Juvenile Herring Surveys:
 Methods and Data Base

M. Thompson, C. Hrabok, D.E. Hay, J. Schweigert,
C. Haegele, and B. Armstrong

Fisheries and Oceans Canada Science Branch, Pacific Region
Pacific Biological Station Nanaimo, British Columbia V9T 6N7

2003

Canadian Manuscript Report of Fisheries and Aquatic Sciences 2651

Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers $1-900$ in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426-1550 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuscrits contiennent des renseignements scientifiques et techniques ques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications complètes. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l'index annual des publications scientifiques et techniques du Ministère.

Les numéros 1 à 900 de cette série ont été publiés à titre de manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Les rapports manuscrits sont produits a l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Manuscript Report of
Fisheries and Aquatic Sciences 2651

2003

JUVENILE HERRING SURVEYS: METHODS AND DATABASE

by
M. Thompson, C. Hrabok, D.E. Hay, J. Schweigert, C. Haegele, and B. Armstrong

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
Nanaimo, British Columbia
V9R 6N7

[^0]Cat. No. Fs 97-4/2651E ISSN 0706-6473

Correct citation for this publication:
Thompson, M., C. Hrabok, D.E. Hay, J. Schweigert, C. Haegele, and B. Armstrong. 2003.
Juvenile herring surveys: methods and data base. Can. Manuscr. Rep. Fish. Aquat. Sci. 2651: 31p.

TABLE OF CONTENTS

LIST OF TABLES IV
LIST OF FIGURES IV
ABSTRACT V
RÉSUMÉ VI
INTRODUCTION1
METHODS 1
SEINING OPERATIONS 2
BIOLOGICAL SAMPLE PROCESSING 2
PLANKTON SAMPLING 3
LABORATORY SAMPLING 4
DATABASE DESIGN 4
DATES: 4
CATCH: 5
GUT: 5
PLANKTON: 6
HERRING: 7
OTHER SPECIES: 7
SPECIES: 8
LATITUDE/LONGITUDE: 8
ACKNOWLEDGEMENTS 8
REFERENCES 9

LIST OF TABLES

Page
Table 1. Survey dates and sampling methods from 1990-2001 11
Table 2. Juvenile herring sampling station co-ordinates 12
Table 3. Sampling summary 17
Table 4. \quad Categories of fish and invertebrates identified from 1990-2001 24
Table 5. Categories of organisms from plankton and stomach samples 25
LIST OF FIGURES
Page
Fig 1. Lower Strait of Georgia transect locations 27
Fig 2. Upper Strait of Georgia and Lower Johnstone Strait transect locations 28
Fig 3. Upper Johnstone Strait transect locations 29
Fig 4. Plankton split design 30
Fig 5. Herring stock assessment statistical areas 31

Abstract

Thompson, M., C. Hrabok, D.E. Hay, J. Schweigert, C. Haegele, and B. Armstrong. 2003. Juvenile herring surveys: methods and data base. Can. Manuscr. Rep. Fish. Aquat. Sci. 2651: 31p.

Juvenile Pacific herring (Clupea pallasi) surveys were conducted from 1990 to 2001 in the Strait of Georgia and Johnstone Strait. Usually two or more surveys were made each year in late spring and early fall, between May and October. The survey sampling design consisted of ten core transects positioned throughout the Strait of Georgia. Each transect had between three and five sampling 'stations' where purse seine sets were made. On each transect, the stations started at the shore, with each station about one km apart extending out towards the channel. The exact co-ordinates of each station were known, and fishing was conducted on exactly the same locations in all surveys. The ten transects were sampled in all years, but additional transects and stations were added in some years. These additional transects and stations were used to address specific inquiries, such as the prevalence of herring in mid-Strait waters or distribution north of the Strait of Georgia. Catches were examined on deck and subsamples were fixed in seawater formalin for later analysis in the laboratory. This included counts and measurements of juvenile herring and salmonids along with other species. In addition plankton samples were taken with small-mesh bongo nets. All sampling data were entered into a relational database (Access©). This report describes the sampling methodology, methods of catch quantification, and the design of the database.

RÉSUMÉ

Thompson, M., C. Hrabok, D.E. Hay, J. Schweigert, C. Haegele, and B. Armstrong. 2003. Juvenile herring surveys: methods and data base. Can. Manuscr. Rep. Fish. Aquat. Sci. 2651: 31p.

Nous avons effectué des relevés du hareng du Pacifique juvénile (Clupea pallasi) de 1990 à 2001 dans les détroits de Georgia et de Johnstone au rythme de deux ou plus par année, soit à la fin du printemps (mai) et au début de l'automne (octobre). Le plan d'échantillonnage comprenait dix transects de base répartis dans le détroit de Georgia. Chaque transect comptait de trois à cinq stations d'échantillonnage à la seine coulissante. La première station de chaque transect était toujours située sur la rive, et les autres suivaient à environ un kilomètre d'intervalle en direction du chenal. Puisque nous connaissions les coordonnées exactes de chaque station, nous avons échantillonné chaque année aux mêmes endroits sur les dix transects. Nous avons ajouté des transects et des stations au cours de certaines années pour étudier des questions précises, comme le nombre de harengs dans le milieu du détroit de Georgia ou leur distribution au nord de ce même détroit. Nous avons analysé les prises à bord des bateaux; cela comprenait le dénombrement et la mesure de harengs et salmonidés juvéniles et d'autres espèces. De plus, nous avons conservé des sous-échantillons dans une solution d'eau salée et de formaldéhyde pour analyse ultérieure en laboratoire. Nous avons également prélevé des échantillons de plancton à l'aide de filets à petites mailles de type bongo. Toutes les données d'échantillonnage ont été entrées dans une base de données relationnelle (Access ${ }^{\ominus}$). Ce rapport décrit les méthodes d'échantillonnage et de quantification des prises ainsi que la structure de la base de données.

INTRODUCTION

Purse seine surveys to determine the distribution and abundance of juvenile herring in the Strait of Georgia have been conducted annually since 1990, except for 1995. The surveys were conducted in the spring (May and June) and late summer (September and October). Additional mid-summer surveys occurred in some years. In general, all surveys consisted of purse seining on the ten core transects, each with about 3-5 sampling stations, but additional transects were added in some years (Figs. 1 and 2). In 1997 and 1998 the surveys were extended to include southern and northern Johnstone Strait (Fig. 3). Sampling locations and methodology were consistent in all years since 1991 when the sampling gear changed from hand seining to purse seining.

The main objective of the juvenile herring surveys was to estimate the density and relative abundance of the juvenile herring population in the Strait of Georgia as a potential predictor of recruitment. In British Columbia, most herring join the sexually maturing population at age-3, so the number of age-3 fish is an approximate estimate of recruitment (Hay and McCarter 1999). Sometimes this age group represents a large proportion of the population - as much as 50% in some years. Current stock assessment methods (Schweigert 2002) concentrate on estimating the numbers and biomass of fish after they have joined the spawning stock. Present methods do not provide reliable estimates of recruitment of 3-year-olds before they join the adult component of the population. The initial purpose of these surveys was to examine the relative abundance of juvenile herring as a potential predictor of annual recruitment into the spawning population. In addition to recruitment prediction, the surveys have also contributed to a better understanding of the distribution, abundance and ecological role of herring in the Strait of Georgia and Johnstone Strait.

The purpose of this report is to provide (1) a definitive description of the field sampling methods, including the times and places of all purse-seine activity, (2) document the methods of catch sampling, both in the field and laboratory, and (3) describe the structure of the resulting database.

METHODS

The surveys started with hand seining from small open vessels in 1990. In 1991 they were conducted by purse seine vessels, WALKER ROCK, KETA, or TAHLOK. Since 1996, the surveys have been conducted from the 13.7 m vessel Walker Rock. Crew sizes have varied over the years depending on the method and vessel used (Table 1).

Since 1990, one to four surveys were performed each year. Each survey would perform the ten core transects plus any additional locations that were deemed useful to address inquires about prevalence of juvenile herring in mid-Strait waters or distribution north of the Strait of Georgia. Spring surveys (cruise 1) were carried out between late May to early July. Fall surveys (cruise 2) were carried out between early September to mid-October. Four surveys were performed in 1990 and 1991 with all being performed between May and October. A single survey was performed in the fall of 1998. The ten core transects range from Active Pass in the south to Cortes Island in the north of the Strait of Georgia. Additional transects have stretched the study area from

Plumper Sound in the south of the Strait of Georgia, north to Codrington Point in the Johnstone Strait.

In 1990 the surveys were limited to a relatively few areas but expanded in 1991. Since 1991, ten core transects were established at approximately equal intervals around the perimeter of the Strait of Georgia (Table 2, Figs. 1 and 2). The transects were located based on either 'open coast' or 'channel sites' (Haegele 1997). 'Open coast' transects (1, 3,5,9 and 11) were located perpendicular to shore and consisted of five stations approximately one km apart. 'Channel' transects ($2,4,6,8$ and 10) were located across channels with the outer stations about 360 m from high water ranging from 3 to 400 m deep. Table 2 provides approximate bathymetry data attained from CHS charts in Arcview©. Each transect consisted of a mid-channel station, and one station between each outer and mid-channel station for a total of five stations. Channel stations were also about one km apart (Haegele 1997). Every attempt was made to sample on station; however, weather and tidal conditions resulted in some variation of fishing positions. Database latitude and longitude positions do not reflect this slight variation. Table 3 provides a summary of all sampling types and locations.

