The Truss: A Geometric and Statistical Approach to the Analysis of Form in Fishes

J.M. McGlade and E.G. Boulding

Fisheries Research Branch
Scotia-Fundy Region
Marine Fish Division
Bedford Institute of Oceanography
P.O. Box 1006, Dartmouth

Nova Scotia, B2Y 4A2

September 1986

Canadian Technical Report of Fisheries and Aquatic Sciences
No. 1457

Canadian Technical Report of Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques-du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports techniques peuvent être cités comme des publications complètes. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l'index annual des publications scientifiques et techniques du Ministère.

Les numéros 1 à 456 de cette série ont été publiés à titre de rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de rapports techniques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925 .

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Technical Report of Fisheries and Aquatic Sciences No. 1457.

The Truss: A Geometric and Statistical Approach
to the Analysis of Form in Flshes
by
J.M. McGlade and E.G. Boulding

Marine Fish Division Beford Institute of Oceanography P.O. Box 1006, Dartmouth

Nova Scotla, B2Y 4A2
Minister of Supply and Services Canada 1986
Cat. No. Fs $97-6 / 1457 E \quad$ ISSN $0706-6457$

Correct citation for this publication:
McGlade, J.M. and E.G. Boulding. 1986. The Truss: A Geometric and Statistical Approach to the Analysis of Form in Fishes. Can. Tech. Rept. Fish. Aquat. Sci. No. 1457.

TABLE OF CONTENTS

Page
ABSTRACT iv
INTRODUCTION 1
THE PROBLEMS OF STOCK DEFINITION 1
PATTERNS OF GROWTH IN DIFFERENT FISH POPULATIONS 2
THE QUANTIFICATION OF MORPHOLOGICAL DIFFERENCES 2
METHODS 3
SAMPLING PROBLEMS 3
HOW TO SET UP THE TRUSSES 4
DATA VERIFICATION 4
A GEOMETRIC APPROACH: THE COMPOSITE FORM 4
 6
6
Calculation of "Average" Truss Measures 7
Flattening the Truss 8
Instructions 9
A STATISTICAL APPROACH: MULTIVARIATE ANALYSIS OF FORM 9
Multivariate Procedures: Pattern Recognition in Morphological Hyperspace 10
The Problem of Size 11
instructions 12
AN EXAMPLE OF RESULTS -- THE SCOTIAN SHELF GADOIDS 13
gUlF of maine and scotian shelf pollock 13
gulf of maine and south-west nova scotian haddock 13
POLLOCK VERSUS HADDOCK 21
CONCLUSIONS 32
ACKNOWLEDGEMENTS 32
REFERENCES 32
APPENDIX A: Flow Chart of Procedures 35
APPENDIX B: CYBER Procedures Using FORTRAN V Programs 36
REGPROC (BMDP1D With TRANSF and TRUSRG) 39
LEASUB (CTRUSS) 44
TRUSPLT (TRUSSD) 52
APPENDIX C: CYBER Procedures using BMDP Statistical Programs 62
Notes on Using BMDP Statistical Software 62
PCAONE (BMDP4M) 64
PCAPLOT (BMDP6D) 66
PCAPLT2 (BMDP6D) 66
DISCONE (BMDP7M) 67

ABSTRACT

McGlade, J.M. and E.G. Boulding. 1986. The Truss: A Geometric and Statistical Approach to the Analysis of Form in Fishes. Can. Tech. Rept. Fish. Aquat. Sci. No. 1457.

This report describes the application of and software to produce a truss (sensu Strauss and Booksteln ig82) In reconstructing the outline of a fish, based on a geometrlc approach, and in providing the data necessary for a multivariate statistical analysis of morphology in fishes. The use of the method in stock identiflcation is described, and lllustrated by a case study of pollock (Pollachlus virens) and haddock (Melanogrammus aegelfinus) on the Scotian Shelf and in the Gulf of Maine. The truss ls viewed as an effective alternative to more traditional measures of morphological description, as it relles upon a rigorous definttion of homology between individuals.

RÉSUMÉ

McGlade, J.M. and E.G. Boulding. 1986. The Truss: A Geometric and Statistical Approach to the Analysis of Form in Fishes. Can. Tech. Rept. Fish. Aquat. Scl. No. 1457.

Ce rapport décrit l'application d'un réseau (après Strauss et Bookstein 1982) dans la reconstruction d'un profil de polsson, basé sur une approche géométrique, et la construction des données nécessalres pour analyser les statistiques de varlables multiples de la morphologie des poissons. On décrit l'application de cette méthode à llindentificatlon des stocks. En sulte on démontre la méthode en utllisant nos études des goberges (Pollachlus virens) et des alglefins (Melanogrammus aeglefinus) du Plateau Scotlan et du Golfe Maline. On considère que le réseau est plus efficace que les mésures classiques pour décrire la morphologle, sauve il est basé sur une définition rigoreuse de l'homologle entre les individuels.

INTRODUCTION

Paradoxically, the discrimination of marine finfish stocks relies as much upon similarity as upon varlability. The simple fact that we can detect differences between groups means that we can also detect similarities within them. Human beings are inveterate classifiers, and so almost every field of inquiry begins with some kind of taxonomy or natural classification: physicists classify elementary particles, chemists use a Perlodic Table and of course biologists have developed the Linnean system.

At the root of blological classlfication is the tacit assumption that the members of a particular group share a similarlty of structure or behaviour, or a commonallity of descent, from which we see a scheme of relatedness that allows us to assemble individuals into a class or taxon. The process of classification is generally referred to as systematics, which Simpson (1961) defined as "the sclentiflc study of the kinds and diversity of organisms and of any and all relationships among them". This definition is used in its widest sense, and subsumes the problems of taxonomy which pertain to the theoretical study of classification, including its principles, bases, procedures and rules (ibid.).

Current developments in systematics have Included rapld changes in concepts and procedures, hastened no doubt by the wide avallabllity of computers, and advances in genetics, cytology and molecular biology. And yet it is still fair to say that for fisherles, the subject of the structure of fish populations is "...a bewildering array of semantic problems because there is little agreement on the meaning of the words used to define groups in the hierarchy with the rank of subspecies and below..." (Royce 1972). True, the literature abounds with observations, opinions and statements on the nature of a fish stock, but there is a fundamental disparlty which is likely to keep any authoritative resolution in abeyance .- that is the bellef in a genetically determined or even phenotyplcally defined group versus a more pragmatic group defined in greater part by a management plan in ignorance of any genetic or phenetic integrity.

Attempting to define stocks, however, remains an imperative for fisherles management especially in the marine environment, because through the Law of the Sea Conference, more and more natlons have taken on the responsibility for common fisherles resources within the 200 mlle zone adjacent to their coastlines, and in so dolng have developed a need to estimate the abundance of fish stocks in response to fishing pressure. Stock definition is thus at the core of fisheries, because implicit in management is the sentiment put forward at the beginning of the century by Theodore Roosevelt that the Nation behaves well if it treats the natural resources as assets which it must turn over to the next generation increased and not impalred in value.

In many countries the principle adopted for the most efficient way to control extraction of marine fishes is one of total allowable catch (TAC), allocation within which is subject to
negotiations. The TAC is the output from the analytical, but essentially deterministic models developed by Beverton and Holt (i957). Within this legacy, the population (or stock) is first defined, and then the principal parameters, such as growth, mortality, maturlty and recrultment are determined. Thus the first step in any fisheries management plan is to define the structure of the fish resources within a stipulated area, and state which stocks are transboundary, because in reality a jurisdictional boundary may represent not only a legal llmit to national control but also to divergent philosophies as to the ways in which common property resources are viewed, and hence explolted. The evidence for stock separation must thus be as unequivocal as possible, for it is clear that subject to the division of oceans, the theoret lc bases of stock dellneation will come under serlous review and attack.

THE PROBLEMS OF STOCK DEFINITION

What then is a stock? Traditionally it has been defined as "a population of organisms which, sharing a common gene pool is sufficiently discrete to warrant consideration as a selfperpetuating system which can be managed" (Larkin 1972). However, the caveat of manageability distorts the term by bet-hedging agalnst the possiblity of irreconcilable demands from biology and politics.

Indeed it has been stated that whllst "blological management of fisheries has been bullt around the concept of the unlt stock... this apparently common sense notion may be an instance of misplaced concreteness whlch places artificlal constraints on analyses or on managment rules and procedures. In fact the stock is an abstract term applied to provide a rationale for a certain kind of aggregation of catch data. This is not to say that there may or may not be such a thing as a discrete group of fish that may constitute an effective breeding group or stock, but in many cases there is significant uncertalnty about the identlity of the group from which successive annual catches are made, so that the operational term does not unequivocally refer to an ldentifiable physical entity." (Dickie 1979).

How then do we recognize a stock? Implicit in most statements is the fact that a stock is a population which by inference maintains itself in Castle-Hardy-Weinberg equllibrlum, but by default can be distinguished by its phenotype (Booke 1981, Ihssen et al. 1981). However, these two statements do not proceed pari passu, and in fact there is now a developing literature on epigenesis (the phenotypic translation of the genome under different exogenous and endogenous constraints) and the helrarchical organization of adaptive potentials that lead from DNA to the phenotype and behaviour of an organism, which would suggest that congruity of genetic and phenotypic groups is highly unlikely. Thls of course begs the question as to the role of population genetics in fisherles management, because there is some doubt as to how selection, in the form of fishing, is operating on the phenome and hence the genome. Something as fundamental as a cline (viz. a non-unlform spatial
distribution in the genetic composition of a population in equilibrlum) may not colnclide with a cline in a phenotypic character.

The susceptibillty of a fish species to form genetic stocks is probably related to the degree of spatial or temporal separation it encounters. A spectes whose range is well separated by geographic barriers or whose life history attributes include multiple spawning perlods, homing to a spawning area, longevity, and a bottom-orlented fry stage will thus be likely to conslst of multiple genetic stocks (Spangler et a1. 1981, McGlade 1981). The susceptibility of a fish specles to form phenotypic stocks is probably related to its morphological plasticity or genomephenome linkage, to the amount it moves and to the presence of consistent environmental differences among different parts of its habitat. For example, a specles whose life history involves juveniles originating from the same spawning area diffusing out into different areas, and then returning to an area to spawn is more likely to consist of multiple phenotypic stocks.

Unfortunately, the varlablilty observed in electrophoretic analyses of enzymes -.. the technlque most generally used to ascertain levels of genetic varlability -.. cannot be implicitly assumed to be representative of the varlability of the genome as a whole; structural proteins appear to be much less variable than enzymes, and the variation itself may depend on the subunlt molecular weights of the enzymes. Collectively, these results suggest that estimates of genetic varlation based upon the standard electrophoretic techniques represent a highly blased sample of genes. Measures of genetic differentiation, whether among individuals within populations, or among populations, must thus be coupled to the collection of other information such as morphology, physlology and ecology. However the explicit relationship between the genome and the organism has not been extensively studied.

Thus, fisherles managers have largely based their decisions about stock structures on evidence from tagging studies, and more traditionally meristic and morphometric analyses. The basic assumption then is that the results do in fact reflect some genetic homogenity, albethay influenced by the environment.

PATTERNS OF GROWTH IN DIFFERENT FISH POPULATIONS

Patterns of growth from juvenile stages to adult stages often differ in different fish populations. The growth rate of a fish will not be generally unlform but there will be perlods (or growth stanzas) during which it can be considered approximately so (Cock 1966). The transition between one growth stanza and another often occurs as the fishes go from one habltat to another or from one maturlty stage to another as ontogenetlc potentials are crossed.

Differences in form among different fish stocks are probably most convenlently considered as differences in shape as a function of slze. This is complicated because fish of the same size are not necessarily of the same age or at the same stage of development especially if their average adult size differs. The genesis of differences in shape can occur through:
i) differences in shape generated during the egg and larvae stages;
2) differences in the relative growth rates of different body parts during a given growth stanza;
3) differences in the size at which the transition from one set of growth rates to another occurs (Cock 1966).

All of the above mechanisms for generating shape differences can occur because of genetic causes or because of different environmental conditions experlenced by the various fish populations. That genetic variability can be responsible is easily seen by comparing the growth patterns of two fish specles which differ in shape. But variation in environmental varlables such as food avallability and temperature can also generate shape differences. During a phenocritical perlod during the egg stage, meristic characters, which in turn effect external morphology, are very sensitive to temperature (Tining 1946, Tining 1952), salinity, O_{2} and CO_{2} pressure (Heuts 1949). The relative growth rate of different body parts can certainly be influenced by starvation as exemplifled by the presence of stunted fish. And although there may be a genetically-determined critical minimum length (Thorpe et al. 1980) that must be reached before transition from one growth stanza to another can occur, the time required to reach that length may in part depend on the environmental conditions. Indeed there is evidence that fish may postpone transition to the next growth stanza depending on their physical state; EasternAtlantic salmon (Salmo salar) smoltify at either one or two years depending on their size by the fall of their first year; those which smoltify after two years do not feed over thelr first winter (Thorpe et al. 1980).

THE QUANTIFICATION OF MORPHOLOGICAL DIFFERENCES
Blologists have long been interested in quantlifying differences in form among organisms with some of the early workers taking a statistical (Castle 1914, Huxley 1924, Wright 1932) and some a geometric (Thompson 1917) approach. It was recognized early in the 1900 s that body parts did not necessarlly remain in proportion to each other during growth (Castle 1914) and this led to the development of a mathematical model (Huxley 1924) and a statistical method (Gould 1966) to test for what became known as allometry.

Long-standing interest in the genetic basis of morphological variation was and still is a driving force behind many attempts to quantify morphology. An early application of the multivarlate procedure, principal components analysis, and path analysis to morphometric data from chickens was prompted by an interest in defining a general factor that influenced overall body size and additional special growth factors which differentially affected different body parts (Wright 1932). In the study of fishes, it was also discovered that an environmental factor, namely temperature, influenced the number of vertebrae present in trout (Schmidt 1921), and that during the phenocritical period in embryology
a difference of up to 5 vertebrae could be induced even between genetically very simllar (full siblings) embryos (Taning 1946). This discovery -- that environmental factors could affect meristic characters and in turn external morphology --w was important because it showed that the adult form of an organism resulted from an Interaction between its genome and the environment, the detalls of which are stlll incompletely understood.

Most of the recent advances in morphometrics use new multivarlate methods for separating differences in size from differences in shape (Mosimann and James 1979, Humphries et al. 1981, MCGlade 1981, Thorpe and Leamy 1983) or new geometric methods for quantlifying changes in shape from one form to another (Bookstein 1978). It is important to separate varlation in shape from varlation in size, so that the shape of an average form can be compared at a given size, ontogenetic stage or chronological age. Indeed if the ontogeny behind a given shape difference is of interest, some workers favour a geometric approach to shape analysis rather than the multivarlate methods of data analysis we discuss in a later section. They criticize multivariate methods because:

1) morphometric data used in such analyses is typlcally first reduced to a correlation or covarlance matrix which results in the loss of their spatial relationships which would otherwlse enable a functional morphologist to interpret the changes in shape (Bookstein 1978);
2) the interpretation of allometry in a multivarlate context is debatable (Sprent 1972); and
3) the results of such analyses are often difficult to interpret and difficult to explain to nonmstatisticians.

As a result many morphologists have taken a geometric approach in comparing life-history stages.

These comparisons are facilltated if Strauss and Bookstein's (1982) truss of morphometric measurements is used. The truss which consists of the distances between homologous landmarks on the outline of a two-dimensional projection of a form has many advantages over the traditional morphometric data sets:

1) it provides a geometric protocol for morphometric character selection;
2) it archives the conflguration of the landmarks so that the form of an individual specimen can be reconstructed;
3) it makes it possible to take morphometric measurements with a digitizing board;
4) it enables construction of a composite, average form that represents a given population at a given age or size; and
5) it allows visualization of multivarlate trends of growth and allometry within populations (Strauss and Bookste in 1982).

The truss method has been used for cottlid scuplins (Strauss and Bookstein 1982), for juvenile chlnook salmon (Winans 1984), and in this report we present its application to the gadolds of the Scotian Shelf.

In this technical report we describe how to use the truss method in selecting morphometric characters for identification of environmental stocks. We also describe how to construct a composite truss that provides a geometric representation of the ontogenetic growth patterns in a given population, and provide FORTRAN V programs and command language from the BMDP Statistical Package that do the calculations. Finally we describe a multivariate procedure for analyzing morphometric data using the BMDP statistical package. We hope our experlence wlll benefit other workers interested in applying morphometrics in a fisherles context.

METHODS

SAMPLING PROBLEMS

An effective sampling design may be obvious where there are geographical barrlers that prevent or discourage mixing of the hypothesized stocks, but will be less so where a species is continuously distributed over a large, homogeneous geographic region. If no previous information is avallable, it is wise to do a preliminary study, comparing fish from the extremes of the specles distribution before investing additional sampling effort. If there are no differences among the extremes of a continuous distribution over a homogenous geographical area, there are unlikely to be differences among intermediate areas. It is best to sample when the geographical separation of the hypothesized stocks is at a maximum. This will usually be when the fish are aggregated for spawning but if environmental stocks are of primary interest it could be just before the young fish leave a nursery area. We will refer to these spawning aggregations or nursery areas as geographical areas.

The sampling problem then reduces to two aspects: 1) to obtain enough locations (or sets) to characterize each geographical area, and 2) to obtain and measure enough fish to estimate the varlation within each location (Thorpe 1976). Single sets are not sufflclent to characterize an area if fish of the same age tend to school together or if segregation with in a habitat is dependent on the fish's age. Therefore even in a preliminary study there should be at least two locatlons (or sets) for each area and at least 50 or more fish obtained and measured from each location depending on the amount of morphological variation present. A more detalled study would require many more fish and an even distribution of sizes within the size range beling characterlzed. With rare specles or where sampling for morphometrics is only a component of a larger sampling program, it may be difficuit to obtaln 50-100 fish per location and there will be a temptation to pool all the fish from several locations. This should be done with caution as it may result in grouping together two genetically distinct populations or subdividing a cline (Thorpe 1976).

HOW TO SET UP THE TRUSSES
The exact configuration of the truss will depend on the fish specles under investigation. Central to the concept of the truss is the idea of homologous anatomical landmarks (Strauss and Bookstein 1982). In practice homologous characters can be difficult to choose if the fish are from different genera. If only external morphological criterla are used, a character may be considered homologous with the character with which it shares the greatest degree of simllarlty or correspondence (Sneath and Sokal 1973), al though ideally this will be based on evidence of evolutlonary relationships from the fossil record or from comparative embryology.

When choosing landmarks it is important to 1) choose points identifled by some consistent feature of the local morphology such as the insertion of a fin (Fig. 1), 2) to comprehenslvely and evenly cover the entire body form, and 3) to choose the polnts so that the interlandmark distances are as short as possible as short measures contain more locallzed information about shape (Strauss and Booksteln 1982).

