ANTIBIOTIC RESISTANCE OF SHIGELLA SPP., SALMONELLA SPP., AND YERSINIA SPP. ISOLATED IN QUEBEC

Salmonella spp., Shigella spp., and Yersinia spp. are important enteropathogenic bacteria. Antibiotic treatment is normally indicated for infections caused by Shigella spp. and only in the case of severe infections for Salmonella spp. and Yersinia spp. Studies from a number of countries have reported the development of resistance of these bacteria to certain antibiotics. The new quinolones, such as ciprofloxacin, have proven effective in vitro against the usual enteropathogens. There are no recent Quebec data on the antibiotic resistance of these enteropathogenic bacteria.

Methods
The purpose of this study was to demonstrate the susceptibility of 125 strains of Salmonella spp., 118 of Shigella spp., and 53 of Yersinia spp. isolated from 296 patients at Hôpital Saint-Luc, Montreal, between 1991 to 1995. Susceptibility to ampicillin, trimethoprim/sulfamethoxazole (TMP/SMX), and ciprofloxacin was determined using standardized disk diffusion (1991 to 1992) and agar dilution (1993 to 1995) methods. Twenty percent of the strains of Salmonella spp. were isolated from blood cultures. Of these, one was identified as S. typhi and two were identified as S. paratyphi A. The remaining strains were identified serologically as belonging to group B — 47 strains, group C — 42 strains, group D — 25 strains, group E — five strains, and group G — one strain. Two strains could not be typed serologically. Of the 118 Shigella strains investigated, these were identified as belonging to S. dysenteriae — one strain, S. flexneri — 77 strains, S. boydii — five strains, and S. sonnei — 35 strains. Of the 53 Yersinia strains identified, one belonged to Y. frederiksenii and the remaining 52 strains belonged to the Y. enterocolitica.

Table 1 shows the number and percentage of strains that were resistant or multireistant to the antibiotics tested. None of the Shigella or Salmonella strains were resistant to ciprofloxacin and none of the Yersinia spp. strains were resistant to TMP/SMX or ciprofloxacin.

Table 2 shows the number and percentage of Shigella strains that were resistant or multiresistant to ampicillin or to TMP/SMX. The one S. dysenteriae strain was resistant to TMP/SMX. Of the five S. boydii strains, one was resistant to ampicillin and to TMP/SMX. The S. flexneri strains were significantly more resistant to ampicillin than were those of S. sonnei, at 79.2% and 34.3%, respectively (p = 0.0000037). The S. sonnei strains were significantly more resistant to TMP/SMX than were those of S. flexneri, at 42.9% and 18.2%, respectively (p = 0.0057). Resistance to ampicillin and to TMP/SMX was observed in 13% and 22.9% of the S. flexneri and S. sonnei strains, respectively.

Discussion
An Ontario study of 598 Shigella strains isolated in 1990 found that 39% to 89% were resistant to ampicillin and 27% to 38% were resistant to TMP/SMX. None of the investigated strains were resistant to ciprofloxacin. An American study of 798 Salmonella strains, isolated between 1989 and 1990, found 13% were resistant to ampicillin, 15% were resistant to TMP/SMX, and 0% were...
resistant to ciprofloxacin. The Yersinia spp. are normally reported as being resistant to ampicillin, but susceptible to TMP/SMX and ciprofloxacin.

In this study, as in a previous one, resistance to ciprofloxacin in Shigella spp., Salmonella spp., and Yersinia spp. was not observed; a high proportion of the Shigella strains, but relatively few of the Salmonella, were resistant to ampicillin, TMP/SMX, or both. The S. flexneri strains were significantly more resistant to ampicillin but significantly less resistant to TMP/SMX than were those of S. sonnei. The majority of the Yersinia strains were resistant to ampicillin but none were resistant to TMP/SMX or ciprofloxacin. Continuous surveillance of antibiotic susceptibility is essential in monitoring the evolution of their susceptibility profiles and in determining which antibiotics may be of value in the treatment of these bacterial infections.

Acknowledgements
The authors wish to thank the personnel of the aerobic bacteriology and susceptibility testing sections of the Medical Microbiology Laboratory for their valuable assistance.

