrm{dgt}}$) were combined in the following equation to calculate variance for effort:

$$
\begin{equation*}
S_{E_{d s}}^{2}=N_{d}^{2}\left(\frac{B_{d s t}^{2}}{P_{d g t}^{2}}\right)\left(\frac{S_{B_{d s t}}^{2}}{B_{d s t}^{2}}+\frac{S_{P_{d g t}}^{2}}{P_{d g t}^{2}}\right) \tag{13}
\end{equation*}
$$

where $S^{2} E_{d s}$ is the variance for total effort on type d days in sub-area s, and the formula is the standard formula for the variance of a ratio of two independent random variables.

Variance of Total Catch

The variance for estimates of total catch had two components: (1) the variance for total effort (presented above), and (2) the variance for catch per boat trip.

The variance for catch per boat trip $\left(S^{2} \mathrm{CPE}_{\mathrm{dgr}}\right)$ was calculated using the following equation:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{CPE}_{\mathrm{dgr}}}^{2}=\frac{\left.\mathrm{SS}_{\mathrm{CPE}_{\mathrm{dgr}}}-\frac{\left(\mathrm{S}_{\mathrm{CPE}}^{\mathrm{dgr}}\right.}{}\right)^{2}}{\mathrm{I}_{\mathrm{dg}}} \tag{14}
\end{equation*}
$$

where $S_{C P E}{ }_{d g r}$ is the weighted sum of squares for ${ }^{C P E}{ }_{d g r}$, and $S_{C P E}{ }_{d g r}$ is the weighted sum for $C_{P E} \mathrm{dgr}_{\mathrm{r}}$, such that the sum of the weighting factors used to estimate CPE $_{d g r}$ was equal to the number of interviewed boat trips ($I_{d g}$).

The variance for total effort and the variance in the catch per boat trip for the appropriately grouped landing sites were combined in the following equation to calculate variance for total catch:

$$
\begin{equation*}
S_{C_{s r}}^{2}=\sum_{d}\left(E_{d s}^{2} S_{C P E}^{d g r}+C P E_{d g r}^{2} S_{E_{d s}}^{2}+S_{C P E}^{2} S_{d g r}^{2} E_{d s}\right) \tag{15}
\end{equation*}
$$

which is the standard formula for the variance of the product of two independent random variables, and where $\mathrm{S}^{2} \mathrm{C}_{\mathrm{Sr}}$ is the variance for total number of species r in sub-Statistical Area s.

Estimation of Marked Chinook and Coho Salmon

Incidence of marked (adipose-clipped) chinook and coho was recorded in each interview. The proportion of marks observed for each region, month and species ($\mathrm{P}_{\mathrm{xmr}}$) was calculated as:

$$
\begin{equation*}
P_{\mathrm{xmr}}=\frac{\mathrm{V}_{\mathrm{xmr}}}{\mathrm{n}_{\mathrm{xmr}}} \tag{16}
\end{equation*}
$$

where V is the number of marked fish observed and n is the number of fish inspected by region(x), month(m) and species (r).

The variance of each proportion was calculated as:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{P}_{\mathrm{xmr}}}^{2}=\frac{\mathrm{P}_{\mathrm{xmr}}\left(1-\mathrm{P}_{\mathrm{xmr}}\right)}{\mathrm{n}_{\mathrm{xmr}}} \tag{17}
\end{equation*}
$$

Monthly catch estimates of marked salmon were calculated as:

$$
\begin{equation*}
C_{x m r}=P_{x m r} C_{x m r} \tag{18}
\end{equation*}
$$

where $C_{x m r}$ is the estimated catch of species r in region x and month m. The variance of the marked catch estimates was calculated as:

$$
\begin{equation*}
S_{C_{x m r}^{\prime}}^{2}=P_{x m r}^{2} S_{C_{x m r}}^{2}+C_{x m r}^{2} S_{P_{x m r}}^{2}+S_{C_{x m r}}^{2} S_{P_{x m r}}^{2} \tag{19}
\end{equation*}
$$

where $S^{2} C_{\text {xmr }}$ is the variance of the catch estimate of species r in region x and month m.

