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ABSTRACT 

This primer outlines common approaches for setting recovery targets and 
quantifying critical habitat for species at risk. Critical habitat is protected under the 
Species at Risk Act, and defined as the habitat necessary and sufficient for species 
survival or recovery. Key questions that need to be addressed when identifying critical 
habitat relate to the amount, quality and configuration of habitat needed to achieve a 
specified population or habitat-based recovery target. The process of delineating 
population and habitat based recovery targets is, by its nature, complex and quantitative 
approaches are often required. This primer introduces commonly used quantitative 
approaches for setting recovery targets and for identifying critical habitat, including: 
habitat suitability (HS) models; incidence function models (IFM); demographic based 
estimates of: area per individual (API), and minimum area for population viability 
(MAPV); and habitat based spatially explicit population viability analyses (PVA). In this 
primer, each modelling approach is introduced, data requirements are described, and 
advantages and limitations are discussed. Included in this primer, readers will find 
specific references to software or freely available code to allow them to implement these 
quantitative approaches themselves. 
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1.0 BACKGROUND 

This manuscript presents several quantitative methods used in setting recovery 
targets and identifying critical habitat. It is assumed readers will be familiar with the 
following companion documents:  
 
Grinnell, M.H. and Curtis, J.M.R. 2012. User manual for PatchImportance 1.0: 
Quantifying relative habitat patch importance based on metapopulation persistence and 
minimum abundance. Can. Tech. Rep. Fish. Aquat. Sci. 2977: vi + 41 p. 
 
Grinnell, M.H. and Curtis, J.M.R. 2011. User manual for NetworkDistances 1.0: Calcu- 
lating network-wise distances between habitat patches for spatially restricted species. 
Can. Tech. Rep. Fish. Aquat. Sci. 2960: iv + 29 p. 
 
Vélez-Espino, L.A., R.G. Randall and M.A. Koops. 2010. Quantifying habitat 
requirements of four freshwater species at risk in Canada: Northern Madtom, Spotted 
Gar, Lake Chubsucker, and Pugnose Shiner. DFO Can. Sci. Advis. Sec. Res. Doc. 
2009/115. 
 
Curtis, J.M.R. and I. Naujokaitis-Lewis. 2008. Sensitivity of population viability to spatial 
and non-spatial parameters using GRIP. Ecological Applications 18:1002-1013  
 
Curtis, J.M.R. and I. Naujokaitis-Lewis. 2008. Source code for GRIP 1.0. Ecological 
Archives A013-033-S1  
 
Vélez-Espino, L.A. and M. A. Koops. 2007. A quantitative approach to assessing 
allowable harm in species at risk: application to the Laurentian black redhorse 
(Moxostoma duquesnei). Canadian Science Advisory Secretariat 2007/051. 
 
 
And previous technical reports: 
 
de Kerckhove, D. T., K. E. Smokorowski, and R. G. Randall. 2008. A primer on fish 
habitat models. Can. Tech. Rep. Fish. Aq. Sci. 2817:iv + 58 p. 
 
Minns, C.K. 2003. An area-per-individual (API) model for estimating critical habitat 
requirements in aquatic species-at-risk. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/074. 
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2.0. INTRODUCTION 

 
The Species at Risk Act - and other endangered species legislation around the 

world (e.g. Endangered Species Act of the United States) - requires the identification 
and protection of the habitat necessary to ensure the recovery and survival of the 
species at risk (i.e. critical habitat). Habitat impacts are the top threat to freshwater 
biodiversity (Jelks et al. 2008) and the one of the top threats to marine biodiversity 
(following exploitation; Hutchings and Reynolds 2004). Evidence suggests a clear link 
between protection of critical habitat and species recovery (Clark et al. 2002; Taylor et 
al. 2005; Hagen & Hodges 2006).  

 
Understanding how to set appropriate recovery targets and identify critical habitat 

is an important theoretical and applied problem. Habitat units have unequal biological 
value, some are more important than others for maintain biodiversity (Economo 2011). 
Understanding which habitats are therefore critical for species survival and recovery is 
important for not only ensuring adequate protection of species at risk, but for prioritizing 
conservation efforts. Developing robust, and scientifically defensible, methods for 
setting recovery targets is fundamental for ensuring critical habitat is implemented 
correctly (Carroll et al. 1996; Ruckelshaus et al. 2002).  

 
To accomplish the identification of critical habitat, models are needed which link 

population occurrence, persistence, and viability to habitat. These can then be used to 
set recovery goals and targets, and to identify critical habitat. The goal of this primer is 
to introduce quantitative methods commonly used throughout the process of setting 
recovery targets and identifying critical habitat, their advantages and limitations, with the 
hope that it may aid in implementing their use. The methods include: habitat suitability 
(HS) models, incidence function models (IFM), area per individual (API), minimum area 
for population viability (MAPV) and habitat based spatially explicit models of population 
viability (PVA). These methods have been used to: set recovery targets (e.g. minimum 
viable population (PVA, MAPV); identify suitable habitat (HS models); assess trade-offs 
and develop rules of thumb (e.g. PVA); evaluate our ability to achieve recovery targets 
under alternative scenarios (e.g. IFM, PVA).  
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3.0. HABITAT SUITABILITY (HS) MODELS 

Habitat suitability models correlate species distribution or abundance  to one or 
more ecological relevant variables. Habitat suitability models have become important 
tools in modelling changes in biodiversity (Guisan and Zimmermann 2000; Guisan and 
Thuiller 2005). Habitat suitability models have been used in a wide range of applications 
including predicting: changes in species distributions in relation to climate change 
(Thuiller 2004; Araújo et al. 2005), the establishment and spread of invasive species 
(Hartley et al. 2006), and localities with rare or endangered species (Rodriguez et al. 
2007; Marmion et al. 2009; Franklin et al. 2009). With the increasing availability of 
remote-sensing data, and advances of geographic information systems, researchers are 
often no longer data limited, but are expanding the use of habitat suitability models to 
include more applications and broader spatial scales (Guisan and Zimmerman 2000; 
Marmion et al. 2009). The degree to which habitat suitability models can be reliably 
used to predict rare or uncertain events remains a fundamental challenge for the 
conservation of biodiversity (Zimmermann et al. 2007). 
 
  Building a habitat suitability model requires several steps. First, a conceptual 
model is needed to help shape the statistical model (i.e. purely empirical, purely 
mechanistic, purely theoretical, or some combination). Once a conceptual model is 
formulated, a study design can be implemented which helps identify the data 
requirements and the sampling regime. From there, a statistical formulation can be 
assigned and the model can be calibrated, validated and evaluated (Fig. 1). Each of 
these steps requires careful consideration as choices at each level may have 
substantial influence towards the resultant habitat suitability model (Dormann et al. 
2008). 
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Figure 1 – Conceptual framework for developing a predictive habitat suitability model 
using two datasets, one for fitting the model (calibration, left side), and one for validating 
and evaluating the model (validation and evaluation, right side). Adapted from Guisan 
and Zimmerman 2000. 

3.1 CONCEPTUAL MODEL 

The process of building a habitat suitability model begins with the formulation of a 
conceptual model. As nature is too complex and heterogeneous to be predicted 
accurately in every aspect of time and space, simplification using a conceptual model is 
needed (Guisan and Zimmerman 2000). Conceptual models can be empirical, 
mechanistic, or analytical. A conceptual model defines a simplified viewpoint from which 
the statistical formulation should be applied. For example, an empirical conceptual 
model is based on the assumption of maximizing the fit (or minimizing error) to real 
data. Conversely, a mechanistic conceptual model can be based on physiological, 
causal or process based mechanics. These models are often not judged based on 
model fit, but on the theoretical correctness of the model. Finally, an analytical 
conceptual model is based on predicting accurate responses to a simplified reality, such 
as predator prey dynamics as used in the Lotka-Volterra model (Guisan and 
Zimmerman 2000).  