Sampling began after dusk as herring rise in the water column to feed on plankton at night (Haegele 1997). Plankton sampling was conducted first, followed by seining, which was completed by dawn.

SEINING OPERATIONS

In 1990, cruises 1 and 2 used a 75 m long by 20 m deep hand seine net deployed from a 6.1 m skiff, whereas, cruises 3 and 4 were conducted using a 400 m long by 27 m deep purse seine net. Subsequent to 1990, all sets were made with the same gear: deep purse seine net (220 m long by 27 m deep) with an estimated fished area of $3851 \mathrm{~m}^{2}$. All three net sizes had knot-less marquisette web that retained fish $>3 \mathrm{~cm}$ long (Haegele 1995). Table 1 shows the type of vessel and net fished in each location over the study years. All purse seine sets were conducted using the same methods. Sets were conducted with the net open to the tidal direction. Under windy conditions, sets were made so that the boat was downwind from the seine bunt to prevent the net from collapsing. Inshore sets were conducted so that the open side of the $3 / 4$ set was along the shoreline (Haegele 1997; Hanson and Armstrong 1996). A skiff was deployed to tow the fishing vessel away from the net when windy or strong tidal conditions prevailed. All sets were performed 'blind' or conducted without acoustical or other indications of presence/absence of herring in the area.

BIOLOGICAL SAMPLE PROCESSING

In general, all fish landed on deck were examined. In the event of large catches (greater than 100 kg), subsamples were placed in a 40 kg tote for detailed examination of species composition. The remainder of the catch was released with the nurnber of fish estimated in number of 40 kg totes. A minimum of two totes were retained from each large set conducted between 1990 and 1994. From 1996 to present, only one tote was sampled when the catches were large. A catch total and species total was then
calculated from the retained subsample. A catch number for each species was calculated by using the following equation when a subsample was taken.

(Catch / Mean weight of species) * Total catch weight

where:
Catch $=$ total number of a specific species caught
Mean weight of species $=$ average weight (g) of specific species caught
Total catch weight $=$ sum weight (g) of all species caught
Sampled catches were immediately separated into herring, salmonids or other species. Salmonids were identified to species, labelled and preserved in a 3.7% formaldehyde and seawater solution. Other fish species were identified, recorded and released. Table 4 shows the species composition of all fish and invertebrates captured.

For each catch an estimated sample size of 200 juvenile herring (age groups $0+$ and $1+$) was preserved when possible. Larger, older herring, ages $2+$ or greater were preserved in the same manner. On deck, herring ages were determined based on distinct differences in length among the three main groups of herring: age $0+$, age 1+ and ages $2+$ and older. The following table shows the spring and fall herring length/age divisions used for ageing (Hanson and Armstrong 1996).

Age	Spring (May - July)	Fall (September - October
$0+$	$<72 \mathrm{~mm}$	$<114 \mathrm{~mm}$
$1+$	73 to 161 mm	115 to 161 mm
$2+$	$>162 \mathrm{~mm}$	$>162 \mathrm{~mm}$

Maximum sample sizes of 20 juvenile salmon were preserved when possible.
When the required number of species was not met, the total catch would be preserved and labelled 'ALL'. When a sufficiently large catch occurred, a 'SAMPLE' consisting of 200 juvenile herring as well as 20 salmonids of each species was retained. These designations allowed for easier processing in the lab.

PLANKTON SAMPLING

Since 1991, plankton samples have been collected using a 19 cm diameter bongo net with a 350 micron mesh. In 1990, cruise 4 used a 57 cm diameter net (these data are not included in the database). The volume of seawater filtered through the nets was measured using a General Oceanics® model 2030R flowmeter. Plankton was usually collected just prior to dusk using a stepped oblique tow. The bongo nets were lowered to 20 m and raised 1 m every 15 seconds with an electric winch. In shallow water, the bongo nets were lowered to 10 m and raised every 30 seconds. During plankton tows, a vessel speed of five knots was used while circling the station.

In 1996 plankton tows were only conducted at 2 stations (\#2 and \#4) along each transect (Hanson and Armstrong 1996). Prior to and after 1996, plankton was collected from most stations along each transect (Table 3). After 1996, only a few of the yearly plankton samples were analysed due to financial constraints. Plankton samples were preserved in a 3.7% seawater formaldehyde solution.

LABORATORY SAMPLING

Preserved fish were transported to the Pacific Biological Station for analysis. Prior to analysis, the samples were soaked overnight under running tap water to flush away excessive formalin. Herring, salmon and occasionally other species were then measured for length (mm) and weight (g). Herring were measured for standard lengths (tip of snout to end of hypural plate) and salmon for fork lengths (tip of snout to tail fork). Weight was measured to the nearest tenth of a gram for both species. Several fish identification keys were used to assist in the identification of juvenile salmonids and other species (Hanson and Armstrong 1996; Hart 1973; Lamb and Edgell 1986; Pollard et al. 1997). Table 4 provides a listing of all species captured.

Laboratory analyses of plankton and the contents of fish stomachs were conducted by DFO technical staff from 1990 until 1994 and by contract (AMC Technical Services Ltd.) from 1996 to present. Sampling methods were consistent over time, but prior to 1996, copepods were lumped together and subsequently have been identified to the species level.

A volumetric splitter was used to reduce the sample size to a point where organisms could be conveniently counted and identified in a counting tray using a stereo microscope. The sample was successively split in half to a target size of approximately 300 organisms for counting. The procedure for splitting plankton samples is shown in Fig. 4.

Stomachs of some of the preserved fish were analysed for content. Stomachs were rated for fullness (empty, trace, half full and full) and state of digestion (fresh, partly, mostly, and complete) and contents identified (Table 5) and counted (Haegele 1997).

DATABASE DESIGN

The data were compiled into eight main tables. The data tables were as follows: Dates, Catch, Gut, Plankton, Herring, and Other Species. Latitude/Longitude and Species are two other data tables that were included into the database to provide additional reference information.

DATES:

This data table consists of fields that list all transects (TRAN) and stations (STN) for each seine and plankton set for each survey. Figures 1,2 and 3 show all transect locations. In 1990 and 1991 four surveys were performed. Each subsequent year,
excluding 1995 and 1998, two surveys were conducted. No surveys were performed in 1995 and a single spring survey was performed in 1998. The spring survey of 1999 was a limited outing of seven transects creating a small data set containing only herring measurement data. Table 3 shows the complete sampling synopsis for all years.

The "Dates" table contains times and locations for both plankton and purse seining sampling. A primary key field called CATCHID was created to link all relevant fishing log data to catch, gut, plankton, herring and other species data tables. This primary key provides a unique value for each field, thus providing a link between all related data in each data table. CATCHID was created as a 10 -digit sequential number by combining the 4 -digit year, 1-digit cruise, 3 -digit transect and the 2-digit station numbers (i.e. $1996100502=$ year 1996, cruise 1 , transect 5 , station 2). The creation of this primary key also decreased the repetition of common data among data tables such as year, cruise, date, month, day, transect and station information. Day of year (DOY) information was intentionally removed from the CATCHID primary key due to several plankton tows being performed a day before or after the catch seines (due to bad weather or time constraints). Therefore the DOY could not be used as a common referential linkage between all the data tables.

CATCH:

The "Catch" data table refers to all fish and significant invertebrate species caught at each station. If no fish were caught, that station was not included in this data table. The SPECIES heading is a 4-letter abbreviation of species caught. Table 4 shows the full species names. Number (NO) is the total count of fish caught and the weight (WT) for these fish in grams (g).

A summary of all data tables with relation to year and survey is shown in Table 3. Highlighted cells represent gut and/or herring sampling that do not have corresponding catch data. To obtain a gut or herring sample, a corresponding catch date should have been provided. Unfortunately, a few samples do not contain the required corresponding catch information and these have been bolded in Table 3. This should be taken into account when comparing catch, gut and herring data together since some gut/herring data can appear without corresponding catch information.

GUT:

Captured fish subsamples (SPECIES) were analysed for stomach content, species (GUTSPECIES) and amount of content (COUNT). These fish included herring ($0+, 1+$ and $2+$), trout, chinook, chum, coho, pink and sockeye salmon. The stomachs of ten $0+$ and ten $1+$ herring from each transect, when available, were retained for content analysis (Haegele and Armstrong 1997, 1998, 1999, 2000, 2001). Table 5 provides a complete list of plankton species analysed from stomach contents.

