Canadian Technical Report of Fisheries and Aquatic Sciences 1544

May 1987

NATIVE HARVEST OF WILDLIFE
 in the keewatin region, Northwest territories FOR THE PERIOD OCTORER 1984 TO SEPTEMRER 1985

by

$$
\text { R. L. Gamble }{ }^{1}
$$

Central and Arctic Region
Department of Fisheries and Oceans
Winnipeg, Manitoba R3T 2N6

This is the 9th Technical Report from the Central and Arctic Region, Winnipeg

[^0]
PREFACE

This report is presented in fulfillment of Department of Supply and Services Contract DSS 25 S.T.A. 7135-05-0003 let to the Keewatin Wildife Federation to conduct a wildiffe harvest study in the Keewatin Region = Phase III. The work was done on behalf of the Federal Government departments of Environment Canada (Canadian Wildlife Service), Fisheries and Oceans (Western Region), and Indian Affairs and Northern Development; the Government of the Northwest Territories Department of Renewable Resources; and the Keewatin Wildlife Federation.

The report is accepted upon recommendation by the steering committee for the study made up of representatives of the agencies noted above (Appendix 1) and chaired initially by Mr. F. McFarland and subsequently by Ms. D. Stewart of the Department of Indian Affairs and Northern Development. The harvest study material is published under the auspices of the DFO technical report series by agreement of the steering committee in order to ensure that the data achieve a wide circulation, be accessible to the interested public, and be published in a standardized format generally recognized as appropriate for the dissemination of such information.

A report of the study in Inuktitut will also be published as an insert to the periodical Caribou News (Contact Caribou News c/o Nortext Information Design Ltd., Suite 200, 16 Concourse Gate, Nepean, Ontario, K2E 7S8).
© Minister of Supply and Services Canada 1987
Cat. no. Fs 97-6/1544E ISSN 0706-6457
Correct citation for this publication is:
Gamble, R.L. 1987. Native harvest of wildlife in the Keewatin Region, Northwest Territories for the period October 1984 to September 1985. Can. Tech. Rep. Fish. Aquat. Sci. 1544: v + 59 p.

TABLE OF CONTENTS

	TABLE DF CONTENTS	
ABSTRACT/RESUME		
INTRODUCTION		
MATERIALS AND METHODS		
General	ral . . .	1
Human	resources and materials	1
Data	collection and analysis	1
Data pr	processing . .	2
RESILTS . - -		
DISCUSSION AND CONCLUSIONS		
A		
REFERENCES 4		
LIST Of tarles		
1 The reported harvest by Baker Lake hunters, expressed as numbers of animals, for the period October 1984 to September 1985		
2 The reported harvest by Chesterfield Inlet hunters, expressed as numbers of animals, for the period 0ctober 1984 to September 1985		
	The reported harvest by Coral Harbour hunters, expressed as numbers of animals, for the period October 1984 to September	8
	The reported harvest by Eskimo Point hunters, expressed as numbers of animals, for the period October 1984 to September	9
	The reported harvest by Rankin Inlet hunters, expressed as numbers of animals, for the period October 1984 to September	10
	The reported harvest by Repulse Bay hunters, expressed as numbers of animals, for the period October 1984 to September	11
	The reported harvest by whale Cove hunters, expressed as numbers of animals, for the period October 1984 to September 1985	12
	The estimated harvest by Baker Lake hunters, expressed as numbers of animals, for the period Dctober 1984 to September 1985.	13
	The estimated harvest by Chesterfield Inlet hunters, expresser as numbers of animals, for the period nctober 1984 to September 1985	14

Table
10 The estimated harvest by Coral Harbour hunters, expressed as numbers of animals, for the period Octoher 1984 to September 1985

11 The estimated harvest by Eskimo Point hunters, expressed as numbers of animals, for the perind Dctober 1984 to September 1985

12 The estimated harvest by Rankin Inlet hunters, expressed as numbers of animals, for the period October 1984 to September 1985

13 The estimated harvest by Repulse Bay hunters, expressed as numbers of animals, for the period October 1984 to September 1985

14 The estimated harvest by Whale Cove hunters, expressed as numbers of animals, for the perior Dctober 1984 to September 1985

15 The reported and estimated harvest by Raker Lake hunters expressed as numbers of animals

16 The reporter and estimated harvest by Chesterfield Inlet hunters expresser as numbers of animals

17 The reported and estimated harvest by Coral Harbour hunters expressed as numbers of animals

18 The reported and estimated harvest by Eskimo Point hunters expressed as numbers of animals

19 The reported and estimated harvest by
Rankin Inlet hunters expressed as
numbers of animals 24

20 The reported and estimated harvest hy
Repulse Bay hunters expressed as num
bers of animals 25

21 The reported and estimated harvest by
Whale Cove hunters expressed as num
bers of animals

22 Monthly theoretical kill factors for seven Keewatin communities derived using two methods of calculation . .

23 The harvest by species over the range of age for Baker Lake hunters

24 The harvest by species over the range of age for Chesterfield Inlet hunters

25 The harvest by species over the range of age for Coral Harbour hunters. .

26 The harvest by species over the range of age for Eskimo Point hunters

20 28

30
Page

Table
Page
27 The harvest by species over the range of age for Rankin Inlet hunters . . 32

28 The harvest by species over the range of age for Repulse Bay hunters

33
29 The harvest by species over the range of age for Whale Cove hunters

30 Age distribution of hunters for the seven Keewatin region communities for the period October 1984 to September 1984

35
31 Data on the distribution of hunters that were successful in obtaining a harvest expressed as a percent over the range of age of hunters for the period October 1984 to September 1985

32 Edible weight values in kilograms for harvested species as calculated from various sources

33 Reported and estimated edible weight values (kg) for harvested species for the period October 1984 to September 1985

38
34 Reported and estimated edible weight values for four major groups of animals harvested by Keewatin communities, October 1984 to September 1985.

35 Prices of commodities sold in each Keewatin community compared to country foods sold in Frobisher Bay (new name Iqaluit)

LIST OF FIGIJRES
Figure
1 Map of Keewatin District showing the seven communities surveyed during the harvest study and the zonal grid used to locate kills

2 Zone maps for the harvest years, October 1984 through to September 1985, showing the annual harvest of ringed seal by area in the Keewatin District

3 Zone maps for the harvest years, October 1984 through to September 1985, showing the annual harvest of common eider by area in the Keewatin District

4 Zone maps showing the monthly harvest of caribou by area for Baker Lake for the perion October 1984 to September 1985

Figure
Page
5 Histogram showing the percent relative frequency of caribou harvested per hunt by hunters from the seven Keewatin communities for the period October 1984 to September 1985 . .

6 Histogram showing the percent relative frequency of ringed seal harvested per hunt by hunters for the period October 1984 to September 1985

7 Histogram showing the percent relative frequency of snow geese harvested per hunt by hunters for the period October 1984 to September 1985 . . 56

LIST OF APPENDICES
Appendix Page

1 Members of the Steering Committee for the Keewatin Wildlife Federation Harvest Study 57

2 Calculation of estimated harvest . 58

Gamble, R.L. 1987. Native harvest of wildlife in the Keewatin Region, Northwest Territories for the period October 1984 to September 1985. Can. Tech. Rep. Fish. Aquat. Sci. 1544: v + 59.

Harvest data were collected from Inuit hunters of the Keewatin Region for the period October, 1984 to September, 1985 as part of an ongoing collection of such information which began in September, 1981. The project has been run by an Inuit organization, the Keewatin Wildlife Federation, supported by funding provided through interested federal and territorial government departments. This report is an update and supplement to previous reports (No. 1282 - 1543) which cover the earlier years of the survey. Results were aggregated at a community level and fieldworkers continued to maintain a high level of performance as measured by participation of hunters in the study and a subjective judgement of the quality of data based on experience.

Key words: resource management; catch statistics; domestic harvest; monitoring; food resources; country foods; terrestrial mammals; marine mammals; birds; fish; computerized harvest study; Inuit organization.

RÉSUMÉ

Gamble, R.L. 1987. Native harvest of wildlife in the Keewatin Region, Northwest Territories for the period October 1984 to September 1985. Can. Tech. Rep. Fish. Aquat. Sci. 1544: v + 59 p.

Des donnëes sur les prises/captures ont été recueillies auprès de chasseurs inuit de la région du Keewatin pour la période d'octobre 1984 à septembre 1985, dans le cadre d'un programme continu de collecte, entrepris en septembre 1981, dont un organisme inuit, la Keewatin Wildife Federation, assure l'application. Le financement pour le projet vient des ministères fédéral et territorial en cause. Le rapport constitue une mise à jour et un complément aux rapports précédents (no. 1282 et 1543), qui portent sur les annēes antérieures visēes par l'étude. Les résultats ont été groupés par collectivité. Le travail de collecte a étē fait de façon excellente, comme l'indiquent la participation des chasseurs à l'étude et l'évaluation subjective de la qualitē des données, fondée sur l'expérience.

Mots-clés: gestion des ressources; statistiques sur la prises; chasse/pêche de subsistance; contrôle; ressources alimentaires; ressources alimentaires indigènes; mammifères terrestres; mammifères marins; oiseaux; poisson; étude des prises/captures par ordinateur; organisation inuit.

INTRODUCTION

The collection of harvest data for this study hegan in September, 1981. Previous results have been published for the period nctober 1981 to September 1983 (Gamble 1984), and for the period nctober 1983 to September 1984 (Gamble 1987). This report covers the period October 1984 to September 1985. Throughout this report hunter, harvester, trapper and fisherman are used as synonyms. Hunter is defined in the MATERIALS AND METHODS section below.

The main objectives of the study as specified in the contract covering the period of this report were to:

1) determine by survey techniques the hunter kill (i.e. harvest) hy Inuit living in District of Keewatin communities and outpost camps;
2) develop an approach for the collection of timely, statistically reliahle data on wildlife harvesting which could he undertaken by an agency such as the Keewatin Wildlife Federation (KWF) upon completion of the preliminary study;
3) determine the number of Inuit directly participating in subsistence harvesting in each community and to compare the proportion of harvest taken by hunters of different ages;
4) provide an estimate of the harvest sufficient to determine a measure of its value to each community as food or income, and
5) analyze and puhlish the data collected in a timely report and scientifically acceptable format.

The study area (Fig. 1) remained the same as reported in Gamble (1984; 1987) and includes the entire Keewatin district of the Northwest Territories (approximately $386,000 \mathrm{~km}^{2}$). This region contains seven permanent communities. Listed alphabetically (the convention followed throughout this report) they are Raker Lake, Chesterfield Inlet, Coral Harbour, Eskimo Point, Rankin Inlet, Repulse Ray and Whale Cove. Current information about these communities including population can be ohtained from the NWT Data Book (1984).

MATERIALS AND METHODS

general

For this survey period fieldworkers continued to try and include 100% of the region's hunters in their monthly data collection. The study design remained the same as originally described in Gamble (1984).

For the purpose of this study the term hunter includes all Inuit males and females over
the age of 16 who hunt (they may or may not have a NWT general hunting licence), Inuit youths under 16 who hunt regularly, and some long-term residents in the area of other ethnic origin who hunt. This latter group makes up less than 1% of the total hunters in the region and also accounts for less than 1% of the animals harvested.

Harvest data were aggregated at the community level. Separate coverage of outpost camps was not necessary hecause Inuit hunting from such locations visited their home communities frequently during the survey period and it was possible to include their harvest together with that of community based hunters on a consistent basis.

In accordance with contractual requirements, a steering committee (Appendix 1), as outlined in the preface, continued to provide guidance to the Harvest Study staff.

HUMAN RESOURCES AND MATERIALS

Fieldworkers were hired in each of the seven communities to interview hunters and collect data. Duties included explaining the project to hunters; distributing the study materials (calendars and field notehooks) to hunters; keeping an up to date list of hunters; interviewing hunters beginning on the first day of each month to collect harvest statistics for the previous month and recording this information on the appropriate data sheets; making sure the data collected were as accurate as possihle; and promptly forwarding a monthly report following an interview period to the Project Riologist located at Rankin Inlet.

The Project Dffice organization remained the same as described by Gamble 1987 and no changes were made to the data sheets, calendars and field diaries distributed to fieldworkers and hunters.

dATA COLLECTION AND ANALYSIS

The system used to analyze harvest data and to arrive at estimates of the total hunter kill by community required several steps and remained the same as developed during the 19811983 preliminary study (Gamble 1984).

Beginning on the first day of each month fieldworkers began interviews so that they could divide the hunter population for each community into the survey categories defined helow and list the number of animals killed per species for successful hunters who were interviewer. The monthly interval was defined as an interview period and covered the previous month of hunting. The fieldworker submitted this information to the Project Office where the data were summarized each month against a master list of hunters for individual communities and then entered into the computer. The numbers in some categories were subsequently adjusted the following month (i.e. the second month past the actual hunting episode) if acceptable reports
were submitted by fieldworkers on hunters who had been interviewed after a particular interview period had passed. Acceptable reports were determined through a subjective judgement by the Project Biologist based on his experience and a comparison of late reports with the reports submitted on time.

Definition Category

1) The number of hunters who report A taking a harvest during an interview period (i.e. successful).
2) The number of hunters who report B they were not successful in taking a harvest during an interview period (i.e. unsuccessful).
3) The number of hunters who report they did not hunt during an interview period (i.e. didn't hunt).
4) The number of hunters who were out D hunting during the interview period but who were not interviewed (i.e. hunted but not interviewed).
5) The number of hunters who were out E of the area of the harvest survey during the interview period for any reason (i.e. out of hunt area).
6) The number of hunters within the harvest study area during the interview period whose activities were unknown (i.e. activities unknown).

It should be noted that the number of hunters in categories D and E for any month is usually known with a high degree of accuracy because of the small size of the communities involved and common local knowledge concerning the whereabouts of individuals, especially when it pertains to trips outside the local area.

Subsequently the summarized monthiy information contained in categories A through F was used to calculate ratios of participation and hunter success (Gamble 1987). Participation ratio refers to the percent of hunters in each community who were interviewed as part of the study in relation to the total number of hunters who could have hunted each month. The hunter success ratio was applied to hunters in categories D and F to obtain an estimate of probable hunter success within these groups. The results for all categories were summed to get an estimate of total hunter success and to calculate the theoretical kill factor. This is the value by which the reported kill per species is multiplied to arrive at the estimated harvest.