 
Habitat suitability models are typically classified as empirical models as they are 

often based on a priori hypotheses or observations that require phenomenological (i.e. 
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“real”) data (Guisan and Zimmerman 2000). For example, researchers may have some 
knowledge regarding the risks or threats to current distributions of species at risk and 
their habitats - such as those outlined in species recovery plans - and can use those to 
model species distributions. The assumption is that empirical data represent the “true 
form” of nature, or the ideal habitat for the species. As such empirical habitat suitability 
models may be limited in their applicability to specific localities (i.e. study systems) or 
certain spatial scales. On the other hand, conceptual models are not necessarily 
mutually exclusive. Habitat suitability models can also be classified as mechanistic or 
analytical, given the nature of the study (Guisan and Zimmerman 2000). For example, a 
habitat suitability model outlining soil or temperature conditions of an endangered plant 
may be more mechanistic than empirical due to the physiological requirements of the 
species and the causative nature of the variables.  

 
The differences among conceptual models have important repercussions for 

modelling habitat suitability for species at risk (Araujo et al. 2006). For example, a 
purely mechanistic conceptual model, as outlined above, may be well suited for 
predicting the physiological constraints of a species (i.e. fundamental niche), but have 
no utility for predicting actual localities where species are found (i.e. realized niche; 
Hutchinson 1953; MacArthur 1968). Alternatively, a purely empirical conceptual model 
may be well suited for predicting the realized niche of a species, while saying nothing in 
regards to the physiological tolerances of the species (Austin et al. 1990). As there are 
broad spatial differences between the delineation of the fundamental versus realized 
niche of a species (Soberón and Peterson 2005), the delineation of a conceptual model 
provides important assumptions as to how species habitats are to be treated. Despite 
the importance of defining a conceptual model, it remains one of the fundamental 
challenges for implementing habitat suitability models for species at risk (Araujo et al. 
2006). Ultimately the choice of conceptual model will be dependent on the goals of the 
study, the spatial scale, and the precision needed (Guisan and Zimmerman 2000). 

 
The formation of a conceptual model ideally leads to several study design 

considerations, such as: 1) the choice of spatial scale (Levin 1990), 2) the choice of 
explanatory variables for the model, and 3) sampling design considerations. Some of 
the study design considerations for species at risk include: selection of appropriate gear 
for capturing the species (Poos et al. 2007, 2012), the amount of sampling effort needed 
(Poos et al. 2007), and the selectivity of gear types, amongst others (Thompson 2004).  

3.2 STATISTICAL FORMULATION 

The next step in developing a habitat suitability model is statistical formulation. 
Statistical formulation is the process of selecting an appropriate statistical approach for 
predicting a response variable (Fig. 1). Numerous approaches are now available (Table 
2). These methods can be defined as: i) probabilistic methods, where a probability 
distribution is assumed, ii) classification methods, which recursively partition data into 
categories, or iii) machine learning methods, which iteratively fit a distribution to the data 
(Olden et al. 2008). Each of these modelling approaches has been used to predict 
species occurrences and describe habitat suitability (Thuiller 2003; Elith et al. 2006; 
Thuiller et al. 2006). The modelling methods shown, represent a continuum of use from 
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logistic regression - the most prevalent and widespread statistical method for modelling 
binary data (Hosmer and Lemeshow 1989) - to newer learning-based methods, such as 
multivariate adaptive regression splines (Friedman 1991), artificial neural networks 
(Olden and Jackson 2001; Olden et al. 2004), random forest (Cutler et al. 2007) and 
boosted regression trees (Elith et al. 2008).  
  

Perhaps at the forefront of decisions needed for modelling habitat suitability of 
species at risk is the choice of statistical method. The choice of statistical method has 
large consequences for not only how the data are handled, but often on the 
conservation decisions being made (Loiselle 2003; Johnson et al. 2004; Wilson et al. 
2005; Rodriguez et al. 2007; Marrimon et al. 2009). For example, Pearson et al. (2006) 
showed that distribution changes of South African plant species varied from a 92% loss 
to a 322% gain depending on the statistical model used. Dorman et al (2008) 
demonstrated that of several uncertainties in modelling habitat suitability - including 
variable selection and co-linearity between variables – that the choice of statistical 
method had the largest impact. Previous analyses of species at risk echo these 
concerns over the importance of model type (Poos and Jackson, In Revision).  As 
quantitative comparisons have demonstrated, the successes of statistical modelling 
approaches can be largely data dependent and there is no clear indication of the 
preeminence of any singular approach (Olden and Jackson 2002; Araujo and New 
2007). As such, a comparison of model performance across various statistical methods 
is preferable to naïve selection of a single approach (Guisan and Zimmerman2000; 
Olden and Jackson 2001; 2002). 

 
Determining the most appropriate statistical method requires several steps. For 

many probabilistic models the choice of theoretical probability distribution is often 
needed (however see multivariate adaptive regression splines; Friedman 1991; or 
LOWESS (McCullagh and Nelder. 1989). The choice of theoretical probability 
distribution can be done by comparing the empirical distribution of data to that of a 
theoretical distribution, of which several tests are available depending on the data (e.g. 
goodness of fit test, Kolmogorow-Smirnov; Guisan and Zimmerman 2000). In some 
cases data may need to be transformed (e.g. log or arc-sin transformation) or 
standardized (e.g. z-score) to fit the model assumptions (Faraway 2006). The choice 
between choosing an appropriate data transformation or data standardization method to 
fit a given theoretical probability distribution is often not straight forward. In some cases 
it may be less preferable to transform data to meet model assumptions than it would be 
to use an alternative probability distribution. For example if count data are zero inflated, 
it may be preferable to use a zero inflated Poisson distribution rather than attempt to 
standardize data and use a Poisson distribution (Hall 2000; MacKenzie et al. 2002). 
Alternatively it may be better to choose an alternative statistical approach where 
probability distributions are not required (e.g. general additive models, multivariate 
adaptive regression splines; McCullagh and Nelder, 1989; Guisan et al. 2006). The 
question as to how much one should manipulate the data to fit the model is not straight 
forward (Olden and Jackson 2000), however guidelines are available elsewhere (see 
Hosmer and Lemesow 1989; McCullagh and Nelder 1989; Olden and Jackson 2000; 
Hastie et al. 2001; Faraway 2006). 
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Table 1 – Quantitative methods used to build habitat suitability models for species at risk. 

Type of 
Approach 1 

Probability 
Distribution 

Response 
Variables 

Statistical Method Key References 
R Code 
Available 2 

Probabilistic Gaussian Environmental 
variables (e.g. 
substrate size, 
percent cover, 
biomass) 

Multiple regression (weighted 
averaging, least squares 
regression, general linear 
models, general additive 
models, regression trees, 
LOWESS, generalized linear 
mixed models)  

Vincent and Haworth (1983); Hastie 
and Tibshirani (1987); Faraway 
(2006); Nakagawa and Cuthil 
(2007); Bolker et al. (2009). 

Faraway (2006); 
Crawley (2007); 
Bolker (2008); 
Milborrow (2011); 
Venables and 
Ripley (2011). 

 Poisson, 
Negative binomial  

individual species 
counts 

Multiple regression (general 
linear models, general 
additive models) 

McCullagh and Nelder (1989); 
Nakagawa and Cuthil (2007). 

Same as above 

 Binomial / Logit  presence / absence, 
relative abundance 

Multiple regression (general 
linear models, general 
additive models, multivariate 
adaptive regression splines) 

Hosmer and Lemeshow (1989); 
Peeters and Gardeniers (1998); 
Pampel (2000). 

Same as above 

 Zero inflated 
Poisson (ZIP), 
Zero inflated 
Negative 
Binomial (ZINB) 

individual species 
counts 

Zero inflated models (zero-
inflated Poisson (ZIP), zero-
inflated negative binomial 
(ZINB)) 

Hall (2000); MacKenzie et al. (2002); 
Tyre  et al. (2003);  Martin et al. 
(2005); Welsh et al. (2006).  

Zeileis et al. 2009. 

 Fitted by model presence only 
BIOMOD3, GARP4, MAXENT, 
GRASP 

Stockwell and Peters (1999); 
Lehman et al. (2003); Thuiller 
(2003); Guisan and Thuiller (2005); 
Philips et al. (2006). 