The fullness of the stomachs (FULL) was recorded using the following scale:

- $0=$ empty
- 1 = trace
- 2 = half full
- 3 = full

The state of the stomach contents (STATE) was recorded using the following scale:

- 1 = fresh
- 2 = partly digested
- 3 = mostly digested
- 4 = totally digested

Two gaps in original data will have an impact on gut analysis, as error exists in matching gut content to fish capture:

1. Gut samples were not taken in 1994, 1997, 1998 and 1999. The gut data collected for 1996, 2000 and 2001 data were missing station numbers. The CATCHID primary key then had to be altered to allow some transects to have a default station number of zero. These transects are 1-6, 8-11, 14-16, 19-22, 25, 36, and 37 (bolded default station numbers are shown in Table 2).
2. Original gut data for 1990 and 1991 were labelled as having a cruise number of 1 or 2 , when there were four surveys performed for both years. Stations $1,2,3,4$ and 5 were visited during all four surveys so it is not possible to associate samples with their corresponding surveys. Catch data showed a few unique stations that were sampled in cruises 3 and 4 and changes were made to the original gut data accordingly (i.e. Transect 2, stations 11 through 16). Wherever possible, dates were taken from the catch data to correspond with survey and transect information to fill missing data.

PLANKTON:

Most plankton samples were collected using a 19 cm diameter bongo net with a 350 micron mesh. The only exception to this was 1990 cruise 4 when a 57 cm diameter bongo was used instead. These data have been excluded from the data set.
Beginning flow (FLOWB) and end flow (FLOWE) were recorded from the General Oceanics® model 2030R flowmeter. The following formula is used to calculate the volume of water filtered (VOL) in m^{3} :
$\mathbf{V}=\left(\mathbf{A}^{*}{ }^{*}{ }^{*} K\right) / 999,999$
where:
$\mathbf{V}=$ volume of water filtered through plankton net $\left(\mathrm{m}^{3}\right)$
$\mathbf{A}=$ area of net opening ($0.0283 \mathrm{~m}^{2}$)
F = number of revolutions recorded by flowmeter (FLOWE - FLOWB)
$K=$ high speed rotor constant of 7.0 cm rotor $(26,873)$
999,999 = six-digit counter readout

Initial separations of plankton samples were screened using 1000 or 250 micron sieves. Volumetric splits (SPLIT) were performed to reduce large samples into subsequent subsamples for quicker processing. The resulting wet weight of the subsample was taken and recorded (WT) in grams (g). Figure 4 shows a diagram of plankton sample splits.

Number (NO) is the number of plankters of a specific species or group within the plankton sample per m^{3}. Scientific names, common names and abbreviations (SPECIES) are shown in Table 5.

Plankton samples were organised into eight phyla and separated into 23 corresponding categories as seen in Table 5. Starting in 1996, copepods were further separated into genus and species whenever possible. Therefore within the plankton data table, since 1996, copepods have been totalled for each sample (referred to as COPE) as well as having their own species headings and totals.

There are two other species abbreviations that are composed of a total from other groups. Barnacles (BARN) are a sum of Cirripedia cyprids (CIRC) and Cirripedia nauplii (CIRN). Crabs (CRAB) are a sum of crab megalopia (CRAM) and crab zoea (CRAZ).
From 1990 to 1994, ophistobranch (PTER) or prosobranch (PROS) gastropods data were recorded individually. Both Clione sp. and Limacina sp. ophistobranch gastropods (PTER) have been combined with prosobranch gastropods (PROS) under gastropods (GAST) since 1996.

HERRING:

From 1990 to 1994, herring were recorded as herring adult (HERA) and herring juvenile (HERJ). Since 1996, herring were recorded as HER0+, HER1+ and HER2+ depending on their size class. To produce a cohesive database, HERJ were changed to HER0+ and HERA were changed to their corresponding year class of HER1+ or HER2+ based on size-at-age histograms.

Juvenile herring were weighed (WT) to the nearest tenth of a gram (g) and standard length measured (LEN) to the nearest millimetre (mm). Juvenile herring age is a calendar day (DOY) determined by assuming a date of birth of April 1 (day 90). Day of capture is found on the "Dates" data table (DATE).

AGE 0+ = day of capture -90
AGE $1+=($ day of capture +365$)-90$
AGE 2+ = (day of capture + 730) -90

OTHER SPECIES:

"Other Species" is a data table composed of fish species other than herring that were measured and weighed. These include capelin, trout, chum, coho, sockeye, pink and chinook salmon. Salmonids were measured to fork length in millimetres (mm) while
capelin were measured to standard length in millimetres (mm). Both were weighed to the nearest tenth of a gram (g). When recorded, the method of preservation (PRESERVE) was included. Freezing and a diluted seawater formaldehyde solution were the only two methods of preservation used during the surveys.

SPECIES:

This data table is an informational component for the six main data tables. "Species" provides family and category (FAM_CAT) groupings as well as common and scientific names for all species of fish and plankton captured during this study. Additional notes (NOTES) are provided for many species regarding life stage or age class separations. Within the database, both fish and plankton species lists (Tables 4 and 5) are combined to allow for easier relationship connections.

LATITUDE/LONGITUDE:

As with the "Species" data table, the "latitude and longitude" data table is an informational component for the six main data tables. This data set provides all decimal degree latitude (LAT_N) and longitude (LONG_W) information for every transect (TRAN) and station (STN) covered during the Juvenile Herring Survey. Statistical Area, section and location code (LOCCODE) are designations based on Pacific herring stock assessment areas (Haist and Rosenfeld 1988). Figures 1, 2 and 3 show all stations sampled during the juvenile herring survey. Figure 5 shows the statistical areas within the Strait of Georgia and lower Johnstone Strait.

ACKNOWLEDGEMENTS

The Herring Conservation and Research Society have funded the juvenile herring surveys from 1996 to present. Fisheries and Oceans Canada provided the research vessels and laboratory facilities. Doug Miller assisted with fieldwork, laboratory analysis and data entry over many years. Dennis Chalmers, Doug Henderson and the many summer and co-op students assisted with collecting and processing the samples. Carol Cooper conducted the plankton and stomach analyses. Peter Midgley and Bruce McCarter provided advice regarding the database. Kristen Daniel assisted with provision of maps made in Arcview©.

REFERENCES

Haegele, C.W. 1995. Juvenile herring surveys (1990-1993) in the Strait of Georgia. p. 23-38. In: Proceedings of the Seventh Pacific Coast Herring Workshop, January 27-28, 1994. Hay, D., and P.B. McCarter (eds). Vancouver, B.C. Can. Tech. Rep. Fish. Aquat. Sci. 2060: 243 p.

Haegele, C. W. 1997. The occurrence, abundance and food of juvenile herring and salmon in the Strait of Georgia, British Columbia in 1990 to 1994. Can. Man Rep. Fish. Aquat. Sci. 2390: 124 p.

Haegele, C. W., and R. W. Armstrong. 1997. Unpublished report. Juvenile herring survey of the Strait of Georgia, June and September 1996. Report submitted by Armstrong Bio/Tech Services of Nanaimo, B.C. to the Herring Conservation and Research Society. 74 p.

Haegele, C. W., and R. W. Armstrong. 1998. Unpublished report. Juvenile herring survey of the Strait of Georgia, June and September 1997. Report submitted by Armstrong Bio/Tech Services of Nanaimo, B.C. to the Herring Conservation and Research Society. 96 p .

Haegele, C.W., and R.W. Armstrong. 1999. Unpublished report. Juvenile herring survey of the Strait of Georgia and Johnstone Strait, September 1998. Report submitted by Armstrong Bio/Tech Services of Nanaimo, B.C. to the Herring Conservation and Research Society. 81 p.

Haegele, C.W., and R.W. Armstrong. 2000. Unipublished report. Juvenile herring survey of the Strait of Georgia and Johnstone Strait, September 1999. Report submitted by Armstrong Bio/Tech Services of Nanaimo, B.C. to the Herring Conservation and Research Society. 81 p.

Haegele, C.W., and R.W. Armstrong. 2001. Unpublished report. Juvenile herring survey of the Strait of Georgia, June and September-October 2000. Report submitted by Armstrong Bio/Tech Services of Nanaimo, B.C. to the Herring Conservation and Research Society. 98 p .

Haist, V., and L. Rosenfeld. 1988. Definitions and codings of localities, sections and assessment regions for British Columbia herring data. Can. Man. Rep. Fish. Aquat. Sci. 1994: 123 p.

Hanson, C.E., and R.W. Armstrong. 1996. Unpublished report. Strait of Georgia juvenile herring survey: Sampling protocol and techniques. 10 p .

Hart, J.L. 1973. Pacific fishes of Canada. Fisheries Research Board of Canada: Bulletin 180. Ottawa, Canada. 740 p.

Hay, D.E., and P.B. McCarter. 1999. Age of sexual maturation and recruitment in Pacific herring. Can. Stock Assessment Secretariat Research Document 99/175. 39 p.

Lamb, A., and P. Edgell. 1986. Coastal fishes of the Pacific northwest. Harbour Publishing. Madeira Park, Canada. 224 p.