The truss we used for these gadold flshes contains 7 cells and is derived from a lateral projection of the 3 dimensional fish onto the two dimensions of the paper (Fig. 2). A truss contalning 4 cells from a lateral projection and an additional cell with two appended triangles from a dorsal projection has been used for comparing specles of cottlds as head shape was important (Strauss and Bookstein 1982). Certalnly if prior information on the type of interstock varlation is avallable it makes sense to increase the density of landmarks in that body region.

If preserved fish are to be used it is necessary to preserve them flat particularly if they are large. Freshly caught fish are ideal and because the archiving of landmarks is relatively rapld, it may even be possible to archlve the landmarks of an anesthetized fish which is being repeatedly measured over time for a growth study.

To archive the landmarks, the fish is laid on its side on a piece of water-resistant paper and its fins are spread out. The landmark positions are marked with a pencli. Interlor landmarks are extended to the closest point on the body outline on a line perpendicular to the longitudinal axis (see Fig. 1, landmarks 2, 3, and 5). The fish is then removed, the landmarks are circled and the paper labelled to ldentify the fish. If insufficient landmarks exist around the perlphery of the fish, it is possible to establish polnts by
 fillings in vaseline, and then projecting points out to the edges from the vertebral column (pers. comm., R.L. Stephenson, Marine Fish Division, Biological Station, St. Andrews, New Brunswick).

There are two ways to transfer the landmarks to the computer. The first, is to measure the distances between the landmarks with a ruler, and then keypunch them into the computer in order. Alternatively a digitizer can be used to digitize the position of the landmarks; then the interlandmark distances can be calculated by the computer
using Pythagoras' theorem (Winans 1984).
The use of the digltizer prevents errors from measuring and keypunching but necessitates writing at least one speclal computer program for each particular digitizer.

DATA VERIFICATION

A data flle composed of a large number of similar measurements for a sample of fish wlll inevitably contain a number of errors due to measurement, coding, and data entry. These must be detected and removed before further analysis is possible (see Appendix A for a flow chart of procedures).

Gross errors, (viz. a datum point more than two standard devlations from the mean and its character state), may result from misplacing a decimal polnt or taking a truss measure between the wrong landmarks. These can be detected by packages such as BMDP1D. An advantage of the truss method is that the archiving of the landmarks on tracing paper allows measurements to be checked months after the processing of the live fish has taken place.

Minor errors in multivarlate data sets are normally difficult or impossible to detect. However where the total number of fish is relatively small these can be identifled by attempting to reconstruct the trusses of Individual fishes using the FORTRAN program TRUSSD (see Appendix B for FORTRAN listings). The appropriate option should be selected, so that the resulting plotfile can be drawn on a small flatbed plotter (e.g. a Tektronix) and examined for distortion. Dublous cases can be reconciled by comparing plots of comparable slzed fish. Any gross errors that remain in the data set wll cause an error message stating that the program is unable to compute the x-y coordinates for that particular fish.

A GEOMETRIC APPROACH: THE COMPOSITE FORM
The originator of a geometric approach to shape analysis was the noted Scottlish blologist and classical scholar D'Arcy Wentworth Thompson (1917, 1942). In his classic book On Growth and Form, he showed the transformation from one shape To another by drawing the distortion of a grid (Fig. 3). Attempts to quantify the distortion of Thompson-type grids in terms of growth gradients (Huxley 1932) were largely unsuccessful because the mathematics were intractable (Booksteln 1978). A promising new quantltative approach to measuring the shape change between any two forms is the method of blorthogonal grids (Bookstein 1978). Bookstein's method differs from that of Thompson in the orientation and structure of the grid. A mesh of points from the first form is mapped onto the second form by interpolating between homologous landmarks. A local grid is then computed at each of these points so that one of its axes is orlented along the direction of maximum or minimum local rate of change. A set of curving lines is then derived by integration from the principal directions of the axes. The elongations or contractions at any desired point

Figure 1. Positions of landmarks around a pollock (Pollachlus virens).

V32805

TRUSS CONFIGURATION FOR SHAPE ANALYSIS

Figure 2. Trusses constructed from the landmarks indicated in Figure 1.
are thus obtalned and can be depicted directly on the form (Bookstein 1978). While we do not include programs for biorthogonal analysis, we mention it here because the first step is the construction of a composite truss for each of the groups belng compared (Strauss and Bookstein 1982).

Diodon

Orthagoriscus

Fig. 3. Distortion of a grid giving the outlines of Diodon and Orthagoriscus (after D'Arcy Thompson, 1917).

The geometric technique we describe in detall in this report is the construction of a composite form (Strauss and Bookstein 1982) to represent a given fish population. The population characterlzed by a composite form is a function of the size-classes the sample consists of problems will arise if extrapolation outside the range of the data is attempted. However, the strength of this technique is in its versatility - - one could characterize the entire ontogenetic growth pattern from juvenlle to adult or alternatively all the two year olds by varying the data set used. The method for construction of the composite form is derived from the power function $Y=b X^{k}$ described by Huxley (1924) to test for allometry where Y is a body part, X is a measure of total body length and b and K are the back-transformed intercept and slope, respectively from a Ilnear least-squares regression on $\log X$ and $\log Y$ (Gould 1966). Thus if b and K are estimated for a given body part for a glyen population of fish, the size of that body part can be predicted for any desired size of fish. In the method we describe (a revised version of Strauss and Bookstein 1982), the scores on the first within-group principal component are used in place of total body length as the first within-group principal component best explalns the patterns of covarlance among the morphometric varlables.

Theory and Algebra

Calculation of $X-Y$ Co-ordinates:

The procedure for calculation of the $x-y$ coordinates for each landmark is the same whether an individual truss is beling reconstructed or a composite truss is being constructed from a
population. Calculation of the coordinates of the first two polints is easler if both are arbitrarlly placed on the y axis. Thus, if the first point is assigned the coordinates $x=0, y=0$, then the second point will be at $x=0, y=d$, where d. is the distance between the first ${ }^{2}$ and sezond landmarks. The third point is at a distance d_{13} from the first point and d_{23} from the sežond point. If a circle wittra radius of d_{13} is drawn, centered at the first point and another with a radius of d_{23} is drawn centered at the second polnt, 2Re circles will intersect at two points, one to right and one to the left of the y axis (Fig. 4).

Fig. 4. Calculation of the $X-Y$ coordinates for each landmark is based on the point of intersection of two circles with radil equal to the distance between the first two landmarks and an addttional point.

We can determine the coordinates of these points algebraically:

Using Pythagoras' theorem twice:

$$
\begin{equation*}
\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=d_{13}^{2} \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}=d_{23}^{2} \tag{1b}
\end{equation*}
$$

where: x, y - are the coordinates of the new landmark (number 3)
$x_{1}, y_{1}-\begin{aligned} & \text { are the coordinates of the } \\ & \text { first point }\end{aligned}$
x_{2}, y_{2} - are the coordinates of the second point
${ }^{1} 12$ - Is the distance from the first to second landmark

- is the distance from the second to third landmark

Eliminating y from the simultaneous equations in $l a$ and $i b$ and solving for x using the quadratic formula gives us:
(2) $x=\frac{-b+\left(b^{2}-4 a c\right)^{\frac{1}{2}}}{2 a}$ or $x=\frac{-b-\left(b^{2}-4 a c\right)^{\frac{1}{2}}}{2 a}$
where: $a=1+k_{2}^{2}$

$$
b=2 k_{1} k_{2}-k_{2} y_{1}-2 x_{1}
$$

$$
c=x_{1}^{2}+k_{1}^{2}+y_{1}^{2}=2 k_{1} y_{1}-d_{13}^{2}
$$

$$
\text { and: } \quad k_{1}=\left(x_{1}^{2}+y_{1}^{2}+d_{23}^{2}-d_{13}^{2}-x_{2}^{2}-y_{2}^{2}\right)
$$

$$
k_{2}=\frac{\left(x_{2}-x_{1}\right)}{\left(y_{1}-y_{2}\right)}
$$

Since the truss is to be bullt from left to right, the larger of the two values of x is chosen and substituted back into equations la or ib to give:

$$
\begin{equation*}
y=y_{1}+\left(d_{13}^{2}-\left(x_{3}-x_{1}\right)^{2}\right)^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

where x_{3} is the larger value obtalned in equation 2 .

The coordinates of the fourth landmark can be obtalned using d_{14} and d_{24}, d_{14}, and d_{34}, or d_{24} and d_{34}. Again two values for 14 the x c $3 A^{\prime}$ 'rdinat 34 will be obtained. Since the definition of the truss is such that landmark four is above landmark three, and so d, is on the y axis, the value of x chosen is that giving the largest value of y.

To calculate the coordinates of subsequent landmarks, it is important to rotate the truss to a standard orientation so that the correct value of x can be selected from the quadratic equation.

To carry out this rotation we first calculate the angle, θ, that d_{13} makes with the x axis (Fig. 5a). Thus:

$$
\begin{equation*}
\theta=\operatorname{Arctan} \frac{\left(\left(y_{3}-y_{1}\right)\right.}{\left.\left(x_{3}-x_{1}\right)\right)} \tag{4}
\end{equation*}
$$

and then apply an approprlate angular transformation to all the points calculated so far, so that ${ }_{13}$ now lles on the x axis. Thus:

$$
\begin{align*}
x_{n}^{\prime} & =x_{n} \cos \theta+y_{n} \sin \theta \tag{5}\\
y_{n}^{\prime} & =y_{n} \cos \theta-x_{n} \sin \theta
\end{align*}
$$

In a composite truss, the length of a shared side may have been adjusted to slightly different values in adjacent cells. To compensate for this, the position of the polnts in the previous cell are adjusted so that the shared side has the value of the next cell. This is done by lining up the segment's midpoints (Fig. 5b).

The above procedure is repeated for each cell until the coordinates of all the landmarks have been calculated. When the entire truss is completed, it is rotated, using a similar procedure to that shown above, untll a
"pseudolateral" Ine from the "nose" to the "tall" is placed on the \times axis.

Finally, to facllitate plotting, the truss is translated up the y axis until it is entirely within the first quadrant.
a)

b)

Flg. 5. Calculation of the $X-Y$ coordinates of subsequent landmarks based on the rotation of the truss to a standard orlentation by a) calculating θ and applying the transformation to all polnts; b) for a composite truss the midpoints of the shared sides are lined up, as on A_{4} and B_{2}.

Calculation of "Average" Truss Measures:
A composite or "average" form can usually be constructed for any size that is within the sizem range of fish found within the sample. Before this form can be plotted it is necessary to calculate the slze of the truss measures comprising it. The method used is virtually Identical to that described by Strauss and Bookstein (1982, p. 123) but we shall recapitulate it here briefly.

The measure of standard size used was the first within-group principal component scores, however the total length of the fish or some equivalent could be used. These scores were taken from a principal components analysis on the logtransformed truss measures, and should be done using the covarlance matrix (Appendix C BMDP 4M). Linear regressions between each truss element and the first within-group principal component scores as the independent variable were completed, as
described in the previous section. The coefficlents from these regresslons allowed the expected length of the truss measures for a fish of the desired standard size from the given population to be calculated (Fig. 6).

FIRST WITHIN-GROUP PRINCIPAL COMPONENT SCORES

Fig. 6. Truss measurements for a fish of a desired standard size can be calculated from a regression of the first withingroup principal component scores and the logarithm of each truss measure.

If k is the slope and b is the intercept from these regressions, d, is the distance between landmark 1 and landmafk j, and S is the first within-group princtpal component score from the analysis on the $\log \left(d_{1 j}\right)$.
then: $\quad \log d_{i j}=\log b+k \cdot s$
Which allows us to predict a $d_{1 j}$ for the
desired S.

Flattening the Truss:

If each cell of the truss conslsted of only flve truss elements it would always be possible to form a planar truss. The presence of the sixth element provides redundancy. This facilltates the detection of errors by making it impossible to reconstruct a planar truss if one element contains a gross error. However even when the data set is composed of planar trusses from indlvidual fishes, this does not guarantee that a planar composite truss can be constructed. By examining the simplest case where the population consists of only two individuals it can easily be shown that the population means for each type of truss element will not necessarlly form a planar truss. Non-homogeneous varlances among the different types of truss elements are the rule rather than
the exception. Even when care has been taken to delete all obvious errors from the raw data, some will inevitably remaln. Thus a method of flattening the composite truss is required.

Usually only small adjustments to the truss elements making up each cell are needed to allow the cell to relax into a planar conflguration. In order for these six distances (four edges and two diagonals) to be complanar they must satisfy Salmon's (1914) criterion of planarity: l.e., the determinant V of a matrix must be equal to zero.
where:

$$
\left\lvert\, \eta=\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & d_{12}^{2} & d_{13}^{2} & d_{14}^{2} \\
1 & d_{12}^{2} & 0 & d_{23}^{2} & d_{24}^{2} \\
1 & d_{13}^{2} & d_{23}^{2} & 0 & d_{34}^{2} \\
1 & d_{14}^{2} & d_{24}^{2} & d_{34}^{2} & 0
\end{array}\right.
$$

This determinant can be written algebralcally as:
(6)

$$
\begin{aligned}
& |V|=-2 d^{2}{ }_{13} d_{24}-2 d_{13} d_{24}^{2}-2 d_{12}^{2} d_{34}-2 d_{12}^{2} s_{34}^{2} \\
& -2 d_{14}^{2} d_{23}-2 d_{14} d_{23}^{2}+2 d_{13} d_{12} d_{24}+2 d_{13} d_{12} d_{34} \\
& -2 d_{13}{ }_{12}{ }^{d_{14}}+2 d_{13} d_{24} d_{34}+2 d_{13} d_{24}{ }_{14}{ }_{14} \\
& +2 \mathrm{~d}_{13} \mathrm{~d}_{24} \mathrm{~d}_{23}-2 \mathrm{~d}_{13} \mathrm{~d}_{34} \mathrm{~d}_{23}+2 \mathrm{~d}_{13} \mathrm{~d}_{14}{ }_{23} \\
& +2 d_{12} d_{24} d_{34}-2 d_{12} d_{24} d_{23}+2 d_{12} d_{34} d_{14} \\
& +2 \mathrm{~d}_{12}{ }^{\mathrm{d}} 34{ }^{\mathrm{d}} 23+2 \mathrm{~d}_{12} \mathrm{~d}_{14} \mathrm{~d}_{23}-2 \mathrm{~d}_{24} \mathrm{~d}_{34}{ }^{\mathrm{d}} 14 \\
& +2 \mathrm{~d}_{24} \mathrm{~d}_{14}{ }_{23}+2 \mathrm{~d}_{34} \mathrm{~d}_{14}{ }_{23}
\end{aligned}
$$

This method of adjusting the truss elements until they are co-planar, differs from that of Strauss and Bookstein (1982) in that the determinant is used directly. In this way the magnltude of the correction to each truss element of the cell is minimized, while forcing the determinant V, as close to zero as possible.

Algebralcally:
Let D be the initial vector of the six truss elements for the cell belng "flattened", then the corrected vector $D^{*}=\underline{D}+\underline{x}$ where x is the vector of corrections.

We want:

$$
\left.\mid v(\underline{0}+\underline{x})^{2}\right) \mid=0
$$

where v is the determinant of the corrected truss elements for that cell, and the whole is termed the penalty function,
and:

$$
\sum_{i=1}^{6} x_{i}^{2}
$$

to be minlmized, where x. is the difference between the initlal and final call vectors.

Therefore we want to minlmize:

$$
\begin{equation*}
F(\underline{x})=\prod_{i=1}^{6} x_{1}^{2}+k\left|v\left(\underline{0}+\underline{x}^{2}\right)\right| \tag{7}
\end{equation*}
$$

where: K is a constant which the penalty function is mult|plled by.

To do thls we use the derlvatlve-free verslon of the Levenberg-marquandt algor lthm. The FORTRAN program, TRUSS (Appendix B), calls the IMSL (International Mathematical and Statistical Llibrary) (1984), subroutine ZXSSQ; LINPAC an equivalent program may have to be used If IMSL is not avallable. ZXSSQ is a subroutine which finds a local minimum of the sum of squares of m real functions in n real varlables. The form of equation 7 used in the external subroutlne, FUNC (Appendix B), which is called by ZXSSQ is:

```
DO 30 K=1,6
F(K)=ABS (X(K))+(100,000*DETER)**2
30 CONTINUE
```

Where:
DETER is equal to the value of the determinant of the corrected truss elements. Each element of the vector F is squared and added together by $Z \times S S Q$.

The large value of the constant, K, means that the value of the determinant affects the value of F more than the absolute value of x. This means it Ts not technically a least squares problem but in practice the algorithm seems to work well.

When each cell of the composite truss has been "flattened" the adjusted truss elements are ready for point calculation and plotting by the FORTRAN program TRUSSD (Appendix B).

Instructions
Once the data have been verlfled and edtted a composite form can be constructed for each group. Intitally, we use the program BMDP4Ma (Appendix C) which transforms the data using log completes a principal components andpysis using the covarlance matrlx option, and saves the data and princlipal component scores in a BMDP save flle. Note that the USE statement in the TRAN paragraph can also be used to select a subset of the total number of cases so that only the fish from the desired location are present in the BMDP save flle (Appendlx C).

BMDP save flles are an effictent method of data storage but are not easlly read by non-BMDP programs. To get around thls problem we use a BMDP program BMDPIDb, to read directly the BMDP save file then interface it with the FORTRAN subroutine TRANSF (Appendix B), which writes the data into a standard ASCII flle. This subroutlne precedes the FORTRAN program TRUSRG described below.

The FORTRAN programs TRUSRG and CTRUSS (Appendix B) are used to compute a serles of unlvarlate Ilnear least squares regressions. The slope and intercept from one of these regressions
are used to predlct the first principal component score of a flish of the destred slze of the composite, and this is used with the other slopes and Intercepts to predict its expected truss dimenstons. The regressions are based on the logm transformed truss measurements plus the first princlpal component scores from the BMDP4M analysis. For each of the regresslons used to predict the truss dimensions, the truss measure is the dependent varlable and the first principal component score is the independent varlable. For the additlonal regression the first princlpal component score is the dependent varlable and the log-transformed total fork length is the Independent varlable. The coefficlents from these regressions are saved in a standard file.

The next FORTRAN program, CTRUSS, uses the regression coefficlents to calculate the expected truss dimenslons for a composite fish of the desired size. These "average" truss measures must then be constructed into a composite truss. As prevlously discussed, although the "average" truss measures are derlved from planar trusses, there is no guarantee that they will recomblne to give a planar truss. Therefore the program adjusts the "average" truss measures, cell by cell, untll they form a planar truss, by calling a subroutine from a non-linear least squares package (IMSL's ZXSSQ Appendlx B). Thls subroutine minlmizes the value of a determinant which is equal to zero when the truss is perfectly planar.