Bivand et al. 
2008; Jurka 2011 

Classification 
Based 

Fitted by model 
presence / absence, 
relative abundance 

Regression trees 
(Classification and regression 
trees, Multivariate adaptive 
regression splines); 
Discriminant Analysis 

Friedman (1991); Vayssiéres et al. 
(1996); Moisen et al. (2006). 

Ripley 2009; 
Bocard et al. 
2011; Milborrow 
2011. 

Learning 
Based 
Methods 

Fitted by model 

individual species 
counts, presence / 
absence, relative 
abundance 

Artificial neural networks, 
boosted regression trees, 
random forest. 

Bishop (1995); Lek et al. (1996); 
Ridgeway (1999); Friedman et al. 
(2000); Olden and Jackson (2001); 
Cutler et al. (2007); Elith et al. 
(2008); Olden et al. (2008). 

Cutler et al. 2007; 
Ridgeway 2007; 
Elith et al. 2008.  

Note: 1 For simplicity multivariate or Bayesian methods are not described here, but can be found elsewhere (Legendre and Legendre 1998; Ellison 2005; King 2010), including with R 
code (Bocard et al. 2011). 2 In many cases code is available in the R programming language, freely available at URL: http://www.r-project.org/. 3 BIOMOD is available online at URL: 
http://r-forge.r-project.org/projects/biomod/. 4 GARP can be analyzed using DesktopGARP available at: URL: http://www.nhm.ku.edu/desktopgarp. 



 

8 
 

3.3 CALIBRATION 

The next phase in developing the habitat suitability model is dividing the data into 
two separate data sets: one for calibration, the other for validation (although this may 
not always be necessary; Guisan and Zimmerman 2000). Calibration refers to the 
adjustment of an initial model to improve the agreement between the model output and 
the data set (Rykiel 1996; Olden et al. 2002).  

 
One fundamental component of model calibration is choosing the right number of 

explanatory variables. This is one of the most difficult tasks in developing a habitat 
suitability model (Guisan and Zimmerman 2000). If too many explanatory variables are 
used, the model may perform well in calibration (maximize fit), but may not be 
generalizable when validated and evaluated. If too few explanatory variables are used, 
the model may perform sub-optimally or exclude important habitat components. Often 
the choice of the number of explanatory variables is a choice between model fit and 
generality (Johnson and Omland 2004). A model that maximizes fit will have no 
consideration of model generality and favors more explanatory variables. Alternatively, 
a model that maximizes generality will consider only the number of explanatory 
variables that maximize prediction, even if this reduces model fit.  

 
There are numerous approaches for maximizing model fit. For example, 

researchers can find numerous methods to evaluate their models based on how well 
they fit the data (i.e. goodness of fit, 2, coefficient of determination, R2, or deviance, D2; 
Guisan and Zimmerman 2000).  However, model fit may not always be an accurate 
reflection of the data (see 3.4 Validation) and can become biased by the number of 
explanatory terms. In these cases, adjustment is needed (e.g. R2

adj; Quinn and Keough 
2002).  

 
To improve model generality, a method of reducing the number of explanatory 

variables is needed (i.e. variable selection method). Debate over variable selection 
method is exists.  Some studies have shown that the choice of variable selection 
method can bias the resultant model and that variable selection should be avoided 
(Whittingham et al. 2006). Other studies suggests that variable selection procedures, 
when compared to other choices in developing habitat suitability models, may actually 
have very small impact on resultant models (Maggini et al. 2006; Meynard and Quinn 
2007; Dormann et al. 2008).  

 
The two most popular methods for variable selection are forward or backward 

selection (Burnham and Anderson 2002). Forward and backward selection procedures 
attempt to maximize the generality of a series of competing models by choosing the 
best suite of explanatory variables. Variables are selected either starting from the 
simplest model and iteratively adding variables (forward selection), or starting with the 
most complex model and iteratively removing variables (backward selection; McCullagh 
and Nelder 1989). Other variable selection methods include Gibbs sampling (George 
and McCulluch 1993), lasso (Tibshirani 1996) and best subset (Quinn and Keough 
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2002). Despite the litany of potential methods for variable selection, there does not 
appear to be a ‘best’ method (Murtaugh 2009). 

 
An alternative to the variable selection approach are multi-model comparisons 

(i.e. multi-model inference; Burnham and Anderson 2002). This approach attempts to 
find the most parsimonious model. Here, parsimony refers to the tradeoff between 
model fit (accuracy) and generality (Burnham and Anderson 2002). Akaike Information 
Criteria, and its affiliates (BIC, AICc), are the popular method of multi-model inference 
(but see consensus methods, Marimon et al. 2009). Multi-model inferences may be 
particularly useful for hypothesis testing (Johnson and Omland 2004), but may not be 
well suited for maximizing predictive performance.  

 
It should be noted that for non-probabilistic methods (Table 1), the choice of 

modelling approach can be equivalent to the choice of variable selection method. This is 
due to the fact that most machine learning and classification based approaches 
iteratively solve for the most appropriate number of explanatory variables. For example, 
with classification and regression trees the model will recursively partition the data in 
dichotomous groups that maximize classification (Vayssiéres et al. 2000). Explanatory 
variables enter and re-enter the model several times to classify the response variable. 
This often leads to over-fitted models (i.e. too many terminal nodes; Chambers and 
Hastie 1993), which reduce model performance (Guisan and Zimmerman 2000). One 
disadvantage of machine learning approaches is that they can often be considered 
‘black boxes’ for understanding how variables are selected and prioritized (OIden and 
Jackson 2002b; Olden et al. 2008). Caution is warranted in utilizing these methods 
appropriately for modelling species at risk (but see Hastie et al. 2001; Olden et al. 2008) 

3.4 VALIDATION 

Once the model has been calibrated, predictions can be produced.  In many 
cases this is where researchers stop, with the belief that once a model has been 
constructed, and predictions produced, that the modelling process is complete (Olden et 
al. 2002). However, models have little merit without knowing how well those predictions 
differ from what was expected or from those based on chance. Model validation refers 
to methods that compare the predicted values of the calibrated model to an independent 
evaluation dataset (Fig. 1; Rykiel 1996).  Unfortunately, despite the importance of model 
validation, it receives comparatively little attention relative to other modelling activities 
(Manel et al. 2001; Olden et al. 2002). 

 
There are three main approaches used to validate the calibrated model: 1) 

jackknife, 2) bootstrapping, and 3) k-fold cross validation. The jackknife approach 
removes a single observation and constructs the model with the remaining n-1 
observations. Model performance is calculated by repeating this procedure until all 
observations are removed (i.e. n times) and each observation can be predicted once 
(Olden et al. 2002). Bootstrapping randomly selects the number of observations to be 
including into the model and then re-samples the observations n times to obtain an 
estimate of model bias. Finally, k-fold cross validation splits the data into k subsamples, 
where a single subsample is used for validating the model, while the remaining k-1 
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subsamples are used to calibrate the model. The cross-validation process is repeated k 
times, where each validation subsample is used only once. The results of each of these 
validation methods are then aggregated (or averaged) into a single estimate of model 
performance. Bias can be assessed as the difference between the predicted values and 
the real parameter value in the evaluation dataset. When this difference is high, the 
model should be called into question (Guisan and Zimmerman 2000).  

3.5 EVALUATING THE MODEL 

Once the predicted values have been produced, they need to be assessed to 
determine model performance. Model evaluation refers to how well the model performs 
relative to some criteria, most often how well it predicts an independent evaluation 
dataset (although not necessarily so). In some cases, to evaluate a model, predictions 
to be transformed back to the scale of real observations to allow comparison (e.g. 
GLMs; Guisan and Zimmerman 2000). For continuous data, parameter estimates can 
be compared to the evaluation data using correlation coefficients (e.g. Pearson 
correlation) or non-parametric rank correlations (e.g. Kendall’s t or Spearman’s p; Quinn 
and Keough 2002). For qualitative response variables, contingency tables may be used 
(e.g. 2) or Cohen’s kappa (Cohen 1968). For presence/absence (i.e. binary) data, a 
decision is needed as to the threshold needed to define habitat suitability. In many 
cases researchers arbitrarily determine the threshold for habitat suitability (i.e. > 0.5 on 
a scale from 0 to 1). However, previous research has shown that the choice of 
thresholds can have a large influence on the results (Jiménez-Valverde and Lobo 2007; 
Lobo 2008), and this remains largely problematic for determining habitat suitability or 
predicting species at risk occurrences.  