For the purpose of this analysis four main assumptions were made:

1) The involvement of hunters in the harvest is the same for those whose activities are unknown as for those that are known.
2) The success ratio is the same for hunters who hunted in the unknown categories as for the known categories.
3) The probability of a kill of any individual animal is the same for all species when calculating the estimated harvest.
4) Reported kills are accurate.

Topolniski and Thompson (1984) suggested changes in calculating the theoretical kili factor as given by Gamble (1984). Appendix 2 compares the two methods and Tahle ?2 gives the results for each month of the 1984-85 survey period for each community using both methods to calculate the monthly theoretical kill factors. As a consequence of this comparison the original formula given by Gamble (1984) was used to calculate estimated harvests for this report (see DATA PROCESSING and RESULTS below).

DATA PROCESSING

The study continued to use the programs described by Gamble (1984; 1987). No additional programs were developed in the fourth year of the study due to financial constraints. For instance in the case of Fig. 2, 3 and 4 these are currently produced by hand from printouts of the kill by zonal grid. The capability to provide such information would be greatly enhancerd by the development of a graphics programme to automatically produce such figures from the data.

The participation file was modified to reflect the formula correction suggester by Topolniski and Thompson (1984) to retermine the theoretical kill factor such that either methor can be used to calculate this value. However no changes were made to the original methods of Gamble (1984) in order to maintain continuity and comparability of data between years. Variance between the calculated values in Table 22 using either method is small.

When referring to age the range of age classes are $0-15,16-30,31-45,46-60,61-75$ and 76-99. The age group $76-99$ was used as a category for hunters with unknown ages because only 8 hunters of known age fell within this group.

RESULTS

Tables 1 through 21 summarize the results from analysis of the data collected between nctober 1984 and September 1985. Tahles 1 through 7 give the reported monthly harvest by species expressed as numbers of animals, and gives the percent of hunters reporting each month from the total number of known hunters in a given community (i.e. participation ratio). Tables $\&$ through 14 give the estimated monthly harvest by species expressed as numbers of animals, while Tables 15 through 21 give the annual reported and estimated harvests and also provide the mean monthly harvest per hunter together with the standard deviation about the mean.

Tables 1,8 and 15 give information for the community of Baker Lake for a 12 month period. In this area caribou from three different herds are harvested and this causes a problem in assigning kills to a particular herd. Hunters are sometimes not specific enough about location to allow a particular kill to be assigned to a herd nor is it always known which herd is in a specific area over a given time period. In such cases the kill is put in the category of unknown
herd. In some seasons this problem is exacerhated because caribou from the three herds intermingle. However for the 1984-85 survey period the herds remained geographically distinct from one another. An interesting observation is that calves and adult females from the Wager Ray herd were harvested northeast of Raker Lake in an area not previously known as a calving ground for any herd. The muskox harvest of 5 animals reported for Baker Lake for this survey is incorrect because it is known from Government of the Northwest Territories (GNWT) records that the full quota of 12 animals was taken.

Tables 2, 9 and 16 give harvest levels for the community of Chesterfield Inlet for a 12 month period. Though the percent of hunters reporting is high, the reported harvest is low. One would expect comparable sized communities such as Whale Cove and Chesterfield Inlet to exhibit similar harvest levels given equal access to game. Public consultation and contact with the community Hunters and Trappers Association suggests that hunters support the study but many expressed concern that they are not being contacted. This problem has been noted for previous survey periods (Gamble 1987) and project staff believe that at Chesterfield Inlet the harvest statistics are not being collected correctly. Changes in fieldworkers and the training provided to them has not provided any significant change in results. This is an ongoing problem toward which efforts must continually be directed. The division of caribou into herds by location was treated in the same fashion as the preliminary report (Gamble 1984).

Tahles 3 , 10 and 17 give harvest levels for the community of Coral Harbour for a 1 ? month period. Although data collection was consistent for the first time during the study, some improvements in participation are still necessary. Medical problems of the original fieldworker for this survey period may have contributed to the situation. Such personnel factors are an example of contributing influences which are beyond the control of a study such as this that can affect the results obtained.

Tables 4,11 and 18 give the harvest information for the community of Eskimo Point for a 12 month period. Over the course of the survey perior Eskimo Point had three fieldworkers. This may have had an effect on the collection of harvest data particularly in May and June. Information collected for these months was taken later than normal and hunter recall may decrease over time. If so, experience indicates that Inuit hunters are more likely to underestimate than overestimate a harvest after an extended period of time has elapsed.

Tables 5, 12 and 19 give the data collected for a 12 month perion at the community of Rankin Inlet. Collection effort was consistent and more than 80% of the hunters participated throughout the year unlike previous years (Gamble 1987). Commercial landings for Arctic charr were not reported with the domestic harvest for this survey period.

Tables 6, 13 and 20 give the data received from Repulse Ray for a 12 month period. At the
start of this survey period 84 hunters were identified from the community list as living in this community. This modified number was used to calculate theoretical kill factors (Table 22) rather than the figure of 90 hunters user for previous survey periods (Gamble 1984; 1987) because it is a more current estimate of the number of hunters residing in Repulse Ray. However emigration and to a lesser extent immigration of hunters continues to make it difficult to establish an accurate hunter list for this community. The participation ratio is still probably underestimated and the estimated harvest slightly overestimated because it appears there are slightly fewer hunters than the morified numbers used.

Tables 7, 14 and 21 show the harvest reported by the community of Whale Cove for a 1 ? month period. The participation ratio of hunters reporting was not available for October, 1984 hecause of the unannounced resignation of the community fieldworker which resulted in insufficient notice to insure continued collection of all data in October. Given these circumstances, the best estimate of that month's total community monthly harvest was taken to be the reported harvest following Gamble (1984).

Table 22 gives the monthly theoretical kill factors calculated following the procedure described in Appendix 2. Error is greatest for those values significantly larger than one as discussed by Gamble (1984). The values derived by using the original method described by Gamble (1984) were used to calculate estimated harvests rather than the modified method suggester by Topolniski and Thompson (1984) in Appendix 2. The original method was chosen for two reasons: 1) to facilitate comparison of the results between survey periods (i.e. Oct. 1981 to Sept. 1983 and Oct. 1983 to Sept. 1984), and 2) the observed error between the methods was very small.

Tables 23 through 29 give kill statistics for each species over the range of age groups for hunters for each community. The data on animals harvested by hunters of unknown ages were not included.

Table 30 gives the age distribution of hunters for the seven communities in the region for this survey period. Revisions to the hunter list used in previous survey periods have reduced the number of known hunters for each community when compared to Gamble (1984; Table 21) and Gamble (1987; Table 36).

Table 31 provides data on hunters who were successful in obtaining a harvest over the range of age of hunters. The distrithution of successful hunters is expressed as a percentage over the range of ages by month and harvest year for each community and as a regional total. In this table there were no hunters reporting in the age category 0 to 15 for the community of Chesterfield Inlet.

Table 32 gives the estimated individual species values for edible weight (kg) used to calculate the total edihle weights given in Tables 33 and 34. These individual values were
defined using the information ssurces noted in Gamble (1984, Table 16). The total reported edible weight values for the survey period are the sum of the annual species values. Therefore, totals from Table 33 and 34 differ slightly due to rounding off.

Table 35 provides a list of prices (circa January 1985) for country products sold at Frobisher Bay (new name Iqaluit) and meat and fish sold commercially in the Keewatin to assist. in determining the importance of the resource economy to Inuit in this region. The assumption is that all edible products are consumed.

Figures 2, 3 and 4 are zone maps showing the harvest by location for the survey period of ringed seal and eider for all communities, and caribou for Baker Lake. The harvest of ringed seal and eider are presented annually while the harvest of caribou is shown monthly.

Figures 5, 6 and 7 show graphically the relative frequency of caribou, ringed seal and snow geese harvested per hunt for the survey period. Data were not available or sample sizes were too small to provide a histogram for particular species in some communities.

DISCUSSION AND CONCLIISIONS

Data collected during the September 1984 to October 1985 survey period were part of an ongoing collection of such information which began in September, 1981. Since the objectives of this study have not changed appreciably since the preliminary report (Gamhle 1984) this report is simply an update and supplement to existing information. During this survey period the reporting rates have levelled off to a near maximum. It is difficult to foresee any improvement to the study which would increase overall reporting rates. The errors still inherent in the current study are primarily the results of influences such as financial constraints which are beyond the control of the project and internal problems such as fieldworker turnovers which will always exist and must be constantly monitored. Over the longer term hunters may suffer reporting fatigue but at present this is not evident.

In conclusion, the Keewatin Wildife Federation Harvest Study has been successful in its attempt to elicit statistically valid harvest information from hunters using a survey technique cormon in a Euro-Canadian setting but intrinsically foreign to the Inuit. The preliminary work has laid the foundation for a process involving native people in the gathering of harvest statistics. This information will be important for jointly establishing with government management agencies a wildlife management rationale for the harvest of species which are of national interest and very particular cultural importance to Inuit. Continued cooperation amongst harvesters and wildiife managers will ensure the long term well being of wildife in this region.

The results obtained during this survey period continue to maintain the high level of performance reported in previous survey periods (Gamble 1984, 1987).

ACKNOWLEDGMENTS

I thank the Keewatin Wildlife Federation, which was supportive of this study and provider valuable assistance at a regional and community level.

Thanks are also due to members of the steering committee who provided valuable criticism of my manuscript, in particular R. Peet (DFO) and his staff who assisted in the preparation of the final draft. I particularly thank the staff of the Keewatin Wildifife Federation "Harvest Riology Study": Veronica Curley, Oscar Jajalla, Jean Kusugak, and Karen Sataena. Their continued efforts in conjunction with the various community fieldworkers made this report possible.

I also thank all the hunters who provided data on their harvests and especially thank them for their cooperation and understanding in the face of repeated questions.

Finally I acknowledge the logistic support given to the study by the Regional Government of the Northwest Territories.

REFERENCES

RELLROSE, F.C. 1976. Ducks, geese, and swans of North America. Stackpole Rooks. $54 n$ p.

BERGER, T. 1977. Northern frontier - northern homeland. The report of the Mackenzie Valley Pipeline Inquiry, 2: 258 p .

BOND, W.A. 1975. Data on the biology of lake whitefish and lake trout from Kaminuriak Lake, District of Keewatin, N.W.T. Can. Fish. Mar. Serv. Data Rep. Serv. CEN/D-754: 28 p .

BUREAU OF STATISTICS, G.N.W.T. 1984. Population estimates and projections by region and community. (Internal Memorandum), December 20, 1984.

CARDER, G.W. 1983. Data from the commercial fishery for Arctic charr, Salvelinus alpinus (Linnaeus), in the Cambridge Ray and Rankin Inlet areas, Northwest Territories, 1981-82. Can. Data Rep. Fish Aquat. Sci. 391: v+24p.

DOME PETROLEUM LTD., ESSO RESOURCES CANATA, LTD., AND GULF CANATA RESOURCES INC. 1982. Beaufort Sea-Mackenzie Delta Environmental Impact Statement. Socioeconomic effects 5(5): 42 p .

EARHART, C.M., and N.K. JOHNSON. 1970. Size dimorphism and food habits of North American owl. Condor 72: 251-264.

FALK, M.R., and D.V. GILLMAN. 1975. Data on the lake and round whitefish, lake cisco, northern pike, Arctic grayling and longnose sucker from the east arm of Great Slave Lake, N.W.T., 1971-74. Can. Fish. Mar. Serv. Data Rep. Ser. CEN/D-75-2: 95 p.

GAMBLE, R.L. 1984. A preliminary study of the native harvest of wildlife in the Keewatin Region, Northwest Territories, Canada. Can. Tech. Rep. Fish. Aquat. Sci. 1282: iv +48 p .

GAMBLE, R.L. 1987. Native harvest of wildife in the Keewatin Region, Northwest Territories for the period October 1983 to September 1984. Can. Tech. Rep. Fish. Aquat. Sci. 1543: v +82 p.

GRAF, R. 1984. Harvest study supplemental analysis. Unpublished report, Government of the Northwest Territories Wildlife Service, Yellowknife, N.W.T.

JINGFORS, K. 1984. Kitikmeot Harvest Study. Progress Report, 1983, Government of the Northwest Territories Wildlife Service, Renewable Resources, Cambridge Bay, N.W.T.

KELEHER, J.J. 1964. Round weight conversion factors for Great Slave Lake fish. Fish. Res. Board Can. Manuscr. Rep. Ser. (Biol.) 773: 19 p.

Macmonald, f., and R. FUDGE. 1979. Arctic Land Use Research Program 1978: A survey of the fisheries resources of the Kazan Upland (Southeastern District of Mackenzie, Southern District of Keewatin, N.W.T.). Can. Dep. Ind. N. Aff. Environ. Stud. 11: 161 p.

NATIVE HARVESTING RESEARCH COMMITTEE (NHRC) 1975. Research to establish present levels of harvesting by native peoples of northern Quebec. Phase 1 (1973-1975). Part II. Montreal. 230 p.

NWT DATA BOOK. 1984/85. A complete information guide to the Northwest Territories and its communities. M. Nevine (ed.) Dutcrop Ltd., The Northern Publishers, Yellowknife. 220 p.

RIEWE, R. 1977. Utilization of wildifife in the Jones Sound region by the Griese Fiord Inuit, p. 623-644. In L.C. Bliss (ed.) True Love Lowlands, Devon Island, Canada: a high Arctic ecosystem. University of Alberta Press, Edmonton.

SERGEANT, D.E., and P.S. BRODIE. 1969. Body size in white whales, Delphinapterus leucas. J. Fish. Res. Board Can. 26: 2561-2580.

STEVENS, W.J.D. 1965. Bionomics of the sandhill crane. Ph.D. Thesis. University of Saskatchewan, Saskatoon. 120 p.

THOMAS, V.G. 1982. Energetic reserves of Hudson Bay willow ptarmigan during the winter and spring. Can. J. Zool. 60: 1618-1623.