Pollard, W.R., G.F. Hartman, C. Groot and P. Edgell. 1997. Field identification of coastal juvenile salmonids. Harbour Publishing. Madeira Park, Canada. 32 p.

Schweigert, J. 2002. Stock assessment for British Columbia herring in 1996 and forecasts of the potential catch in 2003. Can. Stock Assessment Secretariat Research Document 02/110. 91 p.

Table 1. Summary of research surveys showing the year and month (YEAR, MONTH) of each survey, as well as the corresponding survey number (cruise \#) and vessel used. The captain columns indicate the initials of the captains: Doug Miller (DM) and Bob Armstrong (BA). The two seine methods (seine method are shown). Three net sizes were used (net size) which resulted in three different areas of total fishing area.

Year Month	Cruise \#	Vessel	Captain	Seine Method	Net Size	Net Area Fished
1990 May-June		1 land-based	DM	hand	75 m by 20 m	448m2
1990 June-July		2 land-based	DM	hand	75 m by 20 m	448m2
1990 August		3 KETA	DM	purse	400 m by 27 m	12,732m2
1990 October		4* KETA	DM	purse	400 m by 27 m	12,732m2
1991 May-June		1 TAHLOK	DM	purse	220 m by 27 m	3851m2
1991 July		2 TAHLOK	DM	purse	220 m by 27 m	3851m2
1991 Aug.-Sept.		3 KETA	DM	purse	220 m by 27 m	3851m2
1991 October		4 KETA	DM	purse	220 m by 27 m	3851m2
1992 June		1 TAHLOK	DM	purse	220 m by 27 m	3851m2
1992 September		2 KETA	DM	purse	220 m by 27 m	3851m2
1993 June		1 TAHLOK	DM	purse	220 m by 27 m	3851m2
1993 September		2 KETA	DM	purse	220 m by 27 m	3851m2
1994 June		1 TAHLOK	DM	purse	220 m by 27 m	3851m2
1994 September		2 KETA	DM	purse	220 m by 27 m	3851m2
1996 June		1 WALKER ROCK		purse	220 m by 27 m	3851m2
1996 September		2 WALKER ROCK		purse	220 m by 27 m	3851m2
1997 June		1 WALKER ROCK		purse	220 m by 27 m	3851m2
1997 September		2 WALKER ROCK		purse	220 m by 27 m	3851m2
1998 Sept.-Oct.		1 WALKER ROCK		purse	220 m by 27 m	3851m2
1999 June		1 WALKER ROCK		purse	220 m by 27 m	3851m2
1999 Sept.-Oct.		2 WALKER ROCK		purse	220 m by 27 m	3851m2
2000 June		1 WALKER ROCK		purse	220 m by 27 m	3851m2
2000 Sept.-Oct.		2 WALKER ROCK		purse	220 m by 27 m	3851m2
2001 June		1 WALKER ROCK		purse	220 m by 27 m	3851m2
2001 Sept.-Oct.		2 WALKER ROCK		purse	220 m by 27 m	3851m2

*Some sets on cruise 4 in 1990 used hydro acoustics to locate herring concentrations.

Table 2. Juvenile herring sampling locations showing transect names (TRANNAME) with all transects (TRAN) and station numbers (STN) used during the survey. The statistical areas (STATAREA), subareas (SECTION), location code (LOCCODE) are all geographical units associated with herring spawn assessment areas. The latitude (LAT) and longitude (LONG), in decimal degrees are indicated for each transect. Depth intervals (DEPTH) in metres were based on reference of the transect positions to Canadian Hydrographic charts. Bolded cells represent the default station 0 's to correct for gut data omissions.

TRANNAME	TRAN	STN	STATAREA	SECTION	LOCCODE	LAT	LONG	DEPTH
Clarke Rock	1	0	17	172	1563			
Clarke Rock	1	1	17	172	1563	49.22357	-123.943	10-20
Clarke Rock	1	2	17	172	1563	49.23333	-123.932	50-100
Clarke Rock	1	3	17	172	1563	49.23665	-123.922	100-200
Clarke Rock	1	4	17	172	1563	49.237	-123.912	100-200
Clarke Rock	1	5	17	172	1563	49.238	-123.902	200-300
Clarke Rock	1	6	17	172	1563	49.24885	-123.89	200-300
Clarke Rock	1	7	17	172	1563	49.27142	-123.839	400-500
Clarke Rock	1	8	17	172	1563	49.29108	-123.795	400-500
Clarke Rock	1	9	17	172	1563	49.31052	-123.753	300-400
Yellow Point	2	0	17	173	1771			
Yellow Point	2	1	17	173	1771	49.04243	-123.747	5-10
Yellow Point	2	2	17	173	1771	49.048	-123.722	50-100
Yellow Point	2	3	17	173	1771	49.0558	-123.722	30-50
Yellow Point	2	4	17	173	1771	49.06	-123.708	50-100
Yellow Point	2	5	17	173	1771	49.06583	-123.698	30-50
Yellow Point	2	11	17	173	1771	49.025	-123.627	30-50
Yellow Point	2	12	17	173	1771	48.92333	-123.658	100-200
Yellow Point	2	13	17	173	1771	48.92333	-123.658	100-200
Yellow Point	2	14	17	173	1771	48.92333	-123.658	100-200
Yellow Point	2	15	17	173	1771	48.87283	-123.405	30-50
Yellow Point	2	16	17	173	1771	48.79217	-123.247	10-20
Bowser	3	0	14	143	825			
Bowser	3	1	14	143	825	49.45167	-124.68	5-10
Bowser	3	2	14	143	825	49.45917	-124.672	30-50
Bowser	3	3	14	143	825	49.46667	-124.663	50-100
Bowser	3	4	14	143	825	49.476	-124.657	100-200
Bowser	3	5	14	143	825	49.482	-124.651	50-100
Bowser	3	6	14	143	825	49.47798	-124.609	100-200
Bowser	3	7	14	143	825	49.488	-124.56	100-200
Bowser	3	8	14	143	825	49.49705	-124.511	200-300
Bowser	3	9	14	143	825	49.50687	-124.461	100-200
Henry Bay	4	0	14	142	1871			
Henry Bay	4	1	14	142	1871	49.59333	-124.875	20-30
Henry Bay	4	2	14	142	1871	49.601	-124.845	20-30
Henry Bay	4	3	14	142	1871	49.59833	-124.853	30-50
Henry Bay	4	4	14	142	1871	49.598	-124.866	30-50
Henry Bay	4	5	14	142	1871	49.60198	-124.833	2-5
Henry Bay	4	11	14	142	1871	49.517	-124.805	50-100
French Creek	5	0	14	143	834			
French Creek	5	1	14	143	834	49.34833	-124.35	15-20
French Creek	5	2	14	143	834	49.35332	-124.338	50-100
French Creek	5	3	14	143	834	49.3575	-124.327	50-100
French Creek	5	4	14	143	834	49.368	-124.323	100-200
French Creek	5	5	14	143	834	49.373	-124.317	200-300

Table 2 (Cont'd)

TRANNAME	TRAN	STN	STATAREA	SECTION	LOCCODE	LAT	LONG	DEPTH
French Creek	5	5	14	143	834	49.373	-124.317	200-300
French Creek	5	7	14	143	834	49.38928	-124.257	300-400
French Creek	5	8	14	143	834	49.40948	-124.216	300-400
French Creek	5	11	14	143	834	49.34417	-124.307	50-100
Trincomali Channel	6	0	17	173	938			
Trincomali Channel	6	1	17	173	938	48.85492	-123.43	20-30
Trincomali Channel	6	2	17	173	938	48.862	-123.423	30-50
Trincomali Channel	6	3	17	173	938	48.86667	-123.417	30-50
Trincomali Channel	6	4	17	173	938	48.873	-123.407	30-50
Trincomali Channel	6	5	17	173	938	48.87665	-123.407	50-100
Trincomali Channel	6	11	17	173	938	49.9615	-124.872	50-100
Trincomali Channel	6	12	17	173	938	49.96017	-124.811	100-200
Trincomali Channel	6	13	17	173	938	49.89	-124.7	100-200
Oyster River	7	1	14	141	821	49.87602	-125.11	0-2
Oyster River	7	2	14	141	821	49.87602	-125.11	0-2
Oyster River	7	3	14	141	821	49.87602	-125.11	0-2
Oyster River	7	4	14	141	821	49.87602	-125.11	0-2
Oyster River	7	5	14	141	821	49.87602	-125.11	0-2
Smelt Bay	8	0	13	135				
Smelt Bay	8	1	13	135	771	50.03583	-125	30-50
Smelt Bay	8	2	13	135	771	50.0456	-125.016	50-100
Smelt Bay	8	3	13	135	771	50.05413	-125.03	15-20
Smelt Bay	8	4	13	135	771	50.036	-125	30-50
Atrevida Reef	9	0	15	152	858			
Atrevida Reef	9	1	15	152	858	49.91642	-124.659	20-30
Atrevida Reef	9	2	15	152	858	49.91202	-124.673	100-200
Atrevida Reef	9	3	15	152	858	49.90832	-124.686	100-200
Atrevida Reef	9	4	15	152	858	49.901	-124.675	100-200
Atrevida Reef	9	5	15	152	858	49.913	-124.668	50-100
Cape Cockburn	10	0	16	162	906			
Cape Cockbum	10	1	16	162	906	49.66953	-124.198	50-100
Cape Cockbum	10	2	16	162	906	49.662	-124.218	200-300
Cape Cockbum	10	3	16	162	906	49.65082	-124.242	300-400
Cape Cockbum	10	4	16	162	906	49.642	-124.255	300-400
Cape Cockbum	10	5	16	162	906	49.642	-124.278	200-300
Secret Cove	11	0	16	163	889			
Secret Cove	11	1	16	163	889	49.53498	-123.977	30-50
Secret Cove	11	2	16	163	889	49.53165	-123.995	100-200
Secret Cove	11	3	16	163	889	49.52833	-124.014	100-200
Secret Cove	11	4	16	163	889	49.527	-124.04	20-30
Secret Cove	11	5	16	163	889	49.523	-124.06	200-300
Plumper Sound	12	1	18	182	1012	48.80298	-123.266	10-20
Plumper Sound	12	2	18	182	1012	48.81	-123.254	50-100
Plumper Sound	12	3	18	182	1012	48.81657	-123.241	20-30
Crofton	13	1	17	173	965	48.85688	-123.615	5-10
Crofton	13	2	17	173	965	48.86032	-123.584	100-200
Crofton	13	3	17	173	965	48.86345	-123.559	20-30
Mistaken Island	14	0	14	143	1546			
Mistaken Island	14	1	14	143	1546	49.32322	-124.222	20-30
Mistaken Island	14	2	14	143	1546	49.32	-124.231	100-200
Mistaken Island	14	3	14	143	1546	49.31498	-124.243	20-30