 
Thresholds for determining habitat suitability can be determined using a matrix 

comparing model predictions to actual data, known as a confusion matrix (Table 2). The 
confusion matrix can be used by researchers to compare the differences in correct 
classification (i.e. true positives or negatives) of either presence or absence at the 
expense of inflated error (i.e. false positives or negatives) at various model thresholds 
(Table 2). One could choose model thresholds which prioritize correct classification of 
species presence (true positive), at the expense of increased misclassification of 
species absences (false positives), or vice versa. Such a decision may be well suited for 
species at risk, where one would wish to emphasize correct predictions of the true 
occurrence of a species at risk, but would be willing to accept higher error rates 
(Loiselle et al. 2003). Another alternative is to use a balanced approach, with equal 
likelihood of misclassification of species presence and absence. This approach is more 
commonly used as it assumes equal consideration of modelling species presence and 
absence (Hartley et al. 2006).  

 
Table 2 – Confusion matrix comparing model predictions to the actual data. 

A
C

T
U

A
L

 
V

A
L

U
E

 

 PREDICTED VALUE 

 Species present Species absent 
Species present  (true positives) (false negatives) 
Species absent  (false positives) (true negatives) 
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3.6 EVALUATING ALTERNATIVE MODELLING APPROACHES 

Modelling habitat suitability of species at risk is an iterative process (Fig. 1). Each 
step in developing a habitat suitability model requires careful consideration of each 
decision inherent in the model, and often re-analysis and comparison (Fig. 1). For 
example, researchers must decide on: 1) the conceptual model (e.g. empirical versus 
theoretical); 2) data type (e.g. abundance vs. presence / absence); 3) whether data 
should be standardized or transformed; 4) statistical formulation (e.g. probabilistic 
versus classification based); 5) variable selection method (e.g. forward or backward 
selection, AIC), 6) validation method (e.g. jackknife, bootstrap, k-fold cross validation); 
and for binary data, 7) the threshold for determining suitable from unsuitable habitat. As 
each of these decisions has been shown to alter model outputs (Dormann et al. 2008), 
criteria are needed for comparing between and among modelling approaches. 

 
Models can be evaluated based on their overall performance, e.g. how well does 

the model fit the data (e.g. goodness of fit, see section 3.2). However for modelling 
species occurrences using binary (i.e. presence / absence) data, other modelling 
metrics are available including: model sensitivity (the ability of each model to correctly 
predict species presence); model specificity (the ability of each model to correctly 
predict species absence); and, overall classification (the ability of each model to 
correctly classify both species presence and absence). The use of these metrics 
provides an alternative means to evaluate each model, their comparative successes, 
and their associated errors, for both species presence and absence (Olden and 
Jackson 2002a). The distinction among modelling metrics is an important one as 
models for predicting species at risk are often complicated by zero inflated distributions 
(Cunningham and Lindenmayer 2006). In these cases, models may still perform well 
(i.e. high overall classification) due to the large number of species absences (i.e. high 
model specificity), while saying nothing regarding the habitats where species at risk are 
predicted to be found (i.e. model sensitivity).  

 
One common approach for comparing among modelling approaches is to use a 

threshold independent method, such as a receiver operator characteristic curve (ROC; 
Manel 1999; Olden and Jackson 2002; Hartley et al. 2006). Similar to a confusion matrix 
(Table 2), ROC curves plot the rate of true positives (sensitivity) to false positives (1-
specificity). The area under the ROC curve (commonly referred to as AUC) is 
considered a measure of model accuracy that is independent of a particular threshold 
(Fielding and Bell 1997). AUC varies from between 0.5 (the model is no better than 
chance) to an area of 1 (the model predicts perfectly; Fielding and Bell 1997). AUC is 
often used to compare between modelling approaches (e.g. Elith et al. 2006; Thuiller et 
al. 2006) or between competing sub-models, such as commonly used in machine 
learning methods (Olden et al. 2008). However, in some cases AUC may provide 
biased estimates and may not be appropriate for model comparisons (e.g. if omission 
and commission rates are unbalanced; see Lobo et al. 2008).  
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3.7 ADVANTAGES 

Modelling existing and future habitats of species at risk has become an 
increasingly common application of habitat suitability models. One of the reasons for 
this popularity is that when faced with limited data on the distribution, abundance and 
dynamics of species at risk (Mace et al. 2005; Rodríguez 2007), habitat suitability 
models allow for the extrapolation of relatively few field samples to the entire potential 
range of a species. Also, as species at risk are, by their nature, rare and difficult to 
enumerate, habitat suitability models can provide a surrogate measure to prioritize 
conservation initiatives, even if sampling data are not available (Guisan et al. 2006). In 
these cases simple habitat suitability models can be produced using expert opinion or 
Geographic Information Systems (Guisan and Zimmerman 2000), which is a clear 
advantage for defining recovery targets for species at risk that are often data deficient.  

 
Habitat suitability models have been used in a broad array of applications 

(Thuiller 2004; Araújo et al. 2005; Hartley et al. 2006; Rodriguez et al. 2007; Marmion et 
al. 2009; Franklin et al. 2009), and are flexible for use with many data types including 
presence only, presence absence, count data, ordinal data and continuous data (Table 
1).  

3.8 LIMITATIONS 

Modelling the distributions of species at risk and their habitats is an activity filled 
with uncertainty. Species at risk are not only rare, but they are also difficult to detect, 
capture and enumerate, thereby complicating the evaluation of their habitat importance 
(Elith et al. 2002; Loiselle 2003; Heikkinen et al. 2006). Uncertainties in habitat 
suitability models for species at risk may arise during all stages of modelling including: 
determining an appropriate statistical formulation (Elith et al. 2006; Dormann et al. 
2008), calibrating the model (e.g. deciding an appropriate theoretical probability or 
variable selection method); validating the model (e.g. determining validation procedure), 
and evaluating the model (e.g. determining thresholds for suitability). In addition, there 
are uncertainties with modelling endangered species due to missing data, the potential 
for spatial autocorrelation with model predictions (Fortin and Dale 2005; Dormann et al. 
2007; Bivand 2008), and for determining future changes to habitat under climate change 
(Thuiller 2004; Araujo et al. 2006); to name a few (see Loiselle 2003; Araujo and Guisan 
2005; Burgman et al. 2005; Barry and Elith 2006; Austin 2007). 

3.8.1 SAMPLE SIZE 

The application of habitat suitability models to identify critical habitat of species at 
risk remains controversial (Loiselle 2003; Burgman and Lindenmayer 2005; Araujo and 
Guissan 2006). One difficulty with using the standard sets of habitat suitability models 
used by the majority of ecologists, is that they are often compromised when analyzing 
data limited to a few sites and scales (Ellison and Agrawal 2005; Araújo and Guisán 
2006). This condition of limited occurrences, in turn, produces data sets that have many 
complicating statistical issues, including zero inflated bias, increased co-linearity 
between variables and prevalence bias (Guisan et al. 2006; Dormann et al. 2008).  
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One often disregarded aspect of modelling habitat suitability for species at risk is 

the consideration of sample size requirements needed to determine habitat 
associations. Many traditional approaches, (e.g. general linear models; Table 1) require 
relatively large sample sizes, especially when attempting to identify habitat suitability 
(Pearce and Ferrier 2000; Stockwell and Peterson 2002). There are several reasons for 
this. First, given the highly complex nature of ecological niches (Hutchinson 1957), few 
sample locations are unlikely to accurately depict species habitats (Carroll and Pearson 
1998; Wisz et al. 2008). Second, as sample size decreases the influence of outliers 
increases, thereby causing the potential for a few sample points to skew habitat 
relationships (Stockwell and Peterson 2002). Finally, interactions among habitat 
features may exponentially increase the number of sample locations needed to estimate 
habitat suitability (Wisz et al. 2008). For probabilistic regression, it is generally accepted 
that for every additional environmental variable added to the habitat suitability model, an 
additional ten sample sites are needed to adequately evaluate their contribution.  