TOPOLNISKI, D., and P. THOMPSON. 1984. Internal Memorandum, Department of Fisheries and Oceans, October 10, 1984.

IJSHER, P.J., D. DELANCY, M. SMITH, F. WENZEL, and P. WHITE. 1985. An evaluation of native harvest study methodology in northern Canada. A report to the Environmental Studies Revolving Fund Committee, Department of Indian Affairs and Northern Development. ESRP 205-30-06(F). 234 p.

Table 1. The reported harvest by Baker Lake hunters, expressed as numbers of animals, for the period Octoher 1984 to September 1985.

	1984			1985									
Species Category ${ }^{1}$	nct.	Nov.	Dec.	Jan.	Feh.	Mar.	Apr.	May	June	July	Aug.	Sept.	Sum
Caribou													
Kaminuriak						104	46	44		64		104	35 ?
		2				87	42	34		14		61	240
						31	24	9					64
						4							4
		2				225	112	87		78		165	670
Beverly	330		146	179	164	25	13					194	1051
	212		117	191	148	26	10					147	851
	16		68	73	65	13	6					22	263
	11		9	17	5	3	1						46
	569		340	460	382	67	30					363	2211
Wager	382	117	29		5		45	36	70	170	325	488	1667
	240	102	2		9		33	42	57	63	227	325	1100
	8	58	4		1		19	12	4	2	8	35	151
	1	2							3	2			8
	631	279	35		15		97	90	134	237	560	848	2925
	1200	281	375	460	397	293	239	177	134	315	560	1376	5807
Muskox ${ }^{2}$						5							5^{2}
Polar Bear						1							1
Grizzly Bear										1			1
Arctic Fox		526	1090	758	585	216	$11 ?$						3287
Red Fox		?	$?$	1									5
Wolf		11	9	7	16	18	1						5 ?
Canada fieese								479	143				627
Snow Geese									30				30
Ptarmigan	403												403
Swan								2	4				6
Canada Goose Eggs								151	262				413
Goose Eggs								773	1578				2451
		42	2					100	56				? $ก$ ก
Arctic Charr Lake Trout	196	144	192	181	43			264	590	333	59	25	$20 ? 7$
	114	37	65	129	29				21	54	25	9	483
Whitefish sp. Arctic Grayling		3							56	30			89
Percent of	97.6	97.7	98.0	95.8	96.6	94.9	96.5	100.0	98.6	99.0	95.0	96.7	

${ }^{1}$ Categories are as follows: M means male, F means female, C means calf, and U means unknown.
${ }^{2}$ The reported muskox harvest is incorrect because the full quota of 12 animals was taken.

Table 2. The reported harvest by Chesterfield Inlet hunters, expressed as numbers of animals, for the period October 1984 to September 1985.

	1984			1985									
Species Category ${ }^{1}$	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	Juty	Aug.	Sept.	Sum
Caribou													
Kaminuriak			10		7	30	3	2		2			54
			10		2								12
			6										6
			26		9	30	3	2		2			72
North of M	9	4		3	7	9	5	11	2	7	3	14	74
Chesterfield	8	10					3					?	$? 3$
		3						5				3	11
	17	17		3	7	9	8	16	2	7	3	19	108
Other										2			$?$
	17	17	26	3	16	39	11	18	2	11	3	19	182
					2								2
Polar Bear					1	2		2					5
Arctic Fox	24	8	18		5	6							61
Wolf			4		4								8
Ringed Seal	7			1		7		5	8	2	5	2	37
Bearded Seal				1			1	1	1				4
Walrus				2	4	2			7				15
Qeluga											13	15	28
Canada Geese									27				27
Snow feese												8	8
Arctic Charr										7			7
Lake Trout	111						2	27	$? 0$				160
Percent of													
Hunters Reporting ${ }^{2}$	100.0	100.15	100.0	100.0	100.0	98.5	98.3	95.8	95.7	97.2	93.2	97.1	

${ }^{1}$ See Tahle 1.
${ }^{2}$ F.ven though the participation ratio is consistently high for the survey period for this community individual hunters harvests may not have heen completely recorded.

Table 3. The reported harvest hy Coral Harhour hunters, expressed as numbers of animals, for the period October 1984 to September 1985.

Caribou

Kaminuriak	M							3						3
	F							6						6
	Suhtotal							9						9
Wager	M							4	21					25
	F							49	49					98
	U							29	28					57
	Subtotal							82	98					180
Coates	M										27	50		77
	F										3	18		21
	U										8	?		10
	Total										38	70		108
Southampton	M	7	2			4	1	6	12			3	$?$	37
	F	3						7						10
	U								2			3		5
	Subtotal	10	2			4	1	13	14			6	$?$	$5 ?$
Other	M				1									1
	Total	10	$?$		1	4	1	104	11 ?		38	75	2	350
Polar Rear		32	,		1		3	4	3					40
Arctic Fox			71	88	24	72	73	72	9					409
Wolf								4	3					7
Arctic Hare				2	$?$		1	7	1					13
Ringed Seal		46	13	15	73	58	19	$? 2$	23	68	55	14	30	435
Rearded Seal		2		2	5	3	8	2			4	11	5	42
Harbour Seal												3	2	5
Harp Seal		5								1	1	2		9
Walrus		2			1		1	?			4	7	7	24
Reluga		8									10	46	12	76
Canada Geese									23	15				38
Snow Geese									92	2302	16	233	11	2.554
Geese										187	1			198
Eider		11											10	21
Ptarmigan		3	43	77	27	18	168	249	161	6			16	758
Goose Eggs										2396				2396
Arctic Charr		1099	91	346		127	318		108	662	570	633	10	3964
Lake Trout										4				4
Sculpin sp.										3				3
Percent of														
Hunters Repor	ting	99.1	61.9	62.9	68.6	79.0	93.3	94.3	78.1	59.0	62.9	75.2	86.7	

[^1]Table 4. The reported harvest hy Eskimo Point hunters, expressed as numbers of animals, for the perind October 1984 to September 1985.

Species Category ${ }^{1}$	1984			1985									
	Oct.	Nov.	Dec.	Jan.	Feh.	Mar.	Apr.	May ${ }^{2}$	June	$1117 y$	Aug.	Sept.	Sum
Caribou													
Kaminuriak $\quad M$	21	36	42	43	38	21	46	49	51	69	Q4	185	695
F	59	60	45	94	120	7.8	134	24	7	5	10	61	697
C	35	36	5	18		5	3	5	2	23	30	24	186
11	$?$	2	35	6	28	5	12	30	15	10	7		152
Total	117	134	127	161	186	109	195	108	75	107	141	270	1730
Muskox					1								1
Polar Bear		13											1.3
Arctic Fox		226	215	27	45	200	159						873
Red Fox		7	1		1		2						11
Wolf		3	1			2	27	2					35
Arctic Hare								1					1
Lemming									7				7
Ringed Seal	122				3		1	31	38	7	3	7	212
Bearded Seal	10							4	4		3	1	2.2
Harp Seal									2				2
Walrus								1					1
Reluga										7	78		85
Canada Geese								99	39				138
Snow Geese								454	169				623
Geese								21	5				26
Eider	5		1							2			8
Ptarmigan	41			2			34	6.3	7				147
Goose Eggs								124	184				308
Arctic Charr	71	108	56	1		1	3	36	250	471	1663	354	3024
Lake Trout	20	22	26	4		15	212	372	51			23	745
Whitefish sp.			?										2
Northern Pike									1	1			$?$
Arctic frayling	345						2	10	1			5	363
Other freshwater Fish		7	2					1	1			50	$\kappa 1$
Percent of													
Hunters Reporting	86.3	94.5	79.2	93.8	89.3	90.1	95.2	88.3	89.4	82.3	$95 . ?$	94.3	

${ }^{1}$ See Table 1.
${ }^{2}$ There were delays in the collection of harvest information for the months of May and June which may have contributed to under-reporting the actual harvest.

Table 5. The reported harvest by Rankin Inlet hunters, expressed as numbers of animals, for the period October 1984 to September 1985.

Species Category ${ }^{1}$	1984			1985									
	0ct.	Nov.	Dec.	Jan.	Feh.	Mar.	Apr.	May	June	July	Aug.	Sept.	Sum
Caribou													
Kaminuriak M	17	32	50	75	29	57	76	76	11	29	144	107	703
F	9	65	73	99	40	27	84	27	19		12	11	$46 ¢$
C							1				3	1	5
U		10		7					9	2	3		31
Subtotal	26	107	123	181	69	84	161	103	39	31	162	119	1205
North ofChesterfield M M													
Muskox 2													
Polar Bear		1			1			4	2				8
Arctic Fox		23	24		3	1							51
Wolf $\begin{array}{lllllllll} \\ \text { W }\end{array}$													
Arctic Hare		1										7	9
Arctic Ground Squirrel										1			1
Ringed Seal	65	12	14	8	1	7	7	16	56	58	24	19	287
Rearded Seal	9								2	4	5	4	24
Harbour Seal	2								1				3
Harp Seal 1													
Seal sp. (unknown) 2													
Walrus					1			1		1			3
Beluga										$?$	29	5	35
Canada Geese								47	190	1	1		239
Snow Geese								132	258				390
Geese 2 ?													
Eider	5		3		3								11
Unknown Ducks ${ }^{\text {a }}$													
Ptarmigan 19 5 3 8 59 42 													
Canada Goose Eggs 1010													
Goose Eggs													
Arctic Charr	59	561	151	93	27	70	84	100	992.	739	2298		5174
Whitefish sp.		6											5
Arctic Grayling 36													
Arctic Cod										6			6
$\begin{array}{lll}\text { Sculpin sp. } & 10\end{array}$													
Hunters Reporting	84.7	82.1	8 . 0	86.7	85.4		94.8	87.6				95.2	

[^2]Table 6. The reported harvest hy Repulse Ray hunters, expressed as numbers of animals, for the period nctober 1984 to Septemher 1985.

Species	Category ${ }^{1}$	1984			1985									
		nct.	Nov.	Пec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Sum
Caribou														
Wager	M	50	37	21	15	33	38	37	54	29	91	91	108	604
	F	18	54	27	40	57	57	42	9	1	3	18	47	373
	c			1								16	23	40
	$1 J$	3	1	2	1		3			10	5	11	3	39
	Subtotal	71	92	51	56	90	98	79	63	40	99	136	181	1056
Southampton	$\begin{gathered} M \\ \text { Total } \end{gathered}$	71	92	51	56	90	98	79	63	40	99	135	182	1057
Muskox						1								1
Polar Rear			3	1		$?$								6
Arctic Fox		1	252	55	2.5	25	19	3						380
Red Fox			16		1		$?$							19
Wolf		1	6		2	7	7	8	3	2				36
Wolverine				1										1
Arctic Hare				1			1	1					5	8
Ringer Seal		89	13		17.		3	14	179	60	107	48	149	674
Bearded Seal		1										8	3	17
Harp Seal		1					8	1			11	$?$		23
Walrus											1	13		14
Reluga											1	$?$		3
Narwhal											10	5		15
Canara Geese									5	8	1		2	15
Geese									3					3
Eider									3					3
Ptarmigan			3		$?$				14	3	1		20	43
Arctic Charr		457	318	250	217			23	140	332	753	597		3087
Lake Trout			93						49	76	6			224
$\begin{aligned} & \text { Percent of } \\ & \text { Hunters reporting }{ }^{2} \end{aligned}$		67.9	72.6	70.2	79.8	66.7	73.8	73.8	67.9	61.9	72.6	72.5	75.0	

[^3]Table 7. The reported harvest by Whale Cove hunters, expressed as numbers of animals, for the period October 1984 to September 1985.

Caribou

Kaminuriak M	$2 ?$	13	6	11	11	19	7	49	27	46	45	4 ?	298
F	6	25	56	97	44	88	45	19	3	5	13		402
C		3	1	7	1				1	1	1	1	15
U			1				9	1		?			13
Total	28	41	64	115	56	107	62	69	31	54	59	43	729
Muskox					2								$?$
Polar Bear		5						1					6
Arctic Fox		91	4		1								95
Wolf	1				2	12							15
Arctic Hare	1			1	1	3	1			4		2	13
Ringed Seal	29	30	27	9	11	16	9	32	16	36	16	1	232
Bearded Seal	17				1	1				2		3	24
Beluga											17	2	19
Canada Geese								64	11	19		5	99
Snow Geese								52				29	81
Geese								319	187	1		62	569
Eider	8				3				1				12
Ptarmigan					10								10
Canada Geese Eggs										2			?
Goose Eggs								117	570				687
Arctic Charr	195	89	15	4	5			53	72	117	416	3	969
Lake Trout		7					6	49	4.	7	1		11 ?
Arctic Grayling								5					5
Percent of Hunters reporting		68.0	85.9	87.5	93.5	93.3	87.3	83.9	87.5	98.3	98.3	100.0	

${ }^{1}$ See Table 1.
${ }^{2}$ Complete information on hunter participation was not collected for nctoher. nnly successful hunters were interviewer.

Table 8. The estimated harvest hy Raker Lake hunters, expressed as numbers of animals, for the perind October 1984 to September 1985.

Species Category ${ }^{1}$	1984			1985									
	Oct.	Nov.	Dec.	Jan.	Feh.	Mar.	Apr.	May	June	July	Aug.	Sept.	Sum
Caribou													
Kaminuriak						104	46	44		64		174	352
		2				87	42	34		14		61	240
						31	24	9					64
						4							4
		2				226	112	87		78		165	670
Reverly	330		146	179	154	25	13					194	1051
	212		117	191	148	26	10					147	851
	15		68	73	65	13	6					22	263
	11		9	17	5	3	1						46
	569		340	460	382	67	30					353	2.211
Wager	382	117	29		5		45	36	70	170	325	488	1567
	240	102	2		9		33	42	57	63	227	32.5	1100
	8	58	4		1		19	$1 ?$	4	2	8	35	151
	1	2							3	2			8
	631	279	35		15		97	90	134	237	560	849	2925
	1200	281	375	460	397	293	2.39	177	134	315	560	1376	5807
Muskox ${ }^{2}$						5							5^{2}
Polar RearGrizzly Rear						1							1
										1			1
Arctic Fox		526	1090	758	585	215	113						32.88
Red Fox		2	2	1									5
Red Fox Wolf		11	9	7	16	18	1						62
Canada Geese								479	144				623
Snow Geese									30				30
Ptarmigan	403												403
Swan								2	4				6
Canada Goose Eggs								151	265				416
Goose Eggs								773	1595				2468
Arctic Charr		42	2					100	57				201
Lake Trout	196	144	192	181	43			254	596	333	59	25	2033
Whitefish sp.	114	37	65	129	29				21	54	25	9	483
Arctic Grayling		3							56	30			89

${ }^{1}$ See Table 1.