Non-linear optimization techntques are not foolproof, and the one used by ZXSSQ is no exception, but it works well in this application when the necessary correctlons to the truss measures are small (see the IMSL manual. Appendix Z-2). It is important to check that the value of the varlable infer passed back from ZXSSQ is not equal to zero slnce a value of zero lmplles that convergence has falled. In practlce this usually occurs because there are $5+1 \|$ uncorrected gross errors in the data set, or because the standard slze chosen for the composite construction is well outside the size-range of fish in the data set. The program, CTRUSS, warns the user when this has occurred by printing a message at the bottom of the file assigned to unit 6 , and called LDBUG.

The adjusted "average" truss dimensions are then wrltten into a standard file. They are then read by another FORTRAN program, TRUSSD (Appendlx A), that calculates the $x-y$ coordlnates of landmarks corresponding to these truss measures. On the CYBER installation at the Bedford Institute of Oceanography this program interfaces with a graphlcs package "DISSPLA" which generates a plot flle. The plotflle can then be plotted on a Tektronlx or any type of flatbed plotter.

A STATISTICAL APPROACH: MULTIVARIATE ANALYSIS OF FORM

The quantification of form has also been approached from a statistical polnt of view. As stated above, the presence of allometry can be tested by a slmple power functlon, descrlbed by Huxley (1924) and Tesster (1936) as $Y=B X_{K}$, where Y is a body part, X a measure of body length, and b and K constants whlch can be estlmated by a llnear least-squares regression on a logarithmic transformation (Gould 1966).

However Jollcoeur (1963) subsequently reallzed that the allometric equation was too slmplistic in its portrayal growth, and attempted to derive a generallzation to the multivarlate case, using the direction cosines of the logartthmic covarlance matrlx. Unfortunately, the theoretical assumptions of this method are stlll not understood adequately to assess the effect on each varlable (Sprent 1972),

Another approach to the problem, has been to use a number of multivarlate technlques in conjuction with each other. Three methods commonly applled, although rarely together are princtpal component analysis (PCA), discriminant function analysis (DA), and multivarlate analysis of varlance (MANOVA). These technlques are descrlbed In varlous texts (e.g. Morrison 1967, 1976; P1mental 1979; Reyment et al. 1984), and wlll not be described In detall here. Sufflce to say, however, that desplte the widespread use of multivarlate techniques in blological studles of growth and systematic varlation, many of the statistical ramlfications with regard to systematics have not been fully appreclated. Indeed, the multlvarlate approach to slze and shape vartation is stlll in an exploratory phase. With this in mind, only the lmportant statistical operations performed by these methods wlll be stressed in thls work.

Multivarlate Procedures: Pattern Recognition In Morphological Hyperspace

Principal component analysis is an ordination technlque, which can be used to simultaneously examine varlation in a number of characters: there are two types -R -mode and Q -mode. In an R-mode analysis where X is an $T \mathrm{nxp}$ data matrix, the pxpminor product matrix is $X \bar{X}$, compared to a Q-mode anatysis performed on the $n \times n$ major product matrix, $X X$. In R-mode analysis The relationship between varlables is of import, whereas in Q-mode the definition of inter-object similarlty is of interest. Thus in an R-mode analysis, variation can be regarded as the differentlal response of cahracters along an ontogenetic trajectory. Each character will show a range in its response, which can be expressed statistically as its varlance.

The maln purpose of PCA is to describe parsimonlously the total varlance for all characters, in as few dimensions as possible. The derived dimensions are linear combinations of the original varlables, that successlvely account for the major patterns of variation. The relationship between each dimension is an expression of the correlation or covarlance matrix of the original data set.

Geometrically, the relationship can be defined as the cosine of the angle between two vectors, which describe the equlprobability contours of two varlables (Fig. 7a). If two varlables are uncorrelated, then the vectors are orthogonal; whereas, if they are correlated, then the corresponding contours are elliptical. The first princlpal component ifes along the long axis of the ellipse. The second component lles orthogonally to it, and is regarded to be Independent of the first component (Fig. 7b).
a

b

Fig. 7a. Equiprobability contours ($p=0.75$, 0.95 , and 0.995) for uncorrelated varlables X_{1} and X_{2} (after Morison, 1976). μ_{1} and μ_{2} fefer to two vectors drawn at'zero varlance; these axes intersect at 90° thus the cosine of $\beta=0$. Pearson's product moment correlation coetficient $(p)=0.6$.

7b. The lines of equiprobabllity are elliptic, defined by $\beta=60^{\circ}$, and with $p=0.6$.

Algebralcally, the principal components can be obtalned by solving for the eigenvalues and elgenvectors of the correlation or covariance matrix. The eigenvalues are derived from the characteristic equation of the matrix used:

$$
D-\lambda I=0
$$

where D is a square matrix, of order ρ, λ is the scalar (eigenvalue), and I' is the identity matrix of order p. Each elgenvalue has an assoclated elgenvector, which satistles the function:

$$
\left(D-\lambda_{1}, I\right) \quad a_{1}=0
$$

where λ_{1} is one of the p elgenvalues, and a_{1} is one of the corresponding elgenvectors.

The elgenvalue indicates the length of each princlpal component. When these are standardlzed to represent the total varlance, then thelr elgenvectors are equivalent to the principal components that they represent. In blologlcal terms, the first principal component has been consldered representative of overall slze effects (Lee 1971, Kuhry and Marcus 1977), and the second component indlcative of shape, an argument determined by the bipolarlty of the loadings (Pimental 1979, Reyment et al. 1984). However, detalled work on this aspect of princlpal components analysis has yet to be done.

A second multivarlate technlque, discriminant function analysis (DA), is useful where a priorl knowledge of the groupings is avallable. This method essentlally assigns an individual to a group, based on a number of predeslgnated groups. The functions are derlved from the inverse matrlx of the within group varlance-covarlance matrix, and are glven by:

$$
y=\left(\bar{x}_{1}-\bar{x}_{2}\right) \cdot s^{-1} x
$$

where \bar{x}_{1} and \bar{x}_{2} are the mean vectors for the respectlve samples, s^{-1} is the inverse matrlx, and X is a vector of varlables. The detalls of this method are given in a number of statlistlcal texts, such as Morrison (1976) and Reyment et al. (1984).

Blologlsts have used the techn lque in two ways, 1) the description of the differences between the groups on the basis of the sample data, and 2) the allocation of future elements, whose orlgins are not known with certalnty (Habbema and Hermans 1977). Usually, the differences between groups are expressed in terms of a distance measure, such as the Mahalanobls' (1936) generallzed distance, D^{2}, or Wllks: (1932) criterion. The former has a number of important propertles, one of which is useful in taxonomic research, namely ${ }_{2}$ that the contrlbution of each character to the 0^{2} can be ascertalned (Rao 1952).

The IInear discriminant function is connected with the Mahalanobis' generallzed distance as follows:

$$
D^{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right) \cdot s^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right)=d^{t} a
$$

where vector d is the difference between the two rample mean vectors (Reyment et al. 1984). To test whether the centrolds of two groups are signiflcantly different, an F-test can be used, where:

$$
\begin{aligned}
& F(p, n-g-p+1)= \\
& \left.D^{2} \frac{(1}{n_{A}}+\frac{1}{n_{B}}\right)^{-1} \frac{(n-p-1)}{p(n-g)}
\end{aligned}
$$

where n is the total number of observations, and g is the number of groups.

Some of the most important points to conslder at the beginning of this analysis are 1) the costs of asslgnment to a particular group, 2) the a priorl probabllity of belonging to one of the groups, and 3) the number of groups involved (Lachenbruch and Goldstein 1979). Other aspects that should be considered are 1) homogenelty of the withinmgroup varlation, 2) multimormal distributlonal assumptions, 3) criterla for selection of varlables, 4) the way in which selection is made during the computations, and 5) the derlvation of the estlmates of posterlor probablilty. These polnts are discussed in most texts on multivarlate techniques. Overall, this method provides a robust test of group assoclation, and can be quite effective in an exploratory study of intermgroup relationships.

The criterla for selection of varlables is often the highest F-value. Generally, this method tends to distingulsh well-separated groups further, instead of trylng to separate poorly defined groups. A jackknife procedure is often applied (Jennrich and Sampson 1983) to reduce blas In the final computations of the discriminant functions. Each case is eliminated, in turn, from the computations of the group means and cross-products (Lachenbruch and Mlckey 1975). Homogenelty of the within-group covarlance matrices can be tested with a chi-square test (Kendall and Stuart 1966).

The Problem of Slze
Much of the varlation in many morphometric data sets, including our own, can be attributed to slze. But defining what is meant by size is more difflcult than might first appear. Early workers interested in allometry treated size as a llnear distance measure from the extreme anterlor to the extreme posterlor of the organism (Huxley 1924, Gould 1966). This is stlll used since the multivarlate portrayal of allometry (Jolicoeur 1963) is not yet well developed (Sprent 1972). But most recent workers prefer a multivarlate definition of size espectally those who are interested in the genetic basis of form (eg. Thorpe and Leamy 1983): they consider size to be an unmeasured latent varlable which explains the observed correlatlons among the morphometric varlables best, argulng that this avolds confounding the varlation of an explicitly measured size varlable with that of the morphometric varlables (Booksteln et al. 1985). The measure of size used for an individual specimen is often its score on the first principal component from a R-mode principal component using the covarlance matrlx (Humphrles et al. 1981, Thorpe and Leamy 1983, see preceding section).

Differences in form among different groups of fish can be subdivided into ilfferences in size and differences in shape. Differences in mean slze at sexual maturity or in mean adult size are often important in characterlzing different groups of fish (McGlade 1981). But differences in mean slze among groups can also result from lnadequate sampling. Thus it is often important to distingulsh differences in shape from differences in size.

Three major classes of techniques have been used to separate slze from shape: ratios, residuals from regressions against size, and
multivarlate analyses. We wlll brlefly discuss each of these three methods, but for a more thorough review see Humphrles et al. (1981) or Reyment et al. (1984).

Ratios of morphometric variables over an explicit slze measure such as total body length have been extenslvely used but have come under considerable criticism. A ratio will not be constant within a group for individuals showing differential growth, and the effect of allometry may be large compared to the differences in shape among groups (Reyment et al. 1984). The use of ratios assumes that a linear regression for a morphometric measure versus total length would give a good fit and would pass through the origin, something which may not be true even if the varlables are first log-transformed (Thorpe and Leamy 1983). Finally the use of a ratio of a morphometric character over an explicitly measured varlable such as total length confounds the varlance in the numerator with that of the denominator (Bookstein et al. 1983). Moreover, the statistical properties of a ratio of two randon varlables can cause problems which may not be noticed by non-statisticlans (Atchley et al. 1976). We think that all of these problems make it inadvisable to use ratios to correct for size -- but not everyone agrees with this conclusion (Mosimann and James 1979).

A second method of removing size is to undertake a statistical analysis of shape on the residuals from univarlate regressions of the morphometric varlables against size (Thorpe 1976). The patterns of growth and thus any allometry is likely to be different for groups from different environments. Therefore a separate univarlate regression for each morphometric measure agalnst size must be done separately for each group. The consequences of trying to fit regression lines to the pooled data from all the groups comblned are shown in Fig. 8; if there are different patterns of growth in the different groups, the residuals wlll be non-random. One method of avolding this is to use an average of the within-group slopes (Thorpe 1976), but thls will not work if the within-group slopes are substantially different (Bookstein et al. 1985).

Fig. 8. Regression of two sets of data pooled to give a single regression line using Thorpe's (1976) method.

The third method of separating size from shape is with multivarlate techniques, primarlly principal components analysis. In practice the scores of the individual specimens on the first princlpal component are highly correlated with traditional measures of size such as total length. The scores on the second and subsequent principal components are then considered as measures of shape. The scores on the first princlpal component are plotted agelnst those on the second princlpal component, and the plot examined to see if there is any separation of fish from different locations. If there is any differentlation along the axis of the first princlpal component then it is usually attributed to differences in size, and If there is separation along the axis of the second principal component then it is attrlbuted to differences in shape. The procedure can be repeated using the third or subsequent principal component scores in place of the second if they account for a significant proportion of the varlance. The strength of this method is that no a priori grouping of sample locations is required.

The major criticism of the technique however, is that the first principal component does not necessarlly account for all the slze varlation in the data, so that the remaining components might contaln a mixture of size and shape (Humphrles et a1. 1981; McGlade 1981). A method of shearing The scores on the second and subsequent principal components to remove size has been proposed (Humphrles et al. 1981). This method has the disadvantages that it treats fish from different sample locations differently and that it is difficult to program on non-Michigan Terminal System (M.T.S) operating systems (although it has been done using IMSL subroutines (Winans 1984)). Indeed this shearing procedure is probably unnecessary unless a more aesthetic plot is desired. Any dependence of the second principal component scores on size can usually be seen in the original plot as the magnitude of scores on the second principal component will show a linear increase with those on the first (Humphrles et al. 1981). This will most often occur when fish from different genera are beling compared and not when differentlating stocks within a specles where the patterns of growth are quite slmilar.

Instructions

Some parts of the procedure for analysing the truss measures will depend on the type of study. The first step, however, is always the same and consists of verification of the datamset (see previous description).

The next step depends on whether there is an a priori hypothesis about the subpopulation structure in the fish population. If there is no such hypothesis then a principal components analysis should be undertaken on the logtransformed truss measures using the covarlance matrix. The resulting plots of the principal component scores can then be examined for clusters. Identification of the groups to which the points belong can be facllitated by saving the data and scores from this analysis in a BMDP save flle and using BMDP6D (Appendix C) to produce a plot that is labelled with the group identity. If such plots reveal clustering by group then these groups con be considered subpopulatlons.

AN EXAMPLE OF RESULTS --
 THE SCOTIAN SHELF GADOIDS

We wlll present three examples that use the technlques described in this report: 1) an investigation of stock structure in Scotlan Shelf pollock (Pollachlus virens), 2) an investigation of stock structure 1 n Scotlan Shelf haddock (Melanogrammus aegleflnus), and 3) a comparison of the morphology and of the growth patterns of pollock and haddock.

The fish were collected during three crulses on the Lady Hammond by Marine Fish Division personnel. These were crulse H088 on January $6=11,1983$ (Flg. 9), cruise 4089 on January $12-18$, 1983 (Flg .9), and crulse H110 from November 28 to December 8, 1983 (Fig .10). The sampling design was a compromise between what was destrable for stock identification purposes and what was desirable for other objectives of the Marine Fish Division.

A seven cell truss was used as a basls for collecting the morphometrlc data (Fig. 2). Meristic counts were also made on these fish and tissue samples were taken for electrophoresis: these data will be published elsewhere.

GULF OF MAINE AND SCOTIAN SHELF POLLOCK

The pollock were all collected during crulse H110 (Fig. 10). Flsh were comblned from sets 18 and 19 (hereatter set 18) which gave a total of 100 fish in set $3,32 \mathrm{fish}$ in set 12 , and 100 fish in set 18.

We used BMDP4M (Appendix C) to do a principal components analysis on the correlation matrix of the log - transformed truss measures. (We suggest that workers use the covarlance matrlx, but in this case, the results are very similar.) We then used BMDP6D (Appendix C) to produce labelled plots of the scores on the princlpal components.

The first princlpal component has high positive loadings from all of the truss measures, except for B1 (Table i). The loadings suggest that the first princlpal component does in fact embody general size. Moreover, as the first princlpal component explains 89.6% of the varlance, we can conclude that most of the varlance in the pollock morphometric data can be attributed to varlation in slze. The only truss measure somewhat Independent of stze is Bi (Table 1), the distance between the attachment of the pectoral and the attachment of the pelvic fins (Figs. 1 and 2).

The second princlpal component has bipolar loadings for the varlables (Table 1): the importance of a varlable's contribution to a princlpal component score can be determined by comparing the magnitude of the absolute value of its loading coefficlent to that of other varlables. In this example, the second component shows a high positive loading for BI and a moder ate, negative loading for E3 (the distance between the second and third dorsal fins). This means a fish would have a high second princlpal component score if its value of 81 was large and

Its value of $E 3$ was small. This component accounts for an additional 2.6% of the varlance.

The third princlpal component has a high positive loading from E3, moderate positive loadings from $B 1, C 1, E 1, E 5$, and $G 3$, and small negatlve loadings from most of the rest of the varlables (Table 1). It accounts for only 1.5% of the varlance so wll not be discussed further.

Before plotting the scores for a glven component, the program standardizes them by subtracting thelr mean, dlylding them by the standard deviation and then squaring them. The plot of the scores on the first princlpal component versus those on the second princlpal component shows two distinct clusters, one contalning mostly fish from set 18 and one containing mostly fish from sets 3 and 12 (Fig. 11). The clusters are separated along the axis of the first princlpal component but not along that of the second suggesting that the separation is by size rather than by shape. Indeed the mean fork length, another measure of size, of fish from set 18 was only 37.0 cm compared to the mean of 67.9 cm for sets 3 and 12 comblned.

We have constructed composite forms for average pollock of fork lengths of $25 \mathrm{~cm}, 50 \mathrm{~cm}$, and 75 cm (Figs. 12a, b, c) using the regression coefficients for the data from all the sets combined (Table 2). Note that the distortlon, the amount of correction needed to allow the average truss measurements to be constructed into an average form, is very small. The 50 cm form is a) proportionately shorter in cell A, in side BI, and in cell F, b) proportionately longer in cell D, and c) proportlonately narrower in cell E compared to the 25 cm form. The same trends are noticeable when the 75 cm form is compared with the 50 cm form. Thus as a pollock grows from 25 to 75 cm , its head, the distance between the pectoral and the pelvic fins, and the body reglon below the 3 rd dorsal fin become proportlonately shorter, the body reglon below the 2 nd dorsal fin becomes proportlonately longer, and the body region between the 2 nd and 3rd dorsal fins becomes proportlonately narrower. Pollock thus, exhlbits considerable differential growth of its varlous body regions.

We also constructed composite forms for the two groups separated in the principal component analysis: one for sets 3 and 12 and one for set 18. 8oth of these forms were constructed for an average fish of the slze corresponding to the mean fork length for that group (Figs. 13a, b). The differences in shape between these two composite forms are what we would have expected for a 37.0 cm pollock and a 68.0 cm pollock on the basis of the changes we saw between the smaller and larger forms constructed from all the sets combined.

GULF OF MAINE AND SOUTH-WEST NOVA SCOTIAN HADDOCK
The haddock were collected from sets 9,10 , 30, $31,37,41,42$, and 43 on crulse H088 (Flg . 9), from sets 3, 4, 6, 11, 28, 29, and 30 on crulse 4089 (Fig. 9), and from sets 10 and 19 on H110. To avold confusion, set 30 from H088 was recoded as set 88 , set 30 from 4089 was recoded as set 89 , and sets 10 and 19 from $H 110$ were recoded as sets 70 and 79 respectively.