3.8.2 SPATIAL SCALE 

Species-habitat relationships are strongly dependent on processes that operate 
at different spatial scales (Hunsaker and Levine 1995; Jackson et al. 2001). At broader 
spatial scales (i.e. macro scale: 103 – 105 km2) climate, geomorphological or edaphic 
factors may limit species distribution or abundances (Tonn 1990). At more intermediate 
spatial scales (i.e. meso-scale: 102-103 km2), abiotic conditions strongly alter resources 
and create heterogeneity within a given watershed or lake system (Utz and Hilderbrand 
2011). At even finer spatial scales (10-2 – 102 km2), morphology (e.g. area, depth, 
structural complexity; Grossman and Freeman 1987; Poff et al. 2006) and biotic 
interactions help structure localized fauna. Therefore, to truly understand the habitat 
suitability of freshwater ecosystems, multi-scale approaches are needed, which remain 
relatively scarce in habitat suitability models (Jackson et al. 2001). 

3.8.3 CHOICE OF MODELLING APPROACH 

The selection of statistical method is a vitally important decision in developing a 
habitat suitability model (Elith et al. 2006; Aruajo and New 2007; Dormann et al. 2008; 
Marmion et al. 2009). Despite nearly two decades of comparative analysis, to date no 
preeminent approach exists. As such, it is recommended that habitat suitability 
modelling be treated as both an adaptive and iterative process. Developing habitat 
suitability models without proper validation or evaluation will undoubtedly lead to poor 
recovery potential for species at risk. One method to reduce uncertainty is to utilize a 
comparative approach incorporating all decisions inherent in modeling habitat suitability 
and testing for sensitivity (e.g. Dormann et al. 2008).  

3.9 IMPLEMENTATION 

Many software packages exist that allow researchers to develop habitat 
suitability models (e.g. SPSS, JMP), including software that is freely available (see 
Table 1 for examples).  
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4.0. INCIDENCE FUNCTION MODELS (IFM) 

Many species with spatially structured populations are in decline, and population 
viability models provide a quantitative simulation-based evaluation of species viability to 
inform management decisions (Frank and Wissel 1998; Akçakaya 2000). Incidence 
function models determine population viability based on the connectivity of sites (i.e. 
patches) within a metapopulation (Hanski 1999), and the dispersal ability of species to 
reach those sites once they become extirpated (i.e. rescue effect).  

 
Incidence function models are spatially explicit (they consider patch location) and 

provide a realistic evaluation of patch dynamics (Hanski 1999; March 2008). By 
quantifying patch dynamics, incidence function models can be used to better 
understand the importance of ecological processes such as species specific dispersal, 
patch quality and landscape influences (Moilanen and Hanski 1998), and to inform 
conservation management through evaluation of the minimum amount of habitat or 
population size needed to maintain viability (Hanski 1999; Robert 2009). 

 

4.1 DATA REQUIREMENTS 

Incidence function models use a time-continuous Markov-chain model (Hanski 
1999).  Each patch (i) is assumed to be in one of two states, vacant (xi =0) or occupied 
(xi=1).  Changes in these states can occur from a patch becoming vacant due to local 
extinction (xi: 1 0) or correlated extinction (i.e., regional stochasticity) from another 
patch (xj, xi: 10).  Alternatively a vacant patch can become occupied (xi: 01) via 
colonization from another patch (j).  The state of the whole metapopulation (xi, … xn) is 
given by a vector of states xi of these individual patches. Differences in the state of each 
patch are determined by the balance between colonization and extinction rates (see 
below), with some level of stochasticity (Lande 1993; Moilanen 1999). Assuming 
constant but patch-specific probabilities of colonization (Ci) and extinction (Ei) in unit 
time, the simplest form of the incidence of the species in patch i is given by: 

 

௜ܬ ൌ
௜ܥ

௜ܧ௜൅ܥ
 

 
or if rescue is considered:  
 

௜ܬ ൌ
௜ܥ

௜ܧ௜൅ܥ െ ௜ܧ௜ܥ
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4.1.1 EXTINCTION RATES 

Extinction rates can be quantified in many ways (Hanksi 1999). The simplest 
form for determining extinction rate (Ei) is using the area of the patch (Ai), given by:  
 

௜ܧ ൌ
݁
௜ܣ
௫ 		 , for	A ൒ 	 ݁

ଵ/௫ 

 
where e defines the extinction probability of a patch of unit size, and x defines the 
scaling of the extinction risk with patch area (Hanski 1998; Moilanen 2004).  This model 
assumes that probability of extinction generally depends on population size, which can 
be extrapolated using species-area relationships.  The relationship between extinction 
and species-area has been demonstrated on both empirical and theoretical grounds 
(Lande 1993; Foley 1994; Hanski 1994; 1999; Hanski et al. 1996).   
 

4.1.2 COLONIZATION RATES 

Colonization rate (Ci) is the rate at which individuals move from one patch (i) to 
colonize another patch (j). Colonization rate depends on three factors: 1) the mean 
number of migrants (Mi) per year, 2) the probability of a migrant starting from one patch 
reaching the other patch, based on the distance between the patches (dij) and the 
dispersal ability of the species (α, see dispersal kernal); and 3) patch Area (Aj, Hanski et 
al. 1996; Hanski 1999). 

 
Given these factors, colonization rate can be quantified as:  

 
 

௜ܥ ൌ
௜ܯ
ଶ

௜ܯ
ଶ ൅	ݕଶ

 

 
where: 

 

݅ܯ ൌ βS ൌ 	β෍ ݆݁݌
െߙ	݆ܣ݆݅݀

݆
 

 
and pj is 0/1 indicator of site occupancy, and e, β, and y are parameters that are fit 
using probabilistic regression (Hanski et al. 1996; ter Braak et al. 1998; Oksanen 2004).  
 

The fit of the probabilistic regression can be shown arithmetically. For example, 
given the equations for colonization and extinction (above), the incidence function can 
be reduced to: 

 

௜ܬ ൌ 	 ቈ1 ൅
ݕ݁

௜ܵ
ଶܣ௜
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based on connectivity (Si) and patch size Ai. This can be parameterized as a linear 
model for the log-odds of incidence: 
 

logitሺܬ௜ሻ ൌ ଴ߚ	 ൅ 2 log ܵ ൅ ଵߚ log  ܣ
 
which defines a generalized linear model with logistic link function (ter Braak et al. 1998; 
Oksanen 2004). Examples of this derivation and of ecological data are available in ter 
Braak et al. (1996). 
 

4.1.3 DISPERSAL 

Dispersal (α) is parameterized in incidence function models using a dispersal 
kernel. Dispersal kernels fit empirical estimates of species movement to a mathematical 
function. They have been used extensively in metapopulation models and assume that 
patch accessibility is dependent on distance (Hansson 1991; Hanski et al. 1996; 
Moilanen 2004). One advantage of dispersal kernels is that they allow researchers the 
ability to extrapolate relationships in patch occupancy, often using species life-history 
characteristics, without the need for labour-intensive field studies (Moilanen 2004; Heinz 
et al. 2005). For example, body size allometry can be used to estimate dispersal ability 
(see Minns 1995) and incorporated into incidence function models without the need for 
expensive field studies (e.g. mark-recapture). Such measures are often useful when 
dispersal data are not available, as is often the case with species at risk (Velez-Espino 
and Koops 2008; Velez-Espino and Koops 2009a; Velez-Espino and Koops 2009b).  

 
Choosing an appropriate dispersal kernel can often be challenging (Heinz et al. 