${ }^{2}$ The reported muskox harvest is incorrect hecause the full quota of 12 animals was taken.

Table 9. The estimated harvest by Chesterfield Inlet hunters, expressed as numbers of animals, for the period October 1984 to September 1985.

Species	Category ${ }^{1}$	1984			1985									
		0ct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June			Sept. Sum ${ }^{2}$	
Caribou														
Kaminuriak	M			10		7	30	3	2		$?$			54
	F			10		$?$								17
	U			6										6
	Subtotal			26		9	30	3	2		2			$7 ?$
North of Chesterfield														
	M	9	4		3	7	9	5	13	2	8	4	15	79
	F	8	10					3					2	23
	U		3						6				3	12
	Subtotal	17	17		3	7	9	8	19	2.	8	4	20	114
Dther	$\underset{1}{M}$										${ }^{2}$			$2{ }^{2}$
	Total	17	17	26	3	16	39	11	21	2	12	4	20	296
MuskoxPolar Bear						2								$?$
						1	2		2					5
Arctic Fox		24	8	18		5	6							61
Wolf				4		4								8
Ringed Seal		7			1		7		6	9	2	6	2	40
Bearded Seal					1			1	1	1				4
Walrus					2	4	2			8				15
Beluga												16	16	3 3?
Canada Geese										30				30
Snow Geese													9	9
Arctic Charr										8				8
Lake Trout		111						2	31	$2 ?$				156

${ }^{1}$ See Table 1.
${ }^{2}$ Even though a high participation ratio has been recorded for this community the estimate of harvest may not he as accurate as this would indicate hecause the reporter harvest of some hunters may not have heen complete.

Table 10. The estimated harvest by Coral Harbour hunters, expressed as numbers of animals, for the perior Octoher 1984 to September 1985.
Species Category ${ }^{\text {l }}$ Oct. Nov. Dec. \quad Jan. Feh. Mar. Apr. May June July Allg. Sept. Sum

Caribou

Kaminuriak	M F Subtotal							$\begin{aligned} & 3 \\ & 6 \\ & 9 \end{aligned}$						3 6 9
Wager	M							4	27					31
	F							50	63					113
	U							30	36					66
	Subtotal							84	126					210
Coats	M										41	65		106
	F										5	2.3		28
	U										12	3		15
	Subtotal										58	91		149
Southampton	M	7	3			6	1	6	15			4	2	44
	F	3						7						10
	U								3			4		7
	Subtotal	10	3			6	1	13	18			8	2	51
nther	M				1									1
	Total	10	3		1	6	1	106	144		58	99	$?$	4.30
Polar Bear		32	9		1		3	4	4					53
Arctic Fox			109	123	29	115	75	74	12					538
Wolf								4	4					8
Arctic Hare				3	2		1	7	1					14
Ringed Seal		46	20	21	89	93	19	22	$3 n$	11.3	83	18	33	587
Bearder Seal		2		3	6	5	8	2			6	14	6	52
Harbour Seal												4	$?$	6
Harp Seal		5								2	2	3		12
Walrus		2			1.		1	2			6	9	8	29
Beluga		8									15	60	13	96
Canada Geese									30	25				55
Snow Geese									118	3798	24	301	12	4253
Geese										309		1		310
Eider		11											11	22
Ptarmigan		3	66	108	33	29	175	254	206	10			17	901
Goose Eggs										3954				3954
Arctic Charr		1110	140	484		202	331		138	1093	867	817	11	5193
Lake Trout										7				7
Sculpin sp.										5				5

[^4]Table 11. The estimated harvest by Eskimo Point hunters, expressed as numbers of animals, for the period
October 1984 to September 1985.

Caribou

Kaminuriak M	23	36	51	44	43	27	54	56	55	97	101	187	775
F	65	50	55	98	136	102	156	27	8	7	11	62	787
c	38	36	6	18		7	4	6	?	32	32	24	205
U	2	2	43	6	32	7	14	34	17	14	8		179
Total	128	134	155	166	211	143	228	173	8.3	150	$15 ?$	273	1946
Muskox					1								1
Polar Rear		13											13
Arctic Fox		227	26.3	28	51	2.6 ?	186						1017
Red Fox		7	1		1		2						11
Holf		3	1			3	32	2					41
Arctic Hare								1					1
Lemming									8				8
Ringed Seal	133				3		1	35	$4 ?$	10	3	7	234
Bearded Seal	11							5	4		3	1	24
Harp Seal									2				?
Walrus								1					1
Beluga										10	84		94
Canada Geese								113	43				156
Snow Geese								518	187				705
Geese								24	6				30
Eider	6		1						2				9
Ptarmigan	45			2			40	72	8				167
Goose Eggs								141	204				345
Arctic Charr	78	109	68	,		1	4	41	289	659	1779	357	3385
Lake Trout	22	22	32	4		20	248	424	57			23	85 ?
Whitefish sp.			2										$?$
Northern Pike									1	1			$?$
Arctic Grayling	376						2	11	1			5	395
Other Freshwater Fish		7	2					1	1			51	6 \%

${ }^{1}$ See Table 1.
${ }^{2}$ There were delays in the collection of harvest information for the months of May and June which may have contributed to under-reporting of actual harvest.

Table 12. The estimated harvest by Rankin Inlet hunters, expressed as numbers of animals, for the period nctober 1984 to September 1985.

Species Category ${ }^{1}$	1984			1985									
	net.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	lune	duly	Aug.	Sept.	Sum
Caribou													
Kaminuriak M	20	44	68	100	47	78	103	106	14	57	181	124	942
F	11	89	99	132	65	37	114	38	25		15	1.3	538
C							1				4	1	6
U		14		9					12	4	4		43
Subtotal	31	147	167	241	112	115	218	144	51	61	204	1.38	1629
North of													
Chesterfield $\begin{gathered}\text { M } \\ \text { Total }\end{gathered}$	31	147	167	241	$\begin{array}{r} 60 \\ 172 \end{array}$	115	$\begin{array}{r} 3 \\ 221 \end{array}$	144	51	4 65	204	138	67 1696
Muskox 3													
Polar Bear		1			2			6	3				12
Arctic Fox		31	33		5	1							70
Arctic Hare		1										8	9
Arctic Ground Squirrel										2			2
Ringed Seal	77	16	19	11	2	10	10	22	73	114	30	22	405
Bearded Seal	11								3	8	6	5	33
Harbour Seal	2								1				3
Harp Seal 1													
Seal sp. (unknown) 3 - 3													
Wairus ${ }^{\text {a }}$													
Beluga										4	37	6	47
Canada Geese								65	247	?	1		315
Snow Geese								184	335				519
Geese 3													
Eider	6		4		5								15
Ducks 6													
Ptarmigan	22	7			5		11	92	55			2	184
Canara foose Eggs									13				13
Foose Eggs													
Arctic Charr	70	763	205	124	44	96	114	139	1290	1448	2873		7166
$\begin{array}{lllllllllllll}\text { Lake Trout } & 103 & 1 & 15 & 14 & 173 & 127 & \end{array}$													
Arctic Grayling 49 49 49													
Arctic Cod										12			12
Sculpin sp. 13.13													

${ }^{1}$ See Table 1.

Table 13. The estimated harvest by Repulse Bay hunters, expressed as numbers of animals, for the period October 1984 to September 1985.

Species	Category ${ }^{1}$	1984			1985									
		0ct.	Nov.	Dec.	Jan.	Feh.	Mar.	Apr.	May	June	July	Aug.	Sept.	Sum ${ }^{2}$
Caribou														
Wager	M	69	49	29	18	46	48	48	75	44	12.5	121	141	813
	F	25	72	38	48	79	72	55	13	2	4	24	61	493
	c			1								2.1	30	$5 ?$
	U	4	1	3	1		4			15	7	15	4	54
	Suhtotal	98	122	71	67	125	124	103	88	61	136	181	335	141?
Southampton	M													
	Total	98	122	71	67	125	124	103	88	61	136	181	237	
Musknx						1								1
Polar Bear			4	1		,								8
Arctic Fox		1	337	77	30	35	24	4						508
Red Fox			21		1		,							25
Wolf		1	8		2	10	9	10	4	3				47
Wolverine				1										1
Arctic Hare				1			1	1					7	10
Ringed Seal		123	17		14		4	18	180	90	145	64	195	850
Bearded Seal		1										10	4	15
Harp Seal		1					10	1			15	3		30
Walrus											1		17	18
Beluga											1	3		4
Narwhal											14	7		21
Canada Geese									7	12.	1		3	23
Geese									4					4
Eider											4			4
Ptarmigan			4		$?$				20	5	1		25	58
Arctic Charr		631	426	350	260			30	195	501	1017	794		4704
Lake Trout			125						68	115	8			315

${ }^{1}$ See Table 1.
${ }^{2}$ There has been a problem in establishing the number of hunters in this community. The actual number of hunters may be less than that used by the harvest study. If so the estimated harvest is slightly high.

Tahle 14. The estimated harvest by whale Cove hunters, expressed as numbers of animals, for the perion October 1984 to September 1985.

Species	Category ${ }^{1}$	1984			1985									
		0ct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Sum
Caribou														
Kaminuriak	M	22	17	6	11	11	20	7	52	28	46	45	42	307
	F	6	33	58	97	44	91	46	20	3	5	13		416
	C		4	1	7	1				1	1	1	1	17
	U			1				9	1		2			13
	Total	28	54	66	115	56	111	62	73	32	54	59	43	753
Muskox						2								$?$
Polar Rear			7						1					8
Arctic Fox			120	4		1								125
Wolf		1				2	12.							15
Arctic Hare		1			1	1.	3	1			4		?	13
Ringed Seal		29	40	28	9	11	16	9	34	17	36	15	1	245
Bearded Seal		17				1	1				?		3	24
Beluga												17	2	19
Canada Geese									68	$1 ?$	19		5	104
Snow Geese					,				55				29	84
Geese									338	197	1		$6 ?$	598
Eider		8				3				1				12
Ptarmigan						10								10
Canada Goose Eggs											$?$			$?$
Goose Eggs									12.4	599				723
Arctic Charr		195	117	16	4	5			56	76	117	416	3	1005
Lake Trout			9					6	52	44	7	1		119
Arctic Grayling									5					5

${ }^{1}$ See Table 1.
${ }^{2}$ Complete information on hunter participation was not collected for October. The harvest figures given in this table for October are the actual reported harvests from Table 7.

Table 15. The reported and estimated harvest for Raker Lake hunters expressed as numbers of animals. The monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{1}$	REPORTED HARVEST ${ }^{2}$Oct. 1984 - Sept. 1985			ESTIMATED HARVEST ${ }^{2}$ Oct. 1984 - Sept. 1985		
		Total	Mean	S.7.	Total	Mean	S.7.
Caribou							
Kaminuriak	M	362	2	2	362	$?$	2
	F	240	2	1	240	$?$	1
	C	64	1	1	64	1	1
	11	4	2	1	4	$?$	1
		670	2	1	670	?	1
Reverly	M	1051	3	?	1051	3	?
	F	851	3	2	851	3	$?$
	c	263	2	1	263	2	1
	U	46	3	3	45	3	3
	Subtotal	2211	3	2	2211	3	?
Wager	M	1667	3	2	1667	3	$?$
	F	1100	2	$?$	1100	2	2
	C	151	2	1	151	2	1
	U	8	2	1	8	2	1
	Subtotal	2926	3	2	2926	3	?
	Total	5807	3	2	5807	3	?
Muskox ${ }^{3}$		5^{3}	1	0	5^{3}	1	\bigcirc
Polar Bear		1	1	0	1	1	0
Grizzly Rear		1	1	0	1	1	0
Arctic Fox		3287	11	7	3288	11	7
Red Fox		5	1	0	5	1	3
Wolf		62	2	2	62	$?$	$?$
Canara Geese		$62 ?$	6	4	623	6	4
Snow Geese		30	5	1	30	5	1
Ptarmigan		403	22	10	403	??	10
Swan		6	3	1	6	3	1
Canada Goose Eggs		413	30	15	415	30	15
Goose Eggs		2451	22	15	2468	$2 ?$	15
Arctic Charr		200	8	7	? 0.1	8	7
Lake Trout		2027	14	10	2033	14	17
Whitefish sp.		483	11	5	483	11	5
Arctic Grayling		89	4	2	89	4	$?$

${ }^{1}$ See Table 1.
${ }^{2}$ See also Tahles 1 and 8.
${ }^{3}$ The reported muskox harvest is incorrect hecause the full quota of 12 animals was taken.

Table 16. The reported and estimated harvest for Chesterfield Intet hunters expressed as numbers of animals. The monthly harvest per hunter and standard deviation ahout the mean are given.