Figure 9. Cruise track off south-western Nova Scotla for the R.V. Lady Hammond, H088/89.

Figure 10. Cruise track for the R.V. Lady Hammond on the Scotian Shelf and Gulf of Maine, H110.

Table 1. Principal component scores for each truss measure of pollock, the varfance explained and cumulative percentage for the first three unrotated components (PC1, PC2, PC3) (using the correlation matr (x).

	PC1	PC2	PC3
A 1	. 991	-. 021	-. 021
A2	. 981	-. 017	-. 037
A3	. 990	-. 054	-..007
A4	. 996	-. 006	-. 023
A5	. 991	-. 012	--. 026
A6	. 990	-. 026	-. 023
B1	. 365	. 909	. 176
B3	. 984	-. 000	-. 075
B4	. 995	-. 030	-. 034
B5	. 993	-. 005	-. 027
B6	. 996	-. 006	-. 028
C1	. 973	-. 125	-. 016
C3	. 767	-. 020	. 122
C4	. 989	-. 022	-. 013
C5	. 990	-. 014	-. 011
C6	. 995	-. 033	-. 033
D1	. 988	-. 002	-. 048
D3	. 982	. 006	-. 065
D4	. 990	. 034	-. 007
D5	. 985	. 017	-. 049
D6	. 909	-. 017	-. 063
E1	. 787	-. 068	. 255
E3	. 704	-. 227	. 605
E4	. 993	. 030	-. 039
E5	. 993	. 019	. 005
E6	. 991	. 017	-. 013
F1	. 982	-. 017	-. 064
F3	. 985	. 014	-. 066
F4	. 972	. 021	-. 064
F5	. 930	. 012	-. 129
F6	. 990	-. 010	-. 046
G1	. 901	-. 032	. 099
G3	. 918	-. 026	. 114
G4	. 932	.121	-. 011
G5	. 934	. 048	. 017
G6	. 964	. 037	. 014
Varlance Explained	32.271	.930	. 559
Cumulative \%	89.6\%	92.2\%	93.7\%

Figure 11. Plot of the first and second principal components (PC1 and PC2) from an analysis of pollock; $1=$ Gulf of Malne; $2=$ Scotian Shelf.

TOTAL FISH LENGTH IS 25.0 CM

DISTORTION IS 0.068

TOTAL FISH LENGTH 15 50.0CM
DISTORTION IS 0.037

POLLOCKALLSETS

TOTAL FISH LENGTH IS 75.0 CM
OISTORTION $15 \quad 0.027$

Figure 12. Composite forms for pollock of fork lengths a) 25 cm ; b) 50 cm ; and c) 75 cm using all sets combined.

Table 2. Regression coefficlents for pollock for the first principal component loadings of each truss measure and the log-transformed measures versus total length, for all sets combined used to reconstruct a composite truss form.

Intercept	Slope	r	x Variable	Y Varlable
-7.19444	4.24707	. 90	Total Fork Length	1st PC scores
1.09960	. 18352	. 99	1st PC scores	Truss (1,1)
. 75694	. 18565	. 98	1st PC scores	Truss (2,1)
1.03883	. 18900	. 99	1 st PC scores	Truss (3,1)
1.05631	. 18522	1.00	1st PC scores	Truss (4,1)
1.00253	. 18234	. 99	1st PC scores	Truss (5,1)
1.21779	. 18934	. 99	1st PC scores	Truss (6,1)
-. 04523	. 08531	. 37	1st PC scores	Truss (1,2)
1.05631	. 18522	1.00	1st PC scores	Truss (2,2)
. 75805	. 18761	. 98	1st PC scores	Truss (3,2)
1.15565	. 19050	1.00	1st PC scores	Truss (4,2)
1.05257	. 18765	. 99	1st PC scores	Truss (5,2)
1.16835	. 18673	1.00	1st PC scores	Truss (6,2)
. 93428	. 20661	. 97	1st PC scores	Truss (1,3)
1.15565	. 19050	1.00	1st PC scores	Truss (2,3)
. 08225	. 21378	. 77	1st PC scores	Truss (3,3)
1.08282	. 18861	. 99	1st PC scores	Truss (4,3)
1.07562	. 18863	. 99	1st PC scores	Truss (5,3)
1.18056	. 19194	. 99	1st PC scores	Truss (6,3)
1.14781	. 19487	. 99	1st PC scores	Truss (1,4)
1.08282	. 18861	. 99	1st PC scores	Truss (2,4)
1.04183	. 20728	. 98	1st PC scores	Truss (3,4)
. 85108	. 16474	. 99	1st PC scores	Truss (4,4)
1.15744	. 19206	. 99	1st PC scores	Truss (5,4)
1.21054	.20103	. 91	1st PC scores	Truss $(6,4)$
. 14437	. 18440	. 79	1st PC scores	Truss (1,5)
. 85108	. 16474	. 99	1st PC scores	Truss (2,5)
. 18378	. 14433	. 70	1st PC scores	Truss (3,5)
. 82763	. 16964	. 99	1st PC scores	Truss (4,5)
. 85329	. 16743	. 99	1st PC scores	Truss (5,5)
. 84496	. 16661	. 99	1st PC scores	Truss (6,5)
. 82821	. 17016	. 98	1st PC scores	Truss (1,6)
. 82763	. 16964	. 99	1st PC scores	Truss (2,6)
. 84594	. 17200	. 99	1st PC scores	Truss (3,6)
. 51014	. 16379	. 97	1st PC scores	Truss (4,6)
. 92343	. 16812	. 93	ist PC scores	Truss (5,6)
. 91105	.17103	. 99	1st PC scores	Truss (6,6)
. 15698	. 21953	. 90	ist PC scores	Truss (1,7)
. 51014	. 16379	. 97	1st PC scores	Truss (2,7)
. 15315	. 20347	. 92	lst PC scores	Truss (3,7)
. 47520	. 17005	. 93	ist PC scores	Truss (4,7)
. 53589	. 17442	. 93	ist PC scores	Truss (5,7)
. 53483	. 16935	. 96	1st PC scores	Truss (6,7)

a

POLLOCKSETS3ANO12

TOTAL FISH LENGTH IS 68.OCM
 DISTORTION IS 0.063

b

POLLOCKSET18

TOTAL FISH LENGTH IS 37.0 CM
 DISTORTION IS 0.080

Figure 13. Composite forms for pollock from a) the Scotian Shelf and b) the Gulf of Malne corresponding to a mean fork length of 68 cm and 37 cm , respectively.

A principal components analysis was again undertaken on the correlation matrix, for all the sets from all the cruises combined. The first principal component accounted for 89.1% of the variance (Table 3). This component had high positive loadings for all the varlables includting B1. As was true of the pollock data then, most of the variance in the haddock data could be attrlbuted to varlation in size. The second principal component had large positive loadings from Ci, E1, E3, G1, and G3, a large negative loading from B1, and accounted for an additional 2.4% of the varlance (Table 3). The third principal component accounted for only an additional 1.4\% of the varlance so will not be discussed.

BMDP6D can be used to label the points on the plots of the princlpal component scores in different ways depending on the hypotheses about stock delineation. We initially used a different symbol for each of the sets but the resulting plots showed no evidence of clustering by set, so we have not included them. We then decided to aggregate the sets into four geographic groupings: X containing sets $3,4,6,9,10,11,31,37,41$, 42, 43, and 88 (Browns Bank - LaHave Basin), F containing sets 28,29 , and 89 (mouth of the Bay of Fundy), W containing set 70 (Emerald Bank), and Y containing set 79 (Gulf of Maine) (Fig. 9). We drew an envelope around the extreme points for each group to facilitate interpretation of the plots.

On the plot of the first principal component scores versus the second principal component scores (Flg. 14), groups W (Emerald) and Y (Gulf of Malne) are separated from groups X (Browns LaHave) and F (Fundy) along the axis of the first principal component. Fishes from groups W and Y are on average larger than flshes from groups X and F, but it will not be possible to tell if this difference is real or a sampling artifact until more than one set is avallable from each of areas W (Emerald) and Y (Gulf of Malne). There was no separation of these four groups along the axis of the second principal component although group Y has a more restricted distribution than the other three groups.

To define stocks on the basis of morphometric characters alone, the robustness of the classification should be tested by classifying fishes of unknown origin to one of the prevlously identifled stocks. Before this can be done a classification function must be constructed from a linear combination of the morphometric variables for each of the stocks. We have done this for the four geographical groupings of haddock using a discriminant analysis program (BMDP7M, Appendix C) which uses a stepwise method of entering and removing the varlables into the classification functions in order to select the most discriminating set of variables. The use of these four grouplngs is meant as an example only - we are not making implicatlons about the stock structure of haddock on the Scotlan Shelf. With the F value to enter set at 2.00 and the \dot{F} value to remove set at 1.99, the classlfication functions contalned coefficlents for 18 of the 37 varlables on step 18, the final step (Table 4). The jackknlfed classification matrix shows that
these classiflcation functions correctly classifled an average of 70.7% of the fish into the correct geographical grouping (Table 5).

Group X (Browns - LaHave) had the highest number of its fish correctly classifled (83.1%) while group F (Fundy) had the lowest (34.4%). Fish from the Browns - LaHave group were most often misclassifled into the Fundy group and vice-versa. Flsh from Emerald and from the Gulf of Malne were most often misclassifled into the Browns - LaHave group. Most of the dispersion between the centroids of the groups (86.5%) was accounted for by the first two canonical varlables (Table 6). The plot of these varlables shows whlle the centrolds of group W (Emerald) and group Y (Gulf of Maine) are well separated from those of the other groups, the envelopes drawn around the extreme points show considerable overlap (Fig. 15). We suspect that at least some of this separation of the centrolds is attributable to differences in mean slze among the groups, especially in light of the results obtained from the princlpal component analysis.

We constructed composite forms for haddock at three slzes: $25 \mathrm{~cm}, 50 \mathrm{~cm}$, and 75 cm using the data comblned for all sets from all cruises. The 25 cm form is proportionately much longer in cell A and proportionately shorter in cell C and D than the 50 cm form (Figs. 16a, b, c). As a haddock grows from 25 cm to 75 cm its head gets proportionately smaller and its body region below the 2 nd and 3 rd dorsal f in gets proportionately longer. We have constructed composite forms at 50 cm for each of the four geographical groupings. All four forms are similar (Figs. 17a, b, c, d).

POLLOCK VERSUS HADDOCK

The pollock data, combined for all sets, were compared with the haddock data, combined for all sets. A principal components analysis was performed on the correlation matrix of the combined data from both species.

From the results (Table 7) we can see that the first principal component has large positive loadings from all the varlables except B1. The coefficlent for Bi is small relative to those of the other varlables indicating it is relatively independent of general size. The first princlpal component explalins 88.3% of the varlance; even though we are now dealing with data from two specles most of the variation in the data can stlll be attributed to variation in size. The second princlpal component explains an additional 3.7\% of the variance. This component has a very high positive loading from Bi and high negative loadings from Ei and E3. Fish with a large score on this component will have a large value of Bi and a small value of E1 and E3. The third principal component accounts for an additional 1.4% of the varlance and has large positive loadings from B1, C3, E1, E3, G1, and G3, and small negative loadings from most of the other varlables (Table 7). Haddock and pollock show good separation on the axis of the 2nd princlpal component but not on the axis of the first (Fig. 18a). It is interesting that the best line separating the two clusters of points would be a dfagonal one; this suggests the scores on the second principal component are somewhat size

Table 3. Principal component scores for each truss measure for haddock, the varlance explalned and the cumulative percentage for the first three unrotated components (PC1, PC2, PC3) (using correlation matr(x).

	PC1	PC2	PC3
A1	. 940	-. 007	. 016
A2	. 971	. 024	-. 057
A3	. 972	-. 014	. 019
A4	. 992	-. 025	-. 012
A5	. 978	-. 019	. 005
A6	. 991	. 001	-. 011
B1	. 731	-. 221	-. 041
B3	. 954	-. 085	-. 014
B4	. 990	-. 027	-. 008
B5	. 990	-. 024	-. 011
B6	. 991	-. 050	-. 014
C1	. 953	-. 006	-. 022
C3	. 834	. 182	-. 009
C4	. 987	-. 033	-. 033
C5	. 985	-. 032	-. 025
C6	. 992	-. 014	-. 019
01	. 975	-. 073	. 024
D3	. 975	-. 084	. 044
D4	. 985	-. 058	-. 032
D5	. 979	-. 062	. 013
D6	. 976	-. 060	. 001
E1	. 701	. 449	-. 396
E3	. 704	. 470	-. 223
E4	. 988	-. 069	-. 023
E5	. 989	-. 037	-. 035
E6	. 988	-. 057	-. 030
F1	. 975	-. 093	. 015
F3	. 977	-. 067	-. 009
F4	. 967	-. 061	-. 017
F5	. 972	-. 081	. 004
F6	. 976	-. 090	. 024
G1	. 751	. 419	. 406
G3	. 827	. 301	. 331
G4	. 964	-. 060	-. 027
G5	. 973	. 030	. 074
G6	. 962	. 007	. 053
Variance Explained	32.095	. 854	. 506
Cumulative \%	89.1\%	91.5\%	92.9\%

Figure 14. Plot of the first and second principal components (PC1 and PC2) from an analysis of haddock; $X=$ Browns-LaHave Banks; $F=$ mouth of the Bay of Fundy; $W=$ Emerald Bank; and Y = Gulf of Maine.

Figure 15. Plot of the first and second canonical variates (CV1 and CV2) from a discriminant function analysis of haddock; the centrolds for each group are circled -- $\mathrm{X}=$ Browns-LaHave Banks; $F=$ mouth of Bay of Fundy; $W=$ Emerald Bank; and $Y=$ Gulf of Malne.

Table 4. Results from the discriminant function analysis of haddock: classification functions for the four groups.

Varlable	Browns-LaHave Banks (X)	Bay of Fundy (F)	Emerald Banks (W)	Gulf of Maine (Y)
A1	54.96812	46.88943	61.67882	55.48672
A2	-210.93507	-219.25172	-182.0765	-199.99408
A4	-230.67607	-216.12962	-214.52070	-157.65714
A5	111.34489	113.79213	135.39158	80.29010
A6	1252.60022	1223.34600	1228.68963	1185.74304
B1	-20.22112	-28.50871	-21.75976	-23.49483
B3	11.26280	2.24227	. 60841	1.80206
C1	-207.84874	-203.06384	-197.26514	-184.05957
C3	-87.61634	-86.74213	-91.02581	-88.53851
C4	154.62978	158.01670	125.64992	124.75467
D1	-4.06531	1.03590	-5.55832	17.84244
E5	84.28142	78.13561	71.13342	56.48189
E6	-235.61437	-205.05537	-244.52142	-190.75460
F3	-127.75501	-134.83338	-121.06742	-141.51438
F4	-210.14415	-209.03612	-195.96999	-204.57436
63	-79.56089	-85.86851	-85.07580	-83.33117
G5	-56.11385	-48.09416	-42.02010	-51.11458
G6	-69.74275	-64.21309	-75.84045	-71.38562

Table 5. Jackknifed classification matrix for the discriminant function analysls of the four groups of haddock.

Group	Percent Correct	Number of Cases Classified into Group			
		Browns- LaHave	Bay of Fundy	Emerald Bank	Gulf of Malne
Browns-LaHave	83.1	275	16	19	21
Bay of Fundy	34.4	47	33	2	14
Emerald Bank	72.0	17	6	72	5
Gulf of Malne	63.3	26	6	4	62
TOTAL	70.7	365	61	97	102

Table 6. Results from the discriminant function analysis of haddock.

Cumulative Proportion of Total Dispersion			
	. 53509	. 86519	1.00000
Canonical Correlations			
	. 64485	. 55240	. 38995
Variable	Coefficients for Canonical Variables		
A1	-3.43925	3.24647	4.91256
A2	-13.30696	3.87387	5.45256
A4	-14.21527	-31.63220	19.26072
A5	-4.95893	18.55716	-20.73224
A6	14.93822	30.63949	-3.98424
B1	. 19512	3.04430	4.97345
B3	4.42015	3.81279	4.50425
C1	-6.66723	-9.08509	5.18741
C3	1.51346	-. 59383	-. 39484
C4	15.31848	5.54516	-10.39193
D1	-1.76055	-11.13310	6.48660
E5	8.03565	10.56778	-5.49537
E6	. 62617	-28.93087	-. 51023
F3	-1.48241	9.24386	-2.33259
F4	-6.04808	. 58291	-1.09264
G3	1.98011	1.87047	4.06284
G5	-5.26035	-. 82892	-6.47440
G6	3.09786	-2.00742	-3.65146
Group	Canonical Variables Evaluated at Group Means		
Browns-LaHave Banks	. 55319	. 36521	. 16341
Bay of Fundy	. 45503	-. 67510	-. 86231
Emerald Bank	-1.69539	. 63118	-. 22055
Gulf of Mafne	-. 58418	-1.21624	. 51782

TOTAL FISH LENGTH IS 25.0 cm
DISTORTION IS 0.109

b

HADDOCKALLSETS

TOTAL FISH LENGTH IS 50.0 CM
OISTORTION IS 0.161

C
hadoockallsets

TOTAL FISH LENGTH IS 75.0 CM
DISTORTION IS 0.596

Figure 16. Composite forms for haddock of fork lengths a) 25 cm ; b) 50 cm ; and c) 75 cm using all sets combined.

b HADDOCKGROUPF

TOTAL FISH LENGTH IS 50.0 CM
OISTORTION IS 0.450

Figure 17. Composite forms for haddock from a) Browns-LaHave Banks (X); b) mouth of the Bay of of Fundy (F); c) Emerald Bank (W); and d) Gulf of Maine (Y) all scaled.

C

HADDOCKGROUPW

TOTAL FISH LENGTH IS SO.OCM
 DISTORTION IS 0.060

d

HADDOCKGROUPY

TOTAL FISH LENGTH IS 50.0 CM
DISTORTION IS 0.015

Figure 17. (Continued).

Table 7. Principal component scores for each truss measure for pollock and haddock, the varlance explained and cumulative percentage for the first three unrotated components (PC1, PC2, PC3) (using correlation matr(x).