The estimated annual proportions of marked salmon caught in each region (weighted by the corresponding regional annual catch estimates) were calculated as:

$$
\begin{equation*}
P_{x r y}=\frac{C_{x r y}^{\prime}}{C_{x r y}} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{x r y}^{\prime}=\sum_{m} C_{x m r}^{\prime} \quad \text { and } \quad C_{x r y}=\sum_{m} C_{x m r} \tag{21}
\end{equation*}
$$

The variance of the annual proportions was calculated as:

$$
\begin{equation*}
S_{P_{x r y}}^{2}=\left(\frac{C_{x r y}^{\prime}}{C_{x r y}}\right)^{2}\left[\frac{S_{C_{x r y}^{\prime}}^{2}}{\left(C_{x r y}^{\prime}\right)^{2}}+\frac{S_{C_{x r y}}^{2}}{\left(C_{x r y}\right)^{2}}\right] \tag{22}
\end{equation*}
$$

where $S^{2} C_{x r y}$ is the variance of the annual estimated catch of species r in region x .

Estimation of Age Composition of Chinook Catch

Scale samples and length measurements were taken in a subsampling progran during the interview process. Ages used in this report represent total age of the fish (including both freshwater and oceanic life) according to the Gilbert-Rich (1927) recording convention.

The proportion of chinook at each age and month ($\mathrm{P}_{\text {am }}$) was calculated as:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{am}}=\frac{\mathrm{a}_{\mathrm{m}}}{\mathrm{n}_{\mathrm{m}}} \tag{23}
\end{equation*}
$$

where a_{m} represents the number of fish observed at age a during month m, and n_{m} is the total number of fish biosampled in that month.

The variance of each proportion was calculated as:

$$
\begin{equation*}
S_{a m}^{2}=\frac{P_{a m}\left(1-P_{a m}\right)}{n_{m}} \tag{24}
\end{equation*}
$$

The catch at age of chinook in each month was calculated as:

$$
\begin{equation*}
C_{a m}=P_{a m} C_{m} \tag{25}
\end{equation*}
$$

where C_{m} is the estimated catch of chinook salmon in a given month m. The variance of the catch at age estimate was calculated as:

$$
\begin{equation*}
S_{C_{a m}}^{2}=P_{a m}^{2} S_{C_{m}}^{2}+C_{m}^{2} S_{P_{a m}}^{2}+S_{C_{m}}^{2} S_{P_{a m}}^{2} \tag{26}
\end{equation*}
$$

where $S^{2} C_{m}$ is the variance of the monthly catch estimate C_{m}. The annual catch at age was calculated as:

$$
\begin{equation*}
C_{a y}=\sum_{m} C_{a m} \tag{27}
\end{equation*}
$$

with a variance

$$
\begin{equation*}
S_{C_{a y}}^{2}=\sum_{m} S_{C_{a m}}^{2} \tag{28}
\end{equation*}
$$

The annual proportion at age (weighted by monthly catch) was calculated as:

$$
\begin{equation*}
P_{a y}=\frac{C_{a y}}{C_{y}} \tag{29}
\end{equation*}
$$

with a variance

$$
\begin{equation*}
S_{P_{a y}}^{2}=\left(\frac{C_{a y}}{C_{y}}\right)^{2}\left[\frac{S_{C_{a y}}^{2}}{\left(C_{a y}\right)^{2}}+\frac{S_{C_{y}}^{2}}{\left(C_{y}\right)^{2}}\right] \tag{30}
\end{equation*}
$$

APPENDIX B

CATCH AND EFFORT STATISTICS BY MONTH AND STATISTICAL AREA FOR STRAIT OF GEORGIA, 1984.

APPENDIX B-1. STRAIT OF GEORGIA FISHING EFFORT (NO. BOAT TRIPS), 1984.

* Indirect estimate.
appendix b-2. STRAIT OF GEORGIA COHO CATCH SUMMARY, 1984.

* Indirect estimate.

APPENDIX B-3. STRAIT OF GEORGIA CHINOOK CATCH SUMMARY, 1984.