Species	Category ${ }^{1}$	```REPORTED HARVEST }\mp@subsup{}{}{2 Oct. 1984 - Sept. 1985```			F.STIMATEN HARVEST ${ }^{2}$ Oct. 1984 - Sept. 1985		
		Total ${ }^{3}$	Mean	S.7.	Total ${ }^{3}$	Mean	5.7
Caribou							
Kaminuriak	M	54	3	2	55	3	2
	F	12	6	4	12	6	4
	U	6	6	0	6	6	0
	Subtotal	72	4	3	73	4	3
North of							
Chesterfield	M	74	2	1	80	2	1
	F	23	2	2	2.3	2	2
	II	11	4	1	12	4	1
	Subtotal	108	2	2	11.3	2	$?$
Other	M	2	2	0	2	$?$	0
	Total	182	3	2	188	3	$?$
Muskox		2	1	0	2	1	0
Polar Rear		5	1	0	5	1	0
Arctic Fox		61	8	5	61	8	5
Wolf		8	$?$	1	8	$?$	1
Ringed Seal		37	2	1	40	$?$	$?$
Bearded Seal		4	1	0	4	1	ก
Walrus		15	2	1	16	2	1
Reluga		28	3	2	32	4	2
Canada Geese		27	14	4	30	15	4
Snow Geese		8	8	0	8	9	ก
Arctic Charr		7	7	0	8	8	0
Lake Trout		160	13	13	166	14	13

${ }^{1}$ See Table 1.
${ }^{2}$ See also Tables 2 and 9.
${ }^{3}$ Even though a high participation ratio has been recorded for this community the estimate of harvest may not be as accurate as this would indicate because the reported harvest of some hunters may not have heen complete.

Table 17. The reported and estimated harvest by Coral Harbour hunters expressed as numbers of animals. The mean monthly harvest per hunter and standard deviation ahout the mean are given.

Species	Category ${ }^{1}$	$\begin{gathered} \text { REPORTEN HARVEST }{ }^{2} \\ \text { Oct. } 1984 \text { - Sept. } 1985 \end{gathered}$			ESTIMATED HARVEST ${ }^{2}$ nct. 1984 - Sept. 1985		
		Total	Mean	5.7 .	Total	Mean	S.n.
Caribou							
Kaminuriak	M	3	2	1	3	$?$	1
	F	6	?	1	6	?	1
	Subtotal	9	2	1	9	$?$	1
Wager	M	25	2	1	31	3	$?$
	F	98	3	2	113	4	2
	Unknown	57	4	1	66	5	1
	Subtotal	180	3	2	210	4	2
Coates	M	77	4	4	106	6	6
	F	21	3	2	28	4	3
	Unknown	10	3	1	15	5	$?$
	Subtotal	108	4	3	149	5	5
Southampton	M	37	1	1	44	.	1
	F	10	2	2	10	2	?
	Unknown	5	1	0	7	1	0
	Subtotal	5 ?	1	1	61	?	1
Other	M	1	1	0	1	1	\bigcirc
	Subtotal	1	1	0	1	1	ก
	Total	350	3	$?$	430	3	3
Polar Bear		49	1	\bigcirc	5.3	1	n
Arctic Fox		409	8	11	538	10	14
Wolf		7	1	0	8	?	0
Arctic Hare		13	1	0	14	$?$	1
Ringed Seal		436	2	$?$	587	3	3
Rearded Seal		42	1	1	52	$?$	1
Harbour Seal		5	1	0	6	?	1
Harp Seal		9	1	0	12	$?$	1
Walrus		24	1	1	29	2	1
Beluga		76	2	1	96	2	?
Canada Geese		38	2	2	55	4	4
Snow Geese		2654	26	38	4253	41	70
Geese		188	21	21	310	34	35
Eider		21	5	3	22	6	3
Ptarmigan		768	9	10	901	11	11
Goose Eggs		2396	96	195	3954	158	37.1
Arctic Charr		3964	40	53	5193	53	72
Lake Trout		4	2	1	7	3	?
Sculpin sp.		3	3	0	5	5	n

${ }^{1}$ See Table 1.
${ }^{2}$ See also Tahles 3 and 10.

Table 18. The reported and estimater harvest for Eskimo Point hunters expressed as numhers of animals. The monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{1}$	$\begin{gathered} \text { REPORTED HARVEST }{ }^{2} \\ \text { nct. } 1984-\text { Sept. } 1985 \end{gathered}$			ESTIMATED HARVEST ${ }^{2}$ Oct. 1984 - Sept. 1985		
		Total	Mean	S.n.	Total	Mean	S.7.
Caribou							
Kaminuriak	M	695	2	2	775	3	2
	F	697	2	$?$	785	3	?
	C	186	2	?	205	?	2
	11	$15 ?$	3	$?$	178	4	3
	Total	1730	2	2	1943	3	$?$
Muskox		1	1	0	1	1	0
Polar Bear		13	1	0	13	1	0
Arctic Fox		873	6	10	1018	8	13
Red Fox		11	2.	2	12	2	2
Wolf		35	3	3	41	4	3
Arctic Hare		1	1	0	1	1	0
Lemming		7	7	0	8	8	0
Ringed Seal		212	3	6	235	3	6
Bearded Seal		22	2	1	24	$?$	1
Harp Seal		2	1	0	2	1	0
Walrus		1	1	0	1	1	0
Reluga		85	2	2	93	3	$?$
Canada Geese		138	4	4	156	5	4
Snow fieese		623	9	10	705	10	11
Unknown Geese		26	7	7	30	7	8
Eider		8	2	1	9	?	1
Ptarmigan		147	8	11	166	9	12
foose Eggs		308	24	25	346	27	29
Arctic Charr		3024	21	26	3386	24	28
Lake Trout		745	9	15	$85 ?$	11	17
Whitefish sp.		?	2	0	2	?	0
Northern Pike		$?$	1	0	3	1	0
Arctic Grayling		363	33	71	396	36	78
Other Freshwater Fish		61	12	19	62	1 ?	19

${ }^{1}$ See Table 1.
${ }^{2}$ See also Tables 4 and 11.

Table 19. The reported and estimated harvest for Rankin Inlet hunters expressed as numbers of animals. The monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{1}$	REPORTED HARVEST ${ }^{2}$ nct. 1984 - Sept. 1985			ESTIMATED HARVEST ${ }^{2}$ nct. 1984 - Sept. 1985		
		Total	Mean	S.n.	Total	Mean	5.7.
Caribou							
Kaminuriak	M	703	3	2	943	4	2
	F	466	3	2	637	4	3
	c	5	1	0	7	1	0
	U	31	3	2	42	4	3
	Subtotal	1205	3	2	1629	4	3
North of Chesterfield							
	M	41	4	3	67	6	5
	Total	1246	3	2	1696	4	3
Muskox		2	1	0	3	1	0
Polar Bear		8	1	0	11	1	0
Arctic Fox		51	3	2	70	4	3
Wolf		12	1	0	17	2	1
Arctic Hare		8	3	2	9	3	3
Arctic Ground Squirrel		1	1	0	2	2	0
Ringed Seal		287	3	2	405	4	4
Bearded Seal		24	2	1	32	$?$	1
Harbour Seal		3	2	1	4	$\stackrel{ }{\text { ? }}$	1
Harp Seal		1	1	0	1	1	0
Seal sp. (unknown)		2	2	0	3	3	0
Walrus		3	1	n	5	?	\bigcirc
Beluga		35	2	2	45	3	$?$
Canada Geese		239	7	8	315	10	11.
Snow Geese		390	13	14	519	17	19
Geese		2	2	0	3	3	\bigcirc
Eider		11	4	1	15	5	1
Ducks		6	3	2	8	4	3
Ptarmigan		138	9	10	184	12.	14
Canada Fioose Eggs		10	10	0	13	13	7
foose Eggs		134	34	13	220	55	23
Arctic Charr		5174	51	83	7165	71	109
Lake Trout		332	8	9	450	11	12
Whitefish sp.		6	6	0	8	8	0
Arctic Grayling		36	18	3	49	25	4
Arctic Cod		6	5	0	12	12	0
Sculpin sp.		10	10	0	13	13	0

${ }^{1}$ See Table 1.
${ }^{2}$ See also Tahles 5 and 12.

Table 20. The reported and estimated harvest for Repulse Ray hunters expressed as numbers of animals. The monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{\text { }}$	$\begin{gathered} \text { REPORTED HARVEST }{ }^{2} \\ \text { Oct. } 1984-\text { Sept. } 1985 \end{gathered}$			ESTIMATED HARVEST ${ }^{2}$ Oct. 1984 - Sept. 1985		
		Total	Mean	S.0.	Total ${ }^{3}$	Mean	S.7.
Caribou							
Wager Bay	M	604	2	2	813	3	3
	F	373	2	1	492	3	2
	C	40	$?$	2	53	3	?
	11	39	1	1	54	3	2
	Subtotal	1056	2	2	1412	3	2
Southampton	F	1	1	0	1	1	0
	Total	1057	2	2	1413	3	?
Muskox		1	1	0	1	1	0
Polar Rear		6	1	0	9	1	0
Arctic Fox		380	5	6	508	7	8
Red Fox		19	3	4	2.5	4	6
Wolf		35	2	1	48	$?$	1
Wolverine		1	1	0	1	1	0
Arctic Hare		8	2	1	10	2	$?$
Ringed Seal		624	4	4	851	5	5
Rearded Seal		12	1	1	15	2	1
Harp Seal		23	2	2	31	3	3
Walrus		14	1	0	18	$?$	1
Beluga		3	1	0	4	1	0
Narwhal		15	1	0	20	2	1
Canada Geese		16	2	1	23	3	1
Geese		3	2	1	4	2	1
Eider		3	3	0	4	4	ก
Ptarmigan		43	3	3	58	5	4
Arctic Charr		3087	45	62	4204	62	83
Lake Trout		224	19	20	315	26	28
${ }^{\text {'See }}$ Table 1.							
${ }^{2}$ See also Tables 6 and 13.							
${ }^{3}$ There has heen a problem in establishing the number of hunters in this community. The actual number may he slightly less than that used by the harvest study. If so the estimater harvest is slightly high.							

Table 21. The reported and estimated harvest for whale Cove hunters expressed as numbers of animals. The monthly harvest per hunter and standard deviation about the mean are given.

Species	Categnry ${ }^{\text {l }}$	REPORTED HARVEST ${ }^{2}$ t. 1984 - Sept. 1985			$\begin{aligned} & \text { ESTIMATED HARVEST }{ }^{2} \\ & \text { Oct. } 1984-\text { Sept. } 1985 \end{aligned}$		
		Total	Mean	S.0.	Total	Mean	S.7.
Caribou							
Kaminuriak	M	298	2	1	307	2	2
	F	402	4	3	417	4	3
	C	16	1	1	17	1	1
.	II	13	3	3	13	3	3
	Tot.al	729	3	2	754	3	$?$
Muskox		$?$	1	0	$?$	1	0
Polar Rear		6	1	0	8	1	0
Arctic Fox		96	16	14	125	21	19
Wolf		15	3	4	15	3	4
Arctic Hare		13	2	1	13	$?$	1
Ringed Seal		232	3	2	246	3	3
Rearded Seal		24	4	4	24	4	4
Beluga		19	2	1	19	$?$	1
Canada Geese		99	14	13	103	15	14
Snow Geese		81	9	15	84	9	16
Geese		569	13	11	598	14	12
Eider		12	4	3	12	4	3
Ptarmigan		10	5	1	10	5	1
Canada Goose Eggs		2	2	0	2	$?$	0
foose Eggs		687	31	20	723	33	21
Arctic Charr		969	18	36	1005	19	37
Lake Trout		112	7	6	J. 19	7	7
Arctic Grayling		5	5	0	5	5	0
${ }^{\text {l }}$ See Table 1.							
${ }^{2}$ See also Tahles 7							

Tahle 22. Monthly theoretical kill factors for seven Keewatin communities derived using two methods of calculation.

	1984			1985							
Community	Oct.	Nov.	Dec.	Jan.	Feh.	Mar.	Apr.	May June	July	Aug.	Sept.
Baker Lake	$\begin{gathered} 1.00< \\ (1.00)^{3}(\end{gathered}$	$\begin{gathered} 1.00 \\ { }^{3}(1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.0 n) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.0 n) \end{gathered}$	$\begin{gathered} 1.01 \\ (1.01) \end{gathered}$	$\begin{array}{cc} 1.00 & 1.01 \\ (1.00)(1.01) \end{array}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$
Chesterfield Inlet	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.0 n \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{array}{cc} 1.13 & 1.11 \\ (1.13)(1.11) \end{array}$	$\begin{gathered} 1.07 \\ (1.07) \end{gathered}$	$\begin{gathered} 1.21 \\ (1.21) \end{gathered}$	$\begin{gathered} 1.08 \\ (1.08) \end{gathered}$				
Coral Harbour	$\begin{gathered} 1.01 \\ (1.01) \end{gathered}$	$\begin{gathered} 1.54 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.40 \\ (1.40) \end{gathered}$	$\begin{gathered} 1.22 \\ (1.22) \end{gathered}$	$\begin{gathered} 1.59 \\ (1.50) \end{gathered}$	$\begin{gathered} 1.04 \\ (1.04) \end{gathered}$	$\begin{gathered} 1.02 \\ (1.02) \end{gathered}$	$\begin{array}{cc} 1.28 & 1.65 \\ (1.28)(1.66) \end{array}$	$\begin{gathered} 1.52 \\ (1.58) \end{gathered}$	$\begin{gathered} 1.29 \\ (1.31) \end{gathered}$	$\begin{gathered} 1.09 \\ (1.09) \end{gathered}$
Eskimo Point	$\begin{gathered} 1.09 \\ (1.09) \end{gathered}$	$\begin{gathered} 1.01 \\ (1.01) \end{gathered}$	$\begin{gathered} 1.22 \\ (1.23) \end{gathered}$	$\begin{gathered} 1.04 \\ (1.04) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.14) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.31) \end{gathered}$	$\begin{gathered} 1.17 \\ (1.17) \end{gathered}$	$\begin{array}{cc} 1.14 & 1.11 \\ (1.14)(1.11) \end{array}$	$\begin{gathered} 1.40 \\ (1.41) \end{gathered}$	$\begin{gathered} 1.07 \\ (1.07) \end{gathered}$	$\begin{gathered} 1.01 \\ (1.01) \end{gathered}$
Rankin Inlet	$\begin{gathered} 1.18 \\ (1.18) \end{gathered}$	$\begin{gathered} 1.36 \\ (1.36) \end{gathered}$	$\begin{gathered} 1.36 \\ (1.36) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.33) \end{gathered}$	$\begin{gathered} 1.63 \\ (1.63) \end{gathered}$	$\begin{gathered} 1.37 \\ (1.37) \end{gathered}$	$\begin{gathered} 1.35 \\ (1.35) \end{gathered}$	$\begin{array}{cc} 1.39 \\ (1.39)(1.30) \end{array}$	$\begin{gathered} 1.96 \\ (1.96) \end{gathered}$	$\begin{gathered} 1.25 \\ (1.25) \end{gathered}$	$\begin{gathered} 1.16 \\ (1.16) \end{gathered}$
Repulse Bay	$\begin{gathered} 1.38 \\ (1.40) \end{gathered}$	$\begin{gathered} 1.34 \\ (1.36) \end{gathered}$	$\begin{gathered} 1.40 \\ (1.40) \end{gathered}$	$\begin{gathered} 1.20 \\ (1.20) \end{gathered}$	$\begin{gathered} 1.38 \\ (1.40) \end{gathered}$	$\begin{gathered} 1.27 \\ (1.27) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.34) \end{gathered}$	$\begin{array}{cc} 1.39 \\ (1.43)(1.51 \\ 1.53) \end{array}$	$\begin{gathered} 1.35 \\ (1.35) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.33) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.31) \end{gathered}$
Whate Cove		$\begin{gathered} 1.32 \\ (1.34) \end{gathered}$	$\begin{gathered} 1.04 \\ (1.04) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.03 \\ (1.03) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{array}{cc} 1.06 & 1.05 \\ (1.06)(1.05) \end{array}$	$\begin{aligned} & 1.00 \\ & (1.00) \end{aligned}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.00) \end{gathered}$

${ }^{1}$ See Appendix 2.
${ }^{2}$ Theoretical kill factors derived using the method of Gamhle (1984).
${ }^{3}$ Theoretical kill factors derived using the method of Topolniski and Thompson.