	PCI	PC2	PC3
A 1	. 964	-. 024	-. 038
A2	. 947	.171	. 032
A3	. 951	-. 226	-. 054
A4	. 994	-. 019	-. 036
A5	. 984	. 011	-. 041
A6	. 986	-. 094	-. 025
B1	. 364	. 820	. 240
B3	. 938	. 210	-. 051
B4	. 989	-. 082	-. 055
85	. 992	-. 001	-. 037
B6	. 992	-. 039	-. 043
C1	. 960	. 025	-. 046
C3	. 793	. 130	. 276
C4	. 987	-. 056	-. 046
C5	. 988	-. 028	-. 040
C6	. 991	-. 076	-. 044
D1	. 973	-. 098	-. 059
D3	. 975	. 093	-. 048
D4	. 987	. 015	-. 056
D5	. 981	. 072	-. 047
D6	. 954	-. 075	-. 067
E1	. 771	-. 348	. 202
E3	. 736	-. 476	. 175
E4	. 989	. 043	-. 062
E5	. 990	. 006	-. 046
E6	. 989	.019	-. 056
F1	. 960	. 181	-. 064
F3	. 967	. 163	-. 041
F4	. 971	-. 033	-. 067
F5	. 948	. 163	-. 066
F6	. 978	. 097	-. 064
G1	. 833	-. 175	. 360
G3	. 863	-. 006	. 306
G4	. 959	. 023	-. 023
G5	. 964	. 010	. 070
G6	. 966	-. 059	. 033
Variance Explained	31.797	1.352	. 504
Cumulative \%	88.3\%	92.0\%	93.4\%

Figure 18. Plots of the first, second, and third principal components (PCl, PC2, and PC3) from an analysis of pollock (P) and haddock (H); a) PCi versus PC2; b) PC1 versus PC3, and c) PC2 versus PC3.
dependent. This plot also shows the same separation of the pollock into two clusters, based on size, that we saw in the analysis of pollock only. The plot of the third principal component scores versus the first principal component scores shows falr separation of the two species along the axis of the first principal component but none along the axis of the third (Fig. 18b). The plot of the second principal component agalnst the third confirms that there is no separation of the two species along the axis of the third principal component (FIg. 18c).

The patterns of growth in pollock can be usefully compared with those in haddock using the composite forms we discussed prevlously (Figs. 12 and 16). The 25 cm pollock form is proportionately narrower in cell A, and proportlonately shorter in cell F and sides B1, C3, and proportionatley longer in sides D1, E1, and E 3 than the 25 cm haddock. The same trends are noticeable when the 50 cm pollock form is compared to the 50 cm haddock and the 75 cm pollock form is compared to the 75 cm haddock. The most noticeable differences in the growth of the pollock and the haddock, then, are in the body streamlining and in the distance between the pectoral and the pelvic fins. The shape of a pollock is such that the body does not reach its widest point untll the end of the first dorsal fin whereas the haddock body reaches its widest polnt at the beginning of the first dorsal fin. As a pollock grows from 25 cm to 75 cm the distance between the pectoral and pelvic fins becomes proportionately shorter whereas in the haddock this distance stays in proportion. It would therefore be interesting to understand how these differences in morphology relate to ontogeny and the different environments that these fish live in -- the pollock is seml-pelagic and the haddock largely benthic -- although these ideas are beyond the scope of this report. In short, however, the techniques outlined above can differentlate the growth patterns observed within and between specles, and can be used to give a quantitative estimate of the differences.

CONCLUSIONS

Blologists can as a rule be divided into those who strive to capture diversity, and those who seek underlying unitles in the more than one millifon specles of living organlsms. D'Arcy Wentworth Thompson was amongst the latter, as he searched for the basic immutable patterns of a bauhaus design in the organisms he studled. But as many biologists realize, these approaches are simply aesthetic styles that affect the modus operandi of sclence rather than different theorles of blology. Indeed anyone who studles diversity would admit to common generating patterns, and any analysts of unlty recognise the importance of particular expressions of a pattern. Thus the differences lie in the application and final intent. Population biologists tend generally to think in terms of point by point, or character by character differences, whilst systematicists generally look for contlnued simflaritles in overall characteristics. The polnt of departure is thus the event horizon against which the results are posited; in fisherles management the horlzon is generally five to ten years, in ichthyology it can be marked in thousands of years.

From the analyses given above, it is clear that truss data sets provide a clear and rellable view of shape differences in gadolds. Moreover, comparisons with conventional morphological data sets suggest that truss data capture more information about local body proportions (pers. comm., J. McGlade). In the examples used in this study, point by point interspecific differences in the ontogeny of shape were identifled, and certain areas isolated with respect to causal IInks between morphology and Ilfe-history. Thus the data from trusses provide a view for both the population blologist and the systematicist interested in long-term evolutionary patterns. The fact that the trusses can be used to identify those areas of body development which increase most rapldly with age, and describe the actual form of such growth is of real importance in a fishery where mesh controls are used as the conservation measure. Indeed, it would be possible to predict the shape of a selectivity ogive given the cross-dimensions of the mesh and a serles of trusses for fish of different sizes. The impact of a mesh-regulation on a multispecies flshery could thus be modelled.

The long-term evolutionary view is given through comparisons of growth patterns for different spectes; as was shown in this study, growth rates of the area in front of the caudal peduncle and of the head region were different in haddock and pollock. Such dlfferences may in fact represent an overall response to a semi-pelagic versus a benthic way of IIfe -- hypotheses that could be open to analysis through experiments on swimming and observation of prey preference. More important, however, is that the truss analysis can be used to transcend the somewhat reductionist approach that generally ensues from taking each character and presuming in some nalve way that every variation represents an optimal design. And this is clearly the most important conclusion that studles of morphology must reallise, for organ isms are directed and $1 / \mathrm{mited}$ by their past, and hence imperfect and unpredictable in their form and function.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Toby Hay for the statistical help and criticism, V. Myra for typing the manuscript, Diane Beanlands for drawing the flgures, and Paul Fanning for reviewing parts of the manuscript..

REFERENCES

Atchley, W.R., C.T. Gaskins, and D. Anderson. 1976. Statistical properties of ratios 1 empirical results. Syst. Zool. 25: 137-148.

Beverton, R.J.H., and S.J. Holt. 1957. On the dynamics of explolted fish populations. Fish. Invest., Ser. II, Vol. XIX. London, 533 p.

BMDP Statistical Software 1983 Ed. Biomedical Computer Programs Serfes, Univ. Callf., Berkeley, 734 p. BMDP-83 for NOS documentation, 1985 release Vogelback

Computing Centre, Northwestern University, lilinols.

BMDP Users Digest 1981 Ed. BloMedical Computer Programs Serles, Univ. Callf., Berkeley.

Booke, H.E. 1981. The conundrum of the stock concept -- are nature and nurture definable in fishery sclence. Can. J. Fish. Aquat. Scl. 38: 1479-1480.

Booksteln, FoL. 1978. The measurement of blological shape and shape change. Lecture Notes in Biomathematics No. 24, Springer-Verlag, N.Y. 191 P.

Bookstein, F.L. 1982. Foundations of morphometrics. Ann. Rev. Ecol. Syst. 13: 451-470.

Bookstefn, F.L., B. Chernoff, R.L. Elder, J.M. Humphrles, G.R. Smith, and R.E. Strauss. 1985. Morphometrics in evolutionary blology: The geometry of size and shape with examples from fishes. Special Publication 15 Academy of Natural Sclence Philadelphia: 277 pp.

Castle, W.E. 1914. The nature of size factors as indicated by a study of correlation. Pub. Carnegle Inst. 196: 51-55.

Cock, A.G. 1966. Genetic aspects of metrical growth and form in animals. Q. Rev. Biol. 41: 131-190.

Dickie, L.M. 1979. Perspectives on fisherles biology and implications for management. J. Fish. Res. Bd. Canada 36: 838-844.
D.I.S.S.P.L.A. Display Integrated Software System and Plotting Language Users Manual Edition 8.2. 1970. Integrated Software Systems, San Diego.

Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Blol. Rev. 41: 587-640.

Habbema, J.D.F., and J. Hermans. 1977. Selection of varlabies in discriminant analysis by F-statistic and error rate. Technometrics 19: 487-493.

Heuts, M.J. 1949. Racial divergence in fin ray variation patterns in Gasterosteus aculeatus. J. Genet. 49: 183-191.

Humphries, J.M., and F.L. Bookstein, B. Chernoff, G.R. Smith, R.L. Elder, and S.G. Poss. 1981. Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291-308.

Huxley, J.S. 1924. Constant differential growth ratios and their significance. Nature 11: 895-896.

Huxley, J.S. 1932. Problems of relative growth. The Dial Press, N.Y.. 276 p.

Ihssen, P.E., H.E. Booke, J.M. Casselman, J.M. McGlade, N.R. Payne, and F.M. Utter. 1981. Stock identification: Materlals and methods. Can. J. Fish. Aquat. Sci. 38: 1838-1855.
I.M.S.L. L\{brary 1 Reference Manual 1984. Edition 9.2, 2 Vols. International Mathematical and Statistical Library, Houston. $Z-1,3 ; 2 \times S S Q-1,7$.

Jennrich, R., and P. Sampson. 1983. P7M stepwise discriminant analysis. p. 519-537. In: W.J. Dixon led. 1 BMDP Statistical Software 1983 Ed., Univ, Callf., Berkeley.

Jolicoeur, P. 1963. The multivar late generalization of the allometry equation. Blometrics 19: 497-499.

Kendall, M.G., and A. Stuart. 1966. The advanced theory of statistics. Vol. 3, Griffth and Co., Lond. 552 p.

Kuhry, B., and L.F. Marcus. 1977. Bivarlate ilnear models in blometry. Syst. Zool. 26: 201-209.

Lachenbruch, P.A., and M.R. Mickey. 1975. Computations for varlable selection in discriminant analysis. Technometrics 17: 103-109.

Lachenbruch, P.A., and M. Goldsteln. 1979. Discriminant analysis. Blometrics 35: 69-85.

Lark/n, P.A. 1972. The stock concept and management of Pacific salmon. p. 11-15. In: R.C. Simon and P.A. Larkin leds.I The stock Concept in Pacific salmon, H.R. MacMillan Lectures in Fisheries. Univ. British Columbla, Vancouver.

Lee, P.J. 1971. Multivariate analysis for the fisherles biology. J. Fish. Res. Bd. Canada Tech. Rep. No. 244.

Mahalanobis, P.C. 1936. On the generalised distance in statistics. Proc. Nat. Inst. Scl., India 2: 49-55.

McGlade, J. 1981. Genotyplc and phenotypic varlation in the brook trout, Salvelinus fontinalis (Mitchill). Unpubl., Ph.O. dissertation, Univ. of Guelph.

Morrison, D.F. 1967. Multivarlate statistical methods. McGraw-Hlll, New York. 338 p.

Morrison, D.F. 1976. Multivariate statistical methods. 2nd Ed., McGraw-Hill, Toronto. 415 p .

Mosiman, J.E., and F.C. James. 1979. New statistical methods for allometry with application to the Florida red-winged blackbirds. Evolution 33: 444-459.

Pimental, R.A. 1979. Morphometrics: the multivariate analysis of blological data. Kendall-Hunt Dubuque. 276 p.

Rao, C.R. 1952. Advanced statistical methods in blometrlc research. John Willey and Sons, N.Y. 390 p.

Reyment, R.A., R.E. Blackith, and N.A. Campbell. 1984. Multivarlate morphometrics. 2nd Ed., Academic Press, Lond. 233 p.

Royce, W.F. 1972. Introduction to the fishery sciences. Academic Press, New York. 351 p.

Salmon, G. 1914. A treatise on the analytic geometry of three dimensions, 2 vols. (R.A.P. Rogers, Rev. Ed.) Longmans and Green, Lond. $470+334$ p.

Schmidt, J. 1921. Racial investigation VII VIII. C.R. Trav, Lab. Carlsberg 14. Cited in: Tining, A.V. 1946. Nature 157: 594-595.

Simpson, G.G. 1961. Principles of animal taxonomy. Columbla Univ., N. Y. 247 p.

Sneath, P.H., and R.R. Sokal. 1973. Numerical taxonomy. W.H. Freeman, San Francisco. 573 p.

Spangler, G.R., A.H. Belst, and J.F. Koonce. 1981. Perspectives and policy recommendations on the relevence of the stock concept to fishery management. Can. J. Fish. Aquat. Scl. 38: 1908-1914.

Sprent, P. 1972. The mathemat ics of size and shape. Blometrics 28: 23-27.

Strauss, R.E., and F.L. Bookstein. 1982. The truss: body form reconstructions in morphometrics. Syst. Zool. 31: 113-135.

Taning, A.V. 1946. Stage of determination of vertebrae in teleostean fishes. Nature 157: 594-595.

Taning, A. V. 1952. Experimental studles of meristic characters in fishes. Blol. Rev. Cambrldge Philos. Soc. 27: 169-193.

Tessier, G. 1936. Les lols quantitatives de la crolssance. Ann. Physlol. Physicochim. Blol. 12: 527-579.

Thompson, D.W. 1917, 1942. On growth and form. Cambrldge Univ., Cambridge. 1116 p.

Thorpe, J.E., R.I.G. Morgan, E.M. Ottaway, and M.S. Miles. 1980. Time and divergence of growth groups between potential $1+$ and $2+$ smolts among sibling Atlantic salmon. J. Fish. Blol. 17: 13-21.

Thorpe, R.S. 1976. Blometric analysis of geographic variation and raclal affinities. Blol. Rev. 51: 407-452.

Thorpe, R.S., and L. Leamy. 1983. Morphometric studies in inbred and hybrid housemice (Mus sp.): multivarlate analysis of size and shape. J. Zool. Lond. 199: 421-432.

Wllks, S.S. 1932. Certain generallzations in the analysis of varlance. Blometrika 24: 471-494.

Winans, G.A. 1984. Multivarlate morphometric varlability in the Pacific salmon: technical demonstration. Can. J. Fish. Aquat. Sci. 41: 1150-1159.

Wright, S. 1932. General, group, and special size factors. Genetics 17: 605-619.

RECONSTRUCTION OF COMPOSITE TRUSS
** (CYBER procedure given in bold type and underlined)

APPENDIX B:

the progenh in this apgenoly are hritten in fortean y as imgialled ON THE CYEER HAINFRAE GOHPITER AT THE BEDROR INSTITUTE OF OCEANGGAPHY. THE OPERATING SYGEM DF DUR CYEER IS MOS 2.4 WhIUH IS HRITTEN DY THE COHTOL DATA COPRORATION.

THE ENTIRE NOS PROCEDUR 15 LISTED HERE, FOR PEOPLE HITH A COMPUTER sygten exactly live dued at b. I.0., vou pun the nos procedures gy typini THE proceule's name then pughing The darghae peturn. the cyeer whl Promp you for the information it weens to gin the frograh. hote that altosay is a procedre we have in our library at mifd. that decides IF A FILE IS DIRET DR IMDREGT THEN USES EITHER RETURN DR SAVE AS APPROPRIATE, YOU CAN REPLACE THESE TWO LINES WITH "SAVE, FILENAME," unless you have thousands or figh in hhich dase "return, filenahe." IS NECESSARY, GOME COMPUTER CENTRES WITH A CYEER (SUCH AS DALHOUSIE UNIVERSTYY kEEP bHopid in a file called gohethimg othed than bropid - youll have TO CHECK. ALSO HATCH DUT FOR DIFFERENGES ON OTHER CYBERS IN THE TWO LINES THAT FOLLOW THE "/JOB" gTATEMEMT; THESE RELATE TO ADCOHNTING DF COMPUTER Funds, allocation of memory and tihe for the job run by the procedure.

If YDUR COHPUTER HAS A DIFFEREHT DPERATING SYGTEM THESE NOS FROCEDURES HILL NOT RUH, YOU SHOULD BE AELE TO MODIFY THE FORTRAN V FROGRAMS SO THAT THEY HIL FUN ON youe cohputer. if you are interested in doing THIS FLEASE NOTE THE FOLLOHING:

1) THE fortran frugrams theifelves are at the veey end of the procedure.
2) The firgt five or gix lines of the wos frocedure begin hith a nog variable hate that may be used in the fortran y progran listings. THESE ARE USED TO PROMPT THE USER FOR ARRAY SIZES, NUMBER OF FISH; data file names, and dutfut file names, if you are modifying THE FORTRAY Y prongans for another gysten you mill have to remove
THE NOS VARIADLES FROM THE FORTRAN fRORRAMS AND REPLAEE THEM WITH EXACT HMBERS AND NAMES. OF COURE EUERY DPERATING SYSTEM has hinor differences in the if ingtallation of fortran y that you HILL have to look out for. particularly hatch out for the hay YOUR OPERATING SYGTEM INTERFADES VDUR FORTRAM Y PROGRAM WITH THE DATA FILES AND OUTPUT FILES IT USES.
3) THE GRAPHICS PROGRAB "DISSOLA USED By THE FORTRAM y progran
 portanay y fograbl ctouss in leasis may mot be avallable on all gYSTEMS DR EVEH ON ALL NOS SYSTEHS. BUT AT LEAST IF YOU HAVE A nOS SYSTEM you have the oftion of buylili dissfla and insl froh the COHPAIIES THAT PRODUE THEF.
4) IN The procedure regrod there is a fortah y gubrouthe atrangfa that interacts hith ehdpid in order to hrite dut gome variables in From the badp save file dreated in plade (you heed the FRINTFAL COAFONENT SCORES TO DO THESE REGRESSIONS). FOR a different operating gysten you hll hant to consuly the bhop manual to figuee gut the best hay of momg this.

* This moer 37 rebreginis mo gaves recidual
- An Gegresclon Cocflolents.
* FOR HORE INFOMATION SEE COHEDTS IN

4 FORTRAN Protem ERLOH:
gubili, subjob.

- DATA, gibjob.