Statistical Area													
Month		13	14	15	16	17	18	19A	$19 \mathrm{~B}+$	28	29	Total	
Jan+Feb	Catch	345	214	148	786	559	289	310	3,354	1,838	970	8,813	
	S.E.	156	160	119	557	139	132	130	496	455	255	973	
March	Catch	264	142	235	308	1,304	234	118	1,440	282	1,036	5,363	
	S.E.	227	54	205	209	608	86	46	286	120	435	897	
April *	Catch	1,907	2,431	139	2,250	2,659	1,290	2,839	964	1,591	1,739	17,809	*
	S.E.	293	511	51	521	471	255	934	150	262	422	1,432	
May	Catch	4,343	4,432	148	3,142	7,514	4,743	5,993	945	2,110	2,010	35,380	
	S.E.	665	957	63	805	2,073	1,260	1,674	217	368	578	3,349	
June	Catch	30,101	19,299	2,268	15,154	12,256	3,230	2,376	2,097	3,922	6,091	96,794	$\stackrel{\square}{0}$
	S.E.	3,441	1,390	355	1,557	1,507	445	401	266	633	1,036	4,527	
July	Catch	29,630	13,657	1,572	20,036	12,494	6,476	3,362	3,969	1,835	2,873	95,904	
	S.E.	2,095	1,302	379	2,250	1,624	948	409	421	270	356	3,921	
August	Catch	19,925	9,746	508	4,158	8,183	5,134	3,884	3,425	1,422	1,781	58,166	
	S.E.	2,090	996	108	516	665	642	502	387	244	697	2,728	
September	Catch	6,255	4,319	829	2,202	6,813	2,069	4,067	1,334	834	951	29,673	
	S.E.	812	421	187	457	800	374	612	191	141	270	1,538	
October	Catch	286	919	105	213	613	178	938	1,499	834	1,132	6,717	
	S.E.	152	224	53	152	257	41	137	336	231	502	777	
Nov+Dec	Catch	186	19	288	1,736	336	1,011	432	5,326	1,887	3,605	14,826	
	S.E.	170	13	150	262	132	445	134	850	312	668	1,273	
Total	Catch	93,242	55,178	6,240	49,985	52,731	24,654	24,319	24,353	16,555	22,188	369,445	
	S.E.	4,681	2,460	636	3,054	3,314	1,878	2,164	1,291	1,063	1,795	7,932	

[^0]APPENDIX B-4. STRAIT OF GEORGIA PINK CATCH SUMMARY, 1984.

* Indirect estimate.

APPENDIX B-5. STRAIT OF GEORGIA CATCH SUMMARY FOR OTHER SALMON, 1984. *

* Includes chum and sockeye.
** Indirect estimate.

APPENDIX B-6. STRAIT OF GEORGIA CATCH SUMMARY FOR TOTAL SALMONIDS, 1984. *

Month		Statistical Area										Total
		13	14	15	16	17	18	19A	19B+	28	29	
$J \mathrm{an}+\mathrm{Feb}$	Catch	345	1,063	148	946	802	289	310	3,508	1,838	970	10,219
	S.E.	156	680	119	559	199	132	130	508	455	255	1,191
March	Catch	368	1,500	235	308	2,724	234	118	2,279	282	1,036	9,084
	S.E.	249	447	205	209	1,080	86	46	397	120	435	1,373
April **	Catch	9,532	13,178	408	6,220	10,298	1,617	2,899	1,998	1,720	2,058	49,928
	S.E.	1,299	2,339	120	1,314	2,127	360	955	283	283	481	3,854
May	Catch	12,629	18,241	555	9,333	33,331	5,877	6,200	4,280	2,288	2,335	95,069
	S.E.	1,594	3,559	113	1,535	9,127	1,762	1,740	1,733	398	686	10,519
June	Catch	61,247	51,344	3,400	21,929	20,507	3,396	2,472	11,968	4,142	6,777	187,182
	S.E.	6,917	3,887	467	2,012	2,809	462	411	1,412	658	1,101	8,896
July	Catch	88,485	39,004	5,540	40,538	18,978	7,051	3,823	23,916	2,870	4,751	234,956
	S.E.	6,242	4,042	1,462	3,739	2,947	984	453	2,013	417	548	9,263
August	Catch	50,978	24,261	2,078	15,719	13,382	6,309	4,983	6,779	4,279	5,970	134,738
	S.E.	5,034	2,202	302	1,382	1,026	690	585	645	524	2,325	6,337
September	Catch	27,074	13,972	1,286	5,536	9,362	2,637	4,662	3,499	3,754	4,748	76,530
	S.E.	3,195	1,182	266	1,085	1,010	408	-66	429	403	1,256	4,051
October	Catch	1,303	1,813	128	276	1,007	421	1,092	2,685	938	1,279	10,942
	S.E.	505	392	55	177	382	107	149	445	255	544	1,087
Nov+Dec	Catch	293	1,176	289	1,736	1,174	2,644	918	5,793	1,926	3,693	19,642
	S.E.	187	550	150	262	304	747	315	901	454	673	1,628
Total	Catch	252,254	165,552	14,067	102,541	111,565	30,475	27,477	66,705	24,037	33,617	828,290
	S.E.	11,268	7,546	1,621	5,065	10,388	2,378	2,289	3,340	1,332	3,194	18,818