Table 2 (Cont'd)

TRANNAME	TRAN	STN	STATAREA	SECTION	LOCCODE	LAT	LONG	DEPTH
Qualicum Beach	15	0	14	143	810			
Qualicum Beach	15	1	14	143	810	49.35833	-124.448	15-20
Qualicum Beach	15	2	14	143	810	49.367	-124.281	200-300
Qualicum Beach	15	3	14	143	810	49.377	-124.448	50-100
Qualicum Bay	16	0	14	143	1815			
Qualicum Bay	16	1	14	143	1815	49.40998	-124.623	5-10
Qualicum Bay	16	2	14	143	1815	49.417	-124.612	20-30
Qualicum Bay	16	3	14	143	1815	49.424	-124.602	50-100
Komas Bluff	17	1	14	142	837	49.585	-124.786	15-20
Komas Bluff	17	2	14	142	837	49.591	-124.773	50-100
Komas Bluff	17	3	14	142	837	49.598	-124.76	50-100
Homby Island	18	1	14	142	819	49.552	-124.714	15-20
Homby island	18	2	14	142	819	49.562	-124.718	20-30
Homby Island	18	3	14	142	819	49.571	-124.723	20-30
Marina Island	19	0	13	135	796			
Marina Island	19	1	13	135	796	50.0893	-125.056	>0
Marina Island	19	2	13	135	796	50.09415	-125.075	100-200
Marina island	19	3	13	135	796	50.101	-125.083	100-200
Savary Island	20	0	15	152	854			
Savary Island	20	1	15	152	854	49.94842	-124.78	20-30
Savary island	20	2	15	152	854	49.955	-124.783	100-200
Savary Island	20	3	15	152	854	49.96155	-124.789	100-200
Texada Island	21	0	16	163	872			
Texada Island	21	1	16	163	872	49.71493	-124.375	30-50
Texada Island	21	2	16	163	872	49.7433	-124.38	200-300
Texada Island	21	3	16	163	872	49.76818	-124.383	15-20
Bargain Bay	22	0	16	163	883			
Bargain Bay	22	1	16	163	883	49.60372	-124.036	15-20
Bargain Bay	22	2	16	163	883	49.6	-124.05	30-50
Bargain Bay	22	3	16	163	883	49.59665	-124.067	100-200
Trail Bay	23	1	29	292	870	49.448	-123.731	0-2
Trail Bay	23	2	29	292	870	49.442	-123.743	100-200
Trail Bay	23	3	29	292	870	49.436	-123.753	100-200
Gower Point	24	1	28	280	1346	49.39548	-123.564	2-5
Gower Point	24	2	28	280	1346	49.38833	-123.572	100-200
Gower Point	24	3	28	280	1346	49.37917	-123.581	100-200
Gower Point	24	4	28	280	1346	49.36052	-123.64	50-100
Gower Point	24	5	28	280	1346	49.34397	-123.676	200-300
Gower Point	24	6	28	280	1346	49.32053	-123.734	200-300
Thrasher Rock	25	0	29	291	1887			
Thrasher Rock	25	1	29	291	1887	49.11888	-123.681	20-30
Thrasher Rock	25	2	29	291	1887	49.1272	-123.657	$30-50$
Thrasher Rock	25	3	29	291	1887	49.156	-123.576	200-300
Thrasher Rock	25	4	29	291	1887	49.18403	-123.503	300-400
Thrasher Rock	25	5	29	291	1887	49.2134	-123.42	200-300
Spratt Bay	26	1	15	152	910	49.74347	-124.508	20-30
Westview	27	1	15	152	909	49.82435	-124.53	15-20
Stuart Island	28	1	13	136	783	50.3467	-125.147	20-30
Francis Bay	29	1	16	163	16	50.34882	-125.04	10-20
Redonda Bay	30	1	15	152	15	50.26003	-124.969	$30-50$
Cortes Island	31	1	15	152	850	50.21373	-124.998	100-200
Evans Bay	32	1	13	136	790	50.18737	-125.088	$30-50$

Table 2 (Cont'd)

TRANNAME	TRAN	STN	STATAREA	SECTION	LOCCODE	LAT	LONG	DEPTH
Village Bay	33	1	13	136	1623	50.15993	-125.187	20-30
Drew Harbour	34	1	13	135	1470	50.0991	-125.193	20-30
Qualicum-offshore	35	1	14	143	1815	49.45208	-124.523	200-300
Qualicum-offshore	35	2	14	143	1815	49.43875	-124.461	200-300
Cape Lazo	36	0	14	142	814			
Cape Lazo	36	1	14	142	814	49.74827	-124.931	15-20
Cape Lazo	36	2	14	142	814	49.77568	-124.865	100-200
Cape Lazo	36	3	14	142	814	49.80592	-124.803	200-300
Cape Lazo	36	4	14	142	814	49.8358	-124.74	100-200
Fraser River	37	0	29	291	1352			
Fraser River	37	1	29	291	1352	49.20618	-123.293	5-10
Fraser River	37	2	29	291	1352	49.23342	-123.284	2-5
Fraser River	37	3	29	291	1352	49.27597	-123.161	0-2
Fraser River	37	4	29	291	1352	49.28272	-123.179	10-20
Fraser River	37	5	29	291	1352	49.14487	-123.291	10-20
Bute Inlet	99	2	13	134	781	50.4722	-125.107	
Tribune Point	101	1	12	123	703	50.64303	-126.483	20-30
Maple Cove	102	1	12	123	1385	50.67857	-126.464	20-30
Gilford Bay	103	1	12	123	1385	50.65683	-126.384	50-100
Doctor Islets	104	1	12	123	12	50.6556	-126.289	20-30
Bones Bay	105	1	12	123	691	50.59185	-126.357	20-30
Codrington Point	106	1	12	124	742	50.90427	-126.811	20-30
Cartwright Bay	107	1	12	124	742	50.8822	-126.776	20-30
Boyer Bay	108	1	12	124	12	50.8729	-126.707	30-50
Harry Bay	109	1	12	123	1944	50.83985	-126.641	50-100
Shaw Bay	110	1	12	126	758	50.852	-126.56	30-50
Sointula Bay	111	1	12	121	681	50.63642	-127.035	20-30
Port McNeill	112	1	12	121	681	50.59218	-127.068	20-30
Mitchell Bay	113	1	12	121	1935	50.62747	-126.852	20-30
Bauza Cove	114	1	12	123	677	50.54387	-126.819	5-10
Grower Cove	115	1	12	123	698	50.54203	-126.633	30-50
Boat Bay	116	1	12	123	698	50.52272	-126.555	20-30
Naka Creek	117	1	12	121	716	50.48087	-126.47	20-30
Forward Bay	118	1	12	121	716	50.5256	-126.388	20-30
Stimpson Reef	119	1	12	121	716	50.50635	-126.243	20-30
Blenkinsop Bay	120	1	12	121	716	50.48303	-126.007	20-30
Vere Cove	121	1	13	131	763	50.39095	-125.777	30-50
Shorter Point	122	1	13	131	1402	50.41057	-125.73	30-50
Loughborough-E	123	1	13	133	774	50.4672	-125.581	20-30
Loughborough-W	124	1	13	133	774	50.46885	-125.604	30-50
Loughborough-mid	125	1	13	133	774	50.468	-125.593	100-200
Bickley Bay	126	1	13	131	1141	50.44785	-125.397	20-30
Shoal Bay	127	1	13	131	1141	50.46033	-125.363	20-30
Frederick Arm	128	1	13	136	775	50.47647	-125.259	30-50
Richard Point	129	1	17	172	1376	50.49968	-125.356	30-50
Fanny Bay	130	1	14	142	829	50.528	-125.395	20-30
Young Passage	131	1	13	131	13	50.35412	-125.355	20-30
Hemming Bay	132	1	13	131	13	50.39342	-125.369	10-20
Otter Cove	133	1	13	131	13	50.32523	-125.449	10-20
Kanish Bay	134	1	13	132	800	50.25835	-125.337	30-50
Deepwater Bay	135	1	13	132	766	50.17485	-125.336	20-30
Lawrence Point	201	1	13	134	781	50.45533	-125.1	50-100