1 JOD
FEG, 10177000,1100 .
/EEAD, MFDU1
BET, BHOLILE/WA.
IFE , WOT. FILE (BMDTLE A AS $_{1}$ MOGET.
ATTACH, BDOFILE.
ENDIF, NOEET.
ATTACH, BMDPID/UN-LIEEARY.
FTM5.
BMDP1D, L=MEANS, $8, H=15000$.
PACK, BHDPIIT.
REIIND, BHDPOUT.
RENIND, LGO.
FTNS.
L60.
BET, AUTOSAV/UN=LIBEABY, FEPLAEE, MEABS.
SOUTE, MEAMS, DEELP.
REPLACE, RESIDRESIDULS.
REPLAES, CDEF-DOEFES.
DAVFILE, OUTPIT.
REPLACE, DUTPUT=REGOK.
ENOURE; F.
EXIT.
TAYFILE, QUTPIT.
REPLACE, DUTPUT=GEGEOMB.
REPLACE MEAHS:
EHOURE,F.
/EDR

```
    SUBROUTINE TRANSF(X,KASE,NPROB,USE,NAR,MIS)
F THIS FURTRAN V SUDOUTINE INTERFACES WITH & BMDPID PROGRM TO WEITE DUT
c. VARIAELES FROH THE BMDP SAVE FILE CONTAINING
C THE PRINCIPAL COHONENT SOOES TO AH ASEII FILE THAT CAN bE
```



```
C FEOH THE FIRST PRINIFAL COHPONEIT AMALYgIS DF THE TRUSS MEASURES.
[ THERE WIST NOT BE AHY HISEING DATA FOR ANy OF THE CAEE (FISH),
    GMEHGION (INWAR)
    INTEGER OUTFIT(35),OUTBUF(5L2),NCEL, NTRUSH, J,ILA1
    OHARATER GROUP(5)$10
    PARAMETER(NGEL=NUHCLLS,NTEUSHFFNOELL+1)
C detemine fosition of figG variable in flle
    ILAI=NQAR-5-HTRUSH
E. EALGULATE NumEE DF lines of data per dase
    L=1+1NT((WVAR-ILA1+1)/11)+1)
C* DEFINE AND DPEN FILE ONLY FOR THE FIRGT CALL
    IF (KASE .EQ, 1) THEN
```



```
    *'BT','C','FL',110,'FME',㫙BUF(1),
    * 'BFS'512, DFC',3)
    CALL OPENM(OUTFIT:'OITPUT')
    CALL NLOSEM(OUTFIT,'M')
    ENDIF
c** FOLLOMING IS EXECUTED FDR EVERY GASE
    CALL OPEM%(OUTFIT,'DUTPUT','N')
    HRITE(GRDUP(1),200)X(1), Y(2)
    MRITE(GROUP(2),201)(Y(J),J=[LA1,NUAR)
    D0 20 I=1,L
        CALL PUT(OUTFIT,GROUP(I), 110)
    20 cONTINUE
    CALL CLOSEM(OUTFIT,'N')
200 FODHAT(2X,A4,1X,F3.0)
201 FOPHAT (11F10.4/11F10.4/11F10.4/9F10.4)
    EETURN
    END
/EDR
/PROBEH TITLE='HRITING OUT MEANE'.
/IHPUT
    FILE=THDFILE:
    GODE=SECRET.
/TRAN
IEND
/EOR
```

FROGRM TRUSES

C
C THIS PROGRAH DOES 37 REGESSIONS URING THE LOG-TRADSTORED TRUSG
\square Hemgues amo the factor scoes foll the firgt prindipal compunelt
C IT SAVES THE COEFTICIENTS FROH THE REGESSIONS FOR LATER USE
\therefore IN TRUSS REODNGTUCTION AT A GTADARD SIEE.
C THE RESIDUALS FROM THE REGRESSIOUG ARE ALSD SAVED IH A SEFARATE FILE.
e
© hRitten dy elizabeth boldiwg
C) MARINE FISH OIVISION

C EEDFORD INGTITITE OF DCEANOGRAFHY.
0
c. VEREION MAY 4,1984.

E
©
REAL XUAR(ARPAY), YUAR(ARRAY), TRTRUS(35, ARRAY), TLENG(AREAY)
gEAL FACTRI (ARRAY), FACTR2(ARRAY)
INTEGER NTEUSH, NGALL NCASE, HLASES, HTAG(ARTAY), NSET (AEPAY), NCELL

e
OPEN (8, FILE $=$ ' BMDPOUT')
C** THIS FILE CONTAIHS THE ORIGINAL TEUSS MEASURES AFTER THEY HAVE bEEA
© log-tranforhed and the factor scores from the principal cohfonent
I. ANALYSIS. IT IS THE INPUT DATA FOR THIS PROGRAH.

C
OFEN (10, FILE= COEF')
C* this file gontains the regression coeffigients that hill be
© USED IN THE TRUSS
C RECONSTFUTION FOR A FISH OF A STANDARD SILE.
C THE FIRGT value on Each line is the intercept and the gecond

- IS THE SLOPE.
©
DPEN (12, FILE=TRESID')
C䋘 THIS fILE CONTAING THE RESIDHLS FROM THE REDRESSIONS OF THE
© LOG-transforhen truss measures agangt the firgt prindipal component
- scores.

0
C FOMMT STATEMENTS
C 100 IN THIS FROGRAM HIST HATCH 200 ADD 201 IN THE PRECEDTNG SUEROUTIDE
© transf that wrote the data into the ageil file read by this prograh.
© 104 IS THE FDRMAT IN WHICH THE RESIDUALS FROH THIS PROGRAM AFE HRITEE
C. TO An AGCII file.
© 105 IS THE FORHAT IN HHICH THE REGRESSION CDEFFICIENTS ARE WRITEN TO A
C ABCII FILE.
E.

C䋨 IWITIALIE VARIABLES
NCALL=0
NASE=1

 BTLENG(NCAEE), FACTRI (NCASE), FACTRR(NEASE)
cta asgue that all lases have wo misini data
HCASE=NCASE +1
507099

```
    100 FORMAT (2X,14,1%,12,/,11F10,4,/,11F10.4,/,11F10,4,/,6F10.4)
    10S fORHAT (' EREDR HHLLE READIHG, CHEOK YOUN DATA')
    16 HRITE (10,105)
    10 MLASES=NCASE-1
C** DO FIRGT REGRESSION HHICH HILL BE USED TO OBTAIN THE
A FACTORI SCORE OF A FISH OE TOTAL LENGTH X .
        DO 10 J=1,NCASES
ck waAR [S THE INDEPADENT varIAGLE
            XVAR(J)=TLENG(J
Ca* Yuar IS THE dEPEDEDT VARIABLE
            YVAR(J)=FACTR1(J)
    10 DONTINJE
        CALL REGRES (TRTRUS, WAR,YYAR, NCASES,NCALL)
C
c** do INDIVIDUAL REgRESSIONS FOR EACH TRUSS MEASURE HITH FACTOR 1
C SODRES AS THE INDEPENDENT VARIABLE.
C
Ca* THE INDEPENDENT VAEIAELE IS THE SAME FOR ALL SUBSEQUENT REGRESSIONS
            00 15 L=1, HCASES
                XUAR(L)=FACTEI(L)
    15 cONTINUE
C** dO THE FOLLONING FOR EACH TRUSS MEASIRE
    0020 K=1, NTOIUSH
C*** HOHEUER THE DEPENDENT VARIARLE DOES CHANGE FOR EACH REGRESSION
            DO 30 M=1, NCASES
                YUAR(M)=TRTEUS (K,M)
                    conTINUE
            CALL REGRES(TRTRUS, XVAR,YVAC,NCASES,NCALL)
    20 conTINUE
C** HRITE THE RESIDUALS INTO A FILE
            DO 40 IN=1, NCASES
            HRITE(12,104)NTAG(IN), NSET(IN), LLENGON),FACTRICIN)FACTRO(IN),
        &(TRTRUS(H,IN),N=1,NTRUSM)
    40 CDNTINUE
        HRITE(10, 105)NASES
104 FORHAT(2, 14,14,12,3F10.4,/15F8,4,1,15F8.4,/,658.4)
105 FOMMAT(THE NUPEEE OF CASES (FISH) IS ', IT)
        #RITE(10,*)'REGESGIOHS WERE SICOESFIL!'
        STOF
        END
        SUBROUTINE REGRS(TRTRUS,YUAR,YUAR,NCASES,NCALD)
        DEAL WUAR(ARRAV), YVR(ARRAY), YDEV(ARRAY),YDEV,INTEPT,SLOPE,R
        REAL RESY, SUKX,SUMY, SUMXX, SUMYY, SUMXY, WHEAN, WMEAN,TRTRUS(36, AREAY)
        ImTELER NCALL, NEASES, NUAR
Cw+ INITIALIIE AND SU# varIagles
    NCALL=HCALL+1
    50HT=0.0
    SUNYY=0.0
    SIHYY=0.0
E IF THIS IS lESS THAN THE THIED DALL TO THIS SUBROUTINE
E initialize all variables agsuciated HITH indefendent variable
    IF (NLALL.LT.3) THEN
                SINX=0.0
        SumXX=0.0
    EMDIF
```

```
    00 10 I=1, WTASES
        If (NCALL,LT,3) THEN
            SIMK=SUM+NVARCI
        ENOIT
```



```
            SUMY=SIMY +YVAR(I)
    10 CONTIULE
            IF (NGALL.LT.3) THEN
                XHEAK=SUMX/HCASES
            ENDIF
    YHEAN=SLUY/WCASES
    DO 20 J=1, NEASES
        If (WCALL,T.3) THEN
            XDEV(J)=XVAR(J) - X/EAN
                SIMYY=SUNY+YEV(J)*NDEV(J)
            ENDIF
            YDEV=YUAR(J)-YMEAN
            SUTYY=SUMYY YDCUFYDEV
            SUMYY=SUMYY YDEV(J)*YDEV
    20 COHTINUE
            SLOPE=SUMYY/SUMYX
            INTCT=YHEAM-(SLOPE*XHEAN)
c** calculate r the corgelation coefficient
    R=SUMYY/((SUMXX*SUMYY)**O.5)
C** NCALL refers to no. of calls tu fegregs
    GALL COEFSU(SLDFE, INTCPT, R,NCALL)
    IF (NCALL,GT.1) THEN
    DO 30 K=1, MCASES
C** REFLACE INDIUIDUAL TRUSS MEASURES HITH FESIDUALS FROM EEGRESSIOHS
            RESY= (YVAR(K)-(GLOPESXVAR(N)+[NTCPT))
            NUAR=NCALL-1
            TRTRUGCNMAR,N=FESY
30 CONTHUE
    ENDIF
    RETUEN
    END
```

```
    SUBROUTINE COEFSV(SLOPE,INTCPT,R,NCALL)
    REAL OLDCEF (3), SLOFE, INTCPT, R
    INTEGER SIDE, CELL NCALL
C*⿱⿻土一⺕\mp@code{INITIALILE SIDE AND CELL}
    If (NCALL,EQ,1) THEN
        SIOE=0
        CELL=0
    ENDIF
Cas WRITE THE COEFFICIENTS FROM THE REGPEGIONS INTO THE FLLE
C** DO THE FOLOHING OLLY FOR FIRST PEGRESGION
    IF ((5IDE,EQ.0).AND. (CELL.EG.0)) THEN
        HRITE(10,104) INTCPT,SLOPE,R
    104 FORHAT(2F10.5,2X,'CORRELATION COEFFICIENT IS ',F4.2)
        ELSE
C** dO THE FOLLOHING FOE ALL SUBgEOUENT REGPESSIONS
    If (SIDE.EG.4) THEN
C** WUST STORE COEFFICIENTS FOR SHARED SIDE
    OLDCEF (1)=INTCPT
    OLDCEF (2)=SLOFE
    OLDCEF(3)=?
    ENDIF
    HRITE (10,105) INTCPT,SLOPE,R,SIDE,CELL
105 FORHAT/2F10.5,24,' CORELATION COEFFIUIENT IS ',F4:2,24,
    #'TRUSS(', I1'',
[** muST AUTOMATICALLY FILL IN DOEFFILIENTS FOR SHARED SIDE
    IF ((SIDE.EQ.1).AND. (CELL.GT.1)) THEN
        SIDE=SIDE+1
        HRITE(10,105)(0LDCEF(J), J=1,3),5IDE,CELL
    ENDIF
    ENDIF
C** DO THE FOLLONIMG FOR ALL REGRESSIONS
    IF (ISIDE.EQ,0),OR.(SIDE.EQ.G)) THEN
        SIDE=1
        CELL=CELL+1
    ELSE
        SIDE=SIDE+1
    ENDIF
    FETURN
    END
```


 COEFFILEIMPUT FILE CONTAINING REGESSIDN COEF"=(*) ,
 WUWESS"DESIED NAE OF FILE HITH MGL HESGAES"=(TF). - THIS frocedue rua the fortan poderan that flattene the * TRUSS OF AVERAE TWUSS MEASURES FROM A FISH POPULATIOH.
. * IT USES THE IHIL. MATH. STAT. LDRARY (SUGOUITHE ZXSSD).
 SUBHIT, SUBJOB.
, DATA, SUBJOB.
/J0B
LEAST, GH177000, T32.
/READ, MFOU
ATTACH, MSLIB/INEIIPRACY, LIREARY, Imglig. GET, COEF=COEFFILE.
FTNS.
LDSET (LIE=THELIB, PRESET=IERO)
L60.
GET, AUTOSAV/UN=LIBRARY.
REPLAEE, DUT=ADJUSTED.
EEGIN ${ }_{1}$ AUTOSAV, LDEUG, RUNMESS.
DAVFILE, GUTPUT.
REFLACE, DUTPUT=LEAOK.
EMUIRE,F:
EXIT.
DAYFILE DUTFITT.
REPLACE, OUTPUT=LEABOME,
SAVE, LDBUG.
ENOUIRE,F.
/60R

PROGRAM CTRUSS

0 GTRUSS Calgulates the truss for an averabe fish at a gthmord gize
C USING THE REGRESGION cOEfTICIERTS FROH THE REGRESSIDHS OF THE TRUSS MEASUES
© OF THE INDIUIDUAL FIGH AGALHGT THE FIRGT HIHIM-GROUP FRIMCIPAL DOAPOHENT. C IT THEL "Flateng each cell of the truss by adoing or subtracting a C Shal cordection to each of the six sidec.
C these corrections are calculated by hinimilng the valie of a
C ofterminat which will be egual to tego hich the touss is
© PERFETLY FLANER. THE ADUUSTED TRUSS HEAGUES
G are then in a form hhere they can be recomstruted in x-y gpace and
C Trangrorhed intu a plot file by our companion progran trussd.
0
C. DEVELOPED 1984 By

C JACQUELINE MGLADE (H.F.D., B.I. O.)
C AhD ELIZABETH G. BOLLDING (M.F.D., B.I.D.)
\subset HITH ASSISTAME FROM:
C TOBY KEITH hay (Biology, dalhousie university)

© z00L06Y 31:113-135).
E
Cas this program horks for trusses of four to geven dells each containing [練 SIX heasurehents.
0 the six measurements are listed in the array "truss"
© IN THE FOLLOHING ORDER:
$0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$

0	1	12	3	41	15	$6 /$
0	$-\cdots$	1		1	1	1

- THIS fROCDURE EALLS THE SUBOOUTINE ZXGSO gROM THE

C IHTL. MATH. STAT. LIBRARY HHICH CAN ONLY DE CONNECTED
© by clearing one of our existing libraries. this is
C DONE NEAR THE EEGINIING OF THIS PROCEDURE,
i.

```
E
C INTERPRETATION OF CONURGELCE CRITERIOH AND EREJR MESAGES FROM
```



```
C
C INFER=0 CDWUESENCE FAILED
IG SEE MARMBLE IEE FOR EMPLAMAID.
E
C
C CONERGENGE SATIGFIED
C InFER=1 GEITERION THAT THE PARAMETER ESTHATES AgREE TO NGIG DIGITS
C ON gUCGESIVE ITERATIONS WAS SATISTED.
0
C IVHEE=2 ERITERION THAT OH THO SUCEESIVE ITERATIONS THE RESIDUAL
LO SS ESTMATES DIFFER BY NO HORE THAN EPS WAS SATISFIED.
C
C INPER=4 CRITERION THAT ELCLIDIAN NOR OF THE APPGOKIMATE bRADIENT
C IS lESS THAM OR EOUAL TO DELTA mas gatisficd.
C
C** IF MORE THAN ONE CRITERION WAS gATIFIED THEN INTER HILL
E be EOUAL to the gut of those satigFied.
[
C** ERROR FARAMETERS TO REFER TO WHEN INFER=0
[
C FATAL ERRORS
I
C IER=129 SInGllarity has detected in the jacobian amd
c. recovery failed.
0
C IER=130 AT LEAST ONE OF M, N,IOPT, FARM(1), DR FAPN(2)
C HAS SPECIFIED INDORRETLY.
C
C IER=131 HARDUAND PARAMETER EXCEEDED FARY(3).
E
IER=132 AFTER A SUCOESSIUL RECOUERY FROM A SINGULAR
```



```
c SIHGULABITY.
C
C IER=133 THPLIES THAT MAMFN WAS EXCEEDED. HE HAVE SET
c mayFn(the maymmm mimece of cals to the gubroutine)
C TO PE 100.
0
C** WARHING ERROR
C IER=0 IMPLIES THAT THE JACOBIAN IS IERO. THE
C SOLITION X IS A STATIONAPY POINT.
C
C** FOR A MORE DETAILED DESCRIPTION SEE THE IMEL
```



```
C APFENOED ONTO THE "TRUS"" HANAL
O
```


C $5=$ INPUT FILE

G $7=$ ADUSTED TRUSS MEASIESS AMD CALCULATION OF DICTORTOH

E
format statehents
102 \& 105 READ THE SLOPES AND IMTERCEPTS FOR THE RELRESSIOHS Of THE TRUSG measures alianct the fingt with-m grour PRIMCIFAL COAFONENT SCORES (SIIE) AND OF THESE SCOES AbAinst explicitly neagured size, tleng. these here CALCULATED BY REGPROC.
104 THIS HRITES GUT THE TRUSS MEASURES SO THEY CAN DE USED by trusplt to calculate the co-droinhtes of the COHFOSIE FORM.
105 THIS WRITES OUT THE DISTORTION OR DEFBRTURE FROM PLANARITY df the comosite forh and the sile the figh has been

- CONSTRUCTED AT.