[^1]APPENDIX B-7. STRAIT OF GEORGIA CATCH SUMMARY FOR RELEASED SALMON, 1984.

Statistical Area													
Month		13	14	15	16	17	18	19A	19B+	28	29	Total	
$J \mathrm{an}+\mathrm{Feb}$	Catch	491	2,910	13	919	594	78	107	3,645	1,286	806	10,849	
	S.E.	228	1,478	10	349	167	28	54	512	335	250	1,681	
March	Catch	197	617	18	918	1,034	113	16	3,717	408	595	7,633	
	S.E.	166	201	17	508	453	55	11	565	152	286	979	
April *	Catch	866	2,021	55	832	2,090	542	1,790	2,194	531	701	11,622	*
	S.E.	158	405	24	319	402	167	644	284	100	191	1,011	
May	Catch	2,067	2,655	70	736	8,130	1,862	4,508	1,237	675	821	22,761	
	S.E.	343	598	25	249	3,344	817	1,387	806	141	353	3,887	
June	Catch	6,271	17,339	869	3,918	10,324	1,292	1,300	1,368	1,677	2,766	47,124	\sim
	S.E.	880	1,303	174	581	1,595	251	296	266	345	588	2,464	
July	Catch	20,253	30,525	3,347	14,066	16,744	2,980	1,683	3,947	2,176	2,128	97,849	
	S.E.	1,718	2,676	959	1,550	1,919	519	322	532	345	320	4,242	
August	Catch	68,270	60,531	4,504	11,510	29,681	8,014	10,574	17,544	5,632	2,754	219,014	
	S.E.	8,509	6,112	733	1,242	2,751	847	1,233	2,411	684	451	11,319	
September	Catch	38,076	49,494	2,776	12,834	28,548	6,304	9,366	20,564	4,433	4,939	177,334	
	S.E.	4,866	6,739	573	3,482	2,910	1,095	1,449	2,565	689	1,369	10,111	
October	Catch	1,063	2,649	323	759	4,632	1,902	3,123	11,382	1,677	2,204	29,714	
	S.E.	409	567	164	352	1,567	397	381	1,795	425	939	2,772	
Nov+Dec	Catch	106	751	108	292	968	1,510	2,013	7,015	989	2,024	15,776	
	S.E.	71	356	57	57	246	494	573	1,119	318	403	1,512	
Total	Catch	137,660	169,492	12,083	46,784	102,745	24,597	34,480	72,613	19,484	19,738	639,676	
	S.E.	10,010	9,738	1,359	4,133	6,030	1,830	2,574	4,305	1,276	1,969	16,862	

[^2]APPENDIX B-8. STRAIT OF GEORGIA ROCKFISH CATCH SUMMARY, 1984.

* Indirect estimate.

APPENDIX B-9. STRAIT OF GEORGIA LINGCOD CATCH SUMMARY, 1984.

[^3]APPENDIX B-10. STRAIT OF GEORGIA DOGFISH CATCH SUMMARY, 1984.