Table 23. The harvest by species over the range of age for Baker Lake hunters.

Species	Category ${ }^{1}$	AgE CLASS HARVEST 1984-1985				
		1	2	3	4	5
Caribou						
Kaminuriak	M	4	108	150	67	33
	F	9	79	87	43	22
	C	4	38	12	8	2
	U		1	3		
	Subtotal	17	226	252	118	57
Beverly	M	21	339	416	205	70
	F	20	259	340	186	46
	C	9	100	101	37	16
	U		11	21	14	
	Subtotal	50	709	878	442	132
Wager	M	24	436	662	405	140
	F	35	315	397	277	76
	C	4	66	37	35	9
	U		4	2	2	
	Subtotal	63	821	1098	719	225
	Total	130	1756	2228	1279	414
Muskox			1	2	2	
Polar Bear			1			
Grizzly Bear					1	
Arctic Fox		41	486	1141	1156	463
Red Fox				2	3	
Wolf		1	5	46	10	
Canada Geese		21	290	183	96	32
Snow Geese		4	11		15	
Ptarmigan			403			
Swan				2	4	
Canada Goose Eggs		32	167	106	91	17
Goose Eggs		92	883	994	354	128
Arctic Charr		8	48	119	11	14
Lake Trout		7	338	893	562	227
Whitefish sp.			54	206	182	41
Arctic Grayling			22	29	28	10

[^5]Table 24. The harvest by species over the range of age for Chesterfield Inlet hunters.

Species	Category ${ }^{1}$	$\begin{aligned} & \text { AGE CLASS HARVEST } \\ & 1984-1985 \end{aligned}$				
		1	2	3	4	52
Caribou						
Kaminuriak	M F U Subtotal		1 1	29 29	$\begin{array}{r} 24 \\ 12 \\ 6 \\ 42 \end{array}$	
North of Chesterfield	M F C Subtotal		17 8 25	31 4 3 38	26 19 45	
Other	Total		$\begin{array}{r} 2 \\ 28 \end{array}$	67	87	
Muskox Polar Bear Arctic Fox Wolf Ringed Seal			1 4 4	2 2 7 3 9	2 54 1 21	3
Bearded Seal Wal rus				1	3 9	1
Beluga Canada Geese			6	9	12 27	1
Snow Geese Arctic Charr				8 7 21		
Lake Trout			31	21	108	

[^6]Table 25. The harvest by species over the range of age for Coral Harbour hunters.

Species	Category ${ }^{1}$	AgE CLASS HARVEST1984-1985				
		1	2	3	4	5^{2}
Caribou						
Kaminuriak	$\begin{gathered} M \\ \text { F } \\ \text { Subtotal } \end{gathered}$		3 3 6	3 3		
Wager	$\begin{gathered} \mathrm{M} \\ \mathrm{~F} \\ \text { Unknown } \\ \text { Subtotal } \end{gathered}$	1 4 5	4 29 29 55	6 45 27 78	10 17 5 32	4 3 3 10
Coats	$\begin{gathered} M \\ F \\ \text { Unknown } \\ \text { Subtotal } \end{gathered}$		20 5 10 35	48 12 60	9 4 13	
Southampton	$\begin{gathered} \text { M } \\ \text { F } \\ \text { Unknown } \\ \text { Subtotal } \end{gathered}$		9 2 1 12	19 5 2 26	6 1 2 9	3 2 5
Other	M Subtotal Total	5	1 1 109	167	54	15
Polar Rear Arctic Fox Wolf		24	23 41 4	16 128 3	r ${ }^{8}$	\% ${ }^{?}$
Arctic Hare Ringed Seal		2	7 118	1 122	150	45
Bearded Seal			7	16	15	4
Harbour Seal Harp Seal			?	1	$\stackrel{?}{3}$	
Walrus			3	9	12	
Beluga			15	37	18	6
Canada Geese			7	21	10	
Snow Geese		7	1486	549	566	45
Geese			118 4	70	10	
Ptarmigan		26	180	284	229	49
Goose Eggs			589	607	1050	150
Arctic Char		1	92.2	1078	1652	311
Lake Trout			3	1		

${ }^{1}$ See Table 1.
${ }^{2}$ For age classes see Table 23.

Table 26. The harvest by species over the range of age for Eskimo Point hunters.

Species	Category ${ }^{1}$	AGE CLASS HARVEST1984-1985				
		1	2	3	4	5^{2}
Caribou						
Kaminuriak	M	1	174	311	202	7
	F		136	351	195	15
	C		47	45	81	13
	U		49	81	21	1
	Total	1	406	788	499	36
Muskox						
Polar Bear			7	2	4	
Arctic Fox			220	210	402	41
Red Fox			2	2	7	
Wolf			13	22		
Arctic Hare				1		
Lemming			7			
Ringed Seal			70	116	26	
Bearded Seal			11	11		
Harp Seal				2		
Walrus					1	
Beluga			18	56	11	
Canada Geese			95	40	2	1
Snow Geese			238	276	106	3
Geese			4	19	3	
Eider			1	3	4	
Ptarmigan			37	83	27	
Goose Eggs			252	56		
Arctic Charr			865	1121	1029	9
Lake Trout			191	447	92	15
Whitefish sp.				2		
Northern Pike				2		
Arctic Grayling			43	274	5	41
Other Freshwater Fish			1	58	2	

${ }^{1}$ See Table 1.
${ }^{2}$ For age classes see Table 23.

Table 27. The harvest by species over the range of age for Rankin Inlet hunters.

		AGE CLASS HARVEST1984-1985				
Species	Category ${ }^{1}$	1	2	3	4	52

Caribou

Kaminuriak	M		151	280	204	68
	F		91	216	118	41
	C		1	2	2	
	U		5	5	20	1
	Subtotal		248	503	344	110
North of						
Chesterfield	M		4	25	12	
	Total		252	528	356	110
Muskox			1		1	
Polar Bear			3	1	3	1
Arctic Fox			16	10	24	1
Wolf			3	3	2	4
Arctic Hare			1	6	1	
Arctic Ground Squirrel					1	
Ringed Seal			44	141	85	17
Bearded Seal			8	10	5	1
Harbour Seal				1	2	
Harp Seal					1	
			2			
Walrus				2	1	
Beluga			4	10	20	2
Canada Geese		5	68	124	25	17
Snow Geese		3	95	149	114	29
Geese				2		
Eider				6	5	
Unknown Ducks			1		5	
Ptarmigan			40	46	49	3
Canada Goose Eggs				10		
Goose Eggs				70	64	
Arctic Charr		72	557	1289	2833	423
Lake Trout			113	99	88	32
Whitefish sp.			6			
Arctic Grayling			21	15		
Arctic Cod				6		
Sculpin sp.					10	

${ }^{1}$ See Table 1.
${ }^{2}$ For age classes see Table 23.

Table 28. The harvest by species over the range of age for Repulse Bay hunters.

Species	Category ${ }^{1}$	AGE CLASS HARVEST1984-1985				
		1	2	3	4	5^{2}
Caribou						
Wager	M	5	177	221	111	90
	F	3	94	135	77	64
	C		9	21	6	4
	U		15	2	20	2
	Subtotal	8	295	379	214	160
Southampton	$\stackrel{M}{\text { Total }}$	8	1 296	379	214	160
					1	
Muskox			2	2	2	
Polar Bear		6	94	119	106	55
Arctic Fox			2	15	1	1
Red Fox			7	14	11	4
Wolf				1		
Wolverine			2	4	1	1
Arctic Hare		10	160	235	159	60
Ringed Seal			6	4	2	
Bearded Seal			1	8	10	4
Harp Seal			5	6	1	2
Walrus				2	1	
Beluga			5	7	3	
Narwhal			6	4	6	
Canada Geese			1			2
Geese				3		
Eider			7	30	5	1
Ptarmigan			593	1878	518	98
Arctic Charr			22	171	30	1
Lake Trout						

${ }^{1}$ See Table 1.
${ }^{2}$ For age classes see Table 23.

Table 29. The harvest by species over the range of age for Whale Cove hunters.

${ }^{1}$ See Table 1.
${ }^{2}$ For age classes see Table 23.

Table 30. Age distribution of hunters for the seven Keewatin region communities for the period of October 1984 to September 1985.

Community	Age						Total Hunters Known
	$0-15$	$16-30$	$31-45$	$46-60$	$61-75$	$76+1$	1.1
Baker Lake	2.2	41.2	29.6	18.8	7.2	1.1	362
Chesterfield Inlet		50.6	24.1	18.4	5.7	1.1	87
Coral Harbour	4.1	45.3	25.9	14.1	8.2	2.4	170
Eskimo Point	.6	42.4	34.2	17.4	5.1	.3	316
Rankin Inlet	.7	39.7	35.2	17.6	6.2	.7	290
Repulse Bay	1.6	45.2	31.7	13.5	7.1	.8	126
Whale Cove		44.7	28.7	13.8	11.7	1.1	94
Total Hunters for the	1.5	42.8	31.1	16.9	6.9	1.0	1445
Keewatin District							

${ }^{1}$ This category includes hunters of unknown ages. There are only eight hunters of known age in this group.

Table 31. Data on the distribution of hunters that were successful in obtaining a harvest expressed as a percent over the range of age of hunters for the period October 1984 to September 1985.

Community	Range of Ages	DISTRIBUTION OF SUCCESSFIUL HUNTERS BY MONTH (\%)												Total hy Harvest Year
		Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	
Baker Lake	0-15	1.5	3.2	3.1	3.1	4.8	3.9	4.3	3.7	4.2	3.1	3.2	3.2	2.7
	16-30	43.1	41.0	42.3	44.4	40.7	41.3	40.7	40.7	37.3	41.0	37.3	43.1	44.8
	31-45	30.5	30.8	32.1	30.1	28.0	32.3	31.4	30.7	31.3	32.3	32.3	28.9	26.4
	46-60	19.8	19.2	16.3	16.3	19.0	18.1	17.9	16.9	17.5	16.4	19.0	17.9	19.1
	61-75	5.1	5.8	6.1	6.1	7.4	4.5	5.7	7.9	9.6	7.2	8.2	6.9	7.0
Number of successful hunters		197	156	196	196	189	155	140	189	166	195	158	218	299
Chesterfield Inlet														
	16-30	21.4	0.0	14.3	0.0	11.1	$18 . ?$	20.0	33.3	28.6	50.0	16.7	25.0	35.7
	31-45	35.7	75.0	28.6	40.0	55.6	45.5	20.0	15.7	14.3	16.7	33.3	37.5	32.1
	46-60	42.9	25.0	57.1	40.0	33.3	36.4	60.0	50.0	57.1	33.3	33.3	25.0	28.5
	61-75	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	16.7	12.5	3.6
Number of successful hunters		14	4	7	5	9	11	5	6	7	6	6	8	28
Coral Harbour	0-15	0.0	0.0	0.0	0.0	0.0	2.9	3.8	8.1	0.0	0.0	0.0	0.0	4.5
	16-30	36.7	34.5	39.1	31.4	26.5	29.4	45.3	37.1	54.1	39.5	37.3	30.0	$49 . ?$
	31-45	38.8	31.0	21.7	25.7	29.4	35.3	30.2	30.6	27.9	42.1	41.?	50.7	24.6
	46-60	18.4	20.7	26.1	31.4	29.4	23.5	17.0	17.7	14.8	13.2	17.6	20.0	13.1
	61-75	6.1	13.8	13.0	11.4	14.7	8.8	3.8	6.5	3.3	5.3	3.9		8.5
Number of successful hunters		49	29	23	35	34	34	53	62	61	38	51	30	130
Eskimo Point	$0-15$ $16-30$	0.0 30.5	0.0	0.10	0.0	0.0	0.0	0.0 32.3	0.0	0.1	0.0	1.4	0.0	0.4
	16-30	30.5	31.7	27.3	28.9	35.7	27.3	32.3	44.6	42.0	39.7	27.8	27.6	41.4
	31-45	39.0	35.4	40.9	40.0	37.5	39.4	40.0	38.0	38.6	31.0	48.6	44.8	$35 . ?$
	46-60	28.8	31.7	31.8	28.9	25.0	30.3	24.6	17.4	18.2	25.9	20.8	27.6	20.3
	61-75	1.7	1.2	0.0	2.2	1.8	3.0	3.1	0.0	1.1	3.4	1.4	0.0	2.6
Number of successful hunters		59	82	44	45	56	33	65	$9 ?$	88	58	72	58	227
Rankin Inlet	0-15	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	2.2	0.0	0.0	0.0	0.6
	16-30	9.1	30.8	32.4	25.0	19.2	15.6	17.1	30.2	28.9	15.0	25.5	40.5	35.8
	31-45	54.5	35.9	32.4	36.1	38.5	31.3	40.0	$30 . ?$	37.8	35.0	29.1	32.4	31.4
	46-60	31.8	20.5	24.3	25.0	34.6	43.8	28.6	25.4	22.2	40.0	34.5	21.6	19.5
	61-75	4.5	12.8	10.8	13.9	7.7	6.3	14.3	14.3	8.9	8.7	10.9	5.4	1 1. 6
Number of successful hunters		22	39	37	36	26	32	35	63	45	25	55	37	159
Repulse Bay	0-15	0.0	2.6	7.0	ก.0	0.0	0.1	3.4	2.3	0.0	ก.ก	2.4	2.0	3.5
	16-30	51.7	35.9	34.8	35.3	50.0	48.4	24.1	38.6	20.8	43.1	31.0	42.0	45.9
	31-45	27.6	38.5	34.8	23.5	29.2	22.6	37.9	29.5	$29 . ?$	27.5	35.7	28.0	28.7
	46-60	13.8	15.4	8.7	23.5	12.5	12.9	27.6	18.?	37.5	19.6	19.0	18.0	15.3
	61-75	6.9	7.7	21.7	17.6	8.3	16.1	6.9	11.4	12.5	9.8	11.9	10.0	7.1
Number of successful hunters		29	39	23	17	24	31	29	44	24	51	42	50	85
Whale Cove		0.0	0.0	0.0	0.0	3.8	4.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8 50.9
	16-30	26.7	27.8	38.9	35.0	34.6	36.0	31.6	54.5	50.0	53.5	51.2	54.5	50.9
	31-45	40.0	38.9	22.2	25.0	30.8	24.0	21.1	15.2	18.8	18.6	23.3	$18 . ?$	22. 8
	46-60	26.7	16.7	27.8	30.0	23.1	24.0	31.6	21.2	21.9	16.3	16.3	15.2	14.0
	61-75	6.7	16.7	11.1	10.0	7.7	12.0	15.8	9.1	9.4	11.6	9.3	12.1	10.5
Number of successful hunters		15	18	18	20	26	25	19	33	32	43	43	33	57
Regional Totals	0-15	0.8	1.4	1.7	1.5	2.7	2.3	2.3	2.3	1.8	1.3	1.4	1.6	1.7
	16-30	35.9	37.7	33.4	38.0	35.9	33.4	33.2	37.5	39.6	37.2	31.9	34.7	35.6
	31-45	36.2	33.2	32.3	31.3	32.5	33.4	34.9	34.6	32.7	33.0	36.5	34.0	33.9
	46-60	23.4	20.4	25.9	20.5	21.0	23.2	23.0	19.0	19.0	18.5	21.?	21.7	21.3
	61-75	3.7	7.3	6.7	8.7	8.0	7.7	6.6	5.5	6.9	10.0	9.0	8.0	7.5
Total number of		385	367	348	354	364	321	346	489	423	416	477	434	985