2005; 2006). First, numerous dispersal kernels exist (see Table 3). Second, studies 
have shown that the quantification of dispersal can alter estimates of metapopulation 
viability (Ovaskainen and Hanski 20004; Heinz et al. 2005; 2006; Revilla and Wiegand 
2008), sometimes drastically so (Poos and Jackson 2012). Most models of 
metapopulation viability use a negative exponential decay dispersal kernel (Hanski 
1994; Vos et al. 2001; Frank and Wissel 2002), although it may be sensitive in some 
instances (Poos and Jackson 2012).  

4.2 DETERMINING POPULATION VIABILITY 

 Incidence function models can be used to estimate population viability by adding 
stochasticity into the model and building forward projections (see Table 3). Each of 
these modelling approaches deal with adding stochasticity into the model differently, 
and in some cases, colonization potential as well (e.g. R and SPOMSIM versus META-
X; Table 4). 
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Table 3 – Examples of dispersal kernels available for developing incidence function 
models. All formulas give the proportion of individuals able to move from patches i and j, 
given distance (dij). Adopted from Chapman et al. (2006). 

Kernel Formula Key References 

Negative 
exponential  

exp	ሺെߪଵ݆݀݅ሻ 
Hanski and Gilpin (1997) ; 
Hanski (1999); Hanski et al. 
(2000) 

Gausian exp	ሺെ݆݀݅/2ߪଶሻ Turchin (1998) 

Inverse power 
function 

ቈ
1 ݂݅ ݅ ൌ ݆

min	ሺ1, ݀௜௝
ିఈଶ ݂݅ ݅ ് ݆቉ Chapman et al. (2006) 

Extended negative 
exponential decay 

exp	ሺെߙଷ݀௜௝
ఉଶሻ Taylor (1978) 

Fat tail 

 
1

1 ൅	ߙସ݀௜௝
ఉଶ 

 

Moilanen (2004) 

Sigmodial function 1 െ	݁ି௔∗௘
ቀషഁ∗೏೔ೕቁ

 Heinz et al. (2006) 

Note: σ indicates variance. Parameters α & β are from fitting the dispersal kernel to empirical data. 
 

4.3 ADVANTAGES 

Incidence function models are a crucial tool for the management of species at 
risk (Ackakaya 2000). Incidence function models have been used extensively to model 
the viability of spatially structured populations (Hanksi 1999; Moilanen 1999) including 
several endangered species of butterfly (Hanski 1999; Grimm and Storch 2000).  As 
incidence function models are among the simplest form of population viability analyses 
(Akçakaya and Sjögren-Gulve 2000), they do not require demographic or stage data, 
but only occupancy, colonization and extinction rates, which can be easily estimated 
from empirical data (Hanski 1994,1999; Moilanen 1999, 2004; Grimm et al. 2004). This 
is a clear advantage over other modelling approaches (e.g. demographic PVA, API, 
MAPV, or other spatially explicit models, Sections 5.0-7.0), especially when data is 
limited, as the case with many species at risk. 

 
Incidence function models have become relatively commonplace in conservation 

biology. Modifications have been made to incidence function model to provide more 
realism, such as consideration of patch quality (Moilanen and Hanski 1998; Ovaskainen 
and Hanski 2002), improved dispersal metrics (Ovaskainen 2004; Heinz et al. 2005), 
incorporation of transition states (Thomas and Hanski 2004), and rigorous parameter 
estimation techniques (Moilanen 1999; Dreschler et al. 2003). Quantitative comparisons 
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of incidence function modelling approaches have shown them to be comparable to other 
spatially explicit models (Kindvall et al. 2000; Keeling 2002). 

4.4 LIMITATIONS 

There is an ongoing debate whether incidence function models are useful in 
cases where the assumptions of classic (i.e. Levin’s type) metapopulations are not met 
(see Levins 1969; Harrison 1994; Baguette 2004; Hanski 2004; Shreeve et al. 2004). 
For example, empirical studies have demonstrated large temporal variation in patch 
dynamics (i.e. colonization and extinction rates) can lead to sensitivity of incidence 
function models (Crone et al. 2001; Thomas et al. 2002). In addition, there are few 
empirical examples of metapopulations that meet the assumption of a constant pulse of 
extinction-colonization (e.g. pool frog; Sjogren-Gulve 1991; Glanville Fritillary butterfly; 
Hanski et al. 1994); while the vast majority do not (Harrison 1994; Baguette et al 2004). 
However, contrary to such criticisms, incidence function models have been shown to be 
appropriate for use from a range of spatially structured populations: from classic 
metapopulations to species found in fragmented landscapes with patchy distributions 
(Ovaskainen and Hanski 2004). For example, using an incidence function model with 
individual based background, Ovaskainen and Hanski (2004) provide a unifying 
framework for incorporating metapopulation dynamics into incidence function models.  

 
Studying metapopulations in stream settings is challenging and has limitations 

which should be noted for developing incidence function models. Gotelli and Taylor 
(1999) showed that stream fish may not fit Levin’s type metapopulation models as 
migration may cause asynchrony in upstream versus downstream movement. Fagan 
(2002) demonstrated how a dendritic network can provide additional isolation of patches 
not encountered in terrestrial landscapes.  As streams represent linear, stepping stone 
metapopulations, most software packages (Table 4) are not well suited for modelling 
these systems, and custom approaches are needed (e.g. Grinnell et al. 2011). 

 
Understanding how species specific dispersal and patch specific qualities can 

alter incidence function models is important for developing robust models (Heinz et al. 
2006; Poos and Jackson 2012). Species specific dispersal has been shown to alter 
incidence function models, and in turn rates of population viability (Poos and Jackson 
2012). For example, Heinz et al. (2005; 2006) used simulated data to demonstrate that 
viability of patches in a metapopulation can change based on the way dispersal was 
modeled. Better integration of species specific behaviour is needed into incidence 
function models (Tischendorf 2001; Vos et al. 2001; Baguette and vanDyck 2007). In 
addition, patch specific processes can alter metapopulation dynamics in many ways 
(Roitberg and Mangel 1997; Hanski and Moilanen 1998; Schtickzelle et al. 2006). Patch 
quality can affect both the probabilities of colonization and extinction of an empty patch 
(Hanski and Moilanen 1998).  

4.5 IMPLEMENTATION  

Statistical packages - including freely available code – and ecological examples 
for developing incidence function models can be found in Table 4. 
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Table 4 – Software packages used for forecasting incidence function models to estimate population viability. 

Software Ecological Example Key Reference 

SPOMSIM 
Avian conservation (Beissinger et al. 2006) ; marmot metapopulations 
(Ozgul et al. 2006) 

Moilanen (2004) 

R 1 Stream fishes (Poos and Jackson 2012) Oksanen (2004) 

PATCH  
Regional conservation planning, e.g. Grizzly bears, wolves, wolverines 
(Carroll et al. 2003; 2004) 

Schumaker (1998) 

HEXSIM Ord’s kangaroo mouse (Heinrichs et al. 2010) Schumaker (2012) 

META-X Butterfly metapopulations (McIntrie et al. 2007) Grimm et al. (2004) 

ALEX Reintroduction of the Greater Bilby (Southgate and Possingham 1995) Possingham and Alex (2004) 

Conefor 
Sensinode 2.2 

Capercaillie in Catalonia, Spain (Pascual-Hortal and Saura 2008) Saura and Torne (2009) 

Note: See also ter Braak et al. (1998) and Baguette (2004) for a review of ecological examples. 1 R statistical package is freely available at URL: 
http://www.r-project.org/ 
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5.0. AREA PER INDIVIDUAL (API) 

Space use is related to body size; larger individuals need and use more space. 
This is the basic ecological concept underlying the area per individual (API) approach. 
Ecology has identified body size as a driver in many ecological processes (e.g., 
Schmidt-Nielsen 1984, Peters 1986, Hildrew et al. 2007), including the number of 
individuals that can occupy a given space. For example, Cyr et al. (1997) provide an 
allometry between body size and density (number of individuals per unit area) for 
aquatic organisms, and similar relationships have been demonstrated for fishes (e.g., 
Boudreau and Dickie 1989, Randall et al. 1995). Area per individual is the inverse of 
density. 
 