Month		Statistical Area										Total
		13	14	15	16	17	18	19A	19B+	28	29	
$\mathrm{Jan}+\mathrm{Feb}$	Catch	0	0	0	0	0	0	0	0	4	4	8
	S.E.	0	0	0	0	0	0	0	0	6	4	7
March	Catch	0	0	0	0	0	0	0	0	0	0	0
	S.E.	0	0	0	0	0	0	0	0	0	0	0
April *	Catch	0	0	0	0	0	11	0	0	20	39	70 *
	S.E.	0	0	0	0	0	11	0	0	12	31	35
May	Catch	0	109	0	0	0	28	0	0	33	53	223
	S.E.	0	110	0	0	0	23	0	0	18	30	118
June	Catch	49	259	0	57	150	174	32	72	38	75	906
	S.E.	31	119	0	68	96	110	23	30	20	52	214
July	Catch	151	70	0	0	127	1,027	15	228	179	201	1,998
	S.E.	85	41	0	0	47	417	13	97	51	74	450
August	Catch	224	158	0	0	116	75	14	120	131	122	960
	S.E.	148	62	0	0	49	31	16	45	70	70	203
September	Catch	61	4	7	8	101	186	0	14	7	7	395
	S.E.	46	3	6	6	36	162	0	10	8	6	173
October	Catch	0	0	0	0	26	0	0	0	0	0	26
	S.E.	0	1	0	0	19	0	0	0	0	0	19
Nov+Dec	Catch	0	0	0	0	0	0	0	0	19	44	63
	S.E.	0	0	0	0	0	0	0	0	21	44	49
Total	Catch	485	600	7	65	520	1,501	61	434	431	545	4,649
	S.E.	179	178	6	68	124	462	31	112	94	130	581

[^4]APPENDIX B-11. STRAIT OF GEORGIA CATCH SUMMARY FOR OTHER FINFISH, 1984.

Month		Statistical Area										Total
		13	14	15	16	17	18	19A	$19 \mathrm{~B}+$	28	29	
Jan+Feb	Catch	27	207	0	30	360	1,052	645	500	178	7	3,006
	S.E.	21	222	0	33	141	402	385	344	113	6	715
March	Catch	0	3	0	0	972	3,979	1,169	1,551	8	44	7,726
	S.E.	0	3	0	0	460	1,973	669	1,780	8	39	2,779
April *	Catch	22	38	1	1,667	1,243	2,298	63	708	65	36	6,141 *
	S.E.	12	23	1	433	400	784	74	304	18	18	1,030
May	Catch	21	56	1	1,480	452	1,607	0	561	122	62	4,362
	S.E.	15	33	1	439	177	1,490	0	171	41	24	1,574
June	Catch	1,442	507	7	4,424	4,688	2,529	0	1,079	274	391	15,341
	S.E.	264	96	5	696	1,808	1,329	0	356	74	116	2,397
July	Catch	1,518	881	0	8,483	1,376	1,313	294	809	149	223	15,046
	S.E.	218	261	0	1,971	373	402	332	172	31	67	2,109
August	Catch	2,650	1,568	0	8,894	2,215	1,155	13	885	658	1,379	19,417
	S.E.	519	314	0	1,621	556	339	16	154	187	1,018	2,125
September	Catch	393	600	0	2,941	2,579	437	184	1,142	367	244	8,887
	S.E.	106	172	0	929	1,201	217	75	229	95	71	1,570
October	Catch	0	24	0	332	9	12	48	417	88	32	962
	S.E.	0	12	0	169	11	8	60	102	58	21	216
Nov+Dec	Catch	861	6	0	449	958	922	8	157	93	11	3,465
	S.E.	281	6	0	107	528	651	8	62	83	11	897
Total	Catch	6,934	3,890	9	28,700	14,852	15,304	<, 24	7,809	2,002	2,429	84,353
	S.E.	691	507	5	2,878	2,421	3,066	849	1,912	275	1,031	5,458

[^5]APPENDIX C. ANNUAL PROPORTTON OF CHINOOK CATCH AT AGE BY PERIOD, 1983 TO 1988.