C
C DICTIONARY OF SELECTED VARIABLES
C NOTE: CHECK TYPE DECLARATION, FIRST LETTER TYPE DELLARATION IS
¢ NOT USED.
E
b(6) - real argay containing the intercepts
FSILE - TOTAL LENGTH (CH) DESIRED FOR GOHPOSITE FISH
lfacti - real vagiable containing first p.c. scope of fish
LFSILE - real variable logio-tranforhed de total lemith of that total lengith
© 0F That Total Lengh
E SIOE(G) - real argal containimg the distande heabures of the
C CELL BEING FROCESSED
© Sl(6) - rcal argay containing sldes
0 TRUSG(6,7) - REAL ARRAY CONTAINING DISTANEE HEASURES OF COMPDSITE FISH
E WITH 6 SIDES PER CELL AND UP TO 7 CELLS IN THE TRUSG
© ((6) - real array containing correetions to distance measures

- ycor $(6,7)$ - real array containing gorredtion for all dells

```
    REAL TRUSS(6,7), YCOR(6,7), Y(6),SIDE(6),LFSIIE,LFACTL
    EEAL B(6),5L(6)
    INTEGER INFER,HARN, NCLLS
    ParamETER (MCELS=HONELLS)
    DATA X/0.0,0.0,0.0,0.0,0,0,0.01
    OFE(G,FllE=TGEF')
    OFEH (G,FILE='LDOH')
    OPEN (7,FILE='OUT')
C䋛 INITIALIZE vaRIABLES
    003 KK=1,NLELLS
        00 4 JJ=1,6
                KOR(OJ,NK)=0.0
    4 COMTINE
    3 CONTLNUE
C** THIS IS THE gTANDARD SIIE AT wHICH THE "FISH" HILL EE RECONGTRICTED
        FSIZE=FLOAT(TLENGTH)
        READ (5,102) ELFACT; ELFACT
        WRITEIG, WIFIR A FISH OF GTANDARU SIIE ',FSIIE
        MEITEG, w)ELFADT, SLFACT
C CALCULATE FIRST PRING. COMP. gCORE OF A FISH DF DESIRED STANDARO SILE
        LFSIIE=LDG10(FSIZE)
        LFACTI=SLFACT:LFGIE+BLFACT
        ICELL=1
        WRITE(6,*)FSILE,LFSIIE,LFADT1
    99 HRITE(G,*)'THE CELL NUMEER IS ',ICELL
        00.5 1=1,6
            READ(5,103, END=990)B(I),5L(I)
        5 conTlme
Cha calculate the avepage truss meagures foun the regression corficients.
    00 10 J=1,6
            SIDE(J)=5L(J):LFACTI+B(J)
            SIDE(J)=10**SIDE(J)
            WRITE(G,*)'TRUSS(';',',',ICELL,')',SIDE(J)
    10 CONTINUE
[ NOH ADJUST THE SIDES OF THE CELL WTILL IT IS PLANER
C THIS IS dONE BY adolng and SubTRACTHG ghall amOUNTS
C ONTO EACH DF THE SIO SIDES THAT COHPRISE EACH CELL.
[
C
C THIS gibrouthe Is galled one for each of THE geven cells.
            GAL FLAT(SIDE,Y, INEE)
            D0 30 K=1,6
    30 conTINUE
        00 40 L=1,5
            TRUSS(L,ICELD=SIDE(L)
            IF(INFER,NE,0)XCOR(L,ICELL)=N(L)
40 COUTINEE
    ICEUL-ICELL+1
    IF (ICEL.LE,NOELLS) 60 70 9%
```

```
CK* If ALL SEvEN CELLS HAVE BEEN FLATTEMED CONTINIE
C baldulate the olstortion
            DISTORT=0.0
            DO 45 M=1, WUELLS
                00 47 N=1,6
                    DISTORT=IISTORT+(YCOR(N,W)/TRUSS(H,W)
47 COHTNUE
45 CONTINUE
    DITUET=[DGTOT)TW0.5
    HRITE(7,105IDISTORT,FSITE
- CALCuLate the flattened teuse
C ADD THE NEOESSAPY COREETIONS TO THE ORIGIMAL DATA HATRIX.
        HRITE(G,*)'THE ADJUSTED TRUSS IS'
        00 50 11=1, HCELS
            00 60 JJ=1,6
            TRUSS(JJ,II)=TRUSS(JJ, II)+KCOR(JJ,II)
60 CONTINUE
        HEITE(7,104)(TEUSSUK,II), KK=1,6)
        HRITE(6,104) (TRUSS(KK,II), N(S =1, 6)
    50 CONTINUE
    102 FOMMAT(2F10.5)
    103 FORHAT(2F10.5)
    104 FORMAT(GFG.2)
    105 FORHAT(F5.4,F6.1)
    990 STOP
        END
C
[
```

SUPROUTINE FLAT(SIDEP, YY, IAFER
a DRIVER FOR ZXSSO LEAST SOURES EGTIMATIOM
E TO FORCE CELL TO DE PLaned
C IHSL VERCION FEEDARY 2,1984 .

EXTETHAL FIUC

 \&S50, SIDE (6), XY(6), SIDEP(6)
COHOW/LSO/SIDE, ITER
DO 3 KH=1, 6
SIDE(M) $=$ SIDEP (M)
3 CONTINE
CW NHITALITE VARMBLES
INFER=99
IER=99
$H=E$
$\mathrm{H}=\mathrm{E}$
ITER $=0$
IXAC:G
HSIG=3
$E P S=0.1$
DELTA=0.0
MAKFN $=100$
IOFT $=1$
D0 $5 \mathrm{~J}=1,6$
$X(J)=0.0$
5 CONTINIE

C
WRITE $(6, *)^{\prime} \quad ;$

HRITE ($\left.6,{ }^{*}\right)^{\prime}$ IER $={ }^{\prime}$, IER

DU 9 L=1,6
WITE $(G,)^{\prime} F\left({ }^{\prime}, L_{1}{ }^{\prime}\right)=1, F(D)$
9 CONTINUE
$0011 \mathrm{~L}=1,6$

$X X(L L)=$ (LL $)$
11 DONTINIE
RETUPN
END
SUERDUTIAE FUNC（X， $\mathrm{H}, \mathrm{H}, \mathrm{F}$ ）
© subrouthe to calculate fuicton reoured by 7×96
INTEGER $H_{1} N_{1} \mathrm{I}_{1} \mathrm{~J}_{1} \mathrm{~K}_{1}$ ITER
REAL X（U），F（M），Y（5），D（6），SDOE（6），XSIM，DETER
COMOD／ZED／SIDE，ITER
［i1.ITER＝ITER＋1
WRTE（G，W）MADE IT TO FINC，WO．OF ITERATIOMG＝${ }^{3}$ ITER
x $\mathrm{SH}=0$
00 $10 I=1,5$
$D(1)=5 \mathrm{IDE}(1)+X(1)$
D（1）$=\mathrm{D}(\mathrm{I})$ 絲 2

10 CONTINUE
Cow HHEN THIS EETERHINANT IS IEED THE CELL（OF THE TRUSS）
Cow IS FEREETLY PLANER．

$4-2, * 0(2) * 0(4) * 2-2, * D(6) * D(5) * 2-2, * 0(5) * 0(6)+2$

$8-2, * D(1) w D(4) * D(6)+2, * D(1) * D(5) * D(6)+2, * D(2) * D(3) * D(4)$

HRITE（ 6, ＊）＇DETER＝＇，DETER
$0020 \mathrm{~J}=1, \mathrm{~s}$
$X S U M=X 5 \mathrm{MH}+\mathrm{X}(\mathrm{J})$
20 CONTINUE
$0030 \mathrm{~K}=1,6$
$F(\mathrm{X})=A B S(X(\mathrm{~K}))+(100000$ 思DETER $)$ 綀 2
30 CONTINUE
RETURN

END

```
FROC, TUUSLTWI, PLTLABEL.19 DIGITS TO LABEL TRUSS DRAHNG";
```



```
FISHTYFE": FOR INDIVDUAL FISH OR 2 FOR COHFOSTTE*=($51(12)),
```



```
FLDTFILEMGNE YOU WANT FLOT FILE SAED AS"=(*F),
RUNHES"RUN THE HESSAES EETALS OF POINT CALC"*(%%).
* THIS vergION IS FOE TRuges HTTH FOUR T0 SEvEN GELS.
* THIS PROCDDRE COWVETS THE TPUSS
* HEASURES T0 Y-Y CDORDIMATES.
* IT THEN IGES DIGSLA T0 GEHEMATE A
* PLOTFILE.
SUSMIT,SUENOE.
,DATA, GUBJOE.
100
FLOT,CH177000,T32.
/READ,MFDUI
GET,TDATA=DATAFILE:
ATTACH, DISGRLAME=LIGRARY.
FTNS.
LDSET(LIB=DISSPLA).
L60.
GET,AUTDSAVIUN=LIBRARY.
REPLACE, PLFILE=FLOTFILE.
AUTOSAV,FDEEUG, RUMESS.
DAYFILE, OUTPUT:
REFLACE,DUTPIT=PLOK.
ENQUIRE;F:
EXIT,
DAFFILE,DUTPUT.
GEPACE,DUTPUT=FLBOHE.
SAVE,FDEBUG=RUNMESS.
ENQUIRE,F.
/EOR
```

PROGRAM TUUSD

0 promeh trueg reconstuicts the truss in x-y space in a form hulch
C CAK BE PLOTTED OH A GRAPHICS DEVICE: THE IMPUT DATA CAN EITHER

C TRUS HEASURES FROM A RECOVGTUCTED AUERGE FISH AT A
C STAMDARD SIEE.
0
C
C DEUELOPED 1984 EH:
0 JACOUELIAE MCGADE (M.F.D., B.I.0.)
C AND CLIZABETH G. BOLLDNG (M.F.D., B.I. 0.)
C. HITH ASSISTANCE FPOH:
© TOBY KEITH HAY (BIOLDEY, DALHOUSIE UNHERSITY)
i
i. ORIGINAL FEBRUARY 1984
E. REUISED: JULY 1984 \& May 1985
c general idea similar to that in strauss : boovstein (1982, systematic
zoology 31:113-135).
0
Ca* THIS PRDERAM IS FOR TRUSEES WITH FOUR TO SEVEN CELLS
dow EACH CONTAMING GIX heasurements.
C THE HEASUREHENTS AEE LISTED IN THE ARRAY "TRUSS"
C hhere teuss is a tho dimemeional array hith side mumed
C being the first dmeirioli ald cell wheer being the second
C (IE., TRUGG(SIDE, DELL).
© CELL 1 IS NEAEEST THE HEAD AND CELL 7 IS NEAREST THE TAIL.
E THE SIDES ARE MIMERED IN THE FOLLOHWG DEDER:

```
0
C DICTIOMARY OF SELECTED VARIAELES
I
C NDTE: CHECK TYPE dEQABATION, fIRST letTER TyFE IEClABATION
C IS NOT UGED.
[
```



```
C DISTOR - real variadle, DIStortion of comfosite teus read
C FRON CTRUSS PROGRMM.
C IfiSh - INTEGER variagle, equals I for individual tegegeg mo
C EDUALS 2 FDR COHPGSITE.
C H - IMTEGER FARAMETER, MumEE OF SIDES (ALMAMS 6).
C N - INEGER PARMETER, WHEER DF CELLS IN THE TRUSS.
C NPNTS - INEGEP FARAMETER, NUHEER OF POITS HEEDED TO PLOT TRUSS.
C SET - integef variable, read for ingIvidual FIgh.
C side - Imeber variagle, durent side numeeg mdex.
C FLABEL - CHARACTER ARPAY, LABEL FOE TPUSS DRAHMG.
C trlemi - real variagle, actual lemgTh of tougs
C TLENG - REAL varlaELE, LENGTH DF FISH T0 bE dEANH IN CH, READ IN,
C TRUSS - gEAL ARRAY DOMTAIHS TRUSS hEASUES.
C yPOINT - REAL ARRAY CONTANS Y CO-gRINATES OF TRUSS.
c ypoint - real array, containg y co-0rdmates of truss.
O
C
C
```

```
C
```



```
C
    REAL TRUSS(6,7),TLENG, FPOINT(16),YPOINT(16),METOE, TRLENG
    CHARADTER PLABELNIG
    IWTEER CEL,SIDE,H;H,SET, L,L,WFISH,WPNTS
```



```
    PARAMETER (H=E,N=WUHCELS, NPIS=2*H+2)
P INTlalile variables
        SET=0
        0IST0R=0.0
    DATA PLAEEL/' '/
    data Plabel/PlTlabel'/
0
c** IWPIT FILE DEPENDS ON WHETHER INDIVIDUALS OR COHPDSITE.
        IFISH=FISHTYPE
        If (IFISH,ED,1) THEN
C USED DNLY FOR INDIVIDUAL FISH
        OFEN (4,FILE=`TDATA', RECL=150)
        ELSE
C USED ONLY FOR COHPOSITE FISH
        OPEN (4,FILE='TDATA')
        ENDIF
        OPEN (7,FILE='POEBUG')
        CALL COMPRS
        NFISH=1
C
        IF (IFISH,EQ. 1) THEN
E FOLLOHING USED FOR INDIVIDUAL FISH
    9% READ (4,100, ERR=1E, END=1B)SET,(TRUSS(SIDE,CELL),SIDE=1,N),
        &CELL=1,NM,TLEHS
    100 FORMAT (5N,12,1,7%,7F4,1,T20,F4.1,T36,5F4,1,T40,F4,1,T56,5F4.1,
        4T60,F4.1,T76,5F4.1,T80,F4.1,T96,554.1,T100,F4,1,T116,4F4.1,
        &F3.1,T121,F3.1,T135,4F3.1,F4.1)
        HRITE(7,104)SET,((TRUSS(GIDE,CELL),SIDE=1,H),NEL=1,N),TLENG
        CALL FINDP
        WRITE(7,105)(XFOINT(L), L=1,NPNTS),(YPOINT(LL), LL=1, NFNTS)
        CALL DRAWIT(FLABEL)
        WISH=NISH+1
        IF NFISH:ET:100)60 T0 17
        60 T0 99
```

```
I
    ELSE
C USE FOR DOPIGITE FISH
        READ(4,20DDIGTOR,TLEMG
    199 D0 10 GEL=1,M
        READ (4,200, ERR=16,END=18)(TRUSE(SIDE,CEL),SDD=1,M)
    10 contine
    200 FORHAT(GFE,2)
    201 FORMAT(FS.4,F6.1)
        HRITE(7,104)GET, (TRUSS(SIDE,CELL),SIDE=1,M),CELL=1,N),TLENG
        CALL FINDP
        WRIE(7,105)(YPONT(L),L=1, WPNTS), (YPOINTCLI,LL=1,HPMS)
        CALL DRANIT(PLABEL)
        NFISH=NTISH+1
        60 T0 199
        ENDIF
C
    16 HRITE(7,103)
        STOP
    17 WRITE(7, b)'DO YOU REALLY WAHT T0 DRAN HORE THAN 100 TRUSGES?'
    18 CALL DONEPL
    103 FORHAT ('ERROR HHLLE READIHG, CHECK YOLR DATA')
    104 FORMAT (12,24,24F5.1,/12F5,1,F4.1,5F4.1,F5.1,1)
    105 FORHAT ('% CODRDINATES; ',1EFE.1/'Y COORDINATES; '16FE.1)
        STOP
        END
0
C
```

```
    SUBROUTINE FINDP
C
C THIS SUBROUTINE CHANGES THE TRUSS DISTANCES INTO R,Y COORDINATES
C SUITABLE FOR FLOTILHG
    REAL TNUS(6,7),TLENG, YPOINT(16),YPOINT(16), RADNT,FADLST,TRLENG
    REAL YNEXTL,YLAST, K1, K2,A,B,C,THETA,YCUB, XADD,YOUB,YADC, IH,D,DY,DA
    FEAL XHID,YMTD, YLAST, WNETL,THETB,TEMF,TEMP2,FI,DISTOR
    INTEGER II,MISS,NTEMP, I, J, W, M, WH, WK, MTEMPS
    IMTEGER LFOS(7),CEL, HEH, SET, JK, WFISH
```



```
    DATA LPOS(1), LPOS(2),LPOS(3), LPOS(4),LPOS(5), LPOS(6),LPDS(7)
    \/-1,2,1,1,2,-1,-1/
C ONE SIDE DUT OF SIX IS REDUNDANT AND is wot NEEDED T0 GAlduate
C THE X,Y CO-gRDMATES OF EADH DELL. THE GHORT SIDES SHOULD BE
C USED LEAST THEY bE gQUEEZED OUT OF EXISTENCE.
C HHEN LPOS IS ONE, thE TOP SIDE OF THE SELL IS NOT USED,
C UHEN IT IS -1 ThE bOTTOM SIDE IS NOT USED.
C AND hHEN IT IS TwO THE END IS NOT USED.
C
    DO 10 II=1,NPNTS
        YPOINT(II)=0.0
        YPONT(II)=0.0
    10 cONTINUE
    YPOINT(2)=TRUSS(2,1)
& the yalues of the first tho coordinates are moh defined
    DO 20 J=1,N
        CELL=J
        NEW=2*CELL
        D] 30 I=1,2
            H15S=LPOS(CELL)
            If (I,EQ,1) THEN
C DO THE FOLLOHINg DNLY FDR THE FIRST TEIANGLE
                NEXTL=2WCELL-1
                XNEYTL=XPOINTOEXTL)
                YNEXTL=YFOINT(NEXTL)
                LAST=2*EELL
                XLAGT=XPINT(LAGT)
                YLAST=YPOINT(LAST)
                IF ((MISS.EQ.1).0R.(MISS.ED.2)) THEN
C DO THE FOLLONING IF THE TOP SIDE IS NOT USED
                    RADHYT=TRUSS(1, CEL)
                    RADLET=TRUSS(5, CELL)
                    NCH=NEH+1
                    ELSE
& DO THE FOLLOHING IF THE bOTTOM SIDE IS NOT USED
                RADNXT=TRUSO(6, CELD
                RADLST=TRUSE(3,CELL)
                NEH=NEH+2
            ENDIF
        ELSE
```

¿ do the follohini omly for the second triange
If (HISS.ED.1) THEN
L DO THE FOLLOHING IF THE TOP SIDE IS WOT USED

> XLAST=XPINT(HED)

YLAGT=YPOINT (NEW)
C NNEXTL \& YWETL EETAN THE SAWE VALUE AS FOR THE FIOST TRIAGGE
RADNXT=TRUSE(6,CEL)
RADLST=TRUSS(4, CELL)
NEH=F $\mathrm{HE}+1$
ELSE IF (HIS5.EQ.2) THEN
© 00 THE FOLLOHIS If THE END IS NOT USED
C NB. NOTE THAT XLAST, YLAST, YNEMTL: \& WEETL STAY THE SANE. RAONTT $=$ TRUSS $6, \mathrm{CELL})$ RADLST=TRUSS (3, CELL) NEH=NEH+1
ELSE
\square do the follohing if the botton gide is not uged
XNEXTL=XPOINT (NEW)
YNEXTL=YPOINT (NEW)
() YLAST: YLAST RETAIN THE SAME Value as for the first triangle RADNKT=TRUSS(4, RELL)
RADLST=TRUSS(5; CELL)
NEN $=$ NEH-1
ENDIF

ENDIF

- YLAST**2)/(2t (YNEXTL-YLAST))
$K 2=(X L A S T-X N E X T L) /$ (YMEXTL-YLAST)
$A=1+\mathrm{K} 2 \mathrm{La} 2$

IF (IM.LT.0.0) 507099
IH=(5QR(IM))/2*A)
$X A D D=(-1.0 * B /(2 * A))+[H$

If (I.EQ.1) THEN
G If this is the firgt triangle the the largest x value
YPOINT (NED) - YADD