References

Source: C Gaudreau, MD, P Turgeon, MD, Medical Microbiology and Infectious Diseases Unit, Hôpital Saint-Luc, Montreal, QC.

International Notes

SHIGELLA VACCINE RESEARCH AND DEVELOPMENT

At the end of 1996, a meeting was organized at the World Health Organization (WHO), Geneva, by the Steering Committee on Diarrhoeal Disease Vaccines (Global Programme for Vaccines and Immunization), which has placed Shigella vaccine development first in line of its priorities.

Background on shigellosis
Shigellosis causes about 600,000 deaths every year globally. The increasing number of infected persons in some areas of the world, in addition to the emergence of strains resistant to multiple antibiotics, emphasizes the need for an effective vaccine. In developing countries, the major burden of Shigella infection is among children 1 to 4 years of age, but during Shigella dysenteriae type 1 epidemics all age groups are affected. Various surveys carried out in treatment centres show that Shigella is associated with 5% to 15% of cases of diarrhea and 30% to 50% of cases of dysentery. S. flexneri serotypes (serotype 2a is the most common) predominate as agents of endemic shigellosis. S. dysenteriae 1 (Shiga bacillus) has been an important cause of epidemic dysentery in Latin America, Asia, and Africa since the 1960s. Epidemics are characterized by severe clinical disease, high case fatality, person-to-person spread, and multiple antibiotic resistance. Shigella persists as a public-health problem in several sub-populations in industrialized countries, including children in

Table 2
Antibiotic resistance of Shigella

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>S. dysenteriae</th>
<th>S. flexneri</th>
<th>S. boydii</th>
<th>S. sonnei</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>0</td>
<td>61 (79.2%)</td>
<td>1 (20%)</td>
<td>12 (34.3%)</td>
<td>74 (62.7%)</td>
</tr>
<tr>
<td>Ampicillin and TMP/SMX</td>
<td>0</td>
<td>14 (18.2%)</td>
<td>1 (20%)</td>
<td>15 (42.9%)</td>
<td>31 (26.3%)</td>
</tr>
<tr>
<td>TMP/SMX**</td>
<td>1</td>
<td>10 (13%)</td>
<td>1 (20%)</td>
<td>8 (22.9%)</td>
<td>19 (16.1%)</td>
</tr>
</tbody>
</table>

* One strain per patient ** Resistance to TMP/SMX

\(p = 0.0000037 \)
\(p = 0.0057 \) (chi-square test)
Candidate vaccines under development

The primary role of a Shigella vaccine would be to protect against clinical disease. An additional benefit would be to interfere with infection and colonization. The most important Shigella strains to be targeted for vaccine development are S. flexneri 2a, S. dysenteriae 1, and S. sonnei. However, the possible emergence of new serotypes has been emphasized. The emergence of S. flexneri serotypes 1, 3, and 6 has been observed in various countries. In addition, improved sanitation and socioeconomic development in several emerging economies have been accompanied by a switch towards a predominance of S. sonnei.

Live attenuated strains: Two prototype attenuated vaccine strains of S. flexneri 2a and S. dysenteriae 1 have been developed in the United States. The two strains are safe, highly immunogenic in stimulating secretory IgA (sIgA) antibodies and protective in the guinea-pig challenge model (Sereny test). Preliminary phase I clinical trials with one of these strains have recently begun.

Another attenuated mutant S. flexneri 2a vaccine strain has been developed in France. It resulted in a double attenuation of its capacity to move intra- and inter-cellularly, and of its survival within tissues. After being tested in macaque monkeys and shown to be protective in 75% of vaccinated animals, double-blind, placebo-controlled studies on the safety and the immunogenicity of this candidate vaccine were recently conducted in volunteers in the United States. The dose used was shown to be safe and immunogenic. Volunteers had high levels of circulating antibody-secreting cells, similar to those observed in clinical shigellosis. These encouraging results supported an expanded phase I study initiated in July 1996 and which is currently ongoing.