Individuals need space to complete life processes such as finding sufficient food 
for energy demands (with larger individuals having greater energy requirements), refuge 
from predators, and reproduction. The API approach assumes that when an individual 
has less space (due to limited habitat availability or increased density) there is a cost, 
and the cost is realized through reduced survival. Essentially, the API approach is a 
density-dependent mechanism consistent with the concept of a carrying capacity. An 
area of habitat can support a limited number of individuals and this capacity diminishes 
as the size of individuals increases. 
 

The API approach assumes a basal survival (sb) when there are no habitat 
limitations or density-dependent effects. Under these conditions, the habitat available to 
each individual is equal to or greater than the API requirement. As the area available 
per individual declines below the API, due to either reductions in available habitat or 
increases in the number of individuals using the same habitat area, survival declines. 
The simplest assumption is a linear decline (Fig. 1).  This scalar to survival can be 
added to a population model to evaluate the population-level effects of habitat 
limitations (e.g., Minns et al. 1996, Minns 2003, Vélez-Espino and Koops 2009). 

5.1 DATA REQUIREMENTS 

In addition to a population model, the API approach requires (i) an estimate of 
API, (ii) an estimate of habitat available for each life stage, and (iii) an estimate of 
abundance or density in each habitat. The habitat and abundance (or density) 
estimates, while not trivial to acquire, are not unique to this approach and will not be 
dealt with further here. There are a couple of approaches to estimating API. The 
preferred approach is an estimate based on observed densities in healthy populations 
of the species. Data from an area comparable to the available habitat (e.g., type of 
habitat and ecosystem, quality, etc.) can provide the most directly applicable estimate of 
API. In the absence of species-specific information, an allometry can be used to 
estimate density based on body size. API is estimated as the inverse of density. An 
estimate of API for each life stage should be calculated as body size differences among 
life stages will change habitat requirements and density-dependent effects. 
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5.2 ADVANTAGES 

The API approach is based on the known, proven ecological principle that body 
size determines space use with larger individuals using and requiring more habitat than 
smaller individuals. There are minimal data requirements which can be estimated (e.g., 
using allometries) for species with very limited data. The API approach can also be 
expanded to include habitats of differing quality through the addition of a scalar (Minns 
2003). 

5.3 LIMITATIONS 

The API approach, as currently applied, assumes that density directly affects 
survival. While there are ecological mechanisms where density can affect growth or 
reproduction, there has not yet been an attempt to frame these effects within an API 
approach. The API approach assumes that all individuals are equal. If multiple stages 
use the same habitat, the API approach does not account for the differences in 
competitive ability between individuals of different life stages (e.g., juveniles versus 
adults) if they share the same habitat.  The API approach is not spatially-explicit. It 
deals with the total amount of habitat and assumes that the configuration of that habitat 
(e.g., one large patch versus many small patches) does not affect the individuals or 
population. This assumes that there are no edge effects and no costs to moving among 
patches. 

5.4 IMPLEMENTATION 

 Code for developing API is currently not available. However, examples of 
demographic models are available from Morris and Doak (2002), which will allow users 
the ability to implement API. 
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6.0. MINIMUM AREA FOR POPULATION VIABILITY (MAPV) 

The minimum area for population viability (MAPV) concept is an approach to 
quantifying habitat needs for population viability based on the minimum viable 
population (MVP) concept and the API approach (Vélez-Espino et al. 2010). As a 
generalization, it posits that the amount of habitat needed to support a recovered 
population is a product of the number of individuals in the recovered population and the 
amount of habitat each individual needs to support their life processes. Specifically, it 
has been applied in cases where the recovery target is set for demographic 
sustainability by identifying the MVP and habitat needs are calculated based on an API, 
or: 
(1) APIxMVPMAPV   
 

On its own, equation 1 provides an estimate of habitat area needed to support a 
specified number of adults (the MVP). To ensure long-term sustainability of the 
population, habitat is needed for all life stages. This can be quantified by first calculating 
the number of juveniles and young of the year (YOY) needed to support this number of 
adults. The stable stage distribution from a population model at equilibrium (i.e., with a 
population growth rate of  = 1) allows the calculation of these numbers. Equation 1 can 
then be repeated for each life stage and then summed across all life stages to get an 
estimate of the amount of habitat needed to sustain the whole population at MVP (Fig. 
2). Note that the API for each life stage will differ since adults are larger than juveniles 
which are larger than YOY. 
 

If a life stage occupies multiple habitats (e.g., a summer and a winter habitat), 
then MAPV calculations need to be applied to each of these habitats. Exceptions to the 
calculation of area requirements based on API will include habitats with functions that 
are not related to the productivity of those habitats. For example, migration corridors 
need to be included in critical habitat identification but would not be based on API 
considerations. Instead, the size of migration corridors needs to maintain connectivity 
among habitats and allow passage of individuals at the appropriate time. Spawning 
habitat area may also be different than an area estimate based on adult API. Minns 
(2003) proposed calculating spawning habitat based on the API calculated from egg 
diameter. However, this may under-estimate spawning habitat needs of large-bodied 
fishes (e.g., Lake Sturgeon, Randall 2008) or fishes with eggs that drift (e.g., Western 
Silvery Minnow). 

6.1 DATA REQUIREMENTS 

The MAPV approach requires a recovery target (e.g., an estimate of MVP), an 
estimate of API for each life stage (see Section 5.0), and an estimate of the stable stage 
distribution. Calculation of the stable stage distribution requires a population model. 
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6.2 ADVANTAGES 

The MAPV approach is based on the API approach and inherits its advantages. It 
has minimal data requirements and can be applied to species with limited data. 

 

6.3 LIMITATIONS 

The MAPV estimate is a minimum and should be considered a first-order 
approximation of the amount of habitat need to support a population. Assuming that the 
API estimates are correct, the MAPV will perch the population on the edge of density-
dependent effects. This will make the population very sensitive to increases in density 
(e.g., due to higher abundances) or decreases in habitat (which may not be human-
induced). Simulations by Young and Koops (2012) showed that a population with MAPV 
habitat available will, on average, maintain a population at the MVP, but that the 
population will often fluctuate below MVP. Vélez-Espino et al. (2010) recommended 
adding a buffer zone around the MAPV amount of habitat. Young and Koops (2012) 
found that a habitat area one and a half times larger than the MAPV would ensure that 
the population was above MVP 95% of the time. 
 

Like the API approach, the MAPV approach is not spatially-explicit, but deals with 
the total aggregate of habitat area. As such, it does not capture edge effects or the 
costs associated with transiting among patches. There is no consideration given to the 
configuration of habitat, which has been shown to influence the effectiveness of 
protected areas. 

 

6.4 IMPLEMENTATION 

 Code for developing MAPV is currently not available. However, examples of 
demographic models are available from Morris and Doak (2002), which will allow users 
the ability to implement MAPV. 
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7.0. SPATIALLY EXPLICIT POPULATION MODELS 

Population viability analysis (PVA) was originally used to simulate population 
dynamics, quantify extinction risk or estimate time to extinction while accounting for 
uncertainty. During the past 30 years, PVA applications have diversified to include 
estimating minimum viable population (MVP) sizes (e.g. Reed et al. 2003), predicting 
population dynamics under alternative resource management scenarios (e.g. Curtis & 
Vincent 2008), identifying critical habitat (e.g. Curtis and Naujokaitis-Lewis 2008a) and 
using sensitivity analysis to prioritize research needs and recovery activities for species 
at risk (Naujokaitis-Lewis et al. 2009). The structure of PVA models and the kinds of 
predictions generated by these models vary widely and according to study objectives, 
data availability, species biology, and the expertise and capacity of modelers to build 
them. In this section, we focus on a class of complex, data-intensive Monte-Carlo 
simulation models, namely habitat-based, spatially-explicit PVA models, and discuss its 
potential applications for setting population and habitat-based recovery targets and 
identifying critical habitat.  