Table 32. Fdible weight values in kilograms for harvested species as calculated from various sources.

Species	Fstimated Individual Weight (kg)	Reference ${ }^{\text {l }}$
Caribou	48.0	Rerger 1977
Moose	199.0	Rerger 1977
Muskox	110.7	Riewe 1977
Polar bear	158.8	Native Harvesting Research Committee 1975, 1976a or b
Black bear	45.4	Dome et al. 198?
Grizzly bear	45.4	"
Arctic hare	2.3	Native Harvesting Research Committee 1975, 1976a or b
Ringed seal	14.3	
Bearded seal	98.4	1
Harbour seal	27.7	1
Harp seal	43.1	1
Walrus	185.1	" "
Beluga ${ }^{2}$	(M) 555.0 (F) 407.9	Sergeant and Rrodie 1969
Narwhal	(M) $595.2(F) 397.0$	Hay (personal communication, DFO, St. John's, NF); Sergeant and Rrodie 1969
Canada geese (Hutchinsii)	2.4	Rellrose 1976
Snow geese (Lesser)	1.5	"
Ross's geese	1.0	"
Eider (Hudson Ray)	1.5	"
O1d squaw	0.5	"
Mallard	0.7	"
Ptarmigan	0.4	Thomas 1987
Sandhill crane	4.1	Stevens 1965
Snowy owl	1.8	Farhart and , lohnson 1970
Swan	6.8	Rellrose 1.976
Arctic charr	2.5	Carder 1983
Lake trout	2.4	Rond 1975; Keleher 1964
Whitefish sp.	2.8	
Northern pike	2.1	Macoonald and Fudge 1979; Keleher 1964
Arctic grayling	0.9	Falk and Gillman 1975; Keleher 1964

[^7]${ }^{2 " M "}$ means male, "F" means female.

Table 33. Reported and estimated edible weight values (kg) for harvested species for the perior October, 1984 to September, 1985. For Whale Cove the best estimate was the reported harvest for the month of 0ctober as participation informaltion was lacking.

	$1984-85$ Reported Harvest (kg)	Estimated Harvest (kg)
Community and Species	Total	Total

Baker Lake

Caribou	278736	278915
Muskox	550	550
Polar Bear	159	159
Grizzly Bear	45	45
Canada Geese	1493	1496
Snow Geese	48	49
Ptarmigan	161	161
Swan	41	41
Arctic Charr	500	501
Lake Trout	4865	4879
Whitefish sp.	1352	1353
Arctic Grayling	80	91
Total	288030	288230

Chesterfield Inlet

Carihou	8736	8999
Muskox	220	$2 ? 0$
Polar Bear	794	835
Ringed Seal	529	570
Bearded Seal	394	417
Walrus	2777	2919
Beluga	13482	15374
Canada Geese	65	72
Snow Geese	13	14
Arctic Charr	18	19
Lake Trout	384	398
Total	27412	29837

Coral Harbour

Carihou	16800	20603
Polar Rear	7781	8547
Arctic Hare	30	34
Ringer Seal	6235	8394
Bearded Seal	4133	5094
Harbour Seal	139	168
Harp Seal	388	466
Walrus	4442	5379
Beluga	36594	46080
Canada Geese	91	130
Snow Geese	4246	6805
Eider	32	33
Ptarmigan	307	307
Arctic Charr	9903	12969
Lake Trout	10	15
Total	91131	115078

Eskimo Point

Caribou	83040	93503
Muskox	110	125
Polar Bear	2064	2085
Arctic Hare	2	3
Ringed Seal	3032	3363

Table 33 Cont'd.

	$\begin{gathered} 1984-85 \\ \text { Reported Harvest } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} 1984-85 \\ \text { Estimated Harvest } \\ (\mathrm{kg}) \end{gathered}$
Community and Species	Total	Total
Rearded Seal	2165	2373
Harp Seal	86	96
Nalrus	185	211
Reluga	40928	44905
Canada Geese	331	375
Snow freese	997	1128
Eider	12	13
Ptarmigan	59	67
Arctic Charr	7560	8467
Lake Trout	1788	2043
Whitefish sp.	6	7
Northern Pike	4	5
Arctic Grayling	327	355
Total	142695	159125
Rankin Inlet		
Caribou	59808	81178
Muskox	220	293
Polar Bear	1270	1771
Arctic Hare	18	22
Ringed Seal	4104	5779
Rearded Seal	2362	3144
Harbour Seal	83	101
Harp Seal	43	54
Walrus	555	922
Reluga	17334	221.35
Canada Geese	574	757
Snow feese	624	830
Eider	17	22
Ptarmigan	55	74
Arctic Charr	12935	17911
Lake Trout	797	1079
Whitefish sp.	17	23
Arctic Grayling	32	44
Total	100848	1361.39
Repulse Ray		
Carihou	50736	67821
Muskox	110	152
Polar Bear	953	1299
Arctic Hare	18	24
Ringed Seal	8923	12158
Bearded Seal	1181	1570
Harp Seal	991	1309
Walrus	2591	3402
Beluga	1445	1931
Narwhal	7442	9996
Canada Geese	38	55
Eider	5	6
Ptarmigan	17	23
Arctic Charr	7718	10510
Lake Trout	538	757
Total	82706	111013

Table 33 Cont'd.

	$1984-85$ Reported Harvest (kg)	$1984-85$ Estimated Harvest (kg)
Community and Species	Total	Total
Whale Cove		
Caribou		
Muskox	34992	36172
Polar Bear	220	220
Arctic Hare	953	1216
Ringed Seal	30	30
Rearded Seal	3318	3516
Reluga	2352	2365
Canada Geese	9149	9149
Snow Geese	238	248
Eider	130	135
Ptarmigan	18	18
Arctic Charr	4	4
Lake Trout	2423	2512
Arctic Grayling	269	286
Total	5	5

Tahle 34. Reported and estimated edihle weight values for four major groups of animals harvested by Keewatin communities, nctober, l984 to September, 1985.

Period	Raker Lake (reported edihle wt)							Raker Lake (estimater edible wt)					
	Total Edible Weight (kg)	Weight. (kg) per Category (bracketed figures are \% of total)						Total Edihle Weight. (kg)	Weight (kg) per Category (bracketed figures are \% of total)				
		Terrestrial	Marine		Ow1		sh		Terrestrial	Marine	Fow 1		sh
1984													
nct	$58551{ }^{1}$	57600 (98.4)		161	(.3)	790	(1.3)	$58551{ }^{1}$	57600 (98.4)		161 (.3)	79	(1.3)
Nov	14045	13488 (96.0)					(4.0)	14045	13488 (96.7)			577	(4.0)
Dec	18648	$18000(96.5)$					(3.5)	18648	18000 (96.5)			648	(3.5)
1985													
Jan	22876	22080 (96.5)					(3.5)	22876	22080 (96.5)				(3.5)
Feb	19240	19056 (99.0)					(1.0)	$19 ? 40$	19056 (99.0)			184	(1.0)
Mar	14773	14773 (100.0)						14773	14773 (100.0)				
Apr	11472	11472 (100.0)						11587	11587 (100.0)				
May	10543	8496 (80.6)		1163	(11.0)	884	(8.4)	10543	8496 (80.6)		1163 (11.0)	884	(8.4)
June	8515	6432 (75.5)			(4.9)	1665	(19.6)	8601	6496 (75.5)		423 (4.9)	1682	(19.6)
Juty	16142	15165 (93.9)					(6.1)	16142	15165 (93.9)				(6.1)
Aug	27092	26880 (99.2)					(.8)	27092	26880 (99.?)				(.8)
Sept	66133	66048 (99.9)					(.1)	66133	66048 (99.9)			85	(.1)
Total	288030	279490 (97.0)		1742	(.6)	6798	(2.4)	2882.31	279669 (97.0)		1747 (.6)	6815	(2.4)

${ }^{1}$ In this table there are two situations where reported and estimated values are equal:
a) The theoretical kill factor (Table 22) is the value hy which the reported kill per species is multiplied to arrive at the estimated harvest. In cases where this value is one then 100% of the hunters have heen interviewer and the reported and pstimated harvests are equal.
b) For the community of whale Cove for the month of nctoher 1984 no data was collected on hunter participation. Consequently no meaningful theoretical kill factor could he calculater. In this case the hest estimate of harvest was taken to he the reporter harvest.

Tahle 34 Cont'r.

Period	Chesterfield Inlet (reporter edihle wt.)					Chesterfield Inlet (estimater eribhle wt)				
	Total Edible Weight (kg)	Weight (kg) per Category (hracketed figures are $\%$ of t.ntal)				Tot.al F.tible Weight. (kg)	Weight. (kg) per Categnry (bracketer figures are \% of total)			
		Terrestrial	Marine	Fowl	Fish		Terrestrial	Marine	Fowl	Fish
1984										
Oct	1182^{1}	815 (69.0)	100 (8.5)		266 (22.5)	1182^{1}	816 (69.0)	100 (8.5)		266 (22.5)
Nov	816	816 (100.0)				816	816 (100.0)			
Dec	1248	1248 (100.7)				1248	1248 (10ก.0)			
1985										
Jan	627	144 (23.0)	483 (77.0)			627	144 (23.0)	483 (77.0)		
Feb	1887	1147 (60.8)	740 (39.2)			1887	1147 (60.8)	740 (39.2)		
Mar	2660	2190 (82.3)	470 (17.7)			2650	2190 (82.3)	470 (17.7)		
Apr	631	528 (83.7)	$98(15.6)$		5 (.8)	631	528 (83.7)	98 (15.6)		
May	1417	1182 (83.4)	170 (12.0)		65 (4.6)	1600	1335 (83.4)	192. (12.n)		73 (4.6)
June	1736	96 (5.5)	1509 (87.0)	65 (3.7)	66 (3.8)	1926	107 (5.5)	1674 (87.0)	72 (3.7)	73 (3.8)
Juty	557	528 (94.9)	29 (5.1)			596	565 (94.9)	31 (5.1)		
Aug	6475	144 (2.2)	63.31 (97.8)			7835	174 (?.2)	7661 (97.8)		
Sept	8176	91? (11.2)	72.51 (88.7)	13 (.2)		¢R33	985 (11.?)	7831 (89.7)	14 (.2)	
Total	27412	9751 (35.6)	17181 (62.7)	78 (.3)	402. (1.5)	298.38	10055	19780	86 (.3)	417 (1.4)

Table 34 Cont'd.