Table 2 (Cont'd)

TRANNAME	TRAN	STN	STATAREA	SECTION	LOCCODE	LAT	LONG	DEPTH
Amor Point	205	1	13	134	781	50.53207	-125.001	$30-50$
Francis Bay	207	1	16	163	16	50.34615	-125.03	$10-20$
Lawrence Point	208	1	13	134	781	50.4523	-125.1	$50-100$
Owen Point	210	1	14	142	829	50.4552	-125.308	$2-5$
Cape Lazo	213	1	14	142	814	49.6867	-124.84	$5-10$
Chrome Island	214	1	14	142	1519	49.47397	-124.683	$2-5$
Unknown Location	999							

Table 3. Summary of catch (c), gut (g), plankton (p) and herring (h) sampling for all years and surveys (CR) of the juvenile herring survey (1990 to 2001). Bolded cells represent gut and/or herring samples that were processed without reference to catch data

	1990					1991					1992			1993		1994		1996	
TRANNAME	TRAN	STN		CR1	CR2	CR3	CR4	CR1	CR2	CR3	CR4	CR1	CR2	CR1	CR2	CR1	CR2	CR1	CR2
Clarke Rock	1		1	cgph	cgph	cph		cgph	cgph	cph	cph	cgph	cg p	cgph	cgph	cph	cph	ch	ch
Clarke Rock	1		2	cgph	cgph	cph		cgph	cgph	cp	cph	cgph	cg p	cgph	cgph	cph	cph	cph	cph
Clarke Rock	1		3	cgp	cgph	cph		cgph	cgph	cph	$c p$	cgph	$c g p$	cgph	cgph	cph	cp	ch	ch
Clarke Rock	1		4	gp	cgph	cph		cgph	cgph	cph	cp	cgph	$c g p$	$c \rho h$	cgph	coh	cp	cph	$c p$
Clarke Rock	1		5	p	cgph	cph		cgph	cph	p	$c p$	cgph	cg	$\mathrm{c} p \mathrm{~h}$	$c p$	cph	$c p$	c	c
Clarke Rock	1		6																
Clarke Rock	1		7																
Clarke Rock	1		8																
Clarke Rock	1		9																
Yellow Point	2		1	cgph	cgph	cph		cgph	cgph	cph	cph	cgph	cgph	cgph	cgph	cph	cph	ch	ch
Yellow Point	2		2	cgp	cg ph	cph		cgph	cgph	p	cph	cgph	cgph	cgph	cgph	cph	cph	cph	cph
Yellow Point	2		3	cgp	cgph	cph		cgph	cgph	p	cph	cgph	cgph	cph	cgph	cph	coh	ch	ch
Yellow Point	2		4	cgp	cgph	cph		cgph	cgph	cph	cph	cgph	cgph	cph	cgph	cph	cph	cph	cp
Yellow Point	2		5	cgh	cgph	$\mathrm{c} \rho \mathrm{h}$		cgph	cgph	cph	cph	cgph	cgph	cgph	cgph	cph	cph	ch	ch
Yellow Point	2		11				$c \mathrm{ch}$												
Yellow Point	2		12				cgh												
Yellow Point	2		13				cgh												
Yellow Point	2		14				$c \mathrm{ch}$												
Yellow Point	2		15				cgh												
Yellow Point	2		16				$c g h$												
Bowser	3		1	cgph	cgph	$c p$		cgph	cgph	cph		cgph	cgph	cgph	cgph	cph	$c p$	ch	ch
Bowser	3		2	cgph	cgph	$\mathrm{c} \rho \mathrm{h}$	ch	cgph	cgph	cph		cgph	$\mathrm{c} p$	cgph	cgp	cph	cph	cph	cph
Bowser	3		3	cg p	$\mathbf{g P}$	coh	ch	cgph	cph	$c p$		cg ph	cg p	cph	cg p	coh	cph	ch	ch
Bowser	3		4	cgph	$g \mathrm{P}$	$\mathrm{c} p \mathrm{~h}$		cgph	cph	cp		cgph	cgp	cgph	cg p	cph	cph	cph	cph
Bowser	3		5	cgph	cgph	cph		cgph	cph	cp		cgph	cgph	cgph	cg p	cph	cph	ch	ch
Bowser	3		6																
Bowser	3		7																
Bowser	3		8																
Bowser	3		9																
Henry Bay	4		1	cgph	cph	ρ		cgph	cgph	p	cph	cgph	$\mathrm{c} p$	cgph	cgph	cph	$c p$	ch	ch
Henry Bay	4		2	cgph	cph	p		cgph	cgph	cph	cph	cg gh	$c p$	cgph	cgph	cph	cph	cph	cph
Henry Bay	4		3	cgph	cph	p		cgph	cgph	cph	cph	cgph	cgph	cgph	cgph	cph	cph	ch	ch
Henry Bay	4		4	cgph	$c g p$	p	ch	cgph	cgph	cph	cph	cgph	cgph	cph	cgph	cph	cph	cph	cph
Henry Bay	4		5	cgph	$c p$	p		$\mathrm{cg} p$	cgph	$\mathrm{c} p$	cph	cgph	cgph	cgph	cgph	cph	cph	ch	ch
Henry Bay	4		11				cgh												

Table 3 (Cont'd)

TRANNAME			1990		1991						1992		1993		1994		1996	
	TRAN STN		CR1	CR2	CR3	CR4	CR1	CR2	CR3	CR4	CR1	CR2	CR1	CR2	CR1	CR2	CR1	CR2
French Creek	5	1	¢p	cgph	${ }^{\text {cp }}$	ch	gp	cph			$c^{\text {cp }}$	cgph	cg ${ }^{\text {P }}$	cg	cph	cp	ch	$\mathrm{ch}^{\text {n }}$
French Creek	5	2	g P	cgph	${ }^{\text {cp }}$		${ }^{9} \mathrm{P}$	${ }^{\text {cp }}$			cgph	cgph	cgph	cgp	cph	cp	cph	${ }^{\text {cp }}$
French Creek	5	3	g P	cgph	${ }_{\text {cp }}$	c	ρ	${ }_{\text {cp }}$			cgph	cgph	cgph	cgp	cph	p	ch	c
French Creek	5	4		cgph	${ }^{\text {cp }}$		9 p	cph			cgph	${ }_{c p}$	cgph	${ }^{\text {c }} 8$	cph	cp	cph	${ }_{\text {cp }}$
French Creek	5	5		gp	${ }^{c p}$		cg p	p			cgph	cg p	cph	cgp	cph	cp	ch	c
French Creek	5	6																
French Creak	5	7																
French Creek	5	8																
French Creek	5	11				cgn												
Tincomali Channel	6	1					ph	cph	${ }_{\text {cp }}$		cgph	cgph	cgph	cph	p	cph	ch	ch
Trincomali Channel	6	2					cgph	cph	${ }_{\text {cp }}$		cgph	${ }_{\text {cp }}$	c9p	cgp	cph	cph	cph	${ }_{\text {cp }}$
Trincomali Channel	6	3					cgph	cph	$\mathrm{cp}^{\text {p }}$		cgph	cgph	cph	cgp	${ }_{\text {cp }}$	cph	ch	ch
Trincomali Channel	6	4					cgph	cph	cp		cph	cp	cgph	cgph	cph	cph	cph	cph
Tincomali Channel	6	5					cgph	cgph	cph		cgph	cgph	cgph	cgph	cp	cph	ch	ch
Tincoomali Channel	6	11				cgn												
Tincoomali Channel	6	12				cgn												
Trincomali Channel	6	13				cgh												
Oyster River	7	1					c		cgn									
Oyster River	7	2					$c 9$											
Oyster River	7	3					cg		cgh									
Osster River	7	4					cg		cgn									
Oyster River	7	5					c		cgn									
Smelt Bay	8	1					cgph	cgp	cph	cph	cgph	cgph	ρ	cgph	cph	cph	ch	ch
Smett Bay	8	2					cgph	cgph	cph	cpn	cgph	cgph	p	cgph	cph	cph	cph	cph
Smell Bay	8	3					cgph	cgph	cph	cph	cgph	cgph	cgph	cgph	cph	cph	ch	cpn
Smelt Bay	8	4					cgph	cgp	cph	cpn	cgph	cgph	cph	cgph	cpn	cph	cph	ch
Atrevida Reef	9	1					cgp	cgph	cph		cgph	cgph	cgph	cgp	cph	cph	ch	ch
Atrevida Reef	9	2					cgph	cgph	cph		cgph	cgph	cph	cgp	cpn	cpn	cph	cp
Atrevida Reef	9	3					cgph	cgph	cph		cgph	cgph	cph	cgp	cph	cph	ch	c
Atrevida Reef	9	4					gp	cgph	cph		cgph	cgph	cgph	${ }_{\text {cp }}$	cph	cph	cph	cp
Atrevida Reef	9	5					P	cgp	cph		cgph	cgp	cph	cgp	cph	cpn	ch	c
Cape Cockbum	10	1					cgp	cgph	cph		cgph		cgph	cgph	cph	cph	ch	ch
Cape Cockbum	10	2					$\mathrm{cp}^{\text {p }}$	p	p		cgph		cph	cgph	cph	cph	cph	cph
Cape Cockbum	10	3					cop	p	p		cgph		cgph	cgp	cph	cph	c	ch
Cape Cockbum	10	4					${ }_{\text {cp }}$	g P	${ }^{\text {cp }}$		cgp		cgph	cgp	cph	cph	${ }_{\text {cp }}$	cph
Cape Cockbum	10	5					cgph	cgph	${ }_{\text {cp }}$		cgp		cgph	cgph	cph	cph	ch	ch
Secret Cove	11	1					cgph	cgph	cph	cph			p	cgp	cph	p	ch	ch