ELSE
C If THIS 15 The gecond telangle YADD $=\mathrm{K} 1+\mathrm{K} 2 * 2 \mathrm{ADD}$
YSUB=ki+k2 2 SUB
If (MISS.E日.2) THEN
XPOINT (NEH) $=$ XADD
YFOINT(NEH) = FADD
ELSE IF ((MISS.ED.1.AND.YADD.GT.YSUB).OR.
\& (MISG.EQ.-1. AND. YADD.LT.YSUB) THEN
© If THE TOF SIDE IS MIT USED HE WANT THE LARGEST VALUE OF Y

```
& bHEREAS IF THE BOTTOH SIDE IS MOT USED WE WAHT THE SHALLEST.
        XPOINT (NEH) = XADD
        YPDINT(NEH)=YADO
    ELSE
        YPOINT(NEH)=XSUB
        YPOINT (NES)=YSUB
        END IF
        IF (CELL.LT.W) THEN
O If nIT THE LAST CELL DO THE FOLLOHIGG
C muST ROTATE THE COPPLETE dELL NDN g0 THAT IT IS OH Y AXIS
C TELLS US MHICH HAY IS UP.
        M=-1+2#CELL
        MN=1+2*CELL
        THETB=ATAN(CYPONT(WW)-YFOINT(M)/(XPOINT(WD)-YPOINT(M))
        DO 40 [J=1,NPNTS
        TEHP=XPOINT(IJ)
        XPOINT (IJ)=XFOINT(IJ)*COS(THETB)+YPONT(IJ)*SIN(THETD)
        YPOINT(IJ)=YPOINT(IJ)*OOS(THETB)-TEHP*SIN(THETD)
    40 CONTINUE
c noh adjugT the shamed side to its value In the next truss
    NTEMF=CELL+1
    D=(TRUSS(2,NTEMF)-TRUSC(4,CELL))
C VALUE DF LOMER FOINT
    MM=1+2WCELL
C VALUE OF UPFER FONT
                    NW=2+2*CELL
                    THETA=ATAN((YFOINT(NH)-YPOINT(MM))/
        & (XPOINT(WM)-XPOINT(MM)))
            IF (THETA,LT.0.0) THEN
                    THETA=PITTHETA
                    ENDIF
                        DY=0.5*D*SIN(THETA)
                        DX=0.5*D*COS(THETA)
            XPOINT(M)=XPOINT(MW)-DX
            YPOINT (WN) =XPONT (WNOLDX
            YPOINT (M) =YPOTHT(OW)-DY
            YPOINT(NN)=YPOINT (WW)+DY
            ENDIF
            ENDIF
    30 CONTINUE
    20 continue
& ROTATE DOHPLETED TGUSS BACK TO STANDARD DRIEMITION
E BISETT "FISH' AT PGEUDOLATERAL LINE
C FIND POINT BIGECTING SIDE & IN LAST EELL.
    NTEAP3=NPNTS-1
    MID=XPOINT(NTEMP)+0.5*(YPOINT(HPNTS)-MFONT(NTEIPS)
    YHID=YPOINT(NTEMP3)+0.5*(YPGINT(NPNTS)-YPOITT(NTEMPS))
    THETA=ATAN(YMID/WHID)
    00 50 JK=1,NPNTS
        TEHP=\FOINT(JK)
        XPOINT(TK)=XPOINT(JK)*COS(THETA)+YPOINT(JK)*SIN(THETA)
        YPOINT(NK)=YPOINT(JK)&COS(THETA)-TEMP2*SIN(THETA)
    5 0 ~ c o n T I N U E ~
        TRLENG=(OMID-XPOINT(1))**2+(YMID-YPOINT(1))**2)**0.5
G TRANGLATE pOMTS TO ABOUE X AXIS
```

```
        00 60 KK=1, NFHTS
        YFOIMT(WW)=YP01NT(KN)+0.25*TLENG
    g0 CONTINUE
    RETURN
```



```
    WRITE(7,*)PHEQ YOUR DATA!1!1!!
    FETUEN
    EHD
E
0
```

```
    gurroutInE dramITIPLABEL)
E
G**THE SURROUTINE DEAH ANO DRAHTT PLOT THE POTNTS mHSE CO-ORDNATES
C ARE IH #POTHT AND YPOIHT USING THE DIGSPLA GRAFHICS PACKAEE BY
```



```
C
E
        REAL CURV1(30), CURUY1(30), DURUR2(14),OURV2(14)
        REAL YPOINT(16), YPUINT(16),TRUSS(6,7),TLENG,DISTOR,TRLENG
        HNTEER PENPS1(30),PEPS2(14), 1, J,GET,1SET,N,NPNTS,NURUL,NCURU2
        CHARACTER PLABELT19
        COHMON TRUSS, TLENG;,GET, YPOINT,YFOINT, MFISH,DISTOR,TRLENG
```



```
        DATA PENPS1/1,4,3,2,1, 3,6,4;5,6,7,5,8,7,10,8,9,10,
        411,9,12,11,14,12,13,14,15,13,16,151
        DATA FIMPS2/2,4,3,5,5, 8,7,9,10,12,11,13,14,16/
L
    ISET=SET
    DO 10 I= 1,NCURM1
        CURVXI(I)=XPOINT(PEAPS1(I))
            CURVYI(I)=YPONT(PENPG1(I))
    10 CONTINUE
        DO 20 J=1, NCURV2
            CURVX2(J)=XPOINT(PENPS2(J))
            CURVY2(J)=YFOINT(PENFS2(J))
    20 CONTIMUE
        CALL DRAH (CURVXI,CURUY1,CUFUY2,CURVYZ,ISET, NFISH,DISTOR,
        *PLABEL,TLENG, TRLENG)
            RETUEN
        END
C
O
```



```
        *FLABEL, TLENG, TRLEMG)
[
        Character flabelals
```



```
        REAL XYSTP, XMAO,YYETF,YYAKM,TRLEAG
        INTEEE N, WPNTS, HOUN, WUNUZ,ISET
```



```
[
        CALL BGHP(WTISH)
        CALL TITLE (PLABEL,-19,0,0,0,0,10.0,5.0)
C SAALE THE FLOT FFOH 10.0 % 6.0 WNHES TO UHITS OF OD-DRTHATES.
    MSTP=(TRLENG+(TRLENG*O.1)/10.0
    MHAX=XXSTP10.0
    YYSTP=XYSTP
    YYHAK=YYSTP*E,0
    CALL GEAF(0., XASTP, XHAX,0, YYSTP,YYMAN)
    CALL mamEER(4)
    GALL CJRVE CURUX1, CORVI,MOURI,1)
    CALL CURVE (CURUY2,CURUYZ, NCURV2,O)
    CALL MESGAg (!TOTAL FISH LENGTH IS CA,28,5.0,5.0)
    CALL REALNO (TLEMG,103;8,5,5,0)
    CALL HESSAG (OISTORTIDN IS ', 13,5,0,4,5)
    CALL REALNO (DISTOR,104,7.7,4.5)
    CALL ENDPL(0)
    RETUEN
    END
```


APPENDIX C:

ghdp progran comtrol lambabe ligtines for mophodetric analysis.
wote on using bmp statistical softhase.
 TO RUH PRINCIPAL COHFONENTS ANALYSIS, DETAIH PLOTS OF THE FRINCIPAL componente gooeg that uere labeled by group, and to do digreiminent Ahalysis. HE INClUDE THESE LISTIHES DNLY AS A bUIDE, YOU WLL HAUE TO HAE
 FOR PRINCIFAL COHPONENT AMALYGIS YOU HILL HAVE TO PROBABLY CHANGE THE format and if you have ofher than 7 cells in your truss you hll have to CHAVGE THE WUMEE OF VARIABLES, THE ADD STATEHENT; THE USE STATEMENT; THE varladle manes, amio the nhmer of trancodmation gtatements.

FOR THE LISTING TO PRODUE THE LABELLED PLDTS OF FRTMETPAL COHPONENT Sones you hill have to change the above as wel as the variable hamber IN bRADKETS INCLUDED IN THE HAX, HIN, GODE ANE NAHES STATEMENT. In THE THO EXAMPES DF LISTINGS FOR FLAFLOT HE GIVE THERE ARE THO DIFFEEENT METHOOS OF DEFINING GROUPS TO LABEL WITH A DISTIMCT SYMBOL; ONE USING THE TRAN parabraph to subdivide gy cage numeen abo due usimi the value of a VARIABLE F_{j} YOU HILL HANT TO GHOOSE THE APPROPRIATE GHE FOR YDUE DATA.

FOR THE DISCRIMINENT ANALYSIS LISTIMI you HILL have TO dHange ALL of THE
 geroug you hypothesile for your data. you hill also have ta dhange the FRIOR STATEMENT (NOTE THAT FOR A GIVEN bROUP THAT THE PRIDR FROEADILITY
 OF FISH IH THE ANALYIS). DEPENDING OU THE RESILTS YOU MAY ALSO WANT TO ADJUST THE F TO EHTER AND RETOVE.

TO HAKE THE ABOVE CHANGES YOU HILL HANT TO REFER TO THE 1983 REVISED primiting of the gmop gtatigitical softhare mandal. there is algo a handy QuTk fefereme handal The bhdp ugers digest. For the cyber inctallation of gide you hill hant to refer to the online docubentation (avallable at YOUR COMFITE CENTRE IF THEY HAVE BMDP) "EMDF-83 (CDC YERSION) FOR NOS
 APRIL 1985.

TO RUH EITHER THE PCAONE PROCEDUE DR THE DISCONE PROCEDUE ON A CYEE HITH BMDPGS AND NDS 2.4 you JUST hed To make the changes descelbed above TO CUSTOMIE IT FOR VOUR DATA, TYPE THE PROCDUPE HAME AND ANSHER THE INTERACTVE guestions about the hames of vour ineut aid output files. NDTE THAT AUTOSAV IS A procedue me have in dur libgafy at hif.d. That decides If a file is direct of indired then uges either peturn of gave as
 umess you have tholsands of fish In which case areturn, filemat.
 of computer fund amo allocaidot of medory amo tine amd may differ on other dyberg. ask your donglltants but imong then that mulivariate Bhor progeamg redutre lots of the avo hemory.

NDIE THAT SOHE COMPUTER CEITES HITH CYBESG; SUCH AS DALHOUIE UNIVERGITY , FUT ALL THE BHO PPORRABS IN ODE GIANT FILE WHICH MAY HAVE A DIFPERENT Whe Then The one agobld here; comgul your computer cente then chaige the attach comand. note that peofle on computerg that ige other oferatmg Systems will not use these frucedures: houever the bhip onteol language

 hade by powning bafed interaitively. To du This de our cler: bet, baveflle. (IT COULD BE DIRET AECES IF IT IS REALLY LARGE), ATACH, BADPDDNELIERARY.
BMOPED, $1=$ OUTPUT, $H=15000$.
AFTER THE JUE HAS RUA YOU CAS GEHD DUTPUT TO THE PRITER.


```
SAVEFILEPIESIRED NAME OF BMDP SAVE FILE **"=($F),
```



```
DITTITLEIABEL FOR BHDF OUTPUT LESS THAN 20 CHAR',
* THIS DOES FCA DN LOG-TRAGFDRHED DATA.
SUBIT, SUEIOE.
,DATA, SUPJOE.
/50E
PCA1,04177000,T290.
/READ,MFDU:
GET, DATAFILE/MA.
IFE, NOT.FILE(DATAFILE;AS),NOGET.
    ATTACH; DATAFILE.
EHOLF, NOGET.
ATTACH, BHDPGTIN=LIBRAEY.
8GDP4, L=IUTPUT,其20000.
BOHE.
EXIT.
EMOUTPE,
DAYFILE, DAYFCAL.
REPLACE, DAFPCA1.
GET,ADTOSAV/OH-LIPRARY.
AUTOSAV; DUTPUT, RESULTS.
ADTOSAU,GAVEFILE.
RENTMD, DUTPUT.
/EOR
PrOGLEH TITLE='PGA LOG-TRANS OUTTITLE',
/IAPUT VARIAELE=39.
    FILE=IATAFILE.
    FORMAT='(28昂3A, I, 1X,A4,F2.0,31F4.1,5F3.1,F4.1)'.
NARIABLE
    NAHES=TAG,SET,A1,A2,A3,A4,A5,AE, B1, B3, E4, B5, B5, C1, C3, C4,C5,C6,D1,
```



```
LA1,LA2,LAS,LA4,LA5,LAE,LB1,LE3,LB4,LB5,LBE,LC1,LC3,LCA,LCS,LCS;
```



```
LG1,L63,L64;LE5,LE6,LTLENG.
    ADD=37.
USE=LAI TO LGE.
    LABEL=TAG.
/TRAN
```

IF (SET EQ 0) THEN USE=-1.
LAI=LOG(AD).
Laz=LGE(A2).
LAB=LDE(A3).
LaA $=$ LOG(A4).
LASLD日AS).
LAB=LDG(AE).
L81=L06(81).
LB3-L06(83),
LB4:L0G(84)
LB5=L0G(85).
LB6=LDG(B6).
LC1=L0G(C1).
LSELOE(0).
LC4ELOE(C4).
LCELOF(C5).
L: $6=106(\mathrm{C} 6)$.
LDI $=10 \mathrm{E}(01)$.
L03=L06(03).
LDALOG(D4).
$\angle D 5=\angle 06(05)$.
LDE $=$ LOG(06).
LEI=L0C(E1).
LE3=L06(E3),
LEAELOG(E4).
LESELOG(E5).
LEE=LDG(E6).
LFi=LOET(F).
LF3=106(F3)
LF4-L0E(F4).
LF5 $=106\left(\right.$ F $\left._{5}\right)$.
LF6-L0E(F6).
Lsi=L06(61).
$L 63=L 0 E(63)$.
L64 $=106$ (94).
Li55-L0G(65):
L6E=L0G(66)
LTLENG=LOF(TLENG).
/FACTOE FORH=COVA.
WUHER=5
$\operatorname{CONST}=0.0125$.
/ROTATE METHOD=NONE.
ISAVE CDDE 15 sECRET.
NEL.
FILE=SAVEFILE.
FOPH=EHDF:
CONT=DATA
IEND

/IMPUT FILE EFADALL
CDE IS GECRET.
NAR
Maximul IS (77)3, 3,3 .
MINTM IS (77)-3, $-3,-3$.
ERDUPING IS SET.
/froup
$\operatorname{Cones}(2)=3,4,6,9,10,11,22_{2} 29,31$, $37,41,42,43,70,79,68,89$.
HARES (2) $=X_{1} X_{1} X_{1} X_{1} X_{3} X_{1} F_{1} F_{1} X_{1}$
$X_{1} X_{1} X_{1} X_{1} H_{1} Y_{1} X_{1} F=$
IPLOT
VUAR ARE FACTOR2; FACTOR3; FACTORS,
YYAR ADE FACTOR1, FACTOR1, FACTOR2.
croup IS $W_{1} Y_{1} Y_{1} F$.
geone is X.
broup is Y.
ROUP is 1.
group 15 F .
SIIE $=70,56$.
/END
IPROBLE TITLE IS 'fOLLOCK: PLOT OF FC SCORES, RESIDUAS DORELLATION MATRTH'.
/INPUT FILE=ETOT.
CODE IS SECRET:
/VAR
$A D D=1$.
MAXIHOH IS (393, 3, 3.
MINIUM 15 (39)-3, $-3,-3$.
NAMES=(44)SPECIES.
GROUPING IS SPECIES.
/TR解
IF (KASE LT 2S3) THE SPECIES=2.
IF (KASE WE 233) THEN GPCCIES=1.
/GROIF
$\operatorname{CoLSS}(44)=1,2$.
WHES(44) $=H_{1} \mathrm{~F}$.
IFLOT
YVAR ARE FACTORZ, FACTORS, FACTORS.
WUAR ARE FACTOR1, FACTORL, FACTOR2.
group is $H_{1} F_{2}$
gRoup is H.
group 15 F .
SIIE=70,56.
/END
 DUTFLLFILE THAT HILL CONTAD BMDF OUTPIT $=($ OF $)$.

* THIS progean does discrininat manlsis on the morfhometric data
* you hill have to change the group parherary depending du hich
* dataset you lies.
* it is dureqtey set up for the hadodr data.
* YOU WUST CHANE THE CODES, Hanes, wid FRIDR STATEMENTS

SUBHIT, SURJOR.

- DATA, SUBJOD.

1008
D1SOR, T100, Ch177000.
/READ, MEDUI
GET, DATAFILE/NA.
IFE, NOT. FILE (DATAFILE, AS), NOEET.
ATTACH, DATAFILE.
ENDIF, NOLET.
ATTACH, BYDP7M/UHELIERAEY.
BHDF7M, $\mathrm{L}=$ OUTPUT; $\mathrm{H}=35000$.
BOME.
EXIT.
ENOUIEE,R.
DAYFILE, DAYDISE.
GET, AUTOSNVDIUELIDRARY.
AUTOSAV, DUTPUT, DUTFIL.
RENIND, DUTPUT.
FOUTE, OUTPUT, DCELF:
AITOSAV, DAVDISC.
/EOR
/Problef title is 'discriminatt analysis of hadoocts.
/IHPUT VARIABLE=39.
FILE=DATAFILE.
FDRMAT $=1\left(28 X_{1} 3 X_{1} / 1 X_{1} A 4, F 2,0,31 F 4,1,553,1, F 4,1\right)^{2}=$
NAEIARLE

$\mathrm{LD}, \mathrm{LDO}, \mathrm{LO}, \mathrm{LOE}, \mathrm{LOE}, \mathrm{LE}, \mathrm{LE}, \mathrm{LE}, \mathrm{LES}, \mathrm{LE}, \mathrm{LF}, \mathrm{LF}, \mathrm{LF}, \mathrm{LFS}, \mathrm{LF}$,
L61, LG3, LGA, LE5, LGE, LTLENG.
ADO $=37$.
USE=LA1 TO LTLENG.
LABEL=TAG,
GROUP=5ET.
17R胢

```
    LAL=LOG(A1).
    LA2=LOG(A2).
    LAS=L0G(A3),
    LA4=LOB(A4):
    LA5=L0G(A5).
    LAB=L0G(AB),
    LE1=L0G(B1),
    LB3=L0G(B3),
    LB4=L0G(B4),
    LB5=L05(85).
    LB6=100(B6).
    LGL=LOLCD),
    LC3=L06(C3),
    LC4=L0G(C4):
    LSELOG(0.5).
    L6}=100(06)
    LDI=L0G(DI).
    LDS=LDR(0S),
    LD4=LOG(D4).
    LDS=L0G(DS),
    LDE=L0G(DE).
    LEI=LOG(ED),
    LE3=LOG(E3).
    LE4=L0H(E4).
    LE5=L0G(E5).
    LEG=10G(EG).
    LFI=L0G(F1).
    LF3=L0G(F3).
    LF4=L05(F4).
    LFS=L0G(F5),
    LFE=LDG(FG).
    LAI=LOG(G1).
    163106(63).
    LE4=L0G(64).
    L65=L06(65),
    L66=L0f(66).
LTLE钆=LDG(TLENG).
/0ROP
CODES(2) ADE 3,4,5,9,10,11,29,29,31,37,41,42,
    43,70,79,80,89.
```



```
PRIOR=.529, 1536, 16, 1560.
IDISC ENTEP=2.0,2.0,
    REMOVE=1.99,1.99.
    JACKMNIFE,
IPRINT FOST.
    F0INT.
/END
```