Period	Coral Harhour (reported edihle wt.)					Coral Harhour (estimater edihle wt.)				
	Total Edible Weight (kg)	Weight (kg) per Category (hracketed figures are $\%$ of total)				Total Fdible Weight (kg)	Weight (kg) per Category (hracketed figures are $\%$ of total)			
		Terrestrial	Marine	Fowl	Fish		Terrestrial	Marine	Fow1	Fish
1984										
Oct	13620	5562 (40.8)	5292 (38.9)	18 (.1)	2748 (20.2)	13755	5617 (90.8)	5345 (38.9)	18 (.1)	2775 (20.2)
Nov	1480	1049 (70.9)	186 (12.6)	17 (1.2)	228 (15.4)	2278	1615 (70.9)	286 (12.6)	27 (1.2)	350 (15.4)
Dec	1312	$5(.4)$	411 (31.4)	31 (2.3)	865 (65.9)	18.36	$6(.4)$	576 (31.4)	43 (2.3)	1211 (65.9)
1985										
Jan	1943	211 (10.9)	1721 (88.6)	11 (.6)		2371	258 (10.9)	2100 (88.5)	13 (.6)	
Feb	1642	192 (11.7)	1125 (68.5)	7 (.2)	318 (19.3)	2609	305 (11.7)	1788 (68.5)	11 (.4)	505 (19.3)
Mar	2633	527 (20.0)	12.44 (47.2)	67 (2.6)	795 (30.2)	2739	548 (20.0)	1294 (47.2)	70 (2.6)	827 (30.?)
Apr	6625	5643 (8.5.2)	882 (13.3)	$100(1.5)$		6757	5756 (85.?)	899 (13.3)	102 (1.5)	
May	6714	5855 (87.2)	329 (4.9)	267 (4.0)	263 (3.9)	8593	7494 (87.2)	42.1 (4.9)	342 (4.0)	336 (3.9)
June	6403		1016 (15.9)	377.2 (58.1)	1665 (25.0)	10564		1676 (15.9)	6141 (5R.1)	2747 (26.0)
July	10054	1824 (18.1)	6779 (67.4)	26 (.3)	1425 (14.?)	1528 ?	2773 (18.1)	10304 (67.4)	39 (.3)	2166 (14.2)
Aug	30501	3648 (12.0)	24897 (81.6)	373 (1.2)	1583 (5.2)	39.345	4706 (17.0)	32.117 (81.6)	481 (1.2.)	2041 (5.2)
Sept	8210	96 (1.2)	8050 (98.1)	39 (.5)	25 (.3)	8950	105 (1.2)	8775 (98.1)	43 (.5)	27 (.3)
Total	91137	24612	51932	4678 (5.1)	9915	115079	29183 (?5.4)	65591 (57.0)	7330 (5.4)	12985 (11.3)

Table 34 Cont'd.

Table 34 Cont'r.

Period	Rank in Inlet (reported edible wt)					Rankin Inlet (estimated edible wt)				
	Total Edible Weight (kg)	Weight (kg) per Category (bracketed figures are $\%$ of total)				Total F.dible Weight (kg)	Weight (kg) per Category) (bracketed figures are \% of total)			
		Terrestrial	Marine	Fow1	Fish		Terrestrial	Marine	Fowl	Fish
1984										
nct	$328 ?$	1248 (38.0)	1871 (57.0)	15 (.5)	148 (4.5)	3872	1473 (38.0)	2.207 (57.0)	18 (.5)	174 (4.5)
Nov	7105	5297 (74.6)	172 (2.4)	? (.0)	1634 (2.3.0)	9662	7204 (74.6)	233 (?.4)	3 (.n)	2222 (23.0)
Dec	6487	5904 (91.0)	200 (3.1)	5 (.1)	378 (5.8)	88?	8029 (91.0)	27? (3.1)	6 (.1)	513 (5.8)
$\underline{1985}$										
Jan	9257	8908 (96.2)	114 (1.2)		235 (2.5)	12317	11848 (96.?)	152. (1.?)		$31 ?(2.5)$
Feb	5544	5247 (94.6)	199 (3.6)	6 (.1)	92. (1.7)	90.35	855? (94.6)	325 (3.6)	9 (.1)	149 (1.7)
Mar	4331	4032 (93.1)	100 (2.3)		199 (4.6)	59.34	55.4 (93.1)	137 (2.3)		273 (4.6)
Apr	8137	7824 (96.1)	100 (1.2)	3 (.0)	210 (2.6)	10985	1056? (96.1)	135 (1.7.)	4 (.0)	284 (2.6)
May	6889	5579 (81.0)	414 (6.0)	348 (5.0)	548 (7.9)	9574	7755 (81.0)	575 (6.0)	483 (5.0)	761 (7.9)
June	6816	2190 (32.1)	1025 (15.0)	886 (13.0)	2715 (39.8)	8861	2847 (32.1)	1333 (15.0)	1151 (13.0)	3530 (39.8)
July	5805	1584 (27.3)	2371 (40.8)	2 (.0)	1848 (31.8)	11378	3105 (27.3)	4647 (40.8)	5 (.0)	3621 (31.8)
Aug	28365	7.776 (27.4)	14842 (52.3)	$2(.0)$	$5745(20.3)$	35456	9720 (27.4)	18552 (52.3)	3 (.0)	7181 (20.3)
Sept	8833	5728 (64.8)	3073 (34.8)	1 (.0)	31 (.4)	10246	6645 (64.8)	3564 (34.8)	$1(.0)$	36 (.4)
Total	100851	61317 (60.8)	24481 (24.3)	1270 (1.3)	13783 (13.7)	136135	83264 (61.?)	32132 (23.6)	1683 (1.2)	19056 (14.0)

Tahle 34 Cont'r.

Table 34 Cont'r.

Period	Whale Cove (reported edinte wt)					Whale Cove (estimaten edible wt)				
	Total Erible Weight (kg)	Weight (kg) per C.ategory (bracketed figures are $\%$ of total)				Tnt.al Frihle Weight (kg)	Weight. (kg) per r.ategnry (hracketed figures are \% of total)			
		Terrestrial	Marine	Fowl	Fish		Terrestrial	Marine	Fow1	Fish
1984										
Oct ${ }^{1}$	$3934{ }^{1}$	1346 (34.2)	2088 (53.1)	12 (.3)	488 (12.4)	$3934{ }^{1}$	1346 (34.2)	2088 (53.1)	12 (.3)	488 (12.4)
Nov	3430	2762 (80.5)	429 (12.5)		239 (7.0)	4528	3646 (80.5)	566 (12.5)		316 (7.0)
Dec	3496	3072 (87.9)	386 (11.0)		38 (1.1)	3636	3195 (87.9)	402 (11.0)		39 (1.1)
1985										
Jan	5661	5522 (97.5)	129 (2.3)		10 (.2)	5661	5522 (97.5)	17.9 (2.3)		10 (.2)
Feb	3188	2910 (91.3)	256 (8.0)	$9(.3)$	13 (.4)	3188	2910 (91.3)	256 (8.0)	9 (.3)	13 (.4)
Mar	5470	5143 (94.0)	327 (6.0)			5634	5297 (94.0)	337 (6.0)		
Apr	3121	2978 (95.4)	129 (4.1)		14 (.5)	3121	2978 (95.4)	129 (4.1)		14 (.5)
May	4421	3471 (78.5)	458 (10.4)	237 (5.4)	255 (5.9)	4685	3679 (78.5)	485 (10.4)	251 (5.4)	270 (5.8)
June	2026	1488 (73.5)	229 (11.3)	28 (1.4)	281 (13.9)	2126	1562 (73.5)	240 (11.3)	29 (1.4)	295 (13.9)
July	3668	2601 (70.9)	712 (19.4)	46 (1.2)	309 (8.4)	3668	2501 (70.9)	71? (19.4)	46 (1.?)	309 (8.4)
Aug	12288	2832 (23.0)	8414 (68.5)		1042 (8.5)	122.88	2832 (23.0)	8414 (68.5)		1042 (8.5)
Sept	3408	2069 (60.7)	1273 (37.3)	58 (1.7)	8 (. 2.$)$	3408	2069 (60.7)	1273 (37.3)	58 (1.7)	8 (.?)
Total	54111	36194 (66.9)	148.30 (27.4)	390 (.7)	? 697 (5.0)	55877	37637 (67.4)	15031 (26.9)	405 (.7)	2804 (5.0)

Table 35. Prices of commodities sold in each Keewatin community compared to country foods sold in Frobisher Bay (new name Iqaluit). Prices were taken January 1986.

Community	Retail Price Per Kilogram						
	Pork Chops	Round Steak	Chicken	Charr	Muktak	Caribou	Seal
Baker Lake	8.61	10.52	5.67				
Chesterfield Inlet	8.06	9.81					
Coral Harbour	8.95	11.69	7.95	$3.30(w)^{1}$			
Eskimo Point	8.81	15.89	6.10	4.95(w)			
Rankin Inlet	7.80	9.69	5.83	10.00(f)			
Repulse Bay	10.65	18.79	8.95	3.85 (w)			
Whale Cove	8.81	10.88	5.32	3.3n(w)			
Frobisher Bay					7.17	9.92	5.51

```
l}\mp@subsup{w}{}{1}=\mathrm{ whole fish
    f}=\mathrm{ fillets
```


Fig. 1. Map of Keewatin District showing the seven communities surveyed during the harvest study and the zonal grid used to locate kills.

Fig. 2. Zone map for the harvest years, October 1984 through to September 1985, showing the annual harvest of ringed seal by area in the Keewatin District. Numbers enclosed by a circle were not identified by zone but were reported in the community harvest.

Fig. 3. Zone map for the harvest year, October 1984 through to September 1985, showing the annual harvest of common eider by area in the Keewatin District.

Fig. 4. Zone maps showing the monthly harvest of caribou by area for Baker
Lake for the neriod October 1900 to September 1905 .

Fig. 4. Cont'd.

THE NUMBER OF CARIBOU HARVESTED PER HUNTER PER TRIP

Fig. 5. Histogram showing the percent relative frequency of caribou harvested per hunt by hunters fron the seven Keewatin communitier: for the period October 1984 to September 1935.

Fig. 6. Histogram showing the percent relative frequency of ringed seal harvested per hunt by hunters for the period October 1984 to September 1985.

Fig. 7. Histogram showing the percent relative frequency of snow geese harvested per hunt by hunters for the period October 1984 to September 1985.

Appendix 1. Members of the Steering Committee for the Keewatin Wildlife Federation Harvest Study.

Chairpersons

Mr. F. McFarland
and
Ms. D. Stewart
Members

Northern Affairs Program, Department of Indian Affairs and Northern Development.

Mr. R. Cole	Canadian Wildlife Service, Department of the Environment.
Mr. R. Graf	Department of Renewable Resources, Government of the Northwest Territories.
Mr. R. Peet	Department of Fisheries and Oceans.
Mr. A. Angootealuk President, Keewatin Wildlife Federation.	
Mr. L. Gamble	Regional Resource Manager, Keewatin Harvest Study.
Ms. V. Curley	Assistant Regional Resource Manager, Keewatin Harvest Study.

Appendix 2. Calculation of Estimated Harvest.
This appendix lists the steps used to arrive at an estimate of total monthly hunter kill using the interview data from Eskimo Point, September, 1982 and shows an alternative method of calculating the theoretical kill factor as suggested by Topolniski and Thompson (D . Topolniski and P . Thompson 1984).

The letter designations for each category are defined in the text under the section on data analysis. The bracketed statement is a shortened designation for these definitions for the purposes of this appendix.
I. Interview Data, Eskimo Point, September, 1982.

Category	Number of hunters	
A	(successful)	102
B	(unsuccessful)	23
C	(didn't hunt)	85
D	(hunted but not interviewed)	14
E	(out of hunt area)	6
F	(activities not known)	8

II. Calculations common to both methods

1. the known number of hunters who hunted $=A+B=102+23=125$.
2. the success ratio of the hunters that hunted and were interviewed $=$

$$
\frac{A}{A+B}=\frac{102}{102+23}=0.816=G
$$

3. the estimated success of those out hunting but not interviewed $=$ $G \times D=0.816 \times 14=11.4=H$
4. the total number of hunters whose activities are accounted for $=$ $A+B+C+D+E=102+23+85+14+6=230=1$
5. the total number of hunters that could have hunted $=$ $I+F=230+8=238=J$
6. the participation ratio $=\frac{A+B+C}{J} \times 100=\frac{102+23+85}{238} \times 100=$ 88.2\%
7. the estimation of mean monthly kill by species $=N \times$ number harvested for each species from the fieldworker's reports for each hunter in Category A.
III. Calculations for the actual kill factor following Gamble (1984)
8. the estimated success ratio of successful hunters interviewed in relation to the total hunters whose activities are accounted for $=$ $\frac{A}{I}=\frac{102}{230}=0.444=K$
9. the estimated success of hunters whose activities are unknown $=$ $\mathrm{K} \times \mathrm{F}=0.444 \times 8=3.6=\mathrm{L}$
10. the estimated total success $=A+H+L=102+11.4+3.6=117=M$
11. the theoretical kill factor $=\frac{M}{A}=\frac{117}{102}=1.14=N$
IV. Calculation for theoretical kill factor following Topolniski and Thompson (1984)
12. the rate at which all hunters actually hunted $=$ $\frac{A+B+D}{I}=\frac{102+23+14}{230}=\frac{139}{230}=0.6043=K$.
13. the estimated success of hunters whose activities are unknown $=$ $F \times G X K=8 \times 0.816 \times 0.6043=3.94=L$.
14. the estimated total success $=A+H+L=102+11.4+3.9=117.3=$ M.
15. the theoretical kill factor $=\frac{M}{A}=\frac{117.3}{102}=1.15=\mathrm{N}$.

Table 22 compares the theoretical kill factors derived from both methods that were calculated for each month of the 1984-85 survey period for each community.

[^0]: ${ }^{1}$ Present address 20 Amundsen Bay, Winnipeg, MB R3K 0V2. Former address Keewatin Wildlife Federation, Rankin Inlet, NT XOC nGO

[^1]: ${ }^{1}$ See Table 1.

[^2]: ${ }^{1}$ See Table 1.

[^3]: ${ }^{1}$ See TabTe 1.
 ${ }^{2}$ It has not been possible to accurately establish the number of hunters for this community and the actual number of hunters may be less than that used by the harvest study. If so the participation ratio is slightly underestimated.

[^4]: ${ }^{1}$ See Table 1.

[^5]: ${ }^{1}$ See Table 1.
 ${ }^{2}$ Age classes are as follows: $1=0-15$
 $2=16-30$
 $3=31-45$
 $4=46-60$
 $5=61-75$

[^6]: ${ }^{1}$ See Table 1.
 ${ }^{2}$ For age classes see Table 23.

[^7]: ${ }^{1}$ These references are listed in detail in the reference section of the report.