Table 3 (Cont'd)

TRANNAME	1997					1998	1999		2000		2001	
	TRAN			CR1	CR2	CR1	CR1	CR2	CR1	CR2	CR1	CR2
Clarke Rock		1	1	cph	cp	cph		cph	cph	cph	p	cph
Clarke Rock		1	2	cph	$c p$	cph		cph	ρ	cph	ρ	cph
Clarke Rock		1	3	cph	$c p$	cph		ch	p	cph	p	cph
Clarke Rock		1	4							ch	p	cph
Clarke Rock		1	5						ch	ch	p	cph
Clarke Rock		1	6					ch		ch		ch
Clarke Rock		1	7					c		ch		c
Clarke Rock		1	8					c		ch		c
Clarke Rock		1	9					c		ch		cgh
Yellow Point		2	1	cph	$c p$	cph		cph	cph	cph	cph	cph
Yellow Point		2	2						ch	ch	cph	cph
Yellow Point		2	3	cph	cp	cph		cph	cph	cph	cph	cph
Yellow Point		2	4						ch	ch	cph	cph
Yellow Point		2	5	ch	c	cph		cph	cph	cph	cph	cph
Bowser		3	1	cph	$c p$	cph		$c p$	cph	cph	cph	cph
Bowser		3	2	cph	$c p$	cph		cph	cph	cph	cph	cph
Bowser		3	3	cph	$c p$	cph		cph	cph	con	cph	cph
Bowser		3	4						ch	ch	cph	cph
Bowser		3	5							ch	cph	cph
Bowser		3	6					ch		ch		ch
Bowser		3	7					ch		ch		ch
Bowser		3	8					ch		ch		ch
Bowser		3	9					cph		ch		ch
Henry Bay		4	1	ch	c			cph				cph
Henry Bay		4	2							ch		ch
Henry Bay		4	3	cph	$c p$	cph		cph		ch		cph
Henry Bay		4	4									
Henry Bay		4	5	cph	cp	cph		p		ch		
French Creek		5	1	ch	c	ch		cph	cph	cph	cph	cph

Table 3 (Cont'd)

TRANNAME	TRAN	STN	$\begin{aligned} & 1997 \\ & \mathrm{CR1} \end{aligned}$	CR2	$\begin{aligned} & 1998 \\ & \text { CR1 } \end{aligned}$	$\begin{aligned} & \hline 1999 \\ & \text { CR1 } \end{aligned}$	CR2	$\begin{aligned} & 2000 \\ & \text { CR1 } \end{aligned}$	CR2	2001	CR2
Thrasher Rock	25	4			c				cph		${ }^{\text {cp }}$
Thrasher Rock	25	5					p				
Spratt Bay	26	1			ch						
Westriew	27	1			ch						
Stuart Island	28	1			ch						
Francis Bay	29	1			ch						
Redonda Bay	30	1			ch						
Cortes Island	31	1			ch						
Evans Bay	32	1			ch						
Village Bay	33	1			ch						
Drew Hartour	34	1			ch						
Qualicum-offshore	35	1			ch						
Qualicum-ofishore	35	2			-						
Cape Lazo	36	1					ch		ch		ch
Cape Lazo	36	2					cph		cph		c
Cape Lazo	36	3					ch		ch		ch
Cape lazo	36	4					ch		ch		cph
Fraser River	37	1								cgph	cp
Fraser River	37	2								cph	cp
Fraser River	37	3									c
Fraser River	37	4									cgph
Fraser River	37	5									ch
Bute inlet	99	2						cph			
Tribune Point	101	1			cph		ch				
Maple Cove	102	1			ch		ch				
Gilford Bay	103	1			ch		ch				
Doctor isilts	104	1			ch		cph				
Bones Bay	105	1			ch		c				
Codtringto Point	108	1			cph		ch				
Cartwight Bay	107	1			ch		ch				
Boyer Bay	108	1			ch		ch				
Hary Bay	109	1			ch		cph				
Shawl Bay	110	1			ch						
Sointula Bay	111	1			cph						
PortMcNeill	112	1			ch						
Mitchell Bay	113	1			ch						
Bauza Cove	114	1			ch		cph				
Growler Cove	115	1			-		ch				

Table 3 (Cont'd)

TRANNAME	1997				$\begin{aligned} & 1998 \\ & \text { CR1 } \end{aligned}$	$\begin{aligned} & 1999 \\ & \text { CR1 } \end{aligned}$		$\begin{aligned} & 2000 \\ & \text { CR1 } \end{aligned}$	2001		
	TRAN	STN	CR1	CR2			CR2		CR2	CR1	CR2
Boat Bay	116	1			cph		ch				
Naka Creek	117	1			ch		cph				
Forward Bay	118	1			ch		ch				
Stimpson Reef	119	1			ch		ch				
Blenkinsop Bay	120	1			ch		cp				
Vere Cove	121	1			cph		ch				
Shorter Point	122	1			ch		ch				
Loughborough-E	123	1			ch		ch				
Loughborough-w	124	1			ch		cp				
Loughborough-mid	125	1			ch		ch				
Bickley Bay	126	1			cph		ch				
Shoal Bay	127	1			ch		ch				
Froderick Arm	128	1			c		cph				
Richard Point	129	1			c		ch				
Fanny Bay	130	1			c						
Young Passage	131	1			$c p$		ch				
Hemming Bay	132	1			c		ch				
Other Cove	133	1			c						
Kanish Bay	134	1			c		ch				
Deepwater Bay	135	1			c		cph				
Lawrence Point	201	1				h					
Amor Point	205	1				h					
Francis Bay	207	1				h					
Lawrence Point	208	1				h					
Owen Point	210	1				n					
Cape Lazo	213	1				h					
Chrome Island	214	1				h					

Table 4. List of all fish and invertebrate species captured during the juvenile herring survey. Family name (FAMILY), species abbreviation (SPECIES), common name and scientific names included (note some SPECIES are a combination of several kinds of fish). Notes regarding life stage or size-class provided for all fish and invertebrates caught.