Other candidate vaccines have been developed in Sweden, based on the auxotrophic mutant of S. flexneri Y strain, which were well tolerated and highly protective in monkeys. They elicited species-specific antibody responses directed not only against serotype Y, but also against serotypes 1b and 2a, leading to cross-protection. In a safety and immunogenicity trial in Swedish volunteers, they were shown to be safe and to elicit significant anti-lypopolysaccaride (LPS) peripheral and secretory antibody responses, and significant increases in anti-LPS-specific peripheral antibody-secreting cells. The advantages of a Shigella vaccine based on serotype Y include possible cross-protection as well as a possible widened spectrum of protection via conversion to the other sero-types by phage transduction. Protection elicited by these different strains remains to be tested in humans.

Another approach, based on expression of LPS in a live attenuated vector, is under development in Mexico. To develop a candidate vaccine against S. dysenteriae 1, gene clusters, which code for S. dysenteriae 1 O-antigen biosynthesis have been manipulated and introduced into the vector. The resulting vaccine is able to express O-antigen, producing a good level of protective antibodies in animal models and yielding 47% full protection and 53% partial protection (later onset of disease and/or less severe symptoms) against challenge with the wild-type strain. A derivative of the previous strain which expresses the Shiga toxin B- subunit-HlyA fusion and the O-antigen of S. dysenteriae 1 was also constructed. Immunogenicity and safety should be further assessed in human volunteers.

A similar approach has been taken in Switzerland. In this case, the strains used as a carrier for the expression of O-antigen were two already licensed vaccine strains. A first generation cholera vaccine vector-based strain, named CH3, that expresses both host-encoded (Inaba) and heterologous (S. sonnei) O serotype (bivalent strain) showed weak but significant immunogenicity in human volunteers. A clinical trial is planned for the end of 1997 with one or two strains selected for properties that should ensure optimal survival of the vaccines in the gastrointestinal tract. Using the same approach, a candidate S. dysenteriae type 1 vaccine strain has also been constructed.

Subunit vaccines

Conjugate vaccines: An evaluation of a S. sonnei-recombinant exoprotein A (rEPA) and S. flexneri 2a-rEPA parenteral conjugate vaccines has been conducted in Israel. A phase II (double-blind, randomized, vaccine-controlled study) performed in 192 volunteers revealed that the vaccines were safe and highly immunogenic. Four years after a single dose of the S. sonnei conjugate, 50% of the vaccinees still had significantly higher levels of anti-LPS antibodies compared with the pre-vaccination stage. The protective efficacy of a single injection of the S. sonnei conjugate has been further evaluated among Israeli military recruits naturally exposed to Shigella during their training cycles under field conditions. During outbreaks of S. sonnei infection which occurred among volunteers 71 to 155 days after immunization, the S. sonnei conjugate showed 74% protective efficacy. The data indicate that a single injection of the S. sonnei conjugate may confer type-specific protection against shigellosis caused by S. sonnei.

Proteosome vaccines: Proteosomes are multimolecular vesicles formed from Neisseria outer membrane proteins that are used as mucosal vaccines to induce systemic and mucosal immune responses. After nasal or oral immunization in mice or guinea pigs with S. flexneri or S. sonnei proteosomes, high levels of antibodies against LPS are induced in intestinal and lung secretions as well as in serum. Monkey studies showed that intranasal administration was more efficient than nasal spray, and nasal spray more efficient than oral delivery. Good manufacturing practice (GMP) production of S. sonnei and S. flexneri vaccines has yielded candidate vaccines for human clinical trials. The initial phase I trial of the proteosome S. sonnei vaccine, a dose-escalating study, showed a dose-dependent immune response after two intranasal spray administrations, whereas oral immunization gave only minimal antibody-secreting cell responses. A phase I trial of S. flexneri 2a proteosome vaccine is planned, as well as expanded nasal or nasal-oral combination prime and boost studies.

Shigella nucleoprotein (ribosomal) vaccine: This approach has been taken in the United States. Parenteral vaccination with the non-covalent complexes of O-polysaccharide and ribosomal particles from Shigella induces an intense systemic O-antibody response in experimental animals. It also elicits a significant response of the secretory immune system with IgA antibodies.
appearing in tears, milk (guinea pigs), bile (rats), and saliva (monkeys). One subcutaneous injection of the vaccine protects 70% to 90% of animals from the challenge with homologous Shigella in the guinea-pig model. Lyophilized Shigella ribosomal vaccine is very stable and can be produced at low cost. A GMP protocol for vaccine production on a large scale is now under development.