	Period	Yeax						$\begin{aligned} & 85-88 \\ & \text { Mean } \\ & \hline \end{aligned}$
		1983	1984	1985	1986	1987	1988	
	March	(0.001)	(0.001)	0.000	0.005	0.000	0.000	0.001
Age 2	April	(0.003)	(0.003)	0.000	0.000	0.010	0.003	0.003
	Jan-Feb	(0.996)	(0.996)	1.000	0.995	0.990	0.997	0.996
	May-Dec							
	March	(0.052)	(0.052)	0.056	0.022	0.086	0.044	0.052
Age 3	Apri1	(0.049)	(0.049)	0.052	0.017	0.079	0.046	0.049
	J an-Feb	(0.900)	(0.900)	0.892	0.961	0.835	0.910	0.900
	May-Dec							
	March	(0.064)	(0.064)	0.041	0.022	0.109	0.082	0.064
Age 4	April	(0.057)	(0.057)	0.065	0.021	0.095	0.046	0.057
	Jan-Feb	(0.880)	(0.880)	0.894	0.957	0.796	0.872	0.880
	May-Dec							
	March	(0.043)	(0.043)	0.000	0.063	0.109	0.000	0.043
Age 5	April	(0.029)	(0.029)	0.037	0.046	0.031	0.000	0.029
	Jan-Feb	(0.929)	(0.929)	0.963	0.891	0.860	1.000	0.929
	May-Dec							

NOTE: Values in brackets represent the $85-88$ mean proportion.

APPENDIX D. STRAIT OF GEORGIA CREEL SURVEY SIUDY AREA.

The Strait of Georgia Creel Survey study area includes those waters of Juan de Fuca Strait and the Strait of Georgia bounded in the south by a line from Sheringham Pt. on Vancouver Island due south to an intersection with the International Boundary and along the International Boundary to the B.C. Mainland coast at Blaine (Boundary Bay) and in the north by the following 3 boundary lines:

1) in discovery passage from Granite Pt. on Quadra Island to the stream mouth west of Moriarity Pt. on Vancouver Island.
2) in Okisollo Channel from Granite Pt. on Quadra Island due north to Sonora Island.
3) in Cordero Channel from Burnt Bluff on the mainland 214° passing west of Dent Island to Sonora Island.

The area for which the Strait of Georgia Creel Survey statistics apply includes the above listed administrative area with the exception of the following areas:

1) Bute Inlet above a line from Lawrence Pt. running across the inlet. This area coincides with management units 13-21 and 13-22.
2) Waters of Pryce Channel, Waddington Channel, Pendrell Sound, Homfray Channel and Toba Inlet bounded by a line drawn from Horace Head on East Redonda Island at the south end of Waddington Channel to the northern point of Roscoe Bay on West Redonda Island and a line drawn within Homfray Channel from Price Pt. on the eastern shore of the channel by a line drawn from George Head at the easterly entrance of Ramsay Arm to Sutil Pt. on Cortes Island.
3) Hotham Sound above a line drawn from Elephant Point on the western shore of the Sound to the southern point of Granville Bay on the eastern shore of the Sound.
4) Jervis Inlet above a line drawn within Prince of Whales Reach from the mouth of Treat Creek on the east shore across the Reach to the summit (1625') at the head of Goliath Bay.
5) Sechelt Inlet including Narrows Inlet and Salmon Inlet above a line drawn within Skookumchuck Narrows from the "dog-leg" point southeast of the Egmont Pt. 224° across the Narrows to Sechelt Peninsula.

APPENDIX E. SPECIES COMMONLY INCLUDED WITH OTHER FINFISH.

```
Pacific Herring
Pacific Cod
Pacific Tomcod
Walleye Pollock
Pacific Hake
Berches - any perch, seaperch or surfperch
Greenlings
Flounders - Pacific Halibut, any flounder or sole
```


[^0]: * Indirect estimate.

[^1]: * Includes coho, chinook, pink, chum, sockeye, steelhead and cutthroat trout.
 ** Indirect estimate.

[^2]: * Indirect estimate.

[^3]: * Indirect estimate.
 ** A total closure for lingcod was in effect from January 1 to April 15 , and November 15 to December 31, 1984; see Table 3 foomote.

[^4]: * Indirect estimate.

[^5]: * Indirect estimate.