7.1 DATA REQUIREMENTS 

Habitat-based, spatially-explicit models typically integrate a habitat suitability 
sub-model and a population dynamics sub-model with functions that link the two. 
RAMAS GIS is one of the most commonly-used software platforms for developing these 
models (Naujokaitis-Lewis 2009). The RAMAS GIS user manual (Akçakaya et al. 2005) 
provides an excellent primer for those wishing to learn more about how to develop and 
apply these simulation models. Here, we provide an overview of the approach, its 
potential applications, and tools that have been developed for use with RAMAS 
software for species at risk recovery planning and critical habitat identification, including 
the freely available program GRIP (Curtis & Naujokaitis-Lewis 2008a,b) version 2.0 (Fig. 
2), written in the statistical programming language R (R Development Core Team 2011).  
 

When developing a habitat-based, spatially-explicit PVA model with RAMAS 
software, the first step is to develop a habitat suitability model (see Section 3). Once 
developed, the habitat suitability model provides the basis for defining the spatial 
structure of discrete patches of suitable habitat with RAMAS Spatial, by specifying a 
habitat suitability threshold (above which populations are self-sustaining) and a 
neigbourhood distance, which reflects the daily movement patterns of individuals 
(Akçakaya et al. 2005). In RAMAS software, discrete patches of suitable habitat are 
treated synonymously as discrete populations (if occupied) linked by varying rates of 
dispersal. The dynamics of each population are typically modeled with a stage-based 
transition matrix whereby fecundities or survival rates or both are varied at each time 
step according to functions including those governing density-dependence, spatial 
autocorrelation, exploitation, landscape dynamics, climate change, and stochastic 
processes including the frequency and impacts of catastrophes. Population dynamics 
can also vary according to dispersal functions, and functions that link initial or global 
conditions that vary according to habitat suitability. As one example, the carrying 
capacity, K, of discrete patches of suitable habitat could be specified as a function of 
total habitat suitability or total patch area. Once the population sub-model is specified 
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and initialized, RAMAS Metapop can be used to simulate the dynamics of spatially-
structured populations in the landscape defined with RAMAS Spatial. For more details, 
please refer to Akçakaya et al. (2005). 
 

One of the key limitations of applying habitat-based, spatially-explicit PVA 
models, regardless of the objectives, is dealing with a number of important sources of 
uncertainty. Uncertainties in PVA models can derive from natural variation, errors in 
parameter estimation, incorrectly specified model structures, vague terminology, and 
spatial inaccuracies. Thus best practices for such PVA models includes carrying out a 
systematic and comprehensive sensitivity analysis to evaluate the influence of input 
parameters and model structure on predictions (Naujokaitis-Lewis et al. 2009). Global 
sensitivity analyses, whereby all parameters of interest are varied simultaneously, are 
particularly useful for ranking the relative influence of parameters on model predictions, 
identifying, assessing interactions among parameters, and prioritizing alternative 
management actions. Global sensitivity analyses, however, are rare in PVAs likely due 
to the computational requirements of varying habitat and demographic parameters 
simultaneously (Naujokaitis-Lewis et al. 2009).  
 

GRIP 2.0 is a tool that can be used to automate global sensitivity analyses of 
habitat-based, spatially-explicit PVA models, based on GRIP 1.0 (Curtis & Naujokaitis-
Lewis 2008b) a program designed to automate sensitivity analyses of spatially-implicit 
PVA models created with RAMAS Metapop software (Akçakaya et al. 2005). GRIP 2.0 
uses the baseline map of discrete patches of suitable habitat defined with RAMAS 
Spatial as a template for creating a specified number of alternative realizations of 
landscapes (Figure 3). For each alternative landscape, a unique population model is 
develop by randomly varying the parameters in the population dynamics model as in 
GRIP 1 and described in Curtis and Naujokaitis-Lewis (2008a,b). Once the replicate 
landscapes and corresponding population dynamics models are created, each with a 
unique set of input parameters, GRIP 2.0 submits the corresponding input files for 
RAMAS to run the simulations, and then collates the model output for further analysis. 
The GRIP scripts can also be customized easily to vary parameters and functions 
systematically to create a series of alternative management scenarios for comparison 
under uncertainty (e.g. comparison of alternative minimum size limits for fisheries 
management, Curtis & Vincent 2008).  
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Figure 2 - A schematic of the key steps for carrying out a global sensitivity analysis of a 
habitat-based, spatially-explicit PVA model with RAMAS GIS (Akçakaya et al. 2005) and 
GRIP (Curtis & Naujokaitis-Lewis 2008a,b) version 2.0 (figure from Naujokaitis-Lewis 
and Curtis, unpublished). 
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Output from a global sensitivity analysis of a habitat-based, spatially-explicit PVA 
model can be used to rank the relative importance of model parameters (see Curtis & 
Naujokaitis-Lewis 2008a) and to set recovery targets, given specified recovery goals 
(Fig. 3). Influential parameters can help prioritize research (e.g. if parameter values are 
uncertain) or help identify potential management actions that could influence population 
viability. For instance, if adult survival rate is highly influential of model predictions (e.g. 
extinction probability or metapopulation abundance) but is unknown or uncertain due to 
limited data, that parameter could be flagged as a high priority for further research. By 
contrast if the same influential survival rate was well known for a population, the 
parameter could be used to prioritize management strategies that enhance adult 
survival. Figure 3 summarizes the relative importance of input parameters from PVA 
models of 45 vertebrate and invertebrate species. Across these species, the carrying 
capacity, initial abundance, and number of discrete populations have the strongest 
influence on population viability.  

 

  
Figure 3 - The relative importance of PVA model input parameters on extinction 
probability of 45 invertebrate and vertebrate species. Relative importance is measured 
simply as the Spearman correlation coefficient, with larger median coefficients 
corresponding to more influential parameters (Curtis, unpublished data).  
 

 
Using the same simulation output from a global sensitivity analysis, one can 

estimate the habitat carrying capacity, number of populations and configuration of those 
populations required to meet specified recovery goals under uncertainty. Figure 4, for 
example, provides estimates of the minimum number of discrete populations required to 
meet three recovery goals for the same 45 species: ensure the probability of extinction 
remains at or below 0.2, 0.1, or 0.05. Such simulation results and analyses, whether 
based on a single species or pooled among many, can be used to inform decisions on 
the amount and configuration of habitat required for species survival and recovery.  
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Figure 4 - The minimum number of discrete populations (subpopulations) required to 
achieve three recovery targets (extinction probability < 0.2, 0.1, 0.05). Each black line 
represent the relative density of estimates for one of 45 vertebrate and invertebrate 
species, while the red line represents the expected number of populations across all 
species (Curtis, unpublished data).  
 

7.2 ADVANTAGES 

The key advantage of coupling global sensitivity analysis with habitat-based, 
spatially-explicit PVA models is the ability to evaluate the influence of parameter values, 
model structure, and alternative landscape and population management scenarios on 
model predictions of interest, in a transparent, repeatable manner while accounting for 
uncertainties. Specifically, these models allow users to evaluate the relative influence of 
habitat quality, habitat quantify, and habitat configuration on population dynamics. 
Although rarely attempted, PVA model predictions can also be validated and evaluated 
against empirical data.  

 

7.3 LIMITATIONS 

The key limitations of habitat-based, spatially-explicit PVA models include 1) data 
requirements, 2) many sources of uncertainty, and 3) a capacity for estimating 
parameters, programming, running simulations and analyzing multivariate data.  

 

7.4 IMPLEMENTATION 

Code for implementing global sensitivity analyses using GRIP 1.0 is available for 
the R programming language (R Development Team 2011) from Curtis & Naujokaitis-
Lewis (2008b). Code for GRIP 2.0 is currently awaiting publication and will be available 
later in 2012. Code is also available for determining the importance of habitat patches 
(Grinnell and Curtis 2012) and for calculating network distances between habitat 
patches in spatially restricted species (Grinnell and Curtis 2011). 
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