Recommendations

Based on the data presented and on discussions, a consensus was reached on several major points that should be taken into account for accelerating Shigella vaccine development.

Disease burden and need of a vaccine: A general consensus of the meeting was that development and availability of Shigella vaccines should be a major public-health priority. Because industrialized and developing countries have different dominant serotypes, different vaccines (or components) may need to be developed to cover strains in different geographic areas. A special emphasis was placed on the need for development of a vaccine against *S. dysenteriae* type 1.

Epidemiologic situation: Although many epidemiologic data are available, more work is needed to establish the incidence, prevalence, disease burden, and serotype distribution of shigellosis in many areas of the world so that country, regional, and global estimates can be made. Manufacturers need these data, which may be difficult for them to obtain directly. The potential areas to be selected for these trials should ideally meet the following requirements: a stable population, a well-functioning health-care delivery system, and suitable laboratories for conducting microbiologic evaluation. The need for a monograph summarizing available epidemiologic data was stressed; this will be produced under the auspices of the steering committee.

Vaccine strategies: It was recommended that all the different vaccine approaches developed so far should continue to be evaluated. There are no data to suggest that any of them should be stopped because of its ineffectiveness. In any case, the efficacy of a candidate vaccine directed against one of the major serotypes should be demonstrated. The development of a trivalent vaccine directed against the three major strains responsible for the disease (*S. flexneri* 2a, *S. dysenteriae* 1, and *S. sonnei*) would then be undertaken. Priority should be given to the development of a *S. dysenteriae* 1 vaccine. Special note should be made of the ethical problem related to the evaluation of the protective efficacy of such a candidate vaccine, since this type of vaccine cannot be evaluated in many volunteers challenged with a virulent strain expressing the toxin.

Features for an ideal vaccine: An ideal vaccine should be easy to administer, preferably orally, although parenteral vaccines should not be discarded if all the following requirements are met: well-tolerated; able to induce a high-level, long-term protection after a single dose; multivalent; directed against the most representative *Shigella* serotypes causing endemic and epidemic infections; and easy to manufacture.

WHO Editorial Note

It is important to stress that a consensus was reached among researchers, vaccine manufacturers, representatives of the Expanded Programme on Immunization, and public-health decision-makers from developing countries, with regard to the urgent need for an effective and safe vaccine against diarrhea due to *Shigella*, particularly since the emergence of multiple antibiotic resistance is such a serious problem.

Additional information is available upon request, addressed to the Vaccine Research and Development unit, WHO (tel. 41 22 791 2698 — E-mail Ivanoffb@who.ch).

RESPIRATORY VIRUS SURVEILLANCE

FluWatch Project

Standardized rates of influenza-like illness (ILI) reported to FluWatch indicate a second rise in influenza activity beginning in mid-February (Figure 1). The increased activity seen in Nova Scotia and New Brunswick was most notable; the bi-monthly standardized ILI rates from weeks 8 to 12 exceeded 80 per 1,000 patients seen. Similar rates were reported in Quebec, Saskatchewan, and Alberta, where higher ILI activity has been noted throughout the 1996 to 1997 influenza season (Figure 2).

The secondary wave in influenza activity has been associated with influenza B. The number of B isolates reported to the Laboratory Centre for Disease Control (LCDC) increased in January and the last 2 weeks of February; influenza B was more commonly reported than influenza A. All of the B isolates typed at LCDC have been B/Beijing/184/93-like.

Figure 1

Standardized rates of reported ILI across Canada by 2-week periods, reported to FluWatch, 13 January - 23 March 1997

Figure 2

Standardized rate per 1,000 patients seen

Taux normalisé pour 1 000 patients vus

The distribution of cases has shifted. The highest rates of ILI are now seen in children < 10 years of age; earlier in the season, the highest rates were among persons 10 to 44 years old (Figure 3).

The current pattern of influenza activity seen in Canada is similar to what has been reported elsewhere in the northern hemisphere.

Source: Division of Disease Surveillance, Bureau of Infectious Diseases, LCDC, Ottawa, ON.