FAMILY	SPECIES	COMMON NAME	SCIENTIFIC_NAME	NOTES
Engraulidae	ANCH	Northern Anchovy	Engraulis mordax mordax	Any size
Osmendae	CAPE	Capelin	Mallotus villosus	Any size
Salmonidae	CHIN	Chinook Salmon	Oncortynchus tshawytscha	Unspecified age group
Salmonidae	CHIA	Chinook Adult	Oncomynchus tshawytscha	2nd or later ocean year
Salmonidae	CHIJ	Chinook Juvenile	Oncomynchus tshawytscha	1st ocean year
Salmonidae	CHUM	Chum Salmon	Oncomynchus keta	Unspecified age group
Salmonidae	CHUA	Chum Adult	Oncomynchus keta	2nd or later ocean year
Salmonidae	CHUJ	Chum Juvenile	Oncomynchus keta	1st ocean year
Salmonidae	COHO	Coho Salmon	Oncomynchus kisutch	Unspecified age group
Salmonidae	COHA	Coho Adult	Oncomynchus kisutch	2nd or later ocean year
Salmonidae	COHJ	Coho Juvenile	Oncomynchus kisutch	1st ocean year
Squalidae	DOGF	Dogfish	Squalus acanthias	Any size
Zoarcidae	EELP	Eeipout	Bothrocara molle	Any size
Pleuronectidae	FLAT	Flatfish	Parophyrus vetulus, Lepidopsetta bilineata, Platichthys stellatus, Citharichthys stigmaens	Any size
Gobiidae	GOBY	Goby	Coryphopterus nicholsi	Any size
Hexagrammidae	GREE	Greenling	Hexagrammos sp.	Any size
Pholidae	GUNN	Gunnel	Apodichthys flavidus, Pholis laeta	Any size
Gadidae	HAKA	Hake Adult	Merluccius productus	2nd or later year of life
Gadidae	HAKJ	Hake Juvenile	Meruccius productus	In year of birth
Clupeidae	HER0	0+ Herring	Clupea pallasi	In year of birth
Clupeidae	HER1	1+ Herring	Clupea pallasi	In year after birth
Clupeidae	HER2 JELL	2+ Herring Jellyfish	Clupea pallasi	2nd or later year of life Any size
Petromyzoniformes	LAMP	Lamprey	Lampetra sp.	Any size
Hexagrammidae	LINA	Lingcod Adult	Ophiodon elongatus	2nd year or later year of life
Hexagrammidae	LINJ	Lingcod Juvenile	Ophiodon elongatus	In year of bith
Scombridae	MACK	Mackerel	Scomber japonicus	Any size
Batrachoididae	MIDS	Midshipman	Porichthys notatus	Any size
Gadidae	PCOD	Pacific Cod	Gadus macrocephalus	Any size
Salmonidae	PINK	Pink Salmon	Oncortynchus gorbuscha	Unspecified age group
Salmonidae	PINA	Pink Adult	Oncortynchus gorbuscha	2nd or later ocean year
Salmonidae	PINJ	Pink Juvenile	Oncortynchus gorbuscha	1st ocean year
Syngnathidae	PIPE	Pipefish	Syngnathus griseolineatus	Any size
Agonidae	POAC	Poacher	Agonus acipenserinus	Any size
Gadidae	POLA	Pollock Adult	Theragra chalcogramma	2nd year or later year of life
Gadidae	POLJ	Pollock Juvenile	Theragra chalcogramma	In year of bitth
Stichaeidae	PRIC	Snake Prickleback	Lumpenus sagitta	Any size
Squalidae	RATF	Ratfish	Hydrolagus colliei	Any size
Scorpaenidae	ROCA	Rockfish Adult	Sebastes sp.	Older than juvenile
Scorpaenidae	ROCJ	Rockfish Juvenile	Sebastes sp.	In year of birth
Anoplopomatidae	SABJ	Sablefish Juvenile	Anoplopoma fimbria	In year of bith
Trichodontidae	SANF	Sandfish	Trichodon trichodon	Any size
Ammodytidae	SANL	Sandlance	Ammodytes hexapterus	Any size
Clupeidae	SARD	Pacific Sardine	Sardinops sagax	2nd year or later year of life
Cottidae	SCUL	Sculpin	Leptocottus armatus	Any size
Embiotocidae	SHIN	Shiner Perch	Cymatogaster aggregata	Any size
	SHRI	Shrimp		Any size
Osmeridae	SMEA	Smelt Adult	Hypomesus pretiosus, Thaleichthys pacificus	2nd year or later year of life
Osmeridae	SMEJ	Smelt Juvenile	Mallotus villosus, Hypomesus pretiosus	In year of birth
Salmonidae	SOCK	Sockeye Salmon	Oncorhynchus nerka	Unspecified age group
Salmonidae	SOCA	Sockeye Adult	Oncormynchus nerka	2nd year or later year of life
Salmonidae	SOCJ	Sockeye Juvenile	Oncomynchus nerka	1st ocean year
Decapoda	SQUI	Squid	Loligo opalescens, Gonatus fabricii	Any size
Gasterosteidae	STIC	Stickleback	Gasterosteus aculeatus	Any size
Gadidae	TOMC	Pacific Tomcod	Microgadus proximus	Any size
Salmonidae	TROU	Trout	Oncomynchus mykiss, Oncorhynchus clarki clarki	Any size
Aulortynchidae	TUBE	Tubesnout	Aulorhynchus flavidus	Any size
Anarmichadidae	WOLF	Wolfeel	Anarmichthys ocellatus	Any size

Table 5. List of all plarikton species captured and stomach contents analysed during juvenile herring survey. Basic grouping (CATEGORY), species abbreviation (SPECIES), common and scientific names included (note some SPECIES are a grouping of several plankters). Notes provide information regarding life stage or explanation of animal sampled.

CATEGORY	SPECIES	COMMON NAME	SCIEN7IFIC NAME	NOTES
Copepods	ACLA	Calanoid	Acartia clausi	
Copepods	ADIV	Calanoid	Aetidius divergens	
Copepods	ALON	Calanoid	Acartia longimeres	
Amphipods	AMPH	Amphipods		Mostly gammand and hypeniid with some caprellid
Copepods	APAC	Calanoid	Aetidius pacificus	
Bamacle	BARN	Bamacle	Cimipedia cyprids, Cirripedia nauplii	
Copepods	CABD	Calanoid	Centropages abdominates	
Copepods	CALA	Calanoid	Calanus sp.	
Copepods	CANG	Cyclopoid	Corycaeus anglicus	
Copepods	CCOL	Calanoid	Canadacia columbiae	
Copepods	CGRA	Calanoid	Chiridius gracilis	
Bamacle	CIRC	Bamacle	Cimipedia cyprids	
Bamacle	CIRN	Bamacle	Cirripedia nauplii	
Cladocerans	CLAD	Cladocerans		
Copepods	CMAR	Calanoid	Calanus marshallae	
Medusae	COEL	Medusae		
Copepods	COPE	Copepods		
Copepods	CPAC	Calanoid	Calanus pacificus	
Crab	CRAB	Crab		
Crab	CRAM	Crab		Megalopia
Crab	CRAZ	Crab		Zoea
Copepods	CYCL	Cyclopoid		
	DIAT	Diatoms		
Copepods	EBUN	Calanoid	Eucalanus bungii	
Echinoderm	ECHI	Echinoderm		
Ectoprocts	ECTO	Ectoprocts		
Miscellaneous	EGGS	Pelagic Eggs		
Copepods	EJAP	Calanoid	Euchaeta japonica	
Copepods	ELON	Calanoid	Epilabidocera longipedata	
Euphausiid	EUPA	Euphausiid		Post-nauplii
Euphausiid	EUPH	Euphausiid	Euphausia pacifica	Any size
Euphausiid	EUPL	Euphausiid		Nauplii
Copepods	EURY	Calanoid	Eurytemora sp.	
Mollusca	GAST	Gastropods	Clione sp. and Limacina sp.	Both prosobranch and ophistobranch
Miscellaneous	INLA	Unidentified Invertebrate		
Insects	INSE	Insects		
Isopods	ISOP	Isopods		
Larvaceans	LARV	Larvaceans		
Copepods	MONS	Monstrilloid	Monstrilla sp.	
Copepods	MPAC	Calanoid	Metridia pacifica	
Crustecean nauplii	NAUP	Crustecean		
Copepods	OBOR	Calanoid	Oncaea borealis	
Copepods	OITH	Cyclopoid	Oithona sp.	
Ostracods	OSTR	Ostracods		\cdots
Mollusca	PELE	Pelecypods		Pelagic clams
Copepods	PMIN	Calanoid	Pseudocalanus minutus	
Polychaetes	POLY	Polychaetes		Free swimming segmented worms
Copepods	PPAR	Calanoid	Paracalanus parvus	
Mollusca	PROS	Prosobranch gastropods		Small pelagic snails
Mollusca	PTER	Pteropods	Clione sp. and Limacina sp.	Ophistobranch gastropods
Siphonophores	SIPH	Siphonophores		
Copepods	SMIN	Calanoid	Scolecithricella minor	
Copepods	TDIS	Calanoid	Tortanus discaudatus	
Teleosts	TELA	Teleosts		
Thaliaceans	THAL	Thaliaceans		

Table 5 (Cont'd)

CATEGORY	SPECIES	COMMON NAME	SCIENTIFIC NAME	NOTES
Copepods	TISB	Cyclopoid		
Copepods	UCAL	Unidentified Calanoid	Tisbe sp.	
Copepods	UCYC	Unidentified Cyclopoid		
Copepods	UHAR	Unidentified Harpacticoids		

Fig. 1. Lower strait of Georgia juvenile herring stations along with transect locations (numbers).

Fig. 2. Upper Strait of Georgia and Lower Johnstone Strait juvenile herring stations along with transect locations (numbers).

Fig. 3. Upper Johnstone Strait juvenile herring stations along with transect locations (numbers).

Fig. 4. Plankton tow organization chart showing how a plankton sample was analyzed. This chart shows the third split being analyzed.

[^1]
[^0]: (C) Her Majesty the Queen in Right of Canada, 2003.

[^1]: Fig. 5. Statistical areas of the Strait of Georgia and Johnstone
 Strait based on herring stock assessment areas